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Abstract. Calderón-Zygmund theory has been traditionally developed on

metric measure spaces satisfying additional regularity properties. In the lack
of good metrics, we introduce a new approach for general measure spaces which
admit a Markov semigroup satisfying purely algebraic assumptions. We shall

construct an abstract form of ‘Markov metric’ governing the Markov process
and the naturally associated BMO spaces, which interpolate with the Lp-scale
and admit endpoint inequalities for Calderón-Zygmund operators. Motivated

by noncommutative harmonic analysis, this approach gives the first form of
Calderón-Zygmund theory for arbitrary von Neumann algebras, but is also
valid in classical settings like Riemannian manifolds with nonnegative Ricci

curvature or doubling/nondoubling spaces. Other less standard commutative
scenarios like fractals or abstract probability spaces are also included. Among

our applications in the noncommutative setting, we improve recent results

for quantum Euclidean spaces and group von Neumann algebras, respectively
linked to noncommutative geometry and geometric group theory.

Introduction

The analysis of linear operators associated to singular kernels is a central topic
in harmonic analysis and partial differential equations. A large subfamily of these
maps is under the scope of Calderón-Zygmund theory, which exploits the relation
between metric and measure in the underlying space to provide sufficient conditions
for Lp boundedness. The Calderón-Zygmund decomposition [6] or the Hörmander
smoothness condition for the kernel [29] combine the notions of proximity in terms
of the metric with that of smallness in terms of the measure. The doubling and/or
polynomial growth conditions between metric and measure yield more general forms
of the theory [14, 46, 47, 62, 63]. To the best of our knowledge, the existence of a
metric in the underlying space is always assumed in the literature.

In this paper, we introduce a new form of Calderón-Zygmund theory for general
measure spaces admitting a Markov semigroup which only satisfies purely algebraic
assumptions. This is especially interesting for measure spaces where the geometric
information is poor. It includes abstract probability spaces or fractals like the
Sierpinski gasket, where a Dirichlet form is defined. It is also worth mentioning that
our approach recovers Calderón-Zygmund theory for classical spaces and provides
alternative forms over them. In spite of these promising directions —very little
explored here— our main motivation has been to develop a noncommutative form
of Calderón-Zygmund theory for noncommutative measure spaces (von Neumann
algebras) where the notions of quantum metric [37, 55, 56] seem inefficient.
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A great effort has been done over the last years to produce partial results towards
a noncommutative Calderón-Zygmund theory [24, 28, 33, 45, 49]. The model cases
considered so far are all limited to (different) noncommutative forms of Euclidean
spaces, described as follows:

A) Tensor products. Let f = (fjk) : Rn → B(ℓ2) be a matrix-valued function and
consider the tensor product extension of a standard Calderón-Zygmund operator
acting on f , formally given by

Tf(x) =

∫
Rn

k(x, y)f(y) dy =
(
Tfjk(x)

)
jk

for x /∈ suppf.

The Lp-boundedness of this map in the associated (tensor product) von Neumann
algebra M = L∞(Rn)⊗̄B(ℓ2) trivially follows for p > 1 from the vector-valued
theory, due to the UMD nature of Schatten p-classes. On the contrary, no endpoint
estimate for p = 1 is possible using vector-valued methods. The original argument
in [49] —also in a recent simpler form [4]— combines noncommutative martingales
with a pseudolocalization principle for classical Calderón-Zygmund operators. More
precisely, a quantification of how much L2-mass of a singular integral is concentrated
around the support of the function on which it acts. This inequality has been the
key tool in the recent solution of the Nazarov-Peller conjecture [8], a strengthening
of the celebrated Krein conjecture [59] on operator Lipschitz functions.

B) Crossed products. New Lp estimates for Fourier multipliers in group von
Neumann algebras have recently gained considerable momentum for its connections
to geometric group theory. The first Hörmander-Mikhlin type theorem in this
direction [33] exploited finite-dimensional cocycles of the given group G to transfer
the problem to the cocycle Hilbert space H = Rn. To find sufficient regularity
for Lp-boundedness amounts to study Calderón-Zygmund operators in the crossed
products L∞(Rn)⋊G induced by the cocycle action. Nonequivariant extensions of
CZOs on these von Neumann algebras were investigated in [33], after identifying
the right BMO space for the length function determined by the cocycle. These
operators have the form∫

G

fg ⋊ λ(g) dµ(g) 7→
∫
G

Tg(fg)⋊ λ(g) dµ(g).

Here µ, λ respectively denote the Haar measure and left regular representation on
the (unimodular) group G, whereas Tg = αgTαg−1 is a twisted form of a classical
CZO T on Rn by the cocycle action α. We refer to [34, 50] for further results.

C) Quantum deformations. PDEs in matrix algebras and ‘noncommutative
manifolds’ appear naturally in theoretical physics. Pseudodifferential operators
were introduced by Connes in 1980 to study a quantum form of the Atiyah-Singer
index theorem over these algebras. These techniques have been underexploited over
the last 30 years, due to fundamental obstructions to understand singular integral
theory in this context. The core of singular integrals and pseudodifferential operator
Lp-theory was developed in [24] over the archetypal algebras of noncommutative
geometry. It includes quantum tori, Heisenberg-Weyl algebras and other quantum
deformations of Rn of great interest in quantum field theory, string theory and
quantum probability. This was the first approach to a ‘fully noncommutative’
Calderón-Zygmund theory for CZOs not acting on copies of Rn as tensor or crossed
product factors, but still related to Euclidean methods.
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We introduce in this paper the first form of Calderón-Zygmund theory valid
for general (semifinite) von Neumann algebras. As we explained above, the main
difficulty arises from the lack of very standard geometric tools, like the existence
of a nice underlying metric or the construction of suitable covering lemmas. We
shall circumvent it using a very different approach based on algebraic properties of
a given Markov process. Our applications cover a wide variety of scenarios which
will be discussed, giving especial emphasis to noncommutative forms of Euclidean
spaces and locally compact abelian groups, which are our main classical models. In
the first case, we shall weaken/optimize the CZ conditions on quantum Euclidean
spaces [24]. In the second case, LCA groups correspond to quantum groups which
are both commutative and cocommutative [60]. We shall give CZ conditions for
convolution maps over quantum groups. In the cocommutative (non necessarily
commutative) context, this includes group von Neumann algebras.

Calderón-Zygmund extrapolation

Based on the behavior of the Hilbert transform in the real line, the main goal
of Calderón-Zygmund theory is to establish regularity properties on the kernel of
a singular integral operator, so that L2-boundedness automatically extrapolates to
Lp boundedness for 1 < p < ∞. A singular integral operator in a Riemannian
manifold (X,d, µ) admits the kernel representation

Tkf(x) =

∫
X

k(x, y)f(y) dµ(y) for x /∈ suppf.

Namely, Tk is only assumed a priori to send test functions into distributions, so that
it admits a distributional kernel in X × X which coincides in turn with a locally
integrable function k away from the diagonal x = y, where the kernel presents
certain singularity. This already justifies the assumption x /∈ suppf in the kernel
representation. The work in [6, 29] culminated in the following sufficient conditions
on a singular integral operator in Rn for its Lp-boundedness:

i) L2-boundedness ∥∥Tk : L2(Rn) → L2(Rn)
∥∥ <∞.

ii) Hörmander kernel smoothness

ess sup
x,y∈Rn

∫
|x−z|>2|x−y|

∣∣k(x, z)− k(y, z)
∣∣+ ∣∣k(z, x)− k(z, y)

∣∣ dz <∞.

Historically, this was used to prove a weak endpoint inequality in L1. The same
holds for Riemannian manifolds with nonnegative Ricci curvature [1]. Alternatively
it is simpler to use L2-boundedness and the kernel smoothness condition to prove
L∞ → BMO boundedness. The result then follows by well-known duality and
interpolation arguments. Our strategy resembles this approach:

P1. Identify the appropriate BMO spaces.
P2. Prove the expected interpolation results with Lp spaces.
P3. Provide conditions on CZO’s which yield L∞ → BMO boundedness.

In the classical setting, we typically find H1/BMO spaces associated to a metric or a
martingale filtration. Duong and Yan [19, 20] extended this theory replacing some
averages over balls in the metric space by semigroups of positive operators, although
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the existence of a metric was still assumed. This assumption was removed in [32, 44]
providing a theory of semigroup type BMO spaces with no further assumptions on
the given space. In particular, we could say that Problems 1 and 2 were solved in
[32], but it has been unclear since then how to provide natural CZ conditions which
imply L∞ → BMO estimates. In this paper we solve P3 by splitting it into:

P3a. Construct a ‘metric’ governing the Markov process.
P3b. Define ‘metric BMO’ spaces which still interpolate with the Lp scale.
P3c. Provide CZ conditions giving L∞ → BMO boundedness for metric BMO’s.

P3a. Markov metrics. Given a Markov semigroup S = (St)t≥0 on the semifinite
von Neumann algebra (M, τ) —in other words, formed by normal self-adjoint cpu
maps St— we introduce a Markov metric for it as any family

Q =
{(
Rj,t, σj,t, γj,t

)
: (j, t) ∈ Z+ × R+

}
composed of completely positive unital (cpu) maps Rj,t : M → M and elements
σj,t, γj,t of M with γj,t ≥ 1M, such that the following estimates (which show how
the Markov metric governs the Markov semigroup in a controlled way) hold:

i) Hilbert module majorization:
⟨
ξ, ξ
⟩
St

≤
∑
j≥1

σ∗
j,t

⟨
ξ, ξ
⟩
Rj,t

σj,t.

ii) Metric integrability condition: kQ = sup
t>0

∥∥∥∑
j≥1

σ∗
j,tγ

2
j,tσj,t

∥∥∥ 1
2

M
< ∞.

Here ⟨ , ⟩Φ is the M-valued inner product on M⊗̄M for any cpu map Φ, given by
⟨a ⊗ b, a′ ⊗ b′⟩Φ = b∗Φ(a∗a′)b′. Markov metrics are a priori unrelated to Rieffel’s
quantum metric spaces [55, 56]. They present on the contrary vague similarities
with abstract formulations of classical CZ theory in the absence of CZ kernels
and/or doubling measures [2, 62]. We shall explain what motivates our definition
below and we shall also illustrate how Euclidean and other classical metrics fit in.

P3b. Metric type BMO spaces. Let

∥f∥BMOc
S
= sup

t≥0

∥∥∥(St(f
∗f)− (Stf)

∗(Stf)
) 1

2
∥∥∥
M

and ∥f∥BMOS = max{∥f∥BMOc
S
, ∥f∗∥BMOc

S
}. We shall define the semigroup type

BMO space BMOS(M) as the weak-∗ closure of M in certain direct sum of Hilbert
modules determined by S = (St)t≥0. These spaces interpolate with the Lp scale
[32]. Given a Markov metricQ associated to this semigroup, let us define in addition

∥f∥BMOQ = max
{
∥f∥BMOc

Q
, ∥f∗∥BMOc

Q

}
,

∥f∥BMOc
Q
= sup

t>0
inf

Mt cpu
Mt:M→M

sup
j≥1

∥∥∥(γ−1
j,t

[
Rj,t|f |2−|Rj,tf |2+ |Rj,tf−Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M
.

Theorem A1. Let (M, τ) be a semifinite von Neumann algebra equipped with a
Markov semigroup S = (St)t≥0. Let us consider a Markov metric Q associated to
S = (St)t≥0. Then, we find

∥f∥BMOS ≲ kQ ∥f∥BMOQ .

Thus, defining BMOQ(M) as a subspace of BMOS(M), it interpolates with Lp(M).
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Theorem A1 solves P3b. Its proof is not hard after having defined the right
notion of Markov metric and the right BMO norm. Let us note in passing that the
term Rj,tf −Mtf is there to accommodate nondoubling spaces to our definition in
the spirit of Tolsa’s RBMO space [62]. As a consequence of Theorem A1, proving
L∞ → BMO boundedness for metric BMO’s (Problem 3c) implies the same result
for semigroup BMO spaces (Problem 3). Of course, one could try to prove such a
statement directly, but it seems that the metric/measure relation found with these
new notions is crucial for a noncommutative CZ theory.

P3c. Calderón-Zygmund operators. The commutative idea behind the notion
of Markov metric (explained in more detail in the body of the paper) is to find
pointwise majorants of the integral kernels of our semigroup S = (St)t≥0, so that
we can dominate St by certain sum of averaging operators over a distinguished
family of measurable sets Σj,t(x). These sets may be considered as the ‘balls’ in
the Markov metric. In the noncommutative setting, this pointwise estimates must
be written in terms of the given Hilbert module majorization and the cpu maps Rj,t

must be averages over certain projections qj,t. Making this precise in full generality
is one of the challenges of our algebraic approach and too technical to be explained
at this point of the paper. A simple model case is given by

(Avg) Rj,tf = (id⊗ τ)(qj,t)
− 1

2 (id⊗ τ)
(
qj,t(1⊗ f)qj,t

)
(id⊗ τ)(qj,t)

− 1
2

for certain family of projections qj,t ∈ M⊗̄M. The linear map R̂j,t(1⊗ f) = Rj,tf
trivially amplifies to M⊗̄M. We may also consider similar formulas for the cpu
maps Mt in the metric BMO norm. (Avg) allows to identify the Markov metric in
terms of the ‘balls’ qj,t instead of the corresponding averaging maps Rj,t.

As it happens in classical Calderón-Zygmund theory, we need to impose some
additional properties in the Markov metric to establish a good relation with the
underlying (noncommutative) measure. We have split these into algebraic and
analytic conditions, further details will be given in the text. Let us just mention
that the algebraic ones are inherent to noncommutativity and hold trivially in
commutative cases. The analytic ones provide forms of Jensen’s inequality and
a measure/metric growth condition. Once we know the Markov metric satisfies
these conditions, we may introduce Calderón-Zygmund operators. Assume that
T (AM) ⊂ M for a map T acting on a weak-∗ dense subalgebra AM ⊂ M. The
goal is to establish sufficient Calderón-Zygmund conditions on T for L∞ → BMOc

boundedness. These are noncommutative forms of standard properties. Again, it
is unnecessary to introduce them here in full generality, we do it in Section 2. In
the model case above, our CZ conditions are:

i) L∞(Lc
2)-boundedness∥∥∥(id⊗ τ)

(
(id⊗ T )(x)∗(id⊗ T )(x)

) 1
2
∥∥∥
M

≲
∥∥(id⊗ τ)(x∗x)

1
2

∥∥
M.

ii) Size ‘kernel’ conditions

• M̂t

(∣∣(id⊗ T )
(
(1⊗ f)(Aj,t − at)

)∣∣2) ≲ γ2j,t∥f∥2M,

• R̂j,t

(∣∣(id⊗ T )
(
(1⊗ f)(Aj,t − aj,t)

)∣∣2) ≲ γ2j,t∥f∥2M,

for certain family of operators Aj,t, aj,t ∈ M⊗̄M with Aj,t ≥ aj,t.
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iii) Hörmander ‘kernel’ conditions

• Φj,t

(∣∣δ((id⊗ T )
(
(1⊗ f)(1 − aj,t)

))∣∣2) ≲ γ2j,t∥f∥2M,

• Ψj,t

(∣∣δ((id⊗ T )
(
(1⊗ f)(1−Aj,t)

))∣∣2) ≲ γ2j,t∥f∥2M,

for certain family of cpu linear maps Φj,t,Ψj,t : M⊗̄M → M.

In condition ii), Aj,t and aj,t play the role of ‘dilated balls’ from qj,t. In the last
condition, δ is the derivation x 7→ x ⊗ 1 − 1 ⊗ x acting on the second leg of the
tensor product. In the Euclidean case, these conditions reduce to L2-boundedness
and the classical size/smoothness conditions for the kernel. Our general conditions
include many more amplification algebras and derivations, other than M⊗̄M and
δ. Any map T : AM → M satisfying the above CZ-conditions will be called a
column CZ-operator.

Theorem A2 . Let (M, τ) be a semifinite von Neumann algebra equipped with
a Markov semigroup S = (St)t≥0 with associated Markov metric Q fulfilling our
algebraic and analytic assumptions. Then, any column CZ-operator T defines a
bounded operator

T : AM → BMOc
Q(M).

Interpolation and duality give similar (symmetrized) conditions for Lp-boundedness.

A generalized form of Theorem A2 is the main result of this paper. It is easy
to recover Euclidean CZ-extrapolation from it. In the Euclidean and many other
doubling scenarios, the size kernel condition ii) does not play any role. Our next
goal is to explore how the general form of Theorem A2 applies in concrete von
Neumann algebras with specific Markov metrics.

Applications

Algebraic Calderón-Zygmund theory applies in classical and noncommutative
measure spaces. In the commutative context, we shall limit ourselves to prove
that algebraic and classical theories match in three important cases: Euclidean
spaces with both Lebesgue or Gaussian measures and Riemannian manifolds with
non-negative Ricci curvature. We shall not explore further implications in new
commutative scenarios, like abstract probability spaces or fractals equipped with
specific Dirichlet forms. In the noncommutative context, we start by analyzing
the model case of matrix-valued functions from a very general viewpoint. We also
consider Calderón-Zygmund operators over matrix algebras, generalizing triangular
truncations as the archetype of singular integral operator. Most importantly, our
abstract theory applies to quantum Euclidean spaces and quantum groups, which
constitute our main motivations in this paper.

It will be useful to specify the form that our Calderón-Zygmund operators take
when come associated to a concrete kernel. Our applications below include CZ
conditions on the kernel. In the basic model case above, we set

(Ker 1) Tkf = (id⊗ τ)
(
k(1⊗ f)

)
for some kernel k affiliated to M⊗̄Mop. Recall that the opposite structure (Mop

is the same algebra M endowed with the reversed product a · b = ba) in the second
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tensor leg of the kernel for this (standard) model was already justified in [24]. It is
a feature of CZ theory which can only be witnessed in noncommutative algebras. It
will also be useful to generalize a bit our model case before analyzing any concrete
application. Consider an auxiliary von Neumann algebra A equipped with a n.s.f.
trace φ, a ∗-homomorphism σ : M → A⊗̄M and the representation

(Ker 2) Sk̃f = (id⊗ φ)
(
k̃ flip ◦ σ(f)

)
for some kernel k̃ affiliated to M⊗̄Aop. Of course, when A = M and σ(f) = 1⊗ f
we recover our model case above, with kernel representation (Ker 1). This more
general framework requires to redefine Rj,t in (Avg) and the CZ conditions, as we
shall do in the body of the paper. The advantage is to take A as an elementary
(commutative) algebra, from which we can transfer metric information. One may
think of σ as a corepresentation in the terminology of quantum groups. Theorem
A2 still holds in this case. We shall refer to intrinsic or transferred theories when
using the model case A = M or its generalization respectively.

Quantum Euclidean spaces. As geometrical spaces with noncommuting spatial
coordinates, quantum Euclidean spaces have appeared frequently in the literature
of mathematical physics, in the contexts of string theory and noncommutative
field theory. These algebras play the role of a central and testing example in
noncommutative geometry as well. The singular integral operators on quantum
Euclidean spaces naturally appear in the recent study of Connes’ quantized calculus
[40, 42, 58] and noncommutative harmonic analysis [11, 24, 25, 65]. Let

Θ ∈Mn(R)

be anti-symmetric. Briefly, the quantum Euclidean space RΘ is the von Neumann
algebra generated by certain family of unitaries {uj(s) : 1 ≤ j ≤ n, s ∈ R} satisfying

uj(s)uj(t) = uj(s+ t),

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

Define λΘ(ξ) = u1(ξ1)u2(ξ2) · · ·un(ξn) and set

f =

∫
Rn

f̌Θ(ξ)λΘ(ξ) dξ = λΘ(f̌Θ).

for f̌Θ ∈ Cc(Rn). The trace on RΘ is determined by

τΘ(f) = τΘ

(∫
Rn

f̌Θ(ξ)λΘ(ξ) dξ

)
= f̌Θ(0).

When Θ = 0, Lp(RΘ, τΘ) reduces to Lp(Rn) with the Lebesgue measure. Precise
definitions and a theory of singular integrals forRΘ appears in [24]. The main result
relies on gradient kernel conditions for the intrinsic model (Ker 1). Remarkably, we
show in this paper that the transference model (Ker 2)

σΘ : RΘ ∋ λΘ(ξ) 7→ expξ ⊗λΘ(ξ) ∈ L∞(Rn)⊗̄RΘ

goes further, since it just requires Hörmander type smoothness for the kernel. Here
expξ stands for the ξ-th character exp(2πi⟨ξ, ·⟩) in Rn. There is a close relation
between both models in this case

Tk(f) = Sk̃(f) for k = π̃Θ(k̃) and π̃Θ(m⊗ expξ) = mλΘ(ξ)
∗ ⊗ λΘ(ξ).
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Another crucial map is the ∗-homomorphism

πΘ : L∞(Rn) ∋ expξ 7→ λΘ(ξ)⊗ λΘ(ξ)
∗ ∈ RΘ⊗̄Rop

Θ .

If BR denotes the Euclidean R-ball centered at the origin, define the projections
aR = πΘ(15BR

) and a⊥R = 1− aR. Set kσ = (σΘ ⊗ idRop
Θ
)(k) ∈ L∞(Rn)⊗̄RΘ⊗̄Rop

Θ

and define the derivation δφ(x, y) = φ(x) − φ(y) to set the kernel condition in
L∞(Rn)⊗̄RΘ⊗̄Rop

Θ

(Hör) sup
|x|≤R,|y|≤R

∣∣∣δ((id⊗ id⊗ τΘ)
[
kσ(1⊗ 1⊗ f)(1⊗ a⊥R)

])
(x, y)

∣∣∣ ≲ ∥f∥RΘ
.

As we shall justify in the paper, (Hör) is the right form of Hörmander kernel
condition in this framework. The column BMO-norm admits in RΘ an equivalent
form

∥f∥BMOc(RΘ) ≈ ∥σΘ(f)∥BMOc(Rn;RΘ)

for the operator-valued BMO space BMOc(Rn;RΘ) from [43]. These are all the
ingredients to obtain Calderón-Zygmund extrapolation over quantum Euclidean
spaces. Namely, the general form of Theorem A2 then yields the following theorem.

Theorem B1. Tk is bounded from RΘ to BMOc(RΘ) provided :

i) Tk is bounded on L2(RΘ).
ii) The kernel condition (Hör) holds.

Interpolation and duality give similar (symmetrized) conditions for Lp-boundedness.

Theorem B1 improves the main CZ extrapolation theorem in [24] by reducing the
gradient kernel condition there to the (more flexible) Hörmander integral condition
above, as we shall prove along the paper. In fact, the result which we shall finally
prove is slightly more general than the statement above.

Quantum groups. Let G be a locally compact group with a left invariant Haar
measure µ. When G is abelian, the Fourier transform carries the convolution algebra

L1(G, µ) into the multiplication algebra L∞(Ĝ, µ̂) associated to the dual group
with its (normalized) Haar measure. However, when G is not abelian, we can not
construct the dual group and the multiplication algebra above becomes the group
von Neumann algebra which is generated by the left regular representation of G.
These algebras are basic models of (noncommutative, but still cocommutative)
quantum groups, over which we shall study singular integrals.

Let G be a locally compact quantum group —precise definitions in the body
of the paper— with comultiplication ∆ and left-invariant and right-invariant Haar
weights ψ, φ. Given a weak-∗ dense subspace A of L∞(G) and a linear map T
satisfying T (A) ⊂ L∞(G), it is is a convolution map when

(T ⊗ idG) ◦∆ = ∆ ◦ T = (idG ⊗ T ) ◦∆.
To simplify the problem, we shall consider the case where G admits an α-doubling
intrinsic Markov metric. That is, the projections which generate the cpu maps
Rj,t’s satisfy

ψ(qα(j),t)

ψ(qj,t)
≤ cα

for a strictly increasing function α : N → N with α(j) > j and a constant cα.
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Theorem B2. Let G be a locally compact quantum group and assume it comes
equipped with a convolution semigroup S = (St)t≥0 which admits an α-doubling
intrinsic Markov metric. Let T : A → L∞(G) be a convolution map defined on a
weakly dense ∗-subalgebra A of L∞(G) such that

i) T is bounded on L2(G).

ii)
1

|ψ(qj,t)|2
(ψ ⊗ ψ)

(
(qj,t ⊗ qj,t)

∣∣δ(T (fq⊥α(j),t)∣∣2) ≲ ∥f∥2L∞(G).

Then, the linear map T extends to a bounded map T : L∞(G) → BMOc
S(L∞(G)).

As usual, Lp estimates follow from symmetrized conditions by interpolation and
duality. In fact, we shall prove a more general statement which incorporates tensor
products with an additional algebra (M, τ). Theorem B2 is proved one more time
from Theorem A2. In fact, it is conceivable to remove the α-doubling restriction and
still make the convolution map bounded under an additional size kernel condition
as Theorem A2 indicates.

Noncommutative transference. In a different direction, we shall finish this
paper with a section devoted to noncommutative forms of Calderón-Cotlar method
of transference [5, 13, 15]. The basic idea is to transfer Lp estimates of convolution
maps on quantum groups to a much wider class of maps which arise by transference.
We refer to [7, 9, 11, 48, 50, 54] for other forms of transference in the context of
group von Neumann algebras and quantum tori.

1. Markov metrics

An abstract form of Calderón-Zygmund theory incorporating noncommutative
algebras lacks standard geometrical tools. Given a Markov semigroup on a von
Neumann algebra —a semigroup of normal cpu self-adjoint maps on the given
algebra— we shall construct a ‘metric’ governing the Markov process. Our model
case in a commutative measure space (Ω, µ) is a Markov semigroup of linear maps
of the form

Stf(x) =

∫
Ω

st(x, y)f(y) dµ(y).

The idea is to find pointwise majorants of the form

(1.1) st(x, y) ≤
∞∑
j=1

|σj,t(x)|2

µ(Σj,t(x))
χΣj,t(x)(y),

so that Stf(x) is dominated by a given combination of averaging operators over
certain measurable sets Σj,t(x). These sets will determine some sort of metric on
(Ω, µ) under additional integrability properties. Naively, we may think of them as
balls or coronas around x in the hidden metric with radii depending on (j, t). In
this section we formalize this idea and construct BMO spaces with respect to the
associated ‘Markov metric’ which satisfy the expected interpolation results.

1.1. Hilbert modules. A noncommutative measure space is a pair (M, τ) formed
by a semifinite von Neumann algebra M and a n.s.f. trace τ . We assume in what
follows that the reader is familiar with basic terminology from noncommutative
integration theory [36, 61]. Nonexpert readers may proceed by fixing a measure
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space (Ω, µ) with M = L∞(Ω) and τ the integral operator associated to µ. Given
a cpu map Φ : M → M we may construct the Hilbert module M⊗̄ΦM. Namely
consider the seminorm on M⊗M

∥ξ∥M⊗̄ΦM =
∥∥√⟨ξ, ξ⟩Φ

∥∥
M

determined by the M-valued inner product⟨∑
j
aj ⊗ bj ,

∑
k
a′k ⊗ b′k

⟩
Φ
=
∑

j,k
b∗jΦ(a

∗
ja

′
k)b

′
k.

Then M⊗̄ΦM will stand for the completion in the topology determined by ξα → ξ
when τ(⟨ξ− ξα, ξ− ξα⟩Φ g) → 0 for all g ∈ L1(M). When Φ is normal, the abstract
characterization of Hilbert modules [51] yields a weak-∗ continuous rightM-module
map ρ : M⊗̄ΦM → Hc⊗̄M satisfying ⟨ξ, η⟩Φ = ρ(ξ)∗ρ(η). Let us collect a few
properties which will be instrumental along this paper.

Lemma 1.1. Given a cpu map Φ : M → M :

i)
⟨
ξ1 + ξ2, ξ1 + ξ2

⟩
Φ
≤ 2
⟨
ξ1, ξ1

⟩
Φ
+ 2
⟨
ξ2, ξ2

⟩
Φ
,

ii)
∥∥f ⊗ 1M − 1M ⊗ Φf

∥∥
M⊗̄ΦM =

∥∥Φ|f |2 − |Φf |2
∥∥ 1

2

M,

iii)
∣∣Φf − g

∣∣2 ≤
⟨
f ⊗ 1M − 1M ⊗ g, f ⊗ 1M − 1M ⊗ g

⟩
Φ
,

iv)
∥∥f ⊗ 1M − 1M ⊗ Φf

∥∥
M⊗̄ΦM ∼ inf

g∈M

∥∥f ⊗ 1M − 1M ⊗ g
∥∥
M⊗̄ΦM,

v) If Φ ≤cp

∑
k βkΨk, then

∥ξ∥M⊗̄ΦM ≤
(∑

k
βk∥ξ∥2M⊗̄Ψk

M

) 1
2

.

Proof. The first inequality follows from hermitianity of the inner product and the
identity ⟨ξ, η⟩Φ = ρ(ξ)∗ρ(η) explained above. The second one is straightforward
from the definition of M⊗̄ΦM. The third inequality follows from Kadison-Schwarz
inequality after expanding both sides. The lower estimate in iv) holds trivially with
constant 1, while the upper estimate holds with constant 2 since

f ⊗ 1M − 1M ⊗ Φf = (f ⊗ 1M − 1M ⊗ g)− (1M ⊗ (Φf − g))

and the second term on the right hand side is estimated using iii). Finally, for the
last inequality let ξ =

∑
k ak⊗Bj and define the column matrices A∗ =

∑
k a

∗
k⊗ek1

and B =
∑

k Bj ⊗ ek1. Then we find⟨
ξ, ξ
⟩
Φ

=
∑

j,k
b∗jΦ(a

∗
jak)Bj = B∗Φ(A∗A)B

≤
∑

k
βkB

∗Ψk(A
∗A)B =

∑
k
βk
⟨
ξ, ξ
⟩
Ψk
. □

Let (M, τ) denote a noncommutative measure space equipped with a Markov
semigroup S = (St)t≥0 acting on it. A Markov metric associated to (M, τ) and S
is determined by a family

Q =
{(
Rj,t, σj,t, γj,t

)
: (j, t) ∈ Z+ × R+

}
where Rj,t : M → M are completely positive unital maps and σj,t, γj,t are elements
of the von Neumann algebra M with γj,t ≥ 1M, so that the estimates below hold:

i) Hilbert module majorization:
⟨
ξ, ξ
⟩
St

≤
∑
j≥1

σ∗
j,t

⟨
ξ, ξ
⟩
Rj,t

σj,t,
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ii) Metric integrability condition: kQ = sup
t>0

∥∥∥∑
j≥1

σ∗
j,tγ

2
j,tσj,t

∥∥∥ 1
2

M
< ∞.

Our notion of Markov metric is easily understood for our (commutative) model
case above. Let S = (St)t≥0 be a Markov semigroup on (Ω, µ) with associated
kernels st(x, y) satisfying the pointwise estimate (1.1). Given ξ : Ω × Ω → C
essentially bounded, we have

(1.2)
⟨
ξ, ξ
⟩
St
=

∫
Ω

st(x, y)|ξ(x, y)|2 dµ(y) ≤
∞∑
j=1

|σj,t(x)|2

µ(Σj,t(x))

∫
Σj,t(x)

|ξ(x, y)|2 dµ(y).

This means that Rj,tf(x) is the average of f over the set Σj,t(x). Reciprocally, if we
take ξk(x, y) = ϕk(y0−y) to be an approximation of identity around y0, we recover
the pointwise estimates for the kernel st(x, y0). In other more general contexts, the
upper bounds for the kernel or even the kernel description of the semigroup might
not have the same form. As we shall see, many of these cases can still be handled
via Hilbert module majorization. We shall provide along the paper a wide variety
of examples which fall into these possible classes.

1.2. Semigroup BMOs. Given a noncommutative measure space (M, τ) and a
Markov semigroup S = (St)t≥0 acting on (M, τ), we may define the semigroup
BMOS -norm as

∥f∥BMOS = max
{
∥f∥BMOr

S
, ∥f∥BMOc

S

}
,

where the row and column BMO norms are given by

∥f∥BMOr
S

= sup
t≥0

∥∥∥(St(ff
∗)− (Stf)(Stf)

∗
) 1

2
∥∥∥
M
,

∥f∥BMOc
S

= sup
t≥0

∥∥∥(St(f
∗f)− (Stf)

∗(Stf)
) 1

2
∥∥∥
M
.

This definition makes sense since we know from the Kadison-Schwarz inequality
that |Stf |2 ≤ St|f |2. The null space of this seminorm is kerA∞, the fixed-point
subspace of our semigroup. Indeed, if ∥f∥BMOS = 0 we know from [12] that f
belongs to the multiplicative domain of St, so that

τ(gf) = τ(St/2(gf)) = τ(St/2(g)St/2(f)) = τ(gSt(f)).

This proves that f is fixed by the semigroup. Reciprocally, kerA∞ is a ∗-subalgebra
of M by [35]. Thus, the seminorm vanishes on kerA∞. In particular, we obtain a
norm after quotienting out kerA∞. Letting wt(f) = f ⊗ 1− 1⊗ Stf , this provides
us with a map

f ∈ M w7−→
(
wt(f)

)
t≥0

∈
⊕
t≥0

M⊗̄StM

which becomes isometric when we equip M with the norm in BMOc
S . Define BMOc

S
as the weak-∗ closure of w(M) in the latter space. Similarly, we may define BMOS
as the intersection BMOr

S ∩BMOc
S , where the row BMO follows by taking adjoints

above. The natural operator space structure is given by

Mm(BMOS(M)) = BMOŜ(Mm(M)) with Ŝt = idMm
⊗ St.

Remark 1.2. Incidentally, we note that BMOS is written as bmo(S) in [32].
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It will be essential for us to provide interpolation results between semigroup type
BMO spaces and the corresponding noncommutative Lp spaces. It is a hard problem
to identify the minimal regularity on the semigroup S = (St)t≥0 which suffices for
this purpose. The first substantial progress was announced in a preliminary version
of [31], where the gradient form 2Γ(f1, f2) = A(f∗1 )f2 + f∗1A(f2) − A(f∗1 f2) with
A the infinitesimal generator of the semigroup, was a key tool in finding sufficient
regularity conditions in terms of nice enough Markov dilations. However we know
after [32] an even sharper condition. Consider the sets

ASf =
{
Btf =

1

t

(
St(f

2) + f2 − St(f)f − fSt(f)
)
: t > 0

}
,

Γ1M =
{
f ∈ Ms.a. : ASf is relatively compact in L1(M)

}
,

where Ms.a. denotes the self-adjoint part of M. The family ASf is called uniformly
integrable in L1(M) if for all ε > 0 there exists δ > 0 such that ∥(Btf)q∥1 < ε
for every projection q satisfying τ(q) < δ. It is well-known that ASf is relatively
compact in L1(M) if and only if it is bounded and uniformly integrable. Let us
also recall that Btf → 2Γ(f, f) as t→ 0. Define

L◦
p(M) =

{
f ∈ Lp(M) : lim

t→∞
Stf = 0

}
.

As it was explained in [32], the space L◦
p(M) is complemented in Lp(M) and

[L◦
1(M),BMOS ] form an interpolation couple. A Markov semigroup S = (St)t≥0

satisfying that Γ1M is weak-∗ dense in Ms.a. is called regular. All the semigroups
that we handle in this paper are regular. The following result will be crucial in
what follows, we refer the reader to [32] for a detailed proof.

Theorem 1.3. If S = (St)t≥0 is regular on (M, τ)[
BMOS , L

◦
p(M)

]
p/q

≃cb L
◦
q(M) for all 1 ≤ p < q <∞.

Note that interpolation against the full space Lp(M) is meaningless since BMOS
does not distinguish the fixed-point space of the semigroup. Very roughly, we
shall typically apply the above result to a CZO which is bounded on L2(M) and
sends a weak-∗ dense subalgebra A of M to BMOS . Recalling the projection map
Jp : Lp(M) → L◦

p(M) and letting T denote the CZO, we find by interpolation and
the weak-∗ density of A that

JpT : Lp(M) =
[
A, L2(M)

]
2/p

→
[
BMOS , L

◦
2(M)

]
2/p

= L◦
p(M) ⊂ Lp(M).

To obtain Lp boundedness of T , it suffices to assume that T leaves the fixed-point
space invariant and is bounded on it. It should be noticed though, that in many
cases the Lp boundedness of the CZO follows automatically. For instance, in Rn

with the Lebesgue measure and the heat semigroup, it turns out that Lp = L◦
p. On

the other hand, the fixed-point space for the Poisson semigroup on the n-torus is just
composed of constant functions and the corresponding projection can be estimated
apart regarded as a conditional expectation. Moreover, the same applies for Fourier
multipliers on arbitrary discrete groups. The Lp boundedness for 1 < p < 2 will
follow by taking adjoints under certain symmetry on the hypotheses.
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1.3. Markov metric BMOs. Let us now introduce a Markov metric type BMO
space for von Neumann algebras and relate it with the semigroup type BMO spaces
defined above. Given a Markov semigroup S = (St)t≥0 acting on (M, τ), consider
a Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+} as defined above and
define ∥f∥BMOQ = max{∥f∥BMOc

Q
, ∥f∗∥BMOc

Q
}, where the column BMO-norm is

given by

sup
t>0

inf
Mt cpu

sup
j≥1

∥∥∥(γ−1
j,t

[
Rj,t|f |2 − |Rj,tf |2 + |Rj,tf −Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

and the infimum runs over cpu maps Mt : M → M. Since γj,t ≥ 1M, the inverses
exist and L∞(M) embeds in BMOQ. Indeed, using that Rj,t and Mt are cpu, the

square braket above is bounded by 5∥f∥2∞1M and γ−2
j,t ≤ 1M. The row norm is

estimated in the same way. Now, recalling the value of the constant kQ in our
definition of Markov metric, we prove that BMOQ embeds in BMOS .

Theorem 1.4. Let (M, τ) be a noncommutative measure space equipped with a
Markov semigroup S = (St)t≥0. Let us consider a Markov metric Q associated to
S = (St)t≥0. Then, we find

∥f∥BMOS ≲ kQ ∥f∥BMOQ .

In particular, we see that L∞(M) ⊂ BMOQ ⊂ BMOS and[
BMOQ, L

◦
p(M)

]
p/q

≃ L◦
q(M) for all 1 ≤ p < q <∞

for any Markov metric Q associated to a regular semigroup S = (St)t≥0 on (M, τ).

Proof. Let us set

ξt = f ⊗ 1M − 1M ⊗Mtf

= (f ⊗ 1M − 1M ⊗Rj,tf) + (1M ⊗ (Rj,tf −Mtf)) = ξ1j,t + ξ2j,t.

The assertion follows from Lemma 1.1 and our definition of Markov metric

∥f∥BMOc
S

= sup
t>0

∥∥∥(St|f |2 − |Stf |2
) 1

2
∥∥∥
M

= sup
t>0

∥∥f ⊗ 1M − 1M ⊗ Stf
∥∥
M⊗̄St

M

≲ sup
t>0

∥∥f ⊗ 1M − 1M ⊗Mtf
∥∥
M⊗̄St

M = sup
t>0

∥⟨ξt, ξt⟩St
∥

1
2

M

≲ sup
t>0

∥∥∥∑
j≥1

σ∗
j,t

[
⟨ξ1j,t, ξ1j,t⟩Rj,t

+ ⟨ξ2j,t, ξ2j,t⟩Rj,t

]
σj,t

∥∥∥ 1
2

M

≤ kQ∥f∥BMOc
Q
.

The identities are clear. The first inequality follow from Lemma 1.1 iv), the second
one from the Hilbert module majorization associated to the Markov metric and
Lemma 1.1 i). To justify the last inequality, note that the square bracket inside the
term on the left equals Rj,t|f |2−|Rj,tf |2+|Rj,tf−Mtf |2. Hence, left multiplication

by γj,tγ
−1
j,t and right multiplication by γ−1

j,t γj,t yields the given inequality with kQ
the metric integrability constant. The interpolation result follows from Theorem
1.3 and the embeddings L∞(M) ⊂ BMOQ ⊂ BMOS . The proof is complete. □
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Remark 1.5. Let ξ =
∑

j Aj ⊗Bj , with

Aj =
(
ajαβ

)
and Bj =

(
bjαβ

)
elements of Mm(M). If Ŝt = idMm

⊗ St, it turns out that⟨
ξ, ξ
⟩
Ŝt

=

(
m∑

α=1

⟨∑
j,β

ajαβ ⊗ bjβγ1︸ ︷︷ ︸
ηα,γ1

,
∑
j,β

ajαβ ⊗ bjβγ2︸ ︷︷ ︸
ηα,γ2

⟩
St

)
γ1,γ2

∈Mm(M).

This can be used to provide an operator space structure on BMOQ. Namely, the
canonical choice for the matrix norms is Mm(BMOQ(M)) = BMOQ̂(Mm(M))

where the Markov metric on Mm(M)

Q̂ =
{(
idMm

⊗Rj,t,1Mm
⊗ σj,t,1Mm

⊗ γj,t
)}

is associated to the extended semigroup (Ŝt)t≥0. Then, we trivially obtain that
kQ̂ = kQ < ∞. However, according to the identity above for ⟨ξ, ξ⟩Ŝt

, the Hilbert
module majorization takes the form(

m∑
α=1

⟨
ηα,γ1

, ηα,γ2

⟩
St

)
γ1,γ2

≤
∑
j≥1

(
σ∗
j,t

m∑
α=1

⟨
ηα,γ1

, ηα,γ2

⟩
Rj,t

σj,t

)
γ1,γ2

.

This gives a matrix-valued generalization of our Hilbert module majorization for
S = (St)t≥0 on M, to be checked when we use this o.s.s. Theorem 1.4 yields
a cb-embedding of BMOQ into BMOS under this assumption. According to the
characterization (1.2), it holds for Markov metrics on commutative spaces (Ω, µ).

1.4. The Euclidean metric. Before using Markov metrics in our approach to
Calderón-Zygmund theory, it is illustrative to recover the Euclidean metric from a
suitable Markov semigroup. Let S = (Ht)t≥0 denote the classical heat semigroup
on Rn, with kernels

ht(x, y) =
1

(4πt)
n
2
exp

(−|x− y|2

4t

)
.

Take Q =
{
(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+

}
determined by

• σ2
j,t ≡ 2e√

π
j

n
2 e−j and γ2j,t ≡ j

n
2 ≥ 1,

• Rj,tf(x) =
1

|B√
4jt(x)|

∫
B√

4jt(x)

f(y) dy.

Note that σj,t and γj,t are allowed to be essentially bounded functions in Rn, but
in this case it suffices to take constant functions. In the definition of Rj,t, we write
Br(x) to denote the Euclidean ball in Rn centered at x with radius r. It is clear that
Rj,t defines a cpu map on L∞(Rn). To show that Q defines a Markov metric, we
need to check that it provides a Hilbert module majorization of the heat semigroup
and the metric integrability condition holds. The latter is straightforward, while
the Hilbert module majorization reduces to check that

ht(x, y) ≤ 2e√
π

∑
j≥1

j
n
2 e−j

|B√
4jt(x)|

χB√
4jt(x)

(y).
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This can be justified by determining the unique corona centered at x with radii√
4(j − 1)t and

√
4jt where y lives, details are left to the reader. Note that we

could have taken γj,t ≡ 1 and still obtain a Markov metric. Our choice will be
justified below and also in the next section, where we shall need γj,t ≡ j

n
2 to

compare BMOQ with other BMO spaces which interpolate. Before that, our only
evidences that this is the right Markov metric in the Euclidean case are the fact
that the Rj,t’s are averages over Euclidean balls and the isomorphism

BMOQ = BMORn ,

where the latter space is the usual BMO space in Rn

∥f∥BMORn = sup
B⊂Rn

( 1

|B|

∫
B

∣∣f(x)− fB
∣∣2 dx) 1

2

.

Here, the supremum is taken over all Euclidean balls B in Rn and fB stands for the
average of f over B. Let us justify this isomorphism. If we pick Mtf(x) = R1,tf(x)
it follows from a standard calculation that∣∣Rj,tf(x)−Mtf(x)

∣∣2(1.3)

=
∣∣∣ 1

|B√
4t(x)|

∫
B√

4t(x)

(
f(y)− fB√

4jt(x)

)
dy
∣∣∣2

≤ j
n
2

|B√
4jt(x)|

∫
B√

4jt(x)

∣∣f(y)− fB√
4jt(x)

∣∣2 dy = j
n
2

(
Rj,t|f |2 − |Rj,tf |2

)
(x).

This automatically yields the following inequality

∥f∥2BMOQ
≲ sup

j,t
ess sup
x∈Rn

1

|B√
4jt(x)|

∫
B√

4jt(x)

∣∣f(y)− fB√
4jt(x)

∣∣2 dy ≤ ∥f∥2BMORn
.

The converse is even simpler, since taking j = 1 we obtain

∥f∥2BMORn
= sup

t>0
ess sup
x∈Rn

1

|B√
4t(x)|

∫
B√

4t(x)

∣∣f(y)− fB√
4t(x)

∣∣2 dy
= sup

t>0

∥∥∥γ−1
1,t

[
R1,t|f |2 − |R1,tf |2

]
γ−1
1,t

∥∥∥
L∞(Rn)

≤ ∥f∥2BMOQ
.

Remark 1.6. The term |Rj,tf −Mtf | did not play a significant role at this point.
More generally, the above argument also works for any doubling metric space Ω
equipped with a Borel measure µ: µ(B(x, 2r)) ≤ Cµ(B(x, r)) for every x ∈ Ω and
r > 0, with B(x, r) = {y ∈ Ω : dist(x, y) ≤ r}. As we shall see later, the additional
term |Rj,tf −Mtf | in the BMOQ-norm appears to include Tolsa’s RBMO spaces
[62] in those measure spaces (Ω, µ) for which we can find an appropriate Dirichlet
form which provides us with a Markov semigroup acting on (Ω, µ).

Remark 1.7. A related semigroup BMO norm is

∥f∥BMOc
S
= sup

t≥0

∥∥∥(Ht

[
|f − Htf |2

]) 1
2
∥∥∥
∞
.

All the norms consider so far are equivalent for the heat semigroup S = (Ht)t≥0 on
Rn, generated by the Laplacian ∆ =

∑n
j=1 ∂

2
xj
. In fact, we may also consider by

subordination the Poisson semigroup P = (Pt)t≥0 on Rn generated by the square



16 JUNGE, MEI, PARCET AND XIA

root
√
−∆, or even other subordinations [23] . Then, elementary calculations give

the following norm equivalences up to dimensional constants

∥f∥BMORn ∼ ∥f∥BMOP ∼ ∥f∥BMOP ∼ ∥f∥BMOS ∼ ∥f∥BMOS ∼ ∥f∥BMOQ .

Moreover, let R = L∞(Rn)⊗̄M denote the von Neumann algebra tensor product of
L∞(Rn) with a noncommutative measure space (M, τ). Define the norm in BMOR
as ∥f∥BMOR = max{∥f∥BMOc

R
, ∥f∗∥BMOc

R
}, where

∥f∥BMOc
R

= sup
B balls

∥∥∥( 1

|B|

∫
B

∣∣f(x)− fB
∣∣2dx) 1

2
∥∥∥
M
.

Then, the same norm equivalences hold in the semicommutative case

∥f∥BMOR ∼ ∥f∥BMOP⊗
∼ ∥f∥BMOP⊗

∼ ∥f∥BMOS⊗
∼ ∥f∥BMOS⊗

,

where S⊗,t = St ⊗ idM and P⊗,t = Pt ⊗ idM. Moreover, by Remark 1.5, all these
norms are in turn equivalent to the norm in BMOQR , with the Markov metric
which arises tensorizing the canonical one with the identity/unit of M.

2. Algebraic CZ theory

In classical Calderón-Zygmund theory, Lp boundedness of CZOs follows from
L2 boundedness under a smoothness condition on the kernel. Our next goal is to
identify which are the analogues of these conditions for semifinite von Neumann
algebras equipped with a Markov metric, and to show Lp boundedness of CZOs
fulfilling them. Our new conditions are certainly surprising. The boundedness
for p = 2 must be replaced by a certain mixed-norm estimate (which reduces in
the classical theory to L2 boundedness), while Hörmander kernel smoothness will
be formulated intrinsically without any reference to the kernel. These abstract
assumptions will adopt a more familiar form in the specific cases that we shall
consider in the forthcoming sections.

In order to give a Calderón-Zygmund framework for von Neumann algebras we
start with some initial considerations, which determine the general form of Markov
metrics that we shall work with. Consider a Markov metric Q associated to a
Markov semigroup S = (St)t≥0 acting on (M, τ). Then, we shall assume that the
cpu maps Rj,t from Q are of the following form

(2.1)
M ρj−→ Nρ

Eρ−→ ρ1(M) ≃ M,

Rj,tf = Eρ(qj,t)
− 1

2Eρ

(
qj,tρ2(f)qj,t

)
Eρ(qj,t)

− 1
2 ,

where ρ1, ρ2 : M → Nρ are ∗-homomorphisms into certain von Neumann algebra
Nρ, the map Eρ : Nρ → ρ1(M) is an operator-valued weight and the qj,t’s are
projections in Nρ. In particular, we shall assume that our formula for Rj,tf makes
sense so that qj,t and qj,tρ2(f)qj,t belong to the domain of Eρ, see Section 2.1 for
further details. Our model provides a quite general form of Markov metric which
includes the Markov metric for the heat semigroup considered before. Indeed, take
Nρ = L∞(Rn × Rn) with ρ1f(x, y) = f(x) and ρ2f(x, y) = f(y). Let Eρ be the
integral in Rn with respect to the variable y and set

qj,t(x, y) = χB√
4jt(x)

(y) = χB√
4jt(y)

(x) = χ|x−y|<
√
4jt.
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Then, it is straightforward to check that we recover from (2.1) the Rj,t’s for the
heat semigroup. Note that the qj,t(x, ·)’s reproduce in this case all the Euclidean
balls in Rn. Morally, this is why we call Q a Markov metric, since it codifies some
sort of underlying metric in (M, τ). According to our definition of BMOQ, we shall
also consider projections qt in Nρ and cpu maps

(2.2) Mtf = Eρ(qt)
− 1

2Eρ

(
qtρ2(f)qt

)
Eρ(qt)

− 1
2 .

2.1. Operator-valued weights. In this subsection we briefly review the definition
and basic properties of operator-valued weights from [26, 27]. A unital, weakly
closed ∗-subalgebra is called a von Neumann subalgebra. A conditional expectation
EM : N → M onto a von Neumann subalgebra M is a positive unital projection
satisfying the bimodular property EM(a1f a2) = a1EM(f)a2 for all a1, a2 ∈ M. It
is called normal if supα EM(fα) = EM(supα fα) for bounded increasing nets (fα)
in N+. A normal conditional expectation exists if and only if the restriction of τ
to the von Neumann subalgebra M remains semifinite [61]. Any such conditional
expectation is trace preserving τ ◦ EM = τ .

The extended positive part M̂+ of the von Neumann algebra M is the set of
lower semicontinuous maps m : M∗,+ → [0,∞] which are linear on the positive
cone, m(λ1ϕ1 + λ2ϕ2) = λ1m(ϕ1) + λ2m(ϕ2) for λj ≥ 0 and ϕj ∈ M∗,+. The
extended positive part is closed under addition, increasing limits and is fixed by
the map x 7→ a∗xa for any a ∈ M. It is clear that M+ sits in the extended positive
part. When M is abelian, we find M ≃ L∞(Ω, µ) for some measure space (Ω, µ)
and the extended positive part corresponds in this case to the set of µ-measurable
functions on Ω (module sets of zero measure) with values in [0,∞]. A harder
characterization of the extended positive part for arbitrary von Neumann algebras
was found by Haagerup in [26]. Assume that M acts on H and consider a positive
operator A affiliated with M with spectral resolution A =

∫
R+
λdeλ. Then, we may

construct an associated element in M̂+

mA(ϕ) =

∫
R+

λd(ϕ(eλ)).

In general, any m ∈ M̂+ has a unique spectral resolution

m(ϕ) =

∫
R+

λd(ϕ(eλ)) +∞ϕ(p)

where the eλ’s form an increasing family of projections in M and p is the projection
1M− limλ eλ. Moreover, the map λ 7→ eλ is strongly continuous from the right and
we find that e0 = 0 iff m does not vanish on M+

∗ \ {0}, while p = 0 iff the family
of ϕ ∈ M+

∗ with m(ϕ) <∞ is dense in M+
∗ .

Operator-valued weights appear as “unbounded conditional expectations” and
the simplest nontrivial model is perhaps a partial trace EM = trA ⊗ idM with
N = A⊗̄M and A a semifinite non-finite von Neumann algebra. In general, an
operator-valued weight from N to M is just a linear map

EM : N+ → M̂+ satisfying EM(a∗fa) = a∗EM(f)a

for all a ∈ M. As usual, EM is called normal when supα EM(fα) = EM(supα fα) for

bounded increasing nets (fα) in N+. Since a
∗fb = 1

4

∑3
k=0 i

−k(a+ ikb)∗f(a+ ikb)
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by polarization, we see that bimodularity of conditional expectations is equivalent
to EM(a∗fa) = a∗EM(f)a for a ∈ M. In particular, the fundamental properties
which operator-valued weights loose with respect to conditional expectations are
unitality and the fact that unboundedness is allowed for the image. Additionally,
when M = C the map EM becomes an ordinary weight on N . In analogy with
ordinary weights, we take

Lc
∞(N ;EM) =

{
f ∈ N :

∥∥EM(f∗f)
∥∥
M <∞

}
.

Note that when EM = trA ⊗ idM with N = A⊗̄M, Lc
∞(N ;EM) are the Hilbert

space valued noncommutative L∞ spaces defined in [30], which we denote by
Lc
2(A)⊗̄M. Let NEM be the linear span of f∗1 f2 with f1, f2 ∈ Lc

∞(N ;EM). Then
we find

i) NEM = span{f ∈ N+ : ∥EMf∥ <∞},
ii) Lc

∞(N ;EM) and NEM are two-sided modules over M,

iii) EM has a unique linear extension EM : NEM → M satisfying

EM(a1fa2) = a1EM(f)a2 with f ∈ NEM and a1, a2 ∈ M.

In particular, if EM(1) = 1 we recover a conditional expectation onto M. An
operator-valued weight EM is called faithful if EM(f∗f) = 0 implies f = 0 and
semifinite when Lc

∞(N ;EM) is σ-weakly dense in N . It is of interest to determine
for which pairs (N ,M) we may construct n.s.f. operator-valued weights. Among
other results, Haagerup proved in [27] that this is the case when both von Neumann
algebras are semifinite and there exists a unique trace preserving one. Note that
conditional expectations do not always exist in this case. He also proved that given
EMj

n.s.f. operator-valued weights in (Nj ,Mj) for j = 1, 2, there exists a unique
n.s.f. operator-valued weight EM1⊗M2

associated to (N1⊗̄N2,M1⊗̄M2) such that
(ϕ1 ⊗ ϕ2) ◦ EM1⊗M2

= (ϕ1 ◦ EM1
) ⊗ (ϕ2 ◦ EM2

) for any pair (ϕ1, ϕ2) of normal
semifinite faithful weights on (M1,M2).

2.2. Algebraic/analytic conditions. The identity

Tf(x) =

∫
Ω

k(x, y)f(y) dµ(y)

is just a vague expression to consider classical Calderón-Zygmund operators. It is
well-known that particular realizations as above are only meaningful outside the
support of f and understanding k as a distribution which coincides with a locally
integrable function on Rn×Rn \∆. Instead of that, we shall not specify any kernel
representation of our CZOs since our conditions below will be formulated in a more
intrinsic way. These kernel representations will appear later on in this paper with
the concrete examples that we shall consider.

Let T be a densely defined operator on M, which means that Tf ∈ M for all
f in a weak-∗ dense subalgebra AM of M. Our assumption does not necessarily
hold for classical Calderón-Zygmund operators defined in abelian von Neumann
algebras (M, τ) = L∞(Ω, µ), but it is true for the truncated singular integral
operators satisfying the standard size condition for the kernel, take for instance
AM = M∩L1(M). In particular, this is not a crucial restriction since we shall be
able to take Lp-limits as far as our estimates below are independent of T . Our aim is
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to settle conditions on T of CZ type assuring that T : L∞(M) → BMOc
Q, provided

(M, τ) comes equipped with a Markov metric Q. In this paragraph, we establish
some preliminary algebraic and analytic conditions on the Markov metric and the
CZO. Consider ∗-homomorphisms π1, π2 : M → Nπ and an operator-valued weight
Eπ : Nπ → π1(M) which may or may not coincide with ρ1, ρ2 and Eρ from (2.1).
Assume there exists a (densely defined) map

(2.3)
T̂ : ANπ ⊂ Nπ → Nρ

satisfying T̂ ◦ π2 = ρ2 ◦ T on AM.

Algebraic conditions:

i) Q-monotonicity of Eρ

Eρ(qj,t|ξ|2qj,t) ≤ Eρ(|ξ|2)
for all ξ ∈ Nρ and every projection qj,t determined by Q via the identity in
(2.1). Similarly, we assume the same inequality holds when we replace the
qj,t’s by the qt’s appearing in (2.2).

ii) Right B-modularity of T̂

T̂
(
η π1ρ

−1
1 (b)

)
= T̂ (η)b

for all η ∈ ANπ
and all b lying in some von Neumann subalgebra B of

ρ1(M) which includes Eρ(qt), Eρ(qj,t) and ρ1(γj,t) for every projection qt
and qj,t determined by Q via the identities in (2.1) and (2.2).

As we shall see both conditions trivially hold in the classical theory, where the
first condition essentially says that integrating a positive function over a “Markov
metric ball” is always smaller than integrating it over the whole space, while the
second condition allows to take out x-dependent functions from the y-dependent
integral defining T . Our conditions remain true in many other situations, which will
be explored below in this paper. Nevertheless, condition i) suggests that certain
amount of commutativity might be necessary to work with Markov metrics.

To state our analytic conditions we introduce an additional von Neumann algebra
Nσ containing Nρ as a von Neumann subalgebra. Then, we consider derivations
δ : Nρ → Nσ given by the difference δ = σ1 − σ2 of two ∗-homomorphisms, so
that δ(ab) = σ1(a)σ1(b)− σ2(a)σ2(b) = δ(a)σ1(b) + σ2(a)δ(b) as expected. We also
consider the natural amplification maps

R̂j,t : Nρ ∋ ξ 7→ Eρ(qj,t)
− 1

2Eρ(qj,tξqj,t)Eρ(qj,t)
− 1

2 ∈ ρ1(M),

M̂t : Nρ ∋ ξ 7→ Eρ(qt)
− 1

2Eρ(qtξqt)Eρ(qt)
− 1

2 ∈ ρ1(M).

Analytic conditions:

i) Mean differences conditions

• R̂j,t(ξ
∗ξ)− R̂j,t(ξ)

∗R̂j,t(ξ) ≤ Φj,t

(
δ(ξ)∗δ(ξ)

)
,

•
[
R̂j,t(ξ)− M̂t(ξ)

]∗[
R̂j,t(ξ)− M̂t(ξ)

]
≤ Ψj,t

(
δ(ξ)∗δ(ξ)

)
,

for some derivation δ : Nρ → Nσ and cpu maps Φj,t,Ψj,t : Nσ → ρ1(M).

ii) Metric/measure growth conditions
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• 1 ≤ π1ρ
−1
1 Eρ(qt)

− 1
2Eπ(a

∗
tat)π1ρ

−1
1 Eρ(qt)

− 1
2 ≲ π1ρ

−1
1 (γ2j,t),

• 1 ≤ π1ρ
−1
1 Eρ(qj,t)

− 1
2Eπ(a

∗
j,taj,t)π1ρ

−1
1 Eρ(qj,t)

− 1
2 ≲ π1ρ

−1
1 (γ2j,t),

for some family of operators at, aj,t ∈ Nπ to be determined later on.

A complete determination of the operators at and aj,t is only possible after imposing
additional size and smoothness conditions in our definition of Calderón-Zygmund
operator below. Nevertheless, we shall see that these operators will play the role
of “dilated Markov balls” as it is the case in classical CZ theory. In fact, in the
classical case our last condition trivially holds for doubling measures, and also for
measures of polynomial or even exponential growth provided we find a Markov
metric with large enough γj,t’s. Our assertions will be illustrated below. The first
condition takes the form in the classical case of a couple of easy consequences of
Jensen’s inequality, namely

(2.4)

−
∫
B1

|f |2dµ−
∣∣∣−∫

B1

fdµ
∣∣∣2 ≤ −

∫
B1×B1

∣∣f(y)− f(z)
∣∣2dµ(y)dµ(z),∣∣∣ −

∫
B1

fdµ − −
∫
B2

fdµ
∣∣∣2 ≤ −

∫
B1×B2

∣∣f(y)− f(z)
∣∣2dµ(y)dµ(z).

2.3. CZ extrapolation. Now we introduce CZOs in this context. As we already
mentioned, we consider a priori densely defined (unbounded) maps T : AM → M
whose amplified maps are right B-modules according to our algebraic assumptions
above. In addition, we impose three conditions generalizing L2 boundedness, the
size and the smoothness conditions for the kernel.

Calderón-Zygmund type conditions:

i) Boundedness condition

T̂ : Lc
∞(Nπ;Eπ) → Lc

∞(Nρ;Eρ).

ii) Size “kernel” condition

• M̂t

(∣∣T̂ (π2(f)(Aj,t − at))
∣∣2) ≲ γ2j,t∥f∥2∞,

• R̂j,t

(∣∣T̂ (π2(f)(Aj,t − aj,t))
∣∣2) ≲ γ2j,t∥f∥2∞,

for a family of operators Aj,t ∈ Nπ with Aj,t ≥ aj,t, at to be determined.

iii) Smoothness “kernel” condition

• Φj,t

(∣∣δ(T̂ (π2(f)(1 − aj,t))
)∣∣2) ≲ γ2j,t∥f∥2∞,

• Ψj,t

(∣∣δ(T̂ (π2(f)(1−Aj,t))
)∣∣2) ≲ γ2j,t∥f∥2∞.

Let T : AM → M be a densely defined map which admits an amplification T̂
satisfying (2.3). Any such T will be called an algebraic column CZO whenever the
amplification map is right B-modular and satisfies the CZ conditions we have given
above. At first sight, our boundedness assumption might appear to be unrelated
to the classical condition. The reader could have expected the L2 boundedness
of T , but our assumption is formally equivalent to it in the classical case and
gives the right condition for more general algebras. On the other hand, our size
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and smoothness conditions are intrinsic in the sense that the kernel is not specified
under this degree of generality. We shall recover classical kernel type estimates from
our conditions in our examples below. As explained above, the operators at, aj,t
and Aj,t play the role of dilated Markov balls and our conditions were somehow
modeled by Tolsa’s arguments in [62]. Perhaps a significant difference —in contrast
to Tolsa’s approach— is that our smoothness condition is analog to a Hörmander
type condition, more than the (stronger) Lipschitz regularity assumption.

Theorem 2.1. Let (M, τ) be a noncommutative measure space equipped with a
Markov semigroup S = (St)t≥0 with associated Markov metric Q which fulfills our
algebraic and analytic assumptions. Then, any algebraic column CZO T defines a
bounded operator

T : AM → BMOc
Q.

Proof. The first goal is to estimate the norm of

A = γ−1
j,t

(
Rj,t|Tf |2 − |Rj,tTf |2

)
γ−1
j,t .

The map Πj,t : a ⊗ b ∈ M⊗̄Rj,tM 7→ 1 ⊗ Rj,t(a)b ∈ 1 ⊗ M extends to a right
(1 ⊗ M)-module projection, which is well-defined in the sense that ⟨ξ, ξ⟩Rj,t = 0
implies Πj,t(ξ) = 0. Now, since

A = γ−1
j,t

⟨
Tf ⊗ 1− 1⊗Rj,tTf , Tf ⊗ 1− 1⊗Rj,tTf

⟩
Rj,t

γ−1
j,t ,

we may use Πj,t to deduce the following identity

A =
⟨
(id−Πj,t)(Tf ⊗ γ−1

j,t ) , (id−Πj,t)(Tf ⊗ γ−1
j,t )
⟩
Rj,t

.

Consider the amplification maps R̂j,t and Π̂j,t determined by

Rj,t = R̂j,t ◦ ρ2 and Πj,t = Π̂j,t ◦ (ρ2 ⊗ id).

By (2.3), it turns out that A = ⟨a,a⟩R̂j,t
where

a = (id− Π̂j,t)(ρ2Tf ⊗ γ−1
j,t )

= (id− Π̂j,t)(T̂ π2f ⊗ γ−1
j,t )

= (id− Π̂j,t)
(
T̂ (π2(f)aj,t)⊗ γ−1

j,t

)
+ (id− Π̂j,t)(T̂

(
π2(f)(1− aj,t))⊗ γ−1

j,t

)
= a1 + a2

According to Lemma 1.1 i), we may estimate A as follows

A ≲
⟨
a1,a1

⟩
R̂j,t

+
⟨
a2,a2

⟩
R̂j,t

= A1 +A2.

Since Π̂j,t(n⊗ b) = 1⊗ R̂j,t(n)b, the Kadison-Schwarz inequality yields⟨
Π̂j,t(n⊗ b), Π̂j,t(n⊗ b)

⟩
R̂j,t

≲
⟨
n⊗ b, n⊗ b

⟩
R̂j,t

.

In conjunction with Lemma 1.1 i) again, we deduce the following estimate for A1

A1≲
⟨
T̂ (π2(f)aj,t)⊗ γ−1

j,t , T̂ (π2(f)aj,t)⊗ γ−1
j,t

⟩
R̂j,t

= γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)∣∣2)γ−1
j,t .

In order to bound the term in the right hand side, we apply (2.1) and the properties
of the operator-valued weight Eρ together with our algebraic conditions. Indeed, we
first use theQ-monotonicity of Eρ; then the fact that it commutes with the left/right
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multiplication by elements affiliated to M (like γ−1
j,t or Eρ(qj,t)

−1/2); finally we use
the right B-modularity of the amplification of T :

γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)∣∣2)γ−1
j,t

≤ γ−1
j,t Eρ(qj,t)

− 1
2Eρ

(∣∣T̂ (π2(f)aj,t)∣∣2)Eρ(qj,t)
− 1

2 γ−1
j,t

= Eρ

(
γ−1
j,t Eρ(qj,t)

− 1
2

∣∣T̂ (π2(f)aj,t)∣∣2Eρ(qj,t)
− 1

2 γ−1
j,t

)
= Eρ

∣∣∣T̂(π2(f)aj,t π1ρ−1
1

(
Eρ(qj,t)

− 1
2 γ−1

j,t

)︸ ︷︷ ︸
ξ1

)∣∣∣2 = Eρ|T̂ (ξ1)|2.

Now, our first CZ condition i) gives the boundedness we need since

∥A1∥M ≤
∥∥T̂ (ξ1)∥∥2Lc

∞(Nρ;Eρ)
≲
∥∥ξ1∥∥2Lc

∞(Nπ ;Eπ)

=
∥∥∥Eπ

(∣∣π2(f)aj,t π1ρ−1
1

(
Eρ(qj,t)

− 1
2 γ−1

j,t

)∣∣2)∥∥∥
M

≤
∥∥∥π1ρ−1

1

(
γ−1
j,t Eρ(qj,t)

− 1
2

)∗
Eπ(a

∗
j,taj,t)π1ρ

−1
1

(
Eρ(qj,t)

− 1
2 γ−1

j,t

)∥∥∥
M
∥f∥2∞.

The last term on the right is dominated by ∥f∥2∞ according to our second analytic
condition on metric/measure growth. The estimate for A2 is simpler. Indeed, if we

set ξ2 = T̂ (π2(f)(1− aj,t)) then

A2 =
⟨
(id− Π̂j,t)(ξ2 ⊗ γ−1

j,t ) , (id− Π̂j,t)(ξ2 ⊗ γ−1
j,t )
⟩
R̂j,t

= γ−1
j,t

(
R̂j,t|ξ2|2 −

∣∣R̂j,t(ξ2)
∣∣2)γ−1

j,t ≤ γ−1
j,t Φj,t

(
|δξ2|2

)
γ−1
j,t ≲ ∥f∥2∞1,

where the first inequality holds for some derivation δ : Nρ → Nσ and some cpu map
Φj,t : Nσ → ρ1(M) by our first analytic condition on mean differences. Then our
CZ condition iii) on kernel smoothness justifies our last estimate. Our estimates so
far prove the desired estimate

sup
t>0

sup
j≥1

∥∥∥(γ−1
j,t

[
Rj,t|Tf |2 − |Rj,tTf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

≲ ∥f∥∞.

Therefore, it remains to estimate the norm of

B = γ−1
j,t

(∣∣Rj,tTf −MtTf
∣∣2)γ−1

j,t .

To do so, we decompose the middle term using (2.3) as follows

Rj,tTf −MtTf

= R̂j,t(ρ2Tf)− M̂t(ρ2Tf)

= R̂j,t

(
T̂
(
π2(f)aj,t

))
− M̂t

(
T̂
(
π2(f)at

))
+

[
R̂j,t

(
T̂
(
π2(f)(1− aj,t)

))
− M̂t

(
T̂
(
π2(f)(1− at)

))]
= b1 − b2 + b3.

Letting Bj = γ−1
j,t |bj |2γ−1

j,t we get B ≲ B1 +B2 +B3. By Kadison-Schwarz we get

B1 ≤ γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)∣∣2)γ−1
j,t ≲ ∥f∥2∞,
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where the last inequality was justified in our estimate of A1 above. Replacing qj,t by
qt, the same argument serves to control the term B2. To estimate B3 we decompose
b3 as follows

b3 =
[
R̂j,t

(
T̂
(
π2(f)(1−Aj,t)

))
− M̂t

(
T̂
(
π2(f)(1−Aj,t)

))]
+ R̂j,t

(
T̂
(
π2(f)(Aj,t − aj,t)

))
− M̂t

(
T̂
(
π2(f)(Aj,t − at)

))
= b31 + b32 − b33.

Taking ξ3 = T̂
(
π2(f)(1 − Aj,t)

)
and applying our analytic condition i) on mean

differences together with our CZ condition iii) on kernel smoothness, we obtain that

γ−1
j,t |b31|2γ−1

j,t ≲ γ−1
j,t Ψj,t

(
|δξ3|2

)
γ−1
j,t ≲ ∥f∥2∞.

It remains to estimate the terms B32 and B33. Applying the Kadison-Schwarz
inequality, it is easily checked that these terms are also dominated by ∥f∥2∞ by
means of our CZ size kernel condition ii). Altogether, we have justified that

sup
t>0

inf
Mtcpu

sup
j≥1

∥∥∥(γ−1
j,t

[
|Rj,tf −Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

≲ ∥f∥∞.

Combining our estimates for A and B, we deduce that T : AM → BMOc
Q. □

TheAM → BMOr
Q boundedness of the map T is equivalent to theAM → BMOc

Q
boundedness of the map T †(f) = T (f∗)∗. According to this, an algebraic CZO is
any column CZO T for which T † remains a column CZO. By Theorem 2.1, we
know that any algebraic CZO T associated to (M, τ,Q) as above is automatically
AM → BMOQ bounded. Assuming L2 boundedness and regularity of the Markov
semigroup, we may interpolate via Theorem 1.4. Under the same assumptions for
T ∗, we may also dualize and obtain the following extrapolation result.

Corollary 2.2. Let (M, τ) be a noncommutative measure space equipped with a
Markov regular semigroup S = (St)t≥0 and a Markov metric Q = (Rj,t, σj,t, γj,t)
fulfilling our algebraic and analytic assumptions. Then, every L2-bounded algebraic
CZO T satisfies that JpT : Lp(M) → L◦

p(M) for p > 2. Applying duality, similar
conditions for T ∗ yield Lp-boundedness of TJp for every 1 < p < 2.

Remark 2.3. Theorem 2.1 admits a completely bounded version in the category of
operator spaces. Since the operator space structure [22, 52] of BMO is determined
by

Mm(BMOS(M)) = BMOŜ(Mm(M))

for Ŝ = (idMm ⊗St)t≥0, we just need to replace M byMm(M) everywhere, amplify
all the involved maps by tensorizing with idMm

and require that the hypotheses
hold with constants independent of m. Then, we obtain the cb-boundedness of T .

Remark 2.4. As noticed in the Introduction, a common scenario is given by the
choice Nρ = M⊗̄M with ρ1(f) = f⊗1 and ρ2(f) = 1⊗f , together with Eρ = id⊗τ
and πj = ρj for j = 1, 2. In this case, it is clear that the amplification map is given
by

T̂ = idM ⊗ T so that T̂ π2 = ρ2T.

In particular, it turns out that the L2 boundedness of T in Corollary 2.2 follows
automatically from our CZ boundedness condition i). This is the case in classical
Calderón-Zygmund theory. It is also true when Nρ = M⊗̄A for an auxiliary
algebra A and ρ2 = flip◦σ, where σ : M → A⊗̄M is a ∗-homomorphism satisfying
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Eρ ◦ ρ2(f) = τ(f)1M. This leads to another significant family of examples. It is
however surprising that in general, the L2 boundedness and the CZ boundedness
assumptions are a priori unrelated. Thus, CZ extrapolation requires in this context
to verify two boundedness conditions. It would be quite interesting to explore the
corresponding “T (1) problems” that arise naturally.

2.4. The classical theory revisited. We now illustrate our algebraic approach
in the classical context of Euclidean spaces with the Lebesgue measure. This will
help us to understand some of our conditions and will show how some others are
automatic in a commutative framework. Take M = L∞(Rn) with the Lebesgue
measure and S = (Ht)t≥0 the heat semigroup Ht = exp(t∆). In Paragraph 1.4 we
introduced the Markov metric Q given by

• σ2
j,t ≡ 2e√

π
j

n
2 e−k and γ2j,t ≡ j

n
2 ≥ 1,

• Rj,tf(x) =
1

|B√
4jt(x)|

∫
B√

4jt(x)

f(y) dy.

Moreover, as we explained at the beginning of this section

Rj,tf = Eρ(qj,t)
− 1

2Eρ

(
qj,tρ2(f)qj,t

)
Eρ(qj,t)

− 1
2

satisfies our basic assumption (2.1). Here the amplification von Neumann algebra
is Nρ = L∞(Rn × Rn), the ∗-homomorphisms ρjf(x1, x2) = f(xj), the projections
qj,t(x, y) = χB√

4jt(x)
(y), and the operator-valued weight Eρ is the integration map

with respect to the second variable. The cpu mapMt which appears in the definition
of BMOQ is still taken by Mt = R1,t as in Paragraph 1.4.

Taking Nπ = Nρ and T a standard CZO in Rn, the algebraic conditions trivially
hold in this case. Let Ex

j,k,t = B√
4jt(x)×B√

4kt(x). Taking Φj,t and Ψj,t to be the
averaging maps over Ex

j,j,t and Ex
j,1,t respectively and the family of dilated balls

(Aj,t(x, y), aj,t(x, y)) = (χαB√
4jt(x)

(y), χ5B√
4jt(x)

(y)) with a ≥ 5, we may recover

the conditions as we explained right after stating them. Let us now show how our
algebraic CZ conditions hold from the classical ones. The boundedness condition
reduces to the classical one, see Remark 4.2 A). Our size conditions can be rewritten
as follows:

• ess sup
x∈Rn

−
∫
B√

4t(x)

∣∣∣ ∫
aB√

4jt(x)\5B√
4t(x)

k(y, z)f(z)dz
∣∣∣2dy ≲ j

n
2 ∥f∥2∞,

• ess sup
x∈Rn

−
∫
B√

4jt(x)

∣∣∣ ∫
aB√

4jt(x)\5B√
4jt(x)

k(y, z)f(z)dz
∣∣∣2dy ≲ j

n
2 ∥f∥2∞.

The above conditions follow from the usual size condition

|k(y, z)| ≲ 1

|z − y|n
.

Next, taking Ex
j,k,t as above, our smoothness conditions are:

• ess sup
x∈Rn

−
∫
Ex

j,1,t

(∫
(5B√

4jt(x))
c

(
k(y1, z)− k(y2, z)

)
f(z)dz

)2
dy1dy2 ≲ j

n
2 ∥f∥2∞,

• ess sup
x∈Rn

−
∫
Ex

j,j,t

(∫
(aB√

4jt(x))
c

(
k(y1, z)− k(y2, z)

)
f(z)dz

)2
dy1dy2 ≲ j

n
2 ∥f∥2∞.
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The above conditions easily follow from the usual Hörmander condition

ess sup
y1,y2∈Rn

∫
|y1−z|≥2|y1−y2|

|k(y1, z)− k(y2, z)| dz <∞.

Note that our algebraic CZ conditions are slightly weaker than the classical CZ
conditions, but still sufficient to provide L∞ → BMO boundedness of the CZ map.

Remark 2.5. Our size condition is only used to estimate B in the proof of Theorem
2.1. We saw in Paragraph 1.4 that B ≲ A for the Euclidean metric. Thus, our size
condition is not necessary here, as it also happens in the classical formulation.

3. Applications I — Commutative spaces

In this section we give specific constructions of Markov metrics on two basic
commutative spaces: Riemannian manifolds with nonnegative Ricci curvature and
Gaussian measure spaces. Beyond the Euclidean-Lebesguean setting considered
above, these are the most relevant settings over which Calderón-Zygmund theory
has been studied. As a good illustration of our algebraic method, we shall recover
the extrapolation results. Noncommutative spaces will be explored later on.

3.1. Riemannian manifolds. Let (Ω, µ) be a measure space equipped with a
Markov semigroup, so that we may construct the corresponding semigroup type
BMO space. In order to study the L∞ → BMO boundedness of CZOs in (Ω, µ) it
is essential to identify a Markov metric to work with. Now we provide sufficient
conditions for a semigroup on a Riemannian manifold to yield a Markov metric
satisfying our algebraic/analytic conditions, so that Theorem 2.1 is applicable. Let
us consider an n-dimensional complete Riemannian manifold (M, g) equipped with
the geodesic distance d determined by the Riemannian metric g. Denote the volume
of a geodesic ball centered at x with radius r by volg(Br(x)). Let SM be a Markov
semigroup on M given by

SM,tf(x) =

∫
M

st(x, y)f(y) dy.

Proposition 3.1. Assume that

i) M has Ricci curvature ≥ 0.

ii) The kernel admits an upper bound

st(x, y) ≲
ϕ(t)n+ε

volg(Bϕ(t)(x))(d(x, y) + ϕ(t))n+ε
,

for some strictly positive function ϕ and some parameter ε > 0.

Then SM admits a Markov metric satisfying the algebraic/analytic conditions.

Proof. If Σj,t(x) = B2jϕ(t)(x), our assumption. gives

(3.1) st(x, y) ≲
∞∑
j=1

2−j(n+ε)

volg(Σ0,t(x))
χΣj,t(x)(y).

According to Davies [17, Theorem 5.5.1], non-negative Ricci curvature implies

volg(Br(x)) ≤ cnr
n,
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volg(Bγr(x)) ≤ γnvolg(Br(x))

for all x ∈M , r > 0 and γ > 1. In particular, volg(Σj,t(x)) ≤ 2jnvolg(Σ0,t(x)). By

(3.1), this implies that (σj,t, γj,t) = (2−jε/2, 1) forms a Markov metric for SM in
conjunction with the averaging maps

Rj,tf(x) = −
∫
Σj,t(x)

f(y)dy for (j, t) ∈ Z+ × R+.

Our construction for M = L∞(M) follows the basic model in the Introduction
and the one used above in the Euclidean setting: Nρ = Nπ = M⊗̄M with ρj
the canonical inclusion maps and qj,t(x, y) = χΣj,t(x)(y) = χΣj,t(y)(x). Then, the
algebraic conditions for the Markov metric are obviously satisfied. Let us now check
the analytic conditions. Taking Nσ = M⊗̄M⊗̄M, the derivation δ : Nρ → Nσ

given by δ(a ⊗ b) = a ⊗ (1 ⊗ b − b ⊗ 1) and the maps Mt = R1,t, it turns out
that the mean difference conditions follow from Jensen’s inequality on normalized
balls of (M, g) as it follows from our comments after the definition of the analytic
conditions. It remains to consider the metric/measure growth conditions. By taking
aj,t(x, y) = χΣj+1,t,(x)(y) and (qt, at) = (q1,t, a1,t), these conditions reduce to show
that

volg(B2j+1ϕ(t)(x)) ≈ volg(B2jϕ(t)(x)).

This follows in turn from the fact that M has a non-negative Ricci curvature. □

Let (M, g) be a complete Riemannian manifold with non-negative Ricci curvature
and let ∆ be the Laplace-Beltrami operator. The heat semigroup S∆ generated by
∆ admits a kernel on (M, g) satisfying the upper bound estimate mentioned in the
above proposition. We know from Davies [17, Theorem 5.5.11] that the heat kernel
satisfies

(3.2) ht(x, y) ≤
aδ

volg(B√
t(x))

exp
(
− d(x, y)2

4(1 + δ)t

)
for any δ > 0 and certain constant aδ. This implies that

ht(x, y) ≲ aδ
volg(B√

t(x))

(4(1 + δ)t)
n+ε
2

(d(x, y)2 + 4(1 + δ)t)
n+ε
2

≲ (
√

4(1 + δ)t)n+ε

volg(B√4(1+δ)t
(x))(d(x, y) +

√
4(1 + δ)t)n+ε

,

which gives the expected upper bound with ϕ(t) =
√

4(1 + δ)t.

Remark 3.2. Once we have confirmed that algebraic and analytic conditions hold
for the Markov process generated by the Laplace-Beltrami operator ∆, it should be
noticed that our CZ conditions are again implied by the classical ones. Arguing as in
Remarks 1.6 and 2.5, we see that the Ricci curvature assumption allows us to ignore
our size kernel conditions. Next, it is straightforward to check that the boundedness
condition reduces in this case to standard L2-boundedness. Finally, our discussion
in section 2.4 shows that our smoothness kernel condition is guaranteed under the
classical Hörmander kernel condition. Note in addition that our conditions also
hold in the row case. In particular, classical CZOs in (M, g) become algebraic
CZOs. Moreover, the gaussian upper estimate (3.2) indicates that in (M, g) with
the heat semigroup S∆ we have L◦

p(M) = Lp(M, g) for 1 < p <∞.
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By the discussion above, we have all the ingredients to apply Theorem 2.1 and
Corollary 2.2. Let us illustrate it for the Riesz transforms on (M, g). Consider
the Riemannian gradient ∇ = (∂1, ∂2, . . . , ∂n) on (M, g). The Riesz transform on
(M, g) is formally defined by

R = (Rj) = ∇(−∆)−
1
2 with Rj = ∂j(−∆)−

1
2 .

Then we may recover Bakry’s theorem [1] using our algebraic approach. Indeed

integration by parts gives ∥|∇f |∥2 = ∥∆ 1
2 f∥2 which implies L2-boundedness of

Riesz transforms. Moreover, the Hörmander condition follows from [10, 41].

Corollary 3.3. Let (M, g) be a complete n-dimensional Riemannian manifold with
non-negative Ricci curvature. Then for all 1 < p < ∞, there exists a constant
Cp > 0 such that

∥Rjf∥Lp(M,g) ≤ Cp∥f∥Lp(M,g) for all 1 ≤ j ≤ n.

3.2. The Gaussian measure. Now we study the Ornstein-Uhlenbeck semigroup
on the Euclidean space equipped with its Gaussian measure. We shall first construct
a Markov metric for it. Then, we shall prove that our algebraic/analytic and
Calderón-Zygmund conditions hold for the standard CZOs in this setting. The
infinitesimal generator of the Ornstein-Uhlenbeck semigroup O = (Ot)t≥0 is the
operator

L =
∆

2
− x · ∇

on (Rn, µ) with dµ(y) = exp(−|y|2)dy. We have

Otf(x) =
1

(π − πe−2t)
n
2

∫
Rn

exp
(
− |e−tx− y|2

1− e−2t

)
f(y) dy

=
1

(π − πe−2t)
n
2

∫
Rn

exp
(
|x|2 − |etx− y|2

e2t − 1

)
f(y) dµ(y).

First, we establish a useful lemma showing that the local behavior —i.e. for
small values of t— of the semigroup type BMO norm for the Ornstein-Uhlenbeck
semigroup determines it completely.

Lemma 3.4. Given δ > 0, there exists Cδ > 0 such that

sup
t≥0

∥∥Ot|f |2 − |Otf |2
∥∥
∞ ≤ Cδ sup

t<δ

∥∥Ot|f |2 − |Otf |2
∥∥
∞.

Proof. It is easy to check that

(3.3) Otf(x) = Hv(t)f(e
−tx),

for v(t) = 1
4 (1 − e−2t) and the heat semigroup Ht = exp(t∆). Given t > 0 and

f ∈ L∞(Rn), let F (s) = Hs|Ht−sf |2 for 0 ≤ s ≤ t. According to the definition of
Ht, we obtain the following identity

∂sF = (∂sHs)|Ht−sf |2 +Hs[(∂sHt−sf)
∗(Ht−sf)] +Hs[(Ht−sf)

∗(∂sHt−sf)]

= ∆Hs|Ht−sf |2 −Hs[(∆Ht−sf)
∗(Ht−sf)]−Hs[(Ht−sf)

∗(∆Ht−sf)]

= Hs[∆|Ht−sf |2 − (∆Ht−sf)
∗(Ht−sf)− (Ht−sf)

∗(∆Ht−sf)]

= 2Hs|∇Ht−sf |2.
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Kadison-Schwarz inequality gives for 0 < u < s

Hu|∇Ht−uf |2 = Hu|Hs−u∇xHt−sf |2 ≤ Hs|∇xHt−sf |2

which implies that ∂sF is increasing and F is convex. Rearranging the inequality
F (s) ≤ 1

2 (F (0) + F (2s)), we get H2t|f |2 − |H2tf |2 ≤ 2Ht(Ht|f |2 − |Htf |2) for any
t ≥ 0. Then, the L∞ contractivity of Ht gives

(3.4)
∥∥H2kt|f |2 − |H2ktf |2

∥∥
∞ ≤ 2k

∥∥Ht|f |2 − |Htf |2
∥∥
∞.

On the other hand, choosing kδ such that 2kδv(δ) ≥ 1
4 and applying (3.3) and (3.4)

sup
t≥0

∥∥Ot|f |2 − |Otf |2
∥∥
∞ = sup

t< 1
4

∥∥Ht|f |2 − |Htf |2
∥∥
∞

≤ sup
t<2kδv(δ)

∥∥Ht|f |2 − |Htf |2
∥∥
∞

≤ 2kδ sup
t<δ

∥∥Ot|f |2 − |Otf |2
∥∥
∞. □

By the lemma above, it suffices to construct a Markov metric for (Ot)t≥0 with

0 < 2t < 1
18 . Let v =

√
e2t − 1 and consider the following family of balls and

coronas in the gaussian space for (j, t) ∈ Z+ × R+

Σj,t(x) = B(etx,
√
jv) and Ωj,t(x) = Σj,t(x) \ Σj−1,t(x).

Let j0 = j0(x, t) be the smallest possible integer j satisfying that 0 ∈ Σj,t(x).

The case n = 1. If 1 ≤ j < j0, let

D−
j,t(x) =

{
y ∈ Ωj,t(x) : e

t|x| −
√
jv ≤ |y| ≤ et|x| −

√
j − 1v

}
,

D+
j,t(x) =

{
y ∈ Ωj,t(x) : e

t|x|+
√
j − 1v ≤ |y| ≤ et|x|+

√
jv
}
.

Then, D−
j,t(x) ∪D

+
j,t(x) = Ωj,t(x) and we get

(3.5) Otf(x) ≲
1

v

( ∑
ε=±

1≤j<j0

exp(|x|2−j)
∫
Dε

j,t(x)

fdµ+
∑
j≥j0

exp(|x|2−j)
∫
Σj,t(x)

fdµ
)

for any positive f ∈ L∞(R, µ). The above estimate indicates the natural candidates
for the cpu maps Rj,t and σj,t ∈ L∞(R, µ). When 1 ≤ j < j0 and ε = ±, we define

Rj,t,εf(x) =
1

µ(Dε
j,t(x))

∫
Dε

j,t(x)

fdµ and σ2
j,t,ε(x) =

1

v
exp(|x|2 − j)µ(Dε

j,t(x)).

Note here we need an extra index for Rj,t’s when j < j0. This is consistent with
the assumptions (i) and (ii) in our definition of Markov metric, since we only need
the index-set of Rj,t’s to be countable. On the other hand, if j ≥ j0, we set

Rj,tf(x) =
1

µ(Σj,t(x))

∫
Σj,t(x)

fdµ and σ2
j,t(x) =

1

v
exp(|x|2 − j)µ(Σj,t(x)).

In order to find γj,t,ε and γj,t satisfying the metric integrability condition, we need
to estimate µ(Dε

j,t(x)) and µ(Σj,t(x)) respectively. Since the density function µ is
monotone on Dε

j,t(x) we get

µ(D−
j,t(x)) =

∫
D−

j,t(x)

e−y2

dy ≤ exp
(
−
∣∣et|x| −√jv∣∣2) v√

j
,(3.6)
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µ(D+
j,t(x)) =

∫
D+

j,t(x)

e−y2

dy ≤ exp
(
−
∣∣et|x|+√j − 1v

∣∣2) v√
j
.(3.7)

When j ≥ j0 we use the trivial estimate

µ(Σj,t(x)) =

∫
Σj,t(x)

e−y2

dy ≤ 2
√
jv.

Combining the estimates obtained above, we deduce for 1 ≤ j < j0

σ2
j,t,− ≤ 1√

j
exp

(
−
∣∣v|x|−et√j∣∣2) and σ2

j,t,+ ≤ 1√
j
exp

(
−
∣∣v|x|+et√j − 1

∣∣2).
When j ≥ j0, we have et|x| ≤

√
jv and |x|2 ≤ jv2e−2t < j/4. Therefore

σ2
j,t ≤ 2

√
j exp(|x|2 − j) < 2

√
j exp

(
− 3

4
j
)
.

Now we are ready to choose the optimal γ’s for the metric integrability condition in
the definition of Markov metric. We respectively define for 1 ≤ j < j0 and j ≥ j0

γ2j,t,ε(x) = exp
( |v|x|+ et

√
j − 1|2

2

)
and γ2j,t(x) =

1√
j
exp

( j
4

)
.

Then it turns out that

sup
x∈R

0<t< 1
36

∑
1≤j<j0

σ2
j,t,−(x)γ

2
j,t,−(x) ≤ sup

x∈R
0<t< 1

36

∑
1≤j<j0

1√
j
exp

(
− |6v|x| − et

√
j|2

4

)

≤ sup
x∈R

0<t< 1
36

2

∫
R
exp

(
− |6v|x| − etu|2

4

)
du < ∞.

sup
x∈R

0<t< 1
36

∑
1≤j<j0

σ2
j,t,+(x)γ

2
j,t,+(x) ≤ sup

x∈R
0<t< 1

36

∑
1≤j<j0

1√
j
exp

(
− |v|x|+ et

√
j − 1|2

2

)

≤ 1 + sup
x∈R

0<t< 1
36

2

∫
R
exp

(
− |v|x|+ etu|2

2

)
du < ∞.

On the other hand, it is clear that

sup
x∈R

0<t< 1
36

∑
j≥j0

σ2
j,t(x)γ

2
j,t(x) ≤

∑
j≥j0

2 exp(− j
2
) < ∞.

We have constructed a Markov metric for the Ornstein-Uhlenbeck semigroup.

Let us now verify the analytic conditions, since the algebraic conditions are trivial
by commutativity. As we mentioned in Subsection 2.2, the first condition is an easy
consequence of Jensen’s inequality for the Gaussian measure. By the definition of
Rj,t,ε and Rj,t, we get qj,t,ε(x, y) = χDε

j,t(x)
(y) and qj,t(x, y) = χΣj,t(x)(y). Thus, it

remains to find proper aj,t,ε and aj,t to make sure that

µ(Dε
j,t(x)) ≲

∫
R
a2j,t,ε(x, y) dµ(y) ≲ γ2j,t,ε(x)µ(D

ε
j,t(x))
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and similarly for the pairs (Σj,t(x)), a
2
j,t(x, y)). When j < j0 we consider the

functions aj,t,ε(x, y) = χ2Dε
j,t(x)

(y), so the lower estimates are trivial. Denote by

cj,t,ε(x) the center of Dε
j,t(x). Let β = v(

√
j−

√
j − 1). Arguing as in (3.6), we get

exp
(
−
∣∣|cj,t,ε(x)|+ β

2

∣∣2) ≤
µ(Dε

j,t(x))

β
≤ exp

(
−
∣∣|cj,t,ε(x)| − β

2

∣∣2),
exp

(
−
∣∣|cj,t,ε(x)|+ β

∣∣2) ≤
µ(2Dε

j,t(x))

2β
≤ exp

(
−
∣∣|cj,t,ε(x)| − β

∣∣2).
Since cj,t,±(x) = et|x| ± 1

2v(
√
j +

√
j − 1), this implies that

µ(2Dε
j,t(x))

µ(Dε
j,t(x))

≤ 2 exp
(
3|cj,t,ε(x)|β − 3

4
β2
)

≤ 2γ2j,t,ε(x).

The estimate for j ≥ j0 is easier. Take aj,t(x, y) = χ2Σj,t(x)(y). Note

2
√
jv exp

(
− |2

√
jv|2

)
≤ µ(Σj,t(x)) ≤ 2

√
jv,

4
√
jv exp

(
− |3

√
jv|2

)
≤ µ(2Σj,t(x)) ≤ 4

√
jv.

Then, since 0 < 2t < 1
18 , we get

µ(2Σj,t(x))

µ(Σj,t(x))
≤ 2 exp(4jv2) ≤ 2 exp(

j

4
) = 2γ2j,t(x).

Our choice for qt and at correspond to the balls Σ1,t(x) and 2Σ1,t(x).

The case n > 1. The argument is similar, so we just point out the necessary
modifications. Since v(

√
j −

√
j − 1) < vj−

1
2 , we may pick cnj

n−1 balls Ds
j,t(x) for

1 ≤ s ≤ cnj
n−1 with radius v

2
√
j
, centered on the sphere{

y : |y − etx| = v(
√
j +

√
j − 1)

2

}
such that

Ωj,t(x) ⊂
∪
s≥1

Ds
j,t(x)

and each Ds0
j,t(x) overlaps with at most c′n other balls Ds

j,t(x). Then, if f ≥ 0

Otf(x) ≲
1

vn

( ∑
j<j0

1≤s≤cnj
n−1

exp(|x|2 − j)

∫
Ds

j,t(x)

fdµ+
∑
j≥j0

exp(|x|2 − j)

∫
Σj,t(x)

fdµ
)
.

Then, we may consider the following Markov metric(
σ2
j,t,s(x), γ

2
j,t,s(x), Rj,t,sf(x)

)
=

(exp(|x|2 − j)

vn
µ(Ds

j,t(x)), j
−n−1

2 exp
( |v|x|+ et

√
j − 1|2

2

)
,−
∫
Ds

j,t(x)

fdµ
)

for j < j0 and 1 ≤ s ≤ cnj
n−1. When j ≥ j0, we set(

σ2
j,t(x), γ

2
j,t(x), Rj,t,f(x)

)
=
(exp(|x|2 − j)

vn
µ(Σj,t(x)), j

−n
2 exp(

j

4
),−
∫
Σj,t(x)

fdµ
)
.

The analytic conditions hold under the same choices we made for n = 1.
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Corollary 3.5. Let O = (Ot)t≥0 be the Ornstein-Uhlenbeck semigroup and T be a
singular integral operator defined on L∞(Rn, dµ) with kernel k. More precisely, we
have the kernel representation

Tf(x) =

∫
Rn

k(x, y)f(y) dµ(y) for x /∈ suppf.

Suppose T is bounded on L2(Rn, µ) and it satisfies

(3.8) sup
B ball

sup
z∈B
j≥1

∫
2j+1B\2jB

|k(z, y)|dµ(y) <∞,

(3.9) sup
B ball

sup
z1,z2∈B

∫
(5B)c

|k(z1, y)− k(z2, y)|dµ(y) <∞.

Then T is a bounded map from L∞(Rn, µ) to the semigroup BMOO space.

Proof. It suffices to prove that our CZ conditions hold. The row and column
boundedness conditions reduce to L2-boundedness. Let Mt be the averaging map
in L∞(Rn, µ) over the ball Σ1,t(x). Given 1 ≤ j < j0, define Aj,t,s(x, ·) as the
characteristic function over the ball Σj+1,t(x). Then Aj,t,s ≤ χ2rDs

j,t(x)∩Σ1,t(x) with

r = [2 log2(j + 1)] + 3, where [ ] stands for the integer part. Therefore, applying
(3.8), we have

sup
z∈Σ1,t(x)

∫
Σj+1,t(x)\2Σ1,t(x)

|k(z, y)| dµ(y) ≲ r ≲ γ2j,t,s(x),

sup
z∈Ds

j,t(x)

∫
Σj+1,t(x)\2Ds

j,t(x)

|k(z, y)| dµ(y) ≲ r ≲ γ2j,t,s(x).

For j ≥ j0, let Aj,t(x, ·) = χΣ4j,t(x) ≤ χ2uΣ1,t(x) with u = [log2(2
√
j)]+1. Applying

(3.8) as above, we see that T satisfies our size conditions. Moreover, (3.9) implies
our smoothness conditions as in the Euclidean-Lebesguean setting, Section 2.4. □

Remark 3.6. Since the Gaussian measure is non-doubling, the term Rj,tf −Mtf
in the Markov metric BMO space BMOQ is essential to characterise the changes
of the mean values of the function f . This explains the relevance of the size kernel
condition in the Calderón-Zygmund theory for the gaussian measure.

4. Applications II — Noncommutative spaces

In this section we apply our algebraic approach to study Calderón-Zygmund
operators in flag von Neumann algebras which originally motivated us and include
matrix algebras, quantum Euclidean spaces and quantum groups. We start by
reconstructing and refining the semicommutative theory, which deals with tensor
and crossed products with metric measure spaces.

4.1. Operator-valued theory. Let (Ω, µ) be a doubling metric space —as in
Remark 1.6— and consider a Markov semigroup St : L∞(Ω) → L∞(Ω). Let M be
a semifinite von Neumann algebra with a n.s.f. trace τ . Then we call the semigroup
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S = (St ⊗ idM)t≥0 a semicommutative Markov semigroup. Consider the algebra of
essentially bounded functions f : Ω → M equipped with the trace

φ(f) =

∫
Ω

τ(f(y)) dµ(y).

Its weak-∗ closure R = L∞(Ω)⊗̄M is a von Neumann algebra. Assume that there
exists a Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+} associated to
the original Markov semigroup on L∞(Ω). Let qj,t(x, y) = χΩx

j,t
(y) stand for the

projections determined by Q via (2.1). We assume in addition that Q satisfies the
metric/measure growth condition

(4.1)
µ(Σx

j,t)

µ(Ωx
j,t)

≤ γj,t(x)

by choosing aj,t(x, y) = χΣx
j,t
(y). The remaining algebraic and analytic conditions

trivially hold in this case. Indeed, the algebraic conditions follow by commutativity
and analytic conditions just require to pick the right averaging maps according to
Jensen’s inequality, as explained in (2.4). Note that Q satisfies an operator-valued
generalization of the Hilbert module majorization in the line of Remark 1.5. Thus
Q extends to a Markov metric in R by tensorizing with idM and 1M respectively.

Our goal is to study CZO’s formally given by

Tf(x) =

∫
Ω

k(x, y) (f(y)) dµ(y) with

{
f : Ω → M1 and x /∈ suppΩf,

k(x, y) ∈ L(L0(M1), L0(M2)).

That is, k(x, y) is linear from τ1-measurable to τ2-measurable operators. If we
set Rj = L∞(Ω)⊗̄Mj , we should emphasize that Lp(Rj) = Lp(Ω;Lp(Mj)). In
particular, this framework does not fall in the vector-valued theory because we
take values in different Banach spaces for different values of p, see [49] for further
explanations. This class of operators is inspired by two distinguished examples with
M1 = M = M2:

• Operator-valued case

Tf(x) =

∫
Ω

kov(x, y) ·f(y) dµ(y).

• Noncommutative model

Tf(x) =

∫
Ω

(idM ⊗ τ)
[
knc(x, y) ·(1M ⊗ f(y))

]
dµ(y).

In the first case, the kernel takes values in M or even in the complex field and acts
on f(y) by left multiplication k(x, y)(f(y)) = kov(x, y) · f(y). It is the canonical
map when Lp(R) is regarded as the Bochner space Lp(Ω;Lp(M)). On the contrary
if we simply think of Lp(R) as a noncommutative Lp space, a natural CZO should
be an integral map with respect to the full trace φ =

∫
Ω
⊗τ and the kernel should

be a φ⊗ φ-measurable operator k : Ω×Ω → M⊗̄M. The noncommutative model
provides the resulting integral formula. Note that this model also falls in our general
framework by taking k(x, y)(f(y)) = (idM ⊗ τ)[knc(x, y) · (1M ⊗ f(y))].

Theorem 4.1. Let S = (St)t≥0 be a Markov semigroup on (Ω, µ) which admits
a Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+} satisfying the above
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assumptions. Let aj,t(x, y) = χΣx
j,t(y)

be the projections determined by Q via (4.1).

Consider the CZO formally given by

Tf(x) =

∫
Ω

k(x, y)(f(y)) dµ(y).

Then, T maps L∞(R1) to BMOc
S(R2) provided the conditions below hold

i) Lc
2-boundedness condition,∥∥∥(∫

Ω

|Tf |2 dµ
) 1

2
∥∥∥
M2

≲
∥∥∥(∫

Ω

|f |2 dµ
) 1

2
∥∥∥
M1

.

ii) Smoothness condition for the kernel,∫
Ω\Σx

j,t

∥∥(k(y1, z)− k(y2, z)
)(
f(z)

)∥∥
M2

dµ(z) ≲ ∥f∥R1

uniformly in j ≥ 1, t > 0, x ∈ Ω and y1, y2 ∈ Ωx
j,t.

Proof. The proof follows from Theorem 2.1. Since the underlying space (Ω, µ) is a
doubling metric space, the size kernel condition is unnecessary. Thus, it remains to
check the Lc

2-boundedness condition and the kernel smoothness condition. Consider
Nπ = L∞(Ω× Ω)⊗̄M1, Nρ = L∞(Ω× Ω)⊗̄M2, ω(φ)(x, y) = φ(y) for φ ∈ L∞(Ω)

and (π2, ρ2) = (ω ⊗ idM1 , ω ⊗ idM2). Let T̂ = idΩ ⊗ T , Φj,t be the averaging map
over Ωx

j,t × Ωx
j,t and ∆ = δ ⊗ idM2 with δφ(x, y) = φ(x)− φ(y). Then condition i)

yields the Lc
2-boundedness condition. It is also easy to see that condition ii) implies

our kernel smoothness condition. Thus, the result follows from Theorem 2.1. □

Remark 4.2. We continue with a few comments:

A) When M1 = M2 = M and the kernel k(x, y)(f(y)) = k(x, y) · f(y) acts by
left multiplication, the boundedness condition i) becomes equivalent to the usual
L2 boundedness. Indeed, using that M ⊂ B(L2(M)) we obtain∥∥∥(∫

Rn

|Tf(y)|2 dy
) 1

2
∥∥∥
M

= sup
∥h∥2≤1

(∫
Rn

⟨
h, |Tf(y)|2h

⟩
dy
) 1

2

= sup
∥h∥≤1

∥∥(Tf) (1Rn ⊗ h)
∥∥
L2(R)

= sup
∥h∥≤1

∥∥T (f (1Rn ⊗ h))
∥∥
L2(R)

≤ ∥T∥B(L2(R))

∥∥∥(∫
Rn

|f(y)|2 dy
) 1

2
∥∥∥
M
.

B) We have used so far semigroup type BMO’s. When (Ω, µ) comes equipped
with a doubling metric, we may replace it by other standard (equivalent) forms
of BMO, as pointed in Remark 1.7. By well-known arguments [49], our kernel
smoothness condition reduces to

(Smλ) sup
R>0

ess sup
y1,y2∈BR

∥∥∥∫
(BλR)c

(
k(y1, z)− k(y2, z)

)
(f(z)) dz

∥∥∥
M

≲ ∥f∥R.

for λ > 1. The classical Hörmander condition

(Hrλ) ess sup
y1,y2∈Rn

∫
d(y1,z)>λd(y1,y2)

∥∥k(y1, z)− k(y2, z)
∥∥
M dz <∞.
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satisfies (Hrλ) ⇒ (Sm2λ+1). In fact, an even weaker condition suffices

sup
R>0

∥∥∥−∫
BR×BR

∣∣∣ ∫
(BλR)c

(
k(y1, z)− k(y2, z)

)
f(z)dz

∣∣∣2dy1dy2∥∥∥
M

≲ ∥f∥2R.

C) We recall that L∞(R) → BMOS boundedness requires that T †f = T (f∗)∗

satisfies the same assumptions as T . If k(x, y) ∈ M is given by left multiplication
the only effect in T † is that k(x, y) is replaced by k(x, y)∗ and now operates by
right multiplication. This left/right condition was formulated in [49] in terms of
M-bimodular maps. Moreover, a counterexample was constructed to show that
the bimodularity is indeed essential. It is also quite interesting to note that in the
‘noncommutative model’ we have∫
Rn

(idM ⊗ τ)
[
k(x, y) ·(1M ⊗ f(y))

]
dy =

∫
Rn

(idM ⊗ τ)
[
(1M ⊗ f(y)) · k(x, y)

]
dy

by traciality and this pathology does not occur. Finally, the Lp boundedness is
guaranteed for 2 < p <∞ since the classical heat semigroup has a regular Markov
metric and Jp = idLp(Rn) in this case. As for 1 < p < 2, it suffices to take adjoints
which leads to Hörmander smoothness in the second variable

ess sup
z1,z2∈Rn

∫
|y−z1|>λ|z1−z2|

∥∥k(y, z1)− k(y, z2)
∥∥
M dy <∞.

Of course, this is still consistent with the classical CZ theory M = C.
D) Our analysis of the semicommutative case from our basic Theorem 4.1 does

not recover the weak type (1, 1) inequality from [49]. It requires quasi-orthogonality
methods which are still missing for general von Neumann algebras.

We now study the L∞ → BMO boundedness of twisted CZO’s on homogeneous
spaces. Given a discrete group G with left regular representation λ : G 7→ B(ℓ2(G))
let L(G) denote its group von Neumann algebra. Let (M, τ) with M ⊂ B(H) be
a noncommutative probability space and α : G 7→ Aut(M) be a trace preserving
action. Consider two ∗-representations

ρ : M ∋ f 7→
∑
h∈G

αh−1(f)⊗ eh,h ∈ M⊗̄B(ℓ2(G)),

Λ : G ∋ g 7→
∑
h∈G

1M ⊗ egh,h ∈ M⊗̄B(ℓ2(G)),

where eg,h is the matrix unit for B(ℓ2(G)). Now we define the crossed product
algebra M ⋊α G as the weak operator closure in M ⊗ B(ℓ2(G)) of the ∗-algebra
generated by ρ(M) and Λ(G). A generic element of M ⋊α G can be formally
written as

∑
g∈G fg ⋊α λ(g) with fg ∈ M. With this convention, we may embed

the crossed product algebra M ⋊α G into M⊗̄B(ℓ2(G)) via the map j = ρ ⋊ Λ.
Indeed, we have

j
(∑

g∈G

fg ⋊α λ(g)
)

=
∑
g∈G

ρ(fg)Λ(g)

=
∑
g∈G

( ∑
h,h′∈G

(αh−1(fg)⊗ eh,h)(1M ⊗ egh′,h′)
)

=
∑
g∈G

(∑
h∈G

αh−1(fg)⊗ eh,g−1h

)
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=
∑
g∈G

(∑
h∈G

α(gh)−1(fg)⊗ egh,h

)
.

Since the action α will be fixed, we relax the terminology and write
∑

g∈G fgλ(g)

instead of
∑

g∈G fg ⋊α λ(g). We say that a Markov semigroup S = (St)t≥0 in M
is G-equivariant if

αgSt = Stαg for (t, g) ∈ R+ ×G.

If S is a G-equivariant Markov semigroup on M, let S⋊ = (St ⋊ idG)t≥0 and
S⊗ = (St ⊗ idB(ℓ2(G)))t≥0 denote the crossed/tensor product amplification of our
semigroup on M ⋊ G and M⊗̄B(ℓ2(G)) respectively. Note that S⋊ is Markovian
due to the G-equivariance of S. In the following result, our CZO’s are of the form

Tf(x) =

∫
Ω

k(x, y)(f(y)) dµ(y)

for all f ∈ (R1, φ1), where (Rj , φj) = L∞(Ω, µ)⊗̄(Mj , τj) and k(x, y) : M1 → M2.
In other words, we keep the same terminology as for Theorem 4.1. We shall also
use the notation

M̂j = Mj⊗̄B(ℓ2(G)) and R̂j = Rj⊗̄B(ℓ2(G)).

Corollary 4.3. Let G ↷ L∞(Ω, µ) be an action α which is implemented by a
measure preserving transformation β, so that αgf(x) = f(βg−1x). Let S = (St)t≥0

be a G-equivariant Markov semigroup on (Ω, µ) which admits a Markov metric
Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+} satisfying the assumptions above. Let us
consider a family of CZO’s formally given by

Tgf(x) =

∫
Ω

kg(x, y)(f(y)) dµ(y) for g ∈ G.

Then,
∑

g fgλ(g) 7→
∑

g Tg(fg)λ(g) is bounded R1 ⋊G → BMOc
S⋊

(R2 ⋊G) if

i) Lc
2-boundedness condition,∥∥∥(∫

Ω

∣∣(Tgh−1) • ξ
∣∣2 dµ) 1

2
∥∥∥
M̂2

≲
∥∥∥(∫

Ω

|ξ|2 dµ
) 1

2
∥∥∥
M̂1

,

where • stands for the generalized Schur product of matrices. In other
words, the CZO Tgh−1 only acts on the (g, h)-th entry of ξ for each g, h ∈ G.

ii) Smoothness condition for the kernel,∫
Ω

∥∥(K(y1, z)−K(y2, z)
)
•
(
ξ(z)(1− aj,t(x, z))

)∥∥
M̂2

dµ(z) ≲ ∥ξ∥R̂1
,

uniformly on j ≥ 1, t > 0, x ∈ Ω and y1, y2 ∈ Ωx
j,t. Here, the CZ kernel

K(y, z) =
∑

g,h kgh−1(βgy, βgz)⊗eg,h acts once more as a Schur multiplier.

Proof. Letting ξ =
∑

g,h ag,h ⊗ eg,h ∈ R̂1, we define the map

Φ : R̂1 → BMOc
S⊗

(R̂2),

Φ(ξ)(x) =
∑
g,h

αg−1

∫
Ω

kgh−1(x, y)(ag,h(βg−1(y)))dµ(y)⊗ eg,h.
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By the definition of j, it is easy to check that

j
(∑

g

Tg(fg)λ(g)
)

= Φ
(
j
(∑

g

fgλ(g)
))
.

Since S is G-equivariant, according to [33, Lemma 2.1], we have

∥g∥BMOc
S⋊(R2⋊G) = sup

t≥0

∥∥∥(S⊗,t|j(g)|2 − |S⊗,tj(g)|2
) 1

2
∥∥∥
R̂2

.

Therefore, it suffices to show that Φ is R̂1 → BMOc
S⊗

(R̂2) bounded. We find

Φ(ξ)(x) =

∫
Ω

K(x, y)(ξ(y))dµ(y).

Thus, we may regard Φ as a semicommutative CZO and apply Theorem 4.1 where

Mj is replaced by M̂j . Since Φ(ξ) =
∑

g,h(αg−1)•(Tgh−1)•(αg)•ξ and β is measure
preserving, we immediately find that the Lc

2-boundedness assumption implies that
the map

Φ : Lc
2(Ω)⊗̄M̂1 → Lc

2(Ω)⊗̄M̂2

is bounded. Moreover, the smoothness condition matches that of Theorem 4.1. □
Remark 4.4. Our work so far yields sufficient conditions for the L∞ → BMO
boundedness of T ⋊ idG in more general settings. In particular, if Tg = T and
αgT = Tαg for all g ∈ G, then we find for any T fulfilling the assumption of
Theorem 4.1, T ⋊ idG : R1 ⋊G 7→ BMOc

S⋊
(R2 ⋊G) is bounded.

4.2. Matrix algebras. In this paragraph, we introduce a Markov metric for the
matrix algebra B(ℓ2). The triangular truncation plays the noncommutative form
of the Hilbert transform on B(ℓ2). We shall reprove the Lp-boundedness of the
triangular truncation for 1 < p < ∞ and a new BMO → BMO estimate by means
of this Markov metric and our algebraic approach. Consider the ∗-homomorphism
u : B(ℓ2) → L∞(R)⊗̄B(ℓ2) determined by

u(emk) = e2πi(m−k) ·emk.

Given A =
∑

m,k amkemk, define the semigroup

St(A) =
∑

m,k
e−t|m−k|2amkemk.

It is not difficult to see that it defines a Markov semigroup of convolution type. In
fact, u is a corepresentation of L∞(R) (equipped with its natural comultiplication
map ∆f(x, y) = f(x + y)) in B(ℓ2) and it turns out that S = (St)t≥0 is the
transferred semigroup associated to the heat semigroup on R

u ◦ St = (Ht ⊗ idB(ℓ2)) ◦ u.

Define the cpu map Rj,t on B(ℓ2) by u ◦Rj,t = (R̃j,t ⊗ idB(ℓ2)) ◦ u, where R̃j,tf(x)
denotes the average of f ∈ L∞(R) over the interval B√

4jt(x). Now, given a matrix
A =

∑
m,k amkemk we find

u ◦Rj,t(A)(x) = −
∫
B√

4jt(x)

u(A)(y)dy

= −
∫
B√

4jt(x)

∑
m,k

e2πi(m−k)yamkemkdy
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=
∑
m,k

sin(4
√
jtπ(m− k))

4
√
jtπ(m− k)

e2πi(m−k)xamkemk.

Thus, we find the following identity

Rj,t(A) =
∑
m,k

sin(4
√
jtπ(m− k))

4
√
jtπ(m− k)

amkemk.

Taking σ2
j,t = 2e

√
j/πe−j1B(ℓ2) and γ

2
j,t =

√
j1B(ℓ2), we obtain a Markov metric in

B(ℓ2). Indeed, the metric integrability condition holds trivially, as for the Hilbert
module majorization it reduces to prove that B1 ≤ B2 with

B1 = u
(
⟨ξ, ξ⟩St

)
=
⟨
u⊗ u(ξ), u⊗ u(ξ)

⟩
Ht⊗idB(ℓ2)

,

B2 =
∑
j

σ2
j,tu
(
⟨ξ, ξ⟩Rj,t

)
=
∑
j

σ2
j,t

⟨
u⊗ u(ξ), u⊗ u(ξ)

⟩
R̃j,t⊗idB(ℓ2)

.

In other words, it suffices to note that the canonical Markov metric in R —which
recovers the Euclidean metric, as proved in Paragraph 1.4— admits a matrix-valued
extension, as it was justified in Remark 1.5. Let us now consider the triangular
truncation

△(A) =
∑
m>k

amkemk.

Corollary 4.5. We have

∥△(A)∥BMOS ≲ ∥A∥BMOS .

In particular, given 1 < p <∞ we obtain ∥△(A)∥Sp
≲ p2

p− 1
∥A∥Sp

.

Proof. Recall that
u ◦ △ = (L⊗ idB(ℓ2)) ◦ u.

for L = 1
2 (id + iH) and Ĥf(ξ) = −isgn(ξ)f̂(ξ), the Hilbert transform in the real

line. We may also regard u : B(ℓ2) → L∞(T)⊗̄B(ℓ2) as a corepresentation of T
instead of R and the above identity holds replacing H by the Hilbert transform
in the torus. In this case, u becomes a trace preserving ∗-homomorphism and
the well-known Sp inequalities for △ reduce to the boundedness of the Hilbert
transform in Lp(T;Sp(ℓ2)), which is also well-known and follows in passing from
the semicommutative theory in the previous paragraph. Alternatively, the second
assertion follows from the first one by interpolation and duality. According to
Remark 1.7, to prove the first assertion it suffices to show that the map

T = i(idB(ℓ2) − 2△)

is BMO → BMO bounded for the semigroup BMO space which is associated to the
transferred Poisson semigroup Pt on B(ℓ2) given by

Pt : (aij) 7→ (e−t|i−j|aij).

Given A = (ajk)j,k in B(ℓ2) then

|A|2 = A∗A =
(∑

k

akiakj

)
i,j

T (A) = i
(
sgn(k − j)ajk

)
j,k

(TA)∗ = i
(
sgn(k − j)akj

)
j,k
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Then
(
Pt|A|2 − |PtA|2

)
ij
=
∑

k(e
−t|i−j| − e−t|k−j|e−t|i−k|)akiakj and(

Pt|T (A)|2 − |PtT (A)|2
)
ij

=
∑
k

(e−t|i−j| − e−t|k−j| e−t|i−k|) sgn(k − i) sgn(k − j) akiakj .

Since sgn(k − i)sgn(k − j) ̸= 1 iff e−t|i−k|e−t|k−j| = e−t|i−j|, we get

Pt|A|2 − |PtA|2 = Pt|T (A)|2 − |PtT (A)|2.

The last identity implies that T is an isometry on the Poisson BMO space. □

4.3. Quantum Euclidean spaces. Given an integer n ≥ 1, fix an anti-symmetric
R-valued n× n matrix Θ. We define AΘ as the universal C*-algebra generated by
a family u1(s), u2(s), · · · , un(s) of one-parameter unitary groups in s ∈ Rn which
are strongly continuous and satisfy the following Θ-commutation relations

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

If Θ = 0, by Stone’s theorem we can take uj(s) = exp(2πis⟨ej , ·⟩) and AΘ is the
space of bounded continuous functions on Rn. In general, given ξ ∈ Rn, define
the unitaries λΘ(ξ) = u1(ξ1)u2(ξ2) · · ·un(ξn). Let EΘ be the closure in AΘ of
λΘ(L1(Rn)) with

f =

∫
Rn

f̌Θ(ξ)λΘ(ξ) dξ.

If Θ = 0, EΘ = C0(Rn). Define

τΘ(f) = τΘ

(∫
Rn

f̌Θ(ξ)λΘ(ξ) dξ

)
= f̌Θ(0)

for f̌Θ : Rn → C integrable and smooth. τΘ extends to a normal faithful semifinite
trace on EΘ. Let RΘ = A′′

Θ = E′′
Θ be the von Neumann algebra generated by EΘ

in the GNS representation of τΘ. Note that if Θ = 0, RΘ = L∞(Rn). In general
we call RΘ a quantum Euclidean space. There are two maps which play important
roles while doing analysis over quantum Euclidean spaces. The first one is the
corepresentation map σΘ : RΘ → L∞(Rn)⊗̄RΘ, given by λΘ(ξ) 7→ expξ ⊗λΘ(ξ)
where expξ stands for the Fourier character exp(2πi⟨ξ, ·⟩). Note that σΘ is a normal
injective ∗-homomorphism. The second map is πΘ : expξ 7→ λΘ(ξ)⊗ λΘ(ξ)

∗, which

extends to a normal ∗-homomorphism from L∞(Rn) to RΘ⊗̄Rop
Θ , where Rop

Θ is
the apposite algebra of RΘ, which is obtained by preserving the linear and adjoint
structures but reversing the product. We refer the readers to [24] for more detailed
information of quantum Euclidean spaces and these two maps.

BMO and Markov metric. Our first goal is to construct a natural Markov metric
for quantum Euclidean spaces. Let us recall the heat semigroup on Rn acting on
φ : Rn → C admits the following form

Htφ(x) =

∫
Rn

φ̂(ξ)e−t|ξ|2 expξ(x) dξ.

This induces a semigroup on RΘ determined by

σΘ ◦ SΘ,t = (Ht ⊗ idRΘ
) ◦ σΘ.
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SΘ,t gives a Markov semigroup on RΘ which formally acts as

(4.2) SΘ,t(f) =

∫
Rn

f̌Θ(ξ)e
−t|ξ|2λΘ(ξ) dξ.

The corresponding semigroup column BMO norm is given by

∥f∥BMOc(RΘ) = sup
t>0

∥∥∥(SΘ,t(|f |2)− |SΘ,t(f)|2
) 1

2
∥∥∥
RΘ

≈ sup
Bball inRn

∥∥∥(−∫
B

|σΘ(f)− σΘ(f)B|2dµ
) 1

2
∥∥∥
RΘ

= ∥σΘ(f)∥BMOc(Rn;RΘ).

According to Remark 1.5, the semicommutative extension Ht ⊗ idRΘ
of the heat

semigroup, together with the extension of the corresponding Markov metric from
Paragraph 2.4 still satisfies the Hilbert module majorization

(4.3) ⟨ξ, ξ⟩Ht⊗idRΘ
≤
∑
j≥1

σ∗
j,t⟨ξ, ξ⟩Rj,t⊗idRΘ

σj,t

as well as the integrability condition, where σ2
j,t ≡ 2e

√
jn/πe−j , γ2j,t ≡ j

n
2 and

Rj,tf(x) is the average of f over B√
4jt(x). Then we can easily produce a Markov

metric on RΘ. Let Bj,t be the Euclidean ball in Rn centered at the origin with
radius

√
4jt and consider the projections qj,t = χBj,t

⊗ 1RΘ
. Define the cpu maps

RΘ,j,t(f) =
1

|Bj,t|

∫
Bj,t

σΘ(f)(x) dx =
1

|Bj,t|

∫
Rn

χ̂Bj,t
(ξ)f̌Θ(ξ)λΘ(ξ) dξ.

It is easy to check that

(4.4) σΘ ◦RΘ,j,t = (Rj,t ⊗ idRΘ
) ◦ σΘ.

The Hilbert module majorization

⟨ξ, ξ⟩SΘ,t
≤
∑
j≥1

σ∗
j,t⟨ξ, ξ⟩RΘ,j,t

σj,t

for ξ ∈ RΘ⊗̄SΘ,tRΘ is equivalent to the same inequality after composing with the
∗-homomorphism σΘ, which follows in turn by the intertwining identities (4.2) and
(4.4), together with the majorization (4.3). Therefore, we obtain a Markov metric
on RΘ associated to SΘ

QΘ =
{
(RΘ,j,t, σj,t, γj,t) | (j, t) ∈ Z+ × R+

}
.

The algebraic structure. We start with the kernel representation of our CZOs
over the (fully noncommutative) von Neumann algebra RΘ. Given a kernel k
affiliated to RΘ⊗̄Rop

Θ , the linear map associated to it is formally given by

Tkf = (idRΘ
⊗ τΘ)

(
k(1RΘ

⊗ f)
)
= (idRΘ

⊗ τΘ)
(
(1RΘ

⊗ f)k
)
.

The reader is referred to [24] for more details. Our goal is to provide sufficient
conditions for the L∞ → BMO boundedness of Tk. Consider the ∗-homomorphism
σΘ : RΘ → L∞(Rn)⊗̄RΘ. In the case of quantum Euclidean spaces, we need the
full algebraic skeleton introduced in Section 2. In Table 1 there is a little dictionary
to identify the main objects. Next, note that

σΘ ◦ Tk(f) = (idRn ⊗ idRΘ
⊗ τΘ)

(
kσ(1Rn ⊗ 1RΘ

⊗ f)
)
,
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Generic algebraic objects Quantum Euclidean spaces

M RΘ

Nρ

L∞(Rn)⊗̄RΘ

ρ1 = 1⊗ ·, ρ2 = σΘ
Eρ = Lebesgue integral

Nπ

RΘ⊗̄Rop
Θ

π1 = 1⊗ ·, π2 = · ⊗ 1
Eπ = τΘ ⊗ idRop

Θ

Nσ

L∞(Rn)⊗̄L∞(Rn)⊗̄RΘ

Nσ = (δ ⊗ idRΘ)(Nρ)
δφ(x, y) = φ(x)− φ(y)

Table 1. Algebraic skeleton for RΘ.

where kσ = (σΘ ⊗ idRop
Θ
)(k). Denote σΘ ◦ Tk by Tkσ

. Define

T̂k : RΘ⊗̄RΘ ∋ f ⊗ a 7→ Tkσ
(f)(1Rn ⊗ a) ∈ L∞(Rn)⊗̄RΘ.

Then it is clear that the compatibility condition (2.3) holds since T̂k ◦π2 = σΘ ◦Tk.

Lemma 4.6. If Tk is bounded on L2(RΘ), then∥∥T̂k : Lc
2(RΘ)⊗̄RΘ → Lc

2(Rn)⊗̄RΘ

∥∥ ≤
∥∥Tk : L2(RΘ) → L2(RΘ)

∥∥.
Proof. We need to introduce two maps:

jΘ : L2(Rn) ∋
∫
Rn

φ(ξ) expξ dξ 7→
∫
Rn

φ(ξ)λΘ(ξ) dξ ∈ L2(RΘ),

W : Lc
2(Rn)⊗̄RΘ ∋

∫
Rn

expξ ⊗a(ξ) dξ 7→
∫
Rn

expξ ⊗λΘ(ξ)a(ξ) dξ ∈ Lc
2(Rn)⊗̄RΘ.

It is straightforward to show that W extends to an isometry. Moreover, jΘ is also
an L2-isometry, we refer the reader to [24, Section 1.3.2] for the proof. Observe
that

σΘ(f)(1Rn ⊗ a) =

∫
Rn

f̌Θ(ξ) expξ ⊗λΘ(ξ)a dξ

= W (

∫
Rn

f̌Θ(ξ) expξ ⊗ a dξ) = W ◦ (j∗Θ ⊗ idRΘ)(f ⊗ a).

Letting f = Tkg, we get

T̂k(g ⊗ a) =W (j∗ΘTk ⊗ idRΘ)(g ⊗ a).

The properties of the maps jΘ and W readily imply the assertion. □

Now let us introduce a weak-∗ dense subalgebra of RΘ, which is the analogue of
the classical Schwartz class. Let S(Rn) denote the classical Schwartz class in the
Euclidean space Rn and define

SΘ =
{
f ∈ RΘ : f̌Θ ∈ S(Rn)

}
.
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Let S ′
Θ denote the space of continuous linear functionals on SΘ, which is the

quantum space of tempered distributions. Consider a continuous linear operator
T ∈ L(SΘ,S ′

Θ). By using the unitary map

jΘ : S(Rn) → SΘ

as defined in the proof of Lemma 4.6, we get j∗ΘTjΘ ∈ L(S(Rn),S(Rn)′). By a
result of Schwartz, there exists a unique kernel K ∈ S ′(R2n) = (S(Rn)⊗π S(Rn))′

such that T admits the kernel k = (jΘ ⊗ jΘ)(K) ∈ (SΘ ⊗π SΘ)
′. Actually, the

kernel representations Tk satisfying the Calderón-Zygmund type conditions in the
following theorem belong to L(SΘ,S ′

Θ). It provides sufficient conditions for the
L∞(RΘ) → BMOc(RΘ) boundedness of CZO operators associated to kernels in
(SΘ⊗π SΘ)

′. We shall use the quantum analogue of the bands around the diagonal

aB = πΘ(χ5B) =

∫
R
χ̂5B(ξ)λΘ(ξ)⊗ λΘ(ξ)

∗ dξ.

Theorem 4.7. Let Tk ∈ L(SΘ,S ′
Θ) and assume

i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ <∞.

ii) For any f ∈ RΘ and any Euclidean ball B centered at the origin

−
∫
B×B

∣∣ΣΘ,k,f,B(y1)− ΣΘ,k,f,B(y2)
∣∣2dy1dy2 ≲ ∥f∥2RΘ

,

where ΣΘ,k,f,B = (idRn ⊗ idRΘ
⊗ τΘ)

[
kσ(1Rn ⊗ 1RΘ

⊗ f)(1Rn ⊗ a⊥B)
]
.

Then, the Calderón-Zygmund operator Tk is bounded from L∞(RΘ) to BMOc(RΘ).

Proof. By Theorem 1.4, it suffices to prove

Tk : L∞(RΘ) → BMOc
QΘ
.

Arguing as in Paragraph 1.4, the Markov metric BMO norm takes the simpler form

∥f∥BMOc
QΘ

= sup
t>0

sup
j≥1

∥∥∥(γ−1
j,t

[
RΘ,j,t(|f |2)− |RΘ,j,t(f)|2

]
γ−1
j,t

) 1
2
∥∥∥
RΘ

.

In other words, the extra term in the definition of BMO is dominated by the
above expression as in (1.3). As noticed in Remark 2.5, the size kernel condition is
then superfluous. This also reduces the analytic conditions and the smooth kernel
conditions to be checked. In summary, according to the proof of Theorem 2.1, the
assertion will follow if we can justify:

C0) Initial condition

Tk : AΘ → RΘ for AΘ ⊂ RΘ weak-∗ dense.

Al1) QΘ-monotonicity of Eρ

Eρ(qj,t|ξ|2qj,t) ≤ Eρ(|ξ|2).

Al2) Right modularity of T̂k

T̂k(ηπ1(b)) = T̂k(η)ρ1(b).
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An1) Mean differences

R̂Θ,j,t(ξ
∗ξ)− R̂Θ,j,t(ξ)

∗R̂Θ,j,t(ξ) ≤ Φj,t

(
δ(ξ)∗δ(ξ))

)
for some cpu Φj,t.

An2) Metric/measure growth

1 ≤ π1ρ
−1
1 Eρ(qj,t)

− 1
2Eπ(a

∗
j,taj,t)π1ρ

−1
1 Eρ(qj,t)

− 1
2 ≲ π1ρ

−1
1 (γ2j,t).

CZ1) Lc
2-boundedness condition

T̂k : Lc
∞(Nπ;Eπ) → Lc

∞(Nρ;Eρ).

CZ2) Kernel smoothness condition

Φj,t

(∣∣δ(T̂k(π2(f)(1 − aj,t))
)∣∣2) ≲ γ2j,t∥f∥2∞.

The initial condition trivially holds for good kernels k ∈ SΘ ⊗alg SΘ. In [24] it
was required to extend the main result from this class of kernels to general ones
in S ′

Θ⊕Θ, by reproving certain auxiliary results in the context of distributions. In
our case, this is much simpler. Indeed, when dealing with general kernels, we just
note that Tk(f) ∈ L2(RΘ) for all f ∈ SΘ by assumption. Given the form of RΘ,j,t,
it trivially follows that RΘ,j,t(|Tkf |2) and RΘ,j,tTkf are well-defined operators in
L1(RΘ) and L2(RΘ) respectively. In particular, the proof of Theorem 2.1 follows
exactly as it was written there under this more flexible assumption. Therefore, the
initial condition can be relaxed to the condition

Tk : SΘ → L2(RΘ).

In fact, according to [24, Proposition 2.17], every algebraic column CZO is normal.
Thus, it suffices —as we did in Theorem 2.1— to justify that Tk : SΘ → BMOc

QΘ

is bounded, as we shall do by justifying the remaining conditions.

Al1 holds trivially since qj,t = χBj,t
⊗1RΘ

lives in the center of Nρ. On the other
hand, according to the definition of ρ1, π1 from Table 1, the algebraic condition Al2
can be rewritten as follows

T̂k
(
η(1RΘ ⊗ b)

)
= T̂k(η)(1Rn ⊗ b).

This is clear from the definition of T̂k. Next, condition An1 reads as

−
∫
Bj,t

|ξ|2dµ−
∣∣∣−∫

Bj,t

ξdµ
∣∣∣2 ≤ −

∫
Bj,t×Bj,t

∣∣ξ(x)− ξ(y)
∣∣2dµ(x)dµ(y)

for RΘ-valued functions, when Φj,t is chosen to be the average over Bj,t × Bj,t.
As in (2.4), this is a consequence of the operator-valued Jensen’s inequality. Next
recalling that aj,t = πΘ(χ5Bj,t), condition An2 takes the form

|Bj,t|1RΘ ≤ (τΘ ⊗ idRop
Θ
)(πΘ(χ5Bj,t)) ≲ j

n
2 |Bj,t|1RΘ

.

To verify it we note that

(τΘ ⊗ idRop
Θ
)(πΘ(φ)) = (τΘ ⊗ idRop

Θ
)
(∫

Rn

φ̂(ξ)λΘ(ξ)⊗ λΘ(ξ)
∗dξ
)
= φ̂(0)1RΘ

.

Then we get (τΘ ⊗ idRop
Θ
)(πΘ(χ5Bj,t

)) = 5|Bj,t|1RΘ
. Condition CZ1 reduces to our

L2-boundedness assumption by Lemma 4.6. Finally, the smoothness condition ii)
in the statement readily implies condition CZ2 for all values of j, t. □
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The smoothness condition in Theorem 4.7 is of Hörmander type, while the one
in the main result of [24] is a gradient condition. As expected, we shall show that
our condition in this paper is more flexible than that of [24, Theorem 2.6]. We use
• for the product in M⊗̄Mop, so that

(a⊗ b) • (a′ ⊗ b′) = (aa′)⊗ (b′b).

The quantum analogue of the metric is defined by

dΘ = πΘ(| · |)

for the Euclidean norm | · |. Moreover, we also introduce the Θ-deformation of the
free gradient. Let L(Fn) denote the group von Neumann algebra associated to the
free group with n generators Fn. It is well-known from (say) [64] that L(Fn) is
generated by n semicircular random variables s1, s2, . . . , sn. Note that there exist
derivations ∂jΘ in SΘ which are determined by

∂jΘ(λΘ(ξ)) = 2πiξjλΘ(ξ)

for 1 ≤ j ≤ n. Define the Θ-deformed free gradient as

∇Θ =

n∑
j=1

sj ⊗ ∂jΘ : SΘ → L(Fn)⊗̄RΘ.

If ∇ denotes the free gradient for Θ = 0, it is easy to check that

(idL(Fn) ⊗ σΘ) ◦ ∇Θ =

n∑
j=1

sj ⊗ (σΘ ◦ ∂jΘ)(4.5)

=

n∑
j=1

sj ⊗ (∂j ◦ σΘ) = (∇⊗ idRΘ
) ◦ σΘ.

For the convenience of the reader, we cite Theorem 2.6 from [24] below.

Theorem 4.8. Let Tk ∈ L(SΘ,S ′
Θ) and assume:

i) Cancellation

∥Tk : L2(RΘ) → L2(RΘ)∥ ≤ A1.

ii) Gradient condition. There exists

α <
n

2
< β <

n

2
+ 1

satisfying the gradient conditions below for ρ = α, β∣∣∣dρΘ • (∇Θ ⊗ idRop
Θ
)(k) • dn+1−ρ

Θ

∣∣∣ ≤ A2.

Then, we find the following L∞ → BMOc estimate∥∥Tk : L∞(RΘ) → BMOc(RΘ)
∥∥ ≤ Cn(α, β)(A1 +A2).

To simplify notation, we shall write in what follows Σ for ΣΘ,k,f,B. According to
the semicommutative Poincaré type inequality introduced in [24, Proposition 1.6]
we obtain∥∥∥−∫

B×B

∣∣δ(Σ)∣∣2dµ× µ
∥∥∥
RΘ

≤ 16R2
∥∥∥(1⊗ χB ⊗ 1)(∇⊗ idRΘ)(Σ)

∥∥∥2
L(Fn)⊗̄L∞(Rn)⊗̄RΘ
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for R = radius of B. By (4.5), we may rewrite

(1⊗ χB ⊗ 1)(∇⊗ idRΘ
)(Σ)

= (id⊗3 ⊗ τΘ)
(
(1⊗ χB ⊗ 1⊗2)(∇⊗ id⊗2)(kσ)(1

⊗3 ⊗ f)(1⊗2 ⊗ a⊥j,t)
)

= (id⊗3 ⊗ τΘ)
(
(1⊗ χB ⊗ 1⊗2)(id⊗ σΘ ⊗ id)(∇Θ ⊗ id)(k)(1⊗3 ⊗ f)(1⊗2 ⊗ a⊥j,t)

)
= (id⊗3 ⊗ τΘ)

(
K • (1⊗3 ⊗ f)

)
with

K = (1⊗ χB ⊗ 1⊗2)(id⊗ σΘ ⊗ id)(∇Θ ⊗ id)(k) • (1⊗2 ⊗ a⊥j,t)

in L(Fn)⊗̄(S(Rn) ⊗π SΘ ⊗π SΘ)
′. Thus, (1 ⊗ χB ⊗ 1)(∇ ⊗ idRΘ

)(Σ) = TK(f).
We turn to the proofs of Theorem 2.6, Proposition 2.15 and Remark 2.16 (as the
generalizations of Theorem 2.6) in [24], they show that the condition ii) in Theorem
4.8 implies ∥∥TK(f)

∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

≤ Cn(α, β)
A2

R
∥f∥RΘ

,

which is inequality (2.2) in [24]. Combining the calculations above, we deduce
that condition ii) in Theorem 4.8 is stronger than condition ii) in Theorem 4.7. In
conclusion, the Calderón-Zygmund extrapolation onRΘ that we obtain by applying
Theorem 2.1 improves the corresponding result in [24].

4.4. Quantum Fourier multipliers. We now refine our abstract result for locally
compact quantum groups. We shall need some basic notions from the theory of
quantum groups, details can be found in Kustermans/Vaes’ papers [38, 39]. Let
us consider a von Neumann algebra N equipped with a comultiplication map, a
normal injective unital ∗-morphism ∆ : N → N⊗̄N satisfying the coassociativity
law

(idN ⊗∆)∆ = (∆⊗ idN )∆.

Assume also the existence of two n.s.f weights ψ and φ on N such that

(idN ⊗ ψ)∆(a) = ψ(a)1N and (φ⊗ idN )∆(a) = φ(a)1N for a ∈ N+.

We call ψ and φ the left-invariant Haar weight and the right-invariant Haar weight
on N respectively. Then the quadruple G = (N ,∆, ψ, φ) is called a (von Neumann
algebraic) locally compact quantum group and we write L∞(G) for the quantum
group von Neumann algebra N . Using the Haar weights, one can construct an
antipode S on N which is a densely defined anti-automorphism on N satisfying the
identity

(idN ⊗ ψ)
(
(1N ⊗ a∗)∆(b)

)
= S

(
(idN ⊗ ψ)

(
∆(a∗)(1N ⊗ b)

))
.

The comultiplication map ∆ determines a multiplication on the predual L1(G)
given by convolution φ1 ⋆ φ2(a) = (φ1 ⊗ φ2)∆(a). The pair (L1(G), ⋆) forms a
Banach algebra. In what follows, if not specified otherwise, the quantum groups
G we shall work with admit a tracial left-invariant Haar weight ψ. The simplest
model of noncommutative quantum groups are group von Neumann algebras L(G)
associated to discrete groups. If λ is the left regular representation of G, the
comultiplication is determined by ∆(λ(g)) = λ(g) ⊗ λ(g). Its isometric nature
follows from Fell’s absorption principle and the convolution is abelian. The standard
trace on L(G) is a left and right-invariant Haar weight. Moreover, in this case, the
antipode is bounded and S(λ(g)) = λ(g−1).
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A convolution semigroup of states is a family (ϕt)t≥0 of normal states on L∞(G)
such that ϕt1 ⋆ ϕt2 = ϕt1+t2 . The corresponding semigroup of completely positive
maps is given by

S∆,t(a) = (ϕt ⊗ idG) ◦∆(a).

When S∆ = (S∆,t)t≥0 is a Markov semigroup, we call it a convolution semigroup.

Lemma 4.9. Let G be a locally compact quantum group equipped with a convolution
semigroup of states (ϕt)t≥0. Then, S∆ = ((ϕt⊗ idG)◦∆)t≥0 is a Markov semigroup
on L∞(G) whenever

i) ϕt ◦ S = ϕt for all t ≥ 0,
ii) S∆,t(a) → a as t→ 0+ in the weak-∗ topology of L∞(G).

Proof. Let us begin with the self-adjointness

ψ
(
a∗S∆,t(b)

)
= ψ

(
a∗(ϕt ⊗ idG)∆(b)

)
= ϕt ⊗ ψ

(
(1G ⊗ a∗)∆(b)

)
= ϕt

(
(idG ⊗ ψ)

(
(1G ⊗ a∗)∆(b)

)
= ϕt

(
S (idG ⊗ ψ)

(
∆(a∗)(1G ⊗ b)

)︸ ︷︷ ︸
ρ

)
.

This means that ψ
(
a∗S∆,t(b)

)
= ϕt(S(ρ)) = ϕt(ρ) and we get

ψ
(
a∗S∆,t(b)

)
= ϕt ⊗ ψ

(
∆(a∗)(1G ⊗ b)

)
= ψ

(
(ϕt ⊗ idG) ◦∆(a∗)b

)
= ψ

(
S∆,t(a)

∗b
)
.

The remainder properties are straightforward. Indeed, identity S∆,t(1G) = 1G is
obvious. The weak-∗ convergence of the S∆,t(a)’s as t → 0+ is assumed and the
complete positivity is clear. The normality follows from the weak-∗ continuity of
ϕt and ∆. Finally, the semigroup law easily follows from coassociativity. □

In what follows, we shall assume that the hypotheses of Lemma 4.9 hold. Let
us fix a quantum group G = (N ,∆, ψ, φ) and consider a convolution semigroup S∆

associated to it. A Markov metric

Q =
{
(Rj,t, σj,t, γj,t) : j, t ∈ Z+ × R+

}
in L∞(G) = N associated to S∆ will be called an intrinsic Markov metric when
there exists an increasing family of projections pj,t in L∞(G) such that the cpu
maps take the form

(4.6) Rj,tf =
1

ψ(pj,t)
(ψ ⊗ idG)

(
(pj,t ⊗ 1G)∆(f)

)
.

In other words, we use the algebraic skeleton(
Nρ = Nπ, ρ1, ρ2,Eρ, qj,t

)
=
(
L∞(G)⊗̄L∞(G),1⊗ ·,∆, ψ ⊗ idG, pj,t ⊗ 1G

)
.

Remark 4.10. Assume that

γj,t ∈ R+ and γ2j,t ≥
ψ(pj,t)

ψ(p1,t)
.
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Then, the term |Rj,tf −Mtf | in the metric BMO norm satisfies for Mt = R1,t that∣∣Rj,tf −Mtf
∣∣2 =

∣∣∣ 1

ψ(p1,t)
(ψ ⊗ idG)

(
(∆(f)− 1⊗Rj,tf)(p1,t ⊗ 1)

)∣∣∣2
≤ 1

ψ(p1,t)
(ψ ⊗ idG)

[∣∣(∆(f)− 1⊗Rj,tf)(p1,t ⊗ 1)
∣∣2]

=
ψ(pj,t)

ψ(p1,t)

(
Rj,t|f |2 − |Rj,tf |2

)
≤ γj,t

(
Rj,t|f |2 − |Rj,tf |2

)
γj,t.

According to Theorem 1.4, this yields

(4.7) ∥f∥BMOc
S∆

≲ ∥f∥BMOc
Q

≲ sup
t>0

sup
j≥1

∥∥∥(Rj,t|f |2 − |Rj,tf |2
) 1

2
∥∥∥
L∞(G)

.

Additionally, we may consider transferred Markov metrics in other von Neumann
algebras. Consider a convolution semigroup of states (ϕt)t≥0 on a locally compact
quantum group L∞(G). A corepresentation π : M → L∞(G)⊗̄M is a normal
injective ∗-representation satisfying the identity

(idG ⊗ π) ◦ π = (∆⊗ idM) ◦ π.

Every such π yields a transferred convolution semigroup Sπ = (Sπ,t)t≥0 with

Sπ,t : M → M,

Sπ,tf = (ϕt ⊗ idM) ◦ π(f).

Lemma 4.11. Assume that

• τ(Sπ,t(f1)
∗f2) = τ(f∗1Sπ,t(f2)),

• Sπ,tf → f as t→ 0+ in the weak-∗ topology of M.

Then Sπ defines a Markov semigroup on M such that π ◦ Sπ,t = (S∆,t ⊗ idM) ◦ π.

Proof. It is easy to check that Sπ,t is cpu and the normality follows from the weak-∗
continuity of ϕt and π. Hence, it remains to show the identity π◦Sπ,t = (St⊗idG)◦π
and the semigroup law. We first observe that π(ϕt⊗idM) = (ϕt⊗idG⊗idM)(idG⊗π)
as maps on L∞(G)⊗̄M. Indeed, by weak-∗ continuity, it suffices to test the identity
on elementary tensors n⊗m, for which the identity is trivial. Therefore, we have

(S∆,t ⊗ idM)π = (ϕt ⊗ idG ⊗ idM)(∆⊗ idM)π

= (ϕt ⊗ idG ⊗ idM)(idG ⊗ π)π

= π(ϕt ⊗ idM)π = πSπ,t.

For the semigroup law we note that

Sπ,t1Sπ,t2 = (ϕt1 ⊗ idM)(ϕt2 ⊗ idG ⊗ idM)(idG ⊗ π)π

= (ϕt1 ⊗ idM)(ϕt2 ⊗ idG ⊗ idM)(∆⊗ idM)π

= (ϕt2 ⊗ ϕt1 ⊗ idM)(∆⊗ idM)π = (ϕt2 ⋆ ϕt1 ⊗ idM)π = Sπ,t1+t2 . □

In the sequel, we shall assume that the assumptions in Lemma 4.11 hold. Intrinsic
Markov metrics on L∞(G) yield transferred Markov metrics on M associated to the
transferred convolution semigroup Sπ. Indeed, given any intrinsic Markov metric
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Q = {(Rj,t, σj,t, γj,t)} in G with cpu maps Rj,t given by (4.6), the transferred cpu
maps Rπ,j,t are given by

Rπ,j,tf =
1

ψ(pj,t)
(ψ ⊗ idM)

(
(pj,t ⊗ 1)π(f)

)
.

It is easy to check that π ◦ Rπ,j,t = (Rj,t ⊗ idM) ◦ π. Assume in addition that
σj,t ∈ R+. Then, arguing as we did before Corollary 4.5 for the corepresentation u
of R in B(ℓ2), we get a Markov metric in M

Qπ =
{
(Rπ,j,t, σj,t, γj,t) : j ∈ Z+, t ∈ R+

}
.

Let α : N → N be a strictly increasing function with α(j) > j. This Markov metric
is called α-doubling if there exists some constant cα such that ψ(qα(j),t) ≤ cαψ(qj,t).

Remark 4.12. In what follows, we impose our Markov metrics to be α-doubling
for some function α : N → N, to satisfy σj,t ∈ R+ as well as the condition in
Remark 4.10. Altogether, this allows to eliminate the size CZ condition and reduce
the number of analytic and smoothness CZ conditions to be checked for both the
intrinsic Markov metric and the transferred one.

Observe that the transferred formulation above includes the intrinsic formulation
by taking (M, π) = (G,∆). Let us now state the corresponding Calderón-Zygmund
theory. Given AM a weakly dense ∗-subalgebra of M, let T be a (not necessarily
bounded) operator T : AM → M. We say T is a transferred map if there exists an
amplification map

T̂ : D ⊂ L∞(G)⊗̄M → L∞(G)⊗̄M
satisfying the identity

(4.8) π ◦ T = T̂ ◦ π|AM
.

Again, D is a weakly dense ∗-subalgebra for which π(AM) ⊂ D. In the case
(M, π) = (G,∆), we can always take the amplification T⊗idM and condition above
just imposes that T is a quantum Fourier multiplier. In the following theorem, we
provide sufficient conditions on the amplification map to make a given transferred
CZO T bounded from AM to BMOc

Sπ
.

Theorem 4.13. Let
π : M → L∞(G)⊗̄M

be a corepresentation of a locally compact quantum group G in a semifinite von
Neumann algebra (M, τ). Assume that L∞(G) comes equipped with an α-doubling
intrinsic Markov metric Q determined by an increasing family of projections pj,t as
above. Then, a transferred map T (with amplification for which (4.8) holds) will be
bounded from AM to BMOc

Sπ
provided :

i) T̂ : Lc
2(G)⊗̄M → Lc

2(G)⊗̄M is bounded,

ii)
(ψ ⊗ ψ ⊗ idM)

ψ(pj,t)2

(
(pj,t ⊗ pj,t ⊗ 1M)

∣∣δG(T̂ (π(f)p⊥α(j),t))∣∣2) ≲ ∥f∥2M.

Proof. We use the algebraic skeleton(
M,Nρ = Nπ, ρ1, ρ2,Eρ, qj,t

)
=
(
M, L∞(G)⊗̄M,1⊗ ·, π, ψ ⊗ idG, pj,t ⊗ 1G

)
.

Identity (4.8) is the compatibility condition (2.3). Let us justify the algebraic
conditions. The second one is trivial since both Eρ(qj,t) and ρ1(γj,t) belong to R+
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in this case. For the first one, consider the product • in L∞(G)⊗̄Mop. Then, we
just observe that

Eρ(qj,t|ξ|2qj,t) = (ψ ⊗ idM)
(
(pj,t ⊗ 1)ξ∗ξ

)
= (ψ ⊗ idM)

(
ξ • (pj,t ⊗ 1) • ξ∗

)
≤ (ψ ⊗ idM)(ξ • ξ∗) = (ψ ⊗ idM)(ξ∗ξ) = Eρ(|ξ|2).

Define the amplifications

R̂π,j,t : L∞(G)⊗̄M ∋ ξ 7→ 1

ψ(pj,t)
(ψ ⊗ idM)

(
(pj,t ⊗ 1M)ξ

)
∈ M.

Consider also the cpu maps

Φj,t : L∞(G)⊗̄L∞(G)⊗̄M → M,

Φj,t(η) =
1

ψ(pj,t)2
(ψ ⊗ ψ ⊗ idM)

(
(pj,t ⊗ pj,t ⊗ 1M)η

)
.

Recalling that δG(x) = x⊗ 1− 1⊗ x, the identity

Φj,t(|δG(ξ)|2) = 2R̂π,j,t(|ξ|2)− 2
∣∣R̂π,j,t(ξ)

∣∣2.
is straightforward. This readily implies the first analytic condition. On the other
hand, since the auxiliary Markov metric is α-doubling, the second analytic condition
reduces to note that

(ψ ⊗ idM)(qα(j),t ⊗ 1M) ≤ cα(ψ ⊗ idM)(qj,t ⊗ 1M).

Thus, according to inequalitty (4.7), the assertion follows from Theorem 2.1. □

Remark 4.14. As noticed, the main particular case of Theorem 4.13 arises for
(M, π) = (G,∆) with amplification T ⊗ idG. Condition (4.8) becomes the identity

∆ ◦ T = (T ⊗ idG) ◦∆.

In other words, these are translation invariant CZ operators. We also call them
quantum Fourier multipliers in this paper and it can be checked, as expected, that
these maps are of convolution type in the sense that there exists a kernel k affiliated
to L∞(G) so that

Tf = k ⋆ f = (idG ⊗ ψ)
(
∆(k)(1G ⊗ Sf)

)
.

In this particular case, it is not difficult to prove that our conditions in Theorem
4.13 reduce to those in Theorem B2 from the Introduction. Of course, Theorem
4.13 also applies as well for nonconvolution CZ operators on quantum groups, or
even for transferred forms of them to other von Neumann algebras M.

Remark 4.15. One may consider twisted convolution CZO’s on quantum groups
applying Theorem 4.13. As an illustration, assume that G ↷ L∞(G) by a trace
preserving action α and that G is a quantum group satisfying (αg⊗αg)∆ = ∆αg for
all g ∈ G. This property is quite natural in the commutative case, where quantum
groups come from locally compact groups and α is typically implemented by a
measure preserving map β. Note that the underlying Haar measure is translation
invariant and the condition above just imposes that β is an homomorphism. Let
us see what we get for a map∑

g
fgλ(g) 7→

∑
g
Tg(fg)λ(g),
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where the Tg’s are normal convolution maps on L∞(G). Assume L∞(G) comes
equipped with a convolution G-equivariant semigroup S∆ which admits a η-doubling
intrinsic Markov metric. Then, we get a bounded map L∞(G)⋊.G → BMOc

S⋊
when

the following conditions hold:

i) We have a bounded map

Lc
2(G)⊗̄B(ℓ2(G)) ∋ ξ 7→

(
Tgh−1

)
• ξ ∈ Lc

2(G)⊗̄B(ℓ2(G)),

where • stands once more for the generalized Schur product of matrices.

ii) Letting R = L∞(G)⊗̄B(ℓ2(G)) and Ψ(ξ) =
∑

g,h(αg−1) • (Tgh−1) • (αg) • ξ,

(ψ ⊗ ψ ⊗ idB(ℓ2(G)))

ψ(pj,t)2

(
(pj,t ⊗ pj,t ⊗ 1)

∣∣δG(Ψ(ξq⊥η(j),t
)∣∣2) ≲ ∥ξ∥2R.

Remark 4.16. All our results in this paragraph impose the additional assumption
that our quantum groups admit a tracial Haar weight. We believe however that our
results can be extended to the general non-tracial case. We leave this generalization
open to the interested reader.

5. Noncommutative transference

Originally motivated by Cotlar’s paper [15] and the method of rotations, Calderón
developed a circle of ideas [5] which was called the transference method after the
systematic study of Coifman/Weiss in their monograph [13]. The fundamental work
of K. de Leeuw [18] also had a big impact in this line of research. Let us consider
an amenable locally compact group G with left Haar measure µ, a σ-finite measure
space (Ω, ν) and a uniformly bounded representation β : G → B(Lp(Ω)). Roughly,
Calderón’s transference is a technique which allows to transfer the Lp boundedness
of a convolution operator f 7→ k ⋆ f on Lp(G) to the corresponding transferred
operator on Lp(Ω)

Vf(w) =

∫
G

k(g)βg−1f(w) dµ(g),

for some compactly supported kernel k in L1(G). A case by case limiting procedure
also allows to consider more general (singular) kernels. In the rest of this section
we shall develop a noncommutative form of Calderón-Coifman-Weiss technique.

Our first task is to clarify what we mean by ‘representation’ and ‘amenable’ in the
context of quantum groups. Using the commutative locally compact quantum group
L∞(G) as above, a representation β : G → Aut(M) induces a ∗-representation
πβ : M → L∞(G;M) by

πβf(g) = βg−1f.

Note that we have

(idG ⊗ πβ)(πβf)(g, h) = πβ(βg−1f)(h) = βh−1βg−1f

= β(gh)−1f = (∆G ⊗ idM)(πβf)(g, h).

Given a semifinite von Neumann algebra (M, τ) and a locally compact quantum
group G, this leads us to consider corepresentations π : M 7→ L∞(G)⊗̄M satisfying
(idG ⊗ π) ◦ π = (∆⊗ idM) ◦ π. Note that comultiplication is a corepresentation by
coassociativity. To show what we mean by ‘uniformly bounded’, let us go back to
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our motivating example β : G → Aut(M), where we take M = L∞(Ω) for some
σ-finite measure space (Ω, ν). In the classical case

∥βgf∥p ∼ ∥f∥p for all g ∈ G

up to an absolute constant independent of f, g. We say that a corepresentation
π : M → L∞(G)⊗̄M is uniformly bounded in Lp(M) if for any f ∈ M ∩ Lp(M)
we have

1

cπ
∥f∥pLp(M) ≤ (idG ⊗ τ)

(
|π(f)|p

)
≤ cπ∥f∥pLp(M)

for some absolute constant cπ independent of f . Note that our notion again reduces
to the classical one on L∞(G). Note also that, since |π(f)|p = π(|f |p), our definition
reduces to the p-independent condition

1

cπ
∥f∥L1(M) ≤ (idG ⊗ τ)

(
π(f)

)
≤ cπ∥f∥L1(M) for all f ∈ M+ ∩ L1(M).

Now we introduce what we mean by an ‘amenable’ quantum group. We say that G
satisfies Følner’s condition if for every projection q ∈ L1(G) and every ε > 0, there
exists two projections q1, q2 ∈ L1(G) such that

∆(q1)(q ⊗ q2) = q ⊗ q2 and ψ(q1) ≤ (1 + ε)ψ(q2).

In the standard example for a locally compact group G, where (L∞(G), ψ) is L∞(G)
equipped with the left Haar measure µ and ∆ is given by ∆G(ξ)(g, h) = ξ(gh) the
classical comultiplication, it turns out that G is amenable iff G is an amenable
group. Indeed, our notion can be rephrased in this case by saying that for any
compact set K in G and any ε > 0, there exists a neighborhood of the identity W
of finite measure such that

µ(KW) ≤ (1 + ε)µ(W),

which corresponds to (q, q1, q2) = (χK, χKW, χW) in our formulation. This is exactly
the classical characterization of amenability, known as Følner’s condition, used by
Coifman and Weiss in [13]. Given an amenable locally compact group G with
left Haar measure µ, it is clear that L∞(G, µ) with its natural quantum group
structure is amenable. On the other hand, as expected, any compact quantum
group is amenable just by taking q1 = q2 = 1G.

Assume that G admits a corepresentation π : M → L∞(G)⊗̄M. Given AM a
weakly dense ∗-subalgebra of M, we say that a linear operator V : AM → M is a
transferred convolution map if there exists Φ : D ⊂ L∞(G)⊗̄M → L∞(G)⊗̄M, an
auxiliary convolution map such that π ◦ V = Φ ◦ π|AM

. The classical transferred
operator

V =

∫
G

k(g)βg−1f(w) dµ(g)

comes from

Φ(ξ)(g, w) =

∫
G

k(h) ξ(hg,w) dµ(h) = (φ⊗ idG ⊗ idΩ)(∆G ⊗ idΩ).

If πβf(g) = βg−1f denotes the corresponding corepresentation, we may then apply
the identities in the proof of Lemma 4.11 again to deduce the following identities

Φ◦πβ = (φ⊗idG⊗idΩ)(∆G⊗idΩ)πβ = (φ⊗idG⊗idΩ)(idG⊗πβ)πβ = πβ(φ⊗idΩ)◦πβ .
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By injectivity of πβ , we must have

Vf(w) = (φ⊗ idΩ)πβf(w) =

∫
G

k(g)βg−1f(w) dµ(g)

as expected. This shows how we recover the classical construction.

Let us now settle the framework for our transference result. Assume that G is
amenable and consider π : M → L∞(G)⊗̄M a uniformly bounded corepresentation
in some noncommutative measure space (M, τ). We say that T : Lp(G) → Lp(G)
is a convolution map with finitely supported L1 kernel when the map T has the
form T = (ϕ⊗ idG) ◦∆ for some functional ϕ = ψ(d ·), with d an element in L1(G)
whose left support q satisfies ψ(q) <∞. In the commutative case, this is the kind of
operators which are transferred. Roughly, the goal is to show how a limit operator
T = limγ Tγ of such maps which is bounded on L2(G) and L∞(G) → BMOS can
be transferred under suitable conditions to a bounded map on Lp(M).

Remark 5.1. Young’s inequality extends to this setting as

∥d ⋆ f∥p ‘=’ ∥(ϕ⊗ idG)∆(f)∥p ≤ 4 ∥d∥1∥f∥p,
where ϕ = ψ(d ·) and 1 ≤ p ≤ ∞. Indeed, when d and f are positive the inequality
holds with constant 1. This can by justified by interpolation. When p = 1 we use
Fubini and the left-invariance of ψ, while for p = ∞ it follows from the fact that
(ϕ⊗ idG)∆ is a positive map with 1G 7→ ψ(d). In the general case, we split d, f into
their positive parts and obtain the constant 4. In fact, the same argument still holds
after matrix amplification and we deduce that (ϕ ⊗ idG)∆ is completely bounded
on Lp(G) with cb-norm 4∥d∥1. This is however not enough for transference, since
the norms ∥dγ∥1 might not be uniformly bounded.

Theorem 5.2. Let G be an amenable quantum group and consider a uniformly
bounded corepresentation π : M → L∞(G)⊗̄M in some noncommutative measure
space (M, τ). Let T : L2(G) → L2(G) be a bounded map and assume that

(T ⊗ idM) = SOT− lim
γ
(Tγ ⊗ idM)

for some net Tγ = (ϕγ ⊗ idG) ◦ ∆ of convolution maps with finitely supported L1

kernels and such that limγ ∥Tγ∥B(L2(G)) ≤ ∥T∥B(L2(G)). Then, the net of transferred
operators Vγ = (ϕγ ⊗ idM) ◦ π satisfies the inequalities

∥Vγ∥B(L2(M)) ≤ cπ∥Tγ∥B(L2(G)).

We thus find a WOT-cluster point V satisfying ∥V ∥B(L2(M)) ≤ cπ∥T∥B(L2(G)).

Proof. Note that we have

πVγ = (ϕγ ⊗ id)(idG ⊗ π)π = (ϕγ ⊗ id)(∆⊗ idM)π = (Tγ ⊗ idM)π.

Hence, the uniform boundedness of π yields

1

cπ
∥Vγf∥22 ≤ (ρ⊗ τ)

(
|πVγ(f)|2

)
= (ρ⊗ τ)

(
|(Tγ ⊗ idM)π(f)|2

)
for any state ρ on L∞(G). On the other hand, if ϕγ = ψ(dγ ·) and qγ denotes the
left support of dγ , we know from the amenability assumption that for any ε > 0 we
may find projections q1γ and q2γ such that

∆(q1γ)(qγ ⊗ q2γ) = qγ ⊗ q2γ and ψ(q1γ) ≤ (1 + ε)ψ(q2γ).
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Taking ρ = ψ(q2γ ·)/ψ(q2γ), we obtain the inequality

1

cπ
∥Vγf∥22 ≤ (ψ ⊗ τ)

ψ(q2γ)

(∣∣∣(ϕ⊗ id)
(
(∆⊗ idM)π(f)(1G ⊗ q2γ ⊗ 1M)

)∣∣∣2)
since ρ is supported by q2γ . Moreover, dγ ⊗ q2γ is supported on the left by qγ ⊗ q2γ
and amenability provides dγ ⊗ q2γ = ∆(q1γ)(dγ ⊗ q2γ). Once we have created
∆(q1γ), we can eliminate q2γ . Altogether gives

1

cπ
∥Vγf∥22 ≤ 1

ψ(q2γ)

∥∥∥(Tγ ⊗ id)
(
π(f)(q1γ ⊗ 1M)

)∥∥∥2
L2(L∞(G)⊗̄M)

.

Now we use the L2 boundedness of Tγ and uniform boundedness of π to conclude

1

cπ
∥Vγf∥22 ≤ 1

ψ(q2γ)
∥Tγ∥2B(L2(G)) ψ

(
(q1γ ⊗ 1M)(idG ⊗ τ)

(
|π(f)|2

))
≤ cπ

ψ(q2γ)
∥Tγ∥2B(L2(G)) ψ(q1γ) ∥f∥

2
2 ≤ cπ (1 + ε) ∥Tγ∥2B(L2(G)) ∥f∥

2
2.

Letting ε→ 0, we prove the inequality

∥Vγ∥B(L2(M)) ≤ cπ ∥Tγ∥B(L2(G)).

Since T is bounded on L2(G) and limγ ∥Tγ∥B(L2(G)) ≤ ∥T∥B(L2(G)), the operators
Vγ are eventually in a ball of radius cπ(1+δ)∥T∥B(L2(G)) for any δ > 0. The closure
of such ball is weak operator compact and thus we find our cluster point. □

We now study L∞ → BMO transference and then interpolate/dualize to obtain
Lp-transference. This approach seems to be new even in the classical theory and
where our semigroup formulation becomes an essential ingredient.

Corollary 5.3. Let G be a compact (hence amenable) quantum group equipped
with a uniformly bounded corepresentation π : M → L∞(G)⊗̄M. Let (ϕt)t≥0 be
a convolution semigroup of states on L∞(G), giving rise to Markov semigroups
S∆ on (G, ψ) and Sπ on (M, τ). Let T = SOT − limγ Tγ be as above and take
AM = M∩L2(M). Then, if T : L∞(G) → BMOS∆

is completely bounded, we find
that

V = WOT− lim
γ
Vγ : AM → BMOSπ

is completely bounded. Moreover, if Tπ is regular, the complete boundedness of
JpV : Lp(M) → Lp(M) follows for every 2 < p < ∞ by interpolation. In addition
the complete boundedness of V Jp : Lp(M) → Lp(M) for 1 < p < 2 holds under the
same assumptions for T ∗.

Proof. By uniform boundedness of π we have∥∥∥(idG ⊗ τ)
(
|π(f)|2

) 1
2

∥∥∥
L∞(G)

≤ cπ∥f∥2,

which implies that π : L2(M) → L∞(G)⊗̄Lc
2(M) is bounded by cπ. According to

the finiteness of L∞(G), we deduce that in fact π : L2(M) → L2(L∞(G)⊗̄M) is
still bounded with the same norm. This proves that

πV = WOT− lim
γ
πVγ = WOT− lim

γ
(Tγ ⊗ idM)π = (T ⊗ idM)π.
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In particular, πV = (T ⊗ idM)π over AM and identity πSπ,t = (St ⊗ idM)π yields

∥V f∥BMOc
Sπ

= sup
t≥0

∥∥∥Sπ,t|V f |2 − |Sπ,tV f |2
∥∥∥ 1

2

M

= sup
t≥0

∥∥∥πSπ,t|V f |2 − |πSπ,tV f |2
∥∥∥ 1

2

L∞(G)⊗̄M

=
∥∥(T ⊗ idM)π(f)

∥∥
BMOc

S
≤ ∥T∥cb∥π(f)∥L∞(G)⊗̄M = ∥T∥cb∥f∥M

for f ∈ AM. Since the same inequality holds after matrix amplification, we deduce
that V : AM → BMOc

Sπ
is completely bounded with cb-norm ≤ ∥T∥cb. The row

case is similar because

πV † = (πV )† = (Tπ)† = T †π.

The assertions on Lp boundedness follow as usual from Theorem 1.3. □
Remark 5.4. Under the above assumptions, we see that for V = WOT− limγ Vγ
we can find the concrete form of its amplification map Φ defined on L∞(G)⊗̄M. In
this case, by applying Theorems 4.13 to Φ = T ⊗ idM, we get Calderón-Zygmund
extrapolation for the transferred convolution map V on M.
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Consejo Superior de Investigaciones Cient́ıficas
C/ Nicolás Cabrera 13-15. 28049, Madrid. Spain

runlian.xia@icmat.es


