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Abstract. We investigate Fourier multipliers with smooth symbols defined

over locally compact Hausdorff groups. Our main results in this paper establish

new Hörmander-Mikhlin criteria for spectral and non-spectral multipliers. The
key novelties which shape our approach are three. First, we control a broad

class of Fourier multipliers by certain maximal operators in noncommutative

Lp spaces. This general principle —exploited in Euclidean harmonic analysis
during the last 40 years— is of independent interest and might admit further

applications. Second, we replace the formerly used cocycle dimension by the

Sobolev dimension. This is based on a noncommutative form of the Sobolev
embedding theory for Markov semigroups initiated by Varopoulos, and yields

more flexibility to measure the smoothness of the symbol. Third, we introduce

a dual notion of polynomial growth to further exploit our maximal principle for
non-spectral Fourier multipliers. The combination of these ingredients yields

new Lp estimates for smooth Fourier multipliers in group algebras.

Introduction

The aim of this paper is to study Fourier multipliers on group von Neumann
algebras for locally compact Hausdorff groups. More precisely, the relation between
the smoothness of their symbols and Lp-boundedness. This is a central topic in
Euclidean harmonic analysis. In the context of nilpotent groups, it has also been
intensively studied in the works of Cowling, Müller, Ricci, Stein and others. In
this paper we will consider the dual problem, placing our nonabelian groups in the
frequency side. Today it is well understood that the dual of a nonabelian group
can only be described as a quantum group, its underlying algebra being the group
von Neumann algebra. The interest of Fourier multipliers over such group algebras
was recognized early in the pioneering work of Haagerup [12], as well as in the
research carried out thereafter. It was made clear how Fourier multipliers on these
algebras can help in their classification, through the use of certain approximation
properties which become invariants of the algebra. Unfortunately, the literature
on this topic does not involve the Lp-theory —with a few exemptions like [22] and
the very recent paper of Lafforgue and de la Salle [26]— as it is mandatory from a
harmonic analysis viewpoint. In this respect, our work is a continuation of [19, 20]
where 1-cocycles into finite-dimensional Hilbert spaces were used to lift multipliers
from the group into a more Euclidean space. This yields Hörmander-Mikhlin type
results depending of the dimension of the Hilbert space involved. Here, we shall
follow a different approach through the introduction of new notions of dimension
allowing more room for the admissible class of multipliers. These notions rely on
noncommutative forms of the Sobolev embedding theory for Markov semigroups,
which carrie an ‘encoded geometry’ in the commutative setting. Prior to that, we
need to investigate new maximal bounds whose Euclidean analogues are central in
harmonic analysis. In this paper we shall limit ourselves to unimodular groups to
avoid technical issues concerning modular theory.
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This text is divided into three blocks which are respectively devoted to maximal
bounds, Sobolev dimension and polynomial co-growth. Let us first put in context
our maximal estimates for Fourier multipliers. Given a symbol m : Rn → C with
corresponding Fourier multiplier Tm, there is a long tradition in identifying maximal
operatorsM which satisfy the weighted L2-norm inequality below for all admissible
input functions f and weights w

(WL2)

∫
Rn
|Tmf |2w .

∫
Rn
|f |2Mw.

It goes back to the work of Córdoba and Fefferman in the 70’s. This general
principle has deep connections with Bochner-Riesz multipliers and also with Ap
weight theory. The Introduction of [2] gives a very nice historical summary and
new results in this direction. The main purpose of this estimate is that elementary
duality arguments yield for p > 2 that∥∥Tm : Lp(Rn)→ Lp(Rn)

∥∥ . ∥∥M : L(p/2)′(Rn)→ L(p/2)′(Rn)
∥∥ 1

2 .

The most general noncommutative form of this inequality would require too much
terminology for this Introduction. Instead, let us just introduce the basic concepts
to give a reasonable but weaker statement. Stronger results will be given in the
body of the paper. Let G be a locally compact Hausdorff group. If we write µ for the
left Haar measure of G and λ for the left regular representation λ : G → B(L2G),
the group von Neumann algebra LG is the weak operator closure in B(L2G) of
λ(L1(G)). We refer to Section 1 for a construction of the Plancherel weight τ on
LG, a noncommutative substitute of the Haar measure. Note that τ is tracial
iff G is unimodular —which we assume— and it coincides with the finite trace
given by τ(x) = 〈δe, xδe〉 when G is discrete. In the unimodular case, (LG, τ) is
a semifinite von Neumann algebra with a trace and it is easier to construct the
noncommutative Lp-spaces Lp(LG, τ) with norm ‖x‖p = τ(|x|p)1/p, where |x|p =

(x∗x)p/2 by functional calculus on the (unbounded) operator x∗x. Given a bounded
symbol m : G → C, the corresponding Fourier multiplier is densely defined by
Tmλ(f) = λ(mf). Alternatively, it will be useful to understand these operators as
convolution maps in the following way

Tm(x) = λ(m) ? x = (τ ⊗ Id)
(
δλ(m) (σx⊗ 1)

)
,

where δ : LG → LG⊗LG is determined by δ(λg) = λg ⊗ λg and σ : LG → LG
is the anti-automorphism given by linear extension of σ(λg) = λg−1 . The first
map is called the comultiplication map for LG, whereas σ is the corresponding
coinvolution. Our next ingredient is the Lp-norm of maximal operators. Given a
family of noncommuting operators (xω)ω affiliated to a semifinite von Neumann
algebra M, their supremum is not well-defined. We may however consider their
Lp-norms through ∥∥∥ sup

ω∈Ω

+xω

∥∥∥
Lp(M)

=
∥∥(xω)ω∈Ω

∥∥
Lp(M;L∞(Ω))

,

where the mixed-norm Lp(L∞)-space has a nontrivial definition obtained by Pisier
for hyperfinite M in [32] and later generalized in [16, 21]. This definition recovers
the norm in Lp(Σ;L∞(Ω)) for abelian M = L∞(Σ), further details in Section
1. Finally, conditionally negative lengths ψ : G → R+ are symmetric functions
vanishing at the identity e which satisfy

∑
g,h agahψ(g−1h) ≤ 0 for any family of
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coefficients with
∑
g ag = 0. Due to its one-to-one relation to Markov convolution

semigroups, they will play a crucial role in this paper. In the classical multiplier
theorems, the symbols m are cut out with functions η(|ξ|) for some compactly
supported η ∈ C∞(R+). Our techniques do not allow us to use compactly supported
functions in R+. Instead, we are going to use analytic functions decaying fast near
0 and near ∞. We will call such η an H∞0 -cut-off, see Section 1 for the precise
definitions. The archetype of such functions will be η(z) = z e−z.

Theorem A. Let G be a unimodular group equipped with any conditionally negative
length ψ : G→ R+. Let η be an H∞0 -cut-off and m : G→ C an essentially bounded
symbol constant on G0 = {g ∈ G : ψ(g) = 0}. Assume Bt = λ(mη(tψ)) admits a
decomposition Bt = ΣtMt with Mt positive and satisfying Mt = σMt, and consider
the convolution map R(x) = (|Mt|2 ? x)t≥0. Then the following inequality holds for
2 < p <∞

‖Tm‖B(Lp(LG)) .(p)

(
sup
t≥0
‖Σt‖2

)∥∥∥R : L(p/2)′(LG)→ L(p/2)′(LG;L∞(R+))
∥∥∥ 1

2

.

By duality, a similar stamens holds for 1 < p < 2. Moreover, a stronger result
holds in terms of noncommutative Hardy spaces which allows more general symbols
and decompositions. Theorem A combines in a very neatly way noncommutative
generalizations of (WL2) with square function estimates. In the particular case of
Hörmander-Mikhlin symbols —as we shall see along this paper— the decomposition
splits the assumptions. Namely, the L2-norm of Σt is bounded using the smoothness
condition while the maximal R is bounded through the geometrical assumptions
regarding the dimensional behaviour of ψ. Apart from the direct consequences given
in the present paper, this result is of independent interest and admits potential
applications in other directions to be explored in a forthcoming publication.

Given a conditionally negative length ψ : G → R+, the infinitesimal generator
of the semigroup λg 7→ exp(−tψ(g))λg is the map determined by A(λg) = ψ(g)λg.
In particular, ψ-radial Fourier multipliers fall in the category of spectral operators
of the form m(A). These maps are known as spectral multipliers and play a central
role in the theory. Our aim in this second block is to find smoothness criteria on
m which implies Lp-boundedness of the spectral multiplier Tm◦ψ.

It is well understood —specially after [6, 39]— that if we want to obtain Lp
boundedness for m(A) from the smoothness of m, for every semigroup, we need to
impose analyticity on m. To obtain an smoothness condition with a finite number
of derivatives our space needs to be finite-dimensional. Indeed, it is known that
the optimal smoothness order may growth with the dimension. This indicates the
necessity of defining a notion of dimension in the non-commutative setting. We
will take as dimension the value d > 0 for which a Sobolev type embedding holds
for A. Recall that there is a Sobolev embedding theory for Markov semigroups
introduced by Varopoulos [42]. More precisely, given a measure space (Ω, µ) and
certain elliptic operator A generating the Markov process St = exp(−tA), one can
introduce the Sobolev dimension d for which the equivalence below holds

‖f‖L 2d
d−2

(Ω) .
∥∥A 1

2 f
∥∥
L2(Ω)

⇐⇒
∥∥Stf∥∥L∞(Ω)

. t−
d
2 ‖f‖L1(Ω).

The property of the right hand side is known as ultracontractivity. When it holds
for the semigroup generated by an invariant Laplacian on a Lie group, it forces
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µ(Bt(e)) ∼ td. Thus, we can understand ultracontractivity as a way of describing
the growth of balls. With that motivation we introduce general ultracontractivity
properties ∥∥St : L1(M)→M

∥∥
cb
.

1

Φ(
√
t)
.

where cb stands for completely bounded. The function Φ will measure the “growth
of the balls”. Since doubling measure spaces are widely recognized as a natural
setting for performing harmonic analysis, we will impose Φ to be doubling, i.e.:

sup
t>0

{
Φ(2t)

Φ(t)

}
<∞,

and our doubling dimension will be given by

DΦ = log2 sup
t>0

{
Φ(2t)

Φ(t)

}
.

In the classical abelian setting, apart from the ultracontractivity —or on-diagonal
behaviour of St— we need to impose off-diagonal decay on St, typically Gaussian
bounds. Let (G,ψ,X) be a triple formed by a locally compact Hausdorff unimodular
group G, a conditionally negative length ψ : G → R+ and an element X in the
extended positive cone LG∧+, see [13, 14] for precise definitions. We will say that
the triple satisfies the standard assumptions when:

i) Doublingness

ΦX(s) = τ(χ[0,s)(X)) is doubling.

ii) L2 Gaussian upper bounds

τ
(
χ[r,∞)(X)

∣∣λ(e−sψ)
∣∣2) . e−β

r2

s

ΦX(
√
s)

for some β > 0.

iii) Hardy-Littlewood maximality∥∥∥∥ sup
s≥0

+χ[0,s)(X)

ΦX(s)
? x

∥∥∥∥
Lp(LG)

.(p) ‖x‖Lp(LG) for every 1 < p <∞.

We will also require the inequality iii) to hold uniformly for matrix amplifications.
As we shall see, inequality ii) implies ultracontractivity with ΦX as growth function.
We will omit the dependency of X from ΦX when it can be understood from the
context. It is also interesting to point out that, in the classical case, Gaussian
bounds can be deduced from the ultracontractivity in the presence of geometrical
assumptions like locality or finite speed of propagation for the wave equation, see
[36, 37] and [35, Section 3]. Generalizing such results to the noncommutative setting
will be the object of forthcoming research. The connection of standard assumptions
with smooth ψ-radial Fourier multipliers is nearly optimal.

Theorem B. Let (G,ψ,X) be any triple satisfying the standard assumptions which
we considered above. Given an H∞0 -cut-off function η and a symbol m : R+ → C,
the following inequalities hold for 1 < p <∞ :

i) If s > (DΦ + 1)/2

‖Tm◦ψ‖CB(Lp(LG)) . sup
t≥0

∥∥m(t·)η(·)
∥∥
W 2,s(R+)

.
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ii) If s > DΦ/2 and ψ ∈ CBPlanΦ
q for some q ≥ 2

‖Tm◦ψ‖CB(Lp(LG)) . sup
t≥0

∥∥m(t·)η(·)
∥∥
W q,s(R+)

.

The last inequality holds with q =∞ under the sole assumption of s > DΦ/2.

The term CB also stands for “complete bounded” and the property CBPlanΦ
q

plays the role of the q-Plancherel property introduced by Duong-Ouhabaz-Sikora
[8], see the body of the paper for concrete definitions. The proof of Theorem B is
the most technical in this paper. It will explain the decoupling nature of Theorem
A. The Σt are controlled using the Sobolev smoothness (via the Phragmen-Lindelöf
theorem) for any degree s > 0, whereas the maximal bound determines optimal
restrictions in terms of the Sobolev dimension DΦ.

Theorem B should be illustrated with interesting examples. The existence of
natural triples satisfying the standard assumptions for nonabelian groups is the
subject of current research, which will appear elsewhere. In this paper we shall
construct such triples out of finite-dimensional cocycles. This permits to recover
the results in [19, 20] for ψ-radial multipliers. In fact, we should emphasize at this
point that the notion of dimension in the previous approach was limited to the
Hilbert space dimension of the cocycle determined by the length ψ. Working with
finite-dimensional cocycles is an unfortunate limitation which we could remove for
noncommutative Riesz transforms in [20]. Theorem B allows to go even further for
smooth radial multipliers.

In our third and last block of this paper, we consider general (non-spectral)
Fourier multipliers. Apart for the semigroup over LG generated by ψ we will
endow G with two semigroups S1/S2 : L∞(G) → L∞(G) of left/right invariant
operators. The intuition here is that Sj will describe the geometry of G while the
semigroup generated by ψ will describe the geometry of its dual. If A denotes the
infinitesimal generator of a semigroup over L∞(G), we use the standard notation
for its nonhomogeneous Sobolev spaces

‖f‖Wp,s
A (G) =

∥∥(1 +A)
s
2 f
∥∥
Lp(G)

.

When S is left invariant there exists a positive densely defined operator Â affiliated

to LG such that λ(Af) = λ(f)Â for all f ∈ dom2(A). In a similar way we obtain

λ(Af) = Âλ(f) when S is right invariant, see Proposition 3.3 for the proof. Then

we define the polynomial co-growth of Â as follows

cogrowth(Â) = inf
{
r > 0 :

(
1 + Â

)− r2 ∈ L1(LG)
}
.

Our choice for the term “polynomial co-growth” sits on the intuition that Â behaves

like |ξ|2 in the case of the Laplacian ∆ on RD and therefore cogrowth(∆̂) = D
follows from the fact that large balls grow like rD. Further in Section 3 we will
characterize polynomial co-growth by relating the behavior of small balls in G with
“large balls” in LG, see Remark 3.8 for further explanations. It is also worth
mentioning the close relation between polynomial growth and Sobolev dimension
as it will be analyzed in the body of the paper. Our main result in this direction is
the following criterium for non-spectral multipliers.
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Theorem C. Let G be a unimodular group equipped with a conditionally negative
length ψ. Let S1/S2 be respectively left/right invariant submarkovian semigroups on

L∞(G) whose generators Aj satisfy cogrowth(Âj) = Dj for j = 1, 2. Consider an
H∞0 -cut-off function η and a symbol m : G → C which is constant in the subgroup
G0 = {g ∈ G : ψ(g) = 0}. Then, if sj > Dj/2 for j = 1, 2, the following inequality
holds for 1 < p <∞

‖Tm‖CB(Lp(LG)) .(p) sup
t≥0

max
{∥∥η(tψ)m

∥∥
W

2,s1
A1

(G)
,
∥∥η(tψ)m

∥∥
W

2,s2
A2

(G)

}
.

Theorem C establishes a link between the, a priori unrelated, geometries which
determine ψ and Sj . Indeed, we use the length ψ to cut m —determining the size of
the support— and use Aj to measure the smoothness of m. It is interesting to note

that passing to the dual requires a size condition on Â, reinforcing the intuition
that duality switches size and smoothness. The main difference with Theorem B
is that in this general context we have been forced to place the dilation in the
cut-off function η instead of the multiplier m. We conclude the paper illustrating
Theorem C for Lie groups of polynomial growth by means of the subriemannian
metrics determined by sublaplacians, see Corollary 3.9.

1. Maximal bounds

1.1. Preliminaries. Although the material here exposed is probably well-known
to experts, let us review some notions and results in the interface between harmonic
analysis and operator algebra that we will need throughout this section. We will
start with a brief exposition of noncommutative integration theory, including the
construction of noncommutative Lp spaces. Our main example will be the group
von Neumann algebra of an unimodular Lie group equipped with its canonical
Plancherel trace. Then we will review some basics of operator space theory as well
as the construction of certain mixed-norm spaces. Finally we will consider Markov
semigroups with an special emphasis on semigroups of convolution type. We will
revisit Hardy spaces and square function estimates associated with a semigroup.

1.1.1. Noncommutative Lp spaces. Part of von Neumann algebra theory has
evolved as the noncommutative form of measure theory and integration. A von
Neumann algebraM [25, 40, 41], is a unital weak-operator closed C∗-subalgebra of
B(H), the algebra of bounded linear operators on a Hilbert space H. We will write
1M, or simply 1, for the unit. The positive coneM+ is the set of positive operators
inM and a trace τ :M+ → [0,∞] is a linear map satisfying τ(x∗x) = τ(xx∗). Such
map is said to be normal if supα τ(xα) = τ(supα xα) for bounded increasing nets
(xα); it is semifinite if for x ∈ M+ \ {0} there exists 0 < x′ ≤ x with τ(x′) < ∞;
and it is faithful if τ(x) = 0 implies x = 0. The trace τ plays the role of the
integral in the classical case. A von Neumann algebra M is semifinite when it
admits a normal semifinite faithful (n.s.f. in short) trace τ . Any x ∈ M is a
linear combination x1 − x2 + ix3 − ix4 of four positive operators. Thus, τ extends
as an unbounded operator to nonpositive elements and the tracial property takes
the familiar form τ(xy) = τ(yx). The pairs (M, τ) composed by a von Neumann
algebra and a n.s.f. trace will be called noncommutative measure spaces. Note that
commutative von Neumann algebras correspond to classical measurable spaces.
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By the GNS construction, the noncommutative analogue of measurable sets
(characteristic functions) are orthogonal projections. Given x ∈ M+, its support
is the least projection q inM such that qx = x = xq and is denoted by suppx. Let
S+
M be the set of all f ∈M+ such that τ(suppf) <∞ and set SM to be the linear

span of S+
M. If we write |x| =

√
x∗x, we can use the spectral measure dE of |x| to

observe that

x ∈ SM ⇒ |x|p =

∫
R+

sp dE(s) ∈ S+
M ⇒ τ(|x|p) <∞.

If we set ‖x‖p = τ(|x|p)
1
p , we obtain a norm in SM for 1 ≤ p <∞. By the strong

density of SM in M, the noncommutative Lp space Lp(M) is the corresponding
completion for p < ∞ and L∞(M) = M. Many basic properties of classical Lp
spaces like duality, real and complex interpolation, Hölder inequalities, etc hold in
this setting. Elements of Lp(M) can be described as measurable operators affiliated
to (M, τ), we refer to Pisier/Xu’s survey [34] for more information and historical
references. Note that classical Lp spaces Lp(Ω, µ) are denoted in this terminology
as Lp(M) where M is the commutative von Neumann algebra L∞(Ω, µ).

1.1.2. Group algebras and comultiplication formulae. Our main example
of noncommutative measure space in this paper is that of group von Neumann
algebra. Let G be a locally compact and Hausdorff group (LCH group in short)
equipped with its left Haar measure µ. Let λ : G → B(L2G) be the left regular
representation. We will also use λ to denote the linear extension of λ to the space
L1(G). We will denote by C∗λG the norm closure of λ(L1(G)) and by LG the closure
of C∗λG in the weak operator topology. LG is usually referred to as the group von
Neumann algebra associated to G. There is a distinguished normal faithful weight
τ : LG+ → R+ such that λ : L1(G) ∩ L2(G) → LG extends to an isometry from
L2(G) to L2(LG, τ), the GNS construction associated to τ . Such weight is unique
and it is called the Plancherel weight. When the function f belongs to the dense
class Cc(G) ∗Cc(G) we have τ(λ(f)) = f(e). The Placherel weight is tracial if and
only if G is unimodular. In this case it is called the Placherel trace. From now on
we will focus on unimodular groups. We will often work with the spaces Lp(LG, τ)
although the dependency on τ will be dropped in our terminology.

LG has a natural comultiplication given by linear extension of δ(λg) = λg ⊗ λg
which extends to a ∗-homomorphism δ : C∗λG→ C∗λG⊗minC

∗
λG. There is a unique

normal extension δ : LG→ LG⊗LG. This is a consequence of the fact that if δ is
normal then δ∗ : LG∗ ⊗̂ LG∗ → LG∗. Here ⊗min and ⊗̂ represent respectively the
minimal and projective o.s. tensor products [33] and ⊗ denotes the weak operator
closure of the algebraic tensor product. Identifying L(G×G)∗ with LG∗ ⊗̂ LG∗ we
have

δ∗

(∫
G×G

f(g1, g2)λ(g1,g2)dµ(g1)dµ(g2)
)

=

∫
G

f(g, g)λgdµ(g),

for every f ∈ Cc(G) ∗ Cc(G). The boundedness of δ∗ is then a consequence of the
Herz restriction theorem [15]. It is interesting to note that the Plancherel weight
can be characterized as the unique normal, nontrivial and δ-invariant weight, where
δ-invariant means that

(τ ⊗ Id)δx = τ(x)1.
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Analogously, Fourier multipliers are characterized as δ-equivariant maps

δT = (T ⊗ Id)δ = (Id⊗ T )δ.

We will denote by σ : LG → LG the anti-automorphism given by linear extension
of σ(λg) = λg−1 . The quantized convolution of two elements x, y affiliated to LG is
defined by

x ? y = (τ ⊗ Id)
(
δx (σy ⊗ 1)

)
.

Observe that given m ∈ L∞(G), the corresponding Fourier multiplier has the form

Tm(x) = λ(m) ? x = (τ ⊗ Id)
(
δλ(m) (σx⊗ 1)

)
.

1.1.3. Operator space background. The theory of operator spaces is regarded
as a noncommutative or quantized form of Banach space theory. An operator space
E is a closed subspace of B(H). Let Mm(E) be the space of m×m matrices with
entries in E and impose on it the norm inherited from Mm(E) ⊂ B(Hm). The
morphisms in this category are the completely bounded linear maps (c.b. in short)
u : E → F , i.e. those satisfying

‖u‖CB(E,F ) =
∥∥u : E → F

∥∥
cb

= sup
m≥1

∥∥IdMm
⊗ u
∥∥
B(Mm(E),Mm(F ))

<∞.

Similarly, given C∗-algebras A and B, a linear map u : A→ B is called completely
positive (c.p. in short) when IdMm ⊗ u is positivity preserving for m ≥ 1. When
a c.p. map u : A → B is contractive (resp. unital) we will say it is a c.c.p. (resp.
u.c.p.) map. The Kadison-Schwartz inequality for a c.c.p. map u :M→M claims
that

u(x)∗u(x) ≤ u(x∗x) for all x ∈M.

Ruan’s axioms describe axiomatically those sequences of matrix norms which can
occur from an isometric embedding into B(H). Admissible sequences of matrix
norms are called operator space structures (o.s.s. in short) and become crucial in
the theory. Given a Banach space X and an isometric embedding ρ : X → B(H)
we will denote by Xρ the corresponding operator space. Central branches from the
theory of Banach spaces like duality, tensor norms or complex interpolation have
been successfully extended to the category of operator spaces. Rather complete
expositions are given in [9, 31, 33]. Two particular aspects of operator space theory
which are relevant in this paper are the following:

A. Vector-valued Schatten classes. We will denote by Sp the Schatten p-class
given by Sp = Lp(B(`2),Tr) with Tr the standard trace in B(`2). Similarly, Smp
stands for the same space over m × m matrices. Vector-valued forms of these
spaces can be defined as long as we define an o.s.s. over the space where we take
values. Given an operator space E, we may define the E-valued Schatten classes
Smp [E] as the operator spaces given by interpolation

Smp [E] :=
[
Sm∞[E], Sm1 [E]

]
1
p

:=
[
Sm∞ ⊗min E,S

m
1 ⊗̂E

]
1
p

.

These classes provide a useful characterization of complete boundedness

‖u‖CB(E,F ) = sup
m≥1

∥∥IdMm
⊗ u
∥∥
B(Smp (E),Smp (F ))

for 1 ≤ p ≤ ∞.

For a general hyperfinite von Neumann algebraM the construction of Lp(M;E) is
carried out by direct limits of E-valued Schatten classes. We refer to Pisier’s book
[32] for more on vector-valued noncommutative Lp spaces. The space Lp(M;E) for
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nonhyperfiniteM cannot be constructed without losing fundamental properties like
projectivity/injectivity of the functor E 7→ Lp(M;E). Fortunately, this drawback
is solvable for the vector-valued Lp space we shall be working with.

B. Operator space structure of Lp. Given an operator space E, its opposite
Eop is the operator space which comes equipped with the operator space structure
determined by the o.s.s. of E as follows∥∥∥ m∑

j,k=1

ajk ⊗ ejk
∥∥∥
Mm(Eop)

=
∥∥∥ m∑
j,k=1

akj ⊗ ejk
∥∥∥
Mm(E)

,

where ejk stand for the matrix units in Mm. Alternatively, if E ⊂ B(H), then
Eop = E> ⊂ B(H), where > is the transpose. The op construction plays a role
in the construction of a “natural” o.s.s. for noncommutative Lp spaces. If M is
a von Neumann algebra we will denote by Mop it opposite algebra, the original
algebra with the multiplication reversed. It is a well-known result that Mop and
M need not be isomorphic [5]. For every operator space E the natural inclusion
j : E → E∗∗ is a complete isometry. This allows us to build an operator space
structure in the predual M∗ as the only operator space structure that makes the
inclusion j : M∗ → M∗ completely isometric. The operator space structure of
Lp(M) is given by operator space complex interpolation between L1(M) = (Mop)∗
and M. In particular, it turns out that

Lp(M)∗ ' Lp′(Mop)

is a complete isometry for 1 ≤ p <∞, see [33, pp. 120-121] for further details.

1.1.4. L∞-valued Lp spaces. Maximal inequalities are a cornerstone in harmonic
analysis. Unfortunately, the supremun of a family of noncommuting operators is
not well-defined, so that we do not have a proper noncommutative analogue of
maximal functions. Nevertheless, this difficulty can be overcome if all we want is
to bound is the maximal function in noncommutative Lp, as usually happens in
harmonic analysis for commutative spaces. In that case we exploit the fact that the
p-norm of a maximal function can always be written as a mixed Lp(L∞)-norm of
the corresponding entries. This reduces the problem to construct the vector-valued
spaces Lp(M;L∞(Ω)). This construction can be carried out without requiring
M to be hyperfinite, relaying in the commutativity of L∞(Ω). Lp(M;L∞(Ω)) is
defined as the subspace of functions x ∈ L∞(Ω;Lp(M)) which admit a factorization
of the form xω = α yω β with α, β ∈ L2p(M) and y ∈ L∞(Ω;M). The norm in
such space is then given by∥∥(xω)ω∈Ω

∥∥
Lp(M;L∞(Ω))

= inf
{
‖α‖2p

(
ess sup
ω∈Ω

‖yω‖M
)
‖β‖2p : x = αyβ

}
.

When xω ≥ 0 the norm coincides with

(1.1)
∥∥(xω)ω∈Ω

∥∥
Lp(M;L∞(Ω))

= inf
{
‖y‖Lp(M) : xω ≤ y for a.e. ω ∈ Ω

}
.

Its operator space structure satisfies

Smp
[
Lp(M;L∞(Ω))

]
= Lp

(
Mm ⊗M;L∞(Ω)

)
.

It is standard to use the following notation for the noncommutative Lp(L∞)-norm∥∥∥ sup
ω∈Ω

+ xω

∥∥∥
Lp(M)

=
∥∥(xω)ω∈Ω

∥∥
Lp(M;L∞(Ω))

,
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where the sup is just a symbolic notation without an intrinsic meaning. In the proof
of Theorem B we will use the fact that if (µω2)ω2∈Ω2 is a family of finite positive
measures in Ω1 and (Rω1)ω1∈Ω1 is a family of positivity preserving operators, then
the following bound holds for x ∈ Lp(M)+

(1.2)
∥∥∥ sup+

ω2∈Ω2

{∫
Ω1

Rω1
(x)dµω2

(ω1)
}∥∥∥

p
≤
(

sup
ω2∈Ω2

‖µω2
‖M(Ω)

)∥∥∥ sup+

ω1∈Ω1

Rω1
(x)
∥∥∥
p
.

When M is hyperfinite, this definition of Lp(M;L∞(Ω)) coincides with the
corresponding vector-valued space as defined by Pisier [32]. This approach to handle
maximal inequalities in von Neumann algebras has been successfully used in [16]
to find noncommutative forms of Doob’s maximal inequality for martingales and
the maximal ergodic inequalities for Markov semigroups [24]. The predual can be
explicitly described as the L1-valued space Lp′(M;L1(Ω)). Indeed, let Sp(Ω) be the
Schatten class associated to the Hilbert space L2(Ω). Note that there is a hermitian
form q : L2 p(M)⊗ Sc2(Ω)× L2 p(M)⊗ Sc2(Ω)→ Lp(M)⊗ L1(Ω) given by

q(x⊗m, y ⊗ n) = x∗y ⊗ diag(m∗n),

where diag : S1(Ω)→ L1(Ω) is the restriction to the diagonal. Define

‖x‖Lp(M;L1(Ω)) = inf
{
‖a‖L2p(M;Sc2(Ω)) ‖b‖L2p(M;Sc2(Ω)) : q(a, b) = x

}
.

This space satisfies that Lp(M;L1(Ω))∗ = Lp′(Mop;L∞(Ω)) for 1 ≤ p <∞.

1.1.5. Hilbert-valued Lp spaces. For certain operator spaces whose underlying
Banach space is a Hilbert space we can define vector-valued noncommutative Lp
spaces for general von Neumann algebras. Indeed, let H be a Hilbert space and
and Peξ = 〈e, ξ〉e for some e ∈ H of unit norm. We define the following two
Hilbert-valued forms of Lp(M)

Lp(M;Hc) = Lp(M⊗B(H))(IdM ⊗ Pe),
Lp(M;Hr) = (IdM ⊗ Pe)Lp(M⊗B(H)),

called the Lp spaces with H-column (resp. H-row) values. Their o.s.s. are the ones
inherited from Lp(M⊗B(H)). If H = `n2 , then we can identify Lp(B(H)⊗M)
with Lp(M)-valued n × n matrices. Under that identification Lp(M;Hc) (resp.
Lp(M;Hr)) corresponds to the matrices with zero entries outside the first column
(resp. row) and we have that∥∥∥ n∑

j=1

xj ⊗ ej1
∥∥∥
Lp(M⊗B(`n2 ))

=
∥∥∥( n∑

j=1

x∗jxj

) 1
2
∥∥∥
Lp(M)

,

∥∥∥ n∑
j=1

xj ⊗ e1j

∥∥∥
Lp(M⊗B(`n2 ))

=
∥∥∥( n∑

j=1

xjx
∗
j

) 1
2
∥∥∥
Lp(M)

.

The same formulas hold after replacing the finite sums by infinite ones of even by
integrals. For every 1 ≤ p ≤ ∞ we can embed H isometrically in Sp by sending
cp(ej) = e1 j or rp(ej) = ej 1, where {ej} is an orthonormal basis of H. Such
maps are called the p-column/p-row embedings. These isometries endow H with
several o.s. structures. Observe that, as an o.s, Lp(M;Hc) (resp. Lp(M;Hr))
coincides with Pisier’s vector-valued Lp-space Lp(M;Hcp) (resp. Lp(M;Hrp)) for
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M hyperfinite. For 1 ≤ p <∞ the duals are given by Lp(M;Hc)∗ = Lp′(Mop;Hc)
and Lp(M;Hc)∗ = Lp′(Mop,Hc). The duality pairing can be express as〈∑

j
xj ⊗ ej ,

∑
k
yk ⊗ ek

〉
=
∑

j
τ(x∗jyj).

The spaces Lp(M;Hr) and Lp(M;Hc) form complex interpolation scales for p ≥ 1

[L∞(M;Hr), Lp(M;Hr)]θ = L p
θ
(M;Hr),

[L∞(M;Hc), Lp(M;Hc)]θ = L p
θ
(M;Hc).

In order to treat square functions and Hardy spaces we will need to control sums
and intersections of these Hilbert valued noncommutative Lp spaces. The algebraic
tensor product Lp(M)⊗H embeds in Lp(M⊗B(H)) by Id⊗ r and Id⊗ c. Taking
direct sums we obtain an embedding in X = Lp(M⊗B(H))⊕Lp(M⊗B(H)). The
space Lp(M;Hr∩c) is defined as the norm closure (or weak-∗ closure if p = ∞) of
Lp(M)⊗H inside X. Such space comes equipped with the norm given by

‖x‖Lp(M;Hr∩c) = max
{
‖x‖Lp(M;Hr), ‖x‖Lp(M;Hc)

}
.

The embedding also gives Lp(M;Hr∩c) an o.s.s. We will denote the dual spaces
by Lp(M;Hr+c) = Lp′(Mop;Hr∩c)∗ for 1 < p ≤ ∞. The space L1(M;Hr+c) is
defined as the subset of weak-∗ continuous functionals in L∞(Mop;Hr∩c)∗. The
sum notation comes from the fact that

‖x‖Lp(M;Hr+c) = inf
{
‖y‖Lp(M;Hr) + ‖z‖Lp(M;Hc) : x = y + z

}
.

We will denote by Lp(M;Hrc) the spaces given by

Lp(M;Hrc) =

{
Lp(M;Hr+c) when 1 ≤ p < 2

Lp(M;Hr∩c) when 2 ≤ p ≤ ∞.

The spaces Lp(M;Hrc) are crucial for the noncommutative Khintchine inequalities
[28, 29], the noncommutative Burkholder-Gundy inequalities [23], noncommutative
Littlewood-Paley estimates [17] and other related results.

1.1.6. Markovian semigroups and length functions. A semigroup S = (St)t≥0

over a Banach space X is a family of operators St : X → X such that S0 = Id and
StSs = St+s. Let (M, τ) be a noncommutative measure space, we will say that a
semigroup S over M is submarkovian iff:

i) Each St is a weak-∗ continuous and c.c.p. map.
ii) Each St is a self-adjoint, ie: τ(Stx

∗y) = τ(x∗Sty).
iii) The map t 7→ St is pointwise weak-∗ continuous.

S is Markovian if each St is a u.c.p. map, ie St(1) = 1. Markovian operators
satisfy τ ◦ St = τ while submarkovian ones satisfy τ ◦ St ≤ τ . Sometimes these
semigroups are called symmetric and Markovian, where symmetric is synonym with
self-adjoint. All the semigroups in this paper will be symmetric, so we will drop the
adjective. Using the first two properties it is easy to see that St extends to a c.c.p.
map on L1(M). By the Riesz-Thorin theorem St is a complete contraction over
Lp(M) for 1 ≤ p ≤ ∞. The third property implies that t 7→ St is SOT continuous
in L1(M). By interpolation between the pointwise norm continuity on L1(M) and
the pointwise weak-∗ continuity on M we obtain that t 7→ St is SOT continuous
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on Lp(M) for 1 ≤ p < ∞. For every 1 ≤ p < ∞ there is a densely defined and
closable operator A whose closed domain is given by

domp(A) =
{
x ∈ Lp(M) : ∃ lim

t→0+

x− Stx
t

in the norm topology
}
.

When p = 2 we have that St = e−tA and St[Lp(M)] ⊂ domp(A) for 1 ≤ p <∞. In
the case p =∞ we have that A is densely defined and closable with respect to the
weak-∗ topology with domain given by those x ∈M such that limt→0+(x− Stx)/t
exists in the weak-∗ topology. We will call A the infinitesimal generator of S.

We are interested in those (sub)markovian semigroups over M = LG which are
of convolute type. In other words, each St is a Fourier multiplier. It can be proved
that St = Te−tψ for some function ψ. Let us recall a characterization of these
functions. First, recall some definitions. A continuous function ψ : G → C is said
to be conditionally negative (c.n. in short) iff ψ(e) = 0 and for every finite subset
{g1, ..., gm} ⊂ G and vector (v1, .., vm) ∈ Cn we have

m∑
i=1

vi = 0 ⇒
m∑

i,j=1

v̄iψ(g−1
i gj)vj ≤ 0.

When ψ : G → R+ is symmetric (ψ(g) = ψ(g−1)) and c.n. we will say that ψ is a
conditionally negative length. Let H be a real Hilbert space. Given an orthogonal
representation α : G → O(H) we say that a continuous map b : G → H is a
1-cocycle (with respect to α) iff it satisfies the 1-cocycle law

b(gh) = α(g)b(h) + b(g).

The following characterization is proved in [1, Appendix C] or [4, Chapter 1].

Theorem 1.1. Let S = (St)t≥1 be a semigroup of convolution type over the group
algebra LG. Then, the following statements are equivalent:

i) S is a Markovian semigroup.
ii) There is a c.n. length ψ : G→ R+ such that St = Te−tψ .

iii) There is a real Hilbert space H, an orthogonal representation α : G→ O(H)
and a 1-cocycle b : G→ R+, such that ψ(g) = ‖b(g)‖2H and St = Te−tψ

1.1.7. Holomorphic calculus and noncommutative Hardy spaces. We now
introduce the Hardy spaces associated with a submarkovian semigroup on (M, τ)
as well as the corresponding H∞-functional calculus. Both tools were introduced
in the noncommutative setting in [17]. If S is a submarkovian semigroup, the
fixed point subspace Fp = {x ∈ Lp(M) : St(x) = x ∀ t ≥ 0} coincides with
kerA ⊂ domp(A) and it is a subalgebra when p = ∞. It is also easily seen to
be a complemented subspace with projection given by Qp(x) = limt→∞ Stx where
the limit converges in the norm topology of Lp, for p < ∞ and in the weak-∗
topology when p = ∞. We will denote by L◦p(M) = Lp(M)/Fp which is also
a complemented subspace with projection given by Pp = Id − Qp. Note that
Lp(M) ' L◦p(M) ⊕p Fp. When St are Fourier multipliers over M = LG with

symbol e−tψ we define G0 = {g ∈ G : ψ(g) = 0}. In that case

Fp =
{
x ∈ Lp(M) : x = λ(f) with supp(f) ⊂ G0

}
and in a similar way we find that λ(f) = L◦p(M) if and only if f|G0

= 0.
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For any given x ∈ M we define the function Tx : (0,∞) → Lp(M) given by
t 7→ t ∂tStx. We can see x 7→ Tx as a map from certain domain D ⊂ M into
Lp(M;Hr), Lp(M;Hc) or Lp(M;Hrc), where H = L2(R+, dt/t). The induced
seminorms on D ⊂ M are called the row Hardy space, column Hardy space or
Hardy space seminorms. Observe that the map T has as kernel those elements
fixed by S. Quotient out the nulspace and taking the completion with respect to
any of those norms when p < ∞ (resp. the weak-∗ topology for p = ∞) gives the
Hardy spaces Hr

p(M;S), Hc
p(M;S) or Hp(M;S). We can represent such norms as

follows

‖x‖Hcp(M;S) =
∥∥∥(∫

R+

(
t
d

dt
Stx
)∗(

t
d

dt
Stx
)dt
t

) 1
2
∥∥∥
Lp(M)

,

‖x‖Hrp(M;S) =
∥∥∥(∫

R+

(
t
d

dt
Stx
)(
t
d

dt
Stx
)∗ dt

t

) 1
2
∥∥∥
Lp(M)

.

We will drop the dependency on the semigroup and write Hc
p(M) whenever it can

be understood from the context. These spaces inherit their o.s.s. from that of
Lp(M;Hr) or Lp(M;Hc). Therefore we have the following identities

Snp [Hc
p(M;S)] = Hc

p(M⊗B(`n2 );S ⊗ Id),

Snp [Hr
p(M;S)] = Hr

p(M⊗B(`n2 );S ⊗ Id).

The duality is obtained from that of Lp(M;Hc) or Lp(M;Hr), resulting in the
cb-isometries Hr

p(M;S)∗ = Hr
p′(Mop;S) for 1 ≤ p < ∞. The same holds for the

column case. Finally let us recall that by [17, Chapters 7 and 10] we have that if
1 < p <∞ then

(1.3) Hp(M;S) ' L◦p(M),

with the equivalence as operator spaces depending on the constant p. The result
fails for p = 1,∞ and H1(M;S) is smaller in general than L◦1(M). Observe that
t∂tStx = η(tA)x where η(z) = ze−z. Due to the results in [17] we can change η by
other analytic functions in certain class obtaining equivalent norms. We will say
that a holomorphic function ρ defined over the sector Σθ = {z ∈ C : | arg(z)| < θ}
is in H∞(Σθ) iff it is bounded and we will say that it is in H∞0 (Σθ) ⊂ H∞(Σθ) iff
there is an s > 0 such that

|ρ(z)| . |z|s

(1 + |z|)2s
.

We will denote by H∞ or H∞0 the spaces
⋂

0<θ<π/2H∞(Σθ) or
⋂

0<θ<π/2H∞0 (Σθ)

respectively. If needed, we will equip these spaces with their natural inverse limit
topologies. We have that for any ρ ∈ H∞0 the following holds

(1.4)

‖x‖Hcp(M) ∼(p)

∥∥∥(∫
R+

(
ρ(tA)x

)∗
ρ(tA)x

dt

t

) 1
2
∥∥∥
Lp(M)

,

‖x‖Hrp(M) ∼(p)

∥∥∥(∫
R+

ρ(tA)x
(
ρ(tA)x

)∗ dt
t

) 1
2
∥∥∥
Lp(M)

.

The equivalence also holds after matrix amplifications. This type of identities
also hold for wider classes of unbounded operators A satisfying certain resolvent
estimates, see [17] for further details.
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1.2. The general principle. We are now ready to prove our maximal bounds in
Theorem A. In fact, we shall obtain a more general principle in Theorem 1.3 which
decouples in terms of row and column Hardy spaces.

Definition 1.2. Let (Bt)t>0 be a family of operators affiliated to LG. We say
that (Bt)t≥0 has an Lp-square-max decomposition when there is a decomposition
Bt = ΣtMt such that :

(SMp)

sup
t≥0
‖Σt‖2 < ∞,∥∥∥sup

t>0

+σ|Mt|2 ? u
∥∥∥
p
.(p) ‖u‖p.

Similarly, (Bt)t≥0 has an Lp-max-square decomposition when Bt = MtΣt with :

(MSp)

sup
t≥0
‖Σt‖2 < ∞,∥∥∥sup

t>0

+σ|M∗t |2 ? u
∥∥∥
p
.(p) ‖u‖p.

When we say that (Bt)t≥0 has a max-square (resp. square-max) decomposition
we mean that it has an Lp-max-square (resp. Lp-square-max) decomposition for
every 1 < p <∞.

Theorem 1.3. Let G be a LCH group equipped with a conditionally negative length
ψ : G→ R+. Let S = (St)t≥0 be the convolution semigroup generated by ψ and pick
any η ∈ H∞0 . If m : G → C is a bounded function satisfying that Bt = λ(mη(tψ))
has an L(p/2)′-square-max decomposition Bt = ΣtMt for some 2 < p < ∞, then
Tm : Hc

p(LG)→ Hc
p(LG) and

‖Tm‖B(Hcp) .(p)

(
sup
t≥0
‖Σt‖2

)∥∥∥(Rct)t≥0 : L(p/2)′(LG)→ L(p/2)′(LG;L∞)
∥∥∥ 1

2

where Rct(x) = σ|Mt|2 ? x. Similarly, when (Bt)t≥0 admits an L(p/2)′-max-square
decomposition Bt = MtΣt for some 2 < p < ∞, we get Tm : Hr

p(LG) → Hr
p(LG)

and the following estimate holds

‖Tm‖B(Hrp) .(p)

(
sup
t≥0
‖Σt‖2

)∥∥∥(Rrt )t≥0 : L(p/2)′(LG)→ L(p/2)′(LG;L∞)
∥∥∥ 1

2

where Rrt (x) = σ|M∗t |2 ? x. By duality, similar identities also hold for 1 < p < 2.

Corollary 1.4. If G, ψ, η and m are as above and Bt = λ(mη(tψ)) admits both a
L(p/2)′-max-square and a L(p/2)′-square-max decomposition, then it turns out that
Tm : L◦p(LG)→ L◦p(LG) boundedly. Furthermore, if m ≡ c in G0 = {g ∈ G : ψ(g)}
then Tm is a bounded map on Lp(LG).

Proof. The first assertion follows trivially from (1.3). For the second we use that
L◦p(LG) is a complemented subspace, and so

‖Tmx‖p ≤ ‖PpTmx‖p + ‖QpTmx‖p
= ‖TmPpx‖L◦p(LG) + ‖Tm|G0

Qpx‖p .(p)

(
‖Tm‖B(L◦p(LG)) + c

)
‖x‖p. �

Proof of Theorem 1.3. Assume that Bt = λ(mη(tψ)) has an L(p/2)′ -square-max
decomposition. According to (1.4) with ρ(z) = η(z)%(z) for some % ∈ H∞0 , and
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using that Tm commutes with the spectral calculus of A (the generator of S) we
obtain

‖Tm(x)‖Hcp ∼(p)

∥∥(η(tA)%(tA)Tmx
)
t≥0

∥∥
Lp(LG;Lc2)

=
∥∥(η(tA)Tm%(tA)x

)
t≥0

∥∥
Lp(LG;Lc2)

=
∥∥(Tmt(xt))t≥0

∥∥
Lp(LG;Lc2)

,

where mt(g) = m(g)η(tψ(g)) and xt = T%(tψ)x. Recall also that the L2-space
involved is L2 (R+, dt/t). Now we may express the term on the right hand side as
follows∥∥(Tmt(xt))t≥0

∥∥2

Lp(LG;Lc2)
=
∥∥∥ ∫

R+

|Tmtxt|2
dt

t

∥∥∥
p
2

(1.5)

= τ
(
u

∫
R+

|Tmtxt|2
dt

t

)
=

∫
R+

τ
(
u|Tmtxt|2

)dt
t
,

where u ∈ L(p/2)′(LG)+ is the unique element realizing the Lp/2-norm, which exists
by the weak-∗ compactness of the unit ball of L(p/2)′(LG). Now we have to estimate
the term inside the integral. As u ≥ 0, we may write u = w∗w for some w ∈ L2(p/2)′

and 〈
u, |Tmt(xt)|2

〉
= τ(w|Tmt(xt)|2w∗) = τ

(
w
∣∣(τ ⊗ Id)

(
δBt(σxt ⊗ 1)

)∣∣2︸ ︷︷ ︸
Lt

w∗
)
.

As Lt 7→ wLtw
∗ is order preserving, any bound of Lt gives a bound of the above

term. By the complete positivity of the canonical trace we can apply Proposition
1.1 in [27], i.e.

〈x, y〉∗ 〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉
to the operator-valued inner product 〈x, y〉 = (τ ⊗ Id)(x∗y). This yields

Lt =
∣∣(τ ⊗ Id)

(
δΣtδMt(σxt ⊗ 1)

)∣∣2
≤
∥∥(τ ⊗ Id)(δ|Σt|2)

∥∥
LG (τ ⊗ Id)

(
(σx∗t ⊗ 1)δM∗t δMt(σxt ⊗ 1)

)
≤
(

sup
t>0
‖Σt‖22

)
(τ ⊗ Id)

(
δ|Mt|2(σ(x∗txt)⊗ 1)

)
=
(

sup
t>0
‖Σt‖22

)(
|Mt|2 ? x∗txt

)
.

We have used the δ-invariance of the trace in the second inequality and the definition
of the noncommutative convolution in the last identity. Now, substituting inside
the trace and using the identity for the adjoint of the noncommutative convolution
operator gives〈

u, |Tmt(xt)|2
〉
≤ K2τ

(
u(|Mt|2 ? x∗txt)

)
= K2τ

(
(σ|Mt|2 ? u)x∗txt

)
,

where K is the supremum of the L2 norm of Σt. This gives rise to

‖Tm(x)‖2Hcp .(p) K2

∫
R+

τ
(
(σ|Mt|2 ? u)x∗txt

)dt
t

≤ K2 inf
σ|Mt|2?u≤A

τ
(
A

∫
R+

x∗txt
dt

t

)
≤ K2 inf

σ|Mt|2?u≤A
‖A‖L(p/2)′

∥∥∥∫
R+

x∗txt
dt

t

∥∥∥
p/2

.(p) K2
∥∥∥(Rct)t≥0 : L(p/2)′ → L(p/2)′(L∞)

∥∥∥ ‖x‖2Hcp
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by using Fatou’s lemma in the second line and the definition of the Lp(LG;L∞)
norm for positive elements in the last inequality. Taking square roots gives the
desired estimate. The calculations for the row case are entirely analogous. �

Remark 1.5. Throughout this paper we construct max-square and square-max
decompositions of Bt = λ(mη(tψ)) by choosing an smoothing positive factor Mt

with Mt = σMt = M∗t and satisfying the appropriate maximal inequalities. Then
we extract Mt from the left and from the right of Bt as

Bt = (BtM
−1
t )Mt,

Bt = Mt(M
−1
t Bt).

If the family Σt = BtM
−1
t is uniformly bounded in L2 and Bt is self-adjoint then

the other is automatically uniformly in L2 by the traciality of τ . Most of the times
it will be enough to check one of the two decompositions.

Proof of Theorem A. It easily follows from Corollary 1.4 and Remark 1.5. �

Remark 1.6. The technique employed here gives complete bounds assuming that
the maximal inequalities are satisfied with complete bounds. In order to prove
that assertion, let us express the matrix extension (Tm ⊗ IdMn

) as a matrix-valued
multiplier whose symbol takes diagonal values. Indeed

(Tm ⊗ IdMn)([xij ]) = (Id⊗ τ ⊗ IdMn)
( (
δλ(m)⊗ 1Mn

)︸ ︷︷ ︸
K

(
1⊗ [σxij ]

))
,

where K is the corresponding kernel affiliated with LG⊗LG⊗C1Mn
. Clearly,

any square-max decomposition Bt = ΣtMt of Bt = λ(mη(tψ)) yields a diagonal
decomposition (δΣt ⊗ 1Mn)(δMt ⊗ 1Mn) of Kt = δBt ⊗ 1Mn . On the other hand
recall that Tm : Hc

p → Hc
p is c.b. iff Tm ⊗ IdMn : Snp [Hc

p] → Snp [Hc
p] is uniformly

bounded for n ≥ 1 and that Snp [Hc
p(LG;S)] = Hc

p(Mn ⊗ LG; Id⊗ S). That allows
us to write the norm of Snp [Hc

p(LG;S)] as an Lp/2-norm like in (1.5). Then, using
[27, Proposition 1.1] for 〈x, y〉 = (Id ⊗ τ ⊗ IdMn

)(x∗y) as in the proof of Theorem
1.3, gives for 2 < p <∞

‖Tm‖CB(Hcp) .(p)

(
sup
t≥0
‖Σt‖2

)∥∥∥(Rct)t≥0 : L(p/2)′(LG)→ L(p/2)′(LG;L∞)
∥∥∥ 1

2

cb
.

The row case is similar. The discussion of Corollary 1.4 generalizes to c.b. norms.

2. Spectral multipliers

2.1. Ultracontractivity. Let (M, τ) be a noncommutative measure space and
consider a Markov semigroup S = (St)t≥0 defined on it. Given a positive function
Φ : R+ → R+ and 1 ≤ p < q ≤ ∞, we say that S satisfies the Rp,q

Φ ultracontractivity
property when

(Rp,q
Φ )

∥∥St : Lp(M)→ Lq(M)
∥∥ .

1

Φ(
√
t)

1
p−

1
q

∀ t > 0.

Similarly, S has the CBRp,q
Φ property when the above estimate holds for the c.b.

norm of St : Lp(M)→ Lq(M). These inequalities have been extensively studied for
commutative measure spaces [43, Chapter 1]. In the theory of Lie groups with an
invariant Riemannian metric (equipped with the heat semigroup generated by the
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invariant Laplacian) ultracontractivity holds for the function Φ(t) = µ(Bt(e)) which
assigns the volume of a ball for a given radius. Influenced by that, we will interpret
the above-defined properties as a way of describing the “growth of the balls” in
the noncommutative geometry determined by S = (St)t≥0. For that reason, we
will work with doubling functions Φ. Doubling functions are increasing functions
Φ : R+ → R+ with Φ(0) = 0 and satisfying

sup
t>0

{
Φ(2t)

Φ(t)

}
< ∞.

The doubling condition for Φ is a natural requirement since metric measure spaces
(Ω, µ, d) with Φx(t) = µ(Bx(t)) uniformly doubling in x constitute an adequate
setting for performing harmonic analysis in commutative measure spaces. Given a
Markov semigroup S = (St)t≥0 over a noncommutative measure space (M, τ), let
us recall the following:

i) If S satisfies Rp0,q0
Φ , it satisfies Rp,q

Φ for 1 ≤ p0 ≤ p < q ≤ q0 ≤ ∞.
ii) If Φ is doubling and S satisfies Rp0,q0

Φ for some 1 ≤ p0 < q0 ≤ ∞, then it
satisfies Rp,q

Φ for 1 ≤ p ≤ q ≤ ∞

The same holds for the CBRp0,q0
Φ ultracontractivity property. The proof follows

the same lines than [43, Theorem II.1.3]. In the noncommutative setting a similar
result is stated in [18, Lemma 1.1.2 ] for Φ(t) = tD. As a consequence, all the
ultracontractivity properties Rp,q

Φ are equivalent for doubling Φ. We shall denote
them simply by RΦ and similarly CBRΦ. As a corollary, we obtain that if M is
an abelian von Neumann algebra CBRp,q

Φ and Rp,q
Φ are equivalent for doubling Φ

since Rp,q
Φ is equivalent to Rp,∞

Φ and any bounded map into an abelian C∗-algebra
is completely bounded. For any doubling function Φ we may define its doubling
dimension DΦ as

DΦ = log2 sup
t>0

{
Φ(2t)

Φ(t)

}
.

It is quite simple to show that any doubling Φ : R+ → R+ admits upper/lower
polynomial bounds for large/small values of t > 0. More precisely, we have the
bounds

(2.1)
Φ(t) .(DΦ) tDΦ Φ(1) when t > 1,
Φ(t) &(DΦ) tDΦ Φ(1) when t ≤ 1.

Of course, the converse of this assertion is false. Whenever a Markovian semigroup
S satisfies RΦ (resp. CBRΦ) for doubling Φ we will call DΦ the Sobolev dimension
(resp. c.b. Sobolev dimension) of (M, τ) with respect to S. The reason for this
name is based on the well-known relation between ultracontractivity estimates for a
Markov semigroup and Sobolev embedding estimates for its infinitesimal generator.
One of the first contributions to that relation is in the work of Varopoulos, who
proved in [42] that when Φ(t) = tD the property RΦ is equivalent to a whole range of
Sobolev type estimates for the infinitesimal generator of the semigroup. See also [43]
for more on that topic. Whenever Φ(t) = tD we will denote the ultracontractivity
properties by RD or CBRD. By adding a zero, like RΦ(0), we will mean that the
inequality Rp,q

Φ is satisfied for t ≤ 1. This notation is borrowed from [43, II.5].
Recall that if S satisfies RΦ (resp. CBRΦ) for some doubling function Φ then, by
the polynomial bounds in (2.1), we have RDΦ

(0) (resp. CBRDΦ
(0)).
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Our characterization of co-polynomial growth in Section 3 bellow requires the
following equivalence for Sobolev-type inequalities in term of the ultracontractivity
properties RD(0). We did not find the proposition below in the literature, but it
could be well-known to experts. We include a sketch of the proof.

Proposition 2.1. Let S be a submarkovian semigroup acting on a noncommutative
measure space (M, τ). Let A denote its infinitesimal generator. Then, the following
properties are equivalent :

i) For every ε > 0, S satisfies the RD+ε(0) property.
ii) For every ε > 0, we have that

‖(1 +A)−D/4−ε : L2(M)→M‖ .(ε) 1.

Similarly, S ∈ CBRD+ε(0) for all ε > 0 iff (1+A)−s : L2(M)
cb−→M for all ε > 0.

Proof. The implication i)⇒ ii) follows from the identity

(1 +A)−s(x) =
1

Γ(s)

(∫
R+

tse−tSt(x)
dt

t

)
.

The integral in [0, 1] may be estimated applying the RD(0) property, whereas the
integral for t > 1 is easily estimated using the semigroup law. This gives the
desired implication. For the converse, we now take s = D/4 + ε and use that
‖f(A)‖B(L2) ≤ ‖f‖∞∥∥St : L2(M)→M

∥∥ =
∥∥(1 +A)−

s
2 (1 +A)

s
2St
∥∥
B(L2(M),M)

≤
∥∥(1 +A)−

s
2

∥∥
B(L2(M),M)

∥∥(1 +A)
s
2St
∥∥
B(L2)

.(ε,s)

(s
2

)( s2 )
e−

s
2
et

t
s
2
. �

Remark 2.2. Observe that if RD(0) is satisfied then ii) also holds. Nevertheless
the converse is not true since the norm ‖St : L1(M) → M‖ could be comparable
to, say, tD(1 + log(t)) for 0 ≤ t ≤ 1. The original result proved by Varopoulos [42]
established a equivalence between RD(0) and the bounds

(1 +A)−s : Lp(M)→ L pn
n−sp

(M)

for every 0 ≤ s < n/p. When s > n/p the image space of Lp(M) is certainly
much smaller than L∞(M), for example in Rn with the usual Laplacian the image
space lies inside spaces of Hölder functions. Therefore, by describing the behavior
of (1 +A)−s in L∞(M) we lose information and we can no longer recover RD(0).

We will denote by W p,s
A (M), or simply W p,s(M) when the semigroup St = e−tA

can be understood from the context, the closed domain in Lp(M) of the unbounded

operator (1 +A)s/2, with norm given by

‖x‖Wp,s
A

=
∥∥(1 +A)s/2f

∥∥
p
.

These are called the fractional Sobolev spaces associated with S. They satisfy the
natural interpolation identities. Namely, if we set 1/p3 = (1− θ)/p1 + θ/p2 we get[

W p1,s
A (M),W p2,s

A (M)
]
θ
' W p3,s

A (M),[
W p,s1
A (M),W p,s2

A (M)
]
θ
' W

p,s1θ+s2(1−θ)
A (M),

Point ii) in Proposition 2.1 may be rephrased as W 2,s
A (M) ⊂M for every s > D/2.
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2.1.1. L2 bounds for CB(L2(LG),LG) multipliers. We shall work extensively
with Markovian convolution semigroups over LG with the CBRΦ ultracontractivity
property for doubling Φ. In general, determining the c.b. norm of a multiplier
between general Lp spaces is a problem that nobody expects to be solvable with
a closed formula. Despite that, we can obtain characterizations in some particular
cases. One of these cases is that of the c.b. multipliers Tm : L2(LG)→ LG. That

will allow us to express the CBR2,∞
Φ property of S = (Te−tψ )t≥0 as a condition over

ψ. The next theorem is probably known to experts. Since we could not find it in
the literature, we include it here for the sake of completeness.

Theorem 2.3. If T denotes the map m 7→ Tm :

i) T : Lr2(G)→ CB(Lc2(LG),LG) is a complete isometry.
ii) T : Lc2(G)→ CB(Lr2(LG),LG) is a complete isometry.

The image of T is the set of multipliers Tm : L†2(LG)
cb−→ LG for † ∈ {c, r} resp.

Proof. Let V and W be operator spaces and pick x⊗ y ∈ V ∗ ⊗W ∗. According to
[33, Theorem 4.1] the map Ix⊗y(w) = x〈y, w〉 extends linearly to an isomorphism

I : (V ⊗̂W )∗ → CB(W,V ∗). Using the pairying 〈 , 〉 : Lr2(LG)×Lc2(LG)→ C given
by 〈y, w〉 = τ(y σw) we obtain as a consequence that

Iδz(w) = (Id⊗ τ)
(
δz (1⊗ σw)

)
= z ? w,

where δz denotes the comultiplication map acting on z. This yields∥∥Tm : L†2(LG)→ LG
∥∥

cb
=
∥∥δλ(m)

∥∥
(LG∗⊗̂L†2(LG))∗

where † ∈ {r, c} is either the row or the column o.s.s. We now claim that the
natural map

ι : L∞(LG;L†
op

2 (LG)) ↪→
(
LG∗ ⊗̂L†2(LG)

)∗
is a complete isometry with †op = r for † = c and viceversa. This is all what is
needed to complete the argument since we have the following commutative diagram
of complete isometries

L†2(G)
T //

λ
��

CB(L†
op

2 (LG),LG)

L†2(LG)

δ

''

(LG∗ ⊗̂L†
op

2 (LG))∗

I

OO

L∞(LG;L†2(LG))

( �

ι

55

.

Let us therefore justify our claim. According to [9]

(LG∗ ⊗̂L†2(LG))∗ ' LG⊗F L†
op

2 (LG)

where ⊗F stands for the Fubini tensor product of dual operator spaces. Bear in
mind that if V ∗ and W ∗ are dual operator spaces, there are weak-∗ continuous
embeddings V ∗ ⊂ B(H1) and W ∗ ⊂ B(H2) and we can define the weak-∗ spatial
tensor product V ∗⊗W ∗ as

V ∗⊗W ∗ = (V ∗ ⊗W ∗)w∗ .
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Such construction is representation independent and V ∗⊗W ∗ embeds completely
isometricaly in V ∗ ⊗F W ∗. Since the column and row embeddings of L2(LG) into

B(L2(LG)) are weak-∗ continuous, L∞(LG;L†
op

2 (LG)) = LG⊗L†
op

2 (LG). This
proves that ι is a complete isometry and so is the map m 7→ Tm = Iιδλ(m). �

Remark 2.4. Since Lr2(LG) and Lc2(LG) are isometric as Banach spaces, the
norms for multipliers in CB(Lr2(LG),LG) and CB(Lc2(LG),LG) coincide too, even
if their matrix amplifications do not. Indeed we obtain that

‖Tm‖CB(Lr2(LG),LG) = ‖m‖L2(G) = ‖Tm‖CB(Lc2(LG),LG).

For non-hyperfinite LG, the space of Fourier multipliers in CB(L2(LG),LG), may
be difficult to describe as an operator space. Nevertheless, as a consequence of the
above identities, its underlying Banach space is the Hilbert space L2(G).

Remark 2.5. As a consequence of the above, if G is a group and S = (Te−t ψ )t≥0

is a semigroup of Fourier multipliers satisfying CBR2,∞
Φ for any function Φ, then G

is amenable. To see it just notice that e−tψ ∈ L2(G) and so e−2tψ ∈ L1(G) for all
t > 0. But a group is amenable iff there is a sequence of integrable positive type
functions converging to 1 uniformly in compacts.

2.2. Standard assumptions. Let LG∧+ denote the extended positive cone of LG.
As it will become clear along the paper, we shall treat unbounded operators X in
LG∧+ as noncommutative or quantized metrics over LG. Note that if G is LCH
and abelian, any translation-invariant metric over its dual group can be associated
with the positive function ∆ : χ 7→ d(χ, e). The metric conditions impose that
∆ is symmetric, does not vanish outside e and ∆(χ1χ2) ≤ ∆(χ1) + ∆(χ2). Here
we will only require X to be symmetric, i.e.: to satisfy σX = X. Recall that the
anti-automorphism σ extends to LG∧+. Following the intuition relating symmetric
operators in LG∧+ to metrics, we will say that X ∈ LG∧+ is doubling iff the function
ΦX(r) = τ(χ[0,r)(X)) is doubling. When the dependency on the operator X can
be understood from the context we will just write Φ. In a similar fashion, we will
say that X satisfies the Lp-Hardy-Littlewood maximal property when

(HLp)
∥∥∥sup
r≥0

+
{χ[0,r)(X)

ΦX(r)
? u
}∥∥∥

p
. ‖u‖p,

If we say that X has the HL property, omitting the dependency on p, we mean
that the HL property is satisfied for every 1 < p ≤ ∞, with constants depending
on p. When the property HLp holds uniformly for all matrix amplifications, we
will say that X satisfies the completely bounded Hardy-Littlewood maximal property
(CBHLp in short). Let ψ : G→ R+ be a conditionally negative length generating a
semigroup S. We will say that S has L2 Gaussian bounds with respect to X when
there is some β > 0 such that

(L2GB) τ
{
χ[r,∞)(X)|λ(e−tψ)|2

}
.

e−β
r2

t

ΦX(
√
t)
.

Definition 2.6. A triple (LG,S, X), where S is a Markov semigroup of Fourier
multipliers generated by ψ : G→ R+ and X ∈ (LG)∧+, is said to satisfy the standard
assumptions when

i) X is symmetric and doubling.
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ii) S has L2GB with respect to X.
iii) X satisfies the CBHL property.

Since LG is determined by G and S by ψ we shall often write (G,ψ,X) instead.

Remark 2.7. If S has L2GB then it admits CBR2,∞
ΦX

ultracontractivity. Namely
if we take r = 0 in (L2GB), it follows from Theorem 2.3 and Remark 2.4. If X is in
addition doubling, S has the whole range of ultracontractivity properties CBRΦX .

2.2.1. Stability under Cartesian products. It is interesting to note that the
standard assumptions are stable under certain algebraic operations, the most trivial
of them is probably the Cartesian product. Stability under crossed products also
holds under natural conditions, see Remark 2.10 below.

Lemma 2.8. Assume that

Sj = (Sjωj )ωj∈Ωj : Lp(Mj)→ Lp(Mj ;L∞(Ωj))

is completely positive for j ∈ {1, 2}. Then S1 ⊗ S2 is also c.p. and∥∥∥S1 ⊗ S2 : Lp(M1⊗M2)→ Lp
(
M1⊗M2;L∞(Ω1)⊗min L∞(Ω2)

)∥∥∥
cb

.
∏

j∈{1,2}

∥∥∥Sj : Lp(Mj)→ Lp(Mj ;L∞(Ωj))
∥∥∥

cb
.

Proof. It follows from S1⊗S2 = (S1⊗ Id) ◦ S2 and (1.1), details are omitted. �

Theorem 2.9. Let (Gj , ψj , Xj) be triples satisfying the standard assumptions for
j = 1, 2 and consider the Cartesian product G = G1 × G2 . Then (G,φ,X) also
satisfies the standard assumptions with the c.n.length ψ(g1, g2) = ψ1(g1) + ψ2(g2)
and X ∈ LG∧+ determined by the formula X2 = X2

1 ⊗ 1 + 1⊗X2
2 .

Proof. Proving that X is doubling and that the semigroup generated by ψ has
Gaussian bounds amount to a trivial calculation. Indeed, ΦX is controlled from the
inequalities χ[0,r/2)(a)χ[0,r/2)(b) ≤ χ[0,r)(a+ b) ≤ χ[0,r)(a)χ[0,r)(b), which are valid
for positive and commuting operators a, b. On the other hand, the L2GB follow
similarly from the inequality χ[r,∞)(a+ b) ≤ χ[r/2,∞)(a) + χ[r/2,∞)(b). Let us now
justify the CBHL property. Let m : Lp(LG;L∞ ⊗min L∞) → Lp(LG;L∞) be the
map given by m(x⊗ f ⊗ g) = x⊗ fg, which is c.p. By Lemma 2.8

R1 ⊗R2 =
(
R1
s ⊗R2

t

)
s,t≥0

: Lp(LG)→ Lp
(
LG;L∞(ds)⊗min L∞(dt)

)
,

where Rjs(x) = ΦXj (s)
−1 χ[0,s)(Xj)?x is c.p. As a consequence m◦(R1⊗R2) is also

completely positive. Therefore, by the doubling property we obtain the following
estimate(χ[0,r)(X)

ΦX(r)
?x
)
r≥0
.(DΦ1 ,DΦ2 )

(χ[0,r)(X1)

ΦX1(r)
⊗
χ[0,r)(X2)

ΦX2(r)
?x
)
r≥0

= m◦(R1⊗R2)(x)

for x ≥ 0. This is all what we need to reduce CBHL of X to that of X1 and X2. �

Remark 2.10. Let H and G be LHC unimodular groups and θ : G→ Aut(H) be
a measure preserving action. Let (H,ψ1, X1) and (G,ψ2, X2) be triples satisfying
the standard assumptions. It is possible to prove that, under certain invariance
conditions on X1 and ψ1, the semidirect product K = HoθG satisfies the standard
assumptions for some X ∈ LK∧∗ and certain c.n. length function ψ : K → R+ built



22 GONZÁLEZ-PÉREZ, JUNGE, PARCET

up from X1, X2 and ψ1, ψ2 respectively. Since the techniques required to prove this
result are quite involved and of independent interest, we postpone its proof to a
forthcoming paper were we shall explore other applications involving Bochner-Riesz
summability and related topics.

2.3. Hörmander-Mikhlin criteria. In this subsection we shall give a proof of
Theorem B i) by means of a suitably chosen max-square decomposition. The key
is to prove that, if Bt = λ(mη(tψ)), then

Bt = Bt

(
1 +

X2

t

) γ
2

Φ(
√
t)

1
2︸ ︷︷ ︸

Σt

Φ(
√
t)
− 1

2

(
1 +

X2

t

)− γ2︸ ︷︷ ︸
Mt

.(2.2)

is a square-max decomposition for γ > DΦ/2. Breaking the symbol m into its real
and imaginary parts and using Remark 1.5, we obtain a max-square decomposition
by placing the smoothing factor (1 + X2/t)γ/2 on the left hand side of Bt. The
proof of the maximal inequality consists in expressing the maximal operator as a
linear combination of Hardy-Littlewood maximal operators associated to X and
apply (1.2). For the square estimate we will use the smoothness condition.

Lemma 2.11. Assume that Ft ∈ C0(R+) is a family of bounded variation functions
parametrized by t > 0. Let dFt be its Lebesgue-Stjeltjies derivative and |dFt(λ)| its
absolute variation, then for every doubling operator X, we have:∥∥∥(sup

t>0

+Ft(X) ? x
)∥∥∥

Lp
≤

(
sup
t>0
‖Φ‖L1(|dFt|)

)∥∥∥(sup
r>0

+χ[0,r)(X)

Φ(r)
? x
)∥∥∥

Lp

Proof. By integration by parts we have that

Ft(s) =

∫
R+

Ft(r)dδs(r) =

∫
R+

Ft(r)∂χ(s,∞)(r)

= −
∫
R+

χ(s,∞)(r)∂Ft(r) = −
∫
R+

χ[0,r)(s)

Φ(r)
Φ(r)∂Ft(r).

By functional calculus, the same holds for Ft(X). Applying (1.2) ends the proof. �

According to Theorem A, the right choice for the square-max decomposition
is given by Ft(s) = |Mt|2(s) = Φ(

√
t)−1(1 + s2/t)−γ . It will suffice to pick here

γ > DΦ/2, the condition in Theorem B i) will be justified later on. In order to
prove the finiteness of the maximal bound in Theorem A, we just need to verify the
condition of Lemma 2.11 for this concrete function.

Lemma 2.12. For any doubling Φ, we find∫
R+

Φ(s)
∣∣∣ d
ds

(
1 +

s2

t

)−DΦ+ε

2
∣∣∣ ds .(DΦ,ε) Φ(

√
t).

Proof. Changing variables s 7→
√
tv, we obtain∫

R+

Φ(s)
∣∣∣ d
ds

(
1 +

s2

t

)−DΦ+ε

2
∣∣∣ ds ∼(DΦ)

∫
R+

Φ(s)
(

1 +
s2

t

)−DΦ+2+ε

2 2s

t
ds

=

∫
R+

Φ(
√
t
√
v)
(
1 + v

)−DΦ+2+ε

2 dv
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=
(∫ 1

0

+

∞∑
k=0

∫ 4k+1

4k

)
= A+

∞∑
k=0

Bk.

The monotonicity of Φ gives A ≤ Φ(
√
t), while its doublingness yields

Bk ≤ Φ(
√
t) 2DΦ(k+1)

∫ 4k+1

4k

(
1 + v

)−DΦ+2+ε

2 dv

∼(DΦ) Φ(
√
t) 2DΦ(k+1)2−(DΦ+ε)k

∼(DΦ) Φ(
√
t) 2−εk.

Since the sequence of Bks is summable, we have proved the desired estimate. �

For the estimate of the square part, let us start by extending the Gaussian
bounds to the complex half-plane H = {z ∈ C : Re(z) > 0}. We need the following
version of the Phragmen-Lindelöff theorem, see [7] for the proof.

Theorem 2.13. If F is analytic over H and satisfies

|F (|z|eiθ)| .
(
|z| cos θ

)−β
,

|F (|z|)| . |z|−β exp
(
− α|z|−ρ

)
,

for some α, β > 0 and 0 < ρ ≤ 1, then we find the following estimate

|F (|z|eiθ)| .(β)

(
|z| cos θ

)−β
exp

(
− αρ

2
|z|−ρ cos θ

)
.

We may now generalize the Gaussian L2-bounds to the complex half-plane.

Proposition 2.14. Let G be a unimodular group, ψ : G → R+ a c.n. length
and X ∈ LG∧+ a doubling operator satisfying L2GB. If we set hz = λ(e−zψ), the
following bound holds for every z ∈ H

τ
{
χ[r,∞)(X)|hz|2

}
.

1

Φ(
√

Re{z})
e−

β
2
r2

|z|
Re{z}
|z| .

Proof. Let x be an element of L2(LG) with ‖x‖2 ≤ 1. Assume in addition that
x = px for p = χ[r,∞)(X). Then we define Gx as the following holomorphic function

Gx(z) = e−
z
t Φ(
√
t)τ(hzx)2.

Then, the estimate below holds in H

|Gx(z)| = e−
Re{z}
t Φ(

√
t)|τ(hzx)|2 ≤ e−

Re{z}
t Φ(

√
t)τ(|hz|2)

= e−
|z| cos θ

t Φ(
√
t)‖hRe{z}‖2L2(LG) . e−

Re{z}
t Φ(

√
t)/Φ(

√
Re{z}).

Note that the second identity above follows from Plancherel theorem and the last
inequality from L2GB for r = 0. On the other hand, since Φ is doubling it satisfies
Φ(s(1 + r)) . Φ(s)(1 + r)DΦ for every r > 0 and

|Gx(z)| . e−
Re{z}
t

Φ(
√
t)

Φ(
√

Re{z})
. e−

Re{z}
t

(
1 +

√
t√

Re{z}

)DΦ

.
( t

|z| cos θ

)DΦ
2

,

by using that e−s
2

(1 + 1/s)a . (1/s)a in the last inequality. We also have

|Gx(|z|)| = e−
|z|
t Φ(
√
t)
∣∣τ(h|z|x)

∣∣2
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≤ e−
|z|
t Φ(
√
t) τ
{
p h∗|z|h|z|

}
. e−

|z|
t

Φ(
√
t)

Φ(
√
|z|)

e−β
r2

|z|

. e−
|z|
t

(
1 +

√
t√
|z|

)DΦ

e−β
r2

|z| .
( t

|z|

)DΦ
2

e−β
r2

|z| .

The Phargmen-Lindelöf theorem allows us to combine both estimates, giving

|Gx(|z|eiθ)| . t
DΦ
2

(
|z| cos θ

)−DΦ
2 e−

βr2

2
cos θ
|z| .

Taking the supremum over all x with ‖x‖2 ≤ 1 and x = p x we get

sup
x
|Gx(z)| = e−

Re{z}
t Φ(

√
t)τ(p |hz|2),

Our previous estimate then yields

e−
Re{z}
t Φ(

√
t) τ(p |hz|2) . t

DΦ
2

(
|z| cos θ

)−DΦ
2 e−

βr2

2
cos θ
|z| ,

Choosing the parameter t ≥ 0 to be t = Re{z} gives the desired estimate. �

Lemma 2.15. If X ∈ LG∧+ is doubling and ψ : G→ R+ has L2GB, then

τ
{(

1 +
X2

t

)κ
|ht(1−iξ)|2

} 1
2

.(κ)
1

Φ(
√
t)

1
2

(
1 + |ξ|

)κ
for all κ > 0.

Proof. Writing z = t(1− iξ) in Proposition 2.14 gives

τ
(
χ[r,∞)(X)|hz|2χ[r,∞)(X)

)
.

1

Φ(
√
t)
e
− β2

r2

t
1

(1+|ξ|2) .

Using the spectral measure dEX of X and since since (1 + s2)κ .(κ) 1 + s2κ

τ
{(

1 +
X2

t

)κ
|ht(1−iξ)|2

}
.(κ) τ

{
|ht(1−iξ)|2

}
+ τ
{
|ht(1−iξ)|2t−κX2κ

}
.

1

Φ
(√
t
) + τ

{
|ht(1−iξ)|2

∫
R+

(s2

t

)κ
dEX(s)

}
︸ ︷︷ ︸

A

.

To estimate the term A we use integration by parts

A =

∫
R+

(s2

t

)κ
τ
{
|ht(1−iξ)|2dEX(s)

}
=

∫
R+

(s2

t

)κ
(−∂s)τ

{
|ht(1−iξ)|2χ[s,∞)(X)

}
=

∫
R+

d

ds

(s2

t

)κ
τ
{
|ht(1−iξ)|2χ[s,∞)(X)

}
ds.

In the second line, by −∂sτ{|ht(1−iξ)|2χ[s,∞)(X)}, we mean the Lebesgue-Stjeltjes

measure associated with the increasing function g(s) = −τ{|ht(1−iξ)|2χ[s,∞)(X)}
and the third line is just an application of the integration by parts formula for
Lebesgue-Stjeltjes integrals. A calculation gives the desired result

A .
∫
R+

(
2κs2κ−1

tκ

)
1

Φ(
√
t)
e
− β2

s2

t
1

(1+|ξ|2) ds

∼(κ)
(1 + |ξ|2)κ

Φ(
√
t)

∫
R+

s2κ−1e−
β
2 s

2

ds ∼(κ)
(1 + |ξ|)2κ

Φ(
√
t)

. �
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Proposition 2.16. Let Bt = λ(m(ψ)η1(tψ)) where η1(z) = η(z) e−z for some
η ∈ H∞0 . Assume also that X is a doubling operator satisfying L2GB, then the
following estimate holds for every δ > 0 and κ > 0

τ
{(

1 +
X2

t

)κ
|Bt|2

} 1
2

.(κ,δ)
1

Φ(
√
t)

1
2

∥∥m(t−1·)η(·)
∥∥
W 2,κ+ 1+δ

2 (R+)
.

Proof. By Fourier inversion formula

m(s)η1(ts) = m(s)η(ts)︸ ︷︷ ︸
mt(ts)

e−ts =
( 1

2π

∫
R̂
m̂t(ξ)e

iξtsdξ
)
e−ts.

Thus, by composing with ψ and applying the left regular representation

Bt =
1

2π

∫
R̂
m̂t(ξ)ht(1−iξ)dξ.

Triangular inequality for the L2-norm with weight (1+X2/t) and Lemma 2.15 give

τ
{(

1 +
X2

t

)κ
|Bt|2

} 1
2

= τ
{(

1 +
X2

t

)κ∣∣∣ 1

2π

∫
R̂
m̂t(ξ)ht(1−iξ)dξ

∣∣∣2} 1
2

≤ 1

2π

∫
R̂
|m̂t(ξ)| τ

{(
1 +

X2

t

)κ∣∣ht(1−iξ)∣∣2} 1
2

dξ

.(κ)
1

Φ(
√
t)

1
2

∫
R̂
|m̂t(ξ)|(1 + |ξ|)κ+ 1+δ

2 (1 + |ξ|)−
1+δ

2 dξ = A.

Höder’s inequality in conjunction with the definition of Sobolev space then yield

Φ(
√
t)

1
2 A ≤

(∫
R̂

(
1 + |ξ|

)−(1+δ)
dξ
) 1

2 ∥∥m(t−1 ·)η(·)‖
W 2,κ+ 1+δ

2 (R+)

The the integral above is dominated by (1 + δ−1)
1
2 and the assertion follows. �

Proof of Theorem B i). Let Bt = λ(m(ψ)η1(tψ)) with η1(s) = e−sη(s) and
Bt = ΣtMt be the decomposition (2.2) with γ > DΦ/2 . Since we are assuming X
to be symmetric, we have that σ|Mt|2 = |Mt|2 and, by Lemma 2.11 and Lemma
2.12, Mt satisfies the maximal inequality of (SMp). By Proposition 2.16 we have
that

sup
t>0
‖Σt‖L2(LG) .(γ) sup

t>0

∥∥m(t−1 ·)η(·)
∥∥
W 2,γ+ 1+δ

2 (R+)
.

Therefore Bt = ΣtMt is a square-max decomposition. By similar means we obtain a
max-square decomposition Bt = MtΣt. Since our maximal bounds trivially extend
to matrix amplifications, we may apply Theorem 1.3 in conjunction with Remark
1.6 to deduce complete bounds of our multiplier Tm◦ψ in both row and column
Hardy spaces. Finally, arguing as in Corollary 1.4 and noticing that m ◦ ψ ≡ m(0)
on the subgroup G0 = {g ∈ G : ψ(g) = 0}, we deduce the assertion. �

Remark 2.17. It is interesting to observe that the proof given here can be adapted
to the classical case. Indeed, let St = e−tA be a Markovian semigroup acting on
L∞(X,µ). Assume further that the metric measure space (X, dΓ, µ), where dΓ is
the gradient metric [35, Definition 3.1], is doubling, i.e.:

ess sup
x∈X

sup
r>0

{
µ(Bx(2r))

µ(Bx(r))

}
<∞
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and that its integral kernel kt(x, y) has Gaussian bounds with respect to the gradient
distance, i.e.: ∥∥χ[r,∞)(dΓ(x, ·)) kt(x, ·)

∥∥2

2
.

e−β
r2

t

µ(Bx(
√
t))
.

In that case we can apply the well known covering arguments for doubling spaces
to prove that the Hardy-Littlewood maximal operator is of weak type (1, 1) and by
interpolation the HL inequalities hold. Since (X, dΓ, µ) is a doubling metric measure
space with bounded Hardy-Littlewood maximal inequalities and Gaussian Bounds
we can apply the results above to reprove the classical spectral Hörmander-Mikhlin
theorem as stated in [8]. We shall consider this a new proof of the classical spectral
Hörmander-Mikhlin. Interestingly, some of the steps of the proof are parallel to
that of [8] even when the main idea of our approach is to use maximal inequalities
instead of Calderón-Zygmund estimates for the kernels.

2.4. The q-Plancherel condition. In this subsection we shall refine our results
by proving Theorem B ii). Our first task is to introduce the noncommutative form
of the Plancherel condition assumed in the statement.

Definition 2.18. Let (M, τ) be a noncommutative measure space and let S be a
submarkovian semigroup generated by A. We say that S satisfies the completely
bounded q-Plancherel condition, denoted by CBPlanΦ

q , where Φ is some increasing
function and q ∈ (2,∞], whenever

‖F (A)‖CB(L2(LG),LG) .
1

Φ(
√
t)

1
2

‖F (t−1 ·)‖Lq(R+),

for every t > 0 and for every function F : R+ → R+ with supp(F ) ⊂
[
0, t−1

]
.

Remark 2.19. In the context of this paper M = LG for some LCH unimodular
group G endowed with its canonical trace and S = (Te−tψ )t≥0 is a semigroup of
convolution type. In that case F (A) = TF (ψ) and by Theorem 2.3 and Remark 2.4
we have that

‖TF (ψ)‖CB(L2(LG),LG) = ‖TF (ψ)‖CB(Lr2(LG),LG)

= ‖TF (ψ)‖CB(Lc2(LG),LG) = ‖F (ψ)‖L2(G).

Thus, the CBPlanΦ
q condition can be restated as a bound on the CB(L†2(LG),LG)

norm, where † is either the column or the row o.s.s. of L2(LG), or as a bound in
the L2(G)-norm of the symbol F (ψ). Furthermore, since ψ determines S we will

sometimes say that ψ has the CBPlanΦ
q .

For every F with supp(F ) ⊂
[
0, t−1

]
we have that F (t−1 ·) is supported in

[0, 1]. Using that Lq([0, 1]) ⊂ Lp([0, 1]), with contractive inclusion, we see that

CBPlanΦ
p ⇒ CBPlanΦ

q for p ≤ q.

Proposition 2.20. Let (G,ψ) be a pair formed by a LCH unimodular group and
a c.n. length. Let Φ be a doubling function. If ψ satisfies the utracontractivity
estimates CBR2,∞

Φ then it satisfies CBPlanΦ
∞.

Proof. We pick s > 0, to be chosen later, and notice that

F (ψ(g)) = F (ψ(g))esψ(g)e−sψ(g) = Gs(ψ(g))e−sψ
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where Gs is a bounded function with ‖Gs‖∞ ≤ ‖F‖∞es/t. Therefore

‖TF (ψ)‖CB(L2(LG),LG) = ‖TGs(ψ)Ss ‖CB(L2(LG),LG)

≤ ‖TGs(ψ) ‖CB(L2(LG))‖Ss‖CB(L2(LG),LG)

. ‖F‖∞es/tΦ(
√
s)−

1
2 .

Making s = t and noticing that ‖F‖∞ = ‖F (t−1 ·)‖∞ gives the desired result. �

The terminology of the q-Plancherel condition comes from the so-called spectral
Plancherel measures which arise in the study of spectral properties of infinitesimal
generators of Markovian semigroups over some measure spaces [36, 8]. In the case
of a semigroup of Fourier multipliers generated by a c.n. length we can define the
Plancherel measure µψ, as the only σ-finite measure over R+ satisfying that for
every F ∈ Cc(R+)

(2.3) ‖TF (ψ)‖CB(L2(LG),LG) =
(∫

R+

|F (s)|2 dµψ(s)
) 1

2

.

It is trivial to see that dµψ(r) = ∂rµ({g ∈ G : ψ(g) ≤ r}), where ∂r represents the
Lebesgue-Stjeltjes derivative of the increasing function g(r)=µ({g ∈ G : ψ(g) ≤ r}).

2.4.1. Characterization of the q-Plancherel condition. By formula (2.3) the
CB(L2(LG),LG) norm of TF (ψ) can be expressed as an integral of F . The following
lemma (whose proof is straightforward and we shall omit) allows to express the

CBPlanΦ
q property as a L(q/2)′(R+) bound on µψ.

Lemma 2.21. Let (Ω,Σ) be a measurable space and consider two measures µ, ν on
it. Assume in addition that µ is a positive measure. Then, we have the inequality

(2.4)

∣∣∣∣∫
Ω

f(ω)dν(ω)

∣∣∣∣ ≤ K‖f‖Lp(dµ)

if and only if ν � µ and φ = dν/dµ satisfies ‖φ‖Lp′ (dµ) ≤ K. Furthermore, the

optimal K in (2.4) is precisely ‖φ‖Lp′ (dµ). If ν is also positive, it is enough for

(2.4) to hold only for positive functions.

Proposition 2.22. Let G be a LCH unimodular group equipped with a c.n. length
ψ : G → R+. Then, this pair satisfies the CBPlanΦ

q property with respect to some
increasing function Φ : R+ → R+ if and only if dµψ(r) = ∂rµ{g ∈ G : ψ(g) ≤ r}
fulfills the following conditions :

i) dµψ � dm.

ii)
∥∥∥dµψ
dm

χ[0,R]

∥∥∥
L(q/2)′ (R+)

. Φ(R−
1
2 )−1R−

2
q for every R > 0.

Proof. Let t = 1/R and G(s) = |F (s)|2. By (2.3), CBPlanΦ
q is equivalent to∫ R

0

G(s) dµψ(s) . Φ(R−
1
2 )−1

(∫ 1

0

|F (t−1s)|q ds
) 2
q

= Φ(R−
1
2 )−1R−

2
q

(∫ R

0

|G(s)|
q
2 ds

) 2
q

.

Then, the result follows applying Lemma 2.21 to (Ω, dν, dµ) = (R+, dµψ, dm). �
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The result above uses the crucial fact that the spectrum of the semigroup S
generated by ψ can be identified with G. Therefore, spectral properties of the
semigroup can be translated into geometrical properties of G. It is also interesting
to note that the characterization in Proposition 2.22 can be expressed as a bound
for the size of the spheres associated to the pseudo-metric dψ(g, h) = ψ(g−1h)1/2.

2.4.2. Stability under direct products. Consider two pairs (Gj , ψj) of LCH
unimodular groups equipped with c.n. lengths for j = 1, 2. Then it is clear that
ψ : G1 × G2 → R+ given by ψ(g, h) = ψ1(g) + ψ2(h) is also a c.n. length. Notice
that ∥∥TF (ψ)

∥∥2

CB(L2(LG),LG)
=

∫
G1×G2

∣∣F (ψ1(g) + ψ2(h))
∣∣2 dµG1

(g) dµG2
(h)

=

∫
R+

∫
R+

∣∣F (ξ + ζ)
∣∣2 dµψ1

(ξ) dµψ2
(ζ)

=

∫
R+

|F (ξ)|2d (µψ1
∗ µψ2

)(ξ).

Thus, the Plancherel measure is µψ = µψ1
∗µψ2

and we obtain the following result.

Theorem 2.23. Assume (Gj , ψj) satisfy CBPlanΦj
qj for j = 1, 2. Then the pair

(G1×G2, ψ) defined above satisfies the CBPlanΦ
q property with Φ = Φ1Φ2 and with

q = max
{

2,
( 1

q1
+

1

q2

)−1}
.

Proof. The result is a simple consequence of Young’s inequality for convolutions
and we shall just sketch the argument for the (slightly more involved) case where
1/q1 + 1/q2 > 1/2, so that q = 2. According to Proposition 2.22, it suffices to see
that ∥∥∥dψ1

dm
∗ dψ2

dm

∥∥∥
L∞(0,R)

≤ 1

RΦ1(R−1/2)Φ2(R−1/2)
.

The CBPlanΦ1
q1 property of (G1, φ1) implies∥∥∥dψ1

dm
∗ dψ2

dm

∥∥∥
∞
≤
∥∥∥dψ1

dm

∥∥∥
(
q1
2 )′

∥∥∥dψ2

dm

∥∥∥
q1
2

≤ 1

R
2
q1 Φ1(R−1/2)

∥∥∥dψ2

dm

∥∥∥
q1
2

.

Now, since 1/q1 + 1/q2 > 1/2 it turns out that

1

q1/2
=

1

(q2/2)′
+

1

r
⇒
∥∥∥dψ2

dm

∥∥∥
q1
2

≤ R 1
r

∥∥∥dψ2

dm

∥∥∥
(
q2
2 )′
.

The result follows from the characterization of CBPlanΦ2
q2 in Proposition 2.22. �

Remark 2.24. A result along the same lines can be obtained for crossed products
under invariance assumptions on ψ1. This goes in the same spirit as Remark 2.10.

2.4.3. Refinement of the smoothness condition. Here we are going to see how
we can prove the optimal smoothness order in the Hörmander-Mikhlin condition of
Theorem B ii) when ψ satisfies the CBPlanΦ

q property. We need several preparatory
lemmas. In the next one we denote by W p,s

η (R+), where η ∈ H∞0 , the Sobolev space
given by completion with respect to the norm

‖f‖Wp,s
η (R+) =

∥∥(1− ∂2
x)s/2(ηf)

∥∥
p
.
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Lemma 2.25. Given f, g : R+ → C, the following holds:

i) For every ε > 0∥∥(1− ∂2
x)s/2(fg)

∥∥
2
.(s,ε)

∥∥(1− ∂2
x)(s+1+ε)/2f

∥∥
∞

∥∥(1− ∂2
x)s/2g

∥∥
2
.

ii) If ρ(z) = zse−z and η ∈ H∞0∥∥(1− ∂2
x)s/2(ηρf)

∥∥
2
.(s,ε)

∥∥(1− ∂2
x)(s+1+ε)/2(ηf)

∥∥
∞.

Equivalently, we find the embedding W∞,s+1+ε
η (R+) ⊂(s,ε) W

2,s
ηρ (R+).

Proof. The second point follows immediately from the first one by noticing that
ρ(z) = zse−z has finite W 2,s(R+) norm. We are going to prove the first point for
s ∈ N and use interpolation. Given s ∈ N, we have∥∥(1− ∂2

x)s/2(fg)
∥∥

2
∼

s∑
k=0

‖∂kx(fg)‖2

=

s∑
k=0

∥∥∥ k∑
j=0

(
k

j

)
(∂jxf)(∂k−jx g)

∥∥∥
2

.(s)

(
max

0≤j≤s
‖∂jxf‖∞

)( s∑
k=0

‖∂kxg‖2
)

∼
(

max
0≤j≤s

‖∂jxf‖∞
)∥∥(1− ∂2

x)s/2g
∥∥

2
.

Thus, all we have to see is that for every j ∈ {0, 1, 2, ..., s}∥∥∂jx(1− ∂2
x)−(s+ε+1)/2f

∥∥
∞ .(s,ε) ‖f‖∞.

Recall that if the symbol of a Fourier multiplier is given by the Fourier transform of
finite measure, then it is bounded in L∞(R). Thus, we just need to see that there
is a finite measure µj,s such that

µ̂j,s(ξ) =
ξj

(1 + |ξ|2)
s+ε+1

2

= sgn(ξ)j
1

(1 + |ξ|2)
s+ε−j+1

2

|ξ|j

(1 + |ξ|2)
j
2

= (H[j](νs,j) ∗mj)
∧(ξ),

where H[j] is the Hilbert transform for j odd and the identity map for j even. By
[38, V.3, Lemma 2] mj is a finite measure. Therefore, it is enough to see that if

ν̂s,j(ξ) = 1/(1 + |ξ|2)(s+ε−j+1)/2, then H[j](νs,j) is a finite measure. Applying the
Hilbert transform or identity map to [38, V.(26)] gives the desired result. �

Lemma 2.26. Assume G is a LCH unimodular group, ψ : G→ R+ is a c.n. length

and that they satisfy the CBPlanΦ
q property. If η1, η2 ∈ H∞0 (Σθ), with η1 satisfying

that there is γ > 0 such that |η1(z)| . e−γRe(z) for all z ∈ Σθ, then the following
estimate holds for all m ∈ L∞(R+)∥∥λ(m(ψ)η1(tψ)η2(tψ)

)∥∥
L2(LG)

.(DΦ,q,γ)
1

Φ(
√
t)

1
2

∥∥m(t−1 ·)η2(·)
∥∥
Lq(R+)

.

Proof. Using integration by parts we obtain∥∥λ(m(ψ)η1(tψ)η2(tψ)
)∥∥
L2(LG)

=
∥∥∥∫

R+

λ
(
m(ψ)η′1(r)η2(tψ)χ[0,r)(tψ)

)
dr
∥∥∥
L2(LG)
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≤
∫
R+

η′1(r)
∥∥λ(m(ψ)η2(tψ)χ[0,r)(tψ)

)∥∥
L2(LG)

dr.

Nos, applying the CBPlanΦ
q property, we obtain∥∥λ(m(ψ)η1(tψ)η2(tψ)
)∥∥
L2(LG)

.(q)

∫
R+

η′1(r)
1

Φ(
√
t/r)

1
2

∥∥m((r/t)·)η2(r·)
∥∥
Lq([0,1])

dr

=
(∫

R+

η′1(r)
r−1/q

Φ(
√
t/r)

1
2

dr
)∥∥m(t−1 ·)η2(·)

∥∥
Lq(R+)

.

So, we just need to estimate the integral in the right hand side term∫
R+

η′1(r)
r−1/q

Φ(
√
t/r)

1
2

dr =
{∫ 1

0

+

∞∑
j=0

∫ 4j+1

4j

}
η′1(r)

r−1/q

Φ(
√
t/r)

1
2

dr = A+

∞∑
j=0

Bj .

The first term is bounded as follows

A ≤ 1

Φ(
√
t)

1
2

∫ 1

0

η′1(r)r−1/qdr .(q)
1

Φ(
√
t)

1
2

.

For the rest of the terms, we apply the doubling condition to obtain

Bj ≤ 3 · 4j‖η′1‖L∞([4j ,4j+1))
2
D

Φ
2 (j+1)

Φ(
√
t)

1
2

=
3 · 2

DΦ
2

Φ(
√
t)

1
2

‖η′1‖L∞([4j ,4j+1)) 2

(
DΦ
2 +2

)
j
.

The function η1 decreases exponentially and so does η′1. Therefore η′1(z) . e−γz for
Re{z} large enough. That allows us to sum up all the terms in the series obtaining∑
j Bj . Φ(

√
t)−

1
2 up to a constant depending on (DΦ, γ), as desired. �

Proposition 2.27. Assume G is a LCH unimodular group, ψ : G → R+ is a

c.n. length and that they satisfy the CBPlanΦ
q property. Assume in addition that

X ∈ LG∧+ is doubling and admits L2GB. Then, we find for κ, δ, ε > 0

τ
{(

1 +
X2

t

)κ
|Bt|2

} 1
2

.(DΦ,q,κ,δ,ε)
1

Φ(
√
t)

1
2

∥∥m(t−1 ·)η(·)
∥∥
Wp,κ+δ(R+)

,

where Bt = λ
(
m(ψ)η(tψ)e−2tψ(tψ)a

)
, η is a H∞0 -cut-off and a = 2κ/δ+ (1 + ε)/2.

Proof. Fix κ, δ, ε > 0 and a = 2κ/δ + (1 + ε)/2. We define the linear, unbounded
map Kt : D ⊂ L∞(R+) → L2(LG) by Kt(m) = λ(m(tψ)η(tψ)e−2tψ(tψ)a). Using
Lemma 2.26 with η1(z) = zae−2z and η2(z) = η(z) gives that

(2.5)
∥∥∥Kt : W q,0

η (R+)→ L2(LG)
∥∥∥ .(DΦ,q)

1

Φ(
√
t)

1
2

.

Let us denote by φt,κ the family of weights given by φt,κ(x) = τ{(1 + t−1X2)κx}
and let L2(LG,φt,κ) be the Hilbert spaces associated to the GNS construction of
φt,κ. We know from Proposition 2.16 that∥∥∥Kt : W

2,s+ 1+ε
2

ηρ (R+)→ L2(LG,φt,s)
∥∥∥ .(κ,δ,ε)

1

Φ(
√
t)

1
2

,

where s = 2κ/δ and ρ(z) = zae−z. Composing with the inclusion

W
q,s+ 1+ε

2 +1+ε′

η (R+) ⊂(s,ε′) W
2,s+ 1+ε

2
η ρ (R+),
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which follows by interpolation from Lemma 2.25 for q =∞ and the trivial inclusion
for q = 2, gives

(2.6)
∥∥∥Kt : W

q,s+ 1+ε
2 +1+ε′

η (R+)→ L2(LG,φt,s)
∥∥∥ .(κ,δ,ε,ε′)

1

Φ(
√
t)

1
2

.

Notice that the spaces obtained through GNS construction L2(LG,φt,κ) are well
behaved with respect to the complex interpolation method. In particular, the
expected identity below holds[

L2 (LG,φt,κ1
) , L2 (LG,φt,κ2

)
]
θ

= L2

(
LG,φt,(1−θ)κ1+θκ2

)
.

Therefore, interpolating (2.5) and (2.6) with θ = δ/2 yields∥∥∥Kt : W
q,κ+ δ

2 ( 1+ε
2 +1+ε′)

η (R+)→ L2(LG,φt,θs)
∥∥∥ .(DΦ,q,κ,δ,ε,ε′)

1

Φ(
√
t)

1
2

.

Finally, choosing ε and ε′ such that ((1 + ε)/2 + 1 + ε′) ≤ 2 gives∥∥∥Kt : W q,κ+δ
η (R+)→ L2(LG,φt,κ)

∥∥∥ .(DΦ,q,κ,δ)
1

Φ(
√
t)

1
2

.

Therefore, applying this bound to the function m(t−1·) proves the assertion. �

Proof of Theorem B ii). Let s > DΦ/2. For any η ∈ H∞0 and δ, ε > 0 we can
define η1(z) = η(z)e−2zza, where a = 2s/δ + (1 + ε)/2. Set Bt = λ(m(ψ)η1(tψ))
and apply (2.2). By Proposition 2.27

sup
t>0
‖Σt‖L2(LG) .(DΦ,q,s,δ,ε) sup

t>0

∥∥m(t−1 ·)η(·)
∥∥
Wp,s+δ(R+)

.

Once this is settled, the argument continues as in the proof of Theorem B i). �

2.5. An application for finite-dimensional cocycles. Our aim is to recover
the main result in [19] for the case of radial multipliers to illustrate how the Sobolev
dimension approach is, a priori, more flexible than the one used in [19]. We will
start proving that c.n. lengths coming from surjective and proper finite-dimensional
cocycles satisfy the standard assumptions. Then we will reduce the case of general
finite-dimensional cocycles to surjective and proper ones.

Let b : G→ Rn be a finite-dimensional cocycle. Assume that b is surjective and
proper (i.e. b−1[K] is a compact set for every compact K). Then the pullback of
the Haar measure b∗µ(E) = µ(b−1[E]) in Rn is translation invariant and therefore
satisfies satisfies that d b∗µ(ξ) = cd ξ. Indeed, let α : G → Aut(Rn) be the action
naturally associated to b. Given a Borel compact set E ⊂ Rn with b−1(E) = A ⊂ G
and since b(gA) = αg(b(A)) + b(g), we conclude that

b∗µ(E) = µ(A) = µ(gA) = b∗µ(αg(E) + b(g)).

Note that µ(A) is well-defined and finite since b is continuos and proper. Applying
this identity to the α-invariant sets E = Br(0) and using the subjectivity of b, we
conclude the assertion. An important consequence of this fact is that

‖St‖2CB(L2(LG),LG) =

∫
G

|e−tψ(g)|2 dµ(g) =

∫
Rn
e−2t|ξ|2d (b∗µ)(ξ) =

1

Φ(
√
t)
,

where S = (St)t≥0 is the semigroup associated with ψ(g) = ‖b(g)‖2 and Φ(t) ∼ tn.
Therefore, the semigroup associated to any proper and surjective finite-dimensional
cocycle satisfies the CBRΦ property. In the same way, the measure µψ defined in
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(2.3) can be expressed (using polar coordinates) as in terms of b∗µ and a trivial
calculation gives that ψ has the CBPlanΦ

2 property. We need to find a suitable
Xb ∈ LG∧+. We shall prove that b induces a natural transference map from functions
f : Rn → C into operators x ∈ LG given by

J (f) = λ(f̂ ◦ b).

Therefore, if R is a distribution in Rn such that R̂(x) = |x|, our choice will be
Xb = λ(R(b)). Before proving Xb ∈ LG∧+ we will need the following auxiliary result.

Lemma 2.28. If ϕj : Rn → C are radial L1-functions

λ(ϕ1 ◦ b)λ(ϕ2 ◦ b) = λ
(
(ϕ1 ∗ ϕ2) ◦ b

)
for any group G equipped with a proper and surjective cocycle b : G→ Rn.

Proof. Up to constants, we know that d(b∗µ) = dm, so that

(ϕ1 ◦ b) ∗ (ϕ2 ◦ b)(g) =

∫
G

ϕ1(b(h))ϕ2(b(h−1g)) dµ(h)

=

∫
G

ϕ1(b(h))ϕ2(αh−1(b(g)− b(h))) dµ(h)

=

∫
G

ϕ1(b(h))ϕ2(b(g)− b(h)) dµ(h)

=

∫
Rn
ϕ1(ζ)ϕ2(b(g)− ζ)d (b∗µ)(ζ)

=

∫
Rn
ϕ1(ζ)ϕ2(b(g)− ζ)d ζ = (ϕ1 ∗ ϕ2)(b(g)).

Taking the left regular representation at both sides yields the assertion. �

It is straightforward to restate Lemma 2.28 in terms of the transference operator
J . Namely, we shall be working with the following subclasses of radial functions
in the Euclidean space Rn

A =
{
φ : Rn → C

∣∣ φ radial, φ̂ is a finite measure in Rn
}
,

A+ =
{
φ : Rn → C

∣∣ φ radial and positive, φ̂ is a finite measure in Rn
}
.

Observe that φj ∈ A implies by Lemma 2.28 that

(2.7) J (φ1 φ2) = J (φ1)J (φ2).

In fact, we will make use of the following consequences:

i) J : A → LG is completely bounded.
ii) J (A) is an abelian subalgebra of LG.

Indeed, it follows from (2.7) that J is an ∗-homomorphism on A. In particular,
it is completely positive and its c.b. norm it determined by J (1). The Fourier
transform of 1 is the Dirac delta δ0 at 0. Let us approximate 1 in the weak-∗
topology by hδ(ξ) = exp(−δ|ξ|2) as δ → 0+. By the weak-∗ continuity of J , it
turns out that∥∥J (1)

∥∥
LG = lim

δ→0+

∥∥λ(ĥδ ◦ b)
∥∥
LG ≤ lim

δ→0+

∥∥ĥδ ◦ b∥∥L1(LG)
= lim
δ→0+

∫
Rn
ĥδ(ξ) dξ = 1.
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Thus J is a completely positive contraction. Once this is settled, ii) follows from
(2.7). In order to define Xb as an element of LG∧+, we need to express it as the
supremum of positive operators in LG. We use

1 =

∫
R+

s |ξ|2 e−s|ξ|
2 d s

s
,

and think of ηs(ξ) = |ξ|2 s e−s|ξ|2 as a continuous partition of the unit. Hence

|ξ| =
∫
R+

|ξ| ηs(ξ)
d s

s
 φε,R(ξ) :=

∫ R

ε

|ξ| ηs(ξ)
d s

s
 Xb := sup

0<ε≤R<∞
J (φε,R).

This presents Xb as a well-defined element of the extended positive cone LG∧+.

Theorem 2.29. Let G be a LCH unimodular group and consider an n-dimensional
proper and surjective cocycle b : G → Rn equipped with the conditionally negative
length ψ(g) = ‖b(g)‖2. Then (G,ψ,Xb) satisfies the standard assumptions.

Proof. We will start by proving the L2GB. By noticing that ζ 7→ χ[r,∞)(ζ) is an

increasing function and the normality of the weight x 7→ τ
{
x |λ(e−tψ)|2

}
we obtain

that

τ
{
χ[r,∞)(Xb) |λ(e−tψ)|2

}
= sup

0<ε≤R<∞
τ
{
χ[r,∞)(J (φε,R)) |λ(e−tψ)|2

}
.

If P is a polynomial, (2.7) gives P (J (φ)) = J (P (φ)). The function χ[r,∞) may not
be a polynomial but we can approximate it by analytic functions as follows. Let F
be

F (ζ) =
1

2
+

1

π

∫ ζ

0

e−s
2

ds.

We define the function χn,r ≥ 0 by

χn,r(ζ) =
(
F (n (ζ − r))− F (−n r)

)2
.

For r > 0, the positive functions χr,n converge pointwise and boundedly to χ[r,∞)

as n → ∞. Furthermore, χn,r(0) = 0 and χn,r is a real analytic function with
arbitrarily large convergence radius. By the analyticity it holds that for any radial
φ in the Schwartz class

χn,r(J (φ)) = J (χr,n(φ)).

The right hand side is well-defined since χr,n(φ) is again a Schwartz class function
and so its Fourier transform is integrable. By [10, Proposition 1.48] if χn,r converges
to χ[r,∞) pointwise and boundedly then χn,r(x) converges to χ[0,∞)(x) is the SOT
topology for any positive x ∈ LG. We have that

τ
{
χ[r,∞)(Xb) |λ(e−tψ)|2

}
= sup

0<ε≤R<∞
τ
{

SOT-lim
n→∞

χr,n(J (φε,R)) |λ(e−tψ)|2
}

= sup
0<ε≤R<∞

lim
n→∞

τ
{
J (χr,n ◦ φε,R) |λ(e−tψ)|2

}
≤ lim

n→∞
sup

0<ε≤R<∞
τ
{
J (χr,n ◦ φε,R) |λ(e−tψ)|2

}
.

On the other hand, J is trace preserving since

τ ◦ J (φ) = φ̂ ◦ b(e) =

∫
Rn
φdm.
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Moreover, λ(e−tψ) = J (ht) for the heat kernel ht in Rn and

τ
{
χ[r,∞)(Xb) |λ(e−tψ)|2

}
= lim

n→∞
sup

0<ε≤R<∞
τ
{
J (χr,n ◦ φε,R) |J (ht)|2

}
= lim

n→∞
sup

0<ε≤R<∞
τ
{
J
(
(χr,n ◦ φε,R) |ht|2

)}
= lim

n→∞
sup

0<ε≤R<∞

∫
Rn
χr,n(φε,R(ξ)) |ht(ξ)|2d ξ

≤ lim
n→∞

∫
Rn
χr,n(|ξ|) |ht(ξ)|2d ξ

=

∫
Rn
χ[r,∞)(|ξ|) |ht(ξ)|2d ξ .

1

Φ(
√
t)
e−

r2

2t .

The CBHL inequality will follow from the L∞ Gaussian lower bounds

(L∞GLB)
∥∥∥(χ[0,r)(Xb)λ(e−tψ)χ[0,r)(Xb)

)−1∥∥∥−1

LG
&

e−β
r2

t

Φ(
√
t)
.

Recall that if x ∈ M+ and p is a projection then p‖(pxp)−1‖−1 ≤ pxp and
so we can understand the right hand side of (L∞GLB) as a lower bound on
χ[0,r)(Xb)λ(e−tψ)χ[0,r)(Xb). The L∞GLB allow to bound the noncommutative
Hardy-Littlewood maximal operator by the maximal operator associated with the
semigroup. Indeed, since Xb and λ(e−tψ) commute from (2.7) we deduce that
(L∞GLB) yield

χ[0,t)(Xb)

Φ(t)
. χ[0,t)(Xb)λ(e−t

2ψ)χ[0,t)(Xb) ≤ λ(e−t
2ψ).

This implies

χ[0,t)(Xb)

Φ(t)
? x . St2(x),

for every positive x. Now, using the maximal inequalities for semigroups of [24]
gives the boundedness of the noncommutative Hardy-Littlewood maximal for every
1 < p <∞. The fact that St⊗Id is again a Markovian semigroup gives the complete
bounds and so the CBHL inequality holds. To prove that (L∞GLB) holds we use
that J : A → LG is a complete contraction. Justifying the calculations like in the
case of upper L2 Gaussian bounds and using (2.7) we obtain that∥∥∥(χ[0,r)(Xb)λ(e−tψ)χ[0,r)(Xb)

)−1∥∥∥
LG

≤
∥∥∥(λ(e−

t
2ψ)χ̃r(Xb)λ(e−

t
2ψ)
)−1 ∥∥∥

LG

=
∥∥J (χ̃r(| · |)h−1

t

) ∥∥
LG

≤
∥∥χ[0,r)(| · |)h−1

t

∥∥
L∞(Rn)

. t
n
2 eβ

r2

t .

where χ̃r ∈ C∞c (R+) is an smooth decreasing function which is identically 1 in [0, r)
and supported by [0, 2r). Taking inverses gives us the desired inequality. �

Corollary 2.30. Given a LCH amenable unimodular group G, let b : G → Rn be
a finite-dimensional cocycle with associated c.n. length ψ(g) = |b(g)|2. Then, given
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a symbol m : R+ → C and 1 < p < ∞, the following estimate holds for any H∞0
cut-off function η and any s > n/2∥∥Tm◦ψ∥∥CB(Lp(LG))

.(p) sup
t>0

∥∥m(t ·)η(·)
∥∥
W 2,s(R+)

.

Proof. If the cocycle b is surjective and proper the result follows from Theorem
B. Indeed, in that case we know from Theorem 2.29 that (G,ψ,Xb) satisfies the
standard assumptions with Φ(s) = sn and Sobolev dimension DΦ = n. Moreover,

the CBPlanΦ
2 property also holds as we explained before Lemma 2.28. In the general

case take Go = RnoαG where α : G→ O(n) is the orthogonal representation that
makes g 7→ (x 7→ αgx+ b(g)) an affine representation. The function bo : Go → Rn
given by bo(ξ, g) = ξ+b(g) satisfies the cocycle law with cocycle action β : Go → Rn
given by β(ξ,g) = αg. Indeed, we have

bo(ξ + αgζ, g h) = ξ + αgζ + b(gh)

= ξ + αgζ + αgb(h) + b(g)

= β(ξ,g)(bo(ζ, h)) + bo(ξ, g).

Furthermore bo is clearly surjective but it may not be proper. In that case, we
shall take the associated affine representation πo : Go → RnoO(n) and note that
the quotient representation π◦o : G◦o = Go/ ker(πo)→ Rn oO(n) satisfies that its
associated cocycle b◦o : G◦o → Rn is always proper (even if it is not injective). To
see that, let p1 : RnoO(n)→ Rn be the natural projection into the first component
and consider a compact set K ⊂ Rn. Then

(b◦o)−1[K] = (π◦o)−1[p−1
1 [K]] = (π◦o)−1[K ×O(n)]

and the last term is compact sinceK×O(n) is compact and π◦o is a continuous group
isomorphism and hence proper. Summing up, we have the following commutative
diagram

G
b //� _

��

Rn

Rn oα G = Go

bo

==

����
(Rn oα G)/ ker(πo) = G◦o

b◦o

NN

According to Theorem 2.29, for the last cocycle we can use that (G◦o, ψ
◦
o, Xb◦o

)

satisfy the standard assumptions, where ψ◦o is the c.n. length naturally associated
to b◦o. By Theorem B, this implies∥∥Tm◦ψ◦o∥∥CB(Lp(LG◦o))

.(p) sup
t>0

∥∥m(t ·)η(·)
∥∥
W 2,s(R+)

.

Now, using de Leeuw’s type periodization [3, Theorem 8.4 iii)] we obtain the same
complete bounds for Tm◦ψo in Lp(LGo) for every 1 < p < ∞. In order to prove
the assertion, we just need to restrict to the subgroup {0} ×G ≤ Go.This follows
from the de Leeuw’s restriction type result in [3, Theorem 8.4 i)]. �
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2.6. Foreword. During the exposition of the contents of Section 2 several natural
questions arise.

1. The first question is whether all finite-dimensional proper cocycles, not
necessarily surjective, such that their associated c.n. length satisfy CBRΦ

have L2GB for some X ∈ LG∧+. We have only been able to prove it in
the easier case of surjetive cocycles. To that end, our intuition is that a
(probably nontrivial) generalization of (2.7) will be required.

2. The second point sprouts from the annoyance of the fact that we have
not been able to produce explicit examples of infinite-dimensional cocycles
with L2GB. We are not confident about their existence. It will be of
great interest for us to either construct infinite-dimensional cocycles having
L2GB or to prove that all c.n. lengths admitting X with L2GB come from
finite-dimensional cocycles. A way of relaxing such problem is to change
the family of c.n. lengths arising from finite-dimensional to the family of
(real) analytic c.n. lengths (in order to make sense of analyticity we will
require G to be a Lie group). Note that every finite-dimensional cocycle
b : G→ Rn over a Lie groupG induces a group homomorphism of Lie groups
π : G → Rn o O(n). Such homomorphisms are automatically analytic.
Therefore, the function ψ : G → R+ is real analytic. It is reasonable to
conjecture that every ψ : G → R+ defined on a Lie group and with L2GB
is analytic.

3. A possible strategy for constructing conditionally negative lengths coming
from infinite-dimensional cocycles with L2GB is to extend the stability
results (announced in Remark 2.10) for crossed products to non θ-invariant
ψ1 : H → R+ and X1 ∈ LH∧+. If either G is amenable or θ : G→ Aut(H)
is an amenable action, some sort of averaging procedure may give new c.n.
lengths having L2GB if the original ones do have L2GB. It will also be
desirable to extend the stability of the standard assumptions to extensions
of topological groups.

3. Non-spectral multipliers

3.1. Polynomial co-growth. As we have seen, elements in the extended positive
cone LG∧+ can be understood as quantized metrics over LG. Indeed, when G is
abelian, any invariant distance over its dual group is determined by the (positive

unbounded) function d(e, χ) affiliated to L∞(Ĝ), since d(χ1, χ2) = d(e, χ−1
1 χ2). It

may seem natural to require X to satisfy properties analogous to the triangular
inequality, the faithfulness and the symmetry. Nevertheless, such assumptions will
not be necessary here since we will need just “asymptotic” properties of X. Indeed,
one of our main families of examples will come from the unbounded multiplication
symbols of invariant Laplacians over G. In order to match the classical case of Rn
with the standard Laplacian, whose multiplication symbol is |ξ|2, we will use the
convention that X behaves like d(e, χ)2. That will explain the 1/2 exponent in
some of the formulas.

Definition 3.1. Given X ∈ LG∧+, we say that X has polynomial co-growth of order
D iff

D = inf
{
r > 0 :

(
1 +X

)−r/2 ∈ L1(LG)
}
<∞.
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The definition is motivated by the fact that if we are in an abelian group and
X is the unbounded positive function given by d(e, χ)2, where d is a translation
invariant metric then, defining Φ(r) = τ(χ[0,r2)(X)) = µ(Br(e)), we get∥∥(1 +X

)−D/2−ε∥∥
1

=

∫
R+

1

(1 + r2)
D
2 +ε

dΦ(r) =
(D

2
+ ε
)∫

R+

2rΦ(r)

(1 + r2)
D
2 +1+ε

dr.

In particular the last expression is finite whenever µ(Br(e)) . rD.

Remark 3.2. In the proof of Theorem C we are only going to use that the
convolution operator u 7→ u ? (1 + X)−β is completely bounded on Lp(LG) for
β > D. Any element in L1(LG) induces such bounded operator. Indeed we could
have defined a similar notion of polynomial co-growth alternatively as

D = inf
{
r > 0 : (1 +X)−r/2 ∈ CB(L1(LG))

}
<∞,

where (1 + X)−r/2 is identified with the operator x 7→ (1 + X)−r/2 ? x. This
condition is a priori weaker than co-polynomial growth although they coincide for
amenable groups. We will stick to the original since it is a condition general enough
to allow us to prove Theorem C and restrictive enough to be fully characterized.

Now we are going to prove the existence of unbounded operators affiliated to LG
behaving like multiplication symbols for left or right invariant Laplacians. Recall
that a submarkovian semigroup S acting on L∞(G) is respectively called left/right
invariant when St ◦ λg = λg ◦ St or St ◦ ρg = ρg ◦ St accordingly.

Proposition 3.3. Let G be a LCH unimodular group and consider any submarko-
vian semigroup S over L∞(G). Let A denote its positive generator. Then, the
following properties hold:

i) If S is left invariant then there is a densely defined and closable unbounded

positive operator Â affiliated to LG such that, for all f ∈ dom(A) ⊂ L2(G)

λ(Af) = λ(f)Â.

ii) If S is right invariant then there is densely defined and closable unbounded

positive operator Â affiliated to LG such that, for all f ∈ dom(A) ⊂ L2(G)

λ(Af) = Âλ(f).

Proof. We start by proving ii). Notice that A : dom(A) ⊂ L2(G) → L2(G) is
densely defined. It is affiliated with LG iff for every unitary u ∈ LG′ = RG we
have that uA = Au. Since St is ρ invariant and we can approximate in the SOT
topology every element in RG by linear combinations of elements in (ρg)g∈G, we
obtain that St commutes with any element x ∈ RG. A function f ∈ L2(G) is in
dom(A) when

lim
t→0+

Id− St
t

f

exists in L2(G) and we then have

lim
t→0+

∥∥∥Af − Id− St
t

f
∥∥∥

2
= 0.

This implies udom(A) ⊂ dom(A) for any U(RG). Multiplying by u we obtain∥∥uAf −Auf∥∥
2
≤ lim
t→0+

∥∥∥uAf − Id− St
t

uf
∥∥∥

2
+ lim
t→0+

∥∥∥ Id− St
t

uf −Auf
∥∥∥

2
= 0



38 GONZÁLEZ-PÉREZ, JUNGE, PARCET

for every f ∈ dom(A). This proves that A is affiliated with RG. Notice that

λ : L2(G) → L2(LG) unitarily. We will define Â = λAλ∗. By definition Â is an
unbounded operator on L2(LG) affiliated with (λRGλ∗)′ = λLGλ∗ which is also
equal to the von Neumann algebra LG acting by left multiplication in the GNS

construction associated to its trace. The operator Â is densely defined and closable
since A is densely defined and closable. The identity of ii) follows by definition.
The construction for i) is somewhat analogous. We need two trivial observations:

1. The anti-automorphism σ : LG → LG extends to a unitary operator σ2 :
L2(LG) → L2(LG) since τ ◦ σ = τ . If πr : LGop → B(L2(LG)) and
π` : LG → B(L2(LG)) are the right and left GNS representations, then
σ2 ◦ πr(x) = π`(σx) ◦ σ2.

2. The anti-automorphism σ extends to an automorphism of the extended
positive cone LG∧+. We are going to denote such extension again by σ.

Notice that, since π`[LG]′ = πr[LG], any element in x ∈ π`[LG]′ can be expressed
as πr(x

′) for some x′ ∈ LG. By point 1, the map that sends x to x′ is given, after
identifying LG with its GNS representation π`[LG], by x′ = σ(σ2 xσ2). Let S be

given by S = λAλ∗. Then S is affiliated with (λLGλ∗)′ = π`[LG]′. If we define Â

as Â = σ(σ2 S σ2), where σ is the extension of point 2, we obtain i). �

Remark 3.4. Since G is unimodular, the unitary ι : L2(G) → L2(G) given by
f(g) 7→ f(g−1) is an isometry that intertwines ρg and λg. We can characterize the
pairs of left and right invariant operators A1, A2 whose left and right multiplication

symbols, Â1 and Â2 respectively, coincide. By a trivial calculation those are the
operators such that A1ι = ιA2. Indeed, using that λ : L2(G) → L2(LG) satisfies
λ◦ι = σ2◦λ and that if A is the infinitesimal generator of a submarkovian semigroup
then A> = A, we obtain that

σ(λA1λ
∗) = σ2λA2λ

∗σ2 = λιA2ιλ
∗,

but the right hand side satisfies that σ(λA1λ
∗) = λA>1 λ

∗ = λA1λ
∗.

Now we are going to characterize those semigroups whose infinitesimal generator
has polynomial co-growth. In order to prove the characterization we will need the
following two lemmas. Recall that the Fourier algebra AG is defined as those
f : G → C such that λ(f) ∈ L1(LG) with ‖f‖AG = ‖λ(f)‖L1(LG). We will use
below the straightforward inequalities for f ∈ AG

(3.1) |τ(λ(f))| ≤ ‖f‖∞ ≤ τ(|λ(f)|).

Indeed, both follow from the identity τ(λ∗gλ(f)) = f(g) which is valid for f ∈ AG.

Lemma 3.5. Let G be a LCH unimodular group and S a semigroup of right (resp.
left) invariant operators satisfying that St : C0(G)→ C0(G). Let A be the positive

generator and assume further that Â has polynomial cogrowth of order D. Then
W 2,s
A (G) ∩AG is dense inside W 2,s

A (G) for every s > D/2 + ε.

Proof. We will prove only the right invariant case. Notice that AG is closed by
left and right translations. The fact that St : C0(G) → C0(G), together with the
Riesz representation theorem gives that for every g ∈ G there is weak-∗ continuous
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family of probability measures on G, (µgt )g∈G,t≥0 such that

Stf(g) =

∫
G

f(h)dµgt (h).

Applying the right invariance gives us that dµgt (h) = dµet (hg
−1). This yields

(3.2) Stf(g) =

∫
G

ρgfdµ
e
t = ι∗µet ∗ f(g),

where (ι∗µet )(E) = µet (E
−1). It is clear that ‖Stf − f‖L2(G) → 0 as t→ 0+. Recall

that the same is true for f ∈W 2,s
A (G) in the W 2,s

A (G)-norm for every s > 0. Suppose

that f ∈ W 2,s
A (G), then, applying the formula (3.2) together with the polynomial

co-growth, we have that

Stf = ι∗µt ∗ f = ι∗µt ∗ (1 +A)−
s
2 (1 +A)

s
2 f = ht,s ∗ g,

where g = (1 +A)s/2f . We have that ‖g‖2 = ‖f‖W s,2
A

and

‖ht,s‖2 ≤
∥∥(1 + Â)−s/2

∥∥
L2(LG)

≤ |µet |
∥∥(1 + Â)−s/2

∥∥
L2(LG)

<∞.

This proves that Stf ∈ AG ∩W 2,s
A (G). Making t→ 0+ completes the claim. �

Theorem 3.6. Let G be a unimodular LCH group and let S be a right (resp. left)
invariant submarkovian semigroup over G. Let A be its infinitesimal generator
and assume further that St : C0(G) → C0(G). Then, the following assertions are
equivalent:

i) The multiplication symbol Â of A has polynomial co-growth of order D.
ii) S satisfies the following inequality for every ε > 0∥∥∥(1 +A)−(D4 +ε) : L2(G)→ L∞(G)

∥∥∥ .(ε) 1.

Proof. To prove i)⇒ ii), pick f ∈ AG ∩W 2,s(G) for s = D/2 + 2ε and note

‖f‖∞ ≤
∥∥λ((1 +A)−s/2(1 +A)s/2f

)∥∥
1

=
∥∥(1 + Â

)−s/2
λ
(
(1 +A)s/2f

)∥∥
1

≤
∥∥(1 + Â

)−s/2∥∥
2

∥∥λ((1 +A)s/2f
)∥∥

2

=
∥∥(1 + Â)−s

∥∥1/2

1
‖f‖W 2,s

A (G) .(ε) ‖f‖W 2,s
A (G).

We have used (3.1) in the first inequality, Proposition 3.3 in the first identity and the
polynomial cogrowth in the last inequality. By the density Lemma 3.5 we conclude
that W 2,s

A (G) embeds in L∞(G) which is a rephrasal of ii). For the implication
ii)⇒ i) we note that from (3.1)∣∣∣τ((1 + Â

)−D4 −ελ(f)
)∣∣∣ ≤ ∥∥(1 +A

)−D4 −2ε
f
∥∥
∞ .(ε) ‖f‖2.

Taking the supremum over f ∈ L2(G) with norm 1 gives the desired result. �

Remark 3.7. Due to Proposition 2.1 we obtain that the point ii) is equivalent
to satisfying the ultracontractivity property RD+ε(0) for every ε > 0. Since RD(0)
implies RD+ε(0) for every ε > 0, it is sufficient to prove RD(0) in order to have
polynomial co-growth of order D.
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Remark 3.8. Sobolev inequalities involving powers of 1+A are sometimes called
local [43, II.X] since they are tightly connected to the ultracontractivity estimates
for 0 < t ≤ 1 and in many contexts that amounts to describing the growth of ball
of small radius. Therefore Theorem 3.6 relates the behaviour of the large balls of
LG with the behaviour of small balls in G. This goes along the common intuition
that taking group duals exchanges local and asymptotic/coarse properties.

Proof of Theorem C. Let Bt = λ(mη(tψ)) and let Â1 be the multiplication
symbol associated with the generator of the right invariant semigroup S1 which is
determined by Proposition 3.3. Then

Bt =
(
1 + Â1

)− s12︸ ︷︷ ︸
Mt

(
1 + Â1

) s1
2 Bt︸ ︷︷ ︸

Σt

is a max-square decomposition. By the definition of co-polynomial growth we have

that σ|Mt|2 = (1 + σÂ1)−s1 ∈ L1(LG) and therefore it is a c.b. multiplier in every
Lp(LG) for 1 ≤ p ≤ ∞. Since Mt does not depend on t, the maximal inequality

(MSp) is satisfied trivially. By the construction of Â1 we have

sup
t>0
‖Σt‖L2(LG) = sup

t>0

∥∥(1 + Â1

) s1
2 λ(mη(tψ))

∥∥
L2(LG)

= sup
t>0
‖mη(tψ)‖

W
2,s1
A1

(G)
.

The square-max decomposition is manufactured in exactly the same way. �

3.2. Sublaplacians over polynomial-growth Lie groups. Here we are going
to work with left (resp. right) invariant submarkovian semigroups over L∞(G)
generated by sublaplacians. Let M be a smooth manifold, X = {X1, .., Xr} be a
family of smooth vector fields and µ a σ-finite measure over M . Let us denote
by (σj(t))t∈(−εj ,ε)j the one-parameter diffeomorphism generated by Xj and assume
further that µ is invariant under (σj(t))t∈(−εj ,εj). Then, the semigroup whose
infinitesimal generator is given by the sublaplacian associated to X

∆X = −
r∑
j=1

X2
j

is submarkovian. This is a consequence of the theory of symmetric Dirichlet forms
[11]. If M = G is a Lie group, µ its left Haar measure and X = {X1, ..., Xr}
left invariant vector fields. By the invariance under the one parameter subgroup
generated by Xj of µ we have that St = e−t∆X is a submarkovian semigrop of left
invariant operators. The same construction can be performed using right invariant
vector fields if G is unimodular. Any sublaplacian carries a natural subriemannian
metric given by

dX(x, y) = inf
γ:[0,1]→M

{(∫ 1

0

|γ′(t)|2 dt
) 1

2 ∣∣ γ(0) = x, γ(1) = y, γ′(t) ∈ span X(γ(t))
}
.

This metric coincides with the Lipschitz distance given by the gradient form, also
known as Meyer’s carre de champs [30]. Observe also that, if G is a connected
Lie group, then its subriemannian distance is finite iff X generates the whole Lie
algebra. Similarly, f ∈ Kerp(∆X) iff f ∈ Lp(M) and f(x) = f(y) whenever the
subriemannian distance dX(x, y) is finite.

The main family of illustrations of Theorem C comes from Lie groups endowed
with right and left invariant sublaplacians. Indeed, let V = {v1, v2, ..., vr} ⊂ TeG be
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a collection of, linearly independent, vectors generating the whole Lie algebra and
X1 = {X1, ..., Xr} and X2 = {Y1, ..., Yr} be its right and left invariant extensions
respectively. Then their associated sublaplacians satisfy ι∆X1 = ∆X2ι where we use

ιf(g) = f(g−1). Hence, it suffices to study the polynomial co-growth for ∆̂X1
. By

Remark 3.7 we just need to show that St = e−t∆X has the RD(0) property and by
[43, Theorem VIII.2.9] we known that if G is a Lie group of polynomial growth,
then

e−β1

dX1
(x,y)2

t

µ(Be(
√
t))
. ht(x, y) .

e−β2

dX1
(x,y)2

t

µ(Be(
√
t))

,

where ht is the heat kernel associated with St, dX1
is the subriemannian distance

associated to X1 and Be(r) are the balls of radius r with respect to that metric. It
is a well known fact, see [43], that

µ(Be(r)) ∼ tD0 ,

for t small. Here D0 is the local dimension associated to X1, given by

D0 =

∞∑
j=0

j dim(Fj+1/Fj),

where F0 = {0}, F1 = X1 and Fj+1 = span{Fj , [Fj ,X1]}. As a consequence St has

the RD0
(0) property and therefore ∆̂X1

, and so ∆̂X2
, have polynomial co-growth of

order D0. As a corollary we obtain the following theorem.

Theorem 3.9. Let G be a polynomial growth Lie group equipped wit a c.n. length
ψ : G → R+. Let η ∈ H∞0 and consider a generating set X = {X1, X2, ...Xr}
of independent right invariant vector fields. Let us write ∆X for its sublaplacian.
Then, the following inequality holds for every 1 < p <∞ and any s > D0/2

‖Tm‖CB(L◦p(LG)) .(p) sup
t≥0

max
{∥∥η(tψ)m

∥∥
W 2,s

∆X
(G)
,
∥∥η(tψ)ιm

∥∥
W 2,s

∆X
(G)

}
.
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