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Sharp maximal functions associated with approximations of
the identity in spaces of homogeneous type and applications

JoSE MARIiA MARTELL

Abstract

In the context of the spaces of homogeneous type, given a family of operators that
look like approximations of the identity, new sharp maximal functions are considered.
We prove a good-A inequality for Muckenhoupt weights, which leads to an analog of the
Fefferman-Stein estimate for the classical sharp maximal function. As a consequence,
we establish weighted norm estimates for certain singular integrals, defined on irreg-
ular domains, with Hormander conditions replaced by some estimates which do not
involve the regularity of the kernel. We apply these results to prove the boundedness
of holomorphic functional calculi on Lebesgue spaces with Muckenhoupt weights. In
particular, some applications are given to second order elliptic operators with different
boundary conditions.

1 Introduction

Let us consider a space of homogeneous type (X,d, ) which is a set X endowed with a
distance d and a non-negative Borel measure @ on X such that the doubling condition

w(B(z,2r)) < Cp(B(x,r)) < oo, (1)

holds for all x € X and r > 0, where B(z,r) = {y € X : d(z,y) < r}. A more general
definition and further studies of these spaces can be found in [CW], [MS1], [MS2].

Throughout this paper we will use the following notation: for every ball B, zp and rp
are respectively its center and its radius, that is, B = B(xp,rp). Given A > 0, we will
write A B for the A-dilated ball, which is the ball with the same center as B and with radius
rap = Arp. By L{(X), 1 < p < oo, we denote the set of functions in LP(X) with bounded
support.

If C is the smallest constant for which the measure p verifies the doubling condition
(1), then D = log, C' is called the doubling order of p and we have that

B p ~
mB) _ C, <7"B> , for all balls BC B C X. (2)
u(B) iz
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In particular, it follows that u(A B) < C, AP u(B), for every ball B and for every A > 1.
Besides, there exist ¢, > 1 and 0 < N < D, such that,

N
A () 0

(B <6 (14
uniformly on z, y € X and r > 0. In fact, this estimate with N = D is a trivial consequence
of (2) and the triangular inequality of the distance d. But, in general, N can be taken to
be smaller. That is, for example, the case of the Lebesgue measure on R or the case of Lie
groups with polynomial growth, where (3) holds with N = 0. On the other hand, let us
point out that the doubling condition yields that X is bounded if and only if u(X) < occ.

We consider the following “approximations of the identity” which previously appeared
in [DM].

Definition 1.1 A family of operators {Dy,t > 0} is said to be an “approzimation of the
identity” if, for every t > 0, Dy is represented by the kernel ai(z,y), which is a measurable
function defined on X x X, in the following sense: for every f € LP(X), p > 1,

Dyf(x) = /X ar(,) F () dp(y);

and the following condition holds:

1
-
u(B(z,tm))

where m s a positive fized constant and s is a positive, bounded, decreasing function veri-
fying

la(z,y)| < h(z,y) = s(d(z, )™t ™),  (z,y) €EX x X, t >0,

lim P+ s(r™) = 0, (4)

r—00

for some ¥ > N (recall that N is the power appearing in (3) and D is the doubling order
of u)-

The idea is that the kernels are controlled by positive decreasing radial functions which
decay to 0 at infinity fast enough. Some examples of these functions h; are given by
Gaussian or Poisson kernels. Associated with an “approximation of the identity” we next
define a new sharp maximal function.

Definition 1.2 Given f € LP(X) for some p > 1, we define the sharp maximal function
associated with the “approzimation of the identity” {Dy,t > 0} as

My (@) = o~z [ 17(0) = Duy )] i)

where tg = 15

In comparison with the classical Fefferman-Stein sharp maximal function M#, we see that
instead of subtracting from f its average on every ball, we subtract D;, f. We will show
that in case that D;1 = 1 a.e., our sharp maximal function ./\/lﬁD is pointwise smaller than
M but they are not comparable in general.



After some preliminaries, in Section 3 we state some properties of ./\/lﬁD. In Section 4 we
prove a good-\ inequality for this new sharp maximal function and the Hardy-Littlewood
maximal operator M. This estimate implies that M is controlled by MﬁD in the LP(w)
norm for 0 < p < oo and for every Muckenhoupt weight w in the class A, (see the definition
in the next section). That is, we obtain an analog of the classical inequality of Fefferman-
Stein in [FS] (for the weighted case see also [CF]) for this new sharp maximal function.
In Section 5 we apply this result to some singular integrals introduced in [DM]. For these
operators the classical Hormander type inequalities are replaced by some conditions that
involve the “approximations of the identity” defined above. The advantage is that there is
no regularity assumption, and this fact allows us to consider operators defined over non-
smooth domains (see Section 6). We prove that such an operator T is of strong type (p, p),
1 < p < oo, with respect to w € A,. Here, the key is the control of M by ./\/lﬁD obtained
with the good-\ inequality plus the fact that

M(TF)(z) < C (M(f)())*

holds for every 1 < s < co. Let us point out the analogy between this estimate and the one
holding for classical Calderén-Zygmund operators (see [GR, Chapter II, Theorem 5.20] for
instance). For p = 1, by means of the Calderén-Zygmund decomposition, we obtain that T’
is of weak type (1,1) with respect to weights in A;. In Section 7 we consider holomorphic
functional calculi of elliptic operators, proving that they satisfy weighted estimates for
Muckenhoupt weights. As a consequence, weighted estimates are studied for some second
order elliptic operators with different boundary conditions.

The results contained in this paper are part of the author’s Ph. D. thesis, written under
the supervision of Prof. J. Garcia-Cuerva (see [Mar]). The study of weighted estimates for
the class of operators considered here was motivated by [DM], where the unweighted case is
treated. During the preparation of this paper, I became aware of the paper [DY], where the
authors prove weighted LP estimates of a different kind for holomorphic functional calculi of
linear elliptic operators. They consider two weights, one on each side, and study conditions
on the weight on one side which guarantee the existence of another weight on the other
side. Their approach is based on the technique, already used in [GM] and [GR], of proving
vector-valued inequalities for those operators.

The author would like to thank Prof. J. Garcia-Cuerva for his encouragement, guidance,
and for many useful discussions about the material of this article. The author would like
to express his gratitude to Prof. S. Hofmann for his comments and suggestions.

2 Preliminaries

The Hardy-Littlewood maximal function is defined by

1
Mi(@) = sup - oo 17w duty).
B>z :U’(B ) B
We will also consider the centered version of this maximal operator, denoted by M€, where
the supremum is only taken over all balls centered at x. By the doubling condition, these

maximal operators satisfy

MEf(x) < Mf(x) < Cu2P MEf(a). ()



Note that h; in Definition 1.1 might be non symmetric, however just by using (3),

1 1 ~
he(x,y) < ¢, min —, - si(d(z,y)™t7Y) = he(z,y),
(z,y) < cpu {M(B(m’tm)) M(B(y,tm))} 1(d(z,y)"t77) = hy(z, y)

where s1 is a new function verifying the same properties as s with some ¢ > 0 and Et(x, Y)
is symmetric. We also have

cl< / hi(z,y) du(x) < C and cl< / hi(y, z) du(x) < C
X X

uniformly on y € X', t > 0. On the other hand, as in [DR, p. 97], it is verified

Dy f(x)] < /X hale ) | £ (9)] dia(y) < /X T(z,y) /() duly) < CMF(x),  (6)

for every f € LP(X), 1 < p < co. We also point out that
| mle) f@ldnte) < [ Fuwa) (e duta) < € M), )

where we have used the symmetry Et(x, y). In both cases, these estimates are uniform on
t>0.

We consider Muckenhoupt weights. Given 1 < p < 0o, a weight w belongs to A, if, for
every ball B C X, it verifies

) (o [e@a@) (g [ e du(w)>p1 <c

The class A; is defined by letting p — 1, that is,

1 _
(A) (m / w(w)du(rc)> ol gs) < C,

where the constant C' does not depend on the ball B. Finally, Ay is the union of the
A, classes, 1 < p < oo. These classes, in the Euclidean setting, were introduced by
Muckenhoupt in [Muc] and further developed in [CF]. About Muckenhoupt weights in
spaces of homogeneous type the reader is referred to [ST].

For w e Aoo and for every measurable set £ C X’ we use the standard notation w(E) =
fE x) du(x). Moreover, if 0 < p < oo, LP(X,w) = LP(X,wdu). In some parts of this
work, we Wlll be interested in working in Q@ C X. In that case, LP(2) = LP(Q, u) and,
for w € Ay (X), we will write LP(Q,w) = LP(Q,wdu). When we consider w € A (X),
we mean that w is Muckenhoupt weight with respect to the whole space X and not with
respect to 2. We will simply use the notation w € A,, omitting X, when it is clear from
context.

The following result contains the Calderén-Zygmund decomposition on spaces of homo-
geneous type.

Theorem 2.1 ([CW]) Let f >0, f € Ly(X), and X > | fllp1x) (u(X)) "t Then, there
exists a family of balls { B;} such that



(1) f(z) < CA, for p-a.e. x € X\ |, Bi.

1
w(B;)

(i) ;m&)sf | 1) duto)

(if) /B F)duly) < O

(iv) There exists an integer M > 1, independent of f and X, such that, every point in X
belongs at most to M of these balls.

Remark 2.2 The following properties are contained in the proof of the previous result:

(i) There exists some constant Cx, which only depends on the space, in such a way that

Ey={zeX: Mf(x)>ACx} =B
(ii) There exists €y > 1, independent of f and X\, such that (eg B;) \ E\ # O.

3 A new sharp maximal function

In what follows {Dy,t > 0} will be an “approximation of the identity”. We will use the
following notation: if B is a ball, tp = 5. We are going to study some properties of the
maximal operator /\/lﬂD (see Definition 1.2).

Let us recall that the Fefferman-Stein sharp maximal function is defined as

1
MEf (@) = sup s /B ) — Faldu(y),

B>z

where fp stands for the p-average of f over B.

Proposition 3.1 Let {Dy,t > 0} be an “approzimation of the identity” such that for every
t>0, Di1 =1 a.e. or, what is the same, for everyt >0

/ ar(z,y) du(y) =1, for almost all x € X.
X

Then, for every function f € LP(X), p>1, and x € X we have
My f(z) < C MPf(a). (8)
However, the converse inequality does not hold in general.

Remark 3.2 If the kernels of Dy, t > 0, have bounded support, then the previous inequality
is still true for locally integrable functions since the operators Dy make sense acting over
them.

Remark 3.3 Condition Dy1 = 1 a.e. is necessary for (8). This is obtained by taking
f(x) = 1. Then, (8) implies that ./\/lﬁDf = 0 and thus, for everyt > 0, D;1 =1 outside of

a zero measure set.



Proof of Proposition 3.1. We fix f € LP(

x),
1 1
5 [ 1@ = Dy f@) dn(o) < / / s (e,) £(2) — F )| dia(y) diu)

- u(lB)/B/zB'”du(y)d( //2k+lB\QkB- 1(y) du(x)

= I+1II.

p>1; 29 € X and a ball B 3 xy. Then,

We estimate I. By (3) we have u(B) < 2V u(B(z,rp)) since x € B. Besides, for y € 2B
we get

s(d(z,y)™t 5 s(0 C C

hts(mvy): (( y)LB)S B() < BS 2B’
w(B(x,t5)) w(B(z,rp)) ~ u(B) ~ w(2B)

where in the first inequality we have used that s is decreasing. In this way, we obtain:

23 // y)| du(y) dp(z) < C M* f(ao), (9)

since 29 € B C 2 B. Regarding IT, for z € B and y € 2¥*1 B\ 2% B then d(z,y) > 2¥ "' rp
and, just as before,

s(d(z,y)™rg™) s(2(k=1)m) s s(2(E=1)m) o(k+1) D
,u,(B(a:, 7’3)) - ,u(B) - M(2k+1 B) >

where we used (2). Thus,

00 . 1
11203 P a2 s [ [ 150 = 1)l duty) duo)

k=1

htB (ZL‘, y) =

We estimate each term as follows:

B WB [ [ 150 = 560 duto) duto)
o=y /WBIf() oot sl () + s [ 17() = fye )

ME f(x0) /f — fBldu(z) + |fB — foB| + -+ [for g — for+1 gl
< Mﬂf(xo)(kﬂ

IN

Therefore, by (4) we have

IT < CM f(x0) Y (k+1) 2P (2% D™) < € M f (o).

k=1

Next we are going to show why the converse inequality does not hold in general. To do
that we consider R with the Lebesgue measure dx and the “approximation of the identity”
{Dy : t > 0} given by the kernels

o) = X (1) = — X
Y }(y—ti,y—kt%)’ (y—tﬁ,y-i-tﬁ) 1 (




As we observed in Remark 3.2, since the supports of these kernels are bounded sets, the
operators D; make sense acting over locally integrable functions. Let us take the function
f(x) = x. Then, for every ¢t > 0, D;f(z) = x and thus MﬁDf(ZL‘) = 0. On the other hand,
MEf(x) = oo, and it is clear that M* and M% are not comparable. O

Next, we are going to show some properties of our sharp maximal function /\/lg) to be
used later.

Lemma 3.4 For 1 <p<oo and f € LP(X), it follows that for every x € X,
C

[Def(@)] < ————— [[fllLr()
p(B(z, tm))?

Proof. The case p = 1, works because s is a bounded function. For p = oo, the properties
of hy yield

D ()] < 1l /X () dis(y) < C 11| 1=

Finally, if 1 < p < 0o, we combine Hélder’s inequality and the former ideas to get

D@ < Wl ([ it dutw)”
= Wl ([ oo™ ) dut)”
C %
< Al — he(x,y) du(y) )*
u(B(w,tm)) ¢ </X )
N I —

n(B(z,tw))r
Od

Lemma 3.5 Consider f € LP(X) for some p > 1, a ball B and x € B. Then, there exists
C > 0 (independent of f, B, x) such that

1
B)/B!Dmf(y)\du(y) < CMf(x).

Proof. First of all,
1D (f XaB) W) < Sup, hip (y, 2) (4 B) M f(z),

since z € B C 4 B. By [DR, Proposition 2.5], for v > 0, there exist C,6 > 1 such that

sup ht(y,Z) <C inf h@t(ya Z)a
2€B(zp,r) z€B(zp,7)

provided r™ < vt. We take v = 4™, r =4rp and t =t =1}, to get

sup hey (y,2) p(4 B) < C / inf hoo, (v, 2) du(€) < C / hoey (4,€) du(€) < C,
2€4B p2€4B "



independently of 6, tg, y. We have eventually obtained

/ Diy(f Xap) )l disly) < C M (2).

On the other hand, we use (5) and (6) to observe

57 [ 100 X)) dist) < €z | MU X)) ).

For y € B and 0 < r < 3rp, then B(y,r) C 4 B. But, if » > 3rp then x € B(y,r). These
facts yield M(f x4 B)c)(y> < Mf(z) for every y € B and hence

55 |10 X Wl dn(y) < C M (o).
We complete the proof by collecting the obtained estimates. O

Corollary 3.6 If f € LP(X), for some 1 < p < oo, then ./\/l%f(x) < CMf(x).

4 A good-) inequality

In this section we prove a good-A inequality for ./\/lﬁD and M which allow us to obtain
an analog of the classical Fefferman-Stein estimate (see [F'S] and [CF]) for our new sharp
maximal function. For the genesis of the good A inequalities the reader is referred to
[BG]. This Fefferman-Stein type estimate for M 1 says that for every A, weight w and
for every 0 < p < oo, M’ 7, controls M in the LP(w)-norm. In the particular case of the
“approximations of the identity” considered in Proposition 3.1, the inequality that we are
going to get improves the one in [FS] and [CF].

Proposition 4.1 Take A >0, f € L}(X) and a ball By such that there exists xo € By with
Mf(xo) < X. Then, for every 0 < n < 1, we can find v > 0 (independent of X\, By, f,xo)
i such a way that

plw € Byt Mf(z) > AN M f(z) <y A} < npu(Bo),

where A > 1 is a fixed constant which only depends on the space and the “approzimation
of the identity” {Dy,t > 0}. Furthermore, for every w € A, there exist Cy,r > 0 (which
only depend on w) such that

w{z € By : Mf(x) > AN Mo f(x) <y A} < Cun w(Bo).

Proof. Let us observe that the second part arises as a consequence of the first one, since
it is well known (see [ST] for instance) that for every w € A, there exist Cy,r > 0 such
that

w(E) (M(E)y
—= < Cy | —=% | , forevery ball B and every E C B.
(B) pu(B)

Taking £ = {z € By : M f(z) > A}, ./\/lﬁDf(ac) <~ A} and B = By, we can use the estimate
for 4 in order to obtain w(E) < Cyn" w(By).

S



We only work with the unweighted case. Take ¥ > 0 and
E={xeBy: Mf(x) > A\ M f(z) <FA}.

Assume that we have zp € E (otherwise, there is nothing to prove). By (5), for x € E we
have AN < MCf(x), where A = (C,2P)"1 A > 1 is to be chosen later. Then, there exists
B(x,r;) such that

1

p(B(x,rs))

Since A > 1, necessarily =9 ¢ B(x,r;) which implies r; < 2rp, and B(z,r;) C 4 By.
Hence,

t/ £ du(y) > AN
B(z,re)

T 1
AN < B /B(x’%) |F W)l dpy) < M(f Xy 5,)(@),

and M(f x4p,)(7) > A for every x € E. Let us take tg = (1675,)" = tig,. We are
going to show that there exist Cy (depending on the space and {D;,t > 0}, but not on tp)
such that, M((Dy,f) X4p,)(z) < Co A for every x € E. To do this we are going to use the
ideas of Lemma 3.5. As there, we observe that

[ Dt (f X168,) W) < CMf(20) < CA

and
M(Di(f Xi168y) Xapy)(x) < CA. (10)
On the other hand, if y € 4 By, then

1Dty (f X(16 Bo)e) W) < G 2P ME(f X (16 Bo)e) (W)

1
< G2 sw / fly (y) duly
g r>127rp, w(B(y,r)) B(y,r)| (y)] X (16 Bo) (y) du(y)

0, 2P Mf(x0) < C, 2P X

IN

Observe that in the first inequality we used (5) and (6); for the second we took into account
that the integral vanishes for every r < 12rp, because B(y,r) C 16 By; and the third one
holds since g € B(y,r) for all » > 12rp,. Then

M(Dio(f X (16 Bo)e) Xap,)(®) < CA

This estimate and (10) provides M((Dy,f) X4p,)(z) < Co A, where Cp is a constant that
only depends on the space and the “approximation of the identity” {D;,¢ > 0}. Thereby,
we have proved that for all x € F,

M(f Xap)(@) > AN and  M((Dyyf) Xqp,)(@) < Co.
Choose A = Co+1>1. If z € E, we have that

(Co+DA < M(f Xyp,)(@) <M(f = Diof) Xap,) (@) + M((Dto.f) X45,)()
< M((f = Dt f) XaB,)(®) + Co A,



and so M((f — D¢y f) X4p,)(x) > X. This proves that
E C {z € Bo: M((f — Diof) Xap,)(x) > A}

and by weak type (1, 1) inequality for the Hardy-Littlewood maximal function:
C C ~
p(B) < S [ 170 = Diaf )] X, ) ) < 5 116 Bo) M () < €T (o)

since tyg = ti6B,, T € E C By and MﬁDf(mE) < 7 A. Let us point out that this estimate
holds for every 4 > 0. In this way, given 0 < n < 1, we take 7 such that v = n/C (which is
clearly independent of A, By, f,z9). The inequality above for this value 4 turns out to be
the one we indeed want to get. O

Now we can prove the analog of the classical Fefferman-Stein inequality. For the mo-
ment, we state the result just for locally integrable functions. Afterwards, we will extend
it to a wider class of functions.

Theorem 4.2 Let 0 < p < 0o and w € Aw. For every f € Ly(X) with Mf € LP(X,w) it
follows that:

(@) IMFll o) < CUMSFllLo(aea, if X is unbounded.
(i1) [MFllzow < CIMGFlpow + CllF i), if X is bounded.

We point out that the assumption M f € LP(X,w) guarantees that the left-hand sides of
these inequalities are finite.

Proof. Set E\ = {z € X : Mf(z) > A}. Note that in the notation of the Calderén-
Zygmund decomposition, Theorem 2.1, E\ = E% Fix 7= Cx || fllpr(x) (X))~ —if x
is unbounded, then 7 = 0— and let us considerX)\ > 7. We can perform the Calder6n-
Zygmund decomposition: there exists a collection of balls {B;} such that Ey = |J; B;. We
write EZ = €9 B; where ¢y > 1 is the constant that appears in Remark 2.2 part (ii). Then,
there exists Z; € B; \ Ey, that is, Mf(%) < A. Let us use Proposition 4.1: there are
Cw,7 > 0 (which only depend on w) and A > 1 (which depends on &, {Dy,t > 0}) such
that, if 0 < 7 < 1 (to be chosen later) we can find v > 0 (independent of A, f, B;) in such

a way that N ~
w{z € B; : Mf(z) > A\ MY f(z) <y A} < Cor” w(By).

Set Uy ={z € X : Mf(x) > A)\,MﬁDf(x) <~A} and so Uy C Ey\ = U; Bi C U@EZ since
A > 1. Then, for any A\ > T,

w(Uy) < Zw{x € B;: Mf(z) > A)\,MﬁDf(.%) <A} < Cyn” Zw(éz)

< Cuf Cuy 3 w(B) < Cof Muw(|JB) = Co w(Ey)
= Cnwl{r e X : Mf(zx)> N}, (11)

where we used that A, weights are doubling measures, M is the constant in (iv) of Theorem
2.1, and C is a constant that only depends on the space and the weight.

10



We first handle the case where X is unbounded. Then 7 = 0 and the previous inequality
holds for every A > 0. Due to the fact that 0 < p < oo, and by (11), one can prove that

IMFT ) = Ap/o p N w{z e X Mf(z) > AN dA
< Ap/ pAPT! (w(U,\)-l-w{acEX:MﬁDf(J:)>fy)\})d)\
0

< (C+1>Ap77THMfHLp(Xw HM fHLp X w)*

Observe that both terms are finite since by hypothesis M f € LP(X,w) and by Corollary
3.6, Mqu also belongs to this space. Let us choose 1 such that (C'4+1) AP n" = % (it is clear
that 0 < n < 1 and that only depends on X', w and {D;,t > 0}). The former inequality
turns out to be

IMFIE ey < 2f M £

When X is bounded we have that X' = B(mo, ro) and, since w € L (X) (because w €
Aoo) it follows that w(X) < oo. Now we can only use Calderén-Zygmund decomposition
and (11) for A > 7. Thereby,

IMFN () = Ap/o p XN lw{z e X i Mf(z) > AN} dA

- AP(/OT...d)\Jr/TOO...d)\)

< AP TP w(X) + AP (C+ 1) |MFIR gy + HM FIeo ey

where the estimate for the first term is trivial and for the second one we employ (11) as in
the former case. Use that each term is finite, take n such that AP (C'+1)7n" = 3, and plug
the value of 7 into the inequality above to get

IMFll oy < ClIMS Fllioew) + C = ClIIMS flliozaw + C 1 Fll 12

a

Now we can extend the previous result to a wider class of functions. The only interesting
case is when X is unbounded because otherwise the set of functions that belong to some
LX) is just LY(X) = L{(X).

Corollary 4.3 Assume that X is unbounded. Let 0 < p < 0o, w € A and f € L1(X) for
some 1 < qg<oo. If Mf € LP(X,w), then

/ (MF (@) w(z) du() < C / (M £ ()P w(z) du(z).
X X

Proof. Take such a function f. By Corollary 3.6, MﬁDf(a:) < CMf(x) € LP(X,w)
and the right-hand side of the inequality we want to prove is finite as well. Since X is

11



unbounded u(X) = co and standard computations show that w(X) = oo for w € As. Let
us take g € X' and we are going to prove that for all z € X', M(f Xp(z,r)c)(¥) — 0 as
R — oo. Let us observe that M(f X p(s,r)c)(z) decreases as R increases because X g(z, )
does and the previous limit always exists. Assume that we find z; € X such that this limit
is Co > 0. In particular, M(f Xp(uy,r)c)(®1) = Co, for every R > 0. For z € X, we define
R(x) = max{d(z1, o), d(x,x0)} + 1 and so z,z1 € B(zo, R(z)). If R > 4 R(x),

1
M J(x) < Cu2P sup ——————
(f XB(mmR) )( 1) H r>3 R(z) ,U,(B(CCLT))

< Cyu 2DM(f XB(,Z‘(),R)C)(x)’
because if r < 3 R(x), then B(x1,7) C B(xo, R) and the integral vanishes. On the other

hand, the last inequality holds because x € B(zg, R(z)) C B(x1,r). Then, for R > 4 R(x),
we have

[ 1@ X e @) a0
B(z1,r)

Co < M(f X p(ag.ry)(@1) < Cu 2P M(f X p(ay.p)e) (@) < Cu2P Mf(2),

and so

[t v > (55) wr = .

what contradicts Mf € LP(X,w). So, for every € X, M(f Xp(zg,r)c)(¥) — 0 as R —
00. On the other hand, since Mf(x) € LP(X,w), we can use the dominated convergence
theorem in order to obtain that [|M(f X p(ge o)) lLr(xw) — 0 as R — oo. Then, for any
€ > 0, there exists Ry > 0 such that [[M(f Xp(ug,ro)e) lr(x,w) < €- In this way,

[IMFllLexw) < €+ MU X Bao, o)) 2o (2 w)-

Since f € LX), ¢ > 1, it follows that f Xp(y, Ry € L§(X). On the other hand,
M(f XB(wo,Ro)) € LF(X,w), because M f belongs to the same space. We can now use
Theorem 4.2 to prove that

IA

C | M (f X B(wo, ko)) L7 (2 w)
C M5 Fll o (0) + C UM X iag,roye) | L)

Due to the fact that f X B(zo,Ro)c € L1(X), Corollary 3.6 leads to

M X Bao,ro)) I Lr(,w)

IN

1M X g ) 2o < CUMUE X pay.me)loorw < Ce.

By collecting all these estimates and by using that € can be taken arbitrarily small we get
the desired estimate. O

5 Weighted norm inequalities for singular integral operators
with non-smooth kernels

The operators we are going to consider henceforth were introduced in [DM]. They are
defined in the following way:
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(a) T is a bounded linear operator on L?(X') with kernel K (z,y) such that for f € L3°(X),
= / K(z,y) f(y)du(y), for p-almost every x ¢ supp f.
X

(b) There exists an “approximation of the identity” {A;,¢ > 0} such that T' A; has asso-
ciated kernel k;(z,y) and there exist ¢1,co > 0 so that

/( . LK (z,y) — ky(z,y)| du(z) < cg, forally € X
z,y)>c1tm

(¢) There exists an “approximation of the identity” {D;,t > 0} such that D; T has kernel
K (z,y) which satisfies

(cl) |Ki(z,y)| < ecq ;1, when d(z,y) < c3 t%,
w(B(z,tm))

1 tom
w(B(z, d(z,y))) d(z,y)*
for some ¢3, ¢4, a > 0 (in fact, without loss of generality in what follows we will assume
that cg = 1).

(2) |Ki(z,y) — K(z,y)| < e , when d(z,y) > c3twm,

We assume that 7' is an operator satisfying (a), (b) and (¢). The maximal operator T}
is the supremum of the truncated integrals, namely,

L) = swp s =swp| [ K 1) duto]
d(z,y)>

e>0

Remark 5.1 In [DM], it is proved that if T verifies (a) and (b), then it is of weak type
(1,1) and of strong type (p,p) for 1 < p < 2. In addition, if (c) is also assumed, then T is
bounded on LP(X), 1 < p < co. Furthermore, [DM, Theorem 3| says that Ty is a bounded
operator on LP(X), 1 < p < oo. Indeed, implicitly in the proof we can find the following
Cotlar type inequality:

T.f(z) < CM(Tf)(x) + CMf(). (12)
Then, the boundedness of T and M provide the corresponding estimates for T.

Remark 5.2 In comparison with the classical Calderon-Zygmund operators, the Horman-
der conditions are replaced by (b) and (¢) which involve the “approximations of the identity”.
Let us note that there is no reqularity assumption on the space variables. In fact, Duong and
McIntosh prove that, for suitable “approximations of the identity”, conditions (b) and (c)
are weaker than the usual imposed to Calderon-Zygmund operators. The reader is referred
to [DM] for more details.

5.1 Weighted strong type inequalities

The goal of this section is to prove that the operators we are working with satisfy weighted
strong type inequalities. The main tool will be the Fefferman-Stein type inequality for ./\/lﬁD
obtained before.
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Theorem 5.3 Let 1 <p < oo and w € A,. If T is an operator satisfying (a), (b) and (c),
then T is bounded on LP(X,w).

For the proof of this result, most of the work is already done. We are going to show
that ./\/lﬁD(T f) is pointwise controlled by the Hardy-Littlewood maximal function with some
power strictly bigger than 1. Let us point out that MﬁD is the ad hoc operator for this
property and it plays the same role as Fefferman-Stein sharp maximal function with respect
to Calderén-Zygmund operators. Then, Theorem 4.2, Corollary 4.3, and a technical lemma
will allow us to obtain the weighted norm estimates.

Proposition 5.4 Let 1 < s < oo and f € L§°(X). If T is an operator as above then

d:\»—l

ME(Tf)() < C (M f*)(z)) "

Proof. Let us note that, if f € LF(X), then f € LP(X) for every 1 < p < oo and M(|f|*)
makes sense. Besides, because of the boundedness of T" obtained in [DM] (see Remark 5.1),
it follows that T'f € LP(X) for 1 < p < oo and M%(T f) also makes sense. For every ball
B>z, wesplit fas f=fi+fa=FXop+Sf X@p)e Since 1 <s < oo, T is bounded on
L*(X) and

1
s

5 [ rawiaw <¢ (s [ 1awraw)” < i)

because x € B C 2 B. On the other hand, (6) and the boundedness of M on L*(X) provide

in the same manner

1 1
5 | IDu @@t < 0 [ MR dut) < 0 (1))

fn\»—‘

Let us see what happens with fo. We know that this function is boundedly supported,
because f € L§°(X) is, and the support is contained in (2B)°. Let y € B. If z € (2B)°,
1

then d(z,y) > rg =tg. By (¢2), we obtain

T f2(y) = Dey (T f2) ()] < / 1 Ky, 2) = Ky (y,2)| 1 (2)] dpa(2)

d(zy)>tg
> 1 ¥
< C / B z2)| du(z
2 Jotry ey eniit v 0BG (3, 2))) d(y, 2y )
< C / z)| du(z
ZQM BT s e, FNHC)
< CMf( )

since z € B C B(y,2"'rp). Then, as s > 1,
1

[ TR = Dy (TR duty) < C MF(@) < € (MUF9) @)
B) /s

To complete the proof we just need to paste these three estimates. O
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Before proving the weighted norm inequalities we need a technical lemma to be proved
later. We see that for good functions f, then T'f belongs to LP(X,w). That is, we obtain
an a priori estimate which says that the left-hand side of the weighted inequality is finite.
This fact will allow us to use Theorem 4.2 and Corollary 4.3.

Lemma 5.5 Let 1 <p < oo, w e Ay and f € L (X). Then Tf € LP(X,w).

Proof of Theorem 5.3. It is enough to prove the desired estimate for f € L§°(X), since
this space is densely contained in LP(X,w). For w € A, there exists s > 1 such that
w e .Ap with £ > 1. On the other hand, f € LI(X) for ¢ > 1 and the estimates of T" ensure
that Tf € Lq( ) for 1 < ¢ < co. By Lebesgue differentiation theorem 7'f(x) < M(T f)(x)
for p-almost every z € X.

Let us consider first the case where &X' is unbounded. Lemma 5.5 says that T'f €
LP(X,w). Since w € A,, then M is bounded on LP(X,w) and consequently M (T f) also
belongs to this space. We use these facts, Corollary 4.3 and Proposition 5.4 with our choice
of s to obtain

/ ITf (@) w(z) du(z) < / (M(Tf)(2)) w(z) dyu()
X X
< c / (M (T 1) ()P w(x) dyu(z)

’U

< c / (I£15) (@) * w(z) du(z)
< ¢ /X (@) P w(a) du(a).

In the last inequality we used that M is bounded on L= (X, w) since w € Ap and 2 > 1.

When X is a bounded set we proceed as follows. Since T'f € L(X) for q > 1 and
w(X) < oo, it follows that T'f € L'(X). Moreover, since the space is bounded, in particular
the support of T'f is also a bounded set. Apply Lemma 5.5 to get T'f € LP(X,w), and
hence M(T'f) belongs to this space. As before, we can use Theorem 4.2 and Proposition
5.4 to obtain

ITfller(xw) < IMTHlzexw <C HMﬁD(Tf)HLP(X,w) +CITfll L1y
< Cliflliexw + CHITfll )
For the second term, Hélder’s inequality with s > 1 and the boundedness of T in L*(X)

yield | Tfllp1x) < ,u(X)?l’ T fllsxy < Cllflls(x)- We apply again Holder’s inequality
with exponent 7 = £ > 1, to observe that

i < ([ @ )’ ([ o= auw) "

Asw € Ae = Ay, we know that w'™"" € A, In particular w'™" € L} (X) and then the
second factor of the previous inequality is finite (let us recall that X' is bounded). To finish,
it is enough to collect all the obtained estimates. O

For the proof of Lemma 5.5 we will use the following:
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Remark 5.6 Let 1 < g < oo and w € Ay. Then, for any vo € X and R > 0 we have that

[e.9]

We prove this fact in a very easy way. Take g = B(xo,R)" Since w € Ay,
/X (Mg(@))? w(z) du(z) < C /X 9(2)| (@) du() = Cw(B(ao, R)) < .

For k =0,1,... and = € X such that 28 R < d(z, z) < 2"! R, we observe that B(xg, R) C
B(z,2%2 R) and thus

1 _ WB(zo, R))
Mg(z) > u(B(z, 2542 R)) /B(Mk+2 . l9(y)| du(y) = prar
Finally,
0o > /X(Mg(x)) ) dp(w) > Z/k R<d(z.z0)< 2kHR(/\/lg(:::))q w(z) dp(x)
3 1
- ¢ kZ:O /Qk R<d(z,x0)<2kt1 R W w(z) du(zx).

Proof of Lemma 5.5. We know that supp f C B(xzg, R) for some 2o € X and R > 0.
Reverse Holder’s inequality (see [ST]) provides € > 0 such that

(,,,(13) /Bw(x)lﬁdu(x))lis < MCB) /Bw(x) dp(z),

holds for every ball B. By Holder’s inequality with (1 + ¢), we obtain

x)|Pw(x x w(x 1+e - 1+e

[ e u e < ([ e ) T,
( ((L'(),QR))

(B, 2 )

because f € LP(X) and T is bounded on LP (1) (X) (see [DM] or Remark 5.1). Take
ty = (2" R)™ and it follows that

p d — » J
/(xo2R)C ) det ;/2/9R§d(z,aco)<2k+lRTf(x) w(z) du(z)

< o Z / T () — Dy T ()P w(z) dyu(z)

k R<d(x,x0)<2kt1 R

+ Z/ | Dy, T f(x)|P w(z) du(m))

k R<d(z,x0)<2k+1 R

< ) < 00, (13)

||f||Lp(1+8)

= C,(I+1II).
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1
For the first term, if 2F R < d(z,z0) < 2¥"' R and y € B(xo, R), we have d(z,y) > .
Then (¢2) provides

_ 1 tk%
T (x) “Jﬂmgc/wm%Mmewmdww“m”W@
< C — 1 1 1 d <CM ,
: ZO 2 pw(B(z, 201 ¢m)) /QJtm<d(:13,y)<2]+1tm £ @)l dn(y) f(@)

since o > 0. As w € A, we have

L= CZ/kR<dmzo <2k+1 R
C [ 5@ w(@) du(w) < C e ) w(Blan, B)) < oc.
X

(M ()P w(z) du(z) < C / (M ()" w(z) du(z)
X

IN

Let us estimate 1. First, we use again the openness property of the Muckenhoupt classes,
and there exists 1 < s < oo such that w € .Ap with £ > 1. Since f € L§°(X), then
f € L*(X) and consequently T’ f € L*(X). We use Lemma 3.4 to obtain

1
28 R<d(@x0) <2 R [y(B(x, 7))
1
< C|fIP. / w(B(z, 2" R))? i =
= 11l (X) Z k R<d(z,z0)<2t+1 R u(B(x,2F R))s w(z) du(r) < oo

because of Remark 5.6 with ¢ = 2. Then we have shown that outside of B(xg,2R) the
integral is also finite. u

Corollary 5.7 If T is an operator satisfying (a), (b), and (c¢) then T, is bounded on
LP(X,w) for1 <p < oo andw € A,.

Proof. Use the Cotlar type inequality (12) proved in [DM], Theorem 5.3, and the bound-
edness of M on LP(X,w) for w € Ay, 1 < p < o0. O

5.2 Weighted weak type (1,1) inequality

By means of the Calderén-Zygmund decomposition and the strong type estimates we have
just proved, we can now obtain the corresponding weak type (1, 1) inequality for A; weights.

Theorem 5.8 Let T' be an operator verifying (a) and (c). Assume that, instead of (b), T
satisfies the following stronger condition:

(b)" There exists an “approzimation of the identity” {As,t > 0} such that T A; has asso-
ciated kernel ky(z,y) and there are some c1,co, 3 > 0 in such a way that

1 to
w(B(y,d(x,y))) d(z,y)?’

|K(CC,y) - k;t(x7y)’ < ¢
for x,y € X with d(z,y) > ¢ tom .
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Then, for every w € Ay, T maps L' (X, w) into L1 (X, w).
Remark 5.9 Hypothesis (b)' yields that, if g € L, (X), then

/( K ) ke la@)due) < O Mol), for anyy € X
T,y)>crtm

In particular, by taking g(x) = 1, it follows that (b)’ implies ().

The idea consists of decomposing the integral in dyadic annuli:

/ K () — k)] 19(@)] duz)
( Jy)>ertm
< C S R 1
kZ 6

(y, 2k Cc1 tm )) /Qk c1 t% <d(z,y)<2ktlcy t%

lg(z)| du(z) < C Mg(y).

Proof of Theorem 5.8. We know that w € A4; C A, for every 1 < p < oo and, by the
remark above, T satisfies the hypotheses of Theorem 5.3. Then T is bounded on LP(X, w).
On the other hand, it is enough to prove the desired inequality for f € L§°(X). If A >
11l 212y (1(X))~, by Theorem 2.1, we can perform the Calderén-Zygmund decomposition
(for |f]) and there exists a collection of balls {B;} such that {z € X : Mf(z) > A\Cx} =
U, Bi- As in [CW] we decompose f as f =g+b=g+ >, b;, where

9(@) = @) Xaus, + v) i) du(y) ) X, (@),

bi(z) = f(z)pi(z
_ XBi(x)

pi(z) = Z X, (o XU

Let us note that by (iv) of Theorem 2.1, in each of the series above there are at most M
non-zero terms. This result and Remark 2.2 produce the following;:

(A) If x € B;, then M~! < p;(z) < 1. Besides, >, pi(z) = Xu; B, (T)-

v) piy du())X()

J

B) |g(z)| < C A, for p-almost all z € X.
1
C suppbiCBiand/ bi(x)| du(x) < C M.
(@) (B Bi\ (z)| du(z)
Then,
A A
w{meX:]Tf(m)]>)\}§w{xeX:\Tg(x)\>§}+w{x€X:]Tb(x)|>§}.

Since w € A; C Ay, it follows that T is a bounded operator on L?(X,w). Then (B) yields

wloex:zo@l >3} < 5 [ W@P ) du@) < § [ 1o du)
< S (I + /U @) dute)
< Sl (14)
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where for the latter estimate we have used that w € A; and (A):

w Bz‘
/UiBz- |g(2)| w(x) du(x) < zﬁ:/B 1£(y)| pi(y) M((Bi)) du(y) < CIF o (a)-

Let us show what to do with Th. Set t; = rgi and write

= Z bi(x) =Y (Arbi(x) + (bi(x) — Apbi(x)))

i

We want to split this series in two terms, so we need to study its convergence. By using
the ideas of [DM, Theorem 1], and by (C), it follows that:

Abi(@)| < sup huy(2,) / 1bi(y)| dpu(y) < CAp(Bi) inf by, (x,y)
yeEB; yEB;

IN

O [ hat(2.€) X, (€) di(©)

If 0 <w e LP(X), for some p > 1, it can be obtained that
/(Z\Atz ) ula) dua) < CMA | Muls) Xo, W) dnt). (15)
where we have used (7) and Theorem 2.1. If we take u € L*(X) with [[ul ;2(x) = 1, then
/. (32 140801 u(e) de) < O LMl 1 X, Iz < A% 1 .

because of Theorem 2.1 part (ii7). By taking the supremum over all these functions u,
it follows that >, |A:b| € L*(X) and Y, Ay,b; is a Cauchy series in this space. From
this point it follows that >_.(b; — A,b;) also converges in L?(X). Since T is continuous
T(>;(bi — Ay,b;)) = >, T(b; — Ay, b;) in L?(X) and consequently,

’T(Zb Abi) ) (@ ] Z]T — Aub)(@)], (16)

for p-almost every x € X. Then, it is clear that

w{x € X :|Tb(z)| > %} < w{:p €eX: )T<2Atlbz)(f)‘ > %}

-l-w{:c X ‘T(Z(bi - Atib,-)>(a:)‘ > %}

1

We use again that T is bounded on L?(w):

w{x eX: ’T(ZAtllh)(fL‘)‘ > 2}

e e
% | Z At - ;m

IN
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We consider 0 < u € L (X) with |lu|[z2x) = 1. We apply (15) to u - w? (which belongs to
L?(X), since w is a locally integrable function) and we get

/X(;|Atibi(l‘)|-w(ﬂi);)u(x)du(x) < C’A/){M(u.wé)(y) Xo, 5, () du(y)

IN

1
C)\HM( 2)HL2 Xaw— ||XUiBi HLQ(X:U))'
Remark 2.2 part (7) and the fact that w € A; imply:
C
| Xu;B; ”%2(2(,10) =w{r € X : Mf(z) > ACx} < By ”f”Ll(X,w)- (17)

Moreover, since w € Ay, then w € Ay and thus w™! € Ay which implies that M is bounded
on L?(X,w1). Consequently,

| (1@ - wl)?) uta) duta) < X 171

i
for every 0 < u € LF(X) with [[ul|z2xy = 1. By taking the supremum over all these
functions we eventually get

wle e |[r(X ab)@|> 3} < S 17l (18)

On the other hand, set B; = (1 4 ¢1) B; where ¢; is the constant in (b)’. Then, by using
(16) and the fact that w € A; is a doubling measure we obtain

w{zex: )T( (b — Aubi) ) )] > 2}

<UB>+w{ ¢ UB:: [r( S0 am0) )| > 1}
C Zw(Bi) +5 Z/X\é IT(b; — Ay, bi) ()| w(z) du(z).

For the first term we use Theorem 2.1 and, as we did in (17), we obtain

- /X;X&(x)w(a:) dp(z) < M’U)(L;:JB'L) < % 1F 121 () (19)

On the other hand, by Remark 5.9 with ¢ = w € L] (X)),

IN

IN

/ T — Abi) (@) w(z) du(z) = / (T = TALbi() w(z) du(z)
X\B; X\B;

< / 1b:(w) / K (@) — ki (2, ) () dyu() da(y)
d(z,y)>c1 t™

g/\b )| Mu(y) dpu(y /|b ) w(y) duu(y)

<

¢ [ 110w duly) +C rulB)
B;
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where we used that w € A; and Theorem 2.1. In this way, by (iv) of Theorem 2.1 and (19),

IN

Z/X\B T (b — Apbi) (@) w(@) du(z) < C Z/B 0] wly) dp) + €A Y w(B)

ClA L )

IN

which allows us to get

wle e 2 [ T( 30— 4,00 @) > 2V < S 1l ).
- 4

7

For every A > [/ f[| L1 (x) (u(X))~1, this estimate, (14), and (18) lead to

C
wlz € X [TF@)] > 2 < S 1l ey

If X is unbounded, the proof is complete because the former inequality holds for every
A > 0. Otherwise, we have to consider what happens for 0 < A < || f|l11(x (#(X))!. Since
X is bounded we can write X = B(xzg, 7). Then, as w € A;j, we conclude

1 w(X C
wlo € 2 [T1@)]> N < w@) < 5 [ 1@ 55 dute) < Sl

6 Singular integral operators on irregular domains

In what follows € will be a measurable subset of the space of homogeneous type (X, d, u).
It is well known that under certain regularity assumptions on {2, say for instance Lipschitz
boundary, 2 with the restriction of yu is itself a space of homogeneous type. Thus, the
previous results can be applied straightforward to get boundedness of singular operators
with Muckenhoupt weights defined in 2. However, there are interesting problems where the
natural domains are not smooth, for example domains that are open subsets of the Euclidean
space R?. That is the case of boundary value problems for partial differential equations. In
those problems, the restriction of the measure might fail to satisfy the doubling property
and therefore 2 would not be a space of homogeneous type.

We are interested in dealing with weighted norm estimates in those contexts. As it is
pointed out in [DM], one can extend the singular operators defined in €2 to the space X'.
Since there is no assumption on the regularity of the kernels in the space variables, the
extension of the kernel still satisfies similar conditions. Given 7', a bounded linear operator
on LP(€2), 1 < p < oo, the extension of T to X is defined as T'f(z) = T'(f xq)(z) Xo(z)
for f € LP(X). Then, T is bounded on LP(Q) if and only if T is bounded on LP(X). In
a similar way, there is an equivalence between weak type estimates. If K is the kernel
of T, then the associated kernel of T is given by K(z,y) = K(x,y) Xqxqo(z,y). As it is
observed in [DM], it is easy to see that a Hérmander condition for K, would not necessarily
imply such a condition for K because this kernel is even discontinuous. Nevertheless, since
the conditions assumed on the kernels do not involve their regularity, they induce similar
properties on the kernels of the extended operators.
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We are going to use the following notation: BY and B% denote respectively balls in X
and €. The “approximations of the identity” {Dy,¢ > 0} in this context are given by

Dyf(z) = /X ale,y) Fy) duly), | € DV(Q), for some p> 1.

The kernels are assumed to satisfy |a:(z,y)| < he(x,y) for every z, y € 2, where hi(x,y) is

defined in X x X as .

—
p(B*(z,tm))
Again, m is a positive constant and s is a positive, bounded, decreasing function verifying
(4). The hypotheses of the operators turn out to be:

hi(z,y) = s(d(z, y)™ ™). (20)

(a)o T is a bounded linear operator from L?(Q) to L?(f2) with kernel K, such that, for
every f € L5°(1),

Tf(x)= /X K(z,y) f(y)du(y), for p-almost all x ¢ supp f.

(b)o There exists an “approximation of the identity” {4, ¢ > 0} such that T' A; has asso-
ciated kernel k;(x,y) and there are c1,c2 > 0 in such a way that

/d( o i |K(x,y) — ki(z,y)| du(z) < cy  for all y € Q.
T,y)>crtm

(c)o There exists an “approximation of the identity” {Dy,t > 0} such that D; T has kernel
Ki(x,y) and
1
(o [Ki(z,y)| < c4g ————, for z,y € Q with d(z,y) < c3 t%,
u(B* (x,tm))
1 tm
(B (x,d(x,y))) d(z,y)

(2)o |Ki(z,y) — K(z,9)| < P o for every x,y € Q with

1
d(z,y) > cstm,
for some constants c3, ¢4, > 0.

In [DM] it is obtained that if T" verifies (a)q and (b)q, then it is of weak type (1,1)
in Q and bounded on LP(Q2) for 1 < p < 2. Assuming additionally (c¢)q, they obtain the
complete range 1 < p < co and that the associated maximal operator T} is also continuous
on LP(Q), 1 < p < oo. The way of proving these estimates is based on extending all the
operators involved to X'. That is, they consider T', A; and D; and they prove that (a)q,
(b)o and (c)q imply that T satisfies (a), (b) and (¢). Then, they just apply the obtained
results in & to conclude the desired estimates.

By using those ideas, we can now state that these operators also satisfy weighted norm
inequalities. We just need to apply Theorem 5.3, Corollary 5.7, and Theorem 5.8 to the
extended operator T to get that T and T, satisfies weighted estimates for Muckenhoupt
weights defined in X. We are going to use the notation A,(X’) in order to make clear that
the Muckenhoupt weights are consider in the whole space X.

22



Theorem 6.1 Let T' be an operator satisfying (a)q, (b)a and (c)q.
(1) Ifwe Ap(X), 1 <p<oo, then T and T, are bounded on LP(Q2,w).
(ii) Replace (b)q by the following stronger condition:

(b);2 There exists an “approximation of the identity” {As,t > 0} such that the op-
erators T Ay have associated kernels ki(x,y) and there exist c1,co,3 > 0 such
that

1 b

(B*(y,d(x,y))) d(z,y)"’

|K(.T,y) - ]ﬂt(ﬂf,y” S C2 L

for all x,y € Q with d(x,y) > 1 tom

Then, for every w € A1(X), T maps L'(Q,w) into L1>°(Q, w).

7 Holomorphic functional calculi of elliptic operators

We are going to review some of the necessary background. For a complete account the
reader is referred to [ADM] or also to [DM]. Given # and v with 0 < § < v < m we define

Sp = {¢ € C: |arg(¢)] < 0} J{0}.

and its interior is denoted by S3. Let H(S9) be the space of holomorphic functions defined
in SY. We are going to consider the following subspaces of H(SY):

H>(8)) = {f € H(S)) : Iflloc < o0},
where || f]lo = sup{|£(C)] : ¢ € SP},
U(Sy) ={p € H(S)): Is>0,[(¢)] < CICI (1 +¢*) ™"}

and

F(Sp)={f € H(S)): 35> 0,|f(Q) < C(IKI7* + <)}

It is clear that W(SY) ¢ H>®(SY) C F(SY). A closed operator L in some Banach space A is
said to be of type 0, 0 < 6 < m, if its spectrum o (L) C Sy and for every v > 6, there exists
C', such that

(L—CcD Y <O K™Y ¢¢s,.

By using the Hille-Yosida theorem, such an operator with ¢ < 7 is the generator of a
bounded holomorphic semigroup e~ in the sector SO with v = 5—0.

Let us assume that L is a one-one operator of type 6 with dense domain and dense
range on A. We can define a holomorphic calculus in the following way: if 1/ € ¥(S9), then

B(L) = — / (L~ CI) (C) de.

T 2mi

where, for § < n < v, v is the contour {¢ = e : r > 0} parameterized clockwise around
Sp. This integral is absolutely convergent in £(A). Moreover, by the Cauchy’s theorem this
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definition does not depend on the contour, that is, is independent of the choice of n € (6, v).
If f € F(S9) with |£()] < C(|¢|* + [¢|7F) for ¢ € SY, we take

$(Q) = (ufcpyﬂ-

Then ¢, ¢ f € ¥(SY) and (L) is one-one. In this way, the operator (f)(L) is bounded
and ¥ (L)' is a closed operator in A. Then we define f(L) = ¢(L)~! (f)(L).

A very useful result about holomorphic functional calculi is the following convergence
lemma obtained by McIntosh in [Mcl], for a proof the reader is also referred to [ADM,
Theorem D).

Lemma 7.1 ([McI]) Let 0 <0 <v <. Let L be an operator of type 0 which is one-one
with dense domain and range on A. Let {fa} be a uniformly bounded net in H*(S9),
which converges to f € H*(SY) uniformly on compact subsets of SO, such that {fo(L)} is
a uniformly bounded net in L(A). Then f(L) € L(A), fo(L)u — f(L)u for allu € A, and

1A (D) < supq || fa(L)]]-

Coming back to our setting, let us suppose that 2 is a measurable subset of a space
of homogeneous type (X,d,u). Let L be an operator of type § < 7 on L?() so that —L
generates a holomorphic semigroup e *%, |arg(z)| < Z — 6.

Theorem 7.2 ([DM, Theorem 6]) Let us assume the following conditions:

(a) The holomorphic semigroup e *, |arg(z)| < 5 — 0, is represented by the kernels
a,(x,y) which satisfy, for all v > 0, an estimate

ax(@.y)| < Cuhyy(@,y),  for v,y € Q and |arg(2)] < 5~ v,

where hy is defined on X x X as in (20).

(b) The operator L has a bounded functional calculus in L?(SY). That is, for any v > 0
and f € H®(SY), the operator f(L) satisfies || f(L)|l 20— r2() < Cv || f]loo-

Then the operator L has as bounded functional calculus in LP(2), 1 < p < oo, that is, for
all f € H*(SY), we have || f(L)|| 1r()—rr(9) < Cpw | flloo- When p =1, the operator f(L)
is of weak type (1,1). Furthermore, if we denote T = f(L), then the maximal truncated
operator Ty is bounded on LP(Q) for all p, 1 < p < 0.

The proof of this result goes as follows. First, they consider the case T' = f(L) with
f e ¥(SY), v > 6. For such an operator, (a)qg, (b)g and (c)q are obtained by taking as
“approximations of the identity” A, = D; = e *L. Then McIntosh’s convergence lemma
(Lemma 7.1 above) allow them to extend the result to H°(SY).

Taking into account that proof and that the required conditions for the weighted in-
equalities are the same as those assumed in [DM], we can state the following result just
by using Theorems 6.1. Let us note that in part (i) we added a stronger condition (b)/Q
which can be checked easily: the commutation property of the functional calculus and the
fact that A; = D; = e~ 'L yield K; = k;. Besides, by (3), we have u(B¥(y,d(x,y))) and
w(BY (z,d(z,y))) are comparable and hence (b),, arises from (c2)q by taking 3 = a.
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Theorem 7.3 Under the conditions of the previous theorem, for every 1 < p < oo and
w € Ay(X), the operator L has a bounded holomorphic functional calculus in LP(S2,w).
That is, if v > 0 and f € H*(SY), then

1f ()| 2e(9,0)—1r (@) < Cpaww |Ifllso,

Furthermore, when p = 1, f(L) is bounded from L'(Q,w) to LY*°(Q,w) for every w €
A1 (X). In addition, if we write T = f(L), then Ty is bounded from LP(Q2,w) to LP(Q, w)
for every 1 < p < oo and for every w € Ay(X).

We are going to present some applications for this result. We work with some operators
taken from [AE] which correspond to second order elliptic operators with different boundary
conditions. In what follows our setting will be R with the Euclidean distance and the
Lebesgue measure. Besides, ) will be an open subset of this space of homogeneous type.
For 1 < p < oo, the Sobolev space W1P(£) consists of all functions in LP({2) with first
order distributional partial derivatives in the same space. As usual, when p = 2, we use
H'(Q) instead of W12(Q). Finally, H}(?) is the closure in H'(2) of C5°(Q).

We are going to consider second order elliptic operators with the following boundary
conditions (for more details see [AE]):

(A) Dirichlet boundary conditions. Let a;; € W>(£) be real functions for i,j =
1,...,d; let bj,c; € WH©(Q), i =1,...,d (complex) and let co € L°(£2). We consider the
sesquilinear form a : H}(Q) x HE(Q) — C defined by

d d d
a(u,v) = Z/aijDiuDjv—FZ/biDiuv—}—Z/ciuDiv—i—/couv.
ij=1"% i=1 7% i=1 7% 0

Suppose that there exists § > 0 such that the following ellipticity condition holds
d
> aij(@) & = 61¢7,  for all € € R? and almost all z € Q. (21)
ij=1

Then, A is the operator associated with a and generates a semigroup (e~¢4);so.

(B) General boundary conditions. We consider operators as before but now the coer-
cive form is defined in certain domain V' x V. Some conditions are imposed to this domain
in order to obtain Gaussian estimates for the kernel of the semigroup. Now, all functions
are real-valued, so we only work in the real field. Assume that V satisfies:

(i) V is a closed subset of H'(2) and H(Q) C V.

(ii) V has the L'-H' extension property, that is, there exists a continuous linear operator
£:V — H'(RY), called extension operator, such that (£¢)|q = ¢ for all € V, and

1@l 1 may < Cllellpry, forall o € VN LY(Q).

For instance, if V = H}(f2), this operator extends functions on €2 by 0 on R%\ Q (see
[AE] for more examples).

(731) If v € V then |v|, min{|v|,1} € V.
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(iv) fv eV, ue€ HY(Q) with |u| < v, then v € V (V is an ideal in H'(Q)).

Let us consider the bilinear form a : V x V' — R given by

d d d
a(u,v) = Z/Qaile-uDjv+Z/QbiDiuv+Z/Qciqu—l—/Qcouv,
i=1 i=1

ij=1
and assume the ellipticity condition (21). Now, all coefficients are real-valued and it is

supposed that a;; € L>®(Q), b;,c; € WHe(Q), ¢g € L®(2). The first order coefficients are
required to satisfy:

If v € V, then b;v,c;v € Hy(Q), foralli=1,...,d. (22)

Under these hypotheses A is the operator associated to the coercive form a and generates
a positive semigroup (e 7*4);~¢. For example, if V = HJ(Q), we are considering an elliptic
operator with Dirichlet boundary conditions and if b;,¢; € W1*°(Q), then (22) holds. On
the other hand, by taking V = H'(Q) with dQ minimally smooth then the problem has
Neumann boundary conditions. In this case, (22) holds provided that b;, ¢; € VVO1 Q). If
Q) is bounded, then b;,¢; € H}(Q) is a necessary condition for (22), since 1 € V.

(C) Robin boundary conditions. Again we work on the real field and € is a bounded
open set in R? with Lipschitz boundary T' = 9Q. We write dy for the restriction of the
Lebesgue measure to I'. There exists a unique linear bounded operator tr: H!(Q) —
L*(T, dv) such that tru = ulr for all u € H*(Q) [ C(Q). This operator is called the trace
operator. Assume that the domain V' satisfies conditions (i)—(iv) above. We consider the
same form a defined in the previous example with domain V' x V. We also assume (21),
(22). Consider b: V x V — R a bilinear form given by

b(u, v) = /F B(w) (tru) () (trv)(z) dy(z).

where 3 € L*°(I") is a positive function. Let us consider the coercive form ¢ = a + b with
domain V. Then A is the operator associated to ¢ and A generates a positive semigroup
(e7t4)4=0. Let us note that Robin boundary conditions coincides with Dirichlet boundary
conditions if V = HE () and with Neumann boundary conditions if V = H(2) and 3 = 0.

We consider a second order elliptic operator A as in (A), (B) or (C). Let (e *4);~¢ the
generated semigroup. As in [AE], there exist b,c > 0, v € R such that (e7*4);5¢ is given
by the kernels a; € L*°(Q x Q) which satisfy the following Gaussian estimate:

la(z,y)| < ct™8 e bla—ylt™! e’t, for ae. (x,y) € Qx Q.

In cases (B) and (C), the kernels also verify a;(x,y) > 0 for almost all (z,y) € 2 x Q. We
complexify the domain V' and the coercive form a in those cases. Set

d
0, = g — inf{@ >0: Z a;j(x) {i?j € Sg, for all £ € CY, for ae. x € Q}
ij=1
Note that §, = § if (a;;);; is a symmetric matrix for almost every x € Q. Then, it is
obtained that e ?4 is a holomorphic semigroup in L?(2) with holomorphy sector which
contains at least Sy . Moreover, let 6 € [0,6,) and let Ao € R such that

le™* M2 — 2oy < €, for all z € 5,
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then, for all A > \g, there exist b,c > 0 in such a way that the kernel of the semigroup

d _
satisfies |a.(z,y)| < c|z|"2 e bleyl 1217 Al
z € Sy (see [AE, Theorem 5.6]).

Theorem 7.4 ([AE, Theorem 5.9, Corollary 5.10]) Let us adopt the notation and the
hypotheses of examples (A), (B) or (C). Let § — 0, <v < 5 and A\g € R be such that

2l for almost all (z,y) € Q x Q, uniformly on

e A 22 < €M forall 2 € Sz_y.
Then for all A > X\o, the operator A+ X1 has a bounded holomorphic calculus in LP(S2) for
every 1 < p < oco. In particular,
II(A+ )\I)Z‘SHLP(Q)_>L;D(Q) < Ce'Bl uniformly for all s €R and 1 < p < oo.
Moreover, for every f € H®(S9), the operator f(A+ \I) is of weak type (1,1).

The proof consists of obtaining that [a,(z,y)| < ¢ |z]_% e~ ble=yl? 127" for 2 € §9, where @
is the kernel of the semigroup e~(A+AD 2 “and then to use [AE, Theorem 5.7]. This result
appears under the hypothesis that, either 9 is a null set in R% or Q = R?. In general, for
Q2 an arbitrary open set, the authors point out that a proof in [DR] can be modify in order
to cover this case. On the other hand, this result arises from Theorem 7.2 proved in [DM].
Let us remark that [a.(z,y)| < hy,(z,y) where, for t > 0 and (z,y) € R? x R?,

! s(lz —ylt™")

he(w,y) = clt| 72 e Pl = =
|B(x,12)]

with s(r) = ce " is a positive, bounded, decreasing function. With respect to the notation

in (20), m = 2 and it is clear that (4) holds for every ¥ > 0. In other words, we are under the
assumptions of Theorem 7.2 with L = A+ A I. As a consequence and simply by Theorem
7.3, we can prove weighted estimates and that L has a bounded holomorphic calculus in
weighted Lebesgue spaces.

Corollary 7.5 Let us adopt the notation and the hypotheses of examples (A), (B) or (C).
Let 5 — 0, <v <5 and X\p € R be such that

le™ | 20)—r2g@) < P, forallz € S5,
Then, for all A > Ao we have

(1) For every 1 < p < oo and for every w € Ay(X), the operator A+ XI has a bounded
holomorphic calculus in LP(Q,w), that is,

||f(A + )‘I)||LP(Q,w)—>LP(Q,w) < Cp,w,v ||f”<><>a
for all f € H®(SY).
(ii) For every w € Ay(X) and for all f € H*®(SY) the operator f(A + A1) is bounded

from LY (Q,w) to LV>°(Q,w).

(iii) If we write T = f(A+\I), where f € H*(SY), then T, maps LP(Q,w) into LP(,w)
for every 1 < p < oo and w € Ay(X).

By taking f(z) = 2% with s € R, T = (A + XAI)'® satisfies all these estimates and, in

particular, for 1 <p < oo, w € Ay(X) and s € R,

1A+ XD || o) — 1o (@) < C e,
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