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Abstract. We prove several results about the best constants in the Hausdorff–
Young inequality for noncommutative groups. In particular, we establish a

sharp local central version for compact Lie groups, and extend known results

for the Heisenberg group. In addition, we prove a universal lower bound to
the best constant for general Lie groups.

1. Introduction

For f ∈ L1(Rn), define the Fourier transform f̂ of f by

f̂(ξ) =

∫
Rn
f(x) e2πiξ·x dx ∀ξ ∈ Rn.

Then the Riemann–Lebesgue lemma states that f̂ ∈ C0(Rn) and

‖f̂‖∞ ≤ ‖f‖1.

Further, the Plancherel theorem entails that if f ∈ L2(Rn), then

‖f̂‖2 = ‖f‖2.

Suppose that 1 ≤ p ≤ 2 and p′ is the conjugate exponent to p, that is, 1/p′ = 1−1/p.
Then interpolation implies the Hausdorff–Young inequality, namely,

‖f̂‖p′ ≤ C‖f‖p (1.1)

for all f ∈ Lp(Rn), where C ≤ 1. We denote the best constant for this inequality,
that is, the smallest possible value of C, by Hp(Rn). This was found many years
after the original result. We define the Babenko–Beckner constant Bp by

Bp =
p1/2p

(p′)1/2p′
.

Then Bp < 1 when 1 < p < 2.

Theorem 1.1 (Babenko [3], Beckner [6]). For all p ∈ [1, 2],

Hp(Rn) = (Bp)
n.

Babenko treated the case where p′ ∈ 2Z, and Beckner proved the general case.
The extremal functions are gaussians; see [46] for an alternative proof.

One can extend the Babenko–Beckner theorem to more general contexts than
Rn, such as locally compact abelian groups G. For instance, the best constant
Hp(G) for the inequality (1.1) when G = Ra × Tb × Zc is (Bp)

a. The extremal
functions are of the form γ ⊗ χ ⊗ δ, where γ is a gaussian on Ra, χ is a character
of Tb, and δ is the characteristic function of a point in Zc.
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For nonabelian groups, matters are more complicated, in part because the in-
terpretation of the Lq norm of the Fourier transform for q ∈ (2,∞) is trickier. We
refer the reader to Section 2 below for details. General versions of the Hausdorff–
Young inequality (1.1) were obtained by Kunze [43] and Terp [63] for arbitrary
locally compact groups G, and a number of works in the literature are devoted to
the study of the corresponding best constants Hp(G). It is known, at least in the
unimodular case, that Hp(G) < 1 for p ∈ (1, 2) if and only if G has no compact open
subgroups [56, 25]. On the other hand, when Hp(G) is not 1, its value is known
only in few cases, and typically only for exponents p whose conjugate exponent is
an even integer; in addition, as shown by Klein and Russo, extremal functions need
not exist [38].

Recently, various authors considered local versions of the Hausdorff–Young in-
equality. Namely, for each neighbourhood U of the identity e ∈ G, define Hp(G;U)
as the best constant in the inequality (1.1) with the additional support constraint
supp f ⊆ U , and let H loc

p (G) be the infimum of the constants Hp(G;U). Clearly

H loc
p (G) ≤ Hp(G), and equality holds whenever G has a contractive automorphism.

For other groups, however, the inequality may be strict, which makes the study of
H loc
p (G) interesting also for groups where Hp(G) = 1, such as compact groups. In-

deed, in the case of the torus G = Tn, the value of H loc
p (G) is known and is strictly

less than 1 for p ∈ (1, 2).

Theorem 1.2 (Andersson [1, 2], Sjölin [61], Kamaly [35]). For all p ∈ [1, 2],

H loc
p (Tn) = (Bp)

n.

Here we are interested in analogues of the above result for noncommutative Lie
groups G. We also study what happens when additional symmetries are imposed
by restricting to functions f on G which are invariant under a compact group K of
automorphisms of G. Let us denote by Hp,K(G) and H loc

p,K(G) the corresponding
global and local best Hausdorff–Young constants. Note that the original constants
Hp(G) and H loc

p (G) correspond to the case where K is trivial. WhenK is nontrivial,

a priori the new constants Hp,K(G) and H loc
p,K(G) might be smaller. However we

can prove a universal lower bound, which is independent of the symmetry group K
and depends only on p and the dimension of G.

Theorem 1.3. Let G be a Lie group and K be a compact group of automorphisms
of G. For all p ∈ [1, 2],

H loc
p,K(G) ≥ (Bp)

dim(G).

Recall that a function f on a group G is central if f(xy) = f(yx), that is, if f
is invariant under the group Inn(G) of inner automorphisms of G. Garćıa-Cuerva,
Marco and Parcet [28] and Garćıa-Cuerva and Parcet [29] studied the Hausdorff–
Young inequality for compact semisimple Lie groups G restricted to central func-
tions; in particular, they obtained the inequality H loc

p,Inn(G)(G) > 0, which they

applied to answer questions about Fourier type and cotype of functions with values
in operator spaces (see also [52]). Theorem 1.3 gives a substantially more precise
lower bound to H loc

p,Inn(G)(G). As a matter of fact, in this case we can prove that

equality holds.

Theorem 1.4. Suppose that G is a compact connected Lie group. Then, for all
p ∈ [1, 2],

H loc
p,Inn(G)(G) = (Bp)

dim(G).

Note on the one hand that, in the abelian case G = Tn, all functions are central,
so Theorem 1.4 extends Theorem 1.2. On the other hand, it would be interesting
to know whether the result holds also without the restriction to central functions.
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More generally, one may ask whether the inequality in Theorem 1.3 is actually
an equality for an arbitrary Lie group G. Note that, due to the relation between the
best constants for the Young and the Hausdorff–Young inequalities (see Proposition
2.2 below), a recent result of Bennett, Bez, Buschenhenke and Flock [7] implies that
equality holds in Theorem 1.3 for all exponents p ∈ [1, 2] whose conjugate exponent
is an even integer. In particular, the equality

Hp(G) = H loc
p (G) = (Bp)

dim(G) (1.2)

hold when p′ ∈ 2Z for all Lie groups G with a contractive automorphism, and also
for all solvable Lie groups G admitting a chain of closed subgroups

{e} = G0 < G1 < · · · < Gn−1 < Gn = G,

where Gj is normal in Gj+1 and Gj+1/Gj is isomorphic to R (here n = dim(G)).

For many of those groups G, the upper bound Hp(G) ≤ (Bp)
dim(G) for p′ ∈ 2Z was

proved in [38], but the question of the lower bound was left open there, except for
the Heisenberg groups. Hence Theorem 1.3 proves the sharpness of a number of
results in [38].

The Heisenberg groups Hn are among the simplest examples of groups in the
above class. Nevertheless, determining the value of Hp(Hn) = H loc

p (Hn) appears to
be a nontrivial problem when p′ /∈ 2Z, and is related to a similar problem for the
so-called Weyl transform. Recall that the Weyl transform ρ on Cn maps functions
on Cn to integral operators on L2(Rn) [22], and an inequality of Hausdorff–Young
type can be proved for ρ [38, 57]: for all p ∈ [1, 2],

‖ρ(f)‖Sp′ (L2(Rn)) ≤ C‖f‖Lp(Cn), (1.3)

where Sq(H) denotes the qth Schatten class of operators on the Hilbert space H,
and C ≤ 1. As above, we can define Wp(Cn) as the best constant in (1.3), as well
as corresponding local and symmetric versions W loc

p (Cn),Wp,K(Cn),W loc
p,K(Cn). A

scaling argument (see Proposition 5.1 below) then shows that, for all compact
subgroups K of the unitary group U(n),

Hp,K(Hn) = BpWp,K(Cn) (1.4)

(here U(n) acts naturally on Cn and the first layer of Hn). So the problem of
determining the best Hausdorff–Young constants for the Heisenberg group Hn is
equivalent to the analogous problem for the Weyl transform. In particular, (1.4)
and Theorem 1.3 yield that

Wp,K(Cn) ≥ (Bp)
2n

for all p ∈ [1, 2]. As an indication that equality may well hold, here we prove the
following local result.

Theorem 1.5. Let K be a compact subgroup of U(n). Then, for all p ∈ [1, 2],

W loc
p,K(Cn) ≥ (Bp)

2n.

Moreover, if K ⊇ U(1)× · · · ×U(1), then, for all p ∈ [1, 2],

W loc
p,K(Cn) = (Bp)

2n.

Functions on Cn or Hn that are invariant under U(1) × · · · × U(1) are called
polyradial. Equality in Theorem 1.5 is obtained as a consequence of the following
weighted Hausdorff–Young inequality for polyradial functions f :

‖ρ(f)‖Sp′ (Rn) ≤ (Bp)
2n‖fe(π/2)|·|2‖Lp(Cn). (1.5)

Unfortunately we have not found a way to remove the weight and obtain the equality
Wp,K(Cn) = W loc

p,K(Cn) for arbitrary p ∈ [1, 2]; note however that Wp,K(Cn) =

W loc
p,K(Cn) = (Bp)

2n when p′ ∈ 2Z, as proved in [38].
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Both cases where we can prove equalities in Theorems 1.4 and 1.5 for general
p ∈ [1, 2] correspond to Gelfand pairs (see, for example, [12]): indeed, central
functions on a compact group G and polyradial functions on the Heisenberg group
Hn form commutative subalgebras of the respective convolution algebras L1(G)
and L1(Hn). It seems a reasonable intermediate question to ask for best constants
in Hausdorff–Young inequalities in the context of Gelfand pairs, since here the
group Fourier transform reduces to the Gelfand transform for the corresponding
commutative algebra of invariant functions, which makes the Lq norm of the Fourier
transform in these settings more accessible. Indeed, in both the proofs of Theorems
1.4 and 1.5, this additional commutativity allows one to relate the group Fourier
transform and the Weyl transform with the Euclidean Fourier transform, for which
the Babenko–Beckner result is available. Regrettably, even in the case of polyradial
functions on the Heisenberg group we are not able yet to fully answer the question.
Indeed, as we discuss in Section 5, in this case it seems unlikely that the best
Hausdorff–Young constant on the Heisenberg group can be obtained by a direct
reduction to the corresponding sharp Euclidean estimate, and new ideas appear to
be needed.

As for the universal lower bound of Theorem 1.3, the intuitive idea behind its
proof is that, at smaller and smaller scales, the group structure of a Lie group G
looks more and more like the abelian group structure of its Lie algebra g, whence
H loc
p (G) is likely to be related to Hp(g) = (Bn)dim(G). Indeed, a scaling argument

based on this idea readily yields the analogue of Theorem 1.3 for Young’s convolu-
tion inequality (see the discussion in Section 2 below). This appears to have been
overlooked in [38], where a number of upper bounds for Young constants on Lie
groups are proved, which are actually equalities in view of this observation.

The additional complication with the Hausdorff–Young inequality is that it in-
volves the Lq norm of the Fourier transform. While it is reasonably clear that, at
small scales, the noncommutative convolution on G approximates the commutative
convolution on g, the same is not so evident for the Fourier transform: indeed, if
the group Fourier transform is defined, as it is common, in terms of irreducible
unitary representations, then it is not immediately clear how to relate the represen-
tation theories of G and g for an arbitrary Lie group G, let alone the corresponding
Fourier transforms and Lq norms thereof. Here we completely bypass the problem,
by characterising the Lq norm of the Fourier transform in terms of an operator
norm of a fractional power of an integral operator, acting on functions on G:

‖f̂‖qq = ‖|Lf∆1/q|q‖1→∞. (1.6)

Here Lf is the operator of convolution on the left by f and ∆ is the operator
of multiplication by the modular function of G. A transplantation argument, not
dissimilar from those in [51, 36, 49], allows us to relate the operator Lf∆1/q on G
to its counterpart on g and obtain the desired lower bound.

Although it might be evident to some experts in noncommutative integration, we
are not aware of the characterisation (1.6) being explicitly observed before. What
is interesting about (1.6) is that it allows one to access the Lq norm of the Fourier
transform through properties of a more “geometric” convolution-multiplication op-
erator on G, which appears to be more treatable. As a matter of fact, when dealing
with convolution, one can use induction-on-scales methods to completely determine
the best local constants for the Young convolution inequality on any Lie group G;
this remarkable result has been recently proved in [7], as a corollary of a more
general result for nonlinear Brascamp–Lieb inequalities. It would be interesting to
know whether similar methods could be applied to the Hausdorff–Young inequality
on noncommutative Lie groups as well.
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Plan of the paper. In Section 2 we discuss the definition of the Lq norm of the
Fourier transform for an arbitrary Lie group, by comparing a number of definitions
available in the literature, and prove the characterisation (1.6); we also present
a proof of the universal lower bound of Theorem 1.3, as well as its analogue for
the Young convolution inequality, and discuss relations between best constants for
Young and Hausdorff–Young inequalities. The sharp local central Hausdorff–Young
inequality for arbitrary compact Lie groups (Theorem 1.4) is proved in Section 4; to
better explain the underlying idea without delving into technicalities, the proof of
the abelian case (Theorem 1.2) is briefly revisited in Section 3. Finally, in Section
5 we discuss the relations between Hausdorff–Young constants for the Heisenberg
group and the Weyl transform and prove Theorem 1.5, together with the weighted
inequality (1.5) for polyradial functions.

2. Lq norm of the Fourier transform

Let G be a Lie group (or, more generally, a separable locally compact group) with
a fixed left Haar measure. In order to discuss best Haudsdorff–Young constants in
this generality, we first need to clarify what is meant by the “Fourier transform” in
this setting and how Hausdorff–Young inequalities — even the endpoint ones, such
as the Plancherel formula — can be stated in this context.

A common way to generalise the Fourier transformation to this setting exploits
irreducible unitary representations of G (see, for example, [47] or [23, Chapter 7] for

a survey). Namely, let Ĝu be the “unitary dual” of G, that is, the set of (equivalence
classes of) irreducible unitary representations of G, endowed with the Fell topology
and the Mackey Borel structure. The (unitary) Fourier transform Fuf of a function

f ∈ L1(G) is then defined as the operator-valued function on Ĝu given by

Ĝu 3 π 7→ π(f) =

∫
G

f(x)π(x) dx ∈ L(Hπ);

here L(Hπ) denotes the space of bounded linear operators on the Hilbert space Hπ
on which the representation π acts, and integration is with respect to the Haar
measure. In case G is unimodular and type I (this includes the cases where G is
abelian or compact), the Plancherel formula can be stated in the form

‖f‖2L2(G) =

∫
Ĝu

‖π(f)‖2HS(Hπ) dπ (2.1)

for all f ∈ L1∩L2(G). Here HS(Hπ) denotes the space of Hilbert–Schmidt operators

on Hπ, and integration on Ĝu is with respect to a suitable measure, called the
Plancherel measure, which is uniquely determined by the above formula; in addition,
the Fourier transformation f 7→ Fuf extends to an isometric isomorphism between

L2(G) and the direct integral L2
u(Ĝ) :=

∫ ⊕
Ĝu

HS(Hπ) dπ. Interpolation then leads

to the Hausdorff–Young inequality

‖Fuf‖Lp′u (Ĝ)
:=

(∫
Ĝu

‖π(f)‖p
′

Sp′ (Hπ)
dπ

)1/p′

≤ C‖f‖Lp(G) (2.2)

when 1 < p < 2, where C = 1; here, for all q ∈ [1,∞], Sq(Hπ) denotes the qth

Schatten class of operators on Hπ, and the operator-valued Lq-spaces Lqu(Ĝ) are
defined in terms of measurable fields of operators as in [47]. The fact that the

spaces Lqu(Ĝ) constitute a complex interpolation family, that is,

[Lq0u (Ĝ), Lq1u (Ĝ)]θ = Lqu(Ĝ) (2.3)

with equal norms for q0, q1, q ∈ [1,∞], θ ∈ (0, 1), 1/q = (1 − θ)/q0 + θ/q1, readily
follows from standard interpolation results for vector-valued Lebesgue spaces and
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Schatten classes (see, for example, [66, 31, 54]) and the structure of the measurable
field of separable Hilbert spaces π 7→ Hπ [23, Proposition 7.19].

In the case where G is not unimodular, under suitable type I assumptions it is
possible to prove a Plancherel formula similar to (2.1), where the right-hand side is
adjusted by means of “formal dimension operators” [62, 39, 40, 19, 26]. Analogous
modifications of (2.2) lead to a version of the Hausdorff–Young inequality that has
been studied in a number of works [21, 57, 32, 27, 4].

When G is not type I, the above approach to the Plancherel formula based on
irreducible unitary representation theory does not work as neatly. This however
does not prevent one from studying the Hausdorff–Young inequality. Indeed, what
is possibly the first appearance in the literature of the Hausdorff–Young inequality
in a noncommutative setting, that is, the work of Kunze [43] for arbitrary uni-
modular locally compact groups (not necessarily of type I), does not express the
Fourier transform in terms of irreducible unitary representations, but uses instead
the theory of noncommutative integration (the same theory was used in earlier
works of Mautner [50] and Segal [58] to express the Plancherel formula). This
point of view was subsequently developed by Terp [63] to cover the case of non-
unimodular groups and more recently has been further extended to the context of
locally compact quantum groups [13, 15].

One way of thinking of noncommutative Lq spaces is as complex interpolation
spaces between a von Neumann algebra M and its predual M∗ (which play the role
of L∞ and L1 respectively) [64, 42, 33, 54]. In general this requires establishing a
“compatibility” between M and M∗, which may involve a number of choices, but in
our case there appears to be a natural way to proceed (see also [24, 17]). Namely,
the von Neumann algebra VN(G) of G (that is, the weak∗-closed ∗-subalgebra of
L(L2(G)) of the operators which commute with right translations) can be identified
with the space Cv2(G) of left convolutors of L2(G), that is, those distributions on
G which are left convolution kernels of L2(G)-bounded operators. Moreover, the
predual V N(G)∗ can be identified with the Fourier algebra A(G), an algebra of
continuous functions on G defined by Eymard [20] for arbitrary locally compact
groupsG. NowA(G) and Cv2(G) are naturally compatible as spaces of distributions
on G (see [20, Propositions (3.26) and (3.27)]), so we can use complex interpolation
to define Fourier–Lebesgue spaces of distributions on G: for q ∈ [1,∞], we set

FLq(G) =


A(G) if q = 1,

Cv2(G) if q =∞,
[A(G),Cv2(G)]1−1/q if 1 < q <∞.

One can check that this definition corresponds to Izumi’s left Lp spaces [33, 34]
for the von Neumann algebra VN(G) with respect to the Plancherel weight, and
therefore it matches the construction given in [13, 15] for quantum groups. In
particular FL2(G) = L2(G) with equality of norms (see [34, Section 5] and [13,
Proposition 2.21(iii)]; this corresponds to the Plancherel theorem), while clearly
L1(G) ⊆ Cv2(G) with norm-decreasing embedding. Interpolation then leads to the

following formulation of the Hausdorff–Young inequality: Lp(G) ⊆ FLp′(G) and

‖f‖FLp′ (G) ≤ C‖f‖Lp(G) (2.4)

where C = 1 and p ∈ [1, 2].
We then define the Lp Hausdorff–Young constant Hp(G) on the group G as the

minimal constant C for which (2.4) holds for all f ∈ Lp(G). Similarly, if U is a
neighbourhood of the identity in G, we let Hp(G;U) be the minimal constant C in
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(2.4) when f is constrained to have support in U , and define the local Lp Hausdorff–
Young constant H loc

p (G) as the infimum of the constants Hp(G;U) where U ranges
over the neighbourhoods of the identity of G.

The approach to Hausdorff–Young constants via FLq spaces is consistent with
the unitary Fourier transformation approach described above, when the latter is
applicable. Indeed, as discussed in [47, Theorems 2.1 and 3.1], in the case where
G is unimodular and type I, the unitary Fourier transformation Fu induces iso-

metric isomorphisms Cv2(G) ∼= L∞u (Ĝ) and A(G) ∼= L1
u(Ĝ), besides the Plancherel

isomorphism L2(G) ∼= L2
u(Ĝ) (analogous results in the nonunimodular case can be

found in [26, Theorems 3.48 and 4.12]); so by interpolation Fu induces an isomet-

ric isomorphism between FLq(G) and Lqu(Ĝ) for all q ∈ [1,∞]. Hence defining
Hausdorff–Young constants in terms of the inequality (2.2) would lead to the same
constants Hp(G) and H loc

p (G) as those we have defined in terms of FLq spaces. On
the other hand, the approach via FLq spaces does not require type I assumptions,
or even separability, and can be applied to every locally compact group G.

There is an alternative characterisation of the noncommutative Lq spaces associ-

ated to V N(G), namely as certain spaces LqVN(Ĝ) of (closed, possibly unbounded)
operators on L2(G). This characterisation, which is that originally used in the works
of Kunze and Terp on the Hausdorff–Young inequality, corresponds to Hilsum’s ap-
proach to noncommutative Lq spaces [30] based on Connes’s “spatial derivative”
construction [14] (the work of Kunze is actually based on an earlier version of
the theory [18, 59] that only applies to semifinite von Neumann algebras). We
will not enter into the details of this construction and only recall two important

properties. First, if the operator T belongs to LqVN(Ĝ) for some q ∈ [1,∞), then

|T |q = (T ∗T )q/2 belongs to L1
VN(Ĝ) and

‖T‖q
LqVN(Ĝ)

= ‖|T |q‖L1
VN(Ĝ). (2.5)

Moreover, for all q ∈ [1,∞], an isometric isomorphism from FLq(G) to LqVN(Ĝ) is
given by

f 7→ Lf∆1/q, (2.6)

where Lf is the left-convolution operator by f , and we identify the modular func-
tion ∆ of G with the corresponding multiplication operator (see [13, Proposition
2.21(ii)]). Recall that convolution on G is given by

Lfφ(x) = f ∗ φ(x) =

∫
G

f(xy)φ(y−1) dy,

at least when f and φ are in Cc(G).
Note that, when q = p′, (2.6) matches the definitions by Kunze and by Terp

of the Lp Fourier transformation Fp : Lp(G) → Lp
′

VN(Ĝ) for p ∈ [1, 2] [43, 63]. In

other words, the Lp Fourier transformation Fp : Lp(G) → Lp
′

VN(Ĝ) factorises as

the inclusion map Lp(G) → FLp′(G) and the isometric isomorphism FLp′(G) →
Lp
′

VN(Ĝ), whence the compatibility with the Kunze–Terp approach of the above
definition of the best Hausdorff–Young constants based on (2.4).

Another consequence of the above discussion is the following characterisation of
the FLq(G) norm in terms of a more “concrete” operator norm.

Proposition 2.1. For all q ∈ [1,∞) and f ∈ FLq(G),

‖f‖FLq(G) = ‖|Lf∆1/q|q‖1/qL1(G)→L∞(G). (2.7)

Proof. By (2.5) and (2.6),

‖f‖FLq(G) = ‖Lf∆1/q‖LqVN(Ĝ) = ‖|Lf∆1/q|q‖1/q
L1

VN(Ĝ)
= ‖g‖1/qA(G),
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where g ∈ A(G) satisfies Lg∆ = |Lf∆1/q|q. On the other hand, the operator Lg∆
is given by

Lg∆φ(x) =

∫
G

g(xy) ∆(y−1)φ(y−1) dy =

∫
G

g(xy−1)φ(y) dy;

since Lg∆ = |Lf∆1/q|q is a positive operator, the kernel g must be a function of
positive type (see, for example, [23, Section 3.3]), whence

‖g‖A(G) = g(e) = ‖g‖∞ = ‖Lg∆‖L1(G)→L∞(G)

and we are done. �

A classical way of accessing Hausdorff–Young constants is through their rela-
tions with best constants in the Young convolution inequalities. Recall that, for a
possibly nonunimodular group G, the k-linear version of Young’s inequality takes

the following form: for all p1, . . . , pk, r ∈ [1,∞] such that
∑k
j=1 1/p′j = 1/r′,∥∥∥ k

˚
j=1

(fj∆
∑j−1
l=1 1/p′l)

∥∥∥
Lr(G)

≤ C
k∏
j=1

‖fj‖Lpj (G) (2.8)

where C ≤ 1 (see [63, Lemma 1.1], or [38, Corollary 2.3] where the inequality
is written for the right Haar measure). As in the case of the Hausdorff–Young
inequality, we can define the Young constant Yp1,...,pk(G) for G as the smallest
constant C for which (2.8) holds for all f1 ∈ Lp1(G), . . . , fk ∈ Lpk(G), as well
as the localised versions Yp1,...,pk(G;U) for neighbourhoods U of the identity of G
(corresponding to the constraint supp f1, . . . , supp fk ⊆ U) and Y loc

p1,...,pk
(G).

Note that the above Young inequality (2.8) is “dual” to the following Hölder-type

inequality for FLp-spaces: for all p1, . . . , pk, r ∈ [1,∞] such that
∑k
j=1 1/pj = 1/r,∥∥∥ k

˚
j=1

(fj∆
∑j−1
l=1 1/pl)

∥∥∥
FLr(G)

≤
k∏
j=1

‖fj‖FLpj (G); (2.9)

this is a rephrasing of Hölder’s inequality for Hilsum’s noncommutative Lp spaces,

‖T1 · · ·Tk‖LrVN(Ĝ) ≤
k∏
j=1

‖Tj‖LpjVN(Ĝ)

[30, Proposition 8], via the isomorphism (2.6) from FLq(G) to LqVN(Ĝ) and the
identities

∆α(f ∗ g) = (∆αf) ∗ (∆αg) and L∆αf = ∆αLf∆−α, (2.10)

valid for all α ∈ C. Let us also recall that

Lf∗ = L∗f , (2.11)

where f 7→ f∗ is the isometric conjugate-linear involution of L1(G) given by

f∗(x) = ∆−1(x) f(x−1).

The proposition below summarises a number of relations between Young and
Hausdorff–Young constants that can be found in the literature, at least in particular
cases (see, for example, [6] and [38]), as well as corresponding local versions.

Proposition 2.2. Let G be a locally compact group.

(i) For all p1, . . . , pk, q ∈ [1, 2] such that
∑
j 1/p′j = 1/q,

Yp1,...,pk(G) ≤ Hq(G)Hp1(G) · · ·Hpk(G),

Y loc
p1,...,pk

(G) ≤ H loc
q (G)H loc

p1 (G) · · ·H loc
pk

(G).
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(ii) For all p ∈ [1, 2) such that p′ = 2k, k ∈ Z, if p1 = · · · = pk = p, then

Hp(G) = Yp1,...,pk(G)1/k,

H loc
p (G) = Y loc

p1,...,pk
(G)1/k.

(iii) If N is a closed normal subgroup of G, then, for all p1, . . . , pk ∈ [1,∞] such

that
∑k
j=1 1/p′j ∈ [0, 1],

Yp1,...,pk(G) ≤ Yp1,...,pk(N)Yp1,...,pk(G/N),

Y loc
p1,...,pk

(G) ≤ Y loc
p1,...,pk

(N)Y loc
p1,...,pk

(G/N),

with equality when G ∼= N × (G/N).

Proof. (i). For all f1, . . . , fk, g ∈ Cc(G), by (2.4) and (2.9),〈
k
˚
j=1

(fj∆
∑j−1
l=1 1/p′l), g

〉
≤
∥∥∥∥ k

˚
j=1

(fj∆
∑j−1
l=1 1/p′l)

∥∥∥∥
FLq
‖g‖FLq′

≤ ‖f1‖FLp′1 · · · ‖fk‖FLp′k ‖g‖FLq′
≤ Hq(G)Hp1(G) · · ·Hpk(G)‖f1‖Lp1 · · · ‖fk‖Lpk ‖g‖Lq ,

which proves that∥∥∥∥ k
˚
j=1

(fj∆
∑j−1
l=1 1/p′l)

∥∥∥∥
Lq′
≤ Hq(G)Hp1(G) · · ·Hpk(G)‖f1‖Lp1 · · · ‖fk‖Lpk ,

that is, Yp1,...,pk(G) ≤ Hq(G)Hp1(G) · · ·Hpk(G). Note now that, if f1, . . . , fk are

supported in a neighbourhood U of the identity, then ˚k
j=1(fj∆

∑j−1
l=1 1/p′l) is sup-

ported in Uk and, to estimate its Lq
′

norm, it is enough to test it against functions
g that are also supported in Uk; the same argument as above then also gives

Yp1,...,pk(G;U) ≤ Hq(G;Uk)Hp1(G;U) · · ·Hpk(G;U)

and Y loc
p1,...,pk

(G) ≤ H loc
q (G)H loc

p1 (G) · · ·H loc
pk

(G).

(ii). Part (i) gives us the inequality Hp(G) ≥ Yp1,...,pk(G)1/k and its local version.

On the other hand, for all f ∈ Cc(G), if we define f̃ = ∆1/p′f∗, then

‖f̃‖p = ‖f‖p
and, by (2.10) and (2.11),

Lf̃∆1/p′ = (Lf∆1/p′)∗.

For all j = 1, . . . , k, let fj be either f̃ or f , according to whether k − j is odd or

even, and define g = ˚k
j=1(fj∆

(j−1)/p′). Then, since p′ = 2k,

|Lf∆1/p′ |p
′

= [(Lf∆1/p′)∗(Lf∆1/p′)]k

= (Lf̃∆1/p′)(Lf∆1/p′) · · · (Lf̃∆1/p′)(Lf∆1/p′)

= |(Lf1∆1/p′) · · · (Lfk∆1/p′)|2

and, by (2.10),

(Lf1∆1/p′) · · · (Lfk∆1/p′) = Lg∆
1/2.

So |Lf∆1/p′ |p′ = |Lg∆1/2|2 and, by (2.7) and (2.8),

‖f‖p
′

FLp′ = ‖g‖2FL2 = ‖g‖2L2 ≤ Yp1,...,pk(G)2‖f1‖2Lp · · · ‖fk‖2Lp = Yp1,...,pk(G)2‖f‖p
′

Lp ,

which gives the inequality Hp(G) ≤ Yp1,...,pk(G)1/k. The same argument also gives

Hp(G;U) ≤ Yp1,...,pk(G;U)1/k and H loc
p (G) ≤ Y loc

p1,...,pk
(G)1/k.

(iii). The inequalities are proved by a simple extension of Klein and Russo’s
argument for the case of semidirect products [38, proof of Lemma 2.4], using the
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“measure disintegration” in [23, Theorem (2.49)]. In the case of direct products,
equalities follow by testing on tensor product functions (see [6, Lemma 5]). �

The next lemma contains the fundamental approximation results that allow us
to relate Hausdorff–Young constants on a Lie group G and on its Lie algebra g by
means of a “transplantation” or “blow-up” technique. The Lie algebra g will be
considered as an abelian group with addition, and the Lebesgue measure on g is
normalised so that the Jacobian determinant of the exponential map exp : g → G
is equal to 1 at the origin. The context will make clear whether the notation for
convolution and involution (f ∗ g, f∗, Lf ) refers to the group structure of G or the
abelian group structure of g.

Denote by Cpg([0,∞)) the space of continuous functions Φ : [0,∞)→ C with at
most polynomial growth, that is, |Φ(u)| ≤ C(1 + u)N for some C,N ∈ (0,∞) and
all u ∈ [0,∞).

Lemma 2.3. Let G be a Lie group with Lie algebra g of dimension n, and let
exp : g→ G be the exponential map. Let Ω be an open neighbourhood of the origin
in g such that Ω = −Ω and exp |Ω : Ω → exp(Ω) is a diffeomorphism. For all
f ∈ Cc(g), λ ∈ (0,∞), α ∈ R and p ∈ [1,∞], define fλ,p,α : G→ C by

fλ,p,α(x) =

{
λ−n/p∆(x)−αf(λ−1 exp |−1

Ω (x)) if x ∈ exp(Ω),

0 otherwise.
(2.12)

Set also fλ,p = fλ,p,0. Then the following hold.

(i) For all f ∈ Cc(g), α ∈ R and p ∈ [1,∞],

‖fλ,p,α‖Lp(G) ≤ Cα,p,Ω ‖f‖Lp(g) (2.13)

for all λ ∈ (0,∞), and

‖fλ,p,α‖Lp(G) → ‖f‖Lp(g) (2.14)

as λ→ 0.
(ii) For all k ∈ N, α1, . . . , αk, β ∈ R, f1, . . . , fk, g ∈ Cc(g),

〈fλ,1,α1

1 ∗ · · · ∗ fλ,1,αkk , gλ,∞,β〉L2(G) → 〈f1 ∗ · · · ∗ fk, g〉L2(g) (2.15)

as λ→ 0.
(iii) For all α ∈ R, f, g, h ∈ Cc(g), Φ ∈ Cpg([0,∞)),

〈Φ(∆αL(fλ,1)∗∗fλ,1∆α)gλ,2, hλ,2〉L2(G) → 〈Φ(Lf∗∗f )g, h〉L2(g) (2.16)

as λ→ 0.
(iv) For all α ∈ R, f, g, h ∈ Cc(g) and q ∈ [0,∞),

λ−n(q−1)〈|Lfλ,∞∆α|qgλ,1, hλ,1〉L2(G) → 〈|Lf |qg, h〉L2(g)

as λ→ 0.

Proof. Let J : g→ R denote the modulus of the Jacobian determinant of exp, and
define ∆e : g→ (0,∞) to be ∆ ◦ exp

(i). Note that

‖fλ,p,α‖pp = λ−n
∫

Ω

|f(λ−1X)|p(J∆−αpe )(X) dX =

∫
λ−1Ω

|f(X)|p(J∆−αpe )(λX) dX.

From this, (2.13) follows (with Cpα,p,Ω = supΩ J∆−αpe ), and (2.14) follows as well

because f is compactly supported and limX→0(J∆−αpe )(X) = J(0)∆(e)−αp = 1.
(ii). By the Baker–Campbell–Hausdorff formula,

exp(X1) · · · exp(Xk) = exp(X1 + · · ·+Xk +B(X1, . . . , Xk)),
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whereB(X1, . . . , Xk) =
∑
m≥2Bm(X1, . . . , Xk) and, for allm ≥ 2, Bm(X1, . . . , Xk)

is a homogeneous polynomial function of X1, . . . , Xk of degree m; indeed we can find
a sufficiently small neighbourhood Ω̃ ⊆ Ω of the origin in g so that, if X1, . . . , Xk ∈
Ω̃, then X1 + · · ·+Xk +B(X1, . . . , Xk) ∈ Ω.

Note that

〈fλ,1,α1

1 ∗ · · · ∗ fλ,1,αkk , gλ,∞,β〉L2(G)

=

∫
Gk
fλ,1,α1

1 (x1) · · · fλ,1,αkk (xk) gλ,∞,β(x1 · · ·xk) dx1 . . . dxk

If λ is sufficiently small that
⋃k
j=1 λ supp fj ⊆ exp(Ω̃), then the last integral may

be rewritten as∫
gk
ḡ

(
k∑
j=1

Xj + λ−1B(λX1, . . . , λXk)

)
k∏
j=1

(fj(Xj)(J∆−αj−βe )(λXj)) dX1 · · · dXk.

Since λ−1B(λX1, . . . , λXk) = λ
∑
m≥2 λ

m−2Bm(X1, . . . , Xk) tends to 0 as λ → 0,

the last integral tends to 〈f1 ∗ · · · ∗ fk, g〉L2(g).
(iii). Note first that ∆αL(fλ,1)∗∗fλ,1∆α is a nonnegative self-adjoint operator

on L2(G) (which may be unbounded when G is nonunimodular) and that, for all
N ∈ N, the L2-domain of (∆αL(fλ,1)∗∗fλ,1∆α)N contains all compactly supported

functions in L2(G), so the left-hand side of (2.16) is well-defined. Note moreover
that

(fλ,p,α)∗ = (f∗)λ,p,1−α (2.17)

whence, by (2.10),

〈(∆αL(fλ,1)∗∗fλ,1∆α)Ngλ,2, hλ,2〉L2(G)

=

〈(
N
˚
j=1

((f∗)λ,1,1−(2j−1)α ∗ fλ,1,−(2j−1)α)

)
∗ gλ,1,−2Nα, hλ,∞

〉
.

So, in the case where Φ(u) = uN for some N ∈ N, (2.16) follows from (2.15).
Note that, by shrinking Ω if necessary, we may assume that Ω and exp(Ω) have

compact closures in g and G, and moreover the topological boundary of exp(Ω) has
null Haar measure (indeed shrinking Ω does not change the left-hand side of (2.16)
for λ sufficiently small). As in [49, proof of Theorem 5.2], we can now extend the
diffeomorphism φ := exp |−1

Ω : exp(Ω)→ Ω to a diffeomorphism φ∗ : U → V , where
U and V are open sets in G and g containing exp(Ω) and Ω, and moreover G\U has
null Haar measure. Finally, let J∗ : V → (0,∞) be the density of the push-forward
via φ∗ of the Haar measure with respect to the Lebesgue measure (so J∗ = J on
Ω), and define an isometric isomorphism Ψ : L2(G)→ L2(V ) by

Ψ(F ) = (F ◦ φ−1
∗ ) J

1/2
∗ .

Since Aλ := ∆αL(fλ,1)∗∗fλ,1∆α is a self-adjoint operator on L2(G), we can define a

self-adjoint operator Ãλ on L2(g) = L2(V )⊕ L2(g \ V ) by

Ãλ =

(
ΨAλΨ−1 0

0 0

)
and another self-adjoint operator Âλ on L2(g) by Âλ = T−1

λ ÃλTλ, where Tλ is the
isometry on L2(g) defined by

Tλf(X) = λ−n/2f(X/λ).

It is now not difficult to check that, for all Φ ∈ Cpg([0,∞)) and g, h ∈ Cc(g),

〈Φ(Âλ)g, h〉L2(g) = 〈Φ(Aλ)gλ,2, hλ,2〉L2(G) (2.18)
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for all λ sufficiently small that suppTλg ∪ suppTλh ⊆ Ω.
For all N ∈ N, from the cases Φ(u) = uN and Φ(u) = u2N of (2.16) and (2.18)

it follows that, for all g, h ∈ Cc(g),

〈ÂNλ g, h〉L2(g) → 〈ANg, h〉L2(g), ‖ÂNλ g‖L2(g) → ‖ANg‖L2(g) (2.19)

as λ → 0, where A := Lf∗∗f . In particular, from this and the density of Cc(g) in
L2(g) it is not difficult to conclude that, for all g ∈ Cc(g),

ÂNλ g → ANg (2.20)

in L2-norm as λ → 0 [10, Proposition 3.32]. Since A is a bounded self-adjoint
operator on L2(g), Cc(g) is a core for A and [67, Theorem 9.16] implies that

Âλ → A

in the sense of strong resolvent convergence as λ→ 0. In turn this implies that, for
all bounded continuous functions Φ : [0,∞)→ C,

Φ(Âλ)→ Φ(A) (2.21)

in the sense of strong operator convergence as λ→ 0 [67, Theorem 9.17].

Suppose now that Φ ∈ Cpg([0,∞)). Then we can write Φ(u) = Φ̃(u) (1 +uN ) for

some bounded continuous function Φ̃ : [0,∞)→ C and N ∈ N. For all g, h ∈ Cc(g),
by (2.18),

〈Φ(Aλ)gλ,2, hλ,2〉L2(G) = 〈Φ(Âλ)g, h〉L2(g) = 〈Φ̃(Âλ)g, h〉L2(g)+〈Φ̃(Âλ)g, ÂNλ h〉L2(g)

for all λ sufficiently small, and the last quantity tends to

〈Φ̃(A)g, h〉L2(g) + 〈Φ̃(A)g,ANh〉L2(g) = 〈Φ(A)g, h〉L2(g)

as λ→ 0, by (2.20) and (2.21).
(iv). This is just a restatement of part (iii) in the case where Φ(u) = uq/2. �

We can finally prove the enunciated relation between Hausdorff–Young constants
of a Lie group and its Lie algebra. We find it convenient to state the result together
with its analogue for Young constants, since both follow by the approximation
results of Lemma 2.3. Part (ii) of Proposition 2.4, together with the following
Remark 2.5 and the Babenko–Beckner theorem for Rn, prove Theorem 1.3.

As in [60], we define a contractive automorphism of a locally compact group G
as an automorphism τ such that limk→∞ τk(x) = e for all x ∈ G.

Proposition 2.4. Let G be a locally compact group.

(i) For all p1, . . . , pk ∈ [1,∞] such that
∑k
j=1 1/p′j ∈ [0, 1],

Yp1,...,pk(G) ≥ Y loc
p1,...,pk

(G), (2.22)

with equality when G has a contractive automorphism; moreover, if G is a
Lie group with Lie algebra g,

Y loc
p1,...,pk

(G) ≥ Yp1,...,pk(g). (2.23)

(ii) For all p ∈ [1, 2],

Hp(G) ≥ H loc
p (G), (2.24)

with equality if G has a contractive automorphism. Moreover, when G is an
n-dimensional Lie group with Lie algebra g,

H loc
p (G) ≥ Hp(g). (2.25)
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Proof. (i). The first inequality is obvious. Moreover, in case G has a contractive
automorphism, the reverse inequality follows from a scaling argument. Indeed, for
all automorphisms γ of G, there exists κγ ∈ (0,∞) such that the push-forward via
γ of the Haar measure on G is κγ times the Haar measure. So, if Rγf = f ◦ γ−1,
then

‖Rγf‖Lp(G) = κ−1/p
γ ‖f‖Lp(G), Rγ∆ = ∆, Rγ

(
k
˚
j=1

fj

)
= κk−1

γ

k
˚
j=1

Rγfj ,

whence it is immediate that both sides of Young’s inequality (2.8) are scaled by
the same factor when each fj is replaced with Rγfj . Now, by density, the value
of the best constant Yp1,...,pk(G) may be determined by testing (2.8) on arbitrary
f1, . . . , fk ∈ Cc(G). Moreover, if τ is a contractive automorphism of G and U is any
neighbourhood of the identity, then, for all compact subsets K ⊆ G, there exists
N ∈ N such that τN (K) ⊆ U [60, Lemma 1.4(iv)]; in particular, for all f1, . . . , fk ∈
Cc(G), by taking γ = τN for sufficiently large N ∈ N, we see that suppRγfj ⊆ U .
This shows that Yp1,...,pk(G) ≤ Yp1,...,pk(G;U) for all neighbourhoods U of e ∈ G,
and consequently Yp1,...,pk(G) ≤ Y loc

p1,...,pk
(G).

As for the second inequality, let U be an arbitrary neighbourhood of e ∈ G. To
conclude, it is sufficient to show that Yp1,...,pk(g) ≤ Yp1,...,pk(G;U).

Let r ∈ [1,∞] be defined by
∑
j 1/p′j = 1/r′. Consider g, f1, . . . , fk ∈ Cc(g). For

all λ ∈ (0,∞), α ∈ C and p ∈ [1,∞], define gλ,p, fλ,pj , fλ,p,αj as in Lemma 2.3. Then⋃k
j=1 supp fλ,1j ⊆ U for all sufficiently small λ, and therefore, by (2.8),〈

k
˚
j=1

(fλ,1j ∆
∑j−1
l=1 1/p′l), gλ,∞

〉
L2(G)

≤ Yp1,...,pk(G;U) ‖fλ,11 ‖Lp1 (G) · · · ‖fλ,1k ‖Lpk (G)‖gλ,∞‖Lr′ (G).

Note that
∑k
j=1 1/pj + 1/r′ = k. So the last inequality can be rewritten as〈

fλ,1,α1

1 ∗ · · · ∗ fλ,1,αkk , gλ,∞
〉
L2(G)

≤ Yp1,...,pk(G;U) ‖fλ,p11 ‖Lp1 (G) · · · ‖fλ,pkk ‖Lpk (G)‖gλ,r
′
‖Lr′ (G),

where αj = −
∑j−1
l=1 1/p′l. Hence, by Lemma 2.3, by taking the limit as λ→ 0, we

obtain

〈f1 ∗ · · · ∗ fk, g〉L2(g) ≤ Yp1,...,pk(G;U) ‖f1‖Lp1 (g) · · · ‖fk‖Lpk (g)‖g‖Lr′ (g).

The arbitrariness of f1, . . . , fk, g ∈ Cc(g) implies that Yp1,...,pk(g) ≤ Yp1,...,pk(G;U).
(ii). Much as in part (i), the first inequality is obvious, and equality follows from

a rescaling argument when G has a contractive automorphism, since

‖Rγf‖FLq(G) = κ−1/q′

γ ‖f‖FLq(G)

for all automorphisms γ of G.
As for the second inequality, we need to show that Hp(g) ≤ Hp(G;U) for all

neighbourhoods U of e ∈ G. Set q = p′ and note that, by (2.7),

‖f‖qFF q(G) = sup
‖g‖L1(G),‖h‖L1(G)≤1

〈|Lf∆1/q|qg, h〉L2(G).

For λ ∈ (0,∞), r ∈ [1,∞] and f, g, h ∈ Cc(g), we define fλ,r, gλ,r, hλ,r : G → C
as in Lemma 2.3. For all sufficiently small λ, supp fλ,r ⊆ U and therefore

〈|Lfλ,∞∆1/q|qgλ,1, hλ,1〉L2(G) ≤ Hp(G;U)q‖fλ,∞‖qLp(G)‖g
λ,1‖L1(G)‖hλ,1‖L1(G),
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that is,

λ−n(q−1)〈|Lfλ,∞∆1/q|qgλ,1, hλ,1〉L2(G)

≤ Hp(G;U)q‖fλ,p‖qLp(G)‖g
λ,1‖L1(G)‖hλ,1‖L1(G).

As λ→ 0, by Lemma 2.3 we then deduce that

〈|Lf |qg, h〉L2(g) ≤ Hp(G;U)q‖f‖qLp(g)‖g‖L1(g)‖h‖L1(g).

By the arbitrariness of g, h ∈ Cc(g),

‖f‖FLq(g) ≤ Hp(G;U)‖f‖Lp(g)

and finally, by the arbitrariness of f ∈ Cc(g), Hp(g) ≤ Hp(G;U). �

Remark 2.5. The argument in Proposition 2.4 can be extended to the case of
inequalities restricted to particular classes of functions on G. In particular, suppose
that the class of functions is determined by invariance with respect to the action of
a compact group K of automorphisms of G. Then it is possible to choose a positive
inner product on g so that K acts on g by isometries (take any inner product on
g and average it with respect to the action of K), and the correspondence (2.12)
preserves K-invariance whenever Ω is a ball centred at the origin. Moreover the
class of functions on g under consideration contains all radial functions. Since the
extremisers for Young and Hausdorff–Young constants on g are centred gaussians
[6, 9], which may be assumed to be radial, the resulting lower bounds do not change.
This observation completes the proof of Theorem 1.3. ♦

Remark 2.6. While the inequalities (2.22) and (2.24) may be strict for certain Lie
groups G (note that, when G is compact, the global Young and Hausdorff–Young
constants are equal to 1), it appears natural to ask whether the inequalities (2.23)
and (2.25) are actually equalities. We are not aware of any counterexample. As a
matter of fact, a particular case of a recent result of Bennett, Bez, Buschenhenke
and Flock about nonlinear Brascamp–Lieb inequalities [7] entails that equality al-
ways holds in (2.23) for all Lie groups G:

Y loc
p1,...,pk

(G) = Yp1,...,pk(g)

for all p1, . . . , pk ∈ [1,∞] such that
∑k
j=1 1/p′j ∈ [0, 1]. By Proposition 2.2(ii), this

in turn implies that

H loc
p (G) = Hp(g)

for all p ∈ [1, 2] such that p′ is an even integer. ♦

As a consequence of the above results, we strengthen some results of Klein and
Russo [38, Corollaries 2.5’ and 2.8], where upper bounds for Young and Hausdorff–
Young constants are obtained for particular solvable Lie groups. Klein and Russo
explicitly remark that they are able to obtain equalities instead of upper bounds
in the particular case of the Heisenberg groups and only for special exponents
(through a different argument, involving the analysis of the Weyl transform) and
seem to leave the general case open. Here instead we obtain equality for all the
Young constants, as well as a lower bound for the Hausdorff–Young constants (which
becomes an equality in the case of Babenko’s exponents).

Corollary 2.7. Let G be a n-dimensional solvable Lie group admitting a chain of
closed subgroups

{e} = G0 < · · · < Gn = G,

where Gj is normal in Gj+1 and Gj+1/Gj is isomorphic to R. Denote by Bp the
Babenko–Beckner constant. Then the following hold.
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(i) for all p1, . . . , pk, r ∈ [1,∞] such that
∑k
j=1 1/p′j = 1/r′,

Yp1,...,pk(G) = Y loc
p1,...,pk

(G) = (Br′Bp1 · · ·Bpk)n;

(ii) for all p ∈ [1, 2],

Hp(G) ≥ H loc
p (G) ≥ (Bp)

n,

with equalities if p′ ∈ 2Z.

Proof. (i). The inequality Yp1,...,pk(G) ≤ (Br′Bp1 · · ·Bpk)n can be obtained, as in
[38], by iteratively applying Proposition 2.2(iii) and the fact that Yp1,...,pk(R) =
Br′Bp1 · · ·Bpk [6, 9]. On the other hand, by Propositions 2.4(i) and 2.2(iii),

Yp1,...,pk(G) ≥ Y loc
p1,...,pk

(G) ≥ Yp1,...,pk(g) = Yp1,...,pk(R)n = (Br′Bp1 · · ·Bpk)n,

and we are done.
(ii). From part (i) and Proposition 2.2(ii), we deduce immediately that Hp(G) =

(Bp)
n whenever q is an even integer. On the other hand, by Proposition 2.4(ii),

Hp(G) ≥ H loc
p (G) ≥ Hp(g) = (Bp)

n,

by [6], and we are done. �

3. The n-torus Tn revisited

The proof of the central local Hausdorff–Young theorem on a compact Lie group
mimics that of the local Hausdorff–Young theorem on Tn, and we present this case
first to make the proof of the general case more evident.

Proof of Theorem 1.2. There is no loss of generality in supposing functions smooth;
this ensures that all the sums and integrals that occur in the proof below converge.

Let us identify Tn with the subset (−1/2, 1/2]n of Rn. For f ∈ L1(Tn), the

Fourier transform f̂ : Zn → C of f is given by

f̂(µ) =

∫
Tn
f(x) e2πiµ·x dx.

for all µ ∈ Zn. We denote by V the open subset (−1/2, 1/2)n of Rn. For any
function f ∈ L1(Tn) such that supp f ⊆ V , we define F on Rn by

F (x) =

{
f(x) when x ∈ V ,

0 otherwise;

we say that F corresponds to f . Clearly F ∈ L1(Rn) and F̂ |Zn = f̂ ; further, if f is
smooth, so is F . We are going to transfer the sharp Hausdorff–Young theorem for
F to f .

The Plancherel formulae for Fourier series and Fourier integrals imply that

‖f̂‖`2(Zn) = ‖f‖L2(Tn) = ‖F‖L2(Rn) = ‖F̂‖L2(Rn).

In particular, since F̂ |Zn = f̂ ,

‖F̂ |Zn‖`2(Zn) ≤ ‖F̂‖L2(Rn). (3.1)

Further, trivially,

‖F̂ |Zn‖`∞(Zn) ≤ ‖F̂‖L∞(Rn).

If we could interpolate between these inequalities, then it would follow that

‖F̂ |Zn‖`q(Zn) ≤ ‖F̂‖Lq(Rn) (3.2)

for all q ∈ [2,∞] and F̂ in Lq(Rn), whence

‖f̂‖`p′ (Zn) = ‖F̂ |Zn‖`p′ (Zn) ≤ ‖F̂‖Lp′ (Rn) ≤ (Bp)
n‖F‖Lp(Rn) = (Bp)

n‖f‖Lp(Tn),
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and we would be done. But we can not interpolate, because (3.1) does not hold

for all F̂ in L2(Rn), or even for all F̂ in a dense subspace of L2(Rn), but only for

those F̂ where suppF ⊆ V ; inter alia, this ensures that F̂ is smooth so that F̂ |Zn
is well-defined. So we prove a variant of (3.2).

Let U be a small neighbourhood U of 0 in Tn such that U ⊆ V , and take
φ ∈ A(Rn) such that suppφ ⊆ V and φ(x) = 1 for all x ∈ U . We now define

TG = (φ̂ ∗G)|Zn ∀G ∈ L1(Rn) + L∞(Rn).

We claim that when q ∈ [2,∞],

‖TG‖`q(Zn) ≤ ‖φ̂‖L1(Rn)‖G‖Lq(Rn) ∀G ∈ Lq(Rn). (3.3)

To prove the claim, observe that the inverse Fourier transform of φ̂ ∗ G is sup-
ported in V , whence

‖TG‖`2(Zn) = ‖(φ̂ ∗G)|Zn‖`2(Zn) ≤ ‖φ̂ ∗G‖L2(Rn) ≤ ‖φ̂‖L1(Rn)‖G‖L2(Rn),

for all G ∈ L2(Rn), by (3.1) and a standard convolution inequality. Similarly, since

φ̂∗G is continuous, the same inequalities hold when 2 is replaced by∞. Thus (3.3)
holds when q is 2 or ∞. The Riesz–Thorin interpolation theorem establishes (3.3)
for all q ∈ [2,∞].

To conclude the proof, take f ∈ C∞(Tn) such that supp f ⊆ U , and let F

correspond to f . Then F̂ ∈ L1(Rn) ∩ L∞(Rn) and φ̂ ∗ F̂ = F̂ . Thus

‖f̂‖`q(Zn) = ‖T F̂‖`q(Zn) ≤ ‖φ̂‖L1(Rn)‖F̂‖Lq(Rn)

by (3.3). This now gives

‖f̂‖`p′ (Zn) ≤ ‖φ̂‖L1(Rn)‖F̂‖Lp′ (Rn)

≤ ‖φ̂‖L1(Rn)(Bp)
n‖F‖Lp(Rn) = ‖φ̂‖L1(Rn)(Bp)

n‖f‖Lp(Zn).

This proves that Hp(Tn;U) ≤ ‖φ̂‖L1(Rn)(Bp)
n.

By choosing U small enough, we may make ‖φ̂‖L1(Rn) as close to 1 as we like

(see [45]): indeed, we can take φ = |K|−11U+K ∗ 1K , where K = −K is a fixed
small neighbourhood of the origin (here 1Ω denotes the characteristic function of a
measurable set Ω ⊆ Rn and |Ω| its Lebesgue measure), so that suppφ ⊆ U + 2K
and

1 = φ(0) ≤ ‖φ̂‖L1(Rn) ≤ |K|−1‖1K‖L2(Rn)‖1U+K‖L2(Rn) = (|U +K|/|K|)1/2.

So H loc
p (Tn) ≤ (Bp)

n, and the converse inequality is given by Theorem 1.3. �

4. Compact Lie groups

Before entering into the proof of Theorem 1.4, we present a summary of the
theory of representations and characters of compact connected Lie groups G. For
more details, the reader may consult, for example, [11, 41]. We assume throughout
that G is not abelian, since the abelian case was treated in Theorem 1.2.

A compact connected Lie group G comes with a set Λ+ of dominant weights,
which parametrise the collection of irreducible unitary representations πλ of G
modulo equivalence. Each such representation πλ is of finite dimension dλ and has
a character χλ given by traceπλ(·).

Assume that the Haar measure on G is normalised so as to have total mass 1.
The Peter–Weyl theory gives us the Plancherel formula: if f ∈ L2(G), then

‖f‖22 =
∑
λ∈Λ+

dλ‖πλ(f)‖2HS.



THE HAUSDORFF–YOUNG INEQUALITY 17

In other words, the group Plancherel measure on the unitary dual of G can be
identified with the discrete measure on Λ+ that assigns mass dλ to the point λ.
From the discussion in Section 2, we deduce that

‖f‖FLq =

( ∑
λ∈Λ+

dλ‖πλ(f)‖qSq

)1/q

.

for all q ∈ [1,∞). If f is a central function, then πλ(f) is a multiple of the identity
and

f̃(λ) :=

∫
G

f(x)χλ(x) dx = traceπλ(f),

whence

‖f‖FLq =

( ∑
λ∈Λ+

d2−q
λ |f̃(λ)|q

)1/q

.

For q = 2, this corresponds to the fact that the characters χλ form an orthonormal
basis for the space of square-integrable central functions.

A more precise description of the set Λ+ of dominant weights and the characters
χλ can be given as follows. Recall that the conjugation action of the group G on
itself determines the adjoint representation of G on g:

exp(Ad(x)Y ) = x exp(Y )x−1 ∀x ∈ G ∀Y ∈ g.

Since G is compact, there exists an Ad(G)-invariant inner product on g, which in
turn determines a Lebesgue measure on g; we scale the inner product so that the
Jacobian determinant J : g → R of the exponential mapping is 1 at the origin.
Clearly J is an Ad(G)-invariant function.

The group G contains a maximal torus T , that is, a maximal closed connected
abelian subgroup, which is unique up to conjugacy; its Lie algebra t is a maximal
abelian Lie subalgebra of g. The set Γ of X in t such that expX = e is a lattice
in t, and T may be identified with t/Γ. The weight lattice Λ is the dual lattice
to Γ, that is, the set of elements λ of the dual space t∗ taking integer values on
Γ: equivalently, Λ is the set of the λ ∈ t∗ such that X 7→ e2πiλ(X) descends to a
character κλ of T . We say that a weight λ ∈ Λ occurs in a unitary representation
π of G if the character κλ of T is contained in the restriction of π to T . Weights
occurring in the (complexified) adjoint representation are called roots. A choice of
an ordering splits roots into into positive and negative roots. We denote by ρ half
the sum of the positive roots. The set Λ+ of dominant weights is the set of the
λ ∈ Λ having nonnegative inner product with all positive roots. The irreducible
representation πλ of G corresponding to λ ∈ Λ+ is determined, up to equivalence,
by the fact that λ is the highest weight occurring in πλ (that is, λ occurs in πλ,
while λ+ α does not occur in πλ for any positive root α).

Via the orthogonal projection of g onto t, we can identify t∗ with a subspace of
g∗. Given λ in g∗, we write Oλ for the compact set Ad(G)∗λ, usually called the
orbit of λ. Kirillov’s character formula [37, p. 459] states that, for all X ∈ g and
all λ ∈ Λ+,

J(X)1/2 χλ(exp(X)) =

∫
Oλ+ρ

exp(2πiξ ·X) dσ(ξ), (4.1)

where σ is a canonical Ad(G)∗-invariant measure on Oλ+ρ, and ξ ·X denotes the
duality pairing between ξ ∈ g∗ and X ∈ g. When X = 0, this formula becomes the
normalisation ∫

Oλ+ρ

dσ(ξ) = dλ.
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Proof of Theorem 1.4. Take a small connected conjugation-invariant neighbour-
hood U of the identity in G that is also symmetric, that is, U−1 = U . Then
U =

⋃
x∈G x(U ∩ T )x−1. Let V be the small connected neighbourhood of 0 in g

such that U = expV and exp is a diffeomorphism from a neighbourhood of V onto
a neighbourhood of U in G.

To a function f on G supported in U , we associate the function F on g supported
in V by the formula

F (X) =

{
J(X)1/2 f(exp(X)) when X ∈ V ,

0 otherwise.

Then ‖J1/p−1/2F‖p = ‖f‖p. We define the Fourier transform F̂ of F as follows:

F̂ (ξ) =

∫
g

F (X) exp(2πiξ ·X) dX ∀ξ ∈ g∗.

The following conditions are equivalent: f is central on G; F is Ad(G)-invariant on

g; and F̂ is Ad(G)∗-invariant on g∗.
Assume that f is central and supported in U , and let F be the associated function

on g. From the character formula (4.1), a change of variables, and a change of order
of integration,

f̃(λ) =

∫
G

f(x)χλ(x) dx =

∫
g

F (X)

∫
Oλ+ρ

exp(2πiξ ·X) dσ(ξ) dX

=

∫
Oλ+ρ

∫
g

F (X) exp(2πiξ ·X) dX dσ(ξ) =

∫
Oλ+ρ

F̂ (ξ) dσ(ξ) = dλF̂ (λ+ ρ).

This, combined with the Plancherel theorems for central functions on G and for
functions on g, implies that∑

λ∈Λ+

d2
λ|F̂ (λ+ ρ)|2 = ‖f‖22 = ‖F‖22 = ‖F̂‖22.

For such functions, moreover, F̂ is continuous and so

sup
λ∈Λ+

|F̂ (λ+ ρ)|∞ ≤ ‖F̂‖∞.

For a function H on g∗, we define

HG(λ) =

∫
G

H(Ad(g)∗λ) dg.

Much as in the case of Tn, we choose an Ad(G)-invariant function φ ∈ A(g) which
vanishes off V and takes the value 1 on the open Ad(G)-invariant subset W of V .
For H in L1(g∗) + L∞(g∗), we define the function TH by

TH(λ) = φ̂ ∗HG(λ+ ρ) ∀λ ∈ Λ+.

For such functions H, the inverse Fourier transform F of φ̂ ∗ HG is supported in
V and is Ad(G)-invariant, so the corresponding function f on G is central and
supported in U . From our previous discussion,( ∑

λ∈Λ+

d2
λ|TH(λ)|2

)1/2

= ‖φ̂ ∗HG‖2 ≤ ‖φ̂‖1‖HG‖2 ≤ ‖φ̂‖1‖H‖2

and

sup
λ∈Λ+

|TH(λ)| ≤ ‖TH‖∞ ≤ ‖φ̂‖1‖HG‖∞ ≤ ‖φ̂‖1‖H‖∞.
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By Riesz–Thorin interpolation, when 2 ≤ q <∞,( ∑
λ∈Λ+

d2
λ|TH(λ)|q

)1/q

≤ ‖φ̂‖1‖H‖q.

Much as in the proof of Theorem 1.2, if f is a central function on G supported
in exp(W ) ⊆ U , and F is the Ad(G)-invariant function on g corresponding to f ,

then T F̂ (λ) = φ̂ ∗ F̂ (λ+ ρ) = F̂ (λ+ ρ) for all λ ∈ Λ+. Hence, if n = dimG, from
the Hausdorff–Young inequality on Rn we deduce that

‖f‖FLp′ =

( ∑
λ∈Λ+

d2−p′
λ |f̃(λ)|p

′

)1/p′

=

( ∑
λ∈Λ+

d2
λ|F̂ (λ+ ρ)|p

′

)1/p′

≤ ‖φ̂‖1‖F̂‖p′ ≤ ‖φ̂‖1(Bp)
n‖F‖p ≤ ‖φ̂‖1(Bp)

n sup
X∈W

J(X)1/2−1/p‖f‖p,

which shows that Hp,Inn(G)(G; exp(W )) ≤ ‖φ̂‖1(Bp)
n supX∈W J(X)1/2−1/p. By

taking W small, we may make both supX∈W J(X)1/2−1/p and ‖φ̂‖1 close to 1. So
H loc
p,Inn(G)(G) ≤ (Bp)

n, and the converse inequality is given by Theorem 1.3. �

5. The Weyl transform

In this section, we shall mostly adopt the notation from Folland’s book [22]. The
Weyl transform ρ(f) of a function f ∈ L1(Cn) can be written as the operator

ρ(f) =

∫
Rn

∫
Rn
f(u+ iv) e2πi(uD+vX) du dv

on L2(Rn), where uD =
∑n
j=1 ujDj and vX =

∑n
j=1 vjXj , and where Dj and Xj

denote the operators

Djφ(x) =
1

2πi

∂

∂xj
f(x) and Xjφ(x) = xjφ(x).

Explicitly, ρ(f) is the integral operator given by

ρ(f)φ(x) =

∫
Rn
Kf (x, y)φ(y) dy,

with integral kernel given by

Kf (x, y) =

∫
Rn
f(y − x+ iv) eπiv(x+y) dv.

As Folland points out on page 24 of his monograph, this notion of “Weyl trans-

form” is historically incorrect—the Weyl transform of f should rather be ρ(f̂), the
pseudodifferential operator associated to the symbol f in the Weyl calculus [22,
Chapter 2]. Nevertheless, we shall use the definition of Weyl transform above.

In [38], the authors consider the operator ν(f) given by

ν(f) =

∫
Rn

∫
Rn
f(u+ iv) e2πiuD e2πivX du dv,

and call this the Weyl operator associated to f—this appears to be even more inap-
propriate, as ν(f) is actually more closely related to the Kohn–Nirenberg calculus
(see, for example, [22, (2.32)]). In any case, it is easily seen that the operators ν(f)
and ρ(f) are related by the identity

ν(f) = ρ(eiπu·vf) (5.1)

(compare also [22, Proposition 2.33]).
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We are interested in best constants in Hausdorff–Young inequalities of the form

‖ρ(f)‖Sp′ ≤ C‖f‖Lp(Cn), (5.2)

for suitable functions f , for instance Schwartz functions. In light of (5.1), we may
work with ν(f) in place of ρ(f) equally well. As discussed in the introduction, we
denote by Wp(Cn) the best constant C in (5.2), and use the symbols W loc

p (Cn),

Wp,K(Cn) and W loc
p,K(Cn) for the corresponding local and K-invariant variants.

If p = 2, then ρ is indeed isometric from L2(Cn) onto the space of Hilbert–
Schmidt operators [22, Theorem (1.30)], and thus the following “Plancherel iden-
tity” for the Weyl transform holds true:

‖ρ(f)‖HS = ‖f‖2. (5.3)

This tells us that W2(Cn) = 1 and, by interpolation, Wp(Cn) ≤ 1 for all p ∈ [1, 2].
However, as Klein and Russo have shown, Wp(Cn) < 1 when 1 < p < 2. Indeed,

[38, Theorem 1] may be restated by saying that

Wp(Cn) = (Bp)
2n (5.4)

when p′ ∈ 2Z. Moreover, in contrast with the Euclidean case, there are no extremal
functions for the optimal estimate—the best constant can only be found as a limit,
for instance along a suitable family of Gaussian functions f . This raises the question
whether (5.4) holds for more general p ∈ [1, 2].

Besides being of interest in its own right, the determination of the best constants
in the Hausdorff–Young inequality (5.2) for the Weyl transform on Cn is relevant
to the analysis of the analogous inequality on the Heisenberg group Hn. Indeed,
the proof of Klein and Russo [38, Theorem 3] that

Hp(Hn) = (Bp)
2n+1 (5.5)

when p′ ∈ 2Z is based on a reduction, via a scaling argument, to the corresponding
result (5.4) for the Weyl transform. A somewhat refined version of the scaling argu-
ment, presented below, shows that the problem of determining the best Hausdorff–
Young constants for the Heisenberg group is completely equivalent to the analogous
problem for the Weyl transform, irrespective of the exponent p ∈ [1, 2], and also in
case of restriction to functions with symmetries.

Proposition 5.1. For all compact subgroups K of U(n) and all p ∈ [1, 2],

Hp,K(Hn) = BpWp,K(Cn).

Proof. Let us identify Hn with Cn × R with group law

(z, t) · (z′, t′) = (z + z′, t+ t′ + =(z̄ · z′)/2).

The Lebesgue measure on Cn×R is a Haar measure on Hn, which we fix throughout.
The Schrödinger representation π of Hn on L2(Rn) is given by

π(u+ iv, t)φ(x) = e2πit+2πiv·x+πiu·vφ(u+ x)

[22, (1.25)]. For all λ ∈ R \ {0}, the map Aλ : Hn → Hn, given by

Aλ(z, t) =

{
(
√
|λ| z, λt) if λ > 0,

(
√
|λ| z̄, λt) if λ < 0,

is an automorphism of Hn. The representations πλ = π ◦ Aλ form a family of
pairwise inequivalent irreducible unitary representations of Hn, in terms of which
we can express the Plancherel formula for Hn:

‖F‖2L2(Hn) =

∫
R\{0}

‖πλ(F )‖2HS |λ|n dλ.
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[22, p. 39]. Hence, by the discussion in Section 2, for all q ∈ [1,∞),

‖F‖qFLq =

∫
R\{0}

‖πλ(F )‖qSq |λ|
n dλ. (5.6)

For all F ∈ L1(Hn) and λ ∈ R, let us set

Fλ(z) =

∫
R
F (z, t) e2πitλ dt.

Then

πλ(F ) = ρ(ZλF
λ), (5.7)

where, for all functions f on Cn,

Zλf(z) =

{
|λ|−nf(|λ|−1/2z) if λ > 0,

|λ|−nf(|λ|−1/2z̄) if λ < 0.

From the definition of ρ, it is not difficult to show that

ρ(Z−1f) = Sρ(f)∗S,

where Sf(z) = f∗(z) = f(−z). From this it readily follows that

‖ρ(Z−λf)‖Sq = ‖ρ(Zλf)‖Sq (5.8)

for all λ ∈ R \ {0} and q ∈ [1,∞].
Let F ∈ C∞c (Hn) be K-invariant. Then ZλF

λ is also K-invariant for all λ > 0.
Hence, by (5.6), (5.7) and (5.8),

‖F‖FLp′ =

(∫
R\{0}

‖ρ(Z|λ|F
λ)‖p

′

Sp′ |λ|
n dλ

)1/p′

≤Wp,K(Cn)

(∫
R\{0}

‖Z|λ|Fλ‖p
′

p |λ|n dλ

)1/p′

= Wp,K(Cn)

(∫
R\{0}

‖Fλ‖p
′

p dλ

)1/p′

≤Wp,K(Cn)

(∫
Cn

(∫
R
|Fλ(z)|p

′
dλ

)p/p′
dz

)1/p

≤Wp,K(Cn)Bp‖F‖p,
where we applied, in order, the sharp Hausdorff–Young inequality for the Weyl
transform and K-invariant functions, a scaling, the Minkowski integral inequality
(note that p′/p ≥ 1) and the sharp Hausdorff–Young inequality on R. This shows
that Hp,K(Hn) ≤ BpWp,K(Cn).

Conversely, let f ∈ C∞c (Cn) be K-invariant and φ : R → C be in the Schwartz

class, and let F = f ⊗ φ. Then F is also K-invariant, and moreover Fλ = φ̂(λ)f .
So, by applying the sharp Hausdorff–Young inequality on Hn to F we obtain that(∫

R\{0}
‖ρ(Zλf)‖p

′

Sp′ |φ̂(λ)|p
′
|λ|n dλ

)1/p′

≤ Hp,K(Hn)‖f‖p‖φ‖p. (5.9)

For µ ∈ (0,∞) and λ0 ∈ R \ {0}, take

φ(t) = e−πµt
2−2πitλ0 ,

so that

φ̂(λ) = µ−1/2e−(π/µ)(λ−λ0)2 and ‖φ̂‖p′ = Bp‖φ‖p,
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since gaussians are extremal functions for the Hausdorff–Young inequality on R.
With this choice of φ, the inequality (5.9) can be rewritten as

Bp(Rf ∗ Φµ(λ0))1/p′ ≤ Hp,K(Hn)‖f‖p,
where ∗ denotes convolution on R and

Rf (λ) = ‖ρ(Zλf)‖p
′

Sp′ |λ|
n, Φµ(λ) =

e−(πp′/µ)λ2∫
R e
−(πp′/µ)s2 ds

.

Note that λ 7→ Zλf is continuous R\{0} → Lp(Cn) and ρ : Lp(Cn)→ Sp′(L2(Rn))
is continuous too, so Rf is a continuous function on R \ {0}. Moreover Φµ is an
approximate identity as µ→ 0. Hence, by taking the limit as µ→ 0, we obtain

Bp sup
λ∈R\{0}

‖ρ(Zλf)‖Sp′ |λ|
n/p′ ≤ Hp,K(Hn)‖f‖p,

which for λ = 1 gives
Bp‖ρ(f)‖Sp′ ≤ Hp,K(Hn)‖f‖p,

that is, BpWp,K(Cn) ≤ Hp,K(Hn). �

Let us come back to the question whether the identity (5.4) holds for arbitrary
p ∈ [1, 2]. The following result, which allows for arbitrary p but restricts the class
of functions f and, regrettably, also requires a weight in the p-norm, gives another
indication that this might be true. Recall that a function f on Cn is polyradial if

f(z) = f0(|z1|, . . . , |zn|),
or, equivalently, if f is invariant under the n-fold product group U(1)× · · · ×U(1).

Proposition 5.2. If f ∈ C∞c (Cn) is polyradial, then, for all p ∈ [1, 2],

‖ρ(f)‖Sp′ ≤ (Bp)
2n‖fe(π/2)|·|2‖Lp(Cn). (5.10)

As observed in the introduction, this inequality implies that W loc
p,K(Cn) ≤ (Bp)

2n

for K = U(1)× · · · ×U(1), and a fortiori also for any larger group K.

Proof. We present a proof of Proposition 5.2 which follows the philosophy of the
proof of Theorem 1.4. The key is the following identity relating Laguerre polyno-
mials to Bessel functions:

Lαk (x) =
exx−α/2

k!

∫ ∞
0

tk+α/2 Jα(2
√
xt) e−t dt ∀x > 0, (5.11)

where α ∈ (−1,∞) [44, (4.19.3)]. In order to avoid technicalities, let us concentrate
on the case where n = 1; we shall later indicate the straightforward changes in the
argument which are needed to deal with general n ≥ 1.

If f(z) = f0(|z|) is a radial L1-function on C, then one may use the orthonormal
basis of Hermite functions hk (k ∈ N) of L2(R) to represent the operator ρ(f) as
an infinite diagonal matrix, with diagonal elements given by

f̃(k) := 〈ρ(f)hk, hk〉 =

∫
C
f(z)χk(z) dz ∀k ∈ N, (5.12)

where χk is the Laguerre function

χk(z) = e−(π/2)|z|2L0
k(π|z|2).

(see [22, (1.45) and (1.104)]; see also [65, (1.4.32)]). In particular, ‖ρ(f)‖Sq = ‖f̃‖`q
for all q ∈ [1,∞].

Recall also that the Euclidean Fourier transform of any radial L1-function g on
C ∼= R2 can be written in polar coordinates as

ĝ(ζ) = 2π

∫ ∞
0

g0(r) J0(2π|ζ|r)r dr, (5.13)
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where g(z) = g0(|z|). We assume that f has compact support, and put F (z) =

e(π/2)|z|2f(z). Since also F̂ is radial, we may write F̂ (ζ) = F̂0(|ζ|). Combining
(5.11) and (5.13), we obtain

f̃(k) =

∫ ∞
0

F̂0

(√
t/π
) tk
k!
e−t dt, (5.14)

which can be re-written as

f̃(k) =

∫
C
F̂ (ζ)

πk|ζ|2k

k!
e−π|ζ|

2

dζ =

∫
C
F̂ (ζ) dµk(ζ), (5.15)

where the measures dµk, k ∈ N, are probability measures on C. Combining the
aforementioned Plancherel identity for the Weyl transform, which leads to∑

k∈N

∣∣∣∣∫
C
F̂ (ζ) dµk(ζ)

∣∣∣∣2 = ‖f‖22 ≤ ‖F‖22 = ‖F̂‖22,

with the trivial estimate

sup
k∈N

∣∣∣∣∫
C
F̂ (ζ) dµk(ζ)

∣∣∣∣ ≤ ‖F̂‖∞,
we see that from here on we can easily modify the argument in the proof of Theorem
1.4 in order to arrive at (5.10).

Indeed, an even simpler interpolation argument is possible here, which avoids
any smallness assumption on the support of f . For suitable functions φ on the
positive real line, let us write

φ̆(k) =

∫ ∞
0

φ(t)
tk

k!
e−t dt

for all k ∈ Z. We claim that

‖φ̆‖`q ≤ ‖φ‖Lq(R+,dt) (5.16)

for all q ∈ [1,∞]. Indeed, this estimate is trivial for q =∞, since the tk

k! e
−t dt are

probability measures, and for q = 1 we may estimate as follows:
∞∑
k=0

|φ̆(k)| ≤
∫ ∞

0

|φ(t)|
∞∑
k=0

tk

k!
e−t dt = ‖φ‖1.

Thus, (5.16) follows by Riesz–Thorin interpolation. From (5.16) and (5.14),

‖f̃‖`q ≤
(∫ ∞

0

∣∣∣F̂0

(√
t/π
)∣∣∣q dt)1/q

= ‖F̂‖q,

and thus, by the sharp Hausdorff–Young inequality on R2, we obtain

‖ρ(f)‖Sp′ = ‖f̃‖`q ≤ (Bp)
2‖F‖p,

whence (5.10) follows.
Let us finally indicate the changes needed to deal with the case of arbitrary n.

The Laguerre functions must be replaced by the n-fold tensor products

χk(z1, . . . , zn) = χk1(z1) . . . χk1(z1),

where k = (k1, . . . , kn) ∈ Nn, and thus, in place of (5.12),

f̃(k) =

∫
Cn
f(z1, . . . , zn)χk(z1, . . . , zn) dz1 . . . dzn

where k ∈ Nn. Accordingly, the measures dµk must be replaced by the n-fold tensor
products dµk = dµk1 ⊗ · · · ⊗ dµkn , which are again probability measures, and so
on. It then becomes evident that the proof carries over without any difficulty to
this general case. �
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Remark 5.3. There are indications that it may not be possible to establish (5.10)

without the presence of the weight e(π/2)|·|2 by means of a reduction to the Euclidean
Fourier transform and the Babenko–Beckner estimate, and that new techniques are
required. Let us again restrict our discussion for simplicity to the case n = 1.

There is another interesting identity relating Laguerre functions and Bessel func-
tions, namely

e−x/2xα/2Lαk (x) =
(−1)k

2

∫ ∞
0

Jα(
√
xy) e−y/2 yα/2 Lαk (y) dy ∀x > 0,

where α ∈ (−1,∞) [44, (4.20.3)]. For α = 0, this in combination with (5.13) implies
the well-known identity

χk(z) = e−(π/2)|z|2L0
k(π|z|2) =

(−1)k

2
χ̂k(z/2) (5.17)

(see [22, Remark after Theorem (1.105)], which is based on a more conceptual
approach based on the Wigner transform). This easily leads to the identity

f̃(k) =

∫
C
f̂(ζ) (−1)k 2χk(2ζ) dζ =

∫
C
f̂(ζ) dνk(ζ). (5.18)

In contrast with (5.15), the signed measure dνk oscillates when k ≥ 1 and is no
longer a probability measure. Indeed, by [48, Lemma 1], we have

‖χk‖1 ∼ k1/2 as k →∞.

Thus we cannot use (5.18) in place of (5.15) as before in order to get a sharp
Hausdorff–Young estimate for ρ(f) without a weight.

Even the case where p′ = 2m for some m ∈ Z does not seem to allow one to
reduce to the Euclidean estimate. Indeed, note that, for all f ∈ L1(Cn),

ρ(f∗) = ρ(f)∗ and ρ(f) ρ(g) = ρ(f × g), (5.19)

where f∗(z) = f(−z) and f × g denotes the twisted convolution of f and g, that is,

f × g(z) =

∫
Cn
f(z − w) g(w) eπi=(z̄·w) dw (5.20)

[22, (1.32)]. In particular, if f is radial and real-valued, then f = f∗ and therefore

‖ρ(f)‖2mS2m = ‖ρ(f)m‖2HS = ‖ρ(f × · · · × f)‖2HS = ‖f × · · · × f‖22,

with m factors f . A reduction to the sharp estimate for the Euclidean Fourier

transform f̂ of f would therefore require the validity of an estimate of the form

‖f × · · · × f‖2 ≤ ‖f̂‖m2m = ‖f ∗ · · · ∗ f‖2, (5.21)

where ∗ denotes the Euclidean convolution. However this estimate is false, even
when m = 2.

Indeed, it is sufficient to test the estimate (5.21) when f = χk. Note that, from
(5.12) and the orthogonality of Laguerre polynomials,

χ̃k(l) = 〈ρ(χk)hl, hl〉 = 〈χk, χl〉 = δkl.

In particular ρ(χk × χk) = ρ(χk), that is,

χk × χk = χk.

Therefore

‖χk × χk‖2 = ‖χk‖2 = 1,

while

‖χ̂k‖4 = 2−1/2‖χk‖4 ∼ k−1/4(log k)1/4 as k →∞,
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by (5.17) and [48, Lemma 1]. This shows that (5.21) cannot hold when m = 2 and
for all radial real-valued functions f (not even with some constant larger than one
multiplying the right-hand side). ♦

In order to conclude the proof of Theorem 1.5, we need to prove the lower bound

W loc
K (Cn) ≥ (Bp)

2n (5.22)

for any compact subgroup K of U(n). As we will see, this can be done much as
in Section 2. For a function f ∈ L1(Cn) + L2(Cn), let Tf denote the operator of
twisted convolution on the left by f , that is,

Tfφ = f × φ.

In analogy with Proposition 2.1, we can characterise the Schatten norms of Weyl
transforms ρ(f) as follows.

Proposition 5.4. For all q ∈ [2,∞] and f ∈ Cc(Cn),

‖ρ(f)‖qSq = ‖|Tf |q‖L1(Cn)→L∞(Cn).

Proof. From the Plancherel formula (5.3) for the Weyl transform, together with
(5.19), it is easily seen that, for all f ∈ L1(G),

‖ρ(f)‖L2(Rn)→L2(Rn) = ‖Tf‖L2(Cn)→L2(Cn).

This corresponds to the well-known fact that the norm of a linear operator on
L2(Rn) is the same as the norm of the corresponding left-multiplication operator
on HS(L2(Rn)). Note, moreover, that the analogue of (5.19) holds:

Tf∗ = T ∗f and Tf×g = TfTg.

Hence the correspondence ρ(f) 7→ Tf induces an isometric ∗-isomorphism between
L(L2(Rn)) and the von Neumann algebra of operators on L2(Cn) generated by
{Tf : f ∈ L1(Cn)}.

Take now f ∈ Cc(Cn). Then ρ(f) ∈ Sq(Cn) and

‖ρ(f)‖qSq(Cn) = ‖|ρ(f)|q/2‖2HS.

Since |ρ(f)|q/2 ∈ HS(L2(Rn)), by the Plancherel theorem for the Weyl transform
there exists g ∈ L2(Cn) such that

ρ(g) = |ρ(f)|q/2.

Since isomorphisms between von Neumann algebras preserve the polar decomposi-
tion and the functional calculus,

Tg = |Tf |q/2.

In order to conclude, then it is enough to show that

‖ρ(g)‖2HS = ‖T 2
g ‖L1(Cn)→L∞(Cn).

On the other hand, Tg = |Tf |q/2 is a nonnegative self-adjoint operator, so

‖T 2
g ‖L1(Cn)→L∞(Cn) = ‖Tg‖2L1(Cn)→L2(Cn)

and, according to (5.20), Tg is an integral operator with kernel K̃g given by

K̃g(z, w) = g(z − w) eπi=(z̄·w),

whence

‖Tg‖L1(Cn)→L2(Cn) = ess sup
w∈Cn

‖K̃g(·, w)‖2 = ‖g‖2 = ‖ρ(g)‖HS,

and we are done. �
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Given the above characterisation, the proof of the inequality (5.22) proceeds,
much as in Section 2, via a “blow-up” argument. The main observation here is
that, if Sλ denotes the L1-isometric scaling on Cn,

Sλf(z) = λ−2nf(z/λ),

then

(Sλf)× (Sλg) = Sλ(f ×λ g),

where

f ×λ g(z) =

∫
Cn
f(z − w) g(w) eπiλ

2=(z̄·w) dw;

moreover, from the above formula it is clear that, as λ → 0, the scaled twisted
convolution ×λ tends to the standard convolution on Cn ∼= R2n (see also [16]).
Following this idea, it is not difficult to prove the analogues of Lemma 2.3 and
Proposition 2.4, where the twisted convolution × and the standard convolution
on Cn take the place of the convolutions on the Lie group and the Lie algebra
respectively. In addition, the action of U(n) on functions on Cn commutes with
the scaling operators Sλ and the twisted convolution, so the analogue of Remark
2.5 applies here. We leave the details to the interested reader.

Remark 5.5. Given the noncommutative subject of this paper, it is natural to
ask whether the best constants Hp(G), H loc

p (G), . . . are the same in the category
of operator spaces (that is, quantized or noncommutative Banach spaces). To be
more precise, let us equip the (commutative and noncommutative) Lq-spaces in-
volved in the corresponding Hausdorff–Young inequality with their natural operator
space structures [53]. Does the complete Lp → Lp

′
norm of the Fourier transform

coincide with the corresponding norm Hp(G) in the category of Banach spaces?
In the Euclidean case of Hp(Rn), this problem was asked by Pisier in 2002 to the

fourth-named author, but it is still open. Éric Ricard recently noticed that such a
result for the Euclidean Fourier transform (that is, its completely bounded norm
is still given by the Babenko–Beckner constant raised to the dimension of the un-
derlying space) would give the expected constants for the Weyl transform in CCR
algebras and, therefore, also for the Fourier transform in the Heisenberg group. Un-
fortunately, Beckner’s original strategy crucially uses hypercontractivity, which has
been recently proved to fail in the completely bounded setting [5]. In conclusion,
the above discussion indicates one more time (see Remark 5.3) that some new ideas
seem to be necessary to solve these questions. ♦
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