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ABSTRACT. Calderén-Zygmund theory has been traditionally developed on
metric measure spaces satisfying additional regularity properties. In the lack
of good metrics, we introduce a new approach for general measure spaces which
admit a Markov semigroup satisfying purely algebraic assumptions. We shall
construct an abstract form of ‘Markov metric’ governing the Markov process
and the naturally associated BMO spaces, which interpolate with the Ly-scale
and admit endpoint inequalities for Calderén-Zygmund operators. Motivated
by noncommutative harmonic analysis, this approach gives the first form of
Calderén-Zygmund theory for arbitrary von Neumann algebras, but is also
valid in classical settings like Riemannian manifolds with nonnegative Ricci
curvature or doubling/nondoubling spaces. Other less standard commutative
scenarios like fractals or abstract probability spaces are also included. Among
our applications in the noncommutative setting, we improve recent results
for quantum Euclidean spaces and group von Neumann algebras, respectively
linked to noncommutative geometry and geometric group theory.

Introduction

The analysis of linear operators associated to singular kernels is a central topic
in harmonic analysis and partial differential equations. A large subfamily of these
maps is under the scope of Calderén-Zygmund theory, which exploits the relation
between metric and measure in the underlying space to provide sufficient conditions
for L, boundedness. The Calderén-Zygmund decomposition [6] or the Hérmander
smoothness condition for the kernel [29] combine the notions of proximity in terms
of the metric with that of smallness in terms of the measure. The doubling and/or
polynomial growth conditions between metric and measure yield more general forms
of the theory [14, 46, 47, 62, 63]. To the best of our knowledge, the existence of a
metric in the underlying space is always assumed in the literature.

In this paper, we introduce a new form of Calderén-Zygmund theory for general
measure spaces admitting a Markov semigroup which only satisfies purely algebraic
assumptions. This is especially interesting for measure spaces where the geometric
information is poor. It includes abstract probability spaces or fractals like the
Sierpinski gasket, where a Dirichlet form is defined. It is also worth mentioning that
our approach recovers Calderén-Zygmund theory for classical spaces and provides
alternative forms over them. In spite of these promising directions —very little
explored here— our main motivation has been to develop a noncommutative form
of Calderén-Zygmund theory for noncommutative measure spaces (von Neumann
algebras) where the notions of quantum metric [37, 55, 56] seem inefficient.
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A great effort has been done over the last years to produce partial results towards
a noncommutative Calderén-Zygmund theory [24, 28, 33, 45, 49]. The model cases
considered so far are all limited to (different) noncommutative forms of Euclidean
spaces, described as follows:

A) Tensor products. Let f = (fj) : R" — B({2) be a matrix-valued function and
consider the tensor product extension of a standard Calderén-Zygmund operator
acting on f, formally given by

1j@) = [ ko) f)dy = (Th@)  for o ¢ supf.

ik

The L,-boundedness of this map in the associated (tensor product) von Neumann
algebra M = Lo (R")®B({3) trivially follows for p > 1 from the vector-valued
theory, due to the UMD nature of Schatten p-classes. On the contrary, no endpoint
estimate for p = 1 is possible using vector-valued methods. The original argument
in [49] —also in a recent simpler form [4]— combines noncommutative martingales
with a pseudolocalization principle for classical Calderén-Zygmund operators. More
precisely, a quantification of how much Ls-mass of a singular integral is concentrated
around the support of the function on which it acts. This inequality has been the
key tool in the recent solution of the Nazarov-Peller conjecture [8], a strengthening
of the celebrated Krein conjecture [59] on operator Lipschitz functions.

B) Crossed products. New L, estimates for Fourier multipliers in group von
Neumann algebras have recently gained considerable momentum for its connections
to geometric group theory. The first Hormander-Mikhlin type theorem in this
direction [33] exploited finite-dimensional cocycles of the given group G to transfer
the problem to the cocycle Hilbert space H = R™. To find sufficient regularity
for L,-boundedness amounts to study Calderén-Zygmund operators in the crossed
products Lo, (R™) x G induced by the cocycle action. Nonequivariant extensions of
CZOs on these von Neumann algebras were investigated in [33], after identifying
the right BMO space for the length function determined by the cocycle. These
operators have the form

[ fon @) duta) = [ Ty(5,) %Mo) o)
G G

Here pu, A respectively denote the Haar measure and left regular representation on
the (unimodular) group G, whereas Ty = ayTa -1 is a twisted form of a classical
CZO T on R™ by the cocycle action a. We refer to [34, 50] for further results.

C) Quantum deformations. PDEs in matrix algebras and ‘noncommutative
manifolds’ appear naturally in theoretical physics. Pseudodifferential operators
were introduced by Connes in 1980 to study a quantum form of the Atiyah-Singer
index theorem over these algebras. These techniques have been underexploited over
the last 30 years, due to fundamental obstructions to understand singular integral
theory in this context. The core of singular integrals and pseudodifferential operator
L,-theory was developed in [24] over the archetypal algebras of noncommutative
geometry. It includes quantum tori, Heisenberg-Weyl algebras and other quantum
deformations of R™ of great interest in quantum field theory, string theory and
quantum probability. This was the first approach to a ‘fully noncommutative’
Calderén-Zygmund theory for CZOs not acting on copies of R™ as tensor or crossed
product factors, but still related to Euclidean methods.



ALGEBRAIC CALDERON-ZYGMUND THEORY 3

We introduce in this paper the first form of Calderén-Zygmund theory valid
for general (semifinite) von Neumann algebras. As we explained above, the main
difficulty arises from the lack of very standard geometric tools, like the existence
of a nice underlying metric or the construction of suitable covering lemmas. We
shall circumvent it using a very different approach based on algebraic properties of
a given Markov process. Our applications cover a wide variety of scenarios which
will be discussed, giving especial emphasis to noncommutative forms of Euclidean
spaces and locally compact abelian groups, which are our main classical models. In
the first case, we shall weaken/optimize the CZ conditions on quantum Euclidean
spaces [24]. In the second case, LCA groups correspond to quantum groups which
are both commutative and cocommutative [60]. We shall give CZ conditions for
convolution maps over quantum groups. In the cocommutative (non necessarily
commutative) context, this includes group von Neumann algebras.

Calderdn-Zygmund extrapolation

Based on the behavior of the Hilbert transform in the real line, the main goal
of Calderén-Zygmund theory is to establish regularity properties on the kernel of
a singular integral operator, so that Ls-boundedness automatically extrapolates to
L, boundedness for 1 < p < oco. A singular integral operator in a Riemannian
manifold (X, d, x) admits the kernel representation

Tof(x) = /X k(e 0)f(4) duly) for = ¢ suppf.

Namely, T}, is only assumed a priori to send test functions into distributions, so that
it admits a distributional kernel in X x X which coincides in turn with a locally
integrable function k away from the diagonal z = y, where the kernel presents
certain singularity. This already justifies the assumption z ¢ suppf in the kernel
representation. The work in [6, 29] culminated in the following sufficient conditions
on a singular integral operator in R™ for its L,-boundedness:

i) Lo-boundedness
| Tk : Lo(R™) — Lo(R™)|| < 0.

ii) Hormander kernel smoothness

esssup/ |k(z,2) — k(y, 2)| + | k(z, @) — k(2,y)| dz < o.
z,y€R™ J{z—z[>2[z—y|

Historically, this was used to prove a weak endpoint inequality in L;. The same
holds for Riemannian manifolds with nonnegative Ricci curvature [1]. Alternatively
it is simpler to use Ls-boundedness and the kernel smoothness condition to prove
Lo — BMO boundedness. The result then follows by well-known duality and
interpolation arguments. Our strategy resembles this approach:

P1. Identify the appropriate BMO spaces.
P2. Prove the expected interpolation results with L,, spaces.
P3. Provide conditions on CZO’s which yield Lo, — BMO boundedness.

In the classical setting, we typically find H; /BMO spaces associated to a metric or a
martingale filtration. Duong and Yan [19, 20] extended this theory replacing some
averages over balls in the metric space by semigroups of positive operators, although
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the existence of a metric was still assumed. This assumption was removed in [32, 44]
providing a theory of semigroup type BMO spaces with no further assumptions on
the given space. In particular, we could say that Problems 1 and 2 were solved in
[32], but it has been unclear since then how to provide natural CZ conditions which
imply Lo, — BMO estimates. In this paper we solve P3 by splitting it into:

P3a. Construct a ‘metric’ governing the Markov process.
P3b. Define ‘metric BMO’ spaces which still interpolate with the L, scale.
P3c. Provide CZ conditions giving Lo, — BMO boundedness for metric BMO’s.

P3a. Markov metrics. Given a Markov semigroup & = (S¢)¢>o on the semifinite
von Neumann algebra (M, 7) —in other words, formed by normal self-adjoint cpu
maps S;— we introduce a Markov metric for it as any family

Q= {(Rj,tagj,m’}’j,t) : (4, t) € Z4 X R+}

composed of completely positive unital (cpu) maps R;; : M — M and elements
01,7Vt of M with 7, > 14, such that the following estimates (which show how
the Markov metric governs the Markov semigroup in a controlled way) hold:

i) Hilbert module majorization: <§’€>St < ZG;»t<£’€>R, Ot
iz1 ’

1
2

< 00.
M

ii) Metric integrability condition: kg = sup H ZU;,ﬂ?,tUj,t
Ut

Here (, )¢ is the M-valued inner product on M®M for any cpu map P, given by
(a ®b,d @bYp = b*P(a*a’)b'. Markov metrics are a priori unrelated to Rieffel’s
quantum metric spaces [55, 56]. They present on the contrary vague similarities
with abstract formulations of classical CZ theory in the absence of CZ kernels
and/or doubling measures [2, 62]. We shall explain what motivates our definition
below and we shall also illustrate how Euclidean and other classical metrics fit in.

P3b. Metric type BMO spaces. Let

I lsiog = sup | (8:(°1) = (5:7)"(5:5)

1
2

and [|f|lBmos = max{| flBmog, | f*[[Bmog }. We shall define the semigroup type
BMO space BMOgs(M) as the weak-* closure of M in certain direct sum of Hilbert
modules determined by & = (S;)¢>0. These spaces interpolate with the L, scale
[32]. Given a Markov metric Q associated to this semigroup, let us define in addition

[fllBMog = maX{Hf”BMOCQa ||f*||BMOCQ}>

N

I flleniog, =sup inf  sup | (7! [Ryal £12 = 1B f 12+ [ By f =M )77 )
t>0 Micpu j>1
My M—>M

Theorem A1l. Let (M,7) be a semifinite von Neumann algebra equipped with a
Markov semigroup S = (S¢)i>0. Let us consider a Markov metric Q associated to
S = (St)t>0. Then, we find

IfllByos S ke [l fllBMOg -
Thus, defining BMOg (M) as a subspace of BMOg (M), it interpolates with L,(M).
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Theorem A1l solves P3b. Its proof is not hard after having defined the right
notion of Markov metric and the right BMO norm. Let us note in passing that the
term R;f — M, f is there to accommodate nondoubling spaces to our definition in
the spirit of Tolsa’s RBMO space [62]. As a consequence of Theorem Al, proving
Lo — BMO boundedness for metric BMO’s (Problem 3c) implies the same result
for semigroup BMO spaces (Problem 3). Of course, one could try to prove such a
statement directly, but it seems that the metric/measure relation found with these
new notions is crucial for a noncommutative CZ theory.

P3c. Calderén-Zygmund operators. The commutative idea behind the notion
of Markov metric (explained in more detail in the body of the paper) is to find
pointwise majorants of the integral kernels of our semigroup S = (S;);>0, so that
we can dominate S; by certain sum of averaging operators over a distinguished
family of measurable sets ¥;,(x). These sets may be considered as the ‘balls’ in
the Markov metric. In the noncommutative setting, this pointwise estimates must
be written in terms of the given Hilbert module majorization and the cpu maps R; +
must be averages over certain projections g;+. Making this precise in full generality
is one of the challenges of our algebraic approach and too technical to be explained
at this point of the paper. A simple model case is given by

(Avg) Risf = (id®7)(q50) 2 (id @ 7) (q40(1 @ f)a;) (id @ 7)(gj,0) "%

for certain family of projections ¢;+ € M®&M. The linear map ﬁj’t(l @f)=R;+f
trivially amplifies to M®M. We may also consider similar formulas for the cpu
maps M; in the metric BMO norm. (Avg) allows to identify the Markov metric in
terms of the ‘balls’ g;; instead of the corresponding averaging maps R; ;.

As it happens in classical Calderén-Zygmund theory, we need to impose some
additional properties in the Markov metric to establish a good relation with the
underlying (noncommutative) measure. We have split these into algebraic and
analytic conditions, further details will be given in the text. Let us just mention
that the algebraic ones are inherent to noncommutativity and hold trivially in
commutative cases. The analytic ones provide forms of Jensen’s inequality and
a measure/metric growth condition. Once we know the Markov metric satisfies
these conditions, we may introduce Calderén-Zygmund operators. Assume that
T(Apm) C M for a map T acting on a weak-+ dense subalgebra Ay C M. The
goal is to establish sufficient Calderdn-Zygmund conditions on T for L., — BMO,
boundedness. These are noncommutative forms of standard properties. Again, it
is unnecessary to introduce them here in full generality, we do it in Section 2. In
the model case above, our CZ conditions are:

1) Loo(L$§)-boundedness

1
2

H (id® 7) ((id ® T)(z)*(id ® T)(ac))

o & lads e,
ii) Size ‘kernel’” conditions
o Mi(|GaeT)((1® N4 —a)[) S 22l e

=~ . 2
o Bi(|ido D) (10 Ay —a0)[*) S 2l e
for certain family of operators A;;,a;; € MM with A;; > a; .
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iii) Hérmander ‘kernel’ conditions
o 05, (J(Gde T) (@0 N - a0)F) 20

. 2
o wu(ls(da (e - 40)F) S Bl
for certain family of cpu linear maps ®;, ¥, ; : MM — M.

In condition ii), A;; and a;; play the role of ‘dilated balls’ from g¢; ;. In the last
condition, § is the derivation £ — x ® 1 — 1 ® x acting on the second leg of the
tensor product. In the Euclidean case, these conditions reduce to Lo-boundedness
and the classical size/smoothness conditions for the kernel. Our general conditions
include many more amplification algebras and derivations, other than M®&M and
0. Any map T : Apy — M satisfying the above CZ-conditions will be called a
column CZ-operator.

Theorem A2. Let (M,T) be a semifinite von Neumann algebra equipped with
a Markov semigroup S = (St)i>0 with associated Markov metric Q fulfilling our
algebraic and analytic assumptions. Then, any column CZ-operator T defines a
bounded operator

T: Ay — BMOG(M).

Interpolation and duality give similar (symmetrized) conditions for L,-boundedness.

A generalized form of Theorem A2 is the main result of this paper. It is easy
to recover Euclidean CZ-extrapolation from it. In the Euclidean and many other
doubling scenarios, the size kernel condition ii) does not play any role. Our next
goal is to explore how the general form of Theorem A2 applies in concrete von
Neumann algebras with specific Markov metrics.

Applications

Algebraic Calderén-Zygmund theory applies in classical and noncommutative
measure spaces. In the commutative context, we shall limit ourselves to prove
that algebraic and classical theories match in three important cases: KEuclidean
spaces with both Lebesgue or Gaussian measures and Riemannian manifolds with
non-negative Ricci curvature. We shall not explore further implications in new
commutative scenarios, like abstract probability spaces or fractals equipped with
specific Dirichlet forms. In the noncommutative context, we start by analyzing
the model case of matrix-valued functions from a very general viewpoint. We also
consider Calderén-Zygmund operators over matrix algebras, generalizing triangular
truncations as the archetype of singular integral operator. Most importantly, our
abstract theory applies to quantum Euclidean spaces and quantum groups, which
constitute our main motivations in this paper.

It will be useful to specify the form that our Calderén-Zygmund operators take
when come associated to a concrete kernel. Our applications below include CZ
conditions on the kernel. In the basic model case above, we set

(Ker 1) Tif = (ido7)(k(1® f))

for some kernel k affiliated to M&M,p. Recall that the opposite structure (Mo,
is the same algebra M endowed with the reversed product a-b = ba) in the second
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tensor leg of the kernel for this (standard) model was already justified in [24]. Tt is
a feature of CZ theory which can only be witnessed in noncommutative algebras. It
will also be useful to generalize a bit our model case before analyzing any concrete
application. Consider an auxiliary von Neumann algebra A equipped with a n.s.f.
trace o, a *-homomorphism o : M — A®M and the representation

(Ker 2) Si.f = (id® ¢)(k flipo o (f))

for some kernel k affiliated to M&A,p. Of course, when A = M and o(f) =1® f
we recover our model case above, with kernel representation (Ker 1). This more
general framework requires to redefine R;; in (Avg) and the CZ conditions, as we
shall do in the body of the paper. The advantage is to take A as an elementary
(commutative) algebra, from which we can transfer metric information. One may
think of ¢ as a corepresentation in the terminology of quantum groups. Theorem
A2 still holds in this case. We shall refer to intrinsic or transferred theories when
using the model case A = M or its generalization respectively.

Quantum Euclidean spaces. As geometrical spaces with noncommuting spatial
coordinates, quantum Euclidean spaces have appeared frequently in the literature
of mathematical physics, in the contexts of string theory and noncommutative
field theory. These algebras play the role of a central and testing example in
noncommutative geometry as well. The singular integral operators on quantum
Euclidean spaces naturally appear in the recent study of Connes’ quantized calculus
[40, 42, 58] and noncommutative harmonic analysis [11, 24, 25, 65]. Let

0 € M,(R)

be anti-symmetric. Briefly, the quantum Euclidean space Rg is the von Neumann
algebra generated by certain family of unitaries {u;(s) : 1 < j < n,s € R} satisfying
u;(s)u;(t) = u;(s +1),
wj(s)ug(t) = 2™ Oirstyy (t)u;(s).
Define Ao (&) = u1(&1)u2(&2) -+ - un (&) and set
f=[ fel)re(€)de = re(fo).
Rn

for fo € C.(R™). The trace on Reg is determined by

rolf) = o ( Jo(€)e(©) df) — Jo(0).

When © =0, L,(Re, Te) reduces to L,(R™) with the Lebesgue measure. Precise
definitions and a theory of singular integrals for Rg appears in [24]. The main result
relies on gradient kernel conditions for the intrinsic model (Ker 1). Remarkably, we
show in this paper that the transference model (Ker 2)

e :Re > )\@(f) = eXPg ®)\@(€) S LOO(RH)@)R@

R

goes further, since it just requires Hormander type smoothness for the kernel. Here
exp, stands for the &-th character exp(2mi(¢,-)) in R™. There is a close relation
between both models in this case

Ti(f) = Si(f) for k=7e(k) and 7e(m® expe) =mle(£)" © Ae(§).
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Another crucial map is the *-homomorphism
7o : Loo(R") 3 expe = Ao (§) @ Ao (§)" € Ro®RY -

If Bi denotes the Euclidean R-ball centered at the origin, define the projections
aR = 7T®(15BR) and aﬁ =1- aR. Set k’a = (O’@ ® ZdR?_)p)(k) S LOO(RH)@)R@@R%I)
and define the derivation dp(z,y) = ¢(z) — ¢(y) to set the kernel condition in
Loo(R")@Re®@RE
(Hor)  suwp  |5((d@id@ o) k(10 1@ (1@ ah)])(2y)] S I/ Ire:

|| <R |y|<R
As we shall justify in the paper, (Hor) is the right form of Hormander kernel
condition in this framework. The column BMO-norm admits in Rg an equivalent
form

[ fllBMmo.(Re) & loe(f)lBMoO, (R Re)

for the operator-valued BMO space BMO.(R";Rg) from [43]. These are all the
ingredients to obtain Calderén-Zygmund extrapolation over quantum FEuclidean
spaces. Namely, the general form of Theorem A2 then yields the following theorem.

Theorem B1. T}, is bounded from Rg to BMO.(Re) provided:

i) Ty is bounded on La(Re).
i) The kernel condition (Hor) holds.

Interpolation and duality give similar (symmetrized) conditions for L,-boundedness.

Theorem B1 improves the main CZ extrapolation theorem in [24] by reducing the
gradient kernel condition there to the (more flexible) Hérmander integral condition
above, as we shall prove along the paper. In fact, the result which we shall finally
prove is slightly more general than the statement above.

Quantum groups. Let G be a locally compact group with a left invariant Haar
measure y. When G is abelian, the Fourier transform carries the convolution algebra
Ly (G, p) into the multiplication algebra Loo((A},ﬁ) associated to the dual group
with its (normalized) Haar measure. However, when G is not abelian, we can not
construct the dual group and the multiplication algebra above becomes the group
von Neumann algebra which is generated by the left regular representation of G.
These algebras are basic models of (noncommutative, but still cocommutative)
quantum groups, over which we shall study singular integrals.

Let G be a locally compact quantum group —precise definitions in the body
of the paper— with comultiplication A and left-invariant and right-invariant Haar
weights 1, ¢. Given a weak-+ dense subspace A of Lo(G) and a linear map T
satisfying T'(A) C L (G), it is is a convolution map when

(T®idg)ocA=AoT = (idg®T) o A.
To simplify the problem, we shall consider the case where G admits an a-doubling
intrinsic Markov metric. That is, the projections which generate the cpu maps
R; ’s satisfy
¥(qa()).t) <o
¥(qj,t)

for a strictly increasing function o : N — N with «(j) > j and a constant c,,.
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Theorem B2. Let G be a locally compact quantum group and assume it comes
equipped with a convolution semigroup S = (S;)i>0 which admits an a-doubling
intrinsic Markov metric. Let T : A — Lo (G) be a convolution map defined on a
weakly dense x-subalgebra A of Loo(G) such that

i) T is bounded on Ly(G).

1
ii) W(w ® ) ((Qj,t ® Qj,t)‘é(T(fQi(j),t) |2> S ||f||%oc(<c,)'

Then, the linear map T extends to a bounded map T : Loo(G) = BMOS(Loo (G)).

As usual, L, estimates follow from symmetrized conditions by interpolation and
duality. In fact, we shall prove a more general statement which incorporates tensor
products with an additional algebra (M, 7). Theorem B2 is proved one more time
from Theorem A2. In fact, it is conceivable to remove the a-doubling restriction and
still make the convolution map bounded under an additional size kernel condition
as Theorem A2 indicates.

Noncommutative transference. In a different direction, we shall finish this
paper with a section devoted to noncommutative forms of Calderén-Cotlar method
of transference [5, 13, 15]. The basic idea is to transfer L, estimates of convolution
maps on quantum groups to a much wider class of maps which arise by transference.
We refer to [7, 9, 11, 48, 50, 54] for other forms of transference in the context of
group von Neumann algebras and quantum tori.

1. Markov metrics

An abstract form of Calderén-Zygmund theory incorporating noncommutative
algebras lacks standard geometrical tools. Given a Markov semigroup on a von
Neumann algebra —a semigroup of normal cpu self-adjoint maps on the given
algebra— we shall construct a ‘metric’ governing the Markov process. Our model
case in a commutative measure space (£2, 1) is a Markov semigroup of linear maps
of the form

Stf(x)=/98t(x,y)f(y) du(y)-

The idea is to find pointwise majorants of the form
 oje(@)?
(1.1) si(r,y) < : X550 (2) (Y),
) S 2, Gy e

so that S;f(x) is dominated by a given combination of averaging operators over
certain measurable sets X, ,(z). These sets will determine some sort of metric on
(Q, 1) under additional integrability properties. Naively, we may think of them as
balls or coronas around z in the hidden metric with radii depending on (j,¢). In
this section we formalize this idea and construct BMO spaces with respect to the
associated ‘Markov metric’ which satisfy the expected interpolation results.

1.1. Hilbert modules. A noncommutative measure space is a pair (M, 7) formed
by a semifinite von Neumann algebra M and a n.s.f. trace 7. We assume in what
follows that the reader is familiar with basic terminology from noncommutative
integration theory [36, 61]. Nonexpert readers may proceed by fixing a measure
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space (€, u) with M = Lo, (2) and 7 the integral operator associated to p. Given
a cpu map ¢ : M — M we may construct the Hilbert module M&¢ M. Namely
consider the seminorm on M @ M

1€l maart = [[VE a1

determined by the M-valued inner product

< > aeb Y do b}€>® SO INULIGTALS
Then M®g M will stand for the completion in the topology determined by &, — &
when 7((§ — &, € —&a)a g) — 0 for all g € L1(M). When ® is normal, the abstract
characterization of Hilbert modules [51] yields a weak-* continuous right M-module
map p : MReM — H QM satisfying (£,m)e = p(€)*p(n). Let us collect a few
properties which will be instrumental along this paper.

Lemma 1.1. Given a cpu map ® : M — M

1) (&4 6,60+ &)y <2(61,61)4 +2(62,82) 4,
1 © Lot = 10 © @ | g ue = 017 = 125,
2f — g S (fOIM—1p @ g fO L~ Lm D g)y

[f @ 1p =1 @ | g aq ~ giélf,[ 1f®1pm = 1m @ 9| g, a0

ii

111

v

)
)
)
v) If ® <cp > BuVi, then

1

€lmoam < (3, Aeleldey, )

Proof. The first inequality follows from hermitianity of the inner product and the
identity (£,m)e = p(€)*p(n) explained above. The second one is straightforward
from the definition of M®g M. The third inequality follows from Kadison-Schwarz
inequality after expanding both sides. The lower estimate in iv) holds trivially with
constant 1, while the upper estimate holds with constant 2 since

fOIlM -1 Qf=(fR1Im—1m®g)— (A (2f —9))
and the second term on the right hand side is estimated using iii). Finally, for the

last inequality let £ = >, ar ® B; and define the column matrices A* = 3, a; ®ep
and B =), B; ® eg1. Then we find

(€,6)y = Zj,kbji(a;ak)Bj — B*®(A*A)B
Y BB (ATA)B = Y Bi(€6),,. O
Let (M, 7) denote a noncommutative measure space equipped with a Markov

semigroup S = (S;)¢>0 acting on it. A Markov metric associated to (M, 7) and S
is determined by a family

Q= {(Rj,tagj,ty’}’j,t) 2 (4, t) € Z4 X R+}

where R;; : M — M are completely positive unital maps and o, ;,: are elements
of the von Neumann algebra M with ~;; > 14, so that the estimates below hold:

i) Hilbert module majorization: <§,§>S < E O’;t<£,§>Rv Ojt
t 2 gt
i>1

IN
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Nl

< 00.

ii) Metric integrability condition: kg = sup H Za;ﬂ?taj’t
>0 1557 o M

Our notion of Markov metric is easily understood for our (commutative) model
case above. Let & = (S;)i>0 be a Markov semigroup on (2, ) with associated
kernels s;(z,y) satisfying the pointwise estimate (1.1). Given £ : @ x Q@ — C
essentially bounded, we have

(12) (6.8)g,= [ seplele >|2d<><i|"w<f>2/ 6@ y)P du(y)
: 65, = | sile ey uy_j:w(zji(x)) o @I i)

This means that R; . f(z) is the average of f over the set ¥, (). Reciprocally, if we
take £k (x,y) = dr(yo — y) to be an approximation of identity around yo, we recover
the pointwise estimates for the kernel s;(x,y0). In other more general contexts, the
upper bounds for the kernel or even the kernel description of the semigroup might
not have the same form. As we shall see, many of these cases can still be handled
via Hilbert module majorization. We shall provide along the paper a wide variety
of examples which fall into these possible classes.

1.2. Semigroup BMOs. Given a noncommutative measure space (M, 7) and a
Markov semigroup S = (S;)¢>0 acting on (M, 7), we may define the semigroup
BMOg-norm as

I lsros = max { | flomog. 1 flsog |-

where the row and column BMO norms are given by

1
2

Iflevoy = sup | (Si(£5%) = (Se)(Sif)*)

t>0

1

7lswos = sup | (Si(r 1) = (s (sen) 7,

t>0

This definition makes sense since we know from the Kadison-Schwarz inequality
that |S.f|? < S¢|f|?>. The null space of this seminorm is kerA.,, the fixed-point
subspace of our semigroup. Indeed, if || f|lsmos = 0 we know from [12] that f
belongs to the multiplicative domain of S, so that

7(9f) = 7(Se/2(9f)) = 7(St/2(9)Sts2(f)) = 7(95:(f))-
This proves that f is fixed by the semigroup. Reciprocally, ker A, is a *-subalgebra
of M by [35]. Thus, the seminorm vanishes on kerA,,. In particular, we obtain a
norm after quotienting out kerA,. Letting w:(f) = f®1—1® S, f, this provides
us with a map
fe M= (wi(f)) 5o € MO M
>0

which becomes isometric when we equip M with the norm in BMOg. Define BMOg
as the weak-x closure of w(,M) in the latter space. Similarly, we may define BMOg
as the intersection BMO’s NBMOS, where the row BMO follows by taking adjoints
above. The natural operator space structure is given by

My, (BMOg(M)) = BMOg(M,,(M)) with S, = idas,, © S;.
Remark 1.2. Incidentally, we note that BMOg is written as bmo(S) in [32].



12 JUNGE, MEI, PARCET AND XIA

It will be essential for us to provide interpolation results between semigroup type
BMO spaces and the corresponding noncommutative L, spaces. It is a hard problem
to identify the minimal regularity on the semigroup & = (S;)+>¢ which suffices for
this purpose. The first substantial progress was announced in a preliminary version
of [31], where the gradient form 2T'(f1, f2) = A(fF)f2 + fTA(f2) — A(f f2) with
A the infinitesimal generator of the semigroup, was a key tool in finding sufficient
regularity conditions in terms of nice enough Markov dilations. However we know
after [32] an even sharper condition. Consider the sets

Asf = B = (S5 + 2= SUNT - 5.) 1> 0},

M {f € Mg Asf is relatively compact in Ll(./\/l)}7

where M ,. denotes the self-adjoint part of M. The family Ag f is called uniformly
integrable in L;(M) if for all € > 0 there exists § > 0 such that |[(B:f)q|l1 < ¢
for every projection ¢ satisfying 7(q) < d. It is well-known that Agf is relatively
compact in L; (M) if and only if it is bounded and uniformly integrable. Let us
also recall that B;f — 2I'(f, f) as t — 0. Define

LY(M) = {f € Ly(M) : lim S,f = o}.

As it was explained in [32], the space Lj(M) is complemented in L,(M) and
[LS(M),BMOg] form an interpolation couple. A Markov semigroup S = (S¢)i>0
satisfying that I'y M is weak-* dense in Mg ,. is called regular. All the semigroups
that we handle in this paper are regular. The following result will be crucial in
what follows, we refer the reader to [32] for a detailed proof.

Theorem 1.3. If S = (S¢)¢>0 is regular on (M, 1)

[BMOs, Lo (M)] =~ Lo(M) forall 1<p<q<oc.

p/q

Note that interpolation against the full space L, (M) is meaningless since BMOg
does not distinguish the fixed-point space of the semigroup. Very roughly, we
shall typically apply the above result to a CZO which is bounded on Ly(M) and
sends a weak-x dense subalgebra A of M to BMOg. Recalling the projection map
Jp : Lp(M) = Ly (M) and letting T denote the CZO, we find by interpolation and
the weak-* density of A that

JpT 2 Ly(M) = [A, La(M)],

, = [BMOs, L§(M)],, = Ly(M) C Ly(M).

/ 2/p

To obtain L, boundedness of T', it suffices to assume that 7' leaves the fixed-point
space invariant and is bounded on it. It should be noticed though, that in many
cases the L, boundedness of the CZO follows automatically. For instance, in R™
with the Lebesgue measure and the heat semigroup, it turns out that L, = L,. On
the other hand, the fixed-point space for the Poisson semigroup on the n-torus is just
composed of constant functions and the corresponding projection can be estimated
apart regarded as a conditional expectation. Moreover, the same applies for Fourier
multipliers on arbitrary discrete groups. The L, boundedness for 1 < p < 2 will
follow by taking adjoints under certain symmetry on the hypotheses.
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1.3. Markov metric BMOs. Let us now introduce a Markov metric type BMO
space for von Neumann algebras and relate it with the semigroup type BMO spaces
defined above. Given a Markov semigroup S = (S;)>0 acting on (M, 7), consider
a Markov metric @ = {(Rj+,0j+,7;¢) : (J,t) € Zy x Ry} as defined above and
define || fllBmog = max{| fllemog, [[f*[[Bmog, }, Where the column BMO-norm is
given by

1

. — _ 2
sup inf sup H (’Yﬁl [Rj,t|f|2 - |Rj,tf|2 + |Rj,tf - Mtf|2]7j7t1>
t>0 M, cpu j>1 M

and the infimum runs over cpu maps M; : M — M. Since vy;; > 1, the inverses
exist and Lo (M) embeds in BMOg. Indeed, using that R;, and M, are cpu, the
square braket above is bounded by 5| f||%,1a and ,Yj—t2 < 1pq. The row norm is
estimated in the same way. Now, recalling the value of the constant kg in our
definition of Markov metric, we prove that BMOg embeds in BMOg.

Theorem 1.4. Let (M, 7) be a noncommutative measure space equipped with a
Markov semigroup S = (S¢)i>0. Let us consider a Markov metric Q associated to
S = (St)t>0. Then, we find

[fllBMos < ke l[fllBMO, -

In particular, we see that Loo(M) C BMOg C BMOgs and
[BMOQ,L;(M)L)/Q ~ Ly(M) forall 1<p<g<oo

for any Markov metric Q associated to a reqular semigroup S = (S¢)i>0 on (M, T).

Proof. Let us set

& = Oy — 1y Q@Mf
= (fOIM—1IMO R f)+(Am @ (Rjf — Mef)) = &+ &

The assertion follows from Lemma 1.1 and our definition of Markov metric

flowos = supl| (5712~ 1.7) |

- iglguf@lm -1y ® Stf“/vl@st/\/l

N

1
su R 1Ip — 1p @ M, _ — su , L
t>ng MM tf”/\/@st/vt t>lg||<ft &) sl 3

1
2

S swp |l nElar + EnEdm Joie
j>1

t>0

< kollfllBmog, -

The identities are clear. The first inequality follow from Lemma 1.1 iv), the second
one from the Hilbert module majorization associated to the Markov metric and
Lemma 1.1 1). To justify the last inequality, note that the square bracket inside the
term on the left equals R, ¢| f|? —| R+ f|*+|R;j .+ f — M f|*. Hence, left multiplication
by v; 75, tl and right multiplication by 7, tlfyj)t yields the given inequality with kg
the metric integrability constant. The interpolation result follows from Theorem
1.3 and the embeddings Lo (M) C BMOg C BMOg. The proof is complete. [



14 JUNGE, MEI, PARCET AND XIA
Remark 1.5. Let { =} . A; ® B;, with

4;= () and B; = (vl,)

elements of M,,(M). If St =1dps, ® Sy, it turns out that

m

(&.€)s, = <Z<Za 5 @by Za 5®bm> t) € Mpn(M).

a=1

Mo, vy Mo, vo

This can be used to provide an operator space structure on BMOg. Namely, the
canonical choice for the matrix norms is M,,(BMOg(M)) = BMO 5(M;,(M))
where the Markov metric on M, (M)

Q= {(ide Q@ Ryt 1w, ® 0,10, @ %t)}

is associated to the extended semigroup (§t)t20. Then, we trivially obtain that
kg = kg < oo. However, according to the identity above for (£, &) 5, the Hilbert
module majorization takes the form

<Z<77a,'yn77aﬁ2>st> > Z( jtz<1704')’17770£7’)’2 R;+C ,)
Y172

a=1 Jj21 V1,72

This gives a matrix-valued generalization of our Hilbert module majorization for
S = (Si)t>0 on M, to be checked when we use this o.s.s. Theorem 1.4 yields
a cb-embedding of BMOg into BMOg under this assumption. According to the
characterization (1.2), it holds for Markov metrics on commutative spaces (€2, ft).

1.4. The Euclidean metric. Before using Markov metrics in our approach to
Calderén-Zygmund theory, it is illustrative to recover the Euclidean metric from a
suitable Markov semigroup. Let S = (H;)¢>o denote the classical heat semigroup
on R™, with kernels

L (—I:v —y\z)
n €X .
)z TP\ g

Take Q = {(Rj¢,0.4,7%5,¢) : (j,t) € Zy x Ry} determined by

he(z,y) =

.O'

Ql\')

1
Byaz(@)] JB ()

Note that o;+ and ;+ are allowed to be essentially bounded functions in R”, but
in this case it suffices to take constant functions. In the definition of R;;, we write
B, (z) to denote the Euclidean ball in R™ centered at x with radius r. It is clear that
R, defines a cpu map on Lo (R™). To show that Q defines a Markov metric, we
need to check that it provides a Hilbert module majorization of the heat semigroup
and the metric integrability condition holds. The latter is straightforward, while
the Hilbert module majorization reduces to check that

ET 26Jandfyjt—]2 > 1,
z) =

2e jzed
hi(z,y) < —= ) 5737 XB (o) (U)-
Vi S B ()] v
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This can be justified by determining the unique corona centered at x with radii
V4(7 — 1)t and /45t where y lives, details are left to the reader. Note that we
could have taken <;; = 1 and still obtain a Markov metric. Our choice will be
justified below and also in the next section, where we shall need v;; = j% to
compare BMOg with other BMO spaces which interpolate. Before that, our only
evidences that this is the right Markov metric in the Euclidean case are the fact
that the R;;’s are averages over Euclidean balls and the isomorphism

BMOg = BMOgn,
where the latter space is the usual BMO space in R™

1 2\
fllonon = su (g [ 1#(@) = ol ds)

Here, the supremum is taken over all Euclidean balls B in R™ and fg stands for the
average of f over B. Let us justify this isomorphism. If we pick M, f(z) = R1+f(x)
it follows from a standard calculation that

2
|Rjf(x) — My f(z)|
2
S F ) = Fo o)) ]
B o V)~ P
jz
Byaz(@)| JB o)
This automatically yields the following inequality

1f @) — fonw | dy = 5% (Rialf? = IRy f1?) (2).

2
I Bvog < SUP eSS SUP 5T If(y) —fo )| 4y < 1F I Brog

serr Bya(@)| JB e

The converse is even simpler, since taking j = 1 we obtain

2
1fl3m0p. = supesssup £ W)~ fo_ | dy

>0 azern Bygm(@)| JB m@)
- o |t (Rl = 1Ryuf )it

o < 100
Remark 1.6. The term |R; . f — M, f| did not play a significant role at this point.
More generally, the above argument also works for any doubling metric space {2
equipped with a Borel measure p: pu(B(z,2r)) < Cu(B(z,r)) for every z € Q and
r >0, with B(z,r) = {y € Q: dist(z,y) < r}. As we shall see later, the additional
term |R; . f — M, f| in the BMOg-norm appears to include Tolsa’s RBMO spaces
[62] in those measure spaces (2, ) for which we can find an appropriate Dirichlet
form which provides us with a Markov semigroup acting on (€2, u).

Remark 1.7. A related semigroup BMO norm is

I lmsno = s | (1117 — 1s17) |

All the norms consider so far are equivalent for the heat semigroup & = (H;)¢>0 on
R™, generated by the Laplacian A = 377, 97 . In fact, we may also consider by
subordination the Poisson semigroup P = (P;);>0 on R™ generated by the square
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root v/—A, or even other subordinations [23] . Then, elementary calculations give
the following norm equivalences up to dimensional constants

I fllBMOzn ~ [IfIBMOR ~ | flIBMOR ~ || fllBMOs ~ [ flIBMOSs ~ [ fllBMOS -

Moreover, let R = Lo (R")&M denote the von Neumann algebra tensor product of
Loo(R™) with a noncommutative measure space (M, 7). Define the norm in BMOx

as || fllBmor = max{||fllBmos, , [I/*[|Bmos, }, where

CINCEEON N

Then, the same norm equivalences hold in the semicommutative case

[fllBmog, = sup
B balls

[fllBymor ~ [f[BMOR, ~ [IflBMOS, ~ [[fllBMOS, ~ [IflBMOS, >

where Sg + = S; ®idy and Py = P ® idaq. Moreover, by Remark 1.5, all these
norms are in turn equivalent to the norm in BMOg,, with the Markov metric
which arises tensorizing the canonical one with the identity/unit of M.

2. Algebraic CZ theory

In classical Calderén-Zygmund theory, L, boundedness of CZOs follows from
Ly boundedness under a smoothness condition on the kernel. Our next goal is to
identify which are the analogues of these conditions for semifinite von Neumann
algebras equipped with a Markov metric, and to show L, boundedness of CZOs
fulfilling them. Our new conditions are certainly surprising. The boundedness
for p = 2 must be replaced by a certain mixed-norm estimate (which reduces in
the classical theory to Lo boundedness), while Hérmander kernel smoothness will
be formulated intrinsically without any reference to the kernel. These abstract
assumptions will adopt a more familiar form in the specific cases that we shall
consider in the forthcoming sections.

In order to give a Calderén-Zygmund framework for von Neumann algebras we
start with some initial considerations, which determine the general form of Markov
metrics that we shall work with. Consider a Markov metric Q associated to a
Markov semigroup S = (S¢)¢>0 acting on (M, 7). Then, we shall assume that the
cpu maps R;; from Q are of the following form

M L5 N, 2 pr (M) ~ M,

Riif = Ep(Qj,t)_%Ep(Qj,tp2(f)qj,t)Ep(qj,t)_%7

where p1, p2 : M — N, are *-homomorphisms into certain von Neumann algebra
N,, the map E, : N, — p1(M) is an operator-valued weight and the ¢;,’s are
projections in N,. In particular, we shall assume that our formula for R;,f makes
sense so that g+ and ¢;p2(f)g;+ belong to the domain of E,, see Section 2.1 for
further details. Our model provides a quite general form of Markov metric which
includes the Markov metric for the heat semigroup considered before. Indeed, take
N, = Lo (R" x R™) with p1 f(z,y) = f(z) and paf(z,y) = f(y). Let E, be the
integral in R™ with respect to the variable y and set

(2.1)

2j,t(T,Y) = XB_ar(2)(¥) = XB (1) (T) = Xja—y|< a7
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Then, it is straightforward to check that we recover from (2.1) the R, ,’s for the
heat semigroup. Note that the g;.(z,-)’s reproduce in this case all the Euclidean
balls in R™. Morally, this is why we call @ a Markov metric, since it codifies some
sort of underlying metric in (M, 7). According to our definition of BMOg, we shall
also consider projections ¢; in N, and cpu maps

(2.2) Mif = Ep(ar) 2 Ep(qep2(f)ae) Eplar) 2.

2.1. Operator-valued weights. In this subsection we briefly review the definition
and basic properties of operator-valued weights from [26, 27]. A unital, weakly
closed #-subalgebra is called a von Neumann subalgebra. A conditional expectation
Em : N — M onto a von Neumann subalgebra M is a positive unital projection
satisfying the bimodular property Eaq(a1faz) = a1 (f)as for all aj,ae € M. It
is called normal if sup, Epm(fa) = Eam(sup, fa) for bounded increasing nets (f,)
in ;. A normal conditional expectation exists if and only if the restriction of 7
to the von Neumann subalgebra M remains semifinite [61]. Any such conditional
expectation is trace preserving 7o Epq = T.

The extended positive part M\+ of the von Neumann algebra M is the set of
lower semicontinuous maps m : M, 4+ — [0,00] which are linear on the positive
cone, m()q(bl + /\2¢2) = )\1m(¢1) + /\Qm((bz) for /\j > 0 and ¢j S M*7+. The
extended positive part is closed under addition, increasing limits and is fixed by
the map x — a*xa for any a € M. It is clear that M sits in the extended positive
part. When M is abelian, we find M ~ L. (Q, u) for some measure space (€, i)
and the extended positive part corresponds in this case to the set of y-measurable
functions on  (module sets of zero measure) with values in [0,00]. A harder
characterization of the extended positive part for arbitrary von Neumann algebras
was found by Haagerup in [26]. Assume that M acts on H and consider a positive
operator A affiliated with M with spectral resolution A = fR+ Adey. Then, we may

construct an associated element in M\+
ma(¢) = [ Ad(g(er)).
Ry

In general, any m € ./DL has a unique spectral resolution

m(@) = /R Ad(d(ex)) + 00d(p)

where the e)’s form an increasing family of projections in M and p is the projection
1 —lim) ey. Moreover, the map A — ey is strongly continuous from the right and
we find that eg = 0 iff m does not vanish on M \ {0}, while p = 0 iff the family
of ¢ € M with m(¢) < oo is dense in M.

Operator-valued weights appear as “unbounded conditional expectations” and
the simplest nontrivial model is perhaps a partial trace Exq = tryq ® idyg with
N = ARQM and A a semifinite non-finite von Neumann algebra. In general, an
operator-valued weight from N to M is just a linear map

Exe: Np — M, satisfying Exq(a*fa) = a*Em(f)a

for all a € M. As usual, E is called normal when sup,, Exq(fa) = Esm(sup,, fo) for
bounded increasing nets (f,) in Ny. Since a*fb = 1 Zi:o i%(a+i*b)* f(a + i*b)
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by polarization, we see that bimodularity of conditional expectations is equivalent
to Em(a* fa) = a*Epmq(f)a for a € M. In particular, the fundamental properties
which operator-valued weights loose with respect to conditional expectations are
unitality and the fact that unboundedness is allowed for the image. Additionally,
when M = C the map Exq becomes an ordinary weight on A/. In analogy with
ordinary weights, we take

L) = {F €N [Ear D)y < o).

Note that when Exq = trg ® idag with N' = AQM, LS (N;En) are the Hilbert
space valued noncommutative L., spaces defined in [30], which we denote by
L5(A)®M. Let Ng,, be the linear span of f; fo with f1, fo € LS (N;En). Then
we find

i) Ney, = span{f € N's ¢ [Eaf] < oo},
ii) LS (N;Enm) and N, are two-sided modules over M,
iii) Eaq has a unique linear extension E g : Ng,, — M satisfying

Em(arfaz) = arEpm(f)az with  f € Ng,, and aq,a2 € M.

In particular, if Exq(1) = 1 we recover a conditional expectation onto M. An
operator-valued weight Eaq is called faithful if Exq(f*f) = 0 implies f = 0 and
semifinite when LS (N;Enq) is o-weakly dense in A. Tt is of interest to determine
for which pairs (N, M) we may construct n.s.f. operator-valued weights. Among
other results, Haagerup proved in [27] that this is the case when both von Neumann
algebras are semifinite and there exists a unique trace preserving one. Note that
conditional expectations do not always exist in this case. He also proved that given
Eam, ns.f. operator-valued weights in (N;, M) for j = 1,2, there exists a unique
n.s.f. operator-valued weight Eaq, g, associated to (N &N, M1®Ms) such that

(01 ® ¢2) 0 Eptyonmt, = (¢1 0 Epmy) ® (¢2 0 Erg,) for any pair (¢1, ¢2) of normal
semifinite faithful weights on (M;j, Ms).

2.2. Algebraic/analytic conditions. The identity

Tf(z) = /Q k()£ (v) du(y)

is just a vague expression to consider classical Calderén-Zygmund operators. It is
well-known that particular realizations as above are only meaningful outside the
support of f and understanding k as a distribution which coincides with a locally
integrable function on R™ x R™\ A. Instead of that, we shall not specify any kernel
representation of our CZOs since our conditions below will be formulated in a more
intrinsic way. These kernel representations will appear later on in this paper with
the concrete examples that we shall consider.

Let T be a densely defined operator on M, which means that T'f € M for all
f in a weak-* dense subalgebra Axq of M. Our assumption does not necessarily
hold for classical Calderén-Zygmund operators defined in abelian von Neumann
algebras (M, 7) = Lo (9, 1), but it is true for the truncated singular integral
operators satisfying the standard size condition for the kernel, take for instance
Arp = M N Li(M). In particular, this is not a crucial restriction since we shall be
able to take L,-limits as far as our estimates below are independent of 7. Our aim is
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to settle conditions on T" of CZ type assuring that T : Lo, (M) — BMOG, provided
(M, 1) comes equipped with a Markov metric Q. In this paragraph, we establish
some preliminary algebraic and analytic conditions on the Markov metric and the
CZO. Consider *-homomorphisms 71, 73 : M — N, and an operator-valued weight
E: : Nx — m1(M) which may or may not coincide with pq, p2 and E, from (2.1).
Assume there exists a (densely defined) map

T\S-ANW CN: =N,

2.3
(23) satisfying Tomy =po0oT on Aun.

Algebraic conditions:
i) Q-monotonicity of E,

Ep(qj.1€1%q56) < Eo(I€)

for all £ € N, and every projection g;; determined by Q via the identity in
(2.1). Similarly, we assume the same inequality holds when we replace the
g;+’s by the ¢;’s appearing in (2.2).

ii) Right B-modularity of T

T(nmipy'(b)) = T(n)b
for all n € An, and all b lying in some von Neumann subalgebra B of
p1(M) which includes E,(q:), E,(g;+) and pi1(v;¢) for every projection g
and ¢, determined by Q via the identities in (2.1) and (2.2).

As we shall see both conditions trivially hold in the classical theory, where the
first condition essentially says that integrating a positive function over a “Markov
metric ball” is always smaller than integrating it over the whole space, while the
second condition allows to take out z-dependent functions from the y-dependent
integral defining T. Our conditions remain true in many other situations, which will
be explored below in this paper. Nevertheless, condition i) suggests that certain
amount of commutativity might be necessary to work with Markov metrics.

To state our analytic conditions we introduce an additional von Neumann algebra
N, containing N, as a von Neumann subalgebra. Then, we consider derivations
6 : N, = N, given by the difference 6 = o1 — 02 of two *-homomorphisms, so
that §(ab) = o1(a)o1(b) — o2(a)oa(b) = §(a)o1(b) + o2(a)d(b) as expected. We also
consider the natural amplification maps

Rjt: Ny 2 € Ep(a50) 2Ep(07,6€05,0)Ep(gj) "2 € pr(M),
M; N, 3 € = Ep(a) *E,p(:€a)Eplq) "% € p1(M).

Analytic conditions:

i) Mean differences conditions
o Riu(€6) = Riu(©) Rj(€) < 25:(3(6)76(6)),

o [R;e(€) = Mi(9)] [Ry(€) = Mi()] < 0,4(3(6)"5(9)),
for some derivation ¢ : N, = N, and cpu maps ®; ¢, ¥, : Ny = p1(M).

ii) Metric/measure growth conditions
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_ 1 " _ 1 _
o 1 < mp, 'Ep(@) 2En(ajar)mipy 'Epla) ™2 S mpt ' (05,),

A

o 1 < mp; ' Ep(qj0) 2Ex(af,a50)mpy Eplas) 2 S mpi t(070),

for some family of operators a;, a;; € Ny to be determined later on.

A complete determination of the operators a; and a;; is only possible after imposing
additional size and smoothness conditions in our definition of Calderén-Zygmund
operator below. Nevertheless, we shall see that these operators will play the role
of “dilated Markov balls” as it is the case in classical CZ theory. In fact, in the
classical case our last condition trivially holds for doubling measures, and also for
measures of polynomial or even exponential growth provided we find a Markov
metric with large enough v, ¢’s. Our assertions will be illustrated below. The first
condition takes the form in the classical case of a couple of easy consequences of
Jensen’s inequality, namely

foaeau=|{ sl < f (5w - s dwdn),
(2.4) By B1 ) B; xB;
| f fin — au | < f o 10 = F@ P duw)ducz).

IA

A

2.3. CZ extrapolation. Now we introduce CZOs in this context. As we already
mentioned, we consider a priori densely defined (unbounded) maps T : Ay — M
whose amplified maps are right B-modules according to our algebraic assumptions
above. In addition, we impose three conditions generalizing Lo boundedness, the
size and the smoothness conditions for the kernel.

Calderén-Zygmund type conditions:
i) Boundedness condition
T2 L (WriBn) = LG (Wi Ep)-
it) Size “kernel” condition
o M (|T(ra( ) (A5 — a0))*) < 22ilIf I,

o Bio(|T(ra(N)(Aja =0 ))[’) S A2l F I

for a family of operators A;, € N with A;; > a;;,a; to be determined.

ili) Smoothness “kernel” condition
o 2 (|60 — a;)[P) S el
o« U (|0(T (- 400 [) S 2SI

Let T : Aypg — M be a densely defined map which admits an amplification T
satisfying (2.3). Any such T will be called an algebraic column CZO whenever the
amplification map is right B-modular and satisfies the CZ conditions we have given
above. At first sight, our boundedness assumption might appear to be unrelated
to the classical condition. The reader could have expected the Lo boundedness
of T, but our assumption is formally equivalent to it in the classical case and
gives the right condition for more general algebras. On the other hand, our size
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and smoothness conditions are intrinsic in the sense that the kernel is not specified
under this degree of generality. We shall recover classical kernel type estimates from
our conditions in our examples below. As explained above, the operators a,a;
and A;, play the role of dilated Markov balls and our conditions were somehow
modeled by Tolsa’s arguments in [62]. Perhaps a significant difference —in contrast
to Tolsa’s approach— is that our smoothness condition is analog to a Hormander
type condition, more than the (stronger) Lipschitz regularity assumption.

Theorem 2.1. Let (M,7) be a noncommutative measure space equipped with a
Markov semigroup S = (S¢)1>0 with associated Markov metric Q which fulfills our
algebraic and analytic assumptions. Then, any algebraic column CZO T defines a
bounded operator

T: AM — BMOCQ.

Proof. The first goal is to estimate the norm of
A = (Rl TP = BT )

The map II;; : a ® b € M®pg, M — 1® Rj(a)b € 1 ® M extends to a right
(1 ® M)-module projection, which is well-defined in the sense that (¢,&)r,, = 0
implies II; ;(§) = 0. Now, since

A= HTfe1-10 R Tf. Tf o110 RyTS) 7l
we may use 1L ; to deduce the following identity

A = (([d =TT © 7)), (id= )T e h)
Consider the amplification maps Ej,t and ﬁﬁ determined by

Rj,t = Ej,t O P2 and Hj,t = ﬁj,t o (pg ® Zd)
By (2.3), it turns out that A = (a, a)R where

a = (id— ﬁ;,t)(ﬂsz@?’Y]t)
= (id — ) (Tmaf ® ;)
= (id — TLj,) (T(m2(f)aj.) ®%1)
+ (id-— ﬁ t)(T(W2(f)(1_aj; ))®7Jt) =atap

According to Lemma 1.1 i), we may estimate A as follows
A 5 <a1,a1>ﬁj)t + <a2,a2>§j1t = A1 + Ag.
Since ﬁj7t(n ®b)=1® ﬁj,t(n)b, the Kadison-Schwarz inequality yields
<H],t(n @ b), 1, (n® b)>ﬁj,t S (n@bneb)y, .
In conjunction with Lemma 1.1 i) again, we deduce the following estimate for A;
2\ _
A1<<mum»®%wﬂmum»®wﬁ %#%OTM Ja;)[*) -

In order to bound the term in the right hand 81de, we apply (2.1) and the properties
of the operator-valued weight E, together with our algebraic conditions. Indeed, we
first use the Q-monotonicity of E,; then the fact that it commutes with the left /right
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multiplication by elements affiliated to M (like ~; ' or E,(g;)~/?); finally we use
the right B-modularity of the amplification of T"

2\ _
fyth]t(’T ma( )aj,t)| )’Vj}tl
_ _1 s 2 _1 _
< 754 Eolgse) ZEP(’T<7T2(f)aj,t)‘ )Ep(Qj,t) 24
=i 2 1
= ('th (g5,0) 2|T(7r2(f)aj,t)| En(gjt) Q’Yj,t1>

1 2 ~
= ‘ ( fajemipy (Ep(ij,t)_fvj,tl))‘ = E,|T(&))*
&1

Now, our first CZ condition i) gives the boundedness we need since

IAdlve < 176 e ey S N6l

2
Le, (./\/W,E )

Ew(’ﬂ'Q(f)aj,tWlpl_l(Ep(qJ, 29, t )H

IA

Hmpfl(7;3Ep(qj,t)‘f)*Eﬂ(ajﬁtaj,t)mpf (Ep(qg',t)‘fwj}l)HMHfllio~

The last term on the right is dominated by || f||2, according to our second analytic
condition on metric/measure growth. The estimate for A, is simpler. Indeed, if we

set £y = (7T2(f)(1 —aj)) then
Ay, = <(ld — ﬁj,t)(& ® ’Yj_,tl) , (1d — ﬁj,t)(fg ® 7.7'_,751)>R t

= %‘}( ]t|§2 |Rat (&) ’ )7;t1 < V;tl(bj,t(|5§2|2)7£t1 S ||f||golv

where the first inequality holds for some derivation ¢ : N, = N, and some cpu map
;4 : Ny — p1(M) by our first analytic condition on mean differences. Then our
CZ condition iii) on kernel smoothness justifies our last estimate. Our estimates so
far prove the desired estimate

Nl=

supsup || (73} [Ryal T2 = 1R 1 P70 )| e

t>0 j>1

Therefore, it remains to estimate the norm of
B = 7}, (yR JTf = M,TY| )7] L
To do so, we decompose the middle term using (2.3) as follows
Ry /Tf — M,Tf
= Riu(pTf) ~ My(p2Tf)
o (T(mal£aa) ) = Ma(T(ma(Ha) )
+ Ry (TN = a30))) = My(T(ra(£)(1 = @) )| = b1 bz +bs.

Letting B; = v;, |bj\2'yj . we get B < By + By + Bs. By Kadison-Schwarz we get

I
=)

B < 95t By (|T(me(Hai)*) ot S 11
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where the last inequality was justified in our estimate of A; above. Replacing g;; by
qt, the same argument serves to control the term Bs. To estimate B3 we decompose
bs as follows

~

by = Ry (T(ra( N1 = 4;0)) ) = M (T (mal £)(1 = 4;0)) )]
+ Ej,t (f(ﬁ(f)(Aj,t - aj,t))) - ]\Z(f(ﬂz(f)(Aj,t - at))) = b3; + bz — bss.

Taking &3 = f(wz( H - Aj,t)) and applying our analytic condition i) on mean
differences together with our CZ condition iii) on kernel smoothness, we obtain that

-1 2, —1 -1 2\, —1 2
Vit sy < v Vi (10617) v, S 1%
It remains to estimate the terms Bz, and Bss. Applying the Kadison-Schwarz

inequality, it is easily checked that these terms are also dominated by ||f]|2, by
means of our CZ size kernel condition ii). Altogether, we have justified that

1
. _ 1\ 2
sup inf sup || (v [1Ry.f = Mt Pt ) || S e
t>0 Mcpu j>1 M
Combining our estimates for A and B, we deduce that T": Ay — BMOG. O

The Ax — BMOYg boundedness of the map 7' is equivalent to the A g — BMOgG
boundedness of the map TT(f) = T(f*)*. According to this, an algebraic CZO is
any column CZO T for which Tt remains a column CZO. By Theorem 2.1, we
know that any algebraic CZO T associated to (M, 7, Q) as above is automatically
Ay — BMOg bounded. Assuming Lo boundedness and regularity of the Markov
semigroup, we may interpolate via Theorem 1.4. Under the same assumptions for
T*, we may also dualize and obtain the following extrapolation result.

Corollary 2.2. Let (M,7) be a noncommutative measure space equipped with a
Markov regular semigroup S = (Si)i>0 and a Markov metric @ = (R4, 05t,7).t)
fulfilling our algebraic and analytic assumptions. Then, every Lo-bounded algebraic
CZO T satisfies that J,T : L,(M) — Ly(M) for p > 2. Applying duality, similar
conditions for T* yield L,-boundedness of T'J,, for every 1 <p < 2.

Remark 2.3. Theorem 2.1 admits a completely bounded version in the category of
operator spaces. Since the operator space structure [22, 52] of BMO is determined
by

M, (BMOg(M)) = BMOg(M,,(M))

for 8 = (idyy, ®S¢)t>0, we just need to replace M by M,, (M) everywhere, amplify
all the involved maps by tensorizing with idys, and require that the hypotheses
hold with constants independent of m. Then, we obtain the cb-boundedness of T

Remark 2.4. As noticed in the Introduction, a common scenario is given by the
choice N, = MQM with p(f) = f®@1 and p2(f) = 1® f, together with E, = id®7
and m; = p; for j = 1,2. In this case, it is clear that the amplification map is given
by
T = idp @ T so that fﬂz = poT.

In particular, it turns out that the Lo boundedness of T' in Corollary 2.2 follows
automatically from our CZ boundedness condition i). This is the case in classical
Calderén-Zygmund theory. It is also true when N, = M®A for an auxiliary
algebra A and p, = flipo o, where o : M — ARM is a *-homomorphism satisfying
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E, 0 p2(f) = 7(f)1a. This leads to another significant family of examples. It is
however surprising that in general, the Lo boundedness and the CZ boundedness
assumptions are a priori unrelated. Thus, CZ extrapolation requires in this context
to verify two boundedness conditions. It would be quite interesting to explore the
corresponding “T'(1) problems” that arise naturally.

2.4. The classical theory revisited. We now illustrate our algebraic approach
in the classical context of Euclidean spaces with the Lebesgue measure. This will
help us to understand some of our conditions and will show how some others are
automatic in a commutative framework. Take M = L (R™) with the Lebesgue
measure and S = (H;);>o the heat semigroup H; = exp(tA). In Paragraph 1.4 we
introduced the Markov metric Q given by

e 07, = %j%e_k and 77, =j2 > 1,
1
o Rjif(z) = f(y) dy.

Bz ()| B

Moreover, as we explained at the beginning of this section

_1 _1

Rjvf = Ep(a;6) 2B, (0j0p2(f))t) En(gj)

satisfies our basic assumption (2.1). Here the amplification von Neumann algebra
is N, = Loo (R™ x R™), the *-homomorphisms p; f(x1,z2) = f(x;), the projections
gz, y) = XB@(z)(y), and the operator-valued weight E, is the integration map
with respect to the second variable. The cpu map M; which appears in the definition
of BMOyg is still taken by M; = Ry as in Paragraph 1.4.

Taking Nz = N, and T a standard CZO in R", the algebraic conditions trivially
hold in this case. Let EY, , = B 7 (z) x B, g77(2). Taking ®;; and ¥, to be the
averaging maps over E7,, and E7, , respectively and the family of dilated balls
(A3, 9), 362 3)) = (XaB.ars(o) (9)s X5 o) (4) With @ > 5, we may recover
the conditions as we explained right after stating them. Let us now show how our
algebraic CZ conditions hold from the classical ones. The boundedness condition
reduces to the classical one, see Remark 4.2 A). Our size conditions can be rewritten
as follows:

2 n
° esssup][ k(y,z)f(z)dz’ dijEHf”goa
2R JB p(x)

aB\/‘LTt(av)\E)B\/E(z) ,
. esssup][ k(y, z)f(z)dz‘ dy < j% ||f||Zo
z€R™ JB 7 (z) ' JaB g5 (2)\5B g5z (z)

The above conditions follow from the usual size condition

Ky, 2) <

P
Next, taking EY) + as above, our smoothness conditions are:

o esssup ][ / ) K 2) — k(w2 2)) F()dz) s < 5211,
i 5Bz (x

rcR”

2 n
o esssup ][ / Flun,2) — klyz, 2)) F(2)d=) dindys < 5%
® aB g ())°

rcR”
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The above conditions easily follow from the usual Hérmander condition

ess sup / |k(y1, 2) — k(y2, 2)| dz < 0.
Y1,92€R™ J|y1 —2|>2[y1 —y2|

Note that our algebraic CZ conditions are slightly weaker than the classical CZ
conditions, but still sufficient to provide L., — BMO boundedness of the CZ map.

Remark 2.5. Our size condition is only used to estimate B in the proof of Theorem
2.1. We saw in Paragraph 1.4 that B < A for the Euclidean metric. Thus, our size
condition is not necessary here, as it also happens in the classical formulation.

3. Applications I — Commutative spaces

In this section we give specific constructions of Markov metrics on two basic
commutative spaces: Riemannian manifolds with nonnegative Ricci curvature and
Gaussian measure spaces. Beyond the Euclidean-Lebesguean setting considered
above, these are the most relevant settings over which Calderén-Zygmund theory
has been studied. As a good illustration of our algebraic method, we shall recover
the extrapolation results. Noncommutative spaces will be explored later on.

3.1. Riemannian manifolds. Let (2, ) be a measure space equipped with a
Markov semigroup, so that we may construct the corresponding semigroup type
BMO space. In order to study the Lo, — BMO boundedness of CZOs in (Q, p) it
is essential to identify a Markov metric to work with. Now we provide sufficient
conditions for a semigroup on a Riemannian manifold to yield a Markov metric
satisfying our algebraic/analytic conditions, so that Theorem 2.1 is applicable. Let
us consider an n-dimensional complete Riemannian manifold (M, g) equipped with
the geodesic distance d determined by the Riemannian metric g. Denote the volume
of a geodesic ball centered at z with radius r by vol,(B,(x)). Let Sy be a Markov
semigroup on M given by

Sarof(x) = /M se(,y) £ (y) dy.

Proposition 3.1. Assume that

i) M has Ricci curvature > 0.

ii) The kernel admits an upper bound

o)+
voly (By(r) (2))(d(z, y) + o(t))"
for some strictly positive function ¢ and some parameter ¢ > 0.

si(z,y) S

Then Syr admits a Markov metric satisfying the algebraic/analytic conditions.

Proof. If ¥ ;(z) = Bajs (), our assumption. gives

oo

Jj=1

9—i(n+e)

mxﬁy,t(x)(y)-

According to Davies [17, Theorem 5.5.1], non-negative Ricci curvature implies
volg(Br(x)) < 1™,
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voly(Byr(2) < 7"voly (B ()

for all x € M, r > 0 and v > 1. In particular, vol,(X;+(z)) < 27"voly(Z¢+(x)). By
(3.1), this implies that (oj¢,7j,t) = (279¢/2,1) forms a Markov metric for Sy; in
conjunction with the averaging maps

Ref@=f Sy for (.0 €2 xR

Our construction for M = Lo (M) follows the basic model in the Introduction
and the one used above in the Euclidean setting: N, = N, = MM with p;
the canonical inclusion maps and g;+(z,y) = xx, (@) (¥) = X=,.(y)(®). Then, the
algebraic conditions for the Markov metric are obviously satisfied. Let us now check
the analytic conditions. Taking N, = MRM®&M, the derivation 6 : N, — N,
given by 6(a®b) = a® (1 ®b—b® 1) and the maps M; = Ry, it turns out
that the mean difference conditions follow from Jensen’s inequality on normalized
balls of (M, g) as it follows from our comments after the definition of the analytic
conditions. It remains to consider the metric/measure growth conditions. By taking
aj+(T,Y) = X5,,1..(«)(¥) and (g, ar) = (q1,4,a1,¢), these conditions reduce to show
that

VOlg(B2j+1¢(t) (.73)) ~ VO]g(B2j¢(t) (m))
This follows in turn from the fact that M has a non-negative Ricci curvature. [

Let (M, g) be a complete Riemannian manifold with non-negative Ricci curvature
and let A be the Laplace-Beltrami operator. The heat semigroup Sa generated by
A admits a kernel on (M, g) satisfying the upper bound estimate mentioned in the
above proposition. We know from Davies [17, Theorem 5.5.11] that the heat kernel
satisfies

(3.2) hi(z,y) < 4o dle,y)° )

voly (B () © 7 ( T A1 ton

for any § > 0 and certain constant as. This implies that

as (4(1 + 0)t) "=
hulmy) % voly(B (%)) (d(z,y)? + 4(1 + 8)t) "2
< (VAQ + o))"+

voly (B /z35: (0)) (@, y) + /AT + 0)8)+
which gives the expected upper bound with ¢(t) = 1/4(1 + d)t.

Remark 3.2. Once we have confirmed that algebraic and analytic conditions hold
for the Markov process generated by the Laplace-Beltrami operator A, it should be
noticed that our CZ conditions are again implied by the classical ones. Arguing as in
Remarks 1.6 and 2.5, we see that the Ricci curvature assumption allows us to ignore
our size kernel conditions. Next, it is straightforward to check that the boundedness
condition reduces in this case to standard Liy-boundedness. Finally, our discussion
in section 2.4 shows that our smoothness kernel condition is guaranteed under the
classical Hormander kernel condition. Note in addition that our conditions also
hold in the row case. In particular, classical CZOs in (M, g) become algebraic
CZOs. Moreover, the gaussian upper estimate (3.2) indicates that in (M, g) with
the heat semigroup Sa we have Ly (M) = L,(M, g) for 1 <p < co.
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By the discussion above, we have all the ingredients to apply Theorem 2.1 and
Corollary 2.2. Let us illustrate it for the Riesz transforms on (M, g). Consider
the Riemannian gradient V = (01,02,...,0,) on (M, g). The Riesz transform on
(M, g) is formally defined by

R=(R;)=V(-A)"% with R;=08;(—A)"2.
Then we may recover Bakry’s theorem [1] using our algebraic approach. Indeed

integration by parts gives |||[Vf]|l2 = ||A2f]|; which implies Ly-boundedness of
Riesz transforms. Moreover, the Hérmander condition follows from [10, 41].

Corollary 3.3. Let (M, g) be a complete n-dimensional Riemannian manifold with
non-negative Ricci curvature. Then for all 1 < p < oo, there exists a constant
Cp > 0 such that

IR fllz, g < Cpllfll,ang) forall 1<j<n.

3.2. The Gaussian measure. Now we study the Ornstein-Uhlenbeck semigroup
on the Euclidean space equipped with its Gaussian measure. We shall first construct
a Markov metric for it. Then, we shall prove that our algebraic/analytic and
Calderon-Zygmund conditions hold for the standard CZOs in this setting. The
infinitesimal generator of the Ornstein-Uhlenbeck semigroup O = (O,);>¢ is the
operator

L= % —z-V
on (R", 1) with du(y) = exp(—|y|?)dy. We have

1 le=tz — y|?

Oif(z) = (77_#6_%);/”6)(13(— ﬁ)f(y)dll
= ey [ (1P - S ) dut).

(m — me—2t)% 1

First, we establish a useful lemma showing that the local behavior —i.e. for
small values of t— of the semigroup type BMO norm for the Ornstein-Uhlenbeck
semigroup determines it completely.

Lemma 3.4. Given § > 0, there exists Cy5 > 0 such that
sup |0 fI” = 10ef P, < Cssup[|Os] f1” = |00 P
t>0 t<d

Proof. It is easy to check that
(3.3) Ouf(z) = Hyo f(e~"a),

for v(t) = 1(1 — e72") and the heat semigroup H; = exp(tA). Given t > 0 and

€ Loo(R™), let F(s) = Hg|H;_f|? for 0 < s < t. According to the definition of
H;, we obtain the following identity

OF = (0sH)|Hi—sf1* + Hy[(OsHi—s f ) (Hi—s )] + Hs[(Hy—s )" (0s Hy— s f)]
AH | H, of P = HJ{(AH o f )" (Hi— f)] = Ho[(Hi— f)* (AH; s f)]
= HJAH of P — (AH—of)* (Hi—of) = (Hi—o /) (AH, s f)]
= 2H/J|VH,_.f|.
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Kadison-Schwarz inequality gives for 0 < u < s
Hy\VHi of* = Hy|Hs— Vo Hy o f|* < H|VoH; o f)?

which implies that J;F is increasing and F' is convex. Rearranging the inequality
F(s) < 5(F(0) + F(2s)), we get Ha|f|* — [Hao f* < 2H (H|f|* — |Hi f|?) for any
t > 0. Then, the Lo, contractivity of H; gives

(3.4) | Hoo| fI? = [Howo f?|| < 28| Hel 1P — [He 1P|
On the other hand, choosing ks such that 283v(5) > i and applying (3.3) and (3.4)
sup [ O|f 1 =10/l = sup [[Hl P = 1He P
t>0 t<i
< sup ||Hzt|f|2—|Htf\2||<>O
t<2ksv(d)
< 2% sup [|Of1” ~ 10uf P - 0
t<d

By the lemma above, it suffices to construct a Markov metric for (O;);>o with
0 <2t < Tls' Let v = ve?t — 1 and consider the following family of balls and
coronas in the gaussian space for (j,t) € Zy x Ry

Sje() = Ble'e,Vijv) and  Qje(z) = Tja(2) \ Tjm1.(2).
Let jo = jo(x,t) be the smallest possible integer j satisfying that 0 € £; ,(z).
The case n =1. If 1 < j < jo, let

= {ye @) e'lal = Vv < Iyl < e'fal - T~ v},
= {ye 2@ ef\x|+\/j—1v§|y|§ef\x|+ﬁv}.

Then, Djft(x) u D;t(w) = Q;(x) and we get

1 )
®5) 00 £ (X ewlia =) [

5.t

faue Y expllel*~3) [ fau)

— () >3 2je(x)
1$5%5 J=jo J

for any positive f € Lo (R, ). The above estimate indicates the natural candidates
for the cpu maps R;; and 0;; € Loo(R, ). When 1 < j < jo and € = £, we define

1 1

Risef@) = o [ fdn and o3 (o) =+ exp(laf? = (D, (o).
! w(D5,(x)) Jpe () he v

Note here we need an extra index for R;;’s when j < jo. This is consistent with
the assumptions (i) and (ii) in our definition of Markov metric, since we only need
the index-set of R;;’s to be countable. On the other hand, if j > jo, we set

1 1

Riaf@) = oo [ i and o3 (@) = ¢ expllaf? ~ Du(Ssela),

! w(Eie()) Js, () » v !

In order to find ;4. and ;. satisfying the metric integrability condition, we need
to estimate p(D5 ;(z)) and p(¥; (7)) respectively. Since the density function  is
monotone on D5 ,(x) we get

(36) u(D;,(x) = /

enydy < exp (- |ef|z] - Vv )L
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(3.7) p(Df(x) = / ey < exp(—|eflz] + /5 1)) —=.
' + (z) Vi
When j > jo we use the trivial estimate
2 .
WSl = | a2V
Zj’t x

Combining the estimates obtained above, we deduce for 1 < j < jg

7 € 5 e (=felal=e' Vi) and o < Sz e (< folal ' V5= 11)

When j > jo, we have e'|z| < \/jv and |z|* < jv?e™2! < j/4. Therefore
3
< 2V exp(|z] — j) < 2¢/j exp ( — Z])

Now we are ready to choose the optimal ~’s for the metric integrability condition in
the definition of Markov metric. We respectively define for 1 < j < jo and j > jo

p (ML E VTR g %z’t@):%exp(g).

rY]2’7t,£ (.1?) =e
Then it turns out that

1 |6v|z| — et\/7|?
2 2
su )y, (@ < su E — ex ( —)
TG% Z -77t1 ( ),‘Y]atv ( ) — zep \/7 p 4

O<t< g 1SI<do R

sup 2/
z€R

0<t< &

du < oo.

IN

 [6vjz] —e u|2)

1 vlz| + et/F— 1|2
sup Z 0g2‘,t,+(fr)7]2',t,+(fr) <  sup Z \feXp(_ || ; \ )
0<zt€<]1; 1<5<jo 0<wte<]R1 52 VI
¢ 12
< 14 sup 2/exp<_w)du < 0.
rER R 2
0<t< g5

On the other hand, it is clear that

sup ZO’ ’y]t ZZexp—; < ©o0.

O<t< L Jj=Jo Jj2Jjo

We have constructed a Markov metric for the Ornstein-Uhlenbeck semigroup.

Let us now verify the analytic conditions, since the algebraic conditions are trivial
by commutativity. As we mentioned in Subsection 2.2, the first condition is an easy
consequence of Jensen’s inequality for the Gaussian measure. By the definition of
Rj1c and Rj, we get q;.1.c(2,y) = Xps ,(2) () and g;,4(2,y) = Xz, ,(2)(y). Thus, it
remains to find proper a;,. and a;; to make sure that

HD5 ) S [ o) ) 4 (@)D ()
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and similarly for the pairs (3;(x)),a5,(z,y)). When j < jo we consider the
functions a;;(z,y) = Xngst(x)(y), so the lower estimates are trivial. Denote by

¢jt.e(x) the center of D, (z). Let 8 =v(y/j—+/j —1). Arguing as in (3.6), we get
2\ _ #(D5 () B2
exp (= llesec) + 51°) < === < o (= [lesee @) - 51°),

2
2 N(QDE‘,t(I')) 2
exp ( — ‘|cj,t’g(:1c)| +ﬁ‘ ) < # < exp ( - “cj’t’s(x)\ — B’ )
Since ¢; 4+ (z) = €'|z| + 2v(y/j 4+ /J — 1), this implies that
n(2D5,(x))
(D5 4 (x))
The estimate for j > jo is easier. Take a;+(7,y) = X25, ,(2)(y). Note
2o e (— [Ge2) < a(Sul) < 2/
4/juexp (= [3viv)?) < u2Zj(z) < 4.

Then, since 0 < 2t < 1—18, we get

w(2%;4(x))
(25, (z))

Our choice for ¢; and a; correspond to the balls ¥ ;(z) and 2%, ;(z).

3
< 2exp (3|cj,t75(:17)|ﬂ — 152) < 2’Y32,t,e(z)-

N

. J
< 2 exp(4jv?) < 2exp(1) = 27]2‘7t($>‘

The case n > 1. The argument is similar, so we just point out the necessary
modifications. Since v(y/7 — /7 — 1) < vj ™2, we may pick ¢, 7" balls D3 () for

1< s < ¢, ! with radius QLﬁ, centered on the sphere

v(v]++v7—1
{y: ‘y €tl'| (\/5 5 J )}
such that

Qja(z) € | D5 ()

s>1
and each D} (x) overlaps with at most ¢;, other balls D?,(z). Then, if f >0

0@ 5 (X el [ e Y el ) |

i<jo 3>jo Zj,e(w)
1<s<en gt

fdu).

Then, we may consider the following Markov metric
(o—]z,t,s(x)v ij,t,s (.’E), Rj,t,sf(x)>
2 _ t /7 2
exp(|z|® — 7 s ._n-1 vlz|+e'vg—1
= (MM(D]’AJJ)),J 2 exp(l = | )]{3 ( )fdu)
3,t\F

um 2

for j < joand 1 < s < ¢,j"'. When j > jo, we set

(2 R F)) = (=D, 000,575 expid), f

n
v Zj¢(x)

fdp).

The analytic conditions hold under the same choices we made for n = 1.
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Corollary 3.5. Let O = (Oy)>0 be the Ornstein-Uhlenbeck semigroup and T be a
singular integral operator defined on Lo (R™, dp) with kernel k. More precisely, we
have the kernel representation

Tf(r) = k(z,y)f(y)du(y) for =z ¢ suppf.

Rn

Suppose T is bounded on Lo(R™, 1) and it satisfies

(3.8) sup sup / k(2 )l dp(y) < oo,
B ball ngf 2j+1B\21B
12

(3.9) sup  sup / k(21 9) — Rz 9)lduly) < o.
B ball z1,22€B (5B)¢

Then T is a bounded map from Loo(R™, 1) to the semigroup BMOo space.

Proof. It suffices to prove that our CZ conditions hold. The row and column
boundedness conditions reduce to Lo-boundedness. Let M; be the averaging map
in Loo(R™, i) over the ball £ 4(x). Given 1 < j < jo, define A;,  (x,-) as the
characteristic function over the ball ¥;1 (). Then A;; ; < X2r D3, (2)NEy 4 (x) With
r = [2log,(j + 1)] + 3, where [ | stands for the integer part. Therefore, applying
(3.8), we have

sup

/ k(zy)ldu(y) S v S ips(@),
2€X1 ¢(x) JEj 41,0 (2)\281 ¢ (x)

up [ Ml dul) S 1 S Fos@)

z€D3 4 (x) Y Bjy1,t(2)\2D] , ()

For j > jo, let A;(z, ) = XSa.0(2) < Xous, o (2) With u = [logs(2+/7)] +1. Applying
(3.8) as above, we see that T satisfies our size conditions. Moreover, (3.9) implies
our smoothness conditions as in the Euclidean-Lebesguean setting, Section 2.4. O

Remark 3.6. Since the Gaussian measure is non-doubling, the term R;,f — M, f
in the Markov metric BMO space BMOg is essential to characterise the changes
of the mean values of the function f. This explains the relevance of the size kernel
condition in the Calderén-Zygmund theory for the gaussian measure.

4. Applications IT — Noncommutative spaces

In this section we apply our algebraic approach to study Calderén-Zygmund
operators in flag von Neumann algebras which originally motivated us and include
matrix algebras, quantum Fuclidean spaces and quantum groups. We start by
reconstructing and refining the semicommutative theory, which deals with tensor
and crossed products with metric measure spaces.

4.1. Operator-valued theory. Let (2, ) be a doubling metric space —as in
Remark 1.6— and consider a Markov semigroup St : Loo(€2) = Loo(92). Let M be
a semifinite von Neumann algebra with a n.s.f. trace 7. Then we call the semigroup
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S = (S; ®@idm)i>0 a semicommutative Markov semigroup. Consider the algebra of
essentially bounded functions f : 2 — M equipped with the trace

o(f) = /Q 7(f(4)) duly).

Its weak-* closure R = Ly (Q)®M is a von Neumann algebra. Assume that there
exists a Markov metric @ = {(Rj,054,7¢) © (J,t) € Z4 x Ry} associated to
the original Markov semigroup on Lo (£2). Let ¢;.(z,y) = XQ;t(y) stand for the
projections determined by Q via (2.1). We assume in addition that Q satisfies the
metric/measure growth condition

M(E]I’,t)

(1) o <)

by choosing a;¢(x,y) = XZ'«]?.t<y). The remaining algebraic and analytic conditions
trivially hold in this case. Indeed, the algebraic conditions follow by commutativity
and analytic conditions just require to pick the right averaging maps according to
Jensen’s inequality, as explained in (2.4). Note that Q satisfies an operator-valued
generalization of the Hilbert module majorization in the line of Remark 1.5. Thus
Q extends to a Markov metric in R by tensorizing with idaq and 14 respectively.

Our goal is to study CZO’s formally given by

Tf(z)= [ k(z,y)(f(y)dp(y) with {f 12— My and z ¢ suppo f,

Q

k(x,y) € L(Lo(M1), Lo(Mz)).

That is, k(x,y) is linear from 7j-measurable to To-measurable operators. If we
set Rj = Loo(2)@M;, we should emphasize that L,(R;) = Lp(£; Ly(M;)). In
particular, this framework does not fall in the vector-valued theory because we
take values in different Banach spaces for different values of p, see [49] for further
explanations. This class of operators is inspired by two distinguished examples with

M =M= Maj:

e Operator-valued case
Tf0) = [ Foulo) - £(0) dny)
Q
e Noncommutative model
Tf(a) = | (idse @ 7) el 9) (Laa © F0)] ).

In the first case, the kernel takes values in M or even in the complex field and acts
on f(y) by left multiplication k(x,y)(f(y)) = kov(z,y) - f(y). It is the canonical
map when L,(R) is regarded as the Bochner space L, (€2; L,(M)). On the contrary
if we simply think of L,(R) as a noncommutative L, space, a natural CZO should
be an integral map with respect to the full trace ¢ = fQ ®7 and the kernel should
be a ¢ ® p-measurable operator k : Q x Q - M@M. The noncommutative model
provides the resulting integral formula. Note that this model also falls in our general

framework by taking k(z,y)(f(y)) = (idsm @ 7)[kne(2,y) - (Aam © f(y))]-

Theorem 4.1. Let S = (Si)i>0 be a Markov semigroup on (S, u) which admits
a Markov metric Q = {(Rj+,0j5.4,7) © (4,t) € Zy x Ry} satisfying the above
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assumptions. Let a;j.(z,y) = Xsz,(y) be the projections determined by Q via (4.1).
Consider the CZO formally given by

Tf(z) = / k(e 0)(f () diu(y).

Then, T maps Loo(R1) to BMOG(R2) provided the conditions below hold

i) L§-boundedness condition,

(e, < ([ ura)],

ii) Smoothness condition for the kernel,

[ 001, 2) = K 20) (7)) L, d2) % 1,
Q\E;t

uniformly in j > 1,1 >0, z € Q and y1,y2 € Q7.

Proof. The proof follows from Theorem 2.1. Since the underlying space (2, 1) is a
doubling metric space, the size kernel condition is unnecessary. Thus, it remains to
check the L§-boundedness condition and the kernel smoothness condition. Consider
Ni = Loo (2 x Q)@M1, N, = Lo (2 % Q)@\Mz, w(p)(z,y) = @(y) for p € Loo(Q)
and (m2, p2) = (W @ idpa,,w ®idag,). Let T =ido ® T, ®;; be the averaging map
over QOF, x Q% and A = ¢ ® idam, with dp(z,y) = () — ¢(y). Then condition i)
yields the L§-boundedness condition. It is also easy to see that condition ii) implies
our kernel smoothness condition. Thus, the result follows from Theorem 2.1. O

Remark 4.2. We continue with a few comments:

A) When M; = My = M and the kernel k(z,y)(f(y)) = k(z,y) - f(y) acts by
left multiplication, the boundedness condition i) becomes equivalent to the usual
Ly boundedness. Indeed, using that M C B(Ly(M)) we obtain

I(] e ),

= s h ) dy)’ = n@h
”;Hugl( [ (I s()h) dy) sup [(75) (ar @ 1), r)

= sup [|T(f (e @ W))|| 0y < IT522R) H(/Rn If(y)IQdy)E o

IAlI<1

B) We have used so far semigroup type BMO’s. When (2, 1) comes equipped
with a doubling metric, we may replace it by other standard (equivalent) forms
of BMO, as pointed in Remark 1.7. By well-known arguments [49], our kernel
smoothness condition reduces to

L )~k ) D] 17l

(Smy) sup esssup
R>0y1,y2€Br

for A > 1. The classical Hormander condition

(Hry) ess sup

/ Hk(yl,z)—k(yg,z)HM dz < 0.
y1,42€R™ Jd(y1,2)>Ad(y1,y2)
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satisfies (Hry)) = (Smgy41). In fact, an even weaker condition suffices
sl £ ) k)] ] S 1T
R>0 BrxBgr BAR)C M

C) We recall that L, (R) — BMOgs boundedness requires that 77 f = T(f*)*
satisfies the same assumptions as T. If k(z,y) € M is given by left multiplication
the only effect in T is that k(z,y) is replaced by k(zx,y)* and now operates by
right multiplication. This left/right condition was formulated in [49] in terms of
M-bimodular maps. Moreover, a counterexample was constructed to show that
the bimodularity is indeed essential. It is also quite interesting to note that in the
‘noncommutative model’ we have

[ s ) (ko) -(aa o f)] dy = [ (i ) [(1aa © Fw) - Kow)] dy

n

by traciality and this pathology does not occur. Finally, the L, boundedness is
guaranteed for 2 < p < oo since the classical heat semigroup has a regular Markov
metric and Jj, = idp g~ in this case. As for 1 <p < 2, it suffices to take adjoints
which leads to Hormander smoothness in the second variable

ess sup / |k (y, z1) — k(y,ZQ)HM dy < oo.
21,22€R™ J |y—2z1|>A|21 — 22|

Of course, this is still consistent with the classical CZ theory M = C.

D) Our analysis of the semicommutative case from our basic Theorem 4.1 does
not recover the weak type (1, 1) inequality from [49]. It requires quasi-orthogonality
methods which are still missing for general von Neumann algebras.

We now study the Lo, - BMO boundedness of twisted CZO’s on homogeneous
spaces. Given a discrete group G with left regular representation A : G — B(¢2(G))
let £(G) denote its group von Neumann algebra. Let (M, 1) with M C B(H) be
a noncommutative probability space and « : G — Aut(M) be a trace preserving
action. Consider two x-representations

piM3 ) ap-i(f) ®enn € MBB(L(G)),

heG

A:G3gm Y 1y @egnn € MBB(L2(G)),
heG

where ey, is the matrix unit for B(¢2(G)). Now we define the crossed product
algebra M x,, G as the weak operator closure in M ® B(¢5(G)) of the x-algebra
generated by p(M) and A(G). A generic element of M %, G can be formally
written as 30 o fg Xa A(g) with f, € M. With this convention, we may embed
the crossed product algebra M X, G into M®B(¢2(G)) via the map j = p x A.
Indeed, we have

I(Xfo M) = 3 elf)A()

9€G geG
= Z ( Z (ap-1(fy) @ enn)(Am @ %h/,h/))
9€EG h.h/EG

= Z ( Z ap-1(fg) @ eh’g*1h>

geG  heG
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- Z ( Z (o)1 (fg) ® egh,h)-

geG  heG

Since the action a will be fixed, we relax the terminology and write > o fgA(9)
instead of }° . fy Xa A(g). We say that a Markov semigroup S = (S¢):>0 in M
is G-equivariant if

agSy = Siay for (t,9) € Ry x G.
If § is a G-equivariant Markov semigroup on M, let Sy = (S; % idg)i>0 and
Se = (S ® idgs,(q)))t=0 denote the crossed/tensor product amplification of our
semigroup on M x G and M®B(¢2(G)) respectively. Note that S, is Markovian
due to the G-equivariance of §. In the following result, our CZQO’s are of the form

Tf(z) = /Q k(e 9)(f()) du(y)

for all f € (R1, 1), where (Rj, ¢;) = Loo(Q, p)®@(M;, 7;) and k(x,y) : My — Ma.
In other words, we keep the same terminology as for Theorem 4.1. We shall also
use the notation

M; = M;®B(l5(G)) and R, = R;&B(l(G)).

Corollary 4.3. Let G ~ Loo(Q, 1) be an action « which is implemented by a
measure preserving transformation 3, so that ay f(x) = f(Bg-12). Let S = (S¢)i>o0
be a G-equivariant Markov semigroup on (2, u) which admits a Markov metric
Q ={(Rjt,0j47¢) : (J,t) € Zy x Ry} satisfying the assumptions above. Let us
consider a family of CZO’s formally given by

/k x,y)(f(y) du(y) for geG.
Then, _, foA(g) = 32, Ty(fg)A(g) is bounded R1 x G — BMOS  (R2 x G) if

i) L§-boundedness condition,

[ an)| o <] ([ 1eran)’

where o stands for the generalized Schur product of matrices. In other
words, the CZO Typ,-1 only acts on the (g, h)-th entry of & for each g,h € G.

ii) Smoothness condition for the kernel,

[ G1.2) — K, 2) » (€21 = 03000 20) | g, o) < N,

uniformly on j > 1, ¢ >0, x € Q and y1,y2 € 5 ,. Here, the CZ kernel
K(y,z) = Eg’h kgn-1(Bgy, Bgz)®egn acts once more as a Schur multiplier.

My

Proof. Letting { =3} agn ®egn € R1, we define the map

®: Ry — BMOg, (Ra),

)= 3 s b ) a6 D)) ©
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By the definition of j, it is easy to check that
i TAG) = 25X 1M9))-
g g

Since S is G-equivariant, according to [33, Lemma 2.1], we have

1
2

lollntos,, sy = sup [|(Se.cli(a)” ~ 15,01 (o))
Therefore, it suffices to show that ® is Ry — BMOg, (R2) bounded. We find

B(E)(x) = / K (2, 9)(€(y)) du(y).

Thus, we may regard ® as a semicommutative CZO and apply Theorem 4.1 where
M is replaced by /\//\lj. Since ®(§) = >, j,(ag-1)e(Typ-1)e(ay)e and 3 is measure
preserving, we immediately find that the L$-boundedness assumption implies that
the map

& : LM — LE(Q)BM,
is bounded. Moreover, the smoothness condition matches that of Theorem 4.1. [

Remark 4.4. Our work so far yields sufficient conditions for the L., — BMO
boundedness of 17" % idg in more general settings. In particular, if T, = T and
agT = Toay for all g € G, then we find for any 7 fulfilling the assumption of
Theorem 4.1, T' x idg : R1 x G — BMOg_(R2 x G) is bounded.

4.2. Matrix algebras. In this paragraph, we introduce a Markov metric for the
matrix algebra B(¢3). The triangular truncation plays the noncommutative form
of the Hilbert transform on B(f2). We shall reprove the L,-boundedness of the
triangular truncation for 1 < p < co and a new BMO — BMO estimate by means
of this Markov metric and our algebraic approach. Consider the *-homomorphism
u: B(ly) - Loo(R)®B(¢2) determined by

u(emp) = e2mim=Fk) ¢ .

Given A = Em’k AmkEmp, define the semigroup

2
Si(A) = E mke_t‘m_kl mkemk-

It is not difficult to see that it defines a Markov semigroup of convolution type. In
fact, u is a corepresentation of L., (R) (equipped with its natural comultiplication
map Af(z,y) = f(z +y)) in B(¢2) and it turns out that S = (S;)i>0 is the
transferred semigroup associated to the heat semigroup on R

uo Sy = (H; ®idp(s,)) o u.

Define the cpu map R;, on B(fs) by uo R, = (R, ® idp(e,)) © u, where R;of(x)
denotes the average of f € Lo (R) over the interval B /77 (x). Now, given a matrix
A= ka Akt We find

wo Ry y(A)(x) = ][ A
vaji(z

][ > TG, e dy
Bz (w)

m,k
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Z sin(4+/jtm(m — k)) 2mi(m—k)x
- e Amkemk-
4y/jtm(m — k)

m,k
Thus, we find the following identity

sin(4+/jtmw(m — k
Rj,t(A) = Z 4(\/%‘2(,”(1 — k’) ))am,kemk~

m,k

Taking Jit = 2e«/j/7re’j15(¢2) and 732,15 = \/515@2), we obtain a Markov metric in
B(¢3). Indeed, the metric integrability condition holds trivially, as for the Hilbert
module majorization it reduces to prove that By < By with

By u(<£7§>3t) = <u®u<§)’u®u(£)>Ht®id5(£2)7

Bz = Zajz',tu(<€7£>Rj,t) = 20]27t<u®U(f),u@U(§)>Ej,t®id8([{2).
J J

In other words, it suffices to note that the canonical Markov metric in R —which
recovers the Euclidean metric, as proved in Paragraph 1.4— admits a matrix-valued
extension, as it was justified in Remark 1.5. Let us now consider the triangular

truncation
A(A) = Z AmkEEmk-

m>k
Corollary 4.5. We have

[A(A)IBmos S lAllBMOS -

2
In particular, given 1 < p < oo we obtain ||A(A)[|s, < ]%HAHSP.

Proof. Recall that
uo A = (L ®idp,)) o u.

for L = 3(id + iH) and ﬁ\f(f) = —isgn(é)f(ﬁ), the Hilbert transform in the real
line. We may also regard u : B(f2) — Loo(T)®@B(¢2) as a corepresentation of T
instead of R and the above identity holds replacing H by the Hilbert transform
in the torus. In this case, u becomes a trace preserving x-homomorphism and
the well-known S, inequalities for A reduce to the boundedness of the Hilbert
transform in L,(T;S,(¢2)), which is also well-known and follows in passing from
the semicommutative theory in the previous paragraph. Alternatively, the second
assertion follows from the first one by interpolation and duality. According to
Remark 1.7, to prove the first assertion it suffices to show that the map

T = i(idp,) — 24)

is BMO — BMO bounded for the semigroup BMO space which is associated to the
transferred Poisson semigroup P; on B({3) given by

Pt : (aij) — (e_tli_jlaij).

Given A = (ajk);, in B({2) then

A = aa = (S
),

J

T(4) = i<sgn(k—j)ajk>j,k (TA)*:i<Sgn(k_j)T’”)m
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Then (Pt|A|2 — |PtA|2) ..

_ —tli—j —t|k—j] p—t|i— k]| \r—
i =Y, (e7timil — etlk=ile=ti—kNgZa, ; and

(BAT(A)P ~ |PT(A)P),,

= z:(e_tli_j| — e~ =il e=ti=kly son(k — i) sgn(k — §) Grian;.
k

Since sgn(k — i)sgn(k — j) # 1 iff e tiFle=tk=il = ¢=tli=il we get
BlAP? = |P AP = R|T(A)]> - [RT(A).

The last identity implies that T' is an isometry on the Poisson BMO space. (]

4.3. Quantum Euclidean spaces. Given an integer n > 1, fix an anti-symmetric
R-valued n x n matrix ©. We define Ag as the universal C*-algebra generated by
a family uq(s),u2(s), -+ ,un(s) of one-parameter unitary groups in s € R™ which
are strongly continuous and satisfy the following ©-commutation relations

w;(s)ug(t) = €O uy (t)uy(s).

If ® = 0, by Stone’s theorem we can take u;(s) = exp(2mis{e;,-)) and Ag is the
space of bounded continuous functions on R™. In general, given £ € R", define
the unitaries Ag(§) = u1(&§1)ua(&2) - un(&n). Let Eg be the closure in Ag of
Ao (L1 (R™)) with

f= fo(©)re(€) de.

R'Vl
If © =0, Eg = Co(R™). Define

ro(f)=7a ([ fol@ol€)dc) = fol0)

for fo : R” — C integrable and smooth. 7 extends to a normal faithful semifinite
trace on Eg. Let Re = A = E§ be the von Neumann algebra generated by Eg
in the GNS representation of 7¢. Note that if © = 0, Re = Lo(R™). In general
we call Rg a quantum Euclidean space. There are two maps which play important
roles while doing analysis over quantum FEuclidean spaces. The first one is the
corepresentation map og : Re — Lwo(R")@Re, given by Ae(§) — exp, @A ()
where exp, stands for the Fourier character exp(27i(¢, -)). Note that og is a normal
injective *-homomorphism. The second map is 7e : exp; — Ao (§) ® Ao (§)*, which
extends to a normal x-homomorphism from L. (R") to Re®Rg, where Ry is
the apposite algebra of Reg, which is obtained by preserving the linear and adjoint
structures but reversing the product. We refer the readers to [24] for more detailed
information of quantum Euclidean spaces and these two maps.

BMO and Markov metric. Our first goal is to construct a natural Markov metric
for quantum Euclidean spaces. Let us recall the heat semigroup on R™ acting on
¢ : R" — C admits the following form

~ _ 2
Hip(w) = [ B€)e 4 exp(o) .
This induces a semigroup on Rg determined by

0@ © S@,t = (Ht ® ZdR(_)) 00@.
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Se.+ gives a Markov semigroup on Re which formally acts as

(4.2) Soul) = | To(@)e M Ao(©) de.

The corresponding semigroup column BMO norm is given by

1
2

I7lpv0.Re) = sup |(So.e(1£%) ~ IS6.()I?)

Re

1
3
~ sw_[(f l76(5) - sa(Nndu)
B ball in R B
According to Remark 1.5, the semicommutative extension H; ® idg, of the heat
semigroup, together with the extension of the corresponding Markov metric from

Paragraph 2.4 still satisfies the Hilbert module majorization

(43) <f7§>Ht®id7g@ < ZU;7t<£’§>Rj,t®7;dRe Ojt

j>1

= HUG(f)HBMOC(R“;R@)-
Re

as well as the integrability condition, where 07, = 2e/j"/me™, 72, = j% and
R;.f(x) is the average of f over B\/m(:v). Then we can easily produce a Markov
metric on Rg. Let B,: be the Euclidean ball in R™ centered at the origin with
radius /4t and consider the projections ¢;; = xB,, ® 1ro. Define the cpu maps

1 1 . .
Roi(N) =1 [ oa@dr= 5 [ T, (©fele)e()de.
1Bjtl Ja,, IBjt| Jrn
It is easy to check that
(4.4) 060 Ro i = (R ®idre) 0 0o.

The Hilbert module majorization

(€, £>S(-),t < Z U;,t (& £>R(—),j,to—jat
j=>1
for £ € Re®se,Re is equivalent to the same inequality after composing with the
x-homomorphism og, which follows in turn by the intertwining identities (4.2) and

(4.4), together with the majorization (4.3). Therefore, we obtain a Markov metric
on Re associated to Sg

Q6 = {(Rejt,054,75t) | (4, 1) € Zy x Ry}

The algebraic structure. We start with the kernel representation of our CZOs
over the (fully noncommutative) von Neumann algebra Rg. Given a kernel k
affiliated to Re®R’, the linear map associated to it is formally given by

Ty f = (idr, ® 10)(k(1re ® f)) = (idr, @ 70)((1re ® f)K).

The reader is referred to [24] for more details. Our goal is to provide sufficient
conditions for the Lo, — BMO boundedness of T);. Consider the %-homomorphism
0o : Re = Loo(R")®@Re. In the case of quantum Euclidean spaces, we need the
full algebraic skeleton introduced in Section 2. In Table 1 there is a little dictionary
to identify the main objects. Next, note that

g © Tk(f) = (idR'rL ® ZdR(__) ® T(—))(ko-(l]R’ﬂ ® 17?,(_) ® f)),
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’ Generic algebraic objects \ Quantum Euclidean spaces

M Re

N, pr=1®p2=0¢
E, = Lebesgue integral
Re®RE

N, mTM=1®,m=-®1
E, = To & ZdRz)p
Loo(R")®Loo(R")®Re

Ny N, = (0 ®idrg)(N,)
dp(r,y) = p(x) — »(y)

TABLE 1. Algebraic skeleton for Re.

where k, = (0o ® idgror)(k). Denote og o T, by Tj, . Define
Ty : Ro®Re 3 f @ a— Th, (f)(1zn ® a) € Loo(R™)@Re.
Then it is clear that the compatibility condition (2.3) holds since fk omy = 0@ oT}.
Lemma 4.6. If T} is bounded on Ly(Re), then
Tk : L§(Re)@Re — LS(R™)@Re || < ||Tk : La(Re) — La(Re)|-

Proof. We need to introduce two maps:

o 1a®)> [ p@ e ders [ pE0(€)de € Ia(Re),

n R

W L§(R™®@Re 2 /Rn expg ®a(§) df - expg @Ae(§)a(§) d€ € Ly(R")®Re.

It is straightforward to show that W extends to an isometry. Moreover, jg is also
an Lo-isometry, we refer the reader to [24, Section 1.3.2] for the proof. Observe
that

oo(f)(1rr ®a)

o fo (&) exps @Ao (£)adg

W([ fo€)expe@ads) = Wol(js®idr,)(f®a).
]Rn
Letting f = Txg, we get
Ti(g®a) = W(isTh @ idro)(g @ a).
The properties of the maps jo and W readily imply the assertion. ([

Now let us introduce a weak-* dense subalgebra of Rg, which is the analogue of
the classical Schwartz class. Let S(R™) denote the classical Schwartz class in the
Euclidean space R™ and define

So = {f €Ro: f@ € S(Rn)}
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Let S denote the space of continuous linear functionals on Sg, which is the
quantum space of tempered distributions. Consider a continuous linear operator
T € L(Se,S4). By using the unitary map
jo : S(R™) — Seo

as defined in the proof of Lemma 4.6, we get j§Tjo € L(S(R™),S(R")"). By a
result of Schwartz, there exists a unique kernel K € §'(R*") = (S(R") @, S(R"))’
such that 7" admits the kernel k = (jo ® jo)(K) € (Se ® So)’. Actually, the
kernel representations T} satisfying the Calderén-Zygmund type conditions in the
following theorem belong to £(Se,Sg). It provides sufficient conditions for the
Lo (Re) — BMO.(Re) boundedness of CZO operators associated to kernels in
(Se ®r Se)’. We shall use the quantum analogue of the bands around the diagonal

ap = To(xs8) = / (e () ® Ao (6)° de.

R
Theorem 4.7. Let T}, € L(Se,Sg) and assume

i) Cancellation
| Tk : L2(Re) — L2(Re)| < oo

i) For any f € Re and any Euclidean ball B centered at the origin

2
][ 1ok r.8U1) — Sok.r8Y2)| dyrdyz S |1 £k
BxB

where Se k5,5 = (idpr @ idre @ 7o) [ko(1rr @ 1y @ f)(1rr ® af)].
Then, the Calderdn-Zygmund operator Ty, is bounded from Lo, (Re) to BMO.(Reg).

Proof. By Theorem 1.4, it suffices to prove
Ty : Loo(Re) — BMOYG,, .
Arguing as in Paragraph 1.4, the Markov metric BMO norm takes the simpler form

1

-1 2 21 —-1\2

c = supsu | Reo . ; — |Re ; . ) .

I oo, = supsup | (17 [Reuia(1£1%) = 1Reusu NP1 ),

In other words, the extra term in the definition of BMO is dominated by the
above expression as in (1.3). As noticed in Remark 2.5, the size kernel condition is
then superfluous. This also reduces the analytic conditions and the smooth kernel
conditions to be checked. In summary, according to the proof of Theorem 2.1, the
assertion will follow if we can justify:

CO0) Initial condition
Ti : Ao =+ Re for Ag C Re weak-* dense.
All) Qg-monotonicity of E,
Ep(4./€%a5,0) < E,(1€).

Al2) Right modularity of T

~ ~

T (nm1(b)) = Ti(n)p1(b).
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Anl) Mean differences
Re j4(€°€) — Re j4(€)"Ro j.+(§) < ©;4(5(£)"5(¢))) for some cpu ;.
An2) Metric/measure growth
1< mup ' Bpld0) 2 (@] 05.0mpr Bolaie) 2 S mupr ! (070):
CZ1) L§-boundedness condition
Tp: LS (Ni Ex) = LS (N Ep).

CZ2) Kernel smoothness condition
= 2
@5 (|8(Te(ma(N( = a)[*) S 22l I

The initial condition trivially holds for good kernels k € So ®a1g So. In [24] it
was required to extend the main result from this class of kernels to general ones
in Sgge, by reproving certain auxiliary results in the context of distributions. In
our case, this is much simpler. Indeed, when dealing with general kernels, we just
note that 75 (f) € L2(Re) for all f € Sg by assumption. Given the form of Re ; +,
it trivially follows that Re j:(|T%f|?) and Re ;T f are well-defined operators in
Li1(Re) and La(Re) respectively. In particular, the proof of Theorem 2.1 follows
exactly as it was written there under this more flexible assumption. Therefore, the
initial condition can be relaxed to the condition

Tk : S@ — LQ(R@)

In fact, according to [24, Proposition 2.17], every algebraic column CZO is normal.
Thus, it suffices —as we did in Theorem 2.1— to justify that T}, : So — BMOg%
is bounded, as we shall do by justifying the remaining conditions.

All holds trivially since ¢;; = xB, , ® 1R lives in the center of N,. On the other
hand, according to the definition of py, 71 from Table 1, the algebraic condition Al2
can be rewritten as follows

Tk (n(1re ® b)) = Ti(n)(1e- @ b).

This is clear from the definition of fk. Next, condition Anl reads as
2 2
foan-|f ewl <f e - ew)l )
Bj,t Bj,t Bj,tXBj‘t

for Re-valued functions, when ®;; is chosen to be the average over B;; x Bj ;.
As in (2.4), this is a consequence of the operator-valued Jensen’s inequality. Next
recalling that aj; = me(xsB,,), condition An2 takes the form

Bjillre < (To @idrer)(me(xsB;,)) < 5%(Bjillre-

To verify it we note that

(70 @ idrgg)(mo(9) = (r0 @ i) (| FEON(O) ® Nol€)"dE) = B0

n

Then we get (7o ® idrer)(me(XsB;,)) = 5|Bjt|1re. Condition CZ1 reduces to our
Lo-boundedness assumption by Lemma 4.6. Finally, the smoothness condition ii)
in the statement readily implies condition CZ2 for all values of j, ¢. (]
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The smoothness condition in Theorem 4.7 is of Hérmander type, while the one
in the main result of [24] is a gradient condition. As expected, we shall show that
our condition in this paper is more flexible than that of [24, Theorem 2.6]. We use
e for the product in MMPOP, so that

(axb)e(a @b) = (ad") @ (b'D).
The quantum analogue of the metric is defined by
de =me( )

for the Euclidean norm | - |. Moreover, we also introduce the ©-deformation of the
free gradient. Let L(F,) denote the group von Neumann algebra associated to the
free group with n generators F,. It is well-known from (say) [64] that L(F,) is
generated by n semicircular random variables si, s2,. .., s,. Note that there exist
derivations 9, in Se which are determined by

% (Ne(€)) = 2mi&; Mo (€)
for 1 < 7 < n. Define the ©-deformed free gradient as

Ve = ZSj ® 3é :So — ﬁ(]Fn)@R@
j=1
If V denotes the free gradient for © = 0, it is easy to check that

(45) (ng ®0’@)OV@ = ZSj@(O’@O@é)

= ZS] ®(0j000) = (VR®idre) ©0o.

For the convenience of the reader, we cite Theorem 2.6 from [24] below.
Theorem 4.8. Let T}, € L(Se,Sg) and assume:
i) Cancellation
1Ty - L2(Re) = La(Re)|| < A
i) Gradient condition. There exists
a < g <pB< % +1
satisfying the gradient conditions below for p = a, 8
’dg o (Vo @ idrer)(k) o dg“_”’ < As.
Then, we find the following Lo, — BMO, estimate
|7k : Loc(Re) = BMOc(Re)|| < Cn(a, B) (A1 + As).
To simplify notation, we shall write in what follows X for ¥g 1 s B. According to

the semicommutative Poincaré type inequality introduced in [24, Proposition 1.6]
we obtain

H ]ixB 16(2)|*dp % MHR@ < 16R2H(1 ®xs®1)(V® idﬂe)(z)HQ

L(Fp)®Lo (R")®Re
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for R = radius of B. By (4.5), we may rewrite
(1®xp ®1)(V®idry)(X)
= (id®* @ 70) (1@ x5 © 19%)(V @ id®?) (ks) (1% @ /) (152 @ af) )

:wﬁﬁ®nﬂ01®xB®1WXM®09®mxve®uﬂ%xﬁw®fxﬁw®aﬁ0

= (id** ® 70) (Ko (1%° ® f))
with
K= (1®xs®1%°)(id ® 0o ®1id)(Ve ®id)(k) ® (1¥* ® aj,)
in L(F,)®(S(R") ®r Se @ Se)’. Thus, (1 ® xp ® 1)(V ® idr,)(2) = Tk (f).
We turn to the proofs of Theorem 2.6, Proposition 2.15 and Remark 2.16 (as the
generalizations of Theorem 2.6) in [24], they show that the condition ii) in Theorem
4.8 implies

A
1T ey yome < Calen B) T I lIre

which is inequality (2.2) in [24]. Combining the calculations above, we deduce
that condition ii) in Theorem 4.8 is stronger than condition ii) in Theorem 4.7. In
conclusion, the Calderén-Zygmund extrapolation on Rg that we obtain by applying
Theorem 2.1 improves the corresponding result in [24].

4.4. Quantum Fourier multipliers. We now refine our abstract result for locally
compact quantum groups. We shall need some basic notions from the theory of
quantum groups, details can be found in Kustermans/Vaes’ papers [38, 39]. Let
us consider a von Neumann algebra A equipped with a comultiplication map, a
normal injective unital *-morphism A : N — NQN satisfying the coassociativity
law
(idy @ A)A = (A ® idy)A.
Assume also the existence of two n.s.f weights ¢ and ¢ on A such that
(idy @ ¥)Aa) = Y(a)ly and (¢ ®idy)A(a) = p(a)ly for a € Ny

We call ¥ and ¢ the left-invariant Haar weight and the right-invariant Haar weight
on N respectively. Then the quadruple G = (N, A, 9, ¢) is called a (von Neumann
algebraic) locally compact quantum group and we write Lo (G) for the quantum
group von Neumann algebra N. Using the Haar weights, one can construct an
antipode S on A/ which is a densely defined anti-automorphism on A satisfying the
identity

(idy @) (1y @ a*)AD)) = S((idy @ ¢) (A(a")(In @ D))).

The comultiplication map A determines a multiplication on the predual L;(G)
given by convolution ¢1 * p2(a) = (p1 ® ¢2)A(a). The pair (L1(G),*) forms a
Banach algebra. In what follows, if not specified otherwise, the quantum groups
G we shall work with admit a tracial left-invariant Haar weight ¢). The simplest
model of noncommutative quantum groups are group von Neumann algebras £(G)
associated to discrete groups. If A is the left regular representation of G, the
comultiplication is determined by A(A(g)) = A(g9) ® A(g). Its isometric nature
follows from Fell’s absorption principle and the convolution is abelian. The standard
trace on L(G) is a left and right-invariant Haar weight. Moreover, in this case, the
antipode is bounded and S(A(g)) = A(g™1).
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A convolution semigroup of states is a family (¢;);>0 of normal states on Lo (G)
such that ¢y, * ¢1, = ¢t 44, The corresponding semigroup of completely positive
maps is given by

SA7t(a) = ((bt ® Zd(g) o] A(a)

When Sa = (Sa,t)t>0 is a Markov semigroup, we call it a convolution semigroup.

Lemma 4.9. Let G be a locally compact quantum group equipped with a convolution
semigroup of states (¢¢)i>0. Then, Sa = ((¢: ®idg) o A)i>o is a Markov semigroup
on Lo (G) whenever

i) ¢ro0S = ¢ forallt >0,
ii) Sas(a) = a ast — 0T in the weak-x topology of Leo(G).

Proof. Let us begin with the self-adjointness
(a*Sa (b)) ) (a* (¢ ® ide) A(D))
= ¢ @¢((le @ a*)A(D))
= 0((ids ©¥)((1e ® a)A())
= & (s (ide @ ¥) (A(a*)(1¢ @ b)) )

p
This means that 1 (a*Sa (b)) = ¢:(S(p)) = ¢+(p) and we get

P(a*Sasd) = ¢ @Y (A(a)(1g ® D))
= ¥((¢ ®idg) o A(a")b) = ¥(Sa(a)?d).
The remainder properties are straightforward. Indeed, identity Sa .(1g) = 1g is
obvious. The weak-* convergence of the Sa ¢(a)’s as t — 0T is assumed and the

complete positivity is clear. The normality follows from the weak-* continuity of
¢r and A. Finally, the semigroup law easily follows from coassociativity. (]

In what follows, we shall assume that the hypotheses of Lemma 4.9 hold. Let
us fix a quantum group G = (N, A, 1, ¢) and consider a convolution semigroup Sa
associated to it. A Markov metric

Q= {(Rjt,051:vj) + it € Ly xRy}

in Loo(G) = N associated to Sa will be called an intrinsic Markov metric when
there exists an increasing family of projections p;; in Lo (G) such that the cpu
maps take the form

(4.6) Rj.f = (¥ ®ids) ((pje ® 16)A(f)).

1
1/)(Pj,t)
In other words, we use the algebraic skeleton

(Np = Nﬂ'7 P1, P2, Ep; qj,t) = (LM(G)®Lw(G)a 1®-, A7 '(/) ® idGapj,t ® 1@)

Remark 4.10. Assume that

<

Pj,t
Vit €Ry and A, > wgpj 1)

~—
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Then, the term |R;;f — M, f| in the metric BMO norm satisfies for M; = Ry ; that

Reef = Mf] = |0 i) (A1) = 18 Ryl o V)]
< oW e )[[(A0) - 18 Ry o D]
= Py P By ) < 25 (Rl = Ry P
According to Theorem 1.4, this yields
A7) Wlawos, S Iflevog S swpsup (Rl = 1Res) [, .

Additionally, we may consider transferred Markov metrics in other von Neumann
algebras. Consider a convolution semigroup of states (¢;);>0 on a locally compact
quantum group Lo (G). A corepresentation m : M — Lo (G)®M is a normal
injective %-representation satisfying the identity

(idg @m)om = (A ®idag) o

Every such 7 yields a transferred convolution semigroup Sy = (Sx)t>0 with

Sﬂ',t : M - Ma
Srif = (e ®idp) ow(f).

Lemma 4.11. Assume that

o 7(Sri(f1)" f2) = (1 Sru(f2)),
o Syif — fast— 0T in the weak-+ topology of M.

Then Sy defines a Markov semigroup on M such that mo Sy, = (Sa,; @ idp) o .

Proof. It is easy to check that Sy ; is cpu and the normality follows from the weak-*
continuity of ¢, and 7. Hence, it remains to show the identity mo.S; ; = (S;®idg)om
and the semigroup law. We first observe that m(¢;®id ) = (¢ Ridg®id ) (idg @)
as maps on Lo (G)®@M. Indeed, by weak-* continuity, it suffices to test the identity
on elementary tensors n ® m, for which the identity is trivial. Therefore, we have
(Sap @idp)n = (¢ Qidg ® idp)(A R idag)
= (¢ ®idg ®idp)(ide @ )T
= 7(Pr @ idp)m = TS7 4.

For the semigroup law we note that

STr,tl Sﬂ-,t2 = ((btl X idM)((ZStg ® idg ® ZdM)(ZdG ® 7T)7T
(¢t1 ® idM)(¢t2 ® idg ® idM)(A & idM)Tr
(D1, @ b1, @ idp)(A @ idpa)T = (1, *x 1y @ idpa)™ = Sty 44, U

In the sequel, we shall assume that the assumptions in Lemma 4.11 hold. Intrinsic
Markov metrics on Lo (G) yield transferred Markov metrics on M associated to the
transferred convolution semigroup S;. Indeed, given any intrinsic Markov metric
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Q ={(Rj,05t 7))} in G with cpu maps R, given by (4.6), the transferred cpu
maps R ;. are given by

Rrjif = i) (1 @ ida) ((pse @ D)7(f)).

It is easy to check that mo R, ;; = (Rj ® idap) o m. Assume in addition that
0;+ € Ry. Then, arguing as we did before Corollary 4.5 for the corepresentation u
of R in B({3), we get a Markov metric in M

Qr = {(Rrjt,054,7%5t) 1 J € Ly, t € R},
Let o : N — N be a strictly increasing function with a(j) > j. This Markov metric
is called a-doubling if there exists some constant c, such that ¥)(qa(jy,¢) < ca®(qj,t)-

Remark 4.12. In what follows, we impose our Markov metrics to be a-doubling
for some function o : N — N, to satisfy 0;; € Ry as well as the condition in
Remark 4.10. Altogether, this allows to eliminate the size CZ condition and reduce
the number of analytic and smoothness CZ conditions to be checked for both the
intrinsic Markov metric and the transferred one.

Observe that the transferred formulation above includes the intrinsic formulation
by taking (M, ) = (G, A). Let us now state the corresponding Calderén-Zygmund
theory. Given Axq a weakly dense x-subalgebra of M, let T be a (not necessarily
bounded) operator T': Ayg — M. We say T is a transferred map if there exists an
amplification map R

T:DC Loo(G)AM = Loo(G)R@M
satisfying the identity

(4.8) mol'=Tom, .

Again, D is a weakly dense #-subalgebra for which m(Ax¢) C D. In the case
(M, ) = (G, A), we can always take the amplification T®idq and condition above
just imposes that T is a quantum Fourier multiplier. In the following theorem, we
provide sufficient conditions on the amplification map to make a given transferred
CZO T bounded from Ax¢ to BMOg .

Theorem 4.13. Let

T M= Lo(G)RM
be a corepresentation of a locally compact quantum group G in a semifinite von
Neumann algebra (M, 7). Assume that Lo (G) comes equipped with an a-doubling
intrinsic Markov metric Q determined by an increasing family of projections p;; as
above. Then, a transferred map T (with amplification for which (4.8) holds) will be
bounded from Anq to BMOg  provided:

i) T: L5(G)OM — L§(G)@M is bounded,

. XY ®1id ~
i) LELEE (00030 L)oo (T D) % 1

Proof. We use the algebraic skeleton
(Mva = N’n’aplvp% Epa Qj,t) = (M»LOO(G)®M7 1®-m, 1/1 ® idGapj,t ® ]-G)‘

Identity (4.8) is the compatibility condition (2.3). Let us justify the algebraic
conditions. The second one is trivial since both E,(g;+) and pi(v;,) belong to Ry
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in this case. For the first one, consider the product e in L (G)®M,p. Then, we
just observe that

Eo(g:1¢%a50) = (¥ ®@ida)((pje ® 1)EE)
= (¢®idM>(f‘(Pj,t®1)°f*)
< (W@idm)(E o) = (Y@idm)(E°€) = E (IEP).

Define the amplifications

A

Eﬂ-’jvt : LOO(G)®M > f — #(’l/) X idM)((pj7t X 1M)£) e M.
Y(pjt)

Consider also the cpu maps

B Loo(G)B Lo (G)DM — M,

®;:(n) = M(w @ ¥ @idam) ((pje @ P @ Laa)n).

Recalling that dg(z) =2 ® 1 — 1 ® z, the identity
= = 2
;.4 (106(€)1*) = 2Rr .1 (I6]%) — 2[R e (€)]"-
is straightforward. This readily implies the first analytic condition. On the other
hand, since the auxiliary Markov metric is a-doubling, the second analytic condition
reduces to note that

(Y @ ida)(Gai)e @ Im) < ca(V @ida) (g5, @ Tam)-
Thus, according to inequalitty (4.7), the assertion follows from Theorem 2.1. [

Remark 4.14. As noticed, the main particular case of Theorem 4.13 arises for
(M, 7) = (G, A) with amplification T' ® idg. Condition (4.8) becomes the identity

AOTZ(T@id([;)OA.

In other words, these are translation invariant CZ operators. We also call them
quantum Fourier multipliers in this paper and it can be checked, as expected, that
these maps are of convolution type in the sense that there exists a kernel k affiliated
to Lo (G) so that

Tf=kxf = (ide ® ) (AK)(1e ® Sf)).

In this particular case, it is not difficult to prove that our conditions in Theorem
4.13 reduce to those in Theorem B2 from the Introduction. Of course, Theorem
4.13 also applies as well for nonconvolution CZ operators on quantum groups, or
even for transferred forms of them to other von Neumann algebras M.

Remark 4.15. One may consider twisted convolution CZO’s on quantum groups
applying Theorem 4.13. As an illustration, assume that G ~ Lo (G) by a trace
preserving action «v and that G is a quantum group satisfying (o, ®ay)A = Aay for
all g € G. This property is quite natural in the commutative case, where quantum
groups come from locally compact groups and « is typically implemented by a
measure preserving map . Note that the underlying Haar measure is translation
invariant and the condition above just imposes that [ is an homomorphism. Let
us see what we get for a map

Zg foA(g) = Zg T4(f9)M(9),
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where the T’s are normal convolution maps on Lo (G). Assume Lo (G) comes
equipped with a convolution G-equivariant semigroup Sa which admits a n-doubling
intrinsic Markov metric. Then, we get a bounded map Lo, (G)x.G — BMOg  when
the following conditions hold:

i) We have a bounded map
L5(G)@B(l2(G)) 3 & = (Tyn-1) # & € LE(G)@B(l2(G)),
where e stands once more for the generalized Schur product of matrices.
ii) Letting R = Lo (G)@B(l2(G)) and W(§) = >, j,(ag-1) @ (Typ-1) @ () o &,

(¥ ® Y @ idpy(a)))
Y(pjt)?

Remark 4.16. All our results in this paragraph impose the additional assumption
that our quantum groups admit a tracial Haar weight. We believe however that our
results can be extended to the general non-tracial case. We leave this generalization
open to the interested reader.

(3. ® pse @ 1)[66 (¥ (Eans.) [F) S €l

5. Noncommutative transference

Originally motivated by Cotlar’s paper [15] and the method of rotations, Calderén
developed a circle of ideas [5] which was called the transference method after the
systematic study of Coifman/Weiss in their monograph [13]. The fundamental work
of K. de Leeuw [18] also had a big impact in this line of research. Let us consider
an amenable locally compact group G with left Haar measure pu, a o-finite measure
space (2,v) and a uniformly bounded representation 3 : G — B(L,(2)). Roughly,
Calderén’s transference is a technique which allows to transfer the L, boundedness
of a convolution operator f — k* f on L,(G) to the corresponding transferred
operator on L,(2)

Vi(w) = /G k(g) By f(w) du(g),

for some compactly supported kernel k in L1(G). A case by case limiting procedure
also allows to consider more general (singular) kernels. In the rest of this section
we shall develop a noncommutative form of Calderén-Coifman-Weiss technique.

Our first task is to clarify what we mean by ‘representation’ and ‘amenable’ in the
context of quantum groups. Using the commutative locally compact quantum group
Lo (G) as above, a representation § : G — Aut(M) induces a *-representation
g M = Loo(G; M) by

m3f(g9) = Bg-1f.
Note that we have

(ide @ ms)(msf)(g,h) = ma(Bg-1f)(h) = Bu-1Bg-1f
= By f = (Ac @idm)(msf)(g,h).

Given a semifinite von Neumann algebra (M, 7) and a locally compact quantum
group G, this leads us to consider corepresentations 7 : M — Lo, (G)RM satisfying
(idg @ m)om = (A ®idaq) o . Note that comultiplication is a corepresentation by
coassociativity. To show what we mean by ‘uniformly bounded’, let us go back to
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our motivating example 5 : G — Aut(M), where we take M = L, () for some
o-finite measure space (2, v). In the classical case

||59f||p ~ ||pr forall ge G

up to an absolute constant independent of f,g. We say that a corepresentation
T : M = Loo(G)®M is uniformly bounded in L,(M) if for any f € M N Ly(M)

we have
1 .
:”f”ip(/vl) < (idg ® T)(|7T(f)‘p) < Cﬂ”f”ip(/\/l)

for some absolute constant ¢, independent of f. Note that our notion again reduces
to the classical one on Lo (G). Note also that, since |7 (f)|? = 7 (| f|?), our definition
reduces to the p-independent condition

1 .
?”f”h(M) < (idg @ 7)(7(f)) < cxllfllyomy forall  f e My nLi(M).

Now we introduce what we mean by an ‘amenable’ quantum group. We say that G
satisfies Folner’s condition if for every projection ¢ € L1(G) and every € > 0, there
exists two projections ¢1, g2 € L1(G) such that

Alp)g®q2) =q®q2 and ¥(q1) < (1+¢)Y(qz).

In the standard example for a locally compact group G, where (Lo (G), 1) is Loo(G)
equipped with the left Haar measure p and A is given by Ag(£)(g, h) = £(gh) the
classical comultiplication, it turns out that G is amenable iff G is an amenable
group. Indeed, our notion can be rephrased in this case by saying that for any
compact set K in G and any € > 0, there exists a neighborhood of the identity W
of finite measure such that

PEW) < (1+¢) u(W),

which corresponds to (g, g1, ¢2) = (xx, Xxw, xw) in our formulation. This is exactly
the classical characterization of amenability, known as Fglner’s condition, used by
Coifman and Weiss in [13]. Given an amenable locally compact group G with
left Haar measure p, it is clear that L. (G, p) with its natural quantum group
structure is amenable. On the other hand, as expected, any compact quantum
group is amenable just by taking ¢; = ¢2 = 1g.

Assume that G admits a corepresentation 7 : M — Lo (G)@M. Given Ay a
weakly dense #-subalgebra of M, we say that a linear operator V : Ay - M is a
transferred convolution map if there exists ® : D C Lo (G)ROM — Loo(G)RM, an
auxiliary convolution map such that mo V' = ® o An The classical transferred
operator

V:/Gk(g)ﬁg—lf(w)du(g)

comes from
(&) (g, w) = /Gk(h) ¢(hg,w) du(h) = (p @ ide @ idg)(Ag @ ida).

If mgf(g) = By-1f denotes the corresponding corepresentation, we may then apply
the identities in the proof of Lemma 4.11 again to deduce the following identities

Cpoﬁg = ((p@idg@idgz)(A(;@idQ)’frg = (gﬁ@idg@idg)(idg@’frﬁ)ﬂg = Wﬂ(QD@id())owﬁ,
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By injectivity of g, we must have

V() = (¢ & ido) 7 f (1) = /G k(g) By-1 £ (w) dpu(g)

as expected. This shows how we recover the classical construction.

Let us now settle the framework for our transference result. Assume that G is
amenable and consider 7 : M — Lo (G)®M a uniformly bounded corepresentation
in some noncommutative measure space (M, 7). We say that T : L,(G) — L,(G)
is a convolution map with finitely supported L; kernel when the map T has the
form T = (¢ ® idg) o A for some functional ¢ = 1(d-), with d an element in L;(G)
whose left support ¢ satisfies 1(¢) < oco. In the commutative case, this is the kind of
operators which are transferred. Roughly, the goal is to show how a limit operator
T = lim, T of such maps which is bounded on Ly(G) and Lo (G) - BMOg can
be transferred under suitable conditions to a bounded map on L,(M).

Remark 5.1. Young’s inequality extends to this setting as

ldx fllp *="ll(¢ @ide) A(f)ll, < 4[ldll1][f]lp,

where ¢ = 9(d-) and 1 < p < co. Indeed, when d and f are positive the inequality
holds with constant 1. This can by justified by interpolation. When p = 1 we use
Fubini and the left-invariance of v, while for p = oo it follows from the fact that
(p®idg)A is a positive map with 1g +— 1(d). In the general case, we split d, f into
their positive parts and obtain the constant 4. In fact, the same argument still holds
after matrix amplification and we deduce that (¢ ® idg)A is completely bounded
on L,(G) with cb-norm 4||d||;. This is however not enough for transference, since
the norms ||d,||; might not be uniformly bounded.

Theorem 5.2. Let G be an amenable quantum group and consider a uniformly
bounded corepresentation m : M — Loo(G)@M in some noncommutative measure
space (M, 7). Let T : Ly(G) — L2(G) be a bounded map and assume that

(T ® idp) = SOT — lim(T, ® id )
¥
for some net T, = (¢4 @ idg) © A of convolution maps with finitely supported L,

kernels and such that lim., | T, || gL, ) < T B(Lsc))- Then, the net of transferred
operators V., = (¢4 ® idpq) o m satisfies the inequalities

IVillsLa vy < exllTy s c))-
We thus find a WOT-cluster point V' satisfying ||V||a(L,am)) < cxl|T | B(La())-
Proof. Note that we have
TV, = (¢4 ® id)(idg @ )T = (¢ ® 1d) (A @ id )T = (T ® tdpq) 7.
Hence, the uniform boundedness of 7 yields
1 .
C*HvaH% <(pen) (V5 (NHP) = (per)(I(Ty @ida)m()?)

for any state p on Loo(G). On the other hand, if ¢, = 9(d, -) and ¢, denotes the
left support of d,, we know from the amenability assumption that for any e > 0 we
may find projections q;, and go-, such that

A(qlw)(% ® QZ'Y) =qy®q2, and w(qlv) <(l+¢) 7,[1(q27).
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Taking p = V(g2 -) /1 (g2+), we obtain the inequality

(p®7)
¥(q2y)
since p is supported by ga2. Moreover, dy ® g2~ is supported on the left by ¢, ® gay

and amenability provides d, ® g2y = A(g14)(dy ® g24). Once we have created
A(qiy), we can eliminate go,. Altogether gives

V1 < ([0 ® i) (A ® idu)m(7)(10 © 2y © 10)|)

LB < S [ @ (e, © 100

La(Loo (G)OM)

Now we use the Ly boundedness of T, and uniform boundedness of m to conclude
1 1 .
ZIVAF S = I e ¥ (a1 © Laa)ide © 1) (17()))
Cr 1/)(6127)
Cr
< = T B Loy V(@) 113 < en L+ 1T B La@p I1F13-
1/’(q2'y)

Letting € — 0, we prove the inequality

IVillBomyy < ex Ty (L))

Since T is bounded on L(G) and lim., || 7, |[5(z.(c)) < IT|B(Ls(c)), the operators
V,, are eventually in a ball of radius cx(14-9)||T|5(z,(g)) for any § > 0. The closure
of such ball is weak operator compact and thus we find our cluster point. ([l

We now study Lo, — BMO transference and then interpolate/dualize to obtain
L,-transference. This approach seems to be new even in the classical theory and
where our semigroup formulation becomes an essential ingredient.

Corollary 5.3. Let G be a compact (hence amenable) quantum group equipped
with a uniformly bounded corepresentation m : M — Loo(G)®M. Let (¢1)i>0 be
a convolution semigroup of states on Loo(G), giving rise to Markov semigroups
Sa on (G,v¢) and Sz on (M, 7). Let T = SOT — lim, T, be as above and take
Ap = MNLy(M). Then, if T : Loo(G) — BMOg, is completely bounded, we find
that

V=WOT —-limV, : Ay = BMOg,
¥
is completely bounded. Moreover, if Ty is regular, the complete boundedness of
JpVi Ly(M) — L,(M) follows for every 2 < p < oo by interpolation. In addition

the complete boundedness of VJ, : L,(M) — L,(M) for 1 < p < 2 holds under the
same assumptions for T*.

Proof. By uniform boundedness of © we have

|ids & (0P,

which implies that 7 : Lo(M) — Loo(G)RL§(M) is bounded by ¢,. According to
the finiteness of Lo (G), we deduce that in fact 7 : Ly(M) — Lo(Loo(G)RM) is
still bounded with the same norm. This proves that

TV = WOT—thV WOT—hm( ®idp)m = (T @ id ).

< CTFHf”Q’
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In particular, 7V = (T ® id )7 over Apg and identity 7S = (S ® idaq)7 yields

1
2
M

IV fllmvos, = sup |[SxalV I ~ 187V 1P

1
2

Lo (G)QM

= sup HWSw,t|Vf|2 - |71'S,r7tVf|2
>0

(T @ idp)m ()l gaiog < I Tllebl|7(H)llz@@rt = [ Tllesllf 1

for f € Anq. Since the same inequality holds after matrix amplification, we deduce
that V' : Ay — BMOg_ is completely bounded with cb-norm < ||T'[|c,. The row
case is similar because

VT = (V) = (T'n)" = T'r.
The assertions on L, boundedness follow as usual from Theorem 1.3. O

Remark 5.4. Under the above assumptions, we see that for V.= WOT — lim, V,
we can find the concrete form of its amplification map ® defined on Lo (G)®M. In
this case, by applying Theorems 4.13 to & = T ® idrq, we get Calderén-Zygmund
extrapolation for the transferred convolution map V on M.
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