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Abstract. We presente a very general extrapolation principle for weights in the
classes of Muckenhoupt which provides a method to obtain weighted norm inequalities
in Lebesgue and more general function spaces, and also weighted modular inequalities.
Vector-valued estimates are derived almost automatically. We will exploit this tech-
nique paying special attention to operators that are controlled in weighted Lebesgue
spaces by the Hardy-Littlewood maximal function or, more in general, by its iterations.
This is the case for regular Calderón-Zygmund operators and their commutators with
bounded mean oscillation functions. We will show that these operators behave as
the corresponding maximal operator that controls them. Some of the results we will
present are in collaboration papers with David Cruz-Uribe and Carlos Pérez, also with
Guillermo Curbera, José Garćıa-Cuerva and Carlos Pérez.
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1. Introduction.

We start by introducing some of the needed background. Consider the Hardy-
Littlewood maximal function in Rn defined as

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the cubes Q ⊂ Rn are always considered with their sides parallel to the coordinate
axes. This operator is bounded on Lp for every 1 < p ≤ ∞ and it maps L1 into L1,∞.
One can change the underlying measure in the Lebesgue spaces by introducing a weight
w, which is a non-negative measurable locally integrable function. The estimates of M
on weighted Lebesgue spaces Lp(w) = Lp(w(x) dx) are governed by the Muckenhoupt
conditions, which are defined as follows: we say that w ∈ Ap, 1 ≤ p <∞, if there exists
a constant C such that for every cube Q ⊂ Rn we have( 1

|Q|

∫
Q

w(x) dx
) ( 1

|Q|

∫
Q

w(x)1−p′ dx
)p−1

≤ C,

when 1 < p <∞, and, for p = 1,

1

|Q|

∫
Q

w(x) dx ≤ C w(x), for a.e. x ∈ Q.

This latter condition can be rewritten in terms of the Hardy-Littlewood maximal func-
tion: w ∈ A1 if and only if Mw(x) ≤ C w(x) for a.e. x ∈ Rn. The class A∞ is defined
as A∞ =

⋃
p≥1Ap.

Muckenhoupt in [Muc] proved that the weighted norm inequalities of the Hardy-
Littlewood maximal function are characterized by the classes Ap, namely, M maps
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L1(w) into L1,∞(w) if and only if w ∈ A1 and M is bounded on Lp(w), 1 < p < ∞, if
and only if w ∈ Ap.

Let T be an operator which is defined on some class of nice functions DT . Let us
point out that nothing else is assumed on T , in particular, T does not have to be linear
or quasilinear. We assume that there exists 0 < p0 < ∞ such that M controls T on
Lp0(w) for all w ∈ A∞, that is, for all w ∈ A∞∫

Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

Mf(x)p0 w(x) dx, f ∈ DT , (1.1)

whenever the left-hand side is finite. The aim of this paper is to show that from this
assumption one can prove that T satisfies weighted norm inequalities on Lebesgue spaces
and function spaces, and weighted modular inequalities as M does. Besides, all these
estimates admit vector-valued extensions. In other words we are able to show that
most of the weighted estimates that M satisfies can be proved for T . We also see that
similar results are obtained when the operator T is controlled by a given iteration of the
Hardy-Littlewood maximal function. We will apply the results obtained to Calderón-
Zygmund operators with standard kernel which are controlled by M (see Coifman’s
estimate (3.5)). We will also consider the commutators of these operators with bounded
mean oscillation functions. In this case, the appropriate operators to be written in the
right-hand side are the iterations of the Hardy-Littlewood maximal functions.

To work with this kind of estimates we collect the extrapolation results obtained in
[CMP] and [CGMP]. Before that, we introduce some notation: as mentioned, there is
no assumption on the operator T and in (1.1) one can replace M by any other given
operator. In fact, the operators do not need to appear explicitly and one can work
with pairs of functions. In what follows, F is a family of ordered pairs of non-negative
measurable functions (f, g). If we say that for some p0, 0 < p0 <∞, and w ∈ A∞,∫

Rn

f(x)p0 w(x) dx ≤ C

∫
Rn

g(x)p0 w(x) dx, (f, g) ∈ F , (1.2)

we always mean that (1.2) holds for any (f, g) ∈ F such that the left hand side is finite,
and that the constant C depends only upon p and the A∞ constant of w. We will make
similar abbreviated statements involving other function norms or quasi-norms, or even
modular type estimates; they will be always interpreted in the same way. Note that
using this notation, (1.1) is (1.2) with F consisting of the pairs (|Tf |,Mf) for f ∈ DT .

In [CMP] it is shown that starting from (1.2) one can extrapolate and the same
estimate holds for the full range of exponents 0 < p < ∞ and for all w ∈ A∞. In
that paper it is also proved that the spaces Lp(w) can be replaced by the Lorentz
spaces Lp,q(w) for all 0 < p < ∞ and 0 < q ≤ ∞. This was generalized in [CGMP]
obtaining that (1.2) implies estimates on very general rearrangement invariant quasi-
Banach function spaces (RIQBFS in the sequel) and also very general weighted modular
inequalities. Furthermore, the fact that one can work with general families F allows
one to prove, in an almost automatic way, that all these estimates extend to sequence-
valued functions. The next result collects all these extrapolation results. The needed
background is collected in Section 2.

Theorem 1.1 ([CMP], [CGMP]). Let F be a family of ordered pairs of non-negative,
measurable functions (f, g). Assume that there exists 0 < p0 <∞ such that∫

Rn

f(x)p0 w(x) dx ≤ C

∫
Rn

g(x)p0 w(x) dx, (f, g) ∈ F , (1.3)
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for all w ∈ A∞ and whenever the left-hand side is finite. Then, for all (f, g) ∈ F and
all {(fj, gj)}j ⊂ F we have the following estimates :

(a) Lebesgue spaces, [CMP]: For all 0 < p, q <∞ and w ∈ A∞,

‖f‖Lp(w) ≤ C ‖g‖Lp(w),
∥∥∥( ∑

j

(fj)
q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

(gj)
q
) 1

q
∥∥∥
Lp(w)

.

(b) Rearrangement invariant quasi-Banach function spaces, [CGMP]: Let X be
a RIQBFS such that X is p-convex for some 0 < p ≤ 1 —equivalently Xr is Banach
for some r ≥ 1— and with upper Boyd index qX <∞. Then for all 0 < q <∞ and
w ∈ A∞ we have

‖f‖X(w) ≤ C ‖g‖X(w),
∥∥∥( ∑

j

(fj)
q
) 1

q
∥∥∥

X(w)
≤ C

∥∥∥( ∑
j

(gj)
q
) 1

q
∥∥∥

X(w)
.

(c) Modular inequalities, [CGMP]: Let φ ∈ Φ with φ ∈ ∆2 and suppose that there
exist some exponents 0 < r, s < ∞ such that φ(tr)s is quasi-convex. Then for all
0 < q <∞ and all w ∈ A∞,∫

Rn

φ
(
f(x)

)
w(x) dx ≤ C

∫
Rn

φ
(
g(x)

)
w(x) dx,

∫
Rn

φ

(( ∑
j

fj(x)
q
) 1

q

)
w(x) dx ≤ C

∫
Rn

φ

(( ∑
j

gj(x)
q
) 1

q

)
w(x) dx,

Furthermore, for X as before one can also get that φ(f) is controlled by φ(g) on
X(w). In particular, taking X = L1,∞ we have the following weak-type modular
inequalities

sup
λ
φ(λ)w{x : f(x) > λ} ≤ C sup

λ
φ(λ)w{x : g(x) > λ},

sup
λ
φ(λ)w

{
x :

( ∑
j

fj(x)
q
) 1

q
> λ

}
≤ C

∫
Rn

φ

(( ∑
j

gj(x)
q
) 1

q

)
w(x) dx,

for all w ∈ A∞.

We will use this result starting with (1.1) which will allow us to obtain inequalities
for T using those that are known for M . The advantage of this method is that once
(1.1) is known, no property of T is used and everything reduces to prove estimates for
M .

The plan of the paper is as follows. The next section is devoted to introduce the
needed background. In Section 3 we study those operators that satisfy (1.1): we will
present a collection of weighted estimates for the Hardy-Littlewood maximal function
to show that T behaves in the same way. Finally, in Section 4 we consider operators
with a higher degree of singularity in the sense that the operator appearing in the right
hand side of (1.1) is an iteration of the Hardy-Littlewood maximal function. We will
establish weighted estimates for T as a consequence of the extrapolation results. We
will pay special attention to those estimates near L1.

2. Preliminaries

In this section we present the needed background.
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2.1. Basics on Function Spaces. We collect several basic facts about rearrangement
invariant quasi-Banach function spaces (RIQBFS). We start with the Banach case. For
a complete account the reader is referred to [BS]. Let (Ω,Σ, µ) be a σ-finite non-atomic
measure space. We write M for the set of measurable functions and M+ for the non-
negative ones. Given a Banach function norm ρ we the Banach function space X = X(ρ)
as

X =
{
f ∈M : ‖f‖X = ρ(|f |) <∞

}
.

The associate space of X is the space X′ defined by the Banach function norm ρ′:

ρ′(f) = sup
{∫

Ω

f g dµ : g ∈M+, ρ(g) ≤ 1
}
.

Note that, by definition, it follows that for all f ∈ X, g ∈ X′ the following generalized
Hölder’s inequality holds: ∫

Ω

|f g| dµ ≤ ‖f‖X ‖g‖X′ .

The distribution function µf of a measurable function f is

µf (λ) = µ
{
x ∈ Ω : |f(x)| > λ

}
, λ ≥ 0.

A Banach function space X is rearrangement invariant if ρ(f) = ρ(g) for every pair of
functions f , g which are equimeasurable, that is, µf = µg. In this case, we say that the
Banach function space X = X(ρ) is rearrangement invariant. It follows that X′ is also
rearrangement invariant. The decreasing rearrangement of f is the function f ∗ defined
on [0,∞) by

f ∗(t) = inf
{
λ ≥ 0 : µf (λ) ≤ t

}
, t ≥ 0.

The main property of f ∗ is that it is equimeasurable with f , that is,

µ
{
x ∈ Ω : |f(x)| > λ

}
=

∣∣{t ∈ R+ : f ∗(t) > λ
}∣∣.

This allows one to obtain a representation of X on the measure space (R+, dt). That is,
there exists a RIBFS X over (R+, dt) such that f ∈ X if and only if f ∗ ∈ X, and in this
case ‖f‖X = ‖f ∗‖X (Luxemburg’s representation theorem, see [BS, p. 62]). Furthermore,

the associate space X′ of X is represented in the same way by the associate space X′
of

X, and so ‖f‖X′ = ‖f ∗‖X′ .
From now on let X be rearrangement invariant Banach function spaces (RIBFS) in

(Rn, dx) and let X be its corresponding RIBFS in (R+, t).
Next, we define the Boyd indices of X, which are closely related to some interpolation

properties, see [BS, Ch. 3] for more details. First we introduce the dilation operator

Dtf(s) = f(s/t), 0 < t <∞, f ∈ X,

and its norm hX(t) = ‖Dt‖B(X) where B(X) denotes the space of bounded linear operators

on X. Then, the lower and upper Boyd indices are defined respectively by

pX = lim
t→∞

log t

log hX(t)
= sup

1<t<∞

log t

log hX(t)
, qX = lim

t→0+

log t

log hX(t)
= inf

0<t<1

log t

log hX(t)
.

We have that 1 ≤ pX ≤ qX ≤ ∞. The relationship between the Boyd indices of X and
X′ is the following: pX′ = (qX)′ and qX′ = (pX)′, where, as usual, p and p′ are conjugate
exponents.
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Take w an A∞-weight on Rn. We use the standard notation w(E) =
∫
E
w(x) dx. The

distribution function and the decreasing rearrangement with respect to w are given by

wf (λ) = w
{
x ∈ Rn : |f(x)| > λ

}
; f ∗w(t) = inf

{
λ ≥ 0 : wf (λ) ≤ t

}
.

We define the weighted version of the space X:

X(w) =
{
f ∈M : ‖f ∗w‖X <∞

}
,

and the norm associated to it ‖f‖X(w) = ‖f ∗w‖X. By construction X(w) is a Banach
function space built over M(Rn, w(x) dx). By doing the same procedure with the asso-
ciate spaces we can see that the associate space X(w)′ coincides with the weighted space
X′(w).

Given a Banach function space X, for each 0 < r <∞, as in [JS], we define

Xr =
{
f ∈M : |f |r ∈ X

}
=

{
f ∈M : ‖f‖Xr =

∥∥|f |r∥∥ 1
r

X

}
.

Note that this notation is natural for the Lebesgue spaces since Lr coincides with (L1)
r
.

If X is a RIBFS and r ≥ 1 then, Xr still is a RIBFS but, in general, for 0 < r < 1,
the space Xr is not necessarily Banach. Note that in the same way we can also define
powers of weighted spaces and we have (X(w))r = Xr(w).

In this paper we work with spaces X so that X = Ys for some RIBFS Y and some
0 < s <∞. The space X is in particular a rearrangement quasi-Banach space (RIQBFS
in the sequel), see [GK] or [Mon] for more details. Let us observe that another equivalent
approach consists in introducing first the quasi-Banach case and then one restricts the
attention to those RIQBFS for which a large power is a Banach space. This latter
property turns out to be equivalent to the fact that the RIQBFS X is p-convex for some
0 < p ≤ 1, that is, there exists C such that for all N ≥ 1 and f1, · · · , fN ∈ X, all∥∥∥( N∑

j=1

|fj|p
) 1

p
∥∥∥

X
≤ C

( N∑
j=1

‖fj‖pX
) 1

p
.

In this case, after renorming if necessary, one has that X
1
p is a RIBFS.

Regarding the statement of Theorem 1.1 we have to make several remarks.

Remark 2.1. Note that in (b) of Theorem 1.1 we have restricted ourselves to the case
of X p-convex with qX <∞. As we have just mentioned, this means that Xr is a Banach
space (with r = 1/p). Thus, by Lorentz-Shimogaki’s theorem (see [Lor], [Shi] and [BS,
p. 54]) qX < ∞ is equivalent to the boundedness of the Hardy-Littlewood maximal
function on (Xr)′.

Remark 2.2. Theorem 1.1 part (b) can be equivalently formulated in terms of RIBFS
rather than quasi-Banach spaces. The conclusion would be as follows:

Then, for all RIBFS X such that qX < ∞ —or equivalently, that the
Hardy-Littlewood maximal function is bounded on X′—, all p such that
0 < p <∞, and all w ∈ A∞, we have

‖f‖Xp(w) ≤ C ‖g‖Xp(w), (f, g) ∈ F ,

and the corresponding vector-valued inequalities also hold.

The equivalence is based on the fact that if Y = Xr then qY = r · qX.
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Remark 2.3. The formulation given in (b) of Theorem 1.1 and the equivalent one
presented in the previous remark reflect that there are two different points of view:
suppose that one wants to get estimates in L

1
2 . The first formulation consists in looking

at the RIQBFS X = L
1
2 which has the property that X2 = L1 is a Banach space. This

convexity allows us to apply Theorem 1.1 to X. Alternatively one can start from X = L1

which is a RIBFS and by the second formulation get estimates in Xp for all 0 < p <∞,
and in particular in X 1

2 = L
1
2 .

Some examples of RIQBFS are Lebesgue spaces, classical Lorentz spaces, Lorentz
Λ-spaces, Orlicz spaces, Marcinkiewicz spaces, etc, see [CGMP] for more details. In
some of these examples, the Boyd indices can be computed very easily, for instance if
X is Lp, Lp,q, Lp(logL)α or Lp,q(logL)α (where 0 < p < ∞, 0 < q ≤ ∞, α ∈ R) then
pX = qX = p. In this cases, it is easy to compute the powers of X and one obtains

(Lp,q)r = Lp r,q r, (Lp,q(logL)α)r = Lp r,q r(logL)α,

note the same applies to Lp = Lp,p and Lp(logL)α = Lp,p(logL)α.

2.2. Basics on modular inequalities. We introduce some notation, the terminology
used is taken from [KK] and [RR]. Let Φ be the set of functions φ : [0,∞) −→ [0,∞)
which are nonnegative, increasing and such that φ(0+) = 0 and φ(∞) = ∞. If φ ∈ Φ is
convex we say that φ is a Young function. An N -function (from nice Young function)
φ is a Young function such that

lim
t→0+

φ(t)

t
= 0 and lim

t→∞

φ(t)

t
= ∞.

The function φ ∈ Φ is said to be quasi-convex if there exists a convex function φ̃ and
a ≥ 1 such that

φ̃(t) ≤ φ(t) ≤ a φ̃(a t), t ≥ 0. (2.1)

We say that φ ∈ Φ satisfies the ∆2 condition, we will write φ ∈ ∆2, if φ is doubling,
that is, if

φ(2 t) ≤ C φ(t), t ≥ 0.

Given φ ∈ Φ we define the complementary function φ by

φ(s) = sup
t>0
{s t− φ(t)}, s ≥ 0.

By definition we have Young’s inequality

s t ≤ φ(s) + φ(t), s, t ≥ 0. (2.2)

When φ is an N -function, then φ is an N -function too, and we have the following

t ≤ φ−1(t)φ
−1

(t) ≤ 2 t, t ≥ 0. (2.3)

The lower and upper dilation indices of φ ∈ Φ are defined respectively by

iφ = lim
t→0+

log hφ(t)

log t
= sup

0<t<1

log hφ(t)

log t
, Iφ = lim

t→∞

log hφ(t)

log t
= inf

1<t<∞

log hφ(t)

log t
,

where

hφ(t) = sup
s>0

φ(s t)

φ(s)
, t > 0,

see [KPS] and [KK]. Observe that 0 ≤ iφ ≤ Iφ ≤ ∞. It is easy to see that if φ is
quasi-convex, then iφ ≥ 1. If φ is an N -function, then we have that the indices for φ

and φ satisfy the following: iφ = (Iφ)
′ and Iφ = (iφ)

′.
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These indices give, among other things, information about the growth of φ in terms
of power functions. Indeed, if 0 < iφ ≤ Iφ < ∞, given ε small enough, we have for all
t ≥ 0

φ(λ t) ≤ Cε λ
Iφ+ε φ(t), for λ ≥ 1,

φ(λ t) ≤ Cε λ
iφ−ε φ(t), for λ ≤ 1.

It is clear then, that φ ∈ ∆2 if and only if Iφ <∞.

Remark 2.4. We would like to stress the analogy between the hypotheses of Theorem
1.1 parts (b) and (c). The facts that Xr is Banach for some r ≥ 1 and φ(tr)s is quasi-
convex for some 0 < r, s <∞ play the same role. Indeed in the proofs these properties
are used to ensure the existence of a dual space and a complementary function which
allow one to perform a duality argument in both cases. On the other hand, in (b) one
assumes that qX <∞ and in (c) it is supposed that φ ∈ ∆2 which, as mentioned, means
Iφ < ∞. So, in both cases, we are assuming the finiteness of the upper indices. In the
proofs, these conditions are used to assure that the Hardy-Littlewood maximal function
is bounded on the dual of Xr and also it satisfies a modular inequality with respect to
the complementary function of φ(tr)s.

Remark 2.5. As in Remark 2.2, one can reformulate part (c) in Theorem 1.1 in the
following way: one can start with an N -function φ such that Iφ < ∞, or equivalently,

M satisfies a modular inequality with respect to φ, and then get weighted modular
inequalities with respect to the functions φ(tr)s for all 0 < r, s <∞.

Some examples to whom these results can be applied are φ(t) = tp, φ(t) = tp (1 +
log+ t)α, φ(t) = tp (1 + log+ t)α (1 + log+ log+ t)β with 0 < p < ∞ and α, β ∈ R. In all
these cases one can see that iφ = Iφ = p and also that φ(tr) is quasi-convex for r large
enough.

3. Operators controlled by the Hardy-Littlewood maximal function

We are going to apply Theorem 1.1 to (1.1) in order to get all those inequalities for
the pairs (|Tf |,Mf). Then next goal consists in proving weighted norm inequalities for
T as a consequence of the ones known for M .

We already know that M maps Lp(w) into Lp(w) for all w ∈ Ap, 1 < p < ∞, and
L1,∞(w) into L1(w) for all w ∈ A1. Regarding the vector-valued inequalities it is also
known that M satisfies the corresponding `q-valued weighted estimates for 1 < q <∞.
In order to show that M satisfies vector-valued estimates on RIQBFS or of modular
type we will use the following inequality, see [CGMP]: if 1 < q < ∞, we have for all
0 < p <∞, and all w ∈ A∞∥∥∥( ∑

j

(Mfj)
q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥M(( ∑

j

|fj|q
) 1

q
)∥∥∥

Lp(w)
. (3.1)

This allows us to use Theorem 1.1 with the pairs given by this estimate and therefore
the vector-valued inequalities for M follows from its scalar estimates. Next, we collect
the weighted vector-valued inequalities obtained for M by this method:

Theorem 3.1. Let X be a RIQBFS which is p-convex for some p > 0 and let φ ∈ Φ be
a quasi-convex function.
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(i) If 1 < pX ≤ ∞, for all w ∈ ApX we have

‖Mf‖X(w) ≤ C ‖f‖X(w). (3.2)

(ii) If 1 < pX ≤ qX < ∞ we have that for all 1 < q < ∞ and for all w ∈ ApX, M
satisfies the following weighted vector-valued inequality∥∥∥( ∑

j

(Mfj)
q
) 1

q
∥∥∥

X(w)
≤ C

∥∥∥( ∑
j

|fj|q
) 1

q
∥∥∥

X(w)
. (3.3)

(iii) For all w ∈ Aiφ,∫
Rn

φ
(
Mf(x)

)
w(x) dx ≤ C

∫
Rn

φ
(
C |f(x)|

)
w(x) dx, if 1 < iφ ≤ ∞,

sup
λ
φ(λ)w

{
x : Mf(x) > λ

}
≤ C

∫
Rn

φ
(
C |f(x)|

)
w(x) dx, if iφ = 1.

(iv) If φ ∈ ∆2 (or, what is the same, Iφ < ∞), for all 1 < q < ∞, M satisfies the
following vector-valued weighted modular inequalities: for all w ∈ Aiφ,∫

Rn

φ

(( ∑
j

Mfj(x)
q
) 1

q

)
w(x) dx ≤ C

∫
Rn

φ

(( ∑
j

|fj(x)|q
) 1

q

)
w(x) dx,

if 1 < iφ <∞, and if iφ = 1 we have the weak-type modular inequality

sup
λ
φ(λ)w

{
x :

( ∑
j

Mfj(x)
q
) 1

q
> λ

}
≤ C

∫
Rn

φ

(( ∑
j

|fj(x)|q
) 1

q

)
w(x) dx.

Remark 3.2. This result can be seen as an extension of the classical Theorem of
Lorentz-Shimogaki (see [Lor], [Shi] and [BS, p. 54]) which states that the Hardy-
Littlewood maximal function is bounded on a RIBFS X if and only if pX > 1. Note that
Theorem 3.1 contains weighted, vector-valued and modular extensions of this result.

Remark 3.3. As in Remark 2.4 one can see the analogy between the hypotheses of
parts (i), (ii) and respectively (iii) and (iv). Note, for instance, that we have obtained
weighted vector-valued inequalities for M on X provided 1 < pX ≤ qX < ∞ and w ∈
ApX . Analogously, M satisfies strong weighted modular inequalities with respecto to φ
whenever 1 < iφ ≤ Iφ < ∞. Note that this same comment applies to Corollaries 3.4
and 4.1 below.

The proof of Theorem 3.1 can be found in [CGMP]. The first part is obtained directly,
while (ii) follows by (i) and by extrapolation applying (b) in Theorem 1.1 to (3.1). Part
(iii) can be proved directly using the convexity properties of φ. This inequality was
first consider in [KT] under slightly hypotheses, see also [KK]. Part (iv) can be shown
as before from (iii) and by applying (c) in Theorem 1.1 to (3.1). Similar results are
proved by different methods in [KK].

The following result shows that if T satisfies (1.1), then T behaves as the Hardy-
Littlewood maximal function in terms of the weighted estimates.

Corollary 3.4. Let T be an operator defined in some class of nice functions DT . Assume
that there is 0 < p0 <∞ such that∫

Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

Mf(x)p0 w(x) dx, f ∈ DT (3.4)
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for all w ∈ A∞ and whenever the left-hand side is finite. Then the pairs (|Tf |,Mf), for
f ∈ DT , satisfy all the estimates contained in Theorem 1.1. Hence, for all 1 < p, q <∞
and all w ∈ Ap

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w),
∥∥∥( ∑

j

|Tfj|q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj|q
) 1

q
∥∥∥
Lp(w)

.

If w ∈ A1 and 1 < q <∞ we have

‖Tf‖L1,∞(w) ≤ C ‖f‖L1(w),
∥∥∥( ∑

j

|Tfj|q
) 1

q
∥∥∥
L1,∞(w)

≤ C
∥∥∥( ∑

j

|fj|q
) 1

q
∥∥∥
L1(w)

.

Furthermore, let X be a RIQBFS such that X is p-convex for some 0 < p < 1 and such
that 1 < pX ≤ qX <∞. Then, T satisfies (3.2) and (3.3). On the other hand, let φ ∈ Φ
be a quasi-convex function such that φ ∈ ∆2, (or, what is the same, Iφ <∞). Then, T
satisfies the weighted modular inequalities contained in (iii) and (iv) of Theorem 3.1.

Remark 3.5. This result extends the classical Theorem of Boyd (see [Bo] and [BS, p.
154]) on which it is obtained that the Hilbert transform is bounded on a RIBFS X if
and only if 1 < pX ≤ qX <∞. As we see below, Coifman’s inequality (3.5) implies that
the Hilbert transform satisfies (3.4) and so all the weighted estimates in Corollary 3.4
hold. Furthermore, any Calderón-Zygmund operator can be controlled by the Hardy-
Littlewood maximal function (see (3.5) below) and therefore we obtain this family of
weighted estimates for this class of operators. Thus, we are extending Boyd’s result
in the way that the class of operators is wider, we get weighted estimates, modular
inequalities and also all of them admit vector-valued versions.

Remark 3.6. In addition to the previous remark, notice that Corollary 3.4 can be
applied to operators which are not necessarily linear or quasilinear, this means that the
general interpolation results can not be used. Thus, it is not clear how to get estimates
on RIQBFS following the classical ways (see [BS]). The idea behind this latter comment
is that estimates for T are proved through M , for which classical interpolation results
can be employed. On the other hand, it should be pointed out that it is not clear how
to interpolate between estimates like (3.4) —even if the operator T is linear— since M
appears in the right-hand side.

Corollary 3.4 follows directly from Theorem 1.1 applied to (3.4) and then by using the
weighted estimates for the Hardy-Littlewood maximal function contained in Theorem
3.1. For the estimates in L1,∞ one can apply (b) in Theorem 1.1 with X = L1,∞ and then
employ the well known weak type vector-valued inequalities for M . Another possible
way consists in taking φ(λ) = λ for which iφ = 1 and then one can use (iii) and (iv) in
Theorem 3.1 with T in place of M .

The main example of operators satisfying (3.4) is given by Calderón-Zygmund oper-
ators T which are bounded linear operators on L2 such that

Tf(x) =

∫
Rn

K(x, y) f(y) dy, for a.e. x /∈ supp f

where the kernel K satisfies the standard estimates

|K(x, y)| ≤ A

|x− y|n
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and

|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ A
|y − y′|τ

|x− y|n+τ
, |x− y| > 2 |y − y′|,

for some A, τ > 0. These operators satisfy Coifman’s inequality, see [Coi]:∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

Mf(x)pw(x) dx (3.5)

for all 0 < p < ∞ and all w ∈ A∞ and all f ∈ C∞0 such that the left hand-side is
finite. This means that we can apply Corollary 3.4 obtaining all the weighted estimates
contained there.

4. Operators controlled by iterations of the Hardy-Littlewood
maximal function

In this section we consider operators that are controlled by iterations of the Hardy-
Littlewood maximal function. Suppose that we have as before some operator T defined
in DT such that there exists 0 < p0 <∞ and for all w ∈ A∞,∫

Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

Mm+1f(x)p0 w(x) dx, f ∈ DT , (4.1)

whenever the left-hand side is finite and where Mm+1 is the Hardy-Littlewood maximal
operator iterated m + 1-times with m ≥ 1 (note that the case m = 0 was considered
in the previous section). As done before, this implies that T is controlled by Mm+1 in
all the senses of Theorem 1.1. Note that in terms of weighted estimates, Mm+1 and M
behave in the same way provided the space is not “close” to L1, that is, Mm+1 satisfies
all the estimates in Theorem 3.1 but the weak-type modular estimates in (iii) and (iv).
This implies some of the inequalities in Corollary 3.4 but one has to be careful at the
end-point p = 1. Let us first state the result that one can get as a direct consequence
of the extrapolation technique and we will study later the issues with the end-point
estimates.

Corollary 4.1. Let T be an operator defined in some class of nice functions DT . Assume
that there are an integer m ≥ 1 and 0 < p0 <∞ such that for all w ∈ A∞∫

Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

Mm+1f(x)p0 w(x) dx, f ∈ DT (4.2)

whenever the left-hand side is finite. Then the pairs (|Tf |,Mm+1f), for f ∈ DT , satisfy
all the estimates contained in Theorem 1.1. Hence, for all 1 < p, q <∞ and all w ∈ Ap

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w),
∥∥∥( ∑

j

|Tfj|q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj|q
) 1

q
∥∥∥
Lp(w)

.

Furthermore, let X be a RIQBFS such that X is p-convex for some 0 < p < 1 and such
that 1 < pX ≤ qX <∞. Then, T satisfies (3.2) and (3.3). On the other hand, let φ ∈ Φ
be a quasi-convex function such that φ ∈ ∆2, (or, what is the same, Iφ < ∞). Then,
if 1 < iφ < ∞, T satisfies the first estimate in (iii) and the first estimate in (iv) of
Theorem 3.1.

To prove this result we first observe that Mm+1 satisfy all these estimates since M
does. Then, using Theorem 1.1 as in the previous section the proof is completed.
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We now study the behavior of Mm+1 near L1 to eventually show that T satisfies the
same estimates. In terms of RIQBFS the natural end-point estimate for the Hardy-
Littlewood maximal inequality is the boundedness of M from L1 to L1,∞ which turns
out to be also a weak-type modular inequality. To find the natural spaces and modular
inequalities for Mm+1, we first consider the function

ϕm(t) =
t

(1 + log+ t)m
, t > 0,

which is increasing, quasi-concave (that is, ϕm(t)/t is decreasing) and satisfies that

ϕm(0+) = 0. We can define the Marcinkiewicz type space M̃ϕm by the quasi-norm

‖f‖M̃ϕm
= sup

t
ϕm(t) f ∗(t).

Thus X = M̃ϕm is a RIQBFS such that Xr is a Banach space for any r > 1 and
pX = qX = 1, see [CGMP]. We note that this allows us to use Theorem 1.1 with X. This
space plays the role of L1,∞ as we see below.

To deal with the modular inequalities we introduce the function

ψm(t) = t (1 + log+ t)m, t > 0.

Note that ψ is an increasing convex function with ψ(0+) = 0 and ψ ∈ ∆2.
For Mk+1 we have the following end-point estimates:

Proposition 4.2. Let m ≥ 1. Then,

Mm+1 : L(logL)m −→ M̃ϕm

and ∣∣{x ∈ Rn : Mm+1f(x) > λ}
∣∣ ≤ C

∫
Rn

ψm

(
|f(x)|
λ

)
dx.

Furthermore, for any w ∈ A1 we have the weighted estimates

Mm+1 : L(logL)m(w) −→ M̃ϕm(w)

and

w{x ∈ Rn : Mm+1f(x) > λ} ≤ C

∫
Rn

ψm

(
|f(x)|
λ

)
w(x) dx.

These estimates are the analogs in terms of RIQBFS and modular inequalities of the
weak type (1, 1) of M . As before, we can show that the operator T satisfies the same
estimates.

Corollary 4.3. Let T be an operator as in Corollary 4.1 satisfying (4.2). Then, for all
w ∈ A1

T : L(logL)m(w) −→ M̃ϕm(w)

and

w{x ∈ Rn : |Tf(x)| > λ} ≤ C

∫
Rn

ψm

(
|f(x)|
λ

)
w(x) dx.

To prove the first estimate we only need to apply Theorem 1.1, part (b), with the

pairs (|Tf |,Mm+1f) for f ∈ DT and X = M̃ϕm , and then Proposition 4.2. Note that
as mentioned X is a RIQBFS with the property that Xr is Banach for every r > 1 and
also pX = qX = 1. Observe that the class of weights A1 is natural since pX = 1.

The modular inequality is not so automatic. Define the function φm(t) = 1
ψm(1/t)

and observe that φm ∈ Φ is such that φm ∈ ∆2 (indeed, iφm = Iφm = 1) and φ(tr) is
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quasi-convex for some large r. Then, we can apply (c) in Theorem 1.1 with φm and
Proposition 4.2 to obtain

w
{
x ∈ Rn : |Tf(x)| > 1

}
≤ sup

t
φm(t)w

{
x ∈ Rn : |Tf(x)| > t

}
≤ C sup

t
φm(t)w

{
x ∈ Rn : Mm+1f(x) > t

}
≤ C sup

t
φm(t)

∫
Rn

ψm

(
|f(x)|
t

)
w(x) dx

≤ C sup
t
φm(t)ψm

(
1

t

) ∫
Rn

ψm
(
|f(x)|

)
w(x) dx

≤ C

∫
Rn

ψm
(
|f(x)|

)
w(x) dx, (4.3)

where we have used that ψm is submultiplicative. If the operator T is linear, (4.3) implies
the desired estimate by homogeneity. Otherwise, we observe that we have proved this
estimate starting from (4.2) which for any λ > 0 implies∫

Rn

(
|Tf(x)|

λ

)p0

w(x) dx ≤ C

∫
Rn

(
Mm+1f(x)

λ

)p0

w(x) dx, f ∈ DT ,

with C independent of λ. This induces a new family of pairs of functions given by
(|Tf |/λ,Mm+1f/λ) to whom we can apply (4.3) to conclude as desired

w
{
x ∈ Rn : |Tf(x)| > λ

}
≤ C

∫
Rn

ψm

(
|f(x)|
λ

)
w(x) dx,

where C does not depend on λ > 0.
The main example of operators satisfying (4.2) is given by the commutators of Calde-

rón-Zygmund operators with bounded mean oscillation functions. Let T be a Calderón-
Zygmund operator with standard kernel as before. Let b be a function of bounded mean
oscillation, that is,

sup
Q

1

|Q|

∫
Q

|b(x)− bQ| dx <∞

where bQ stands for the average of b on Q. Then we define the first order commutator

C1
b f(x) = [b, T ]f(x) = b(x)Tf(x)− T (b f)(x),

and for m ≥ 2, the m-order commutator Cm
b f(x) = [b, Cm−1

b ]f(x). In this way we have

Cm
b f(x) =

∫
Rn

(
b(x)− b(y)

)m
K(x, y) f(y), for a.e. x /∈ supp f.

Note that this definition makes sense form ≥ 0 and the commutator of order 0 is nothing
but T . The maximal operator that controls the commutator Cm

b is Mm+1 which is the
Hardy-Littlewood maximal function iterated m + 1-times, namely, in [Per] it is shown
that ∫

Rn

|Cm
b f(x)|pw(x) dx ≤ C

∫
Rn

Mm+1f(x)pw(x) dx (4.4)

for every 0 < p <∞ and w ∈ A∞ and all f ∈ C∞0 such that the left hand-side is finite.
Thus, Corollaries 4.1 and 4.3 can be applied and we obtain all those weighted estimates
for Cm

b .
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