
FRACTIONAL INTEGRALS, POTENTIAL OPERATORS AND
TWO-WEIGHT, WEAK TYPE NORM INEQUALITIES ON SPACES OF

HOMOGENEOUS TYPE
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1. Introduction.

A space of homogenous type (X , d, µ) is a set X endowed with a quasimetric d and a
non-negative Borel measure µ such that the doubling condition

µ(B(x, 2 r)) ≤ C0 µ(B(x, r)) < ∞ (1)

holds for all x ∈ X and r > 0, where B(x, r) = {y ∈ X : d(x, y) < r} is the ball with center
x and radius r. Since d is a quasimetric, there exists κ ≥ 1 such that

d(x, y) ≤ κ
(
d(x, z) + d(z, y)

)
, for all x, y, z ∈ X .

Besides, by [1] there exists another quasimetric d′, continuous and equivalent to d, for
which every ball is open. So, without loss of generality, the quasimetric d is assumed to be
continuous and the balls to be open.

We will use the following notation: for any given ball B we write B = B(xB, r(B)) where
xB denotes its center and r(B) its radius. Given τ > 0, we will write τ B for the ball with
the same center as B and with radius r(τ B) = τ r(B). In what follows, a weight w will be
a non-negative locally integrable function with respect to µ. For any measurable set E we
will write w(E) =

∫
E w(x) dµ(x).

If C0 is the smallest constant for which the measure µ satisfies (1), the number D = log2 C0

is called the doubling order of µ. Iterating (1) we have

µ(B1)
µ(B2)

≤ Cµ

(
r(B1)
r(B2)

)D

, for all balls B2 ⊂ B1. (2)

We additionally assume that all annuli in X are not empty, that is, for all x ∈ X and
0 < r < R, B(x,R) \ B(x, r) 6= Ø. In this way, µ satisfies the following reverse doubling
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property (see [7]): there exist δ > 0 and cµ > 0 such that

µ(B1)
µ(B2)

≥ cµ

(
r(B1)
r(B2)

)δ

, for all balls B2 ⊂ B1. (3)

Consider α > 0. For f ≥ 0, f ∈ L∞c (µ) (f bounded with bounded support), we define the
fractional integral of order α as

Iαf(x) =
∫
X

f(y)
d(x, y)α

µ(B(x, d(x, y)))
dµ(y).

We devote this paper to prove some two-weight, weak type norm inequalities for these
fractional integrals. Precisely, we obtain the following result:

Theorem 1.1. Let 1 < p ≤ q < ∞ and α > 0. Let (u, v) be a pair of weights for which
there exists r > 1 such that for every ball B ⊂ X ,

r(B)α µ(B)
1
q
− 1

p

(
1

µ(B)

∫
B

u(x)r dµ(x)
) 1

r q
(

1
µ(B)

∫
B

v(x)1−p′ dµ(x)
) 1

p′

≤ Cu,v < ∞. (4)

Then the fractional operator Iα verifies the following weak type (p, q) inequality

sup
λ>0

λ u
{
x ∈ X : |Iαf(x)| > λ

} 1
q ≤ C

(∫
X
|f(x)|p v(x) dµ(x)

) 1
p
. (5)

The corresponding strong type analog of (5) was proved in [5]. For a version of this result
in the euclidean setting when p = q see [3]. Working in spaces of homogeneous type leads to
some difficulties. We will discretize the operator Iα by means of some dyadic sets introduced
in [6]. This dyadic structure has a lot of properties in common with the dyadic cubes in
the euclidean setting. A very importante difference is that these sets are built “upwards” in
the following sense, one starts with a fixed generations and only the ancestors are defined,
that is, parents, grandparents, . . . . Therefore the corresponding dyadic Hardy-Littlewood
maximal function will not differentiate since the sets can not be shrunk to a given point
x ∈ X .

The method used to prove Theorem 1.1 can be further applied to derive similar estimates
for more general potential operators. Indeed, we are going to see that Theorem 1.1 can be
obtained as a consequence of Theorem 1.2 below. We consider potential operators T given
by

Tf(x) =
∫
X

K(x, y) f(y) dµ(y),

where the kernel K(x, y) is a non-negative measurable function defined for x 6= y. Associated
with T we define a functional ϕ, given a ball B ⊂ X ,

ϕ(B) = sup
x, y ∈ B

d(x, y) ≥ c r(B)

K(x, y), (6)

where c is some sufficiently small geometric constant (see [6]). We assume that ϕ satisfies
the following hypotheses: there is Cϕ such that

(a) The functional ϕ is doubling, that is,

ϕ(2 B) ≤ Cϕ ϕ(B), for all balls B ⊂ X . (7)



TWO-WEIGHT WEAK TYPE NORM INEQUALITIES 3

(b) There exists ε > 0 such that

ϕ(B1) µ(B1) ≤ Cϕ

(
r(B1)
r(B2)

)ε

ϕ(B2) µ(B2), for all balls B1 ⊂ B2. (8)

We would like to point out that these potential operators are more general than those
considered in [5] where two-weight strong type estimates are proved for them, see this
reference for more details and some examples.

We prove two-weight, weak type norm inequalities for these potential operators:

Theorem 1.2. Let 1 < p ≤ q < ∞. Assume that T is given as above and that ϕ satisfies
(7) and (8). Let (u, v) be a pair of weights for which there exists r > 1 such that for every
ball B ⊂ X ,

ϕ(B) µ(B)
1
q
+ 1

p′

(
1

µ(B)

∫
B

u(x)r dµ(x)
) 1

r q
(

1
µ(B)

∫
B

v(x)1−p′ dµ(x)
) 1

p′

≤ Cu,v < ∞. (9)

Then the potential operator T verifies the following weak type (p, q) inequality

sup
λ>0

λ u
{
x ∈ X : |Tf(x)| > λ

} 1
q ≤ C

(∫
X
|f(x)|p v(x) dµ(x)

) 1
p
. (10)

Remark 1.3. When T = Iα, the kernel is K(x, y) = d(x, y)α/µ(B(x, d(x, y))) and therefore
we have ϕ(B) ≈ r(B)α/µ(B). Note that ϕ satisfies (7), and (8) with ε = α. Observe that
(9) coincides with (4) and therefore Theorem 1.1 is a particular case of Theorem 1.2.

This paper is part of the author’s Ph. D. thesis, written under the supervision of Prof.
J. Garćıa-Cuerva (see [4]). The author would like to thank Prof. J. Garćıa-Cuerva for his
encouragement and guidance. The author would like to express his gratitude to Prof. C.
Pérez for proposing this problem and for many useful discussions about the material of this
article.

2. Dyadic sets and the Hardy-Littlewood maximal function.

We are going to consider certain dyadic sets introduced in [6]. Let us fix ρ = 8 κ5. For
every (large negative) integer m, there exist a collection of points {xk

j } and a family of sets
Dm = {Ek

j } with k = m,m + 1, . . . and j = 1, 2, . . . such that

• B(xk
j , ρ

k) ⊂ Ek
j ⊂ B(xk

j , ρ
k+1).

• For every k ≥ m, the sets {Ek
j }j are pairwise disjoint in j, and X =

⋃
j Ek

j .
• If m ≤ k < l, then either Ek

j

⋂
El

i = Ø or Ek
j ⊂ El

i.

Thus, we call D =
⋃

mDm a dyadic cube decomposition of X and we refer to the sets in
D as dyadic cubes. A dyadic cube will be written as Q, and Q∗ will denote the ball that
contains Q in such a way that 1

ρ Q∗ ⊂ Q ⊂ Q∗, that is, if Q = Ek
j , then Q∗ = B(xk

j , ρ
k+1).

We will call `(Q) = r(Q∗)
ρ (= ρk) the “sidelength” of Q and so Q∗ = B(xQ, ρ `(Q)). Note,

that the cubes of each Dm satisfy the dyadic properties above, but, in general, for different
values of m these nestedness properties might fail.

We set Dk
m = {Ek

j }j = {Q ∈ Dm : `(Q) = ρk}. We will refer to these cubes as the cubes
of the generation ρk. For M ≥ m, we also define D̃M

m which consists of the cubes between
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the generations ρm and ρM . Then,

D̃m
m ⊂ D̃m+1

m ⊂ D̃m+2
m ⊂ · · · ⊂ Dm and thus Dm =

∞⋃
M=m

D̃M
m .

Associated with the cubes of Dm, the dyadic Hardy-Littlewood maximal function can be
defined:

Md
mf(x) = sup

x∈Q∈Dm

1
µ(Q)

∫
Q
|f(y)| dµ(y).

Observe that the lengths of the sides of the cubes in Dm are at least ρm, and so the averages
in this maximal operator are taken over sets that are not arbitrarily small.

We will use the following standard notation: fQ stands for the µ-average of f over Q. For
this maximal operator, a Calderón-Zygmund decomposition can be performed which yields
the weak type (1, 1) for Md

m. We leave the proofs, which follow the ideas of the classical
case, to the reader.

Lemma 2.1 (Calderón-Zygmund decomposition). Let 0 ≤ f ∈ L1
loc(µ) be such that fQ −→ 0

as µ(Q) →∞. For every λ > 0, we set Ωλ = {x ∈ X : Md
mf(x) > λ}. Then, there exists a

collection of pairwise disjoint dyadic cubes {Qλ
j }j ⊂ Dm in such a way that

Ωλ =
⋃
j

Qλ
j and

1
µ(Qλ

j )

∫
Qλ

j

f(y) dµ(y) > λ.

Furthermore, these cubes are maximal : if Q ∈ Dm and fQ > λ then Q ⊂ Qλ
j for some j.

Besides, for Q ) Qλ
j we have fQ ≤ λ.

Next, we consider a functional introduced in [3]. For a further generalization see [2].

Definition 2.2. Given r > 1 and a weight u, define de the set function Ar
u on measurable

sets E ⊂ X by

Ar
u(E) = µ(E)

1
r′
(∫

E
u(x)r dµ(x)

) 1
r = µ(E)

( 1
µ(E)

∫
E

u(x)r dµ(x)
) 1

r
,

where the second equality holds provided µ(E) > 0.

Lemma 2.3 ([3, Lemma 3.2]). For any r > 1 and weight u, the set function Ar
u has the

following properties:

(i) If E ⊂ F then Ar
u(E) ≤

(
µ(E)
µ(F )

) 1
r′

Ar
u(F ).

(ii) u(E) ≤ Ar
u(E).

(iii) If {Ej}j is a sequence of disjoint sets and
⋃

j Ej = E, then
∑

j Ar
u(Ej) ≤ Ar

u(E).

We conclude this section with some auxiliary result to be used later.

Proposition 2.4. Given 0 ≤ f ∈ L∞c (µ), 0 < q < ∞, r > 1 and a weight u, there exist
ε, C > 0 (which only depend on the space, q and r) such that for every λ > 0 there exists
a subcollection {Rλ

j }j of dyadic cubes from the Calderón-Zygmund decomposition of f at
height λ (see Lemma 2.1), in such a way that

1
µ(Rλ

j )

∫
Rλ

j

|f(y)− fRλ
j
| dµ(y) > ε λ
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and

sup
λ>0

λq u
{
x ∈ X : Md

mf(x) > λ
}
≤ C sup

λ>0
λq
∑

j

Ar
u(Rλ

j ). (11)

Proof. Set r0 = min
{
r, 1

1−q

}
for 0 < q < 1 and r0 = r for q ≥ 1. Note that r0 > 1. Since

r0 ≤ r, then Ar0
u (E) ≤ Ar

u(E) for any measurable set E. Thus, it will be enough to prove
(11) for r0. We can assume that the right-hand side in (11) is finite, otherwise there is
nothing to prove. On the other hand, we can suppose that u is bounded and has compact
support. To prove the general case, take uk = min{u, k} χB(x0,k) which is bounded and has
compact support. Then (11) holds with uk. Since u = limk uk = supk uk, by the monotone
convergence theorem we get the desired inequality for u.

Given 0 ≤ f ∈ L∞c (µ), we apply Lemma 2.1 to f and Ωλ =
⋃

i Q
λ
i for every λ > 0. Set

N = 1 + Cµ ρ2 D > 1. Then, ΩN λ =
⋃

j QN λ
j ⊂ Ωλ and by maximality, QN λ

j ⊂ Qλ
i for some

i. Thus, by Lemma 2.3 parts (ii), (iii):

λq u(ΩN λ) ≤ λq
∑

j

Ar0
u (QN λ

j ) ≤ λq
∑

i

Ar0
u

(
ΩN λ

⋂
Qλ

i

)
. (12)

Take 0 < ε < N−p r′0 . We split the indices i in two sets:

i ∈ F if
1

µ(Qλ
i )

∫
Qλ

i

|f(y)− fQλ
i
| dµ(y) ≤ ε λ,

i ∈ G if
1

µ(Qλ
i )

∫
Qλ

i

|f(y)− fQλ
i
| dµ(y) > ε λ.

Observe that {Qλ
i : i ∈ G} are the desired cubes and so we relabel them as {Rλ

j }j . On the
other hand, we take x ∈ ΩN λ

⋂
Qλ

i . So, Md
mf(x) > N λ > λ and since fQ ≤ λ for Qλ

i ( Q

we have that Md
m(f χQλ

i
)(x) = Md

mf(x). Moreover,

Nλ < Md
m(f χQλ

i
)(x) ≤Md

m

(
|f−fQλ

i
| χQλ

i

)
(x)+fQλ

i
≤Md

m

(
|f−fQλ

i
| χQλ

i

)
(x)+Cµ ρ2 D λ

where the latter estimate is obtained passing to the parent cube of Qλ
i . Hence, we have that

Md
m

(
|f − fQλ

i
| χQλ

i

)
(x) > λ. For i ∈ F , by the weak type (1, 1) of Md

m we observe

µ
(
ΩN λ

⋂
Qλ

i

)
≤ µ{x ∈ Qλ

i : Md
m

(
|f − fQλ

i
| χQλ

i

)
(x) > λ} ≤ ε µ(Qλ

i ).

Since ΩN λ
⋂

Qλ
i ⊂ Qλ

i , by Lemma 2.3 part (i),

Ar0
u

(
ΩN λ

⋂
Qλ

i

)
≤

(
µ
(
ΩN λ

⋂
Qλ

i

)
µ
(
Qλ

i

) ) 1
r′
0

Ar0
u (Qλ

i ) ≤ ε
1
r′
0 Ar0

u (Qλ
i ), for all i ∈ F.

We plug this estimate into (12):

λq
∑

j

Ar0
u (QN λ

j ) ≤ λq
∑
i∈F

Ar0
u

(
ΩN λ

⋂
Qλ

i

)
+ λq

∑
i∈G

Ar0
u

(
ΩN λ

⋂
Qλ

i

)
≤ ε

1
r′
0 λq

∑
i

Ar0
u (Qλ

i ) + λq
∑

j

Ar0
u (Rλ

j ). (13)
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If q ≥ 1, then r0 = r > 1 and q − 1
r′0

> 0. Otherwise, 0 < q < 1, we have r0 ≤ 1
1−q and

q − 1
r′0
≥ 0. In both cases, for every Λ > 0, by (iii) of Lemma 2.3, we observe

sup
0<λ<Λ

λq
∑

i

Ar0
u (Qλ

i ) ≤ sup
0<λ<Λ

λq Ar0
u (Ωλ) ≤ sup

0<λ<Λ
λ

q− 1
r′
0 ‖f‖

1
r′
0

L1(µ)
‖u‖Lr0 (µ) < ∞,

because u and f belong to L∞c (µ). We take the supremum in (13):

sup
0<λ<Λ/N

λq
∑

i

Ar0
u (QN λ

j ) ≤ ε
1
r′
0 sup

0<λ<Λ
λq
∑

i

Ar0
u (Qλ

i ) + sup
0<λ<Λ

λq
∑

j

Ar0
u (Rλ

j ),

and we get

sup
0<λ<Λ

λq
∑

i

Ar0
u (Qλ

i ) ≤ N q ε
1
r′
0 sup

0<λ<Λ
λq
∑

i

Ar0
u (Qλ

i ) + N q sup
λ>0

λq
∑

j

Ar0
u (Rλ

j ).

Note that 0 < ε < N−q r′0 and that the first term in the right hand side is finite. Thus we
move it to the other side and, as in (12), we obtain

sup
0<λ<Λ

λq u(Ωλ) ≤ sup
0<λ<Λ

λq
∑

i

Ar0
u (Qλ

i ) ≤ C sup
λ>0

λq
∑

j

Ar0
u (Rλ

j )

for every Λ > 0. This leads to (11) with r0 instead of r as desired. �

Later on, we will need to estimate the number of cubes (or dilated cubes) of a fixed
generation which meet a ball. The doubling condition of the measure provides a bound for
this number.

Remark 2.5. Let τ ≥ 1 and B be a ball. If {Qj}M0
j=1 ⊂ Dk

m is a collection of cubes verifying
τ Q∗

j

⋂
B 6= Ø, for 1 ≤ j ≤ M0, then

M0 ≤ Cµ κD

(
2 ρ τ κ +

r(B)
ρk

)D

.

To see this, we set r = ρk. Since τ Q∗
j

⋂
B 6= Ø, for 1 ≤ j ≤ M0, then τ Q∗

j ⊂ τ̃ B with
τ̃ = κ (2 ρ τ κ r

r(B) + 1). By using (2) we obtain

µ(τ̃ B) ≥
M0∑
j=1

µ(Qj) ≥
1

Cµ

(
r

τ̃ r(B)

)D M0∑
j=1

µ(τ̃ B) =
1

Cµ

(
r

τ̃ r(B)

)D

µ(τ̃ B) M0.

3. Discretizing the potential operators.

By using the dyadic cubes we introduced before, we are going to get a discrete version
of the potential operator T as in [5]. We assume throughout that ϕ defined in (6) satisfies
(7) and (8). We fix ρ = 8 κ5 and a large negative integer m. In the sequel, we will always
consider bounded functions f ≥ 0 with compact support. We set

Tmf(x) =
∫

d(x,y)>ρm

K(x, y) f(y) dµ(y).

Note that Tmf(x) ↗ Tf(x) as m → −∞. For x, y with d(x, y) > ρm, there exists k ≥ m
such that ρk < d(x, y) ≤ ρk+1. Besides, since X can be written as the pairwise disjoint union
of the cubes of Dk

m, there exists an unique cube Q ∈ Dk
m with Q 3 x and so y ∈ 2 κ Q∗. Thus,
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x, y ∈ 2 κ Q∗ and d(x, y) > c r(2 κ Q∗) for c sufficiently small, namely, 0 < c < (2 κ ρ)−1. In
this way, by (7) we have

K(x, y) ≤ ϕ(2 κ Q∗) ≤ C1 ϕ(Q∗) ≤ C1

∑
Q∈Dm

ϕ(Q∗) χQ(x) χ2 κ Q∗(y),

Thus we define the discrete version of Tm as

T mf(x) =
∑

Q∈Dm

ϕ(Q∗)
∫

2 κ Q∗
f(y) dµ(y) χQ(x) =

∑
Q∈Dm

a(Q) χQ(x),

and we have that Tmf(x) ≤ C1 T mf(x). We truncate the later sum in the following way:

T mf(x) = sup
M≥m

M∑
k=m

∑
Q∈Dk

m

a(Q) χQ(x) = sup
M≥m

∑
Q∈D̃M

m

a(Q) χQ(x) = sup
M≥m

T m,Mf(x).

Hence,
Tmf(x) ≤ C1 T mf(x) = C1 sup

M≥m
T m,Mf(x) = C1 lim

M→∞
T m,Mf(x). (14)

Proposition 3.1. For every M ≥ m and for every 0 ≤ f ∈ L∞c (µ), we have that 0 ≤
T m,Mf ∈ L∞c (µ) and thus T m,Mf ∈ Lq(µ) for all 1 ≤ q ≤ ∞.

Proof. Let B be a ball such that supp f ⊂ B and Q ∈ Dk
m such that 2 κ Q∗ meets B

(otherwise a(Q) = 0). By Remark 2.5 with τ = 2κ ≥ 1 we have

#{Q ∈ Dk
m : 2κ Q∗∩B 6= Ø} ≤ Cµ κD

(
4 ρ κ2 +

r(B)
ρk

)D

≤ Cµ κD

(
4 ρ κ2 +

r(B)
ρm

)D

= M̃.

Besides, 2 κ Q∗ ⊂ τ̃k B with τ̃k = κ
(
4 ρ κ2 ρk

r(B) + 1
)
. Since τ̃k ≤ τ̃M , it follows that Q ⊂

2 κ Q∗ ⊂ τ̃k B ⊂ τ̃M B and χQ(x) ≤ χτ̃M B(x). On the other hand, by (8),

a(Q) = ϕ(Q∗)
∫

2 κ Q∗
f(y) dµ(y) ≤ Cµ (2 κ)D ‖f‖L∞(µ) ϕ(Q∗) µ(Q∗)

≤ Cµ (2 κ)D ‖f‖L∞(µ) Cϕ

(
r(Q∗)

r(τ̃M B)

)ε

ϕ(τ̃M B) µ(τ̃M B)

≤ Cµ (2 κ)D ‖f‖L∞(µ) Cϕ

(
ρM+1

r(τ̃M B)

)ε

ϕ(τ̃M B) µ(τ̃M B) = C ‖f‖L∞(µ)

Putting these estimates together, we conclude as desired

T m,Mf(x) =
M∑

k=m

∑
Q ∈ Dk

m

2 κ Q∗ ∩B 6= Ø

a(Q) χQ(x) ≤ C ‖f‖L∞(µ) M̃ (M −m + 1) χτ̃M B(x).

�

4. Auxiliary results.

This section is devoted to get some lemmas which will be used to prove Theorem 1.2. The
following result was originally obtained in [6] in the euclidean case (Rd with the Lebesgue
measure), and for the classical fractional integrals. In our case of spaces of homogeneous
type, it was essentially obtained in [5]. Although the hypotheses assumed in [5] are stronger,
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it is not difficult to realize that the same arguments work for our the potential operators T .
We sketch the proof for completeness.

Lemma 4.1 ([5]). Let 0 ≤ f ∈ L1
loc(µ). There exists C (only depending on the space and

ϕ) such that for every Q0 ∈ Dm,∑
Q ∈ Dm

Q ⊂ Q0

ϕ(Q∗) µ(Q∗)
∫

2 κ Q∗
f(x) dµ(x) ≤ C ϕ(Q∗

0) µ(Q∗
0)
∫

κ (2 κ+1) Q∗
0

f(x) dµ(x).

Proof. We write

Dm(Q0) = {Q ∈ Dm : Q ⊂ Q0}; Dk
m(Q0) = {Q ∈ Dm(Q0) : `(Q) = ρ−k `(Q0)}, k ≥ 0.

Note that Dk
m(Q0) = Ø for ρ−k `(Q0) < ρm. In any case, for Q ⊂ Q0 we have Q∗ ⊂ 2 κ Q∗

0

and 2 κ Q∗ ⊂ κ (2 κ + 1) Q∗
0. Thus by (2), (7) and (8) we get∑

Q ∈ Dm

Q ⊂ Q0

ϕ(Q∗) µ(Q∗)
∫

2 κ Q∗
f(x) dµ(x) =

∞∑
k=0

∑
Q∈Dk

m(Q0)

ϕ(Q∗) µ(Q∗)
∫

2 κ Q∗
f(x) dµ(x)

≤ Cϕ (2 κ)−ε ϕ(2 κ Q∗
0) µ(2 κ Q∗

0)
∞∑

k=0

ρ−k ε
∑

Q∈Dk
m(Q0)

∫
2 κ Q∗

f(x) χ2 κ Q∗(x) dµ(x)

≤ C ϕ(Q∗
0) µ(Q∗

0)
∞∑

k=0

ρ−k ε

∫
κ (2 κ+1) Q∗

0

f(x)
( ∑

Q∈Dk
m(Q0)

χ2 κ Q∗(x)
)

dµ(x).

Set ρk0 = `(Q0). Then Dk
m(Q0) ⊂ Dk0−k

m and setting B = B(x, ρ−k `(Q0)) = B(x, ρk0−k) we
have ∑

Q∈Dk
m(Q0)

χ2 κ Q∗(x) ≤ #{Q ∈ Dk0−k
m : 2κ Q∗ ∩B 6= Ø} ≤ Cµ κD (4 ρ κ2 + 1)D,

where the latter estimate holds by Remark 2.5 when k0 − k ≥ m, and it is trivial when
k0 − k < m since Dk0−k

m = Ø. To complete the estimate we only have to used that ε > 0
and ρ > 1. �

Lemma 4.2. Let M ≥ m, 0 ≤ f ∈ L∞c (µ) and Q0 ∈ Dm. Then
1

µ(Q0)

∫
Q0

|T m,Mf(x)− (T m,Mf)Q0 | dµ(x) ≤ C ϕ(Q∗
0)
∫

κ (2 κ+1) Q∗
0

f(x) dµ(x),

where C depends on the space and ϕ.

Proof. We split T m,Mf as

T m,Mf(x) χQ0
(x) =

∑
Q ∈ D̃M

m

Q ⊂ Q0

a(Q) χQ(x)+
( ∑

Q ∈ D̃M
m

Q0 ( Q

a(Q)
)

χQ0
(x) = I(x)+ II χQ0

(x),

where we can observe that the second term is constant over Q0. If Q0 /∈ D̃M
m , then the

second term does not appear since there is no cube in D̃M
m containing Q0. In any case,

applying Lemma 4.1 we conclude
1

µ(Q0)

∫
Q0

|T m,Mf(x)− (T m,Mf)Q0 | dµ(x) ≤ 2
µ(Q0)

∫
Q0

I(x) dµ(x)
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≤ C

µ(Q∗
0)

∑
Q ∈ Dm

Q ⊂ Q0

ϕ(Q∗) µ(Q∗)
∫

2 κ Q∗
f(y) dµ(y) ≤ C ϕ(Q∗

0)
∫

κ (2 κ+1) Q∗
0

f(y) dµ(y).

�

Lemma 4.3. Let f ≥ 0, f ∈ L1
loc(µ). Let Q0 ∈ Dm and s > 0, such that

ϕ(Q∗
0)
∫

κ (2 κ+1) Q∗
0

f(y) dµ(y) > s,

Then, there exists P ∈ Dm with `(P ) = `(Q0) such that P
⋂

κ (2 κ + 1) Q∗
0 6= Ø;

κ (2 κ+1)Q∗
0 ⊂

(
2 κ3 (2 κ+1)+κ

)
P ∗ = τ1 P ∗, P ∗ ⊂

(
κ+κ2 (1+κ (2 κ+1))

)
Q∗

0 = τ2 Q∗
0

and, for some C, which depends on X and ϕ,

ϕ(P ∗)
∫

P
f(y) dµ(y) > C s.

Proof. Put τ = κ (2 κ+1) and ρk0 = `(Q0). Let Q ⊂ Dm with `(Q) = `(Q0) and Q
⋂

τ Q∗
0 6=

Ø. Then, κ (2 κ+1) Q∗
0 ⊂ τ1 Q∗ and Q∗ ⊂ τ2 Q∗

0, where τ1, τ2 are the constants defined above.
By Remark 2.5 with B = τ Q∗

0,

#{Q ∈ Dk0
m : Q ∩ τ Q∗

0 6= Ø} ≤ #{Q ∈ Dk0
m : Q∗ ∩ τ Q∗

0 6= Ø} ≤ Cµ κD (2 ρ k + τ ρ) = M0.

Note that M0 only depends on the space. Since X can be written as the pairwise disjoint
union of the cubes in Dk0

m , there exist {Qj}J
j=1 ⊂ Dk0

m with Qj ∩ τ Q∗
0 6= Ø and τ Q∗

0 ⊂⋃J
j=1 Qj . Moreover, we know that J ≤ M0. If for all 1 ≤ j ≤ J∫

Qj

f(x) dµ(x) ≤ s

ϕ(Q∗
0) M0

, (15)

then we get into a contradiction∫
τ Q∗

0

f(x) dµ(x) ≤
J∑

j=1

∫
Qj

f(x) dµ(x) ≤ s

ϕ(Q∗
0) M0

J ≤ s

ϕ(Q∗
0)

.

Therefore, at least one of these cubes, say P , does not verify (15), and so

ϕ(P ∗)
∫

P
f(y) dµ(y) >

ϕ(P ∗)
ϕ(Q∗

0) M0
s ≥ C s.

The last estimate follows observing that Q∗
0 ⊂ τ Q∗

0 ⊂ τ1 P ∗ and, by (8),

ϕ(Q∗
0) µ(Q∗

0) ≤ Cϕ

(
r(Q∗

0)
r(τ1 P ∗)

)ε

ϕ(τ1 P ∗) µ(τ1 P ∗) ≤ C ϕ(P ∗) µ(Q∗
0),

where we have used (7) and that P ∗ and Q∗ have comparable measures. �
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5. Proof of Theorem 1.2.

We make some reductions. It is clear, that it is enough to obtain (10) for 0 ≤ f ∈
L∞c (µ). Furthermore, Tmf(x) ↗ Tf(x) as m → −∞. Thus by (14) and by the monotone
convergence theorem it is enough to get

sup
λ>0

λq u
{
x ∈ X : T m,Mf(x) > λ

}
≤ C

(∫
X

f(x)p v(x) dµ(x)
) q

p

with C independent of m and M ≥ m. We fix 0 ≤ f ∈ L∞c (µ), a large negative integer
m and M ≥ m. For Q0 ∈ Dm

m, we have a sequence of cubes Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . , with
Qk ∈ Dm+k

m . In this way,

T m,Mf(y) χQ0
(y) =

M−m∑
k=0

∑
Q∈Dk+m

m

a(Q) χQ(y) χQ0
(y) =

(M−m∑
k=0

a(Qk)
)

χQ0
(y)

and T m,Mf is constant on Q0. Then, T m,Mf(x) ≤ Md
m(T m,Mf)(x) for x ∈ Q0. Since

this is done for any Q0 ∈ Dm
m and these cubes cover X , we conclude that T m,Mf(x) ≤

Md
m(T m,Mf)(x) for all x ∈ X , and so

λq u{x ∈ X : T m,Mf(x) > λ} ≤ λq u{x ∈ X : Md
m(T m,Mf)(x) > λ}. (16)

By Proposition 3.1, we know that 0 ≤ T m,Mf ∈ L∞c (µ). Thus, we use Proposition 2.4 and
there exist ε, C > 0 such that for every λ > 0, there is collection of pairwise disjoint dyadic
cubes {Rλ

j }j in such a way that the following conditions hold:

1
µ(Rλ

j )

∫
Rλ

j

|T m,Mf(y)− (T m,Mf)Rλ
j
| dµ(y) > ε λ

and
sup
λ>0

λq u{x ∈ X : Md
m(T m,Mf)(x) > λ} ≤ C sup

λ>0
λq
∑

j

Ar
u(Rλ

j ). (17)

By Lemma 4.2 we get

ε λ <
1

µ(Rλ
j )

∫
Rλ

j

|T m,Mf(x)− (T m,Mf)Rλ
j
| dµ(x) ≤ C1 ϕ((Rλ

j )∗)
∫

κ (2 κ+1) (Rλ
j )∗

f(x) dµ(x).

Lemma 4.3 with s = ε λ C−1
1 assures the existence of P λ

j ∈ Dm with `(P λ
j ) = `(Rλ

j );

P λ
j

⋂
κ (2 κ + 1) (Rλ

j )∗ 6= Ø, κ (2 κ + 1) (Rλ
j )∗ ⊂ τ1 (P λ

j )∗, (P λ
j )∗ ⊂ τ2 (Rλ

j )∗

where τ1 and τ2 are the constants given in that result; and

ϕ((P λ
j )∗)

∫
P λ

j

f(y) dµ(y) > C2 λ. (18)

Let us fix J ∈ N. From the family of cubes {P λ
j }J

j=1 we take a maximal subcollection
{Si}I

i=1 with 1 ≤ I ≤ J . In this way, every Si is actually P λ
j for some j and hence (18)

holds with Si. Moreover, if 1 ≤ j ≤ J , there exists 1 ≤ i ≤ I such that P λ
j ⊂ Si. Then

τ1 (P λ
j )∗ ⊂ κ (τ1 +1) S∗i and it follows that Rλ

j ⊂ κ (τ1 +1) S∗i = τ̃1 S∗i . Notice that the cubes
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{Rλ
j }J

j=1 are pairwise disjoint. So by Lemma 2.3 part (iii) and (18), we observe

λq
J∑

j=1

Ar
u(Rλ

j ) ≤ λq
I∑

i=1

Ar
u

( ⋃
1 ≤ j ≤ J

Rλ
j ⊂ τ̃1 S∗i

Rλ
j

)
≤ λq

I∑
i=1

Ar
u(τ̃1 S∗i )

≤ 1
Cq

2

I∑
i=1

µ(τ̃1 S∗i )
( 1

µ(τ̃1 S∗i )

∫
τ̃1 S∗i

ur dµ
) 1

r
(
ϕ(S∗i )

∫
Si

f dµ
)q

≤ C
I∑

i=1

µ(τ̃1 S∗i ) ϕ(S∗i )q
( 1

µ(τ̃1 S∗i )

∫
τ̃1 S∗i

ur dµ
) 1

r
(∫

Si

v1−p′ dµ
) q

p′
(∫

Si

fp v dµ
) q

p
,

where in the later estimate we have used Hölder’s inequality. Observe that (8) and (2) imply
that ϕ(S∗i ) ≤ C ϕ(τ̃1 S∗i ) since

ϕ(S∗i ) µ(S∗i ) ≤ Cϕ τ̃−ε
1 ϕ(τ̃1 S∗i ) µ(τ̃1 S∗i ) ≤ Cϕ τ̃−ε

1 Cµ τ̃D
1 ϕ(τ̃1 S∗i ) µ(S∗i ).

Besides, by (9), we observe

µ(τ̃1 S∗i ) ϕ(S∗i )q
( 1

µ(τ̃1 S∗i )

∫
τ̃1 S∗i

ur dµ
) 1

r
(∫

Si

v1−p′ dµ
) q

p′

≤ C

[
µ(τ̃1 S∗i )

1
q
+ 1

p′ ϕ(τ̃1 S∗i )
( 1

µ(τ̃1 S∗i )

∫
τ̃1 S∗i

ur dµ
) 1

r q
( 1

µ(τ̃1 S∗i )

∫
τ̃1 S∗i

v1−p′ dµ
) 1

p′
]q

≤ C (Cu,v)q.

Thus since q/p ≥ 1 and using that the cubes {Si}I
i=1 are pairwise disjoint, we have

λq
J∑

j=1

Ar
u(Rλ

j ) ≤ C

I∑
i=1

(∫
Si

fp v dµ
) q

p ≤ C
(∫

⋃I
i=1 Si

fp v dµ
) q

p ≤ C
(∫

X
fp v dµ

) q
p
.

This estimate, after taking limit as J →∞, (17) and (16) allow us to complete the proof. �
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[1] R. Maćıas and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33
(1979), 257–270.

[2] D. Cruz-Uribe and A. Fiorenza, The A∞ property for Young functions and weighted norm in-
equalities, Houston J. Math. 28 (2002), no. 1, 169–182.
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