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Abstract

We study weighted norm inequalities for singular integral operators with different smooth-
ness conditions assumed on the kernels. The weakest one is the so-called classical Hörmander
condition, which is an L1 regularity, and the strongest is given by a Hölder or Lipschitz
smoothness. Between them we have some kind of Lr-regularity, 1 < r ≤ ∞. We will present
some results that are known for singular integrals with these kernels. We will be focused on
studying Coifman’s inequality:∫

Rn

|Tf(x)|p w(x)dx ≤ C

∫
Rn

Mf(x)p w(x)dx,

for any 0 < p < ∞ and w ∈ A∞, where T is a singular integral operator with kernel satisfying
a Hölder regularity condition and M is the Hardy-Littlewood maximal function. We will see
that such an inequality is no longer true when the hypotheses on the kernel are relaxed. This
is the case for kernels satisfying the Hörmander condition. For the intermediate regularity
conditions some positive and negative results of this kind are shown. In these cases the
operator on the right hand side is changed in such a way that it can measure the singularity
of T . Some of the results we will present are in a collaboration paper with Carlos Pérez and
Rodrigo Trujillo-González.

1 Introduction.

Some of the most significant and studied operators in Harmonic Analysis are the Hardy-
Littlewood maximal function, the Hilbert transform and the Riesz transforms. The first one
is defined as the supremum of the averages of the function over all the cubes Q ⊂ Rn (with
sides parallel to the coordinate axes in the sequel), that is,

Mf(x) = sup
Q3x

1
|Q|

∫
Q
|f(y)| dy.
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The Hilbert transform is defined in R and the Riesz transforms are the analogs in Rn, n ≥ 2,
and they are given in the following way

Hf(x) = p.v.

∫
R

f(y)
x− y

dy, Rjf(x) = p.v.

∫
Rn

xj − yj

|x− y|n+1
f(y) dy.

These integrals have to be defined in such a way they make sense. Note that the kernels 1/x
in R or xj/|x|n+1 in Rn, n ≥ 2, are singular and they are not locally integrable at the origin
and this is the reason why the integrals are understood in a principal value sense. The Hardy-
Littlewood maximal function is very related to Hilbert or Riesz transforms since it controls
them as we will see later. Studying maximal operators turns out to be easier and this control
might be crucial to understand the singular integral operators.

A generalization of the Hilbert or Riesz transforms is given by the following convolution
type operators

Tf(x) = p.v.

∫
Rn

K(x− y) f(y) dy

with kernel K having bounded Fourier transform K̂ ∈ L∞(Rn). Thus, T is a linear and
bounded operator on L2(Rn). Further generalizations can be considered with two-variable
kernels that do not give a convolution type operator and some of them play an important
role in Analysis. Nevertheless, we are going to concentrate in the simplest case on which the
operators are of convolution type, the reader is referred, for instance, to [Duo] for the general
case.

Coming back to the singular integral operators defined above, so far we only know that
they are continuous in L2(Rn). To get better properties on T some conditions can be imposed
about the size or the smoothness of K. The size condition of the kernel that generalizes the
case of the Hilbert or Riesz transforms is |K(x)| ≤ A |x|−n. Note that this decay has a problem
of integrability both at the origin and at infinity. For the operators that we want to consider
this condition will not be assumed, we will be focused on different smoothness conditions on
K and the results that can be achieved by assuming them. The regularity conditions will be
scaled in the Lebesgue spaces and we will use the notation Hr, 1 ≤ r ≤ ∞. The weakest one
is the so-called Hörmander condition

(H1) sup
y∈Rn

∫
|x|>c |y|

|K(x− y)−K(x)| dx < ∞,

which is understood as an L1-regularity. A singular integral operator with kernel satisfying
(H1) is of weak type (1, 1) and bounded on Lp(Rn), 1 < p < ∞. This a classical result
obtained by Calderón and Zygmund in the 50’s, see [CZ]. The main tool for this proof is
the Calderón-Zygmund decomposition of the function into a good and a bad part. This
decomposition is performed by means of the Hardy-Littlewood maximal operator, fact that
reflects the connection between this maximal function and the singular integral operators.

If (H1) is the weakest regularity assumption, the strongest one will be of Hölder or Lipschitz
type, namely,

(H∗
∞) |K(x− y)−K(x)| ≤ C

|y|α

|x|α+n
, whenever |x| > c |y|,

for some c > 1 and 0 < α ≤ 1. The reason why we have used (H∗
∞) rather than (H∞) will be

clear later —we keep this latter notation for an L∞ condition that is weaker—. Note that this
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condition implies (H1) and also that the kernels of the Hilbert or Riesz transforms satisfy (H∗
∞)

with c = 2 and α = 1. Indeed, they verify an estimate that is better: |∇K(x)| ≤ A |x|−(n+1).
We will see after a while that (H∗

∞) is key when weighted norm inequalities are studied.
Between (H1) and (H∗

∞) the following variant of the Hörmander condition can be consid-
ered: let 1 ≤ r ≤ ∞, we say that the kernel K verifies the Lr-Hörmander condition, if there
are c, Cr > 0 such that for any y ∈ Rn and R > c |y|

(Hr)
∞∑

m=1

(2m R)
n
r′

( ∫
2m R<|x|≤2m+1 R

|K(x− y)−K(x)|r dx
) 1

r ≤ Cr,

in the case r < ∞, and

(H∞)
∞∑

m=1

(2m R)n sup
2m R<|x|≤2m+1 R

|K(x− y)−K(x)| ≤ C∞,

when r = ∞. We will use the notation (Hr) for the previous conditions and Hr for the classes
of kernels satisfying them, the same is applied to (H∗

∞).
This definition is implicit in the work of D. Kurtz and R. Wheeden [KW], where it is

shown that the classical Dini condition for K implies that K ∈ Hr (see [KW, p. 359]). Later
on, these classes Hr were considered in [RRT] and [Wat]. In fact, in this last paper the Lr-
Hörmander condition plays an essential role when studying rough singular integral operators.
Namely, for such an operator T , one can write T =

∑
Tj where the kernel of Tj satisfies the

Lr-Hörmander condition with constant growing linearly in j.
Our aim is twofold. Firstly, we will review the weighted norm estimates that are known

for the singular integral operators with the kernels in the previous classes. We will study how
sharp they are. Secondly, we present some lack of weighted norm inequalities when the kernels
are less regular. In particular, for K ∈ H1 we are going to provide some counterexamples on
which the expected weighted norm inequalities do not hold. To prove these negative results
we will use some extrapolation results taken from [CMP].

The source of this presentation is the paper [MPT] written in collaboration with C. Pérez
and R. Trujillo-González to whom the author wants to express his gratitude.

2 Weighted norm inequalities and Coifman’s type

estimates

In what follows a weight w is a non-negative locally integrable function. As usual Lp(w) will
denote the Lp space with the underlying measure w(x) dx.

Muckenhoupt in [Muc] found some classes of weights when he characterized the bounded-
ness of the Hardy-Littlewood maximal function in weighted Lebesgue spaces. The classes Ap,
1 ≤ p < ∞, are defined as

(Ap)
( 1
|Q|

∫
Q

w(x) dx
) ( 1

|Q|

∫
Q

w(x)1−p′ dx
)p−1

≤ C < ∞, for p > 1,

(A1)
1
|Q|

∫
Q

w(x) dx ≤ C w(x), for a.e. x ∈ Q.
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The class A1 can be equivalently defined as Mw(x) ≤ C w(x) a.e. We also remind that
A∞ =

⋃
p≥1 Ap. The result proved in [Muc] establishes that M maps L1(w) into L1,∞(w) if

and only if w ∈ A1 and that w is bounded on Lp(w), 1 < p < ∞, if and only if w ∈ Ap.
On the other hand, Coifman’s inequality, see [Coi], states a precise control of Calderón-

Zygmund operators T with kernel K ∈ H∗
∞ in terms of M :

(C)
∫

Rn

|Tf(x)|p w(x)dx ≤ C

∫
Rn

Mf(x)p w(x)dx,

for any 0 < p < ∞ and w ∈ A∞. Thus, we can get, for instance, that T is bounded on Lp(w)
for w ∈ Ap, p > 1. Similar estimates hold replacing the Lp(w) norms in both sides by the weak
norms in Lp,∞(w) which, for p = 1, yields that T : L1(w) −→ L1,∞(w) for w ∈ A1. Coifman
proved (C) by establishing a good-λ inequality relating T and M . There is another approach
using the sharp maximal function (see [AP] for details of this technique). Recall that

M#f(x) = sup
Q3x

1
|Q|

∫
Q
|f(x)− fQ| dx,

where fQ stands for the average of f over Q, and that M#
δ f(x) = M#

(
|f |δ)(x)1/δ. Then, for

T with K ∈ H∗
∞ we have the pointwise estimate M#

δ (Tf)(x) ≤ Cδ Mf(x), 0 < δ < 1. This
fact plus Fefferman-Stein inequality for M and M# (proved as well by means of a good-λ
inequality) also yield Coifman’s inequality (C). There is still another approach with no use at
all of the good-λ technique, this way combines ideas from [Ler] and [CMP], we will give more
details later.

When K is less regular, say K ∈ Hr for 1 < r ≤ ∞, some substitutes of (C) arise. Now
the operator is worse and it is expectable to get a bigger maximal function on the right hand
side. Let us set Mqf(x) = M

(
|f |q)(x)1/q and note that Mf(x) ≤ Mqf(x) for 1 ≤ q < ∞. In

[RRT], [Wat] we can find the pointwise estimate M#(Tf)(x) ≤ cr Mr′f(x) whenever K ∈ Hr,
1 < r < ∞. Then, the following Coifman’s type inequality holds∫

Rn

|Tf(x)|p w(x)dx ≤ C

∫
Rn

Mr′f(x)p w(x)dx, (1)

for any 0 < p < ∞ and w ∈ A∞. As a direct consequence, we have that T is bounded on
Lp(w), if w ∈ Ap/r′ for r′ < p < ∞, or if w1−p′ ∈ Ap′/r′ for 1 < p < r, or if wr′ ∈ Ap for
1 < p < ∞. The case p = r′ follows by interpolation with change of measure and by the
reverse Hölder property (see [RRT] for more details).

When T is a singular integral operator with kernel in the class H∞, then we get (C), or
what is the same, (1) with M in place of Mr′ . As a consequence, T is bounded on Lp(w) for
w ∈ Ap, 1 < p < ∞. In this case the proof of (C) is also obtained by proving the pointwise
estimate M#

δ (Tf)(x) ≤ Cδ Mf(x), 0 < δ < 1. For more examples of this kind the reader
is referred to [AP]. We remark that this gives an improvement of (C) since, as we noted,
H∗
∞ ( H∞. An explicit example can be easily adapted from the proof of Theorem 4.6 by

taking K = χB1(0) ∈ H∞ but it is not in H∗
∞.

These positive results drive us to the following questions:

• Is it possible to get similar estimates for r = 1, in other words, what kind of weighted
estimates can be proved when the kernel is in H1?
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• For 1 < r < ∞, can we replace Mr′ in (1) by the pointwise smaller operator Mt with
1 ≤ t < r′?

• Is the operator T bounded on Lp(w) for every 1 < p < ∞ and for every w ∈ Ap or, even
more, for w ∈ A1?

We are going to show that the answer to each of the above questions is negative.

3 Extrapolation for A∞ weights

One of the main ingredients to negatively answer the latter questions will be some extrap-
olation results taken from [CMP]. We will see that to disprove (C) or (1), or their weak
type–weak type analogs, it suffices to show that they fail for just one exponent p0.

In what follows G and S are two operators defined on some class of smooth functions S
such that Gf ≥ 0, Sf ≥ 0 for f ∈ S. When we write an estimate like

‖Gf‖Lp(w) ≤ C ‖Sf‖Lp(w), (2)

we always understand that it holds for any f ∈ S such that the left hand side is finite and
that C depends only upon the A∞ constant of w and p. We are not assuming any linearity or
sublinearity on the operators, the only thing we need is that they are reasonably defined: Gf
and Sf are measurable functions for any f ∈ S. Indeed, one can formulate the result in terms
of pairs of functions since the operators play no role. This is the approach used in [CMP]
and its generality is extensively used there to deal with several implications, among them we
remark those vector-valued that arise almost automatically.

Theorem 3.1 ([CMP]) Let G, S be as above. Consider the following estimates:

(a) ‖Gf‖Lp0 (w) ≤ C ‖Sf‖Lp0 (w), for some 0 < p0 < ∞ and all w ∈ A∞.

(b) ‖Gf‖Lp(w) ≤ C ‖Sf‖Lp(w), for all 0 < p < ∞ and all w ∈ A∞.

(c) ‖Gf‖Lp(w) ≤ C ‖Sf‖Lp(w), for all 0 < p < p0, for some p0, and all w ∈ A1.

(d) ‖Gf‖Lp0,∞(w) ≤ C ‖Sf‖Lp0,∞(w), for some 0 < p0 < ∞ and all w ∈ A∞.

(e) ‖Gf‖Lp,∞(w) ≤ C ‖Sf‖Lp,∞(w), for all 0 < p < ∞ and all w ∈ A∞.

Then,
(a) ⇐⇒ (b) ⇐⇒ (c) =⇒ (e) and (d) ⇐⇒ (e).

The reader is referred to the original source [CMP] for a complete account of this technique
and also for a great deal of examples that can be used to exploit the latter result.

4 Negative results

Now we have the ingredients needed to answer the questions posed above.

Theorem 4.1 ([MPT]) Let 1 ≤ r < ∞. There exists a singular integral operator T with
kernel in Hr for which the following estimates do not hold :

(i)
∫

Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

Mtf(x)p w(x) dx, for 0 < p < ∞, w ∈ A∞ and 1 ≤ t < r′.
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(ii) ‖Tf‖Lp,∞(w) ≤ C ‖Mtf‖Lp,∞(w), for 0 < p < ∞, w ∈ A∞ and 1 ≤ t < r′.

(iii)
∫

Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

Mtf(x)p Mw(x) dx, for 0 < p ≤ 1, w an arbitrary weight

(that is, a non-negative locally integrable function) and 1 ≤ t < r′.

(iv)
∫

Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx, where, either 1 < p < r′, w ∈ A1; or

1 < p < ∞, w ∈ Ap.

Remark 4.2 Note that for kernels satisfying just the classical Hörmander condition (H1),
none of the maximal operators Mt can be written in the right hand side of (i), (ii) or (iii).
Observe that no weighted estimate as (iv) holds even for the best class of weights A1. In
short, no weighted norm estimate is satisfied in general for operators with kernels satisfying
the classical Hörmander condition (H1). Some other results in this direction are given in [Hof].

Remark 4.3 As we have just mentioned (H1) is not sufficient for showing weighted norm
inequalities for T . However, it has recently obtained that (H1) yields the boundedness of the
supremum of the truncated integrals, see [Gra].

Remark 4.4 The estimates in (i) say that both (1) and the pointwise estimate M#(Tf)(x) ≤
cr Mr′f(x) are sharp. Note also, that in (iv) the range of exponents 1 < p < r′ and w ∈ A1

is optimal, since for r′ ≤ p < ∞ and w ∈ A1 ⊂ Ap/r′ , T is bounded on Lp(w) as mentioned
before.

Remark 4.5 The importance of (iii) is given by the following argument. A. Lerner has
recently obtained the following estimate∫

Rn

|Tf(x)|w(x) dx ≤ C

∫
Rn

Mf(x) Mw(x) dx

for a singular integral operator T with kernel satisfying (H∗
∞) and for any arbitrary weight

w. His proof is not based on the good-λ technique but uses the so called local sharp maximal
function of F. John. Pushing Lerner techniques one can get the same estimate with exponents
0 < p ≤ 1. Taking in particular w ∈ A1 which means Mw(x) ≤ C w(x) we get∫

Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

Mf(x)p w(x) dx

for any 0 < p ≤ 1 and for any w ∈ A1. Applying Theorem 3.1 to the latter estimate, which
corresponds to (c), we eventually get Coifman’s inequality. We would like to emphasize that
this combination of [Ler] and [CMP] has not used the good-λ technique and provides a new
proof of (C).

The proof of Theorem 4.1 will be a consequence of the extrapolation technique in [CMP],
Theorem 3.1 above, plus the following negative result for power weights.

Theorem 4.6 ([MPT]) Let 1 ≤ r < ∞, 1 ≤ p < r′, −n < α < −np/r′ and wα(x) = |x|α.
There exists a singular integral operator T with kernel in Hr for which the following estimate
does not hold :

‖Tf‖Lp,∞(wα) ≤ C ‖f‖Lp(wα). (3)
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This negative result should be compared with the following positive result: let r, p be as in
the theorem and let −np/r′ < α ≤ 0, then the following estimate holds

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w), (4)

where w(x) = |x|α. This arises essentially from the results by Watson [Wat] using interpolation
with change of measures.

Next, we are going to sketch the proof of Theorem 4.1 and the counterexample for Theorem
4.6 will be given afterwards.

Proof of Theorem 4.1. The estimate in (iii) with w ∈ A1, that is, with Mw(x) ≤ C w(x)
a.e., implies (i), since, in Theorem 3.1, (a) and (c) are equivalent. On the other hand, by
Theorem 3.1, (i) yields (ii). So, if we show that (ii) leads to a contradiction then (i) and (iii)
have to failed. Furthermore, by the extrapolation result Theorem 3.1, it suffices to get some
fixed exponent p0 for which the weak type–weak type (ii) does not hold. Fix 1 ≤ t < r′ and
w ∈ A1 ⊂ A∞. Then we take any p0 such that t < p0 < r′. Assume that (ii) holds, then

‖Tf‖Lp0,∞(w) ≤ C ‖Mtf‖Lp0,∞(w) ≤ C
∥∥M

(
|f |t

)∥∥ 1
t

L
p0
t (w)

≤ C ‖f‖Lp0 (w),

where in the latter estimate we have used that p0/t > 1 and that w ∈ A1, so that M is bounded
on L

p0
t (w). Note that this estimate says that T is bounded from Lp0(w) to Lp0,∞(w) for any

w ∈ A1 where 1 < p0 < r′. In particular, this estimate holds for the A1-weight w(x) = |x|α
with −n < α < −n p0/r′, contradicting Theorem 4.6.

It remains to show that (iv) does not hold. When 1 < p < r′ and w ∈ A1, Theorem 4.6
is contradicted since the weights wα are in A1. In the other case, 1 < p < ∞ and w ∈ Ap. If
the estimate holds for some p0 and any w ∈ Ap0 then, by the Rubio de Francia extrapolation
theorem (see [Duo, p. 141]), the estimate will be valid for all 1 < p < ∞ and w ∈ Ap which
will contradict again Theorem 4.6. 2

Proof of Theorem 4.6. We briefly present the counterexample leaving the details to the
reader, (see [MPT]). Let β > 0 and consider the kernel K(x) = k(|x|) where

k(t) = t−
n
r

(
log

e

t

)− 1+β
r χ(0,1)(t).

Note that K ∈ Lr(Rn). Take 0 6= η ∈ Rn far enough from the origin, for instance |η| = 4. We
define the kernel K̃(x) = K(x− η) and the operator T as

Tf(x) = K̃ ∗ f(x) =
∫

Rn

K(x− η − y) f(y) dy.

Observe that K̃ ∈ Lr(Rn)∩L1(Rn) and hence the operator T is bounded on Lq(Rn) for every
1 ≤ q ≤ ∞. Just by using that K ∈ Lr(Rn) and that it is supported in the unit ball, we can
show that K̃ ∈ Hr (see [MPT]). Note that when r = 1, since K̃ ∈ L1(Rn), we automatically
have K̃ ∈ H1. Assume that T maps Lp(wα) into Lp,∞(wα) and take

0 < ε < −α− n

r′
p and f(x) = |x + η|

−n+ε
p χB1(−η)(x) ∈ Lp(Rn).

If x ∈ B1(−η) then 3 < |x| < 5 and therefore

sup
λ>0

λ w
{
x ∈ Rn : |Tf(x)| > λ

} 1
p ≤ C

( ∫
Rn

|f(x)|p |x|α dx
) 1

p ≤ C 3
α
p

( ∫
Rn

|f(x)|p dx
) 1

p
< ∞.
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The contradiction arises here because one can show that the left hand side of this estimate is
infinity. 2
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