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Abstract. Given a probability space (Ω,Σ, µ), the Hardy space H1(Ω) which
is associated to the martingale square function does not admit any atomic

decomposition when the underlying filtration is not regular. In this paper

we adapt Tolsa’s ideas for nondoubling measures to the present context and
construct a decomposition of H1(Ω) into ‘atomic blocks’ which we introduce for

martingales. In this setting, the notion of conditional median appears as a key

new ingredient which becomes crucial. We also present an alternative approach
to include atomic blocks for noncommutative martingales in the picture.

Introduction

Let (Ω,Σ, µ) be a probability space equipped with a filtration (Σk)k≥1 whose
union generates Σ. Let us write Ek to denote the conditional expectation onto
Σk-measurable functions and ∆k = Ek − Ek−1 for the associated differences, with
the convention that ∆1 = E1. Given f ∈ L1(Ω), we shall usually write fk and dfk
for Ekf and ∆kf respectively. Once the filtration (Σk)k≥1 is fixed, the martingale
Hardy space H1(Ω) is the subspace of functions f in L1(Ω) whose H1(Ω)-norm
defined below is finite

‖f‖H1(Ω) =
∥∥∥(∑

k≥1

|dfk|2
) 1

2
∥∥∥

1
.

As it was proved by Davis [5], we obtain an equivalent norm after replacing the
martingale square function above by Doob’s martingale maximal function. On the
contrary, replacing the martingale square function by its conditioned form we get
the so-called little Hardy space h1(Ω). In other words, the subspace of functions f
in L1(Ω) whose h1(Ω)-norm below is finite under the convention Ek−1|dfk|2 = |f1|2
when k = 1

‖f‖h1(Ω) =
∥∥∥(∑

k≥1

Ek−1|dfk|2
) 1

2
∥∥∥

1
.

Both spaces are fair generalizations of the Euclidean Hardy space. Namely, if we
pick the standard dyadic filtration in Rn, it turns out that H1(Ω) is by all means
the dyadic form of H1, whereas we have h1(Ω) ' H1(Ω) for regular filtrations as
it happens in the dyadic setting. It is in the case of nonregular filtrations when
both spaces have their own identity. In general, we have h1(Ω) ( H1(Ω) and more
precisely

‖f‖H1(Ω) ∼ inf
f=g+h

‖g‖h1(Ω) +
∑
k≥1

‖dhk‖1.

We refer to Garsia’s book [7] for more information on martingale Hardy spaces.
1



2 CONDE-ALONSO AND PARCET

The motivation for this article is the fact that no atomic description is known for
the space H1(Ω). On the contrary, h1(Ω) always admits an atomic decomposition
as follows. Given 1 < p ≤ ∞, a function a : Ω → C is called a martingale p-atom
when a is Σ1-measurable and ‖a‖1 = 1 or there exists k ≥ 1 and A ∈ Σk such that

• Ek(a) = 0,

• supp(a) ⊂ A,

• ‖a‖p ≤ µ(A)
− 1
p′ for 1

p + 1
p′ = 1.

The associated atomic Hardy spaces are then defined as

h1
at(Ω) =

{
f ∈ L1(Ω)

∣∣ f =
∑
j≥1

λjaj , aj 2-atom,
∑
j≥1

|λj | <∞
}
,

h1
at,p(Ω) =

{
f ∈ L1(Ω)

∣∣ f =
∑
j≥1

λjaj , aj p-atom,
∑
j≥1

|λj | <∞
}
.

The norm is the infimum of
∑
j |λj | over all decompositions of f =

∑
j λjaj as a

sum of p-atoms. As a combination of [8, 27], we know that h1(Ω) ' h1
at,p(Ω) for

1 < p ≤ ∞. This yields an atomic decomposition of h1(Ω). In particular, it also
works for H1(Ω) when the underlying filtration is regular.

Atomic decompositions are useful to provide endpoint estimates for singular
operators T failing to be bounded in L1(Ω). Indeed, this typically reduces —under
mild regularity assumptions— to bound uniformly the L1-norm of T (a) for an
arbitrary atom a, which is easier than proving the H1 → L1 boundedness of T due to
the particular structure of atoms. The drawback of the martingale atoms described
above is that they are useless for H1(Ω) when the filtration is not regular. This
is significant because in that case the spaces h1(Ω) are not endpoint interpolation
spaces in the Lp scale, whereas the spaces H1(Ω) are. Therefore, the goal of this
paper is to provide an alternative atomic decomposition for H1(Ω) suitable for
arbitrary filtrations, and also for classical and noncommutative martingales.

Our approach is strongly motivated by the work of Tolsa on the so-called RBMO
spaces [25]. Namely, it is well-known that we have h1(Ω)∗ ' bmo(Ω) and also
H1(Ω)∗ ' BMO(Ω) where both martingale BMO spaces are respectively defined as
the functions f in L2(Ω) with finite norm

‖f‖bmo(Ω) = sup
k≥1

∥∥∥(Ek∣∣f − Ekf
∣∣2) 1

2
∥∥∥
∞
,

‖f‖BMO(Ω) = sup
k≥1

∥∥∥(Ek∣∣f − Ek−1f
∣∣2) 1

2
∥∥∥
∞
.

It is easily checked that we have the norm equivalence

‖f‖BMO(Ω) ' ‖f‖bmo(Ω) + sup
k≥1
‖dfk‖∞.

In analogy, Tolsa’s RBMO norm is the sum of a ‘doubling’ BMO norm plus a term
which measures the ‘distance’ between averages of nested doubling cubes. As in
[3], our philosophy is to understand RBMO as some sort of nonregular martingale
BMO whose doubling part is the corresponding bmo. This viewpoint is fruitful
in both directions. Indeed, nondoubling techniques are useful here for martingales
whereas martingale techniques are used in [3] for nondoubling spaces.



ATOMIC BLOCKS FOR MARTINGALES 3

Tolsa’s construction of the predual of RBMO is therefore our model to produce
an atomic type decomposition of H1(Ω). A Σ-measurable function b : Ω → C will
be called a martingale p-atomic block when b ∈ L1(Ω,Σ1, µ) or there exists k ≥ 1
such that the following properties hold

• Ek(b) = 0,

• b =
∑
j λjaj where

◦ supp(aj) ⊂ Aj ,

◦ ‖aj‖p ≤ µ(Aj)
− 1
p′ 1
kj−k+1 ,

for certain kj ≥ k and Aj ∈ Σkj . Call each such aj a p-subatom.

Given a martingale p-atomic block, set

|b|1atb,p =


∫

Ω

|b(ω)| dµ(ω) when b ∈ L1(Ω,Σ1, µ),

inf
b=

∑
j λjaj

aj p−subatom

∑
j≥1

|λj | when b /∈ L1(Ω,Σ1, µ).

Then we define the atomic block Hardy spaces

H1
atb(Ω) =

{
f ∈ L1(Ω)

∣∣ f =
∑

i
bi, bi martingale 2-atomic block

}
,

H1
atb,p(Ω) =

{
f ∈ L1(Ω)

∣∣ f =
∑

i
bi, bi martingale p-atomic block

}
,

which come equipped with the norm

‖f‖H1
atb,p(Ω) = inf

f=
∑
i bi

bi p−atomic block

∑
i≥1

|bi|1atb,p = inf
f=

∑
i bi

bi=
∑
j λijaij

∑
i,j≥1

|λij |,

where the aij ’s above are taken to be p-subatoms of bi. Note that λij = δj1‖bi‖1
for atomic blocks bi ∈ L1(Ω,Σ1, µ). We shall explain the relation between our
definition and Tolsa’s atomic blocks in Remark 1.2. With this definition of atomic
blocks, H1 → L1 boundedness reduces to

‖T (b)‖1 ≤ c0|b|1atb,p

under mild regularity conditions for some c0 independent of the p-atomic block b.

Theorem A. There exists an isomorphism

H1(Ω) ' H1
atb,p(Ω) for 1 < p ≤ ∞.

This is the main result of this paper. The key ingredient in our proof is the
role played by the conditional median (highly nonstandard in harmonic analysis) in
conjunction with the conditional expectation, this will be crucial when dealing with
nonatomic σ-algebras. Moreover, we shall obtain an equivalent expression ‖f‖αBMO

for the martingale BMO norm of f , see Section 1 for further details. Although
this technique does not apply for noncommutative martingales —in this case the
relevant definitions will be given in the body of the paper— we shall provide a more
functional analytic approach which does. This alternative argument is simpler, but
the commutative one is more intrinsic and self-contained. Our noncommutative
results are in line with [1, 9, 20].
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1. Classical martingales

This section is entirely devoted to the proof of Theorem A. Before proceeding
to the proof, we need to introduce the notion of conditional median. Given a
probability space (Ω,Σ, µ) and a σ-subalgebra Σ0 ⊂ Σ, a conditional median α0f
of a Σ-measurable function f is a random variable which satisfies:

• α0f is Σ0-measurable,
• Given any A ∈ Σ0, we have

max
{
µ
(
A ∩

{
f > α0f

})
, µ
(
A ∩

{
f < α0f

})}
≤ 1

2
µ(A).

Tomkins theorem [26] shows that each random variable has at least one conditional
median with respect to any given σ-algebra. In the sequel, we will denote a fixed
conditional median of f with respect to Σk by αkf . Before the proof of Theorem
A we need a simple lemma which will be crucial in our argument.

Lemma 1.1. Given A ∈ Σ0 and f Σ-measurable

E0

(
χA∩{f≤α0f}

)
≥ 1

2
χA µ-a.e.

where E0 denotes the conditional expectation onto the σ-subalgebra Σ0 ⊂ Σ.

Proof. By the definition of conditional median

µ
(
B ∩

{
f ≤ α0f

})
≥ 1

2
µ(B)

for every Σ0-measurable set B. Assume now that the set A in the statement
fails the given inequality and define B to be the Σ0-measurable level set where
E0(χA∩{f≤α0f}) <

1
2 . If the assertion failed for A, we would have µ(B) > 0 and we

could conclude that

µ
(
B ∩

{
f ≤ α0f

})
=

∫
B

E0

(
χB∩{f≤α0f}

)
dµ

≤
∫

B

E0

(
χA∩{f≤α0f}

)
dµ <

1

2
µ(B)

which contradicts the definition of conditional median. The proof is complete. �

Proof of Theorem A for p <∞. The proof of the inclusion H1
atb,p(Ω) ⊂ H1(Ω)

can be given in the more general setting of noncommutative martingales and hence
we postpone it until the following section. Here we only prove the reverse inclusion
H1(Ω) ⊂ H1

atb,p(Ω). To that end, we will show that

H1
atb,p(Ω)∗ ⊂ BMO(Ω),

which suffices by duality. Let L : H1
atb,p(Ω)→ C be a continuous functional in the

dual space. To proceed, we need to show that L = Lf acts by integration in (Ω, µ)
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against a function f ∈ L1
loc(Ω) and deduce a posteriori that f ∈ BMO(Ω) and we

have

‖f‖BMO(Ω) ≤ Cp‖Lf‖H1
atb,p(Ω)∗

for some absolute constant Cp. The existence of such f follows from the inclusion
h1

at,p(Ω) ⊂ H1
atb,p(Ω), so that H1

atb,p(Ω)∗ ⊂ h1
at,p(Ω)∗ = bmo(Ω). In particular any

continuous functional L in the dual of H1
atb,p(Ω) can be represented by a function

f ∈ bmo(Ω). We now claim that

1

cp
‖f‖BMO(Ω) ≤ ‖f‖αBMO ≤ cp‖Lf‖H1

atb,p(Ω)∗ ,

where cp only depends on p and ‖f‖αBMO is given by

‖f‖αBMO = max
{
‖E1f‖∞, sup

k≥1

∥∥Ek|f − αkf |p′∥∥ 1
p′
∞ , sup

k≥2

∥∥αkf − αk−1f
∥∥
∞

}
.

Note that this quantity depends a priori on the choice of the conditional medians
αkf . This however will be unsubstantial since our inequalities hold with constants
which are independent of our choice. It is clear that the proof will be complete if
we justify our claim, which we will in two steps.

Step 1. The inequality

‖f‖BMO(Ω) ≤ cp‖f‖BMOα

is the simplest one. Namely, by John-Nirenberg inequality we have

‖f‖BMO(Ω) = sup
k≥1

∥∥Ek|f − Ek−1f |2
∥∥ 1

2

∞

∼ ‖E1f‖∞ + sup
k≥1

∥∥Ek|f − Ekf |2
∥∥ 1

2

∞ + sup
k≥2
‖dfk‖∞

∼ ‖E1f‖∞ + sup
k≥1

∥∥Ek|f − Ekf |p
′∥∥ 1

p′
∞ + sup

k≥2
‖dfk‖∞ = A1 + A2 + A3.

The term A1 admits a trivial bound. Next

A2 ≤ sup
k≥1

∥∥Ek|f − αkf |p′∥∥ 1
p′
∞ +

∥∥Ek|αkf − Ekf |p
′∥∥ 1

p′
∞

≤ ‖f‖αBMO + sup
k≥1

∥∥Ek(f − αkf)
∥∥
∞ ≤ 2 ‖f‖αBMO,

where the last inequality uses conditional Jensen’s inequality φ(Ekf) ≤ Ek(φ(f))

for the convex function φ(x) = xp
′
. Finally, the last term A3 is estimated by

decomposing dfk = Ek(f −αkf) + (αkf −αk−1f)−Ek−1(f −αk−1f) together with
the triangle inequality and conditional Jensen’s inequality one more time.

Step 2. The inequality

‖f‖αBMO ≤ cp‖Lf‖H1
atb,p(Ω)∗

requires a bit more work. Since Σ1-measurable functions are atomic blocks

‖E1f‖∞ = sup
B∈Σ1

∣∣∣−∫
B

f dµ
∣∣∣ ≤ 1

µ(B)
‖Lf‖H1

atb,p(Ω)∗‖χB‖H1
atb,p(Ω) ≤ ‖Lf‖H1

atb,p(Ω)∗ .

Let us now bound the other two terms in ‖f‖αBMO. In order to estimate the second
term, we will use that for any A ∈ Σk there exists a p-atomic block bA,f 6= 0
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satisfying the following two inequalities

‖bA,f‖H1
atb,p(Ω) . µ(A)

1
p′
(∫

A

|f − αkf |p
′
dµ
) 1
p

. µ(A)
1
p′
∣∣∣ ∫

Ω

fbA,f dµ
∣∣∣ 1p .

This immediately implies that

sup
k≥1

∥∥Ek|f − αkf |p′∥∥ 1
p′
∞ . ‖Lf‖H1

atb,p(Ω)∗

as desired. Indeed, this can be justified as follows∥∥Ek|f − αkf |p′∥∥ 1
p′
∞ = sup

A∈Σk

(
−
∫

A

|f − αkf |p
′
dµ
) 1
p′

. sup
A∈Σk

1

‖bA,f‖H1
atb,p(Ω)

∣∣∣ ∫
Ω

fbA,f dµ
∣∣∣ ≤ ‖Lf‖H1

atb,p(Ω)∗ .

Given A ∈ Σk, let us then prove the existence of such p-atomic block. Assume∫
A∩{f>αkf}

|f − αkf |p
′
dµ ≥

∫
A∩{f<αkf}

|f − αkf |p
′
dµ.

This assumption is admissible since we may easily modify the construction of our
p-atomic block bA,f to satisfy the required estimates in case the inequality above
is reversed. Define the function

bA,f (x) = |f − αkf |p
′−1χA∩{f>αkf} −

Ek(|f − αkf |p
′−1χA∩{f>αkf})

Ek(χA∩{f≤αkf})
χA∩{f≤αkf}.

Obviously, Ek(bA,f ) = 0 and supp(bA,f ) ⊂ A. This yields

‖bA,f‖H1
atb,p(Ω) ≤ µ(A)

1
p′ ‖bA,f‖p

≤ µ(A)
1
p′
(∫

A∩{f>αkf}
|f − αkf |p(p

′−1)dµ
) 1
p

+ µ(A)
1
p′
(∫

A∩{f≤αkf}

[Ek(|f − αkf |p
′−1)

[Ek(χA∩{f≤αkf})]

]p
dµ
) 1
p

= A1 + A2.

Since p(p′ − 1) = p′, A1 clearly satisfies the desired estimate. On the other hand

A2 = µ(A)
1
p′
(∫

A

χA∩{f≤αkf}

[Ek(|f − αkf |p
′−1)

[Ek(χA∩{f≤αkf})]

]p
dµ
) 1
p

= µ(A)
1
p′
(∫

A

[Ek(|f − αkf |p
′−1)]p[Ek(χA∩{f≤αkf})]

1−p dµ
) 1
p

. µ(A)
1
p′
(∫

A

[Ek(|f − αkf |p
′−1)]p dµ

) 1
p ≤ µ(A)

1
p′
(∫

A

Ek(|f − αkf |p
′
) dµ

) 1
p

,

where we have used Lemma 1.1 for the first inequality and conditional Jensen’s
inequality for the second one. Now, since A ∈ Σk, we can remove the conditional
expectation Ek in the integrand of the last term above to complete the proof of the
estimate for |bA,f |1atb,p. The other inequality is simpler. Since (f − αkf)bA,f is

nonnegative by definition of bA,f and Ek(bA,f ) = 0, we get∫
Ω

fbA,f dµ =

∫
Ω

(f − αkf)bA,f dµ
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≥
∫

A∩{f>αkf}
|f − αkf |p

′
dµ ≥ 1

2

∫
A

|f − αkf |p
′
dµ.

This completes the proof of the expected estimate for the second term in ‖f‖αBMO.
It remains to prove that

sup
k≥2

∥∥αkf − αk−1f
∥∥
∞ = sup

k≥2
sup

A∈Σk

−
∫

A

|αkf − αk−1f | dµ . cp‖Lf‖H1
atb,p(Ω)∗ .

Fix k > 1 and A ∈ Σk. By the triangle and Jensen’s inequality

−
∫

A

|αkf − αk−1f | dµ ≤
(
−
∫

A

|f − αkf |p
′
dµ
) 1
p′

+
(
−
∫

A

|f − αk−1f |p
′
dµ
) 1
p′
.

Since A ∈ Σk, the first term in the right hand side is bounded above by∥∥Ek∣∣f − αkf ∣∣p′∥∥ 1
p′
∞ . ‖Lf‖H1

atb,p(Ω)∗

as we proved before. To bound the second term, we consider the function

bA,f =
|f − αk−1f |p

′

f − αk−1f
χA∩{f 6=αk−1f}︸ ︷︷ ︸

λ∗a∗

−Ek−1

( |f − αk−1f |p
′

f − αk−1f
χA∩{f 6=αk−1f}

)
︸ ︷︷ ︸∑

j∈Z λjaj

where

λjaj = Ek−1

( |f − αk−1f |p
′

f − αk−1f
χA∩{f 6=αk−1f}

)
χ{2j−1<Ek−1(|f−αk−1f |p′−1χA)≤2j}︸ ︷︷ ︸

χBj

.

We have Ek−1(bA,f ) = 0 so that

‖bA,f‖H1
atb,p(Ω) ≤ |λ∗|+

∑
j∈Z
|λj |

≤ µ(A)
1
p′
∥∥|f − αk−1f |p

′−1χA

∥∥
p

+
∑
j∈Z

µ(Bj)
1
p′
∥∥Ek−1

(
|f − αk−1f |p

′−1χA

)
χBj

∥∥
p

The second term in the right hand side is dominated by the first one since∑
j∈Z

µ(Bj)
1
p′
∥∥Ek−1

(
|f − αk−1f |p

′−1χA

)
χBj

∥∥
p

≤
∑
j∈Z

2jµ(Bj)

∼
∑
j∈Z
−
∫

Bj

Ek−1

(
|f − αk−1f |p

′−1χA

)
dµ µ(Bj)

=

∫
∪Bj

Ek−1

(
|f − αk−1f |p

′−1χA

)
dµ

=

∫
A

|f − αk−1f |p
′−1dµ ≤ µ(A)

1
p′
∥∥|f − αk−1f |p

′−1χA

∥∥
p
.

In summary, we have proved that

‖bA,f‖H1
atb,p(Ω) . µ(A)

1
p′
∥∥|f − αk−1f |p

′−1χA

∥∥
p
.
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On the other hand, let us observe that∫
Ω

fbA,f dµ =

∫
Ω

(f − αk−1f)bA,f dµ

=

∫
A

|f − αk−1f |p
′
dµ

−
∫

Ω

(f − αk−1f)Ek−1

( |f − αk−1f |p
′

f − αk−1f
χA∩{f 6=αk−1f}

)
dµ.

Using this and the estimates so far we obtain∫
A

|f − αk−1f |p
′
dµ ≤

∣∣∣ ∫
Ω

fbA,f dµ
∣∣∣

+
∑

j

∫
Bj

|f − αk−1f |Ek−1

(
|f − αk−1f |p

′−1χA

)
dµ

≤ ‖Lf‖H1
atb,p(Ω)∗‖bA,f‖H1

atb,p(Ω)

+
∑

j

∥∥Ek−1|f − αk−1f |p
′∥∥ 1

p′
∞µ(Bj)

1
p′
∥∥Ek−1

(
|f − αk−1f |p

′−1χA

)
χBj

∥∥
p

. ‖Lf‖H1
atb,p(Ω)∗‖bA,f‖H1

atb,p(Ω)

+ ‖Lf‖H1
atb,p(Ω)∗

∑
j
µ(Bj)

1
p′
∥∥Ek−1

(
|f − αk−1f |p

′−1χA

)
χBj

∥∥
p

. ‖Lf‖H1
atb,p(Ω)∗µ(A)

1
p′
∥∥|f − αk−1f |p

′−1χA

∥∥
p
.

Rearranging and noticing that p(p′ − 1) = p′ we get(
−
∫

A

|f − αk−1f |p
′
dµ
) 1
p′
. ‖Lf‖H1

atb,p(Ω)∗ ,

the desired estimate. This completes the proof of Theorem A for p <∞. �

Proof of Theorem A for p = ∞. The proof presents a lot of similarities with
the case p < ∞. As above, we will only prove the inclusion H1(Ω) ⊂ H1

atb,∞(Ω)
since the reverse inclusion will be justified in the next section. Again, we proceed
by duality and the goal is to show that

‖f‖BMO(Ω) . ‖f‖αBMO . ‖Lf‖H1
atb,∞(Ω)∗ .

Our former argument for the first inequality is still valid. Now consider

(1) There exists k ≥ 1 and A ∈ Σk such that

−
∫

A

|f − αkf | dµ ≥
1

32
‖f‖αBMO.

(2) Property (1) fails and there exists k ≥ 2 such that∥∥αkf − αk−1f
∥∥
∞ ≥

1

2
‖f‖αBMO.

(3) The following inequality holds

max
{

sup
k≥1

∥∥Ek|f − αkf |p′∥∥ 1
p′
∞ , sup

k≥2

∥∥αkf − αk−1f
∥∥
∞

}
≤ ‖E1f‖∞.
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It is not difficult to check that at least one of the properties above always hold for
every f with ‖f‖αBMO finite. When (3) holds, we may argue as in the proof of the
case p < ∞ to deduce ‖f‖αBMO ≤ ‖Lf‖(H1

atb,∞(Ω))∗ . When (1) holds, we consider

the following function

bA,f = χA∩{f>αkf}} − χA∩{f<αkf}︸ ︷︷ ︸
b1

−χA∩{f=αkf}Ek(b1)[Ek(χA∩{f=αkf}]
−1︸ ︷︷ ︸

b2

,

with the convention 0.∞ = 0 when A ∩ {f = αkf} = ∅. Obviously, Ek(bA,f ) = 0
and ‖b1‖∞ ≤ 1. Decomposing into level sets as we did in the proof for p <∞, one
can show that ‖b2‖∞ ≤ 4, details are left to the reader. These L∞ estimates yield

‖bA,f‖H1
atb,∞(Ω) . µ(A).

Moreover, we have∣∣∣ ∫
Ω

fbA,f dµ
∣∣∣ =

∣∣∣ ∫
Ω

(f − αkf)b1 dµ
∣∣∣ =

∫
A

|f − αkf | dµ ≥
1

32
‖f‖αBMOµ(A)

by assumption (1). This implies

‖Lf‖H1
atb,∞(Ω)∗‖bA,f‖H1

atb,∞(Ω) ≥
1

32
‖f‖αBMOµ(A) &

1

32
‖f‖αBMO‖bA,f‖H1

atb,∞(Ω),

which is what we wanted. Finally, if (2) holds there exists A ∈ Σk such that∣∣∣−∫
A

(αkf − αk−1f) dµ
∣∣∣ > 1

4
‖f‖αBMO.

Let B = supp(Ek−1(χA)) ∈ Σk−1. Define bA,f in this case as

bA,f = χA − Ek−1(χA).

Obviously, it is a ∞-atomic block. Taking Bj = {(j − 1)/N < Ek−1(χA) ≤ j/N},
we see that

‖bA,f‖H1
atb,∞(Ω) . µ(A) +

N∑
j=1

∥∥Ek−1(χA)χBj

∥∥
∞µ(Bj),

for all N. The sum in the right hand side converges to∫
Ω

Ek−1(χA) dµ = µ(A)

as N→∞. This shows that ‖bA,f‖H1
atb,∞(Ω) . µ(A). Next we compute

Lf (bA,f ) =

∫
B

bA,f (f − αk−1f) dµ

=

∫
A

(f − αk−1f)dµ−
∫

B

Ek−1(χA)(f − αk−1f) dµ

=

∫
A

(f − αkf) dµ+

∫
A

(αkf − αk−1f) dµ−
∫

B

Ek−1(χA)(f − αk−1f) dµ.

Since (1) does not hold, we have∣∣∣ ∫
A

(f − αkf) dµ
∣∣∣ ≤ 1

32
‖f‖αBMOµ(A).
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On the other hand, and splitting into level sets we find∣∣∣ ∫
B

Ek−1(χA)(f − αk−1f) dµ
∣∣∣ ≤ N∑

j=1

j

N

∣∣∣ ∫
Bj

f − αk−1f dµ
∣∣∣

=

N∑
j=1

j

N
µ(Bj)

∣∣∣−∫
Bj

f − αk−1f dµ
∣∣∣

≤ sup
C∈Σk−1

∣∣∣−∫
C

(f − αk−1f) dµ
∣∣∣ N∑
j=1

j

N
µ(Bj)

which is dominated by 1
16‖f‖

α
BMOµ(A) for N large enough. So we get

‖Lf‖H1
atb,∞(Ω)∗ ≥ 1

‖bA,f‖H1
atb,∞(Ω)

|Lf (bA,f )|

&
1

µ(A)

(1

2
− 1

32
− 1

16

)
‖f‖αBMOµ(A) & ‖f‖αBMO.

This is the last possible case and completes the proof of Theorem A for p =∞. �

Remark 1.2. In the following lines we briefly explain the relationship between
our definition of atomic blocks and that of Tolsa [25] for measures of polynomial
growth on Rn. Assume that µ is one such measure, i.e. µ(B(x, r)) ≤ C0r

k for each
ball B(x, r) and some 0 < k ≤ n. Then, define a µ-atomic block as a function b
supported on some cube R of Rn that satisfies the following properties:

•
∫
Rn

b dµ = 0,

• b =
∑
j λjaj , where λj are scalars and aj are functions supported on cubes

Qj that satisfy the size condition

‖aj‖∞ ≤
1

µ(2Qj)

1

KQj ,R
.

Here the coefficient KQ,R is defined for cubes Q ⊂ R as follows

KQ,R =
∑
j≥0

R 6⊂2jQ

µ(2jQ)

2kj`(Q)
.

KQ,R measures the distance between Q and R in some sense. In our definition
this is substituted by the coefficient kj − k + 1, which measures the distance in
generations between the maximal generation over which the atomic block is mean
0 and that of the support of each subatom. The norm in

H1
atb(Rn, µ) =

{
f =

∑
i≥1

bi
∣∣bi µ-atomic blocks

}
is given by

‖f‖H1
atb(Rn,µ) = inf

f=
∑
i,j≥1 λijaij

|λij |.

According to [6], one needs only take doubling cubesQj in the definition given above
of µ-atomic blocks. Also, the support of each µ-atomic block b can be assumed to
be a doubling cube. Therefore, Σk-measurable sets play here the role of doubling
cubes, see also Problem 3.3 below.



ATOMIC BLOCKS FOR MARTINGALES 11

2. Noncommutative martingales

We now study the form of Theorem A for noncommutative martingales. The
theory of noncommutative martingale inequalities started with Cuculescu [4], but
it did not receive significant attention until the work of Pisier/Xu [23] about the
noncommutative analogue of Burkholder/Gundy inequalities. After it, most of
the classical results on martingale Lp inequalities have found a noncommutative
analogue, see [9, 11, 12, 13, 14, 15, 18, 19, 20, 28] and the references therein for
basic definitions and results. Here we shall just introduce martingale p-atomic
blocks and related notions in the noncommutative setting.

A noncommutative probability space is a pair (M, τ) formed by a von Neumann
algebra M and a normal faithful finite trace τ , normalized so that τ(1M) = 1
for the unit 1M of M. A filtration in M is an increasing sequence (Mk)k≥1 of
von Neumann subalgebras of M satisfying that their union is weak-∗ dense in M.
Assume there exists a normal conditional expectation

Ek :M→Mk

for every k ≥ 1. Each Ek is trace preserving, unital and completely positive. In
particular, Ek : Lp(M) → Lp(Mk) defines a contraction for 1 ≤ p ≤ ∞. These
maps satisfy the bimodule property Ek(αfβ) = αEk(f)β for α, β ∈ Mk. If we
set ∆k = Ek − Ek−1 and write Ekf = fk and ∆kf = dfk for f ∈ L1(M) (as
in the commutative setting) then H1(M) is defined as the subspace of operators
f ∈ L1(M) with finite norm

‖f‖H1(M) = inf
f=g+h

g,h∈L1(M)

‖g‖Hc
1(M) + ‖h∗‖Hc

1(M),

where the column Hardy norm is given by

‖f‖Hc
1(M) =

∥∥∥(∑
k≥1

df∗kdfk

) 1
2
∥∥∥

1
.

The little Hardy space is defined similarly with

‖f‖hc
1(M) =

∥∥∥(∑
k≥1

Ek−1

(
df∗kdfk

)) 1
2
∥∥∥

1
.

On the other hand, BMO(M) is the subspace of L2(M) with

‖f‖BMO(M) = max
{
‖f‖BMOc(M), ‖f∗‖BMOc(M)

}
where the column BMO norm is given by the following expression

‖f‖BMOc(M) = sup
k≥1

∥∥∥(Ek((f − Ek−1f)∗(f − Ek−1f)
)) 1

2
∥∥∥
M
.

As expected, the space bmo(M) arises when we replace Ek−1 by Ek in the identity
above. We will say that an (unbounded) operator b affiliated with M is a column
martingale p-atomic block when b ∈ L1(M1, τ) or there exists an index k ≥ 1 such
that

• Ek(b) = 0,

• b =
∑
j λjaj where

◦ ajqj = aj ,
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◦ ‖aj‖p ≤ τ(qj)
− 1
p′ 1
kj−k+1 ,

for some kj ≥ k and projections qj ∈Mkj .

Each such aj will be called a column p-subatom. Similarly, row p-atomic blocks
are defined when the support identity qjaj = aj holds instead. In particular, both
conditions hold for self-adjoint atomic blocks. Given a column p-atomic block b set

|b|1,catb,p = τ(|b|)

when b ∈ L1(M1, τ) and otherwise

|b|1,catb,p = inf
b=

∑
j λjaj

aj p−subatom

∑
j≥1

|λj |.

Then we define the atomic block Hardy spaces

H1,c
atb(M) =

{
f ∈ L1(M)

∣∣ f =
∑

i
bi, bi column 2-atomic block

}
,

H1,c
atb,p(M) =

{
f ∈ L1(M)

∣∣ f =
∑

i
bi, bi column p-atomic block

}
,

which come equipped with the following norm

‖f‖H1,c
atb,p(M) = inf

f=
∑
i bi

bi p−atomic block

∑
i≥1

|bi|1,catb,p = inf
f=

∑
i bi

bi=
∑
j λijaij

∑
i,j≥1

|λij |,

where the aij ’s above are taken to be p-subatoms of bi. As in the commutative
case, we pick λij = δj1‖bi‖1 for atomic blocks bi ∈ L1(M1, τ). Before stating
the analogue of Theorem A for noncommutative martingales, we shall need the
following approximation lemma to legitimate our duality argument below.

Lemma 2.1. Given ε > 0 and

f ∈ H1,c
atb,p(M),

there exist a finite family (bi(ε))i≤M of column p-atomic blocks with

i) bi(ε) ∈ Lp(M),

ii)
∥∥∥f − M∑

i=1

bi(ε)
∥∥∥

H1,c
atb,p(M)

< ε.

iii)

M∑
i=1

|bi(ε)|1,catb,p <
∥∥∥ M∑
i=1

bi(ε)
∥∥∥

H1,c
atb,p(M)

+ ε.

Proof. Let f =
∑
i bi be such that∥∥∥f − M∑

i=1

bi

∥∥∥
H1,c

atb,p(M)
< δ,

∣∣∣‖f‖H1,c
atb,p(M) −

M∑
i=1

|bi|1,catb,p

∣∣∣ < δ,

with δ = δ(ε) small and M = M(δ) large enough. From these properties it is clear
that all the assertions in the statement will follow as long as we can show that every
column p-atomic block b can be δ-approximated by another column p-atomic block
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b′ living in Lp(M). Indeed, when b ∈ L1(M1, τ) it suffices to select an element
b′ ∈ Lp(M1, τ) ⊂ L1(M1, τ) with ‖b− b′‖1 < δ. Otherwise

b =
∑

j
λjaj with Ek(b) = 0

is a sum of column p-subatoms. In that case, set N = N(δ) so that∑
j>N

|λj | <
δ

2k

and define

b′ =
∑
j≤N

λjaj + E1

(∑
j>N

λjaj

)
=:

∑
j≤N+1

λ′ja
′
j .

According to the definition of column p-atomic block, the following holds

• E1(b′) = E1(b) = E1Ek(b) = 0,
• If (k′j , q

′
j) = (kj , qj) for j ≤ N and (k′N+1, q

′
N+1) = (1,1M)

a′jq
′
j = a′j and ‖a′j‖p ≤ k τ(q′j)

− 1
p′ 1
kj−1+1

provided we normalize a′N+1 so that λ′N+1 = ‖E1(
∑
j>N λjaj)‖1.

This shows that b′ is a column p-atomic block. Moreover

‖b′‖p =
∥∥∥∑
j≤N

λjaj − E1

(∑
j≤N

λjaj

)∥∥∥
p
≤ 2

∑
j≤N

|λj |‖aj‖p <∞.

Therefore, it just remains to prove the following estimate∥∥b− b′
∥∥

H1,c
atb,p(M)

< δ.

To that aim we identify b− b′ as a column p-atomic block

b− b′ =
∑
j>N

λjaj − E1

(∑
j>N

λjaj

)
=:
∑
j>N

λ̃j ãj + λ̃NãN

with ãN normalized so that λ̃N = ‖E1(
∑
j>N λjaj)‖1. Then we find

• E1(b− b′) = 0,

• If (k̃j , q̃j) = (kj , qj) for j > N and (k̃N, q̃N) = (1,1M)

ãj q̃j = ãj and ‖ãj‖p ≤ k τ(q̃j)
− 1
p′ 1
kj−1+1 .

This makes it quite simple to estimate the H1,c
atb,p(M)-norm of b− b′∥∥b− b′

∥∥
H1,c

atb,p(M)
≤

∣∣b− b′
∣∣1,c
atb,p

≤ k
[∑
j>N

|λj |+
∥∥∥E1

(∑
j>N

λjaj

)∥∥∥
1

]
≤ k

[∑
j>N

|λj |+
∑
j>N

|λj |‖aj‖1
]
≤ 2k

∑
j>N

|λj | < δ.

Here we used the inequality ‖aj‖1 = ‖ajqj‖1 ≤ ‖aj‖pτ(qj)
1
p′ ≤ 1

kj−k+1 ≤ 1. �
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Theorem B. There exists an isomorphism

Hc
1(M) ' H1,c

atb,p(M) for 1 < p ≤ ∞.

In particular, we find the atomic block decomposition H1(M) ' H1
atb,p(M).

Proof. We need to show

i) H1,c
atb,p(M) ⊂ Hc

1(M),

ii) Hc
1(M) ⊂ H1,c

atb,p(M).

Step 1. For the first continuous inclusion we shall prove

BMOc(M) ⊂ H1,c
atb,p(M)∗,

which suffices by duality. Assume that φ ∈ BMOc(M). Since φ ∈ Lp′(M) for any
1 < p ≤ ∞, we may represent φ as a linear functional Lφ on Lp(M) by the formula

Lφ(f) = τ(fφ∗).

According to Lemma 2.1, it suffices to show that

|Lφ(f)| ≤ ‖f‖H1,c
atb,p(M)‖φ‖BMOc(M)

for every f which can be written as a finite sum f =
∑
i bi of column p-atomic

blocks bi ∈ Lp(M). This clearly allows us to estimate |Lφ(f)| ≤
∑
i |Lφ(bi)| with

the right hand side well-defined. In particular, it is enough to show that

|Lφ(b)| . |b|1,catb,p‖φ‖BMOc(M)

for column p-atomic blocks b ∈ Lp(M). When b ∈ Lp(M1, τ)

|Lφ(b)| ≤ ‖b‖1‖E1φ‖∞ ≤ |b|1,catb,p‖φ‖BMOc(M).

Otherwise, we write b =
∑
j λjaj with Ek(b) = 0 and such that

ajqj = aj , ‖aj‖p ≤ τ(qj)
− 1
p′ 1
kj−k+1

for some kj ≥ k and some projection qj ∈Mkj . Then we find that

|Lφ(b)| = |τ(bφ∗)| =
∣∣τ(b(φ− Ekφ)∗

)∣∣ ≤∑
j
|λj |
∥∥aj(φ− Ekφ)∗

∥∥
1

=:
∑

j
|λj |Aj .

Hence, it remains to prove that supj Aj . ‖φ‖BMOc(M), which follows from

Aj ≤ ‖aj‖p
∥∥(φ− Ekφ)qj

∥∥
p′

≤ τ(qj)
− 1
p′

1

kj − k + 1

∥∥(φ− Ekφ)qj
∥∥
p′

≤ τ(qj)
− 1
p′
∥∥(φ− Ekjφ)qj

∥∥
p′

+
1

kj − k + 1

kj∑
s=k+1

‖dφs‖∞ = Bj + Cj

Indeed, this yields the estimate

Bj + Cj ≤ ‖φ‖bmoc(M) + sup
k≥1
‖dφk‖∞ ' ‖φ‖BMOc(M)

where the inequality Bj ≤ ‖φ‖bmoc(M) follows from Hong/Mei formulation of the
John-Nirenberg inequality for noncommutative martingales [9]. In particular, this
completes the proof of Step 1.



ATOMIC BLOCKS FOR MARTINGALES 15

Step 2. We now prove the inclusion

Hc
1(M) ⊂ H1,c

atb,p(M)

directly, without using duality. Here we would like to thank Marius Junge for
suggesting us the noncommutative Davis decomposition (used below) as a possible
tool in proving this inclusion. Let f ∈ Hc

1(M), by the noncommutative form of
Davis decomposition [20] we know that f can be decomposed as f = fc +fd, where

(fc, fd) ∈ h1
at,c(M)× h1

diag(M).

On the other hand, since a column p-atom in the sense of [1, 9] is in particular a
column p-atomic block in our sense, we immediately find the following inequality

‖fc‖H1,c
atb,p(M) . ‖f‖Hc

1(M).

The diagonal norm of fd is given by

‖fd‖h1
diag(M) =

∑
k≥1

∥∥∆k(fd)
∥∥

1
. ‖f‖Hc

1(M).

Therefore, the goal is to show that we have

‖fd‖H1,c
atb,p(M) . ‖fd‖h1

diag(M).

Since the norm in h1
diag(M) is ∗-invariant, we may assume that fd is a self-adjoint

operator. Then, by an Lp-approximation argument we may also assume that the
martingale differences have the form

∆k(fd) =
∑
j≥1

βjkpjk =
∑
j≥1

βjk∆k(pjk)

for certain βjk ∈ R and a family (pjk)j≥1 of pairwise disjoint projections. We claim

|∆k(p)|1,catb,p . τ(p)

for any projection p. This is enough to conclude since then

‖fd‖H1,c
atb,p(M) ≤

∑
j,k≥1

|βjk||∆k(pjk)|1,catb,p

.
∑
j,k≥1

|βjk|τ(pjk) =
∑
k≥1

∥∥∥∑
j≥1

βjkpjk

∥∥∥
1

= ‖fd‖h1
diag(M).

Let us then prove our claim for b = ∆k(p). To show that b is a column p-atomic
block, we start by noticing Ek−1(b) = 0. Let us introduce the family of projections

qj(k) = χ( 1
j+1 ,

1
j ](Ekp),

qj(k − 1) = χ( 1
j+1 ,

1
j ](Ek−1p).

Decompose b into column p-subatoms as follows

b =
∑
j≥1

λj(k)aj(k)− λj(k − 1)aj(k − 1)

where coefficients and subatoms are respectively given by

λj(k) = 2
j τ(qj(k)),

λj(k − 1) = 1
j τ(qj(k − 1)),

aj(k) = λj(k)−1qj(k)Ek(p),
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aj(k − 1) = λj(k − 1)−1qj(k − 1)Ek−1(p),

Since (qj(k − 1), qj(k)) ∈Mk−1 ×Mk, we will have a column p-atomic block b if

• aj(k − 1)qj(k − 1) = aj(k − 1) and aj(k)qj(k) = aj(k),

• ‖aj(k − 1)‖p ≤ τ(qj(k − 1))
− 1
p′ and ‖aj(k)‖p ≤ 1

2τ(qj(k))
− 1
p′ .

It is however a simple exercise to check that this is indeed the case and

|b|1,catb,p ≤
∑
j≥1

|λj(k)|+ |λj(k − 1)|

≤
∑
j≥1

4τ(qj(k)Ek(p)) + 2τ(qj(k − 1)Ek−1(p)) ≤ 6τ(p).

This justifies our claim above and hence completes the proof of Theorem B. �

Remark 2.2. The noncommutative Davis decomposition of Perrin and Junge/Mei
[12, 20] is sometimes referred to as the “atomic decomposition” for Hc

1(M), since
it relates this space with the atomic Hardy space h1

at,c(M) and the diagonal space

h1
diag(M). Nevertheless, it seems there is no atomic decomposition of the diagonal

part beyond the results in this paper.

3. Open problems

When 0 < p < 1, one can extend the definition of atomic blocks to (p, q)-atomic
blocks. Given 1 < q <∞, b is called a (p, q)-atomic block when b is Σ1-measurable
or there exists k ≥ 1 such that the following properties hold:

• Ek(b) = 0,

• b =
∑
j λjaj where

◦ supp(aj) ⊂ Aj ,

◦ ‖aj‖q ≤ µ(Aj)
1− 1

p−
1
q′ 1
kj−k+1 ,

for certain kj ≥ k and Aj ∈ Σkj .

As in the case of p = 1, set |b|patb,q = ‖b‖p if b ∈ Lp(Ω,Σ1, µ) and

|b|patb,q = inf
b=

∑
j λjaj

aj (p,q)−subatom

∑
j≥1

|λj |

otherwise. Finally, we define

Hp
atb,q(Ω) =

{
f ∈ Lp(Ω)

∣∣ f =
∑

i
bi, bi martingale (p, q)-atomic block

}
,

equipped with the following quasi-norm

‖f‖Hpatb,q(Ω) = inf
f=

∑
i bi

bi (p,q)−atomic block

[∑
i≥1

(
|bi|patb,q

)p] 1
p

.

The spaces Hp
atb,q(Ω) defined above are quasi-Banach subspaces of Lp(Ω). One can

follow almost verbatim the steps in the proof of Theorem A to conclude that the
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set of linear continuous functionals acting on Hp
atb,q(Ω) can be identified with the

Lipschitz type class Λp,q(Ω) of functions with finite norm

‖f‖Λp,q(Ω) = sup
k≥1

A∈Σk

1

µ(A)
1
p−1

[(
−
∫
A

|f − Ekf |q dµ
) 1
q

+ ‖dfk‖∞
]
.

Notice that when p→ 1, the norm in Λp,q(Ω) tends to the norm in BMO(Ω). This
motivates our first problem, which is somehow analogous (in the context of atomic
blocks of this paper) to Problem 3 in [1].

Problem 3.1. Do we have

Hp
atb,q(Ω) = Hp(Ω)

for 0 < p < 1 and q > 1? Moreover, do we have Hp(Ω)∗ = Λp,q(Ω)?

Our main result shows that a function in H1(Ω) can be decomposed into atomic
blocks similar to the ones appearing in the definition of H1

atb(Rn, µ), the atomic
block Hardy space of Tolsa [25]. In the proof given in Section 2, we make use of
Davis decomposition for martingales. It is natural to ask whether we can find a
description of the space H1

atb(Rn, µ) in terms of some sort of Davis decomposition
that splits the space into a (classical) atomic part and a diagonal part. Note
that a suitable candidate for the atomic part is the space h1

at(Rn, µ) of functions
decomposable into classical atoms supported on doubling sets, since in that case
one can easily check that h1

at(Rn, µ) ⊂ H1
atb(Rn, µ). It is not clear for us what the

diagonal part h1
diag(Rn, µ) should be.

Problem 3.2. Find a diagonal Hardy space

h1
diag(Rn, µ)

so that the following Davis type decomposition holds

H1
atb(Rn, µ) = h1

at(Rn, µ) + h1
diag(Rn, µ).

The dual of the space H1
atb(Rn, µ) is RBMO(Rn, µ), whose norm can be computed

as shown below

‖f‖RBMO(Rn,µ) = sup
Q doubling

−
∫
Q

|f − fQ|dµ+ sup
Q⊂R doubling

|fQ − fR|K−1
Q,R,

see Remark 1.2 for the definition of the coefficients KQ,R. Here fQ denotes the
integral average of f in Q. In view of Theorem A, it seems that RBMO spaces can
be viewed as nonregular martingale BMO spaces. Indeed, one can show that

‖f‖RBMO(Rn,µ) ∼ max
1≤j≤2n+1

{
sup

Q doubling
Q∈Dj

−
∫
Q

|f−fQ|dµ+ sup
Q⊂R doubling
Q,R∈Dj

|fQ−fR|K−1
Q,R

}
,

where (Dj)1≤j≤2n+1 is a collection of 2n + 1 dyadic systems which enjoy certain
separation properties, see [2, 16] for the detailed construction. This immediately
gives

RBMO(Rn, µ) ⊂
2n+1⋂
j=1

BMODj (Rn, µ),
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where BMOD(Rn, µ) denotes the dyadic BMO space associated to the dyadic system
D. However, the reverse inclusion does not hold in general. This motivates our last
problem, which is stated below.

Problem 3.3. Study the relation between RBMO(Rn, µ) and martingale BMO.
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