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ABSTRACT. We prove two-weight, weak type norm inequalities for potential operators and
fractional integrals defined on spaces of homogeneous type. We show that the operators in
question are bounded from LP(v) to LY*(u), 1 < p < g < oo, provided the pair of weights
(u, v) verifies a Muckenhoupt condition with a “power-bump” on the weight w.

1. INTRODUCTION.

A space of homogenous type (X,d, u) is a set X endowed with a quasimetric d and a
non-negative Borel measure p such that the doubling condition

u(B(w,27)) < Cop(B(x, 7)) < o0 1)

holds for all x € X and r > 0, where B(x,r) = {y € X : d(x,y) < r} is the ball with center
x and radius r. Since d is a quasimetric, there exists £ > 1 such that

d(z,y) < k (d(z,2) + d(z,)), for all x,y,z € X.

Besides, by [1] there exists another quasimetric d’, continuous and equivalent to d, for
which every ball is open. So, without loss of generality, the quasimetric d is assumed to be
continuous and the balls to be open.

We will use the following notation: for any given ball B we write B = B(zp,r(B)) where
xp denotes its center and r(B) its radius. Given 7 > 0, we will write 7 B for the ball with
the same center as B and with radius r(7 B) = 7r(B). In what follows, a weight w will be
a non-negative locally integrable function with respect to p. For any measurable set F we
will write w(E) = [ w(z) du(z).

If Cp is the smallest constant for which the measure p satisfies (1), the number D = log, Cj
is called the doubling order of p. Iterating (1) we have

w(B1) r(By)
w(Bs) = (r(&)

We additionally assume that all annuli in X are not empty, that is, for all x+ € X and
0 <r <R, Bz,R) \ B(xz,r) # O. In this way, u satisfies the following reverse doubling

D
> , for all balls By C Bj. (2)
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property (see [7]): there exist § > 0 and ¢, > 0 such that

é
Zgg;; > ¢, <:Eg;;> , for all balls By C Bj. (3)

Consider a > 0. For f >0, f € L(u) (f bounded with bounded support), we define the
fractional integral of order « as

_ d(z,y)*
Tuf@) = [ 10) s duls).

We devote this paper to prove some two-weight, weak type norm inequalities for these
fractional integrals. Precisely, we obtain the following result:

Theorem 1.1. Let 1 < p < ¢ < 00 and o > 0. Let (u,v) be a pair of weights for which
there exists r > 1 such that for every ball B C X,

1

([ u(x)rdu(zv)qu (o [ au)” < Cun <0 )

Then the fractional operator I, verifies the following weak type (p,q) inequality

D=

r(B)* u(B)1~

1

1
sup Aufz € X : |Iof(z)| > A\}e < C (/ ()P v(z) du(x)> . (5)
A>0 X

The corresponding strong type analog of (5) was proved in [5]. For a version of this result
in the euclidean setting when p = ¢ see [3]. Working in spaces of homogeneous type leads to
some difficulties. We will discretize the operator I, by means of some dyadic sets introduced
in [6]. This dyadic structure has a lot of properties in common with the dyadic cubes in
the euclidean setting. A very importante difference is that these sets are built “upwards” in
the following sense, one starts with a fixed generations and only the ancestors are defined,
that is, parents, grandparents, .... Therefore the corresponding dyadic Hardy-Littlewood
maximal function will not differentiate since the sets can not be shrunk to a given point
Tz eX.

The method used to prove Theorem 1.1 can be further applied to derive similar estimates
for more general potential operators. Indeed, we are going to see that Theorem 1.1 can be
obtained as a consequence of Theorem 1.2 below. We consider potential operators T' given

by
Tf(z) = /X K(z,y) [(y) du(y).

where the kernel K (z,y) is a non-negative measurable function defined for = # y. Associated
with T" we define a functional ¢, given a ball B C X,

o(B) = sup K(z,y), (6)
r,y € B
d(z,y) > cr(B)

where ¢ is some sufficiently small geometric constant (see [6]). We assume that ¢ satisfies
the following hypotheses: there is C, such that

(a) The functional ¢ is doubling, that is,
0(2B) < Cy,(B), for all balls B C X. (7)
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(b) There exists € > 0 such that

o(B1) u(B1) < Cy <:E§3>8 ©(B2) u(Ba), for all balls By C Bs. (8)

We would like to point out that these potential operators are more general than those
considered in [5] where two-weight strong type estimates are proved for them, see this
reference for more details and some examples.

We prove two-weight, weak type norm inequalities for these potential operators:

Theorem 1.2. Let 1 < p < g < oo. Assume that T is given as above and that ¢ satisfies
(7) and (8). Let (u,v) be a pair of weights for which there exists r > 1 such that for every
ball B C X,

1

e ) (o [ u(w)fdm)):q (o [ @7 @) < Cu <

Then the potential operator T verifies the following weak type (p,q) inequality

1

1
supAu{z € X : [T f(z)| > A} < C (/ |f(2)]P v(x) du(x))p. (10)
A>0 X

Remark 1.3. When T' = I, the kernel is K (x,y) = d(z,y)*/u(B(z,d(x,y))) and therefore
we have ¢(B) =~ r(B)“/u(B). Note that ¢ satisfies (7), and (8) with € = a. Observe that
(9) coincides with (4) and therefore Theorem 1.1 is a particular case of Theorem 1.2.

This paper is part of the author’s Ph. D. thesis, written under the supervision of Prof.
J. Garcia-Cuerva (see [4]). The author would like to thank Prof. J. Garcia-Cuerva for his
encouragement and guidance. The author would like to express his gratitude to Prof. C.
Pérez for proposing this problem and for many useful discussions about the material of this
article.

2. DYADIC SETS AND THE HARDY-LITTLEWOOD MAXIMAL FUNCTION.

We are going to consider certain dyadic sets introduced in [6]. Let us fix p = 8 k5. For
every (large negative) integer m, there exist a collection of points {xf} and a family of sets

Dy, = {Ef} with k =m,m+1,... and j = 1,2,... such that
o B(:c;?,pk) C Ef C B(:cé?,pkﬂ).
e For every k > m, the sets {Ef}] are pairwise disjoint in 7, and X = Uj E]k
o If m <k <, then either EfﬂEf =0 or E;“ C EL

Thus, we call D = |J,, Dy, a dyadic cube decomposition of X and we refer to the sets in
D as dyadic cubes. A dyadic cube will be written as @, and Q* will denote the ball that
contains ) in such a way that %Q* C Q C QF that is, if Q = Ej]?’, then Q* = B(mé‘?,pkﬂ).
We will call £(Q) = @ (= p*) the “sidelength” of Q and so Q* = B(zq, p4(Q)). Note,
that the cubes of each D,, satisfy the dyadic properties above, but, in general, for different

values of m these nestedness properties might fail.
We set DF = {Ef}] ={Q € D, : £(Q) = p¥}. We will refer to these cubes as the cubes

of the generation p*. For M > m, we also define 5% which consists of the cubes between
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the generations p™ and p™. Then,
o0
D c D c D2 c...c D, andthus D, = U DM,
M=m

Associated with the cubes of D,,, the dyadic Hardy-Littlewood maximal function can be
defined: .
d
M, f(x) Q) /Q [f ()l du(y).
Observe that the lengths of the sides of the cubes in D,,, are at least p™, and so the averages
in this maximal operator are taken over sets that are not arbitrarily small.

We will use the following standard notation: fg stands for the p-average of f over Q). For
this maximal operator, a Calderén-Zygmund decomposition can be performed which yields
the weak type (1,1) for M% . We leave the proofs, which follow the ideas of the classical
case, to the reader.

Lemma 2.1 (Calderén-Zygmund decomposition). Let0 < f € Ll (u) be such that fg — 0
as u(Q) — oo. For every A > 0, we set Q) = {x € X : M2 f(x) > \}. Then, there exists a
collection of pairwise disjoint dyadic cubes {Q;‘}j C Dy, in such a way that

1
0 = A d —— d A
A LjJQj and O Q?f(y) p(y) >

Furthermore, these cubes are mazimal: if Q € Dy, and fg > X then Q C Q?‘ for some j.
Besides, for @ 2 Q;‘ we have fo < A.

Next, we consider a functional introduced in [3]. For a further generalization see [2].

Definition 2.2. Given r > 1 and a weight u, define de the set function A, on measurable
sets E C X by
1

aE) = ) ([ atoy aut)) = u(e) (~ [ ey ante)”

where the second equality holds provided p(E) > 0.

1
T

Lemma 2.3 ([3, Lemma 3.2]). For any r > 1 and weight u, the set function A}, has the
following properties:

(i) IF E C F then A(E) < <ZEI€§> o

(i1) w(E) < AL(E).
(i7i) If {Ej}; is a sequence of disjoint sets and \J; Ej = E, then _; Ay (E;) < Ay (E).
We conclude this section with some auxiliary result to be used later.

Proposition 2.4. Given 0 < f € L®(u), 0 < ¢ < o0, r > 1 and a weight u, there exist
g,C > 0 (which only depend on the space, q and r) such that for every A > 0 there exists
a subcollection {Rj"}j of dyadic cubes from the Calderon-Zygmund decomposition of f at
height A (see Lemma 2.1), in such a way that

1

S(BY /RA [f(y) = Fralduly) > e A
J J
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and

sup N u{z € X : M, f(2) > A} < Csup A Y AL (R}). (11)
A>0 A>0 J

Proof. Set rg = min {r, ﬁ} for 0 < ¢ < 1 and r9 = r for ¢ > 1. Note that rg > 1. Since
ro < r, then A7°(F) < Al (E) for any measurable set E. Thus, it will be enough to prove
(11) for 9. We can assume that the right-hand side in (11) is finite, otherwise there is
nothing to prove. On the other hand, we can suppose that u is bounded and has compact
support. To prove the general case, take u; = min{u, k} x B(zo,k) Which is bounded and has
compact support. Then (11) holds with wug. Since u = limy ux = supy, ug, by the monotone
convergence theorem we get the desired inequality for wu.

Given 0 < f € L2(u), we apply Lemma 2.1 to f and Q, = |J; Q? for every A > 0. Set
N=1+0Cy, p*P > 1. Then, Qn ) = Uj Qé\”‘ C Q) and by maximality, Qé-VA C Q? for some
i. Thus, by Lemma 2.3 parts (i), (#i7):

Au(Qna) <A ADQNY) <A AR (na[) Q) (12)
j i
Take 0 < ¢ < N~P"0. We split the indices ¢ in two sets:
ier i @A?If(y)—fQ¢\du(y)§eA,
iea it o [0 gl > ex

Observe that {Q? : i € G} are the desired cubes and so we relabel them as {R;\}] On the
other hand, we take z € Qn Q2. So, MZ f(x) > N A > X and since fg < A for Q) € Q
we have that MY (f Xor) (@) = M f(x). Moreover,

NA < M (f X (@) < MO (1 =Fpl X ) (@) +Fgr < M (If = foal Xgr ) (2)+Cup® P A

where the latter estimate is obtained passing to the parent cube of Qf‘. Hence, we have that
M (1f - forl o )(z) > \. For i € F, by the weak type (1,1) of MZ, we observe

ﬂ(QN,\ﬂQZ\) <pfz € Q? : Mﬁ@(\f - fQiA\ XQ?)(x) > A} < €M(QE\)-

Since Qn (N Q? C Q?, by Lemma 2.3 part (i),

AP (a(Q) < <“(QN*HQ?)>T

SN

1
ATO(Q)) <0 A(QY),  forallic F.
1(Q7)

We plug this estimate into (12):

MY AR < AT AR (Qna[)QF) + AT Y AR(na[)@7)
J 1€EF i€G
1

< E0ADY AP(QY) + AT Y AR(RY). (13)

? J
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Ifqg > 1, thenr0:r>1andq—%,>0. Otherwise, 0 < ¢ < 1, Wehaverogl—iqand
0

g — 2 > 0. In both cases, for every A > 0, by (iii) of Lemma 2.3, we observe
0
1

1
sup A > AP(Q}) < sup AQAT0<QA><OsupAA O F N g Ml 2o uy < 005

0<A<A i 0<A<A

because u and f belong to L2°(1). We take the supremum in (13):

1
sup A7) CAR(QNY) <et sup AT CAP(QY) + sup MY A(RY),

0<A<A/N : 0<A<A ; 0<A<A j
and we get
1
sup A7 ZAZO (@) < N sup M ZAZO (@) + N7 sup M4 ZAZO(R?).
0<A<A i 0<A<A P A>0 j

Note that 0 < e < N770 and that the first term in the right hand side is finite. Thus we
move it to the other side and, as in (12), we obtain

sup ATu(Q2y) < sup A ZATO(QA) < C sup \? ZAZO (R;‘)
0<A<A 0<A<A i A>0 J
for every A > 0. This leads to (11) with r( instead of r as desired. O

Later on, we will need to estimate the number of cubes (or dilated cubes) of a fixed
generation which meet a ball. The doubling condition of the measure provides a bound for
this number.

Remark 2.5. Let 7 > 1 and B be a ball. If {Q); }j\/[:ol C DF is a collection of cubes verifying
TQiNB # O, for 1 < j < My, then

D
r(B
MOECMED <2p7'/{+(pk)> .

To see this, we set r = p*. Since TQ;HB # @, for 1 < j < My, then TQ; C 7T B with
T=k(2pTK BT 1). By using (2) we obtain

u(TB) = féu(@ﬁ > éﬂ ( )D %u 7 B) (;@)D (T B) Mo.

3. DISCRETIZING THE POTENTIAL OPERATORS.

By using the dyadic cubes we introduced before, we are going to get a discrete version
of the potential operator T as in [5]. We assume throughout that ¢ defined in (6) satisfies
(7) and (8). We fix p = 8 k° and a large negative integer m. In the sequel, we will always
consider bounded functions f > 0 with compact support. We set

™ f(x) = / K(2,y) f(y) du(y).
(z,y)>p™

Note that T™ f(x) / T f(x) as m — —oo. For x, y with d(z,y) > p™, there exists k > m
such that p* < d(z,y) < p**!. Besides, since X can be written as the pairwise disjoint union
of the cubes of Dﬁl, there exists an unique cube @) € Dfn with @ > x and soy € 2k Q*. Thus,



TWO-WEIGHT WEAK TYPE NORM INEQUALITIES 7

z,y € 2,k Q* and d(z,y) > cr(2k Q*) for ¢ sufficiently small, namely, 0 < ¢ < (2rp)~ L. In
this way, by (7) we have

K(z,y) < o26Q7) < Cre(@) < C1t Y 0(Q) Xo(@) Xarg-),
QGDTVL
Thus we define the discrete version of T™ as
@)= 3 ¢@) [ FW ) Xolw) = Y alQ) Xol)
QED,, 2rQ" Q€EDr,
and we have that T f(x) < C1 7™ f(x). We truncate the later sum in the following way:

M
T"f(z) = sup > Y a(Q) Xo@) = sup > a(@) Xo() ZJEQ%T”"Mf(:v)-

M2 k=m qepy, =" Qeny

Hence,
T f(z) < CLT"f(z) = C, sup T™Mf(2) =y Jim TM f(2). (14)
M>m —00
Proposition 3.1. For every M > m and for every 0 < f € LX(u), we have that 0 <
TmMf e L(u) and thus T™M f € Li(pn) for all 1 < g < oo.

Proof. Let B be a ball such that suppf C B and Q € DF, such that 2xQ* meets B
(otherwise a(Q) = 0). By Remark 2.5 with 7 =2k > 1 we have

D D
#{Q €Dk 25 Q" NB # O} < Oy kP <4M2+r(£)> < Cur” <4pﬂ2+7®> =

pm

Besides, 2k Q* C 71, B with 7, = & (4 p K2 o + 1). Since T < Tur, it follows that Q C
PR LB

2kQ* C T B C 7y B and xg(7) < Xz, g(z). On the other hand, by (8),

a(Q) = @(Q*)/2 Q*f(y)dﬂ(y)§Cp@“)D||f||L°°(M)%0(Q*)M(Q*)

< G Ul Cp (A2 ) ol B) s B
M+1
<

Cpu (2R)P (I F Il ooy Coo (ré)?MB)) ©(Tv B) ju(7ar B) = C[| f] oo ()

Putting these estimates together, we conclude as desired

M
TMf(e) = > a(Q) Xo(@) < Cllfllzecy M (M —m+1) Xz, p(2).
k=m k
256622*60%';&@

4. AUXILIARY RESULTS.

This section is devoted to get some lemmas which will be used to prove Theorem 1.2. The
following result was originally obtained in [6] in the euclidean case (R? with the Lebesgue
measure), and for the classical fractional integrals. In our case of spaces of homogeneous
type, it was essentially obtained in [5]. Although the hypotheses assumed in [5] are stronger,
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it is not difficult to realize that the same arguments work for our the potential operators T
We sketch the proof for completeness.

Lemma 4.1 ([5]). Let 0 < f € Ll (). There exists C (only depending on the space and
) such that for every Qo € Dy,

> e@n@) [

Q€ D 2k Q*
QCQo

Proof. We write

Dm(Qo) ={Q €Dm:QC Qo}; D (Qo) =1{Q € Din(Qo) : £(Q) = p " £(Qo)}, k>0.

Note that DF (Qo) = @ for p=¥ £(Qp) < p™. In any case, for Q C Qp we have Q* C 2k Q}
and 2k Q* C k(2K + 1) Qg. Thus by (2), (7) and (8) we get

S e(Q) (@) / S Y e@) @) / f(x) du(x)

F(2) du() < C o(QF) (@) / f() dpu(z).

K (2K+1) Qf

Q¢ D rQ k=0 QeDE (Qo) 2RQ
Q C Qo
o0
< Co2R) T e2RQY) 2R S pEe / ) X2 - () dpu(z)
=0 erl;n(Q 2KQ"

< CplQ)) (@) Zpks/ F@ (X xewe @) dal).

(2Kr+1) Qg QeDE (Qo)

Set pko = £(Qo). Then DF (Qo) C DFo=F and setting B = B(x, p~*£(Qo)) = B(x, p %) we
have
> xawq (@) SH#HQEDR T 2kQ NB#0} < Cur” (4pr” +1)7,
QED},(Qo)

where the latter estimate holds by Remark 2.5 when ky — k > m, and it is trivial when
ko — k < m since DFo~*F = (3. To complete the estimate we only have to used that ¢ > 0

and p > 1. g
Lemma 4.2. Let M > m, 0 < f € L2°(u) and Qo € Dy,. Then
1 *
/ TN () — (T P, | du(z) < Cp(Q)) / f(@) du(z),
w(Qo) Jo, K (2r+1) Qf

where C' depends on the space and p.
Proof. We split 7™M f as

TN (@) Xg,@) = Y. al@ Xo@)+ (D al@)) Xg,@) = (@) + 11 Xg, (@),

Q e DM Q e DM
Q C Qo Qo CQ

where we can observe that the second term is constant over Qo. If Qo ¢ 5% , then the
second term does not appear since there is no cube in D% containing (Jg. In any case,
applying Lemma 4.1 we conclude

1 mM gy (M T 2 T T
en / T ) = (T gyl de) < / @) du(a)
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c * * %
< mmnQg%f“”“@)éwf@”“”<0“@”A@Hm%ﬂwww’
Q C Qo

Lemma 4.3. Let f >0, f € L] _(u). Let Qo € Dy, and s > 0, such that

w@@/ ) dp(y) > s
K (2R+1) Q

Then, there exists P € D, with {(P) = {¢(Qo) such that Pk 2k + 1) Q§ # O;
k(25+1) Q5 C (26 (2k+1)+k) P* =1 P, P*C (k+x*(1+£(26+1))) Q5 = 2 Qf

and, for some C, which depends on X and @,

w@ﬂﬁﬂwww>0&

Proof. Put 7 =k (2k+1) and pko = £(Qp). Let Q C Dy, with £(Q) = £(Qo) and Q T Q} #
@. Then, k (2k+1) Q§ C 11 Q" and Q* C 1 Qf, where 71, T2 are the constants defined above.
By Remark 2.5 with B = 7 Qy,

HQeDE :QNTQRL#AOY<H#{QEeDE Q" NTQ)# 0} < Cur® (2pk + 7p) = M.

Note that My only depends on the space. Since X can be written as the pairwise disjoint
union of the cubes in DX there exist {Qj}}]:l C Dk with Q; NTQf # @ and 7Q} C

U;'Iil Qj. Moreover, we know that J < M. If forall 1 <j < J

t/f )dn(e) < e (15)

then we get into a contradiction

J
@) <3 [ 510 to) < e < s

TQ4

Therefore, at least one of these cubes, say P, does not verify (15), and so

. e(Pr)
©(P*) /f (QO)MOS>CS.

The last estimate follows observing that Qf C 7 Q§ C 71 P* and, by (8),

Q0 Q) = Co (LY o7 s P) < Co(P) Q).

where we have used (7) and that P* and Q* have comparable measures. O
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5. PROOF OF THEOREM 1.2.

We make some reductions. It is clear, that it is enough to obtain (10) for 0 < f €
L2°(w). Furthermore, T™ f(x) / T f(z) as m — —oo. Thus by (14) and by the monotone
convergence theorem it is enough to get

q
supMuf{z € X : TmM £ (1) )>Ap<C /f (x))p
A>0

with C independent of m and M > m. We fix 0 < f € L®(u), a large negative integer
m and M > m. For Qo € D), we have a sequence of cubes Qo C Q1 C Q2 C ..., with
Qr € DE. In this way,

7™M f(y) X, (v Z Z Y) Xo, Y (Z )XQO ()

k=0 Qepkim k=0

and 7™M f is constant on Qp. Then, 7™M f(z) < M2 (T™M f)(z) for x € Qp. Since
this is done for any Qo € D7 and these cubes cover X, we conclude that 7™M f(z) <
M (T™M £)(z) for all z € X, and so

Mu{z e X : T™Mf(z) > A} < Muf{z e X : ML (T™M f)(x) > A} (16)

By Proposition 3.1, we know that 0 < 7™M f ¢ L°(). Thus, we use Proposition 2.4 and
there exist €, C > 0 such that for every A > 0, there is collection of pairwise disjoint dyadic
cubes {Rg\}j in such a way that the following conditions hold:

1 / m, M m, M
- T™M £ () — (T™M £ pr | dp(y) > € A
(1) R?I (y) — ( )rr| duly)
and
sup M ufz € X : ML (T™M f)(x )>)\}<C’sup/\qZAr R}). (17)
A>0 A>0 -

By Lemma 4.2 we get

1
A< /R : [T f(2) = (T f) ol dule) < CLe((R))") / f (@) dp(z).

K (2R+1) (R})*
Lemma 4.3 with s = e A\C] ! assures the existence of Pj)‘ € D,, with K(PjA) = K(R;‘);
PMe@s+1)(R)* #0, rQ2r+1)(R) Cn(P), (P Cn(R)

where 7 and 7 are the constants given in that result; and
o((PY)") /P () duly) > Co A (18)

Let us fix J € N. From the family of cubes {PA} _, we take a maximal subcollection
{Si}, with 1 < I < J. In this way, every S; is actually P)‘ for some j and hence (18)
holds with S;. Moreover, if 1 < j < J, there exists 1 < i < I such that P])‘ C S;. Then
T (Pj)‘)* C k(11+1) S} and it follows that R;‘ C k(m1+1) S =71 5. Notice that the cubes
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{R?}}'le are pairwise disjoint. So by Lemma 2.3 part (ii7) and (18), we observe

J 1 I
A AL(RY) < M ZA;( U Rg) <A AR SE)
j=1 i=1

1<j<J i=1
R;‘C’?ls;
1< 1 1 q
< = %s;‘~/ o )’ s;/d
oI ;u(l )(u(ﬁS;‘) - 1) ((87) i )

I 1 q

1 = q

< C ;S,;k S;kq ~/ u"d " / lpd / Pod p,
;M( 157) @(S7) <u(ﬁS;‘) - 1) ( 8 ) f7vdp)

where in the later estimate we have used Holder’s inequality. Observe that (8) and (2) imply
that ¢(S)) < C (71 S}) since

(S u(SF) < Co =7 Sf) T SF) < Cyp 7 ¢ Cu 7l (71 SF) u(SY).

Besides, by (9), we observe

(71 57) (S5)" ( (ﬁlS>/?lsgurdu)i([qivl_p/du)g

1,1 1 vq 1 7|
é C S a7 S* ~/ Td e N/ 1 pd :|
[(ﬁ )T el )<u(nSZ‘) asz‘u H> (M(HS?) 75 #)
< C(Cup)™.

Thus since ¢/p > 1 and using that the cubes {S;}/_; are pairwise disjoint, we have

J I »
)\q;Az(Rg\)gC;(/Sifpvdu>P SC(/Uf

=1 Sz'

9 q
fpvdu)p <C (/ fpvd,u,>p.
X
This estimate, after taking limit as J — oo, (17) and (16) allow us to complete the proof. [
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