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PART II: CHARACTERIZATIONS OF H i(w)
JOSE MARIA MARTELL AND CRUZ PRISUELOS-ARRIBAS

AssTrRACT. Given a Muckenhoupt weight w and a second order divergence form elliptic operator
L, we consider different versions of the weighted Hardy space H}(w) defined by conical square
functions and non-tangential maximal functions associated with the heat and Poisson semigroups
generated by L. We show that all of them are isomorphic and also that H}(w) admits a molecular
characterization. One of the advantages of our methods is that our assumptions extend naturally
the unweighted theory developed by S. Hofmann and S. Mayboroda in [19] and we can immediately
recover the unweighted case. Some of our tools consist in establishing weighted norm inequalities for
the non-tangential maximal functions, as well as comparing them with some conical square functions
in weighted Lebesgue spaces.
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1. INTRODUCTION

This is the second of a series of three papers whose aim is to study and develop a theory for
weighted Hardy spaces associated with different operators. The study of Hardy spaces began in the
early 1900s in the context of Fourier series and complex analysis in one variable. It was not until
1960 when the theory in R” started developing by E.M. Stein and G. Weiss ([25]). A few years later
R.R. Coifman in [12] and R.H. Latter in [22] gave an atomic decomposition of the Hardy spaces
H?, 0 < p < 1. This atomic decomposition turns out to be a very important tool when studying
the boundedness of some singular integral operators, since in most cases checking the action of the
operator in question on these simpler elements (atoms) suffices to conclude its boundedness in the
corresponding Hardy space.

Another stage in the progress of the theory of Hardy spaces was done by J. Garcia-Cuerva in [15]
(see also [26]) when he considered R” with the measure given by a Muckenhoupt weight. These
spaces were called weighted Hardy spaces, and among other contributions, he also characterized
them using an atomic decomposition.

In general, the development of the theory of Hardy spaces has contributed to give us a better
understanding of some other topics as in the theory of singular integrals operators, maximal func-
tions, multiplier operators, etc. However, there are some operators that escape from the theory
of these classical Hardy spaces. These are, for example, the operators associated with a second
order divergence form elliptic operator L, such as the conical square functions and non-tangential
maximal functions defined by the heat and Poisson semigroups generated by the operator L, (see
(2.14)-(2.19) and (2.20)—(2.21) for the precise definitions of these operators).

The theory of Hardy spaces associated with elliptic operators L was initiated in an unpublished
work by P. Auscher, X.T. Duong and A. McIntosh [3]. P. Auscher and E. Russ in [9] considered the
case on which the heat kernel associated with L is smooth and satisfies pointwise Gaussian bounds,
this occurs for instance for real symmetric operators. There, among other things, it was shown
that the corresponding Hardy space associated with L agrees with the classical Hardy space. In the
setting of Riemannian manifolds satisfying the doubling volume property, Hardy spaces associated
with the Laplace-Beltrami operator are introduced in [8] by P. Auscher, A. McIntosh and E. Russ
and it is shown that they admit several characterizations. Simultaneously, in the Euclidean set-
ting, the study of Hardy spaces related to the conical square functions and non-tangential maximal
functions associated with the heat and Poisson semigroups generated by divergence form elliptic
operators L was taken by S. Hofmann and S. Mayboroda in [19], for p = 1. The new point was



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 3

that only a form of decay weaker than pointwise bounds and satisfied in many occurrences was
enough to develop a theory. This was followed later on by a second article of S. Hofmann, S. May-
boroda, and A. Mclntosh [20], for a general p and simultaneously by an article of R. Jiang and D.
Yang [21]. A natural line of study in the context of these new Hardy spaces is the development of a
weighted theory for them, as J. Garcia-Cuerva did in the classical setting. Some interesting progress
has been done in this regard by T.A. Bui, J. Cao, L.D. Ky, D. Yang, and S. Yang in [10, 11]. The
results obtained in [11] in the particular case ¢(x, f) := tw(x), where w is a Muckenhoupt weight,
give characterizations of the weighted Hardy spaces that, however, only recover part of the results
obtained in the unweighted case by simply taking w = 1.

In this paper we take a further step, and present a different approach to the theory of weighted
Hardy spaces H}(w) (the general case HY(w) will be treated in the forthcoming paper [24]) as-
sociated with a second order divergence form elliptic operator, which naturally generalizes the
unweighted setting developed in [19]. We define weighted Hardy spaces associated with the coni-
cal square functions considered in (2.14)—(2.19) which are written in terms of the heat and Poisson
semigroups generated by the elliptic operator. Also, we use non-tangential maximal functions as
defined in (2.20)—(2.21). We show that the corresponding spaces are all isomorphic and admit a
molecular characterization. This is particularly useful to prove different properties of these spaces
as happens in the classical setting and in the context of second order divergence form elliptic oper-
ators considered in [19].

Some of the ingredients that are crucial in the present work are taken from the first part of this
series of papers [23], where we already obtained optimal ranges for the weighted norm inequalities
satisfied by the heat and Poisson conical square functions associated with the elliptic operator.
Here, we need to obtain analogous results for the non-tangential maximal functions associated
with the heat and Poisson semigroups (see Section 7). All these weighted norm inequalities for
the conical square functions and the non-tangential maximal functions, along with the important
fact that our molecules belong naturally to weighted Lebesgue spaces, allow us to impose natural
conditions that in particular lead to fully recover the results obtained in [19] by simply taking the
weight identically one. It is relevant to note that in [10, 11] their molecules belong to unweighted
Lebesgue spaces and also their ranges of boundedness of the conical square functions are smaller.
This makes their hypothesis somehow stronger (although sometimes they cannot be compared with
ours) and, despite making a very big effort to present a very general theory, the unweighted case
does not follow immediately from their work.

The plan of this paper is as follows. In the next section we present some preliminaries con-
cerning Muckenhoupt weights, elliptic operators and introduce the conical square functions and
non-tangential maximal functions. In Section 3 we define the different versions of the weighted
Hardy spaces and state our main results. Section 4 contains some auxiliary results. Sections 5 and
6 deal with the characterization of the weighted Hardy spaces defined in terms of square functions
associated with the heat and Poisson semigroups, respectively. Finally, in Section 7 we study the
non-tangential maximal functions and the weighted Hardy spaces associated with them.

2. PRELIMINARIES

2.1. Muckenhoupt weights. We will work with Muckenhoupt weights w, which are locally inte-
grable positive functions. We say that w € A if, for every ball B ¢ R", there holds

][ w(x)dx < Cw(y), forae.yc€ B,
B
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or, equivalently, M,w < Cw a.e. where M, denotes the uncentered Hardy-Littlewood maximal
operator over balls in R". For each 1 < p < oo, we say that w € A, if it satisfies

p-1
(][ w(x) dx> (][ w(x)' 7 dx> <C, VYBcR
B B

The reverse Holder classes are defined as follows: for each 1 < s < oo, w € RH; if, for every ball

B c R", we have
1
<][ w(x)* dx) < C][ w(x) dx.
B B

For s = 00, w € RH,, provided that there exists a constant C such that for every ball B c R”
w(y) < C][ w(x)dx, forae.yeB.
B

Notice that we have excluded the case g = 1 since the class RH; consists of all the weights, and
that is the way RH, is understood in what follows.

We sum up some of the properties of these classes in the following result, see for instance [16],
[14], or [17].

Proposition 2.1.
(i) Ay CA, CA for1 <p<gq<oo.
(ii) RHo CRH,; CRH, for 1 < p < q < oo,
(iii) If w € Ap, 1 < p < oo, then there exists 1 < q < p such that w € A,.
(iv) If w e RH,, 1 < s < oo, then there exists s < r < oo such that w € RH,.
W Ae= |J 4,= | RH.
1<p<eo 1<s<e0
i) If 1 < p < oo, weA,ifand only if w7 € A,.

(vii) Foreveryl < p < oo, w € A, ifand only if M is bounded on LP(w). Also, w € Ay if and only
if M is bounded from L' (w) into L' (w), where M denotes the centered Hardy-Littlewood
maximal operator.

For a weight w € A, define
(2.2) ry =inf{l <r<oco:weaA,l}, Sy = iInf{l < s<oco:weRHy}.

Notice that according to our definition s,, is the conjugated exponent of the one defined in [5,
Lemma 4.1]. Given 0 < pg < gg < 00, w € Ay, and according to [5, Lemma 4.1] we have

(2.3) W,(po,qo) = {p tpo < p<qo,w GA% ﬂRH(qO)/} = <pOI"Ws 30) .

P w

If po = 0 and gp < oo it is understood that the only condition that stays is w € RH /. Analo-
P
gously, if 0 < pg and gg = oo the only assumption is w € A » . Finally W,,(0, o) = (0, 00).
Po

We recall some properties of Muckenhoupt weights. Let w be a weight in A, if w € A,,
1 < r < oo, for every ball B and every measurable set £ C B,

w(E) o (1EN
(2.4) —= > [w] <> .

wB) =\ 1B
This implies in particular that w is a doubling measure:

(2.5) W(AB) < [wla, " "'W(B), VB, VA>1.
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Besides, if w e RHy, 1 < s < 0o,

Ww(E) ET *
(26) W < [W]RHX, <|B|> .

2.2. Elliptic operators. Let A be an n X n matrix of complex and L*-valued coeflicients defined
on R”. We assume that this matrix satisfies the following ellipticity (or “accretivity”) condition:
there exist 0 < 4 < A < oo such that

(2.7) AP <ReAw)é -, and A& - 21 < A1,

for all £, € C" and almost every x € R"”. We have used the notation £ - £ = &, {1 + -+ - + &, ¢, and
therefore & - £ is the usual inner product in C". Associated with this matrix we define the second
order divergence form elliptic operator

(2.8) Lf = —div(AVY),
which is understood in the standard weak sense as a maximal-accretive operator on L?(R") with
domain D(L) by means of a sesquilinear form.

As in [1] and [6], we denote respectively by (p_(L), p+(L)) and (g_(L), g+(L)) the maximal
open intervals on which the heat semigroup {e7™},50 and its gradient { \/;Vye"L}DO are uniformly

bounded on LP(R"):

(2.9) p-(L) :=inf {P € (l,00): Stlj(l)) ”e_IZL”U(R")—mI’(R") < 00} ,

(2.10) p+(L) := sup {P €(1,00): Stl:([)) ||e_t2L||Ll’(R")—>U(R") < 00} ,

(2.11) q-(L) :=inf {p € (1,00): su(l)) ||tVy€_t2L”LP(Rn)_,Lp(Rn) < oo} ,
>

(2.12) g+(L) := sup {p € (1,00): stg([)) ||tvye_12L||Lp(Rn)_,Lﬁ(Rn) < oo} )

p_(L) < 2% and p,(L) > 2%. Moreover, g_(L) = p_(L), q+(L)* < p.(L) (where g,(L)" is the

n+2 n-2"°

Sobolev exponent of g (L) as defined below), and we always have ¢, (L) > 2, with g,(L) = oo if
n=1.

From [1] (see also [6]) we know that p_(L) = 1 and p,(L) = oo if n = 1,2; and if n > 3 then

Note that in place of the semigroup {¢~"%},-( we are using its rescaling {e"zL},>0. We do so since
all the “heat” square functions are written using the latter and also because in the context of the
off-diagonal estimates discussed below it will simplify some computations.

Besides, for every K € Ny and 0 < g < oo let us set

qn
g = n-QK+ g’
00, if QK+1)g=n.

it QK+ 1)g<n,

Corresponding to the case K = 0, we write ¢* := ¢**.

2.3. Off-diagonal estimates. We briefly recall the notion of off-diagonal estimates. Let {7}, be
a family of linear operators and let 1 < p < g < co. We say that {T}},-¢ satisfies L”(R") — L1(R")
off-diagonal estimates of exponential type, denoted by {7;};»0 € Foo(L? — L?), if for all closed sets
E, F,all f,and all ¢ > O we have

a1 1) _ dEF?
IT:(f 1E) 1F|lzarny < Ct n(” ")6’ TN f gl e
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Analogously, given 8 > 0, we say that {7}, satisfies L” — L7 off-diagonal estimates of polynomial
type with order 8 > 0, denoted by {T;};~0 € Fp(LP — L7) if for all closed sets E, F, all f, and all
t > 0 we have

1

=) (1 | dE F>2>‘(’“3<5"’>>

ITCF 1) Ul < € (5 2

IIf 1EllLr @)

The heat and Poisson semigroups satisfy respectively off-diagonal estimates of exponential and
polynomial type. Before making this precise, let us recall the definition of p_(L), p+(L), g-(L), and
g+(L) in (2.9)—(2.10) and in (2.11)—(2.12). The importance of these parameters stems from the fact
that, besides giving the maximal intervals on which either the heat semigroup or its gradient are
uniformly bounded, they characterize the maximal open intervals on which off-diagonal estimates
of exponential type hold (see [1] and [6]). More precisely, for every m € Ny, there hold

(ALY Yo € FuolLP — L) forall p_(L) < p < q < p+(L)
and
(1Vye LY € FaolLP — L) forall g_(L) < p < q < q.(L).
From these off-diagonal estimates we have, for every m € Ny,
(VLY"e Vg, € F,p (1P — 19),
forall p_(L) < p < g < p+(L), and
V(LY e P, (1V,,(PL)"e " L) 1ng € FuolL? — L),

(19, VL)Y e V) g € Foper (L = L9, (1, (1 VEY"e " VP € F,, 1 (L2 — L),
for all g_(L) < p < g < q+(L), (see [23, Section 2]).

2.4. Conical square functions and non-tangential maximal functions. The operator —L gener-
ates a CO—semigroup {e'L},.( of contractions on L2(R") which is called the heat semigroup. Using

this semigroup and the corresponding Poisson semigroup {e~’ \F} >0, one can define different coni-
cal square functions which all have an expression of the form

dyd
(2.13) Q“f(x)=< / /m)mf(y»z tfj) . xeR’,

where @ > 0 and I'*(x) := {(y,1) € Rﬁ“ : |x — y| < at} denotes the cone (of aperture o) with vertex
at x € R” (see (4.1)). When @ = 1 we just write Q f(x) and I'(x). More precisely, we introduce
the following conical square functions written in terms of the heat semigroup {e~'*},. (hence the
subscript H): for every m € N,

on o adydr?
214 Senf) = ([ @nreriorst)

and, for every m € Ny := N U {0},

) dydr\
(2.15) Guuf(x) = < / /r ( )ItVy(tzL)’"e" Lf(y)l%fj) ,

2 dydr)?
(2.16) Gmuf(x) = < / /r ( )ItVy,r(tzL)’"e" FroP tfﬂt)
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In the same manner, let us consider conical square functions associated with the Poisson semi-
group {e”’ \E}[>0 (hence the subscript P): given K € N,

@17 Safo = ([[ 1T TP )
I'(x)
and for every K € Ny,
(2.18) Gkpf(x) = <// |tvy(t\/z>2Ke—tﬁf(y)|zcgfllt> 2 ’
I'(x)
(2.19) Gref(x) = ( / /r oG @(y)ﬁ‘fffft) E

Corresponding to the cases m = 0 or K = 0 we simply write Guf = Gouf, Guf = Gouf,
Gpf :=Gopf, and Gpf := Gopf. Besides, we set Suf := Siuf, Spf := Sipf.

We also introduce the non-tangential maximal functions Ny and Np associated respectively with
the heat and Poisson semigroups:

2L 2dz :
(2.20) Nuf(x) = sup le™ “f@I"—;
onel ) \J B0 4
and
de\ 2
(2.21) Nef(x) = sup ( / |e‘f@f<z>|zf> :
Del(x) \J B0 4

3. DEFINITIONS AND MAIN RESULTS

As in the classical setting our weighted Hardy spaces will admit several characterizations us-
ing molecules, conical square functions, or non-tangential maximal functions. They will extend
the definitions and results obtained in the unweighted case in [19], to weights w € A, such that
Wi(p-(L), p+(L)) # 0.

3.1. Molecular weighted Hardy spaces. To set the stage, we take a molecular version of the
weighted Hardy space as the original definition, and we shall show that all the other definitions are
isomorphic to that one and one another. In order to formalize the notion of molecules and molecular
decomposition we introduce the following notation: given a cube Q C R”" we set

(3.1) Ci(Q):=40Q, Ci(Q):=2"'Q\2Q, for i>2, and Q;=2"'Q, for i>1.
Definition 3.2 (Molecules and molecular representation). Let w € As, p € W, (p-(L), p+(L)),
£>0,and M € N such that M > 5 (rw— ﬁ)

(a) Molecules: We say that a function m € L”(w), (belonging to the range of L¥in LP(w)), is a
(w, p, &, M) — molecule if, for some cube Q C R", m satisfies

M
”m”mol,w = Z 2i8W(2i+lQ)171% Z H ((K(Q)ZL)_km) lc"(Q)HL”(W) <L

i>1 k=0

Henceforth, we refer to the previous expression as the molecular w-norm of m. Additionally,
any cube Q satisfying that expression, is called a cube associated with m. Besides, note that
if mis a (w, p, e, M) — molecule, in particular we have

(3.3) (@D m) 1)l gy < 27wQ@*IQP ™, i=1.2.. 0k =0,1,.... M.
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(b) Molecular representation: For any function f € LP(w), we say that the sum ), ;m; is a
(w, p, &, M)— representation of f, if the following conditions are satisfied:

(i) {Aikians € £
(ii) Forevery i € N, m; is a (w, p, &, M) — molecule.
(@iM) f = g0 Aim; in LP(w).
These objects are a weighted version of the ones defined in [19] in the unweighted case.
We finally define the molecular weighted Hardy spaces.

Definition 3.4 (Molecular weighted Hardy spaces). Forw € Ae, p € W, (p-(L), p+(L)), € > 0, and
M € N such that M > % (rw—
as the completion of the set

ﬁ , we define the molecular weighted Hardy space H i pem(W)

Hy oy (W) = {f = Z Am; Z Aym; is a (w, p, &, M) — representation of f } ,

i=1 i=1
with respect to the norm,

”f”H'L L) = inf {Z [A;] : Z Aym; is a (w, p, &, M) — representation off} .
DsEs

i=1 i=1

We shall show below that the Hardy spaces H i’p’& (W) do not depend on the choice of the
allowable parameters p, &, and M. Hence, at this point, it is convenient for us to make a choice of
these parameters and define the weighted Hardy space as the one associated with this choice:

Notation 3.5. From now on, we fix w € A, po € W, (p-(L), p+(L)), &9 > 0, and My € N such that

Moy >4 (rw - ﬁ) and set H} (w) := Hi’pO’SO’MO(w).

3.2. Weighted Hardy spaces associated with operators. We next define other versions of the
molecular weighted Hardy spaces defined above using different operators.

Definition 3.6 (Weighted Hardy spaces associated with an operator). Let w € A, and take g €
W(p-(L), p+(L)). Given a sublinear operator 7~ acting on functions of L7(w) we define the
weighted Hardy space H(lr’ W) as the completion of the set

(3.7) Hi,w) := {f € LYw) : Tf € L'(w)},
with respect to the norm
(3.8) Ifllsy_ oy = 1Tl

In our results 7~ will be any of the square functions presented in (2.14)—(2.19), or the non-
tangential maximal functions defined in (2.20)-(2.21).

3.3. Main results.

Theorem 3.9. Given w € A, let H i(w) be the fixed molecular Hardy space as in Notation 3.5.
For every p € W,,(p-(L), p+(L)), € > 0, and M € N such that M > 5 (rw - ﬁ) the following
spaces are isomorphic to H}(w) (and therefore one another) with equivalent norms

Hi’p’&M(w); H\lSm,H,p(W)’ m € N, Hém,H,p(w), m e Ny, and Hém,H’p(w), m € Np.

In particular, none of these spaces depend (modulo isomorphisms) on the choice of the allowable
parameters p, g, M, and m.
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Theorem 3.10. Given w € A, let H ,{(w) be the fixed molecular Hardy space as in Notation 3.5.
For every p € W, (p-(L), p+(L)), the following spaces are isomorphic to H i(w) (and therefore one
another) with equivalent norms

Hg ., ,w), KeN;  Hi, w), KeNo;  and  Hg,, (W), K € Ny
In particular, none of these spaces depend (modulo isomorphisms) on the choice of p, and K.

Theorem 3.11. Given w € A, let H}(w) be the fixed molecular Hardy space as in Notation 3.5.
For every p € W,,(p_(L), p+(L)), the following spaces are isomorphic to H 1(w) (and therefore one
another) with equivalent norms

Hy,,(w)  and  Hy, (W)

In particular, none of these spaces depend (modulo isomorphisms) on the choice of p.

4. AUXILIARY RESULTS

In this section we introduce some notation and establish some auxiliary results that will be very
useful in order to simplify the proofs of Theorems 3.9, 3.10, and 3.11.

Let R™*! be the upper-half space, that is, the set of points (y, ) € R” x R with # > 0. Given a > 0
and x € R” we define the cone of aperture @ with vertex at x by

4.1) I'(x) :={(y,0) € R’fl Dx =y < at).
When @ = 1 we simply write I['(x). For a closed set E in R”, set
(4.2) RUE) := | T

x€E

When a = 1 we simplify the notation by writing R(E) instead of R!(E).
Besides, for a function F defined in R"*! and for every x € R”, let us consider

1

dydt)\?

43) 1Pl = < / / F(, 0P ZH) .
I(x) 4

Using ideas from [19, Lemma 5.4], we obtain the following result:

Lemma 4.4. For all w € A and f € L>(R"). There hold

@) ISnuafllLrowy S NGm-110fllrow), for allm € N and 0 < p < oo,
®) ISkpfllerowy S NGk-1,pfllLrow), for all K € N and 0 < p < oo.

Furthermore, one can see that (a) and (b) hold for all functions f € Li(w) with w € A and
q € Wy(p-(L), p+(L)).

Proof. We start by proving part (a). Fix x € R” and ¢ > 0, and consider
~ 2 ~ ~
B:=B(x.0), f():=@L"e T (), and  H) = () = (.

where (f)ap = f,5 f()dy. Then, applying the fact that {(PLe"LYg € FoolL? — L?) and that
PLe "Ll =2L1 = 0 (see [1]), we obtain that

( / |z2Le-§Lf(y)|2 dy)2 = ( / |t2Le-’zzLH(y)|2dy)2
B B

< ( / PLe™ T (H 1) ()P dy)z +> < / 1P Le” TH(H e, )0 dy>2
B B

=2
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< ( / |H<y>|2dy> e ( / H()P dy) =Y e
4B 2/+1B

=2 j=2

By Poincaré inequality, we conclude that

<t ( / Y, 7P dy) ,
8B

and that
_ _ L i _
I s ( /2 . If(y)—(f)2j+13I2dy> + 12771 BIY2 Y T (Faeg = (sl
J*'B k=2
. J U :
<RV (7[ 1FO) = (il dy)
2k+lB
k=2
i - !
<> 2lrhmiagky ( / IVyf(y)IZdy) -
=2 2k+23
Then,
1 1 i 1
2~ 2 ~ 2 J N b ~ 2
( / |r2Le—sz(y>|2dy> sr( / |vyf<y>|2dy> +y ey 2 ( / IVyf(y)|2dy>
B 8B =2 =2 2k+2p
1
. - 2
<) e / v, 2d> ,
> (M| v )P dy

j=1
and therefore

S f0) s Y VG (0,

21

recall the definition of G,%{jH in (2.13) and (2.15). Then, for every 0 < p < co and w € A, taking
the L”(w) norm in both sides of the previous inequality and applying change of angles (see [23,
Proposition 3.2]), we conclude that

—c4) J+3 —c4J
1Sl Do e ||G ]|, S 1G1mf o > e S IGn-1a .
w
=1 Jz1

As for part (b), fix w € A, f € L>(R"), and 0 < p < oo, and note that following the same
argument of [19, Lemma 5.4]", there exist a dimensional constant ky € N and C; > 0 such that for
all K € N and k € Ny.

D=

St = € (GFhpre0) (S50 )

where recall the definitions of S%ép and G%‘j‘ip in (2.13), (2.17), and (2.18). Now, for some R > 0,
to be determinate later, consider

S'f(x):= Y R*Skpf(0) and G f(x) =Y R Gi_pf(x).

k=0 k=0

'We want to thank Steve Hofmann for sharing with us this argument that was omitted in [19, Lemma 5.4].
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By the above inequality, and using Young’s inequality, we have

1
(45) S* (.X) < ZR—(k+k0) <C2R2k0G2k+k0 (.X))2 ( 2k+k0 (x))
k=0
1 * . .
< 5 <C%R2k0 ZR (k+k0)G2k ko f(x) + ZR (k+k0)32k kof( ))
k=0 k=0

< % (R*CIG* f(x) + S"f(%)) .

Besides, since Sk p is bounded from LR to L2(R") (see for instance [23]), applying [13, Propo-
sition 4, Section 3] or [2], and choosing R > 25*1 we have that

sk — k e kn - kn
IS* Fllzeny < D RIS pfllz@n $ > R 27 1Skp fliz@n € > RE27 1 fll2geny < oo,
k=0

k=0 k=0
hence S*f(x) < o0 a. e. x € R". Then, by (4.5),

Skpf(x) <8 f(x) < CR*G* f(x).
Hence, taking the L”(w) norm in the prev1ous inequality, by [23, Proposition 3.29], we conclude
that, for ry > max{p/2,r,}andR =27 RN 25+

(k= k - _p A kg
ISk P fllro ZR 2GRy pfllron < R T RF27 (IGk- 1l < IGk-1pf o).

k=0 k=0
Following the explanation of [23, Remark 4.22] we conclude (a) and (b) for all functions f € LI(w)
with w € A, and g € ‘W, (p—(L), p+(L)). O

To conclude this section we present some estimates for (w, p, €, M) — molecules.

Lemma 4.6. Given p > pg, w € A 2,8 >0, and M € N, let m be a (w, p, e, M) — molecule and let
Q be a cube associated with m. For everyi>1landk=0,1,2,..., M, there holds

, . . 1
(@) m) 1e,0) || oy 27w Q127 Ol 0,

Proof. Using Holder’s inequality, (3.3), and the fact that w € A » , we have that
Po

| (€(@)*L)™ m) 1¢,0)|

LPO(R™)

1 L_l

’ (2Y F(ﬂo ) . 11
< ( / I(f(Q)zL)‘km(y)I”W(y)dy> <][ we' (%) dy> 2t
Ci(Q) 2it1Q

_i
< 2w Q! (][ w(y) dy) i1
2i+lQ
S 2—i£w(2i+l Q)—l |2i+l Qli .
O

5. CHARACTERIZATION OF THE WEIGHTED HARDY SPACES DEFINED BY SQUARE FUNCTIONS ASSOCIATED WITH
THE HEAT SEMIGROUP

Theorem 3.9 follows at once from the following proposition:

Proposition 5.1. Letw € A, p,q € W, (p—(L), p+(L)), € > 0, K € Ny, and M € N be such that
M >3 (rw - (L)) Then
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(a) Hi’p’& ww) = Hé’,lH’p(w) with equivalent norms, for all m € N.

(b) H émH’p(w) and H }SmH q(w) are isomorphic, for all m € N.

(c) ]H[i’p’& ) = Hém’H’p(w) = ngm,H,p(W)’ with equivalent norms, for all m € Ny.

In order to prove Proposition 5.1 we need to show that, for m € Ny, the L' (w) norms of the square
functions Sy,+1.1, Gnu, and G, u, applied to (w, p, &, M) — molecules, are uniformly controlled.

Moreover, we shall show in Proposition 5.3 that all the square functions in (2.14)—(2.19) satisfy
those uniform estimates. That proposition follows from the following general result:

Proposition 5.2. Let w € A and let {T}~0 be a family of sublinear operators satisfying the
following conditions:

(@) {T}s0 € Fao(LPO — L2) for all p_(L) < po < 2.
() $10) 1= (Wl ITFOPLL) " is bounded on LP(w) for every p € Wy(p-(L), p.(L).

2
(c) There exists C > 0 so that for every t > 0 there holds T, = CTL\/’ oe 7k
2
(d) For every A > 0, there exists C, > 0 such that for every t > 0 it follows that
T yiza: =CaTio e L,

Then, for every m, a (w,p,&, M) — molecule with p € W, (p—(L),p+(L)), € > 0, and M >

% Ty — ﬁ , it follows that I|§ M|l 1y S 1, with constants independent of m.

Assuming this result momentarily we obtain the following:

Proposition 5.3. Let S be any of the square functions considered in (2.14)—(2.19). For every w €
A and ma (w, p, &, M) — molecule with p € W, (p_(L), p+(L)), € > 0, and M > 3 (rw
there hold

_ 1
p-(L) )’

(@) ISmllzi, < C.
(b) Forall f € H .o yyW), IS fllirg < Iy o
Proof. Assuming (a) let us prove (b). Fix w € Ay and take p € W, (p-(L), p+(L)), € > 0, and

1
M € N such that M > %(rw—m .
representation of f, f = Y ;> 4;m;, such that

ST <2y

i=1

Then, for f € HIL,p’S’M(w), there exists a (w, p,&, M) —

On the other hand, since Zzl A;ym; converges in L”(w) and since for any choice of S, we have that
S is a sublinear operator bounded on L”(w) (see [23, Theorems 1.12 and 1.13]) and by part (a), we

have
S (Z /lﬂﬂi)
i=1
as desired.

As for part (a), we first show the desired estimate for Gy. To this end, notice that ItVy’,e"zL f e
Ve L2 + 42 Le "L . Besides, both 7; := Vye "L and T; := *Le™"'L satisfy the hypotheses
of Proposition 5.2: (a) follows from the off-diagonal estimates satisfied by the families {tVye"zL} 0

< D IS milligy < €Il S flksy o
L'(w) i=1 i=1 o

||Sf||Ll(w) =
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and {tzLe‘tzL},>o (see Section 2.3); (b) is contained in [23, Theorem 1.12, part (a)]; and finally (c)
and (d) follow from easy calculations. Thus we can apply Proposition 5.2 and obtain the desired
estimate for Gy.

To obtain the estimates for the other square functions we can use [23, Theorems 1.14 and 1.15,
Remark 4.22], and the fact that Sy f < % Guf. Easy details are left to the interested reader. O

5.1. Proof of Proposition 5.2. Fix w € Aw, p € W, (p-(L), p+(L)), € > 0, M > 7 (rw - ﬁ),
and m a (w, p, e, M) — molecule. Let O be a cube associated with m. Since w € A —p We can pick
p_

p-(L) < po < 2, close enough to p_(L), so that w € A » and simultaneously
Po

(5.4) M>"<rwp° —1>.
2\p-(L) po
For every j,i > 1, consider Q; := 2*'Q, m; := mlc,g), and Cj; := C;(Q;). Note that
[T < T Lo,60)) (@) + [T e0),00) (1) =2 F1(y, 1) + Fa(y, 1),
and therefore, recalling (4.3),
IS L1y < [E | 1y + TIF2ME 1y =2 1+ 11

We estimate each term in turn. Note first that

Fi(,0 <) ITmuo.aon® = Y Fri1).

i>1 i>1

Then,
5.5 15 WFllroll e + D D MELMO i =2 DT+ DD L
i>1 jz4 izl i1 jz4 izl

For I;, apply Holder’s inequality, hypothesis (b), (2.5), and (3.3) (for k = 0), to obtain

~ 1o~ 1 i

(5.6) I < ISl 160wy S W60 IS Myllrwy S w(QD) P Imillzrarny < 27

To estimate /j;, note that, for every j > 4andi > 1,0 <t < £(Q), and x € Cj;, it follows that
B(x,1) c 2/*20; \ 2/71Q;. This, hypothesis (a), and Lemma 4.6 imply that

1 1

2 2

< / mmi(y»zdy) < < / - mmf(y)ﬁdy)
B(x,f) 2/+20)\2/71g;

1 4eg)? 1

) et i) et
<t 0 e A myllpogny SN0 e

(Qi)z —ie -1 L
2 27w(0i) Qi
Then, (2.5) and easy calculations lead to

1

11(9)] _ 11 4e)? 2
tzn("o 2>e_c 2 di w(x)dx
0 tn+1

1
, 1 . . __n_ o d 2 . j
<27 w(Q) NI w2 Q) (4 €0 ( / Sme-cs”> 2P
2

. 1
Lii < 27%w(Q) Q4]0 /

J+i S

Plugging this and (5.6) into (5.5), we finally conclude the desired estimate for /:

(5.7) 1<y 2743 N ot

i1 >4 i1

We turn now to estimate /1. First, set

M
B = (1- e O') and  Ag:=1I- By,
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and observe that
(5.8) Fo(y, 1) < [T AgmLe0).00)(1) + T Bom(W)I[e(0).00) (1) =2 F3(y, 1) + Fa(y, 1)
We start estimating the term related to F'3. To do that, consider
hy) =D hiy) = > (L@ L) ™Mm(») Ie) (),
i>1 i>1

and note that
F3(0.0) £ > [TiAg(l(Q)* )M hi(y)17(0).00(0).

i>1

Then, we obtain

D=

dydt
sl |l < S < / / rr,AQw(Q>2L>Mhi(y)|21m@,w)<r>tfﬂ)
i>1 ) L'(160:.w)
1
dydt)\?
Y < /[ |77AQ<f(Q>2L>Mhi<y>|21m),m)<t>IZH)
24 >l e LY(Cjiw)
= I+ > Y 1
i>1 S

Before estimating /1; and 11 ;, note that by [6, Proposition 5.8] one can easily obtain that the operator
AQ(K(Q)ZL)M is bounded on L?(w) uniformly on Q since p € W,,(p-(L), p+(L)) and

M
Agl(@PD)M = (I = (I - P HYMy QP )M = 3 Cran(kt(Q) LM QL.
k=1

This, Holder’s inequality, hypothesis (), (2.5), and (3.3) imply

€ 1 .
(5.9) 11; < w(160)7 [1Ao(U(Q* DM hillLrowy $ W)Y IlhillLrewy < 27
We turn now to estimate //;;. Note that for every x € Cj;, j>4,i> 1

{.0:yeBxn, t>0Q)} C EyUE, U Ej,

where
Ep:= (27720;\ 271 Qi) x [€(Q). 2772 6(Q))]. Ex =210 x (27200, ),
and
£ = (o) x (272uon, «).
Ij
Consequently,

3 1 3
. dvdt) 2 .
I < w100 ( //E T:A (L@ L) hi(y)l tfj) = w2 0)) Gl
=1 !

=1

Now observe that hypothesis (c) implies
2
ITiAQU(QY L) hil = CIT 1 e™ > Ag(E(Q)* L) hil.
Besides,

M
2 €0Q)*
e THAGUQPLY = Y Co (izQ)

" 1
2 M 2 L 5 l2 2
(SQ,IL) e ’or”,  where sg;:= | kO(Q) + 5) -
k=1 Ot
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Then, applying hypothesis (a), the fact that {(r>L)M e"zL},>o € Foo(LPO — LP0) together with [23,
Lemma 2.1] (see also [18, Lemma 2.3]), and Lemma 4.6, we have

1
M 20720(0;) ’ 2\ 2M 2
33 / <(2Q)> / 7 (sBuL) e e Py &,
1 \Juo SO 22072719, V2

2] 2000 2 QP 2
AM-2 _ ©* dt _ _ 1
< (@™ T 2w ol

o)
2 2M+ 0 ) 2—i(2M+8)W(Qi)—1 .
Similarly,
Gy s </ (™M dt) e 10 < 27 M) g M, 0
2i20(Q)) !
and
1
0 4M+Ln _CSZdS 2 (I+i) <2M+ ) 2MA—ie 1 =
Gy<) —~) @"uoy «*M27w(@) " 1Qil
I>j

<07 (2M+%) 2-iCM+e) o)

~

Collecting the estimates for G, G, and G3 gives us

1 rwpon

I < w2/t Q; )2_ <2M+ ) Q-i2M+e) < o (2M+%— > ”(‘2))2_1'(2M+g)’
w(Qi)

where we have used that w € A nurg s , by the definition of r,, and the fact that p_(L) < pg, and (2.5).

By this and by (5.9), we conclude that (5.4) yields

(5.10) IESe o |y < D275+ > > 27 5(2M =55 ) g i)

i>1 j=4 i1

(// 7B Li¢(0).0) (¢ ) t"+1 )

We next estimate F4:

H|||F4|||r(~)HL1(W) <
i>1 L'(16Q; w)
+> ) ( / / TiBom)P 100 (0 2 t,m )
izl jz4 LY(Cji,w)
= Zm,- + ZZIUﬁ
i>1 izl jz4

Note that the fact that the semigroup {7} is uniformly bounded on LP(w), since it was
assumed that p € W,,(p_(L), p+(L)) (see [6, Proposition 5.8]), easily gives that By is bounded on
LP(w) uniformly in Q. Hence, Holder’s inequality, hypothesis (b), and (3.3) (for k = 0), yield

NN 1 .
(5.11) 111; S w(160)7 IS BomillLrny S w(160)7" [Imillzee < 27°.

Now, change the variable # into V1 + Mt and use hypothesis (d) to obtain

dydt
Hlji s <//1"W( T i BomiO 1 ), vivar, )()ﬂm)

LY(Cjiw)
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1
_MAL 2 dydt >

Now, note that for E 1, Ez closed subsets in R”, and f € LP°(R") such that supp(f) C E 1, we have
(5.12)

He—MtZLBQf‘

L(Cjiw)

«Qy

M= P+ 0HLM H
= e —e
LPO(Ey) H( >

g «Qy? y ,
< / .. / H ((rl +oee oyt Ml‘z)L) e—(r1+---+rM+Mt )Lf
0

2 2 = Fa2
/l’(Q) /l’(Q) BB dri---dry
S e e Tyt M

(rl + e + rM + Mtz)MllfHL])o(El)
2 d(E d(E}.Ey)?
< ‘o r2+l(Q)2

Loy

M
B¢ rHOL dr> f
LP(Ey)
dl”] ce drM
Py (r + -+ + 71y + MM

oz,

where we have used that {(2ZL)Me "L}, € Foo(LPO — LP0) since p_(L) < po < 2 < p+(L).
On the other hand, setting 6, = (1 + M)‘%, for every x € Cj;, we have
{(,0) 1y € B(x,63,1), ul(Q) <t <0} C EyUE, UE3,
where
= (2770i\ 271 01) X [0mE(Q), 270M Q)] Exi=2/0; x (2720uL(Q)), ),

and

Ex = (Jcun) x (2720utQ0), ).
1>
Then we have that

3
mﬂsW(zf“Q)Z< / Te M LBy, @)l“ﬁfj) = w2*'0)) "G

=1

At this point we proceed much as in the estimates of G, G, and G3. Applying (5.12), we obtain
that

+1 i n n rwpon
111} Mz—f (20471 2=iM+e) < 5~ J(2M -2t oM+
" W( l) ~ ’
where we have used thatw € A g s by the definition of r,, and the fact that p_(L) < po, and (2.5).

From this and (5.11), we conclude that (5.4) yields

H|||F4|||r(-)HL1(W) < ZZ_’S + Z 22 2M+%_IY7(()L))2_i(2M+€) <1

i>1 i>1 j>4

By this, (5.10), and (5.8), we conclude that I/ < 1, which, together with (5.7), gives the desired
estimate: [|Sm||iq,) S 1. O

We devote the remaining of this section to proving Proposition 5.1.

5.2. Proof of Proposition 5.1, part (a). Fixw € Aw, p € W, (p-(L), p+(L)),e>0,and m,M € N
n 1

such that M > 3 <rw oM )

Forall f € ]H[lL ».e,u(W), applying Proposition 5.3, we obtain that

(5.13) 1Smafllny < Ik
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Then, since in particular f € LP(w), we conclude that f € H}Smw(w), and hence Hi’p’&M(w) C
H}Sm,H ’p(W)

As for proving the converse inclusion, we shall show that for all f € H«ISmH, p(w) we can find a
(w, p, &, M) — representation of f,i.e. f = Zle A;m;, such that

D 1l < 1S mufll -
i=1

Following some ideas of [19, Lemma 4.2], for each [ € Z and for some 0 < v < 1 to be chosen
later, we set

O :={xeR": Suf(x)>2), Ej:= {x eR": I£:10 Bx. )l
|B(x, 1)l

E;:=R"\Oj,and O] :=R"\E] = {x eR": M(1p)(x) > 1 - y} , where M is the centered Hardy-
Littlewood maximal operator. We have that O; and Oj are open, and that O, € Oy, 07, C O],
and O; C Oj. Besides, since w € A, then M : L"(w) — L"*(w), for every r > r,. Also,
ISmafllrony < I1fllrawy < o0, because p € W, (p-(L), p+(L)) (see [23, Theorem 1.12]). Hence

>, forallr>0},

) 1 1
(514) W(Ol) < Cy,rW(Ol) < ZTpHSm,Hf”‘zp(W) < 2Tp||f”€p(w) <oo, VIeZ,

and E; cannot be empty. Therefore, for each /, we can take a Whitney decomposition {Q{ }jenr, of
Oy:
oj =0l diam(Q}) < d(Q],R" \ O}) < 4diam(Q)),
JEN

and the cubes Q{ have disjoint interiors. Finally, define, for each j € N and [ € Z, the sets
(5.15) T/ := (0] x (0,00) ) (07 \ 0;;1) :

where 6% = {(x, 1 e R’fl 2d(x,R"\ O)) > t} and we note that R" \ 6% = R(E}), (see (4.2)).
Let us show that
(5.16)

_ S A '
supp T f(x):=supp (s°L)"e ™" " f(x) (U (01 \ 01+1)> UrUr={ U7 |UnUF,
leZ leZ, jeN
where Fy := iz, 0] and Fy € R\ Uy OF with p(F1) i= [foner 1, (0, HLE = 0 = u(Fy).
The fact that u(FF;) = 0 follows easily. Indeed, note first that, by (5.14), and since O;,; C Oj, we
conclude that |
w(Niez0)) = lim w(O)) < lim = = 0.
Consequently | Niez O;| = 0, since the Lebesgue measure and the measure given by w are mutually
absolutely continuous. Hence, clearly

0 dyds N Lds
pu(Er) = / / 1g, (x, 5) Y2 < A}lm [ Niez O 5T 0.
0 n

S —00 JN-1

Finally let us find F», and hence obtain (5.16). Note that
Rﬁ“ _ (U (6? \ 0/7:1)> U (R’i+l \ U (63\0/7;))
leZ leZ
= <U (6}\5}‘5)) U]F1 U (Rﬁﬂ \Ua?> ‘

leZ leZ
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Then, it suffices to show that
(5.17) Tf(5) =0, p—ae(y.0eRF\(JO.
leZ

Consider F the set of Lebesgue points of |7 f (x)|? as a function of the variables (x, s) € Rﬁ“ for the
measure dxds which is mutually absolutely continuous with respect to . Note that ||S,, 1 fllrw) <
oo implies that |T f(x)]* € L}, (R™! dxds), and hence u(R™*! \ F) = 0. To conclude (5.17), we
observe that R"*! \ (U ez 6\;‘) = (Viez R(E}) (recall the definition of R(E}) in (4.2)), and then we
just need to prove that
(5.18) T.f() =0, Y(.0e[|RE)NF.

leZ

On the one hand, if (y,7) € [,z R(E]), for every [ € Z there exists x; such that (y,?) € I'(x;) and
Snnf(x) < 2. On the other hand, (y, ) € F implies

(5.19) i e [ o IO 1Ty oF | ads =0
Given r > 0, consider
R if y=x
= { Sy gy,

it is easy to see that B ((x],1),7) € I'(x)) N B((y, ), r), forall / € Z and 0 < r < 1. Combining all
these facts we have that, for (y, 1) € (), R(E}) N F,

1
g 2:// T = [T fOR| dxd
1) [B((x], 1), r/4)| B<<x§,r>,r/4)“ SO = T f(O)| dxds
! 2
B, 1), /4] T, dxd
+|B(<xz’,t> /) //B«x,rt),u)l FeoP dxds
(f+r)”Jrl

T 2T 2| dxd @+
= B0, o //B«yt),) TGP = ITsf P dxds +

Then, letting first / — —oo and then r — 0, we conclude (5.18) by (5.19).
Now consider the following Calderén reproducing formula for f € LP(w):

_~w 2 m 2L\ M2 ﬂ_~- N 2 m 2L\ M2 ﬂ
(5200  f)=C /O (@Lyme™) " f0= = € lim . (oyme) ™ =,
with the integral converging in L”(w).

Remark 5.21. A priori, by L?(R") functional calculus, we have the above equalities for functions in
L*(R™). Here we explain how to extend them to functions in L”(w) for all p € ‘W,,(p_(L), p+(L)).

Fixing such a p, we first introduce the operator 7,/ = ((PLyme "LYM*1 M > 0, whose adjoint (in
L*RM) is (T = (PLyme LM+ = TM.. and set Q) f(x,1) = TM. f(x) for (x,1) € R:*! and
f e L*(RY). Since p € W,,(p_(L), p+(L)) then p’ € ‘W, i (P—(L"), p+(L")) by [5, Lemma4 4] and
the fact that p.(L*) = p£(L)’ in [1]. Thus, the vertical square function defined by 7, L is bounded
on LP (w1 4 ) (see [7]). Writing H = [? ((O, 00), %), we obtain

(522) (| QA iy = [1QL ] 1,

X

’

P’
*© dr\ ? -
= / ( / m?z*h(x»zt) w)' P dx | <Rl -
n \JO
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Therefore, @ : LV (w!'™P") — Lﬁl (w!'=P") and hence its adjoint (@) is bounded from Lf(w) to
LP(w) (see also [1, 7]). Moreover, for & € LI%H(R”) and f € LZ(R”) we have that

di—
(@Y. g = Q)2 ) = / / h T FON Tdy= / / M0 Foa,

where it is implicitly understood that ,’Lh(y, n =771 (h(-, t)) (v). Consequently, for every h €
LE(R"),
@i = [ i = [ @ore i e
0
Note that C Q¥ Q). f = f for every f € LZ(R”), where according to the notation introduced
above Qg* flx, 1) = 7’& flx) = (tzL)’"e_’zL f(x). On the other hand, for every f € LP(w) and
g € L*(R") N L”(w) we have that

|y < I = 8llren + Cl@DY' QL8 = Nl 1o
SIf = gllron +1Q)-(¢ = Nllz S If = &llron

where we have used the boundedness of (Qﬁl )* along with the fact that Qg* is bounded from L?(w) to
LE (w), the latter follows as in (5.22) with LP(w) in place of L (w'~"") since p € W,,(p_(L), p+(L)).
Using now that L2(R")NLP(w) is dense in L”(w) we easily conclude that f = Ci Q¥ QY. f for every
f € LP(w). This is the first equality in (5.20).

To obtain the second equality in (5.20) we write Iy = [N~!, N] and observe that for every & €
LE(w), one has that 1;,h — hin LE(w) as N — oo, and therefore (QY )'(llNh) — (@")*h in
LP(w) as N — oo. Taking now f € L”(w), as mentioned above, QL* fell m(w) and it follows that
@1y (1, Q. ) — @H*(Q). f) on LP(w), which is what we were seeking to prove.

|f - @@ f

Once we have justified the Calderén reproducing formula (5.20) we use (5.16) to obtain that

(5.23) f(x)=C /O ) (@2 L) ( > L@ e ))( )f

JjeN,leZ

= C lim NNI (o)™ (S 1@ to)w

JEN,IeZ

in LP(w). Now, set
ool j L% m 2\ Mt
A =2l and o= | (ryre) (flm )(x)—
I
where fljm(x, 0 =1,(x, t)(tzL)’”e‘tzL f(x). We will show that
? 1

(5.24) Z 6/1{ m{ is a(w, p, &, M) — representation of f.
JjeN,leZ

We start showing that, there exists a uniform constant Co, such that Cj 1m'li isa(w,p,e,M) -
molecule, for all j € N and [ € Z. To this end, we estimate, forall 0 < k < M, 1 < i, j € N, and

[ € Z, the LP(w) norms of the functions (f(Q{ )2L)_km{ 1 . Before that, we set

cio)
RUD(ES,) = {(.0) € RE}, ) 1y € Of. 0 <1 < 5VaLt(@))}.
For all (y,1) € le we have that

t < d(y,R"\ 0}) < d(Q],R"\ 0}) + diam(Q}) < 5diam(Q)),
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and thus

(5.25) T/ c RUQ(ET, ).

Then, for all (y,1) € le and c = 11 v/n,

(5.26) B(y,1) C cQ).

Now, by definition of T/ , we have that for every (y,1) € T] there exists yo € Ej,; such that [E; 1 N
By, 1| = v|B(yo, )| and [yg — y| < t. Besides, considering z := y — tz%_yy‘(’))l, we have that B (z, 2) -
B(yo, 1) N B(y, t). Consequently,

YIB(o, Ol < |Ei1 N B(yo, DI < |Ep1 0 B(y, Ol + |B(yo, ) \ B(y, )|

1
< 1Eje1 0 B0+ B0\ B (2.5)] = Erer 0 B0+ 1BGo.0) (1 - 2) .

Then, fory =1 — 2,,+1, we obtain
(5.27) " S |E N B(y, 1),

We are now ready to consider the case i = 1. For every t > 0, let 7; := (f2Ly"M+m—kg=r(M+D)L

and for every h € LY (w'=P") write Quh(x, 1) := T h(x), with (x,1) € Rﬁ”. As in Remark 5.21 one
can show that Q; : L (w'?") — LY (w'=P"), since p’ € W1 (p-(L"), p+(L")). Hence its adjoint
Q; has a bounded extension from Lﬁ(w) to LP(w), where

> dr _ [ d
Qh(x) = / ﬂh(x,t){ = / (P Ly M DLy, t)7t.
0 0

Here, as before, 7;h(x, 1) = T; (h(-,1)) (x), for (x,1) € RI*!. Write g(x, 1) := ¥ £ (x, 1) and
I = {he LV W™ |lhllyy oy =1, supph < 40/},

From (5.26), (5.27), and (5.25) we obtain

é’(Q,) 2"

/ (l, L)mM+m k —tz(M+1)L~( 1)7

(5.28) H((t’(Q{ L)1, on Lraoiw

B f(Q{ )~k
=—— 5 sup
4 hel

[(Q]) -2k

QL8 - h(y) dy‘

R}‘l
sup

dtd
/ / 70,0 - 77 h() 2
hel n
JN—2k
f(Q ) // 2k ‘(IZL)m —t Lf(y) 7- h(y)‘/ dx :{fl dy
he] T B(, t)ﬁEm 4

<y S“P/ /I
AJ hel JOE1+1 I'(x)

= /17 HS’"’HfHU’(CQ'{ﬂEm,w) ilel? H ‘H(ﬁhmr(.)

L") T h)| Bt

L (wi=r")

i1
—w(Q])r2!
hel

LY (wl=r")

= w(Q})r™!

’ N4
LP  (wl=r")
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where in the last inequality we have used that S, f(x) < 2/*! for every x € Ej;1. To estimate
the term with the sup we fix & € 7 and note that changing variable ¢ into \/ﬁ and using [23,
Proposition 3.29]

[z

”F(-)

< u 7.l
VM+1 ()

o=l [l
LP (wi-p ) r \/W() L/’,(Wl_”/)

1
. Pdyd\?
2 rsexmM+m—k —12L y
2L h ‘
( //F § @) )| 25 )

where last estimate holds since p” € W, - (p_(L"), p+(L")) (see [23]). Plugging this into (5.28)
we conclude that

(5.29) | (@l m) 1,y

LY (wi=r")

< ||h||Lp’(w1—p’) =1,
L (wi=r")

<w(Qhr™!

LP(w)

Consider now i > 2. Note that w € RH ( L@)’ implies that w € RH (‘LO ) for some go with
P P

max{2, p} < go < p+(L). Then,
[ (wehrnrtng) 1c,q)

Lr(w)

L[ o o\ ML di
<[ jeprn (@omett)™ (1,6.0) |
A7 1o Pl ciohw
2k
di
(Ql) (2l+1 QJ) |2l+1 QJ| ‘10 / ‘ 2k(t2L)mM+m k —2(M+1)L (f] . l)) t .
! 0 L90(C,(Q])

Applying Minkowski’s inequality, the fact that {(tzL)me_’zL},>0 € Foo(L? — L), and (5.25) we
obtain the following estimate for the last integral above:

00 2 ; dt
‘ / ‘IZk(IZL)mM+m ke =(M+1)L (fl]m(’t)) -

0 t

< / 2k H(tz LMk oML ( ﬁ]m(’ t))
0

5nt(Q’) ey
[ (Lraolioat s) prt Dt
0

t

5\/E€(Q{) o sl 2
< f(Q] 2k (// ‘(t2L) -t Lf( )‘ dydt) (/ t—zn(z—%)e_ <§> Cit>
0

=11 X1I,.

L90(CH(Q)))
dt
LI0(CH(Q))) T

For 11;, we proceed as in the estimate of /; and obtain after invoking (5.27)

1

. 2 dr \’
I < (p* // _}(rzLY"e"sz(y)\ / dxdy s
T} B(y,HNE}+1 !

. o
S LD |[Smnif || peging,) < €@DHIQ]122.

2'¢ (Q,)

As for 115, changing the variable ¢ into we get

1 < @ecghy ") et ( a ﬂ"(%-qb)e—ct“f) "< gy ).
0
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Hence, for i > 2, using (2.5),

j j 1 i in . ;1 i . Sl
|(@eirrnd) 10| s et t2ue o) s ettt gy
ity

Lo = A

From this and (5.29), we infer that there exists a constant Cp > 0 such that, for all j € N and
leZ, ||m{||m01,w < Cop. Therefore, for every j € N and [ € Z, we have that C(j]m{ are (w, p,e, M) —
molecules associated with the cubes Qzl .

Let us now prove that {/lf }jenyez € € I Since for each [ € Z, {Qi-} jen is a Whitney decomposition
of O}, by (5.14), and since f € H}gmH’p(w), we obtain

2l
(530) > = D> 2w@)=> 2won ) 2won s /2 _ w(Opda

JjeN,leZ JjeN,leZ leZ leZ leZ

<c / W(lx € R : Syt f(0) > AN = ClSpt i < oo.
0

Thus to conclude (5.24), we finally show that

(5.31) f=Y_ Cim] in LP(w).
JjeN,leZ

{ Tl] } jeniez are pairwise disjoint, it follows that

jeN,leZ jeN,leZ

Using the notation in Remark 5.21, recalling that fl{m(x, f) = lTl,-(x, t)(tzL)me‘tzL f(x) where the sets

® 2w L dl) 2
AL =
" (/0 (PLye P

Hence, by (5.23), Remark 5.21 and the dominated convergence theorem we obtain

<
LE(w)

S llzeowy-
LP(w)

(532) ||f- > Cyml| =C @24)*( > ﬁ{'m) - N @,
JHI<K LP(w) JHI>0 jHII<K Lr(w)

=C (Qﬁl)*< Z f,{m < Z fl{m — 0, as K — co.

JjHI>K LP(w) JHI>K L%(W)
This proves (5.31) and therefore, +I50 /l{ m{ is a (w, p, &, M) — representation of f such that
D IS ISmu Sl
JHI>0
Consequently, f € Hi e, (W) and || f ”HIL o) < ISmufllLiow)» which completes the proof. O

5.3. Proof of Proposition 5.1, part (b). Fix w € Aw, p,qg € W,(p-(L), p+(L)), € > 0, and
m, M € N such that M > 3 (rw— ﬁ .

For f € H}Sm,H,p(W) consider the (w, p, &, M) — representation of f, (f = > +I50 /l{ m{ ) obtained
in the proof of Proposition 5.1, part (a). Then, define for each N € N fiy := > . <N /l{ m{ . We

have that, foreach N e N, fy, f — fv € Hi,p,s, uw) =H
is a (w, p, &, M) — representation of f — fy, we have

S = Sl = U = fillry, oy S UF = Sy, on S D 1l 2.0,
’ JHI>N+1

1 : Jond
Sm,H,p(W)' Moreover, since Zj+|l|>N+1 Ay
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Consequently in order to conclude that f € H }SM’ W) it is enough to show that, for each N € N,
Iy € H}S,HH, q(w), or equivalently that fy € HlL 0., »(w). Let us see the latter, for every N, following
the same computations done in the proof of part (a) to show that the m{ are (w, p, &, M)—molecules,
but replacing the L”(w) norm with the LY(w) norm, we obtain that, for all i,j € N, [ € Z, and

0<k<M,

. _ . _ i . . l—l
QD LY Wl e, gy S € W@TTODT

Hence, m{ is a multiple of a (w, ¢, &, M)—molecule. Besides, using (2.5),

i i T ; i1
Wiz s D D Il eiohm S D D Al w@™ Q)

i>1 O<j+|l|<N i>1 O<j+|l|I<N
Lot o si! Loy < s77)
< > 2w@hissl YD 2w 6% 1Smufllg < .
0<j+|lI<N 0<j+|lI<N

where 0y 1= ming< <y W(Q{ ). Then, for each N € N, we have that the function Zo <j+lI<N /1{ m{

is a (w, g, &, M)—representation of fy. Hence, {fy}yen C Hj, gem W) = HY (W) o

m,H>q

5.3.1. Proof of Proposition 5.1, part (c). For f € ngm_wp(w), applying Lemma 4.4, part (a), and
the fact that G, iy f(x) < G f(x) for every x € R" and for every m € Ny, we conclude

ISm+ 10 1100y S NGmb 1wy S NGmuf 1L -
This and part (a) of Proposition 5.1 imply
Hg,y1p W) € HG, W) € Hs, 1y p00) = HE oy ().
To finish the proof, take f € HIL ».e,u(W)- Then, by Proposition 5.3, we have that

Gt iy < 1y oy

Consequently, Hj pet(W) C ngmH,p(w). O

6. CHARACTERIZATION OF THE WEIGHTED HARDY SPACES DEFINED BY SQUARE FUNCTIONS ASSOCIATED WITH
THE POISSON SEMIGROUP

In this section, we prove Theorem 3.10, which is obtained as a consequence of the following
proposition.

Proposition 6.1. Given w € Aw, p,q € W, (p_(L), p+(L)), K, M € N such that M > % (r,, — 1),
and gy = 2M + 2K + % — nr,, there hold

(a) HlL,p,ao,M(W) = H«ISKP p(w), with equivalent norms.
(b) HéKP,p(w) and H}SKP, q(w) are isomorphic.

(c) ]H[i peo (W) = H}}K_Lp’p(w) = ngKfLP’p(w), with equivalent norms.
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6.1. Proof of Proposition 6.1, part (a). To prove the left-to-the-right inclusion observe that if
fe Hi s, »(W), in particular f € LP(w), and from Proposition 5.3, part (b), we have that

1Ske Mo < 11y, oo

Therefore, we conclude that HLWO’ ww) C H}Sm W)

As for proving the converse, take f € H}?m,p(w) and define the same sets, (O}, O}, le ,erc),
defined in the proof of Proposition 5.1, pat (@), but replacing S,, g with Sk p. Besides, consider the
following Calderén reproducing formula of f,

roo=c [ (e sty o) o
0 t

. N oMk VL (127 \K ~tVL di
=C lim (t°L) e ((t L)"e f(-)) (x)—.
N—oo N-1 t

Following the ideas in Remark 5.21, these equalities can be extended from L2(R") to LP(w), if we

show that the vertical square function associated with (12L*)M+K gt VL' i bounded on LY (w'=r",
but this follows from (6.3) below with L* in place of L and [7]. After this observation we continue
with the proof, again following the same computations as in the proof of Proposition 5.1, part (a),

considering T, f(x) := (1*L)Ke™" VL f(x), we can show that supp T f(x) C (Ulez 5} \ 5}‘:) UF,
with w(F) = 0 (u(x, s) = %). Consequently, we have that

N
_ : 2 7\2M+K —tVL " 27\K ~tVL ¢ @
f(x) = C[\III—IEo /Nl(t L) e jeg;ez sz’( D@L e VL) | (x) =

in LP(w). Hence, considering
: - : 1o dt
A =2we), and o= /0 PLPME N (1,6, 0K VEf () (0,
I

we show that, for some constant C > 0, we have the following (w, p, g9, M)—representation of f:
f=c'Y i
jeN,leZ
To that end, we have to show the following:
(@) (4]} el

(b) there exists a constant Cy > 0 such that C;y 1m{ is a (w, p, &9, M)—molecule, for all j € N
and [ € Z,

© f=CY jauez Ajm] in LP(w).

Statement (a) follows from the definition of the cubes Qj , and the sets O; and O}, and from the fact
that [|Sk.pfllL1(w) < o0. Indeed, proceeding as in (5.30), we have

Dool= D 2w@h <> 20 £ 200 < ISkp ALy < oo
JjeN,leZ JjeN,leZ leZ IeZ

The proofs of (b) and (c) are similar to those of Proposition 5.1, part (a), so we shall skip some
details. To show (b), fix j e N,/ € Zand 0 < k < M, k € N. We need to compute the following
norms, for every i > 1,

| (@ehrnrtnd) 1c,q)

Lrw)
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Fori = 1, let 7; := (PL*M+K~ke=1VL for t > 0, and for every h € LP (w!'=?") define Q h(x, 1) =
T, h(x), with (x,1) € R™"!. Applying the subordination formula

VL B Tt
(6.2) e fy = C/o Vil f()du,

we have that, for every Ke N,

(6.3) (/ ‘(IZL)K —zxff( )|2dt>2 /ooe_uu;</ ‘(ZZL)Ke 4“Lf(X)|2dt>2‘i”
0
< we-uu'a%‘ib‘( | lenFettre >|2d’> ( | lenFertre )\“”)

1
o0 . g 2dt\ ?
||aLh||Lﬁf(W1p,)=HnameHL,,/(wl_p/fH( | Ity t) H
0 LY (wi-r')
s ||h||LP’(W1*P’)7

1
o 2
I _{27% 2dt
(/ ‘(tZL*)2M+K ke t°L h‘ >
0 [ Lp/(wl_p/)

where we have used that p’ € (p_(L*), p+(L*)) since p.(L*) = p=(L)"), see [1], [5, Lemma 4.4] and
[7]. Thus, Q. is bounded from Lpl(wl‘p’) to Lﬁ (w'™P"), and, as in Remark 5.21, we have that its
adjoint operator,

Therefore,

<

°° dt
Qi = [ LAt Ty,
0
has a bounded extension from Lﬂﬁl(w) to LP(w).
After this observations we can treat the case i = 1. Write f/ k(0 = 1(x, H(EPL)Ke™! \ f(x),
. ’ !
g2(x, 1) =13k f/ x(x,1), and consider
I:={heLlVW'™"): supphc4Q] and|lAll, ¢, = 1}.

Proceeding as in (5.28), we have

U Ql )2k
sup
w /l{ hel

| (cornm) 1,y

Q;2(x) - h(x)dx
RVI

(QJ)P

< /l—{I|SK,pf(x)||Lp(cQ{nEm,W) sup H 17 A, ooty S

The last inequality follows from the fact that Sgpf(x) < 2141 for all x € Ej,q and also since the
conical square function define by 7, is bounded on LY (w'=P") as P €W, iy(p-(L7), p+(L")) (see
[23D).

For i > 2, take max{2, p} < go < p+(L) close enough to p,(L) such that w € RH<m>'- Since
V4

{(¢ \/Z)ZI? e’ ‘E}»o €EFz, 1 (L?> — L), for every Ke N, taking r, < r <r, + % close enough to r,,
so that M > % (r - %), recalling that 0 < k < M, and using (2.5), we have that

| (cahrny ) 15,0 —f(Qf)‘”‘ "ol

LP(w)

y / 2k / |
0 Cc/(0))

. 0 d
27 )2 +K ki VI <1Q{(')fz{1(("t)) (y))q d)’) =
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. . . . L1
< 27w W gyr " o

. 1, n(1 1 1
SVRCQ) 1 o 4 (0I)2 _(2M+K_k+f+5<f_%)) _ 2
x/ R Gl P/ /_If/K(y,t)Izdy
0 ! o

. . . . .1
< 2—121rﬂw(21+1Q;)]%—1|2L+1Q;| % </ .

D=

cQINEL4

|SK,pf<x>|2dx)

2

i . - _ 1_1
x / D () (1+c4ig(Q{>2> R G
0

: n : 1_
S 2—1(2M+2K+§+1—rn)w(21+1 Q;)p 1
—igg n—i(ryn—rn+1 i+1 Ay -1
<2 ) i(ryn—rn+ )W(21+ Q{)"
Therefore, it follows that ||m{ lmotw < Co for some constant Cy uniform in j € N and / € Z.

Let us finally prove that f = C 3 iy ez, /l{ m{ in LP(w). We follow the same computations as in
the proof of Proposition 5.1 part (a), we first see that by (6.3)

j * _ dry s
Z fl{m Z |fljm| (/ |(l‘2L)K€ Z\Ef|27) 2
JjeEN,IeZ jeN,leZ 0 LP(w)
® d
(/ |(t2L) —t Lf|2 t)
0

This allows to obtain (5.32) where in this case QYg(x) = (FPL*)*M+Ke ‘/Eg(x), (x,1) € R
Consequently, f = C Y iy ez Am/ e HY peo(W), and also,

1T Do W= Y 20D D 20 S USke Mo = Iy o

L,p.&q M(w)
JjeN,leZ JjeN,leZ leZ

<

LEw)

lﬁ(W)

<

~

< N flleeowy-
LP(w)

O

6.2. Proof of Proposition 6.1, part (b). Given w € A, and p,q € Ww(p_(L), p+(L)), from
part (a), we have that Hi Do, ww) = 1 (w) and Hl La.0, yw) = (w), with equivalent

norms. Hence we have the following 1som0rph1sms H} peomW) = (w) and H i aeomM(W) =

3 KPP
H! Skp. q(w). On the other hand, from Proposition 5.1, parts (a) and (b), we have that

1 gl gl ol
HLsP’SO»M(W) ~ HSK,H,P(W) ~ HSK,Hﬂ(W) ~ HL,q,so,M(W)‘

1 l . .
Therefore, we conclude that the spaces H Sk, p(w) and H Sk, q(w) are isomorphic. |

6.3. Proof of Proposition 6.1, part (c). For f € Hl@m ».p(W), applying Lemma 4.4, part (), and
the fact that Gx_; pf(x) < Gk-1pf(x) for every x € R" and for every K € N, we conclude that

ISkp Sty S NGk-12f L1y < N1Gk-1PSNL100)-
This and Proposition 6.1, part (a), imply
1 1 1 1
HQK—I,P’I?(W) c HGK—I,Psp(W) c HSK,P,P(W) = HL,P,SU,M(W)'

To complete the proof, take f € Hk peo,mW). In particular we have that f € L”(w), and by Propo-
sition 5.3, [|Gk-1.pf 1wy S IIfllHLp,g owy- Then, Hf . (w) C Hy, op W) m



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 27

7. NON-TANGENTIAL MAXIMAL FUNCTIONS

Before starting with the characterization of the Hardy spaces H /1\(H (w) and H}VP (w). We study
the L”(w) boundedness of Ny and Np (see (2.20)—(2.21)). Additionally we need to see how they
control the corresponding square functions. The results are the following:

Proposition 7.1. Given w € Ae. There hold
(a) Ny is bounded on LP(w) for all p € W,,(p-(L), ),
(b) Np is bounded on LP(w) for all p € W,,(p—(L), p+(L)).
Proposition 7.2. Given an arbitrary f € L>(R"), for all w € A and 0 < p < oo, there hold

@) Ge fllrowy <IN fllzeow)s
) NIGufLrowy < INHS e ow)-

7.1. Proof of Proposition 7.1, part (a). Fix w € A, and p € ‘W,,(p_(L), o). Take pg € (p-(L),2)
and apply the LPO(R") — L*(R™) off-diagonal estimates satisfied by the family {e‘tzL}po to obtain

1
-12L 2dz : !
INuS vy < /Sup / le™ “f@I"— | w(x)dx
R* >0 \JB(x2f) t
, 1
sSe ([ sup ( / |f(z>|P°dZ>'£°w(x)dx ,,
- R" >0 \JB(x,2/+2) "

=1

1
n »
<> e ( / Mpof<x>Pw<x>dx> < Mo Fllron)-
21 R
1
where M, f := (M| f|P0)ro.
Now, take p_(L) < po < 2 close enough to p_(L) so that w € A». Consequently, M,, is
Po
bounded on L?(w), and then, we conclude that

INuS ey S Mo fllrony S L Gw)-

7.2. Proof of Proposition 7.1, part (b). First, notice that we can split Np as follows

Nof(x) < sup < / |<e—fﬁ—e-’“>f<z>|2df)2+ sup ( / |e—’“f<z>|2dz>2
B(y.0) 4 B(y.0)

O.)el() (.)eT(x) r

) dz\ 2
= sup < / I(e"‘i —e! L)f(z)lz,f> + Nuf(x) =2 mpf(x) + Nuf(x).
0el(x) \J By, !

After applying the subordination formula (6.2) and Minkowski’s integral inequality, we obtain that

1
[ t2 d 5 d
mpf(x) < sup/ e_”u% (/ |(e—@L _ e—tzL)f(y)|2y> au
>0 JO B(x,21) " u

1

1
Y 2 2 dy\? du
ssup/ u2 (/ (e 4uL—e’L>f(y>|2n> —
0 Jo B(x,20) r u

o0 2 dy\? d
+ sup / et ( / (e~ L — oLy f(y)|2y) M
>0 J1 B(x,21) " u

=
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We first deal with I. Take p_(L) < po < 2, and apply the LPO(R") — L>(R") off-diagonal estimates
satisfied by {e™"L};s0,

! 1

* 2 2 dy\?>d
I= sup/ u </ |e—TL(e—(4%—%)f2L — e—zL)f(y)|2Z) au
>0 JO B(x,21) u

1
™ d
<sup> et / u(f e G DPL _ ‘L)f(y)l”°dy> du
t>0 B(x,2/+21) u

Now, notice that when 0 < u < 7, we have

4?
‘( ~(z=2)PL _ e’zzL> )

=

NET “
<2 / e < / PLe oY
t r

2 V2

1.1 « 2 d % 1.1
< log(u™2)? ( /0 I Le”” Lf<y>|2r’"> =: log(u™2) guf (.

Therefore,
1

d Py
I< Z ot/ / log(u™2)2u? 2 sup <]l 3 |ng(y)|P0dy> ' s My (8uf)(x).
B(x,27%1)

=1 U 0

On the other hand, for % <u< oo,

(5= o

Hence,

t t 2
<2 / |r2Le‘f2Lf<y)|? < log(2 vu)? ( / |r2Le"2Lf<y>|2drr>

2vu 2u

1
! drdy\” d
115 sup/ e "log(2 \/ﬁ)%u% / / |r2Le_’2Lf(y)|2—r—y au
>0 B(x,2t) 2—1/; r " u
1
a ' dydr\’d
< sup/ ue ™" / / 1PLe "L f(y))2 3 i W
>0 J} sim o BOe20) mnr u
dyd *©
<[l ([ ), e o y) du= [ e S o
B(x,4+fur) !

recall the definition of SHI in (2.13) and (2.14). Gathering these estimates gives us, for p_(L) <
Po <2,

Npf(x) S Mp,(guf)(x) + /1 e S?{WF(X) du+ Nuf(x), VYxeR"

Let w € A, and p € W, (p_(L), p+(L)), taking norms on LP(w) and applying [23, Proposition
3.29], we obtain, for r > max{p/2,r,} and p_(L) < po < 2,

INPfllzrowy S M (gu)ILraw) + /1 uz e " dullSufllrro + INuSILr o)
I

S IMpe(gua)Irowy + ISHS ILrowy + INESILr )
Now, taking pg close enough to p_(L) so that w € A 2 , we have that the maximal operator M, is

bounded on LP(w). Besides, since p € ‘W,,(p_(L), p+(L)) c W, (p-(L), o0), we have that gy, Sy,
and Ny are bounded operators on LP(w), (see [7, Theorem 7.6, (a)l, [23, Theorem 1.12, (a)], and
Proposition 7.1, part (a), respectively). Consequently, we conclude (). O



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 29

We next establish Lemma 7.3, whose proof follows similarly to that of [19, Lemma 6.2]. Con-
sider, for all k > 1,

1

dz\?

Nf(x) = sup ( / |F<z,r)|2n) ,
0.0eM(x) \J Bly,t) !

and we simply write N when « = 1.

Lemma 7.3. Givenw € A,, 0 < p < oo, and k > 1,

r

1
1
IN* fllrow) < Kn(2 ”>||Nf||LP(w)-

Proof. Consider O, := {x € R" : Nf(x) > A}, E; := R"\O,, and, fory = 1 - @’
density EY := {x eR":Vr>0, BBl > y}. Note that 0% := R"\ E}, = {x € R" : M(10,)(x) >
1/(41)"}.

We claim that for every 4 > 0,

the set of y-

(7.4) Nf(x) <(3k)24, forall xeE:X.

Assuming this, let 0 < p < coand w € A, 1 < r < oo, so that M : L"(w) —» L"*(w). Hence, we
have

IN“FIE ) = P /0 AP w((x € R L N F(x) > A))dA
= p(3k)? / ) A Mw((x € R N F(x) > 334D dA < pBk) T / ) AP~ hw(0Y) da
0 0

< pGOFA0” [0 dd = GO ¥ @TIN
0

which finishes the proof.

So it just remains to show (7.4). First, note that if x € E’ then, for every (y,1) € 2% (x), B(y,Hyn
E, # 0. To prove this, suppose by way of contradiction that B(y,?) c O,. Then, since B(y,t) C
B(x, 3«t),

Bo,ol 1 1
Moot Z]i(x,m) 1002 a3l ~ Gy~

which implies that x € O}, a contradiction. Therefore, there exists yo € B(y,?) (in particular
(v, 1) € T'(yp)) such that N f(yo) < A. Hence, for all (y, f) € I’*(x), with x € E*,

dé\ ? g\ ?
(1.5) ( / |F<§,r>|2,f) < sup ( / |F<§,s)|zf> = NfOo) < 4.
B(y.1) f @€l (o) \JB(z.s) §

On the other hand, given x € E% and (y,f) € I'(x), we have that B(y,«r) c |J; B(yi, ), where
{B(y;, 1)}; is a collection of at most (3«)" balls such that y; € B(y, «t) and then |y; — x| < 2«f (equiva-
lently (v;, ) € T*(x)). Thus,

d d
/ F P < / F RS < Gr 22,
B(yt) " T JBOLY e

where we have used (7.5), since x € E} and (y;, 1) € I'>¢(x). Finally taking the supremum over all
(v,1) € I'*(x), we obtain (7.4) as desired:

NCF(x)? < (Br)'A%, VxeE:.
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7.3. Proof of Proposition 7.2. We start by proving part (a). Fix w € An, 0 < p < oo, and
f € L>(R"). Forevery N > 1 and & > 1, we define

(7.6) Ky :={(».0) e R™! :y e B(O,N),r € (N"',N)}

and

1
® _ dy dt\?
Gis= ([ [ oo Eor )
0 B(x,at)

when @ = 1 we just write Gpy. Then, supp gg,N f < BQ,(a + 1)N) and, since the vertical
square function ( fooo |tVy,te_’ \ f(y)lz‘f’>é is bounded on L2(R"), we have that ||gg,Nf oy <
CNE |l 2anw(BO. (& + DN))? < o,
Following the ideas used in the proofs of [19, Theorems 6.1 and 7.1]. For every 4 > 0, set
O)p:={xeR":Ngf(x) >} and E,:=R"\O0,,

1

_ dz\?

pf(x) = sup (/ le tﬁf(z)lz,I),
.0el*(x) \J B(y.t) 14

and « is some positive number that we will determine during the proof. Besides, consider
|Ea 0 B(x, r)l
|B(x, r)|

Since O, is open, O, C Oj and then E} C E,. Also, since w € A, for r > r,, we have that
M L' (w) = L**(w). Consequently w(O}) < C,,w(O,). On the other hand, consider the set

O1:={x eR": Gf yf(x) > A).

Proceeding as in the proof of [23, Proposition 3.2], part (a), we can show that 0, is open and,
since ||§P ~nSllrawy < oo, then w(O,z) < oo which implies that 0,1 ¢ R"™ Hence, taking a Whitney

where

1 | 1
E} = {xeRn:Vr>O, 22}, 0;::R"\Ej:{xeR“:M(loﬂ)(x)>2}.

decomposition of %) 1, there exists a family of closed cubes {Q} jen with disjoint interiors such that

| JQj=0. and diam(Q)) <d(Q;.R"\ O,) < 4diam(Q)).

jeN
We claim that there exists a positive constant c,,, depending on the weight, such that, for every
O<y<landa=12+n,

(7.7) w(lx € E}) 1 Genf(x) > 24, Npf(x) < yA}) < Cy“w({x € R" : Gp v f(x) > }).
Assuming this momentarily, we would get

w({x € R" : Gpnf(x) > 24}) < w(0)) + w({x € E}, : Gpnf(x) > 24, Npf(x) < yA}) + w(0,2)

< Cyw(lx € R" : Gp nf(x) > A}) + Cw({x € R" : Npf(x) > yA}).
Multiplying both sides of the previous inequality by A”~! and integrating in A > 0, we would have
1Go.N Sy < CYGE NSy + CHINEF -
Then, applying [23, Proposition 3.2] and Lemma 7.3 with N’ = Np we would obtain
1Ge N 1 ry < CaY ™ IGoN IEny + CrgIND £ -
1

Finally, since |Gpn fllLrow) < Gy fllLrw) < oo, taking y small enough such that Cpy™ < 7, we
would conclude that, for some constant C > 0 uniform on N,

Gpn fllLrowy < CIINPSIlLoow)-
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This and the Monotone Convergence Theorem would readily lead to the desired estimate. There-
fore, to complete the proof we just need to show (7.7). Notice that since Gpyf < Qg’N f, we
have

{x€ E; : Gpnf(x) > 24, N f(x) < yA} C U {x€E;;nQj: Gpnf(x) > 24, N§f(x) S yd}.
JjEN
Consequently, since w € A, to obtain (7.7) it is enough to show

(7.8) l(x € E5; 0 Q) Gowf(x) > 24, N§ f(x) < )| < CY?|Q)l.
To this end, consider u(y, ) := e’ \ f(y) and

dyd
Gr.1inf(x) = ([@) / L, 0.0 |1V v, 1) th)

(5

1

7 2 dydt
and G f() i= / / L0 0) |19y, 0] 0
0 B(x,t)

We have that Gpnf < Gp,1,jnf + Gpo,jn/ and that Gp ;v f(x) < A for all x € Q;. Indeed, notice
that for each j, there exists x; € R" \ O, such that d(x;, Q;) < 4diamQ);. Besides, if (y, ?) is such

that ¢ > é’(g;), x € Qj, and y € B(x, 1), then
lxj =yl < |xj— x| +|x =yl < 5\/ﬁ€(Qj)+t§ 11 +/nt.

Hence, for @ = 12 v/n and for all x € Q;, we have

dyd
G nf(0)? = %(L”/ Ly (3.0) [V (y, t)|2 f+1t

< [ 1a0.0[9,u0.0)
ro(x))
This and Chebychev’s inequality imply that

(7.9) x€ E},NQj:Genf(x)> 24, Npf(x) <yl

1
<I{v€ By 0 Grainf(0) > A< 5 / Gra i f(0dx

J

dydt 1
/ / / |9 u(y, D) fﬂ dx=: Graf () dx.
E;NQ; B(x,1) ELNQ;

To estimate the last integral above, for 0 < & < t’(g,)’

dyd
? y t_gPNf( X))’ <A

Q)
2 dyd
(7.10) Groef(x) = / / |9, u(y, t)}z Z+1t

& B(x.t

Besides, for 5 > 0, consider the region

Rg,((Qj),ﬁ(E;/l nQ)) := U {(y, 1) eR" x (Be, BUQ))) : Iy — x| < ;} ,

er*AﬁQj

and we set

(7.11) B(y) := ( Aéy) (1) )
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where A is as in (2.8). Then, we have that there exist 0 < 1< A < oo such that
(7.12) AP <ReBE-E  and  IBWE-Z < AKIIL,
for all £, € C"*! and almost every x € R”. Moreover, we have that

(7.13) Ou(y, t) = cli)/(tB(y) Vy.u(y, 1)).

Finally notice that

BUQ;)

Graef(X)* < /
Be

dydt
/ 1tV u(y, 1) fﬂ, forall ge',1).
-yl<g !

From this we immediately see
(7.14) / Groef(x)dx < / / 1V, u(y, O*dydt, forall e (7' 1).
E;/lmQj Rs,[(Qj)ﬁ(E;/lmQj)

Applying (7.12) and integration by parts in the last integral above, we have that

2 o
oo ¥atoPasars®e [[ i), 00 T idyds
REEIP(ES NQ)) RETFI(ES NG

1
-5/ 1BV 1) Ty ) + 1By i) - Bty )|y i
ﬂg’l(Qj)ﬁ(E;AﬂQj)

2

-c/[, [~ A B, uty. D)y D)~ ANGBOI sy DYy, 0] dydi
(R& (Qj)ﬁ(E;/{an) vt .t

e (1B .1 vy 3. 00D + B 5. - vy, . )| o
IR E Q)

where v, ; is the outer unit normal associated with the domain of integration.

Now, using (7.13) in the first integral, (7.12) in the second one, and the fact that |v,,(y, )| = 1,
we obtain

/ / 1V u(y, t)[*dy dt
RE’[(Qj)’ﬁ(E;Aan)

<], [~ Bty 0 w1 = 0,1 - )| dy s
Rb,[(Q_,)ﬁ(E;/lmQj)

+/ 20 ) tlvy,tu(y’ t)”u(y, t)ldo_
IRCIE(ES 0Q;)

= |- Ailu(y, n\*dy dt
' //Ra,f(Qj),ﬁ(E;/lﬂQj) t

Then, applying again integration by parts and Cauchy-Schwartz’s inequality, we conclude that

(7.15) / / 1V, u(y, D*dy dt
Rg'[(Qj)’ﬁ(E;AmQj)

/‘{)Ra,/’(Qj)ﬁ(E;AmQj)

1V y,u(y, Dlluly, Dldor.

+ /
(?Rs.[(Qj)ﬁ(E;/lmQj)

IA

ju(y, ) dor + / » 1V (v, Dllu(y, )ldor
(ma, (Qj)’ﬂ(E;/[mQj)

N

lu(y, H)*do + / IV, u(y, 1) dor.

/‘{)Ra,/’(Qj)ﬁ(E;AmQj) (ms,[(Qj)ﬁ(E;/lmQj)
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Now, observe that
: % n * 4
ORTCIP(ES N Q)) = {(y, neR dy,QiNE}) = 5 Be<t< Bf(Q,-)}

U{yeRr":d0. Qi n E;)) < &} x {Be)
U{yeRr":d0.0;n E;) < @)} x {BE0)}
= H(B) U T (e) x {Be} U T(L(Q)) x {BLQ)} .

and for every function /2 : R”*! — R

/ hdo = / hdo + / h(y, Be)dy + / h(y,Bt(Q;)) dy.
IRECE (Y n0)) HPB) T (&) TQ))

Besides, consider

BHONES N Q) = {0 eR"x 276, 0(Q)) : 27'd(y, E;; 1 Q)) < t <d(y, E} N Q))}

d(y,Q;NE"
and F(y,?) := w We have that
1 dO,Q;NE})
|[JF(y, | < m + ;—27’1 t#0, forae.yeR",

where JF denotes the Jacobian of F. Then, integrating in 8 € (1/2,1) and applying the coarea
formula

1 1
hdo-d,BS/ / h ec0p e o Ao dB
/é/mm Y Tl

< / / h(y, DI F(y, D)ldy dt
Qgs,f(Qj)(E;/lmQj)
1 dy,Q,NE?)
< // h(y, 1)~ (1 L0005 )dydt
Bs,(’(Qj)(E;AmQj) t t

dydt
<. ny.n =S,
Bg’((Qj)(E;/[mQj) t

On the other hand, doing the change of variables Se = ¢, we have

1 &
1 dydt
/ / h(y, Be)dy dB = / - / h(y, Ddy dt < / / h(y, 24
A 5 € JT) *(E5,0Q)) t

where
B E; N Q) = {(n.1) eR" X 27 le ) : d(y,E;) N Q) < 2t}.
Analogously
1
dydt
[ wopeopavass [, wen®
3 Jrwey BC)(E;n0)) 4
where

BUOE;, N Q) = {0 eR"x27'€Q)),6(Q)) : d(y, E}; N Q)) < 2t} .
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Therefore, applying the previous estimates with A(y,t) = |u(y, D%, and h(y, 1) = [tV u(y, 1%, and
also (7.14) and (7.15), we have

1
(7.16) / Gronf(xVdx = 2 / / Groef(xPdxdp
Eang; 3 7aNQj

1 1
< lu(y, t)*do dp + / / |6V, u(y, H*do dps
/1 /aRs,é(Q ')ﬁ(E* nQ;) 1 Jarste v),/j(E* o) Y

y dt y dt
/ / lu(y, D> —— / / |6V, u(y, D> ——
B(E;,NQ;) B(E,NQ))

= I+1l,

where
B(E;, N Q)) = B(E;; N Q) UBC(ES n Q) uB~@NE;, NnQ).

Hence,

dydt dydt
s [ et [ (. P 2L
B(E;,NQ;) f BC(E; nQ;))

dydt
+ // u(y, f)lzL =11+ b+,
BSI(Q]‘)(E;AQQJ,) t

and analogously /1 < 1y + I, + I13. We start estimating /;. For every (y,7) € 8°(E}, N Q)), there
exists yo € E}) N Q; such that y € B(yo,2t). Besides, since yo € E}; N Q;, from the definition of
E;",/l we have that |[E,, N B(yo, 2t)| > Ct" and then |E,, N B(y,4t)| > Ct". Thus, we have for « > 4,

dy dt € dy dx dt
I < / / / Gy, HPdx 2 / / / Gy, pp L
B(E;,NQ)) J EyanB(y.41) ! ¢ J8Q,NE, 1 J B(x,41) vt
€ dxdt
<[ [ Mt <o
£ Q/'ﬂE),l !

The second inequality follows applying Fubini and noticing that (y,7) € B°(E}, N Q) and x €
%Q))
>

E,) N B(y,4t) imply that x € E,y N 8Q;,y € B(x,4r),and t € (%, s), where we recall that € <
Similarly, for 11},

ydt & dy dt
1n < / / / (9 ur, P < / / / ¥ty 2L
B(E,NQ)) J EyanBly4) 80;0Ey J5 JB(xan t

Now, consider the elliptic operator Zu(y, 1) = —divy, (B(y)Vy,,u(y, t)), (where B is the matrix de-
fined in (7.11)). Besides, for each x € 8Q; N E,,, cover the truncated cone [ze4(x) = {(y,0) €

R" X (g/2,¢€) : |x — y| < 4t} by dyadic cubes R; C Rﬁ“, of side length £, 16( <{s < 8( Then,

the family {2R;};eny has control overlap. Hence since Lu =0, apply Caccioppoli’s inequality and
obtain for k > 5

dydt
/ / T P < 12 / IV uly, 0dy di
B(x,4t
1 ) 1 2e )
< lu(y, 1)|*d, dts/ / lu(y, DI dy dt
g+l iz:;//zR,- O dy R R BN

2e
/ " di N§f(x)? < Npf(x).

~

8"+1
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Consequently, 11} < fsg,n E. Np f(x)2 dx < |0 jl(y/l)z. Arguing in the same way, we obtain that

L 5 1Qjl(yA)* and I, < 1Qjl(yA)*.

Finally, for /5 and //3, we decompose R” \ (EZ an 0)) = /1 U R"\ Qj), (which is an open
set since the cubes Q; are closed and 0;‘, 4 18 open) into a famlly of Whitney balls {B(xx, 7))},
such that (g B(xk, 1) = Oi; 2 U R"\ Q)), and for some constants 0 < ¢y < ¢ < 1 and ¢3 € N,
c1d(x, Ey) N Q)) < rp < cod(xy, E) N Q)), and Y w0 1B(y.r(X) < c3, for all x € R”. Besides,
consider the set

= {k : d(x. E;; 1 Q) < 2(1 - c2) ™' €(Q))).
We are going to see that

(7.17) BNE;, 0 Q) < | B ro) x [y = /2, re(er" + D).

kek
Indeed, for (y,7) € B*C)(E;, N Q)), we have that /2 < t < £(Q;), y € R" \ (E}; N @), and
(7.18) 27'd(y, E5y 0 Q) <t <d(y,E;; N Q).

Then, there exists k such that y € B(xg, rx). We see that k € K and rk(cgl -1)/2<t< rk(c]_l + 1).
On the one hand, we have

dy,Ey, N Q) < |y — xil +d(xw, Eyy N Q)) < 1 + ci'ne= 1+ eHn,

and, on the other hand,
d(y, Eyy 0 Q)) = d(xi, Eyy 0 Q) = Iy = xil = ey =) = (63" = D

Therefore, by (7.18), we have that ¢ € [ri(c; L_1)/2, rk(cl‘1 + 1)]. From this and recalling that
t < {(Q;), we have

dx, Ey, N Q) <y —xl +d(y, Ey; N Q)) < r +26(Q))

2
< 1on0) <201 - e ey,

(7 =D
which in turn gives us that k € K. Moreover, note that for every k € K, we have that
(7.19) B(x, 1) € C(c2)Q), with  C(cp) :=4(1 - Cz)_l(Cz +1)+ 1.

Indeed, note that since E;A N Q; C Q;then d(x, Q) < d(xk,E;A N Q;). Hence, for xo € B(xx, rx)
and X0, being the center of Q;, we have,

o1 (Q;)
X0 —x0,lo0 < X0 = Xkloo +1Xk— X0 lo0 < Fi+ <2(1 —e) !+ 2> Q) < 2J .

: *
Now, since Ey 1 C E,, then

2co ;
ci(l-c2)”’

which implies that, for x > - (zlcfcz) there exists X € Q; N E,,; such that [x — x| < «t, then

d(xp, QN Eyp) < d(xi, Efy 0 Q) < 7' <

d
Lo w00PD < [ P < N < 0
B( ) ) ! BOxkt)

xk,qt

Therefore, by (7.19), we have

Vk(Cl +1) rk(Cl +1) dvy dt
24, 24y

; C_. luCy, D" —— < /”1 / lu(y, )|

() /B(Xk ") Z (-1 B(x,. 262 1) i+l
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SO A <o) || B | <101y

kek kek

Similarly, arguing as in the estimate of //; (taking « larger if necessary), we conclude that /15 <
|0 jl(y/l)z. Gathering the estimates obtained for I and /7 gives us that

/ Gro..f(x)2dx < ClQjl(y),
E;/lmQj

with C independent of &. Now, recall the definitions of Gp, and Gp, . in (7.9) and (7.10) respec-
tively. Then, let £ — 0 and obtain

/ Graf(x)*dx < C|Q;l(y)>.
E;Aan

This, together with (7.9), yields (7.8).
In order to complete the proof of Proposition 7.2, we need to establish part (b). The argument

follows the lines of [19, Theorem 6.1] and the proof of part (a), so we only sketch the main changes.
Consider, for @ > 1, for each N > 1, Ky as in (7.6) and

dyd
o) = ( /] 00w f)| tfﬂt)

we write Gy,vy when a = 1. Notice that supp Gy; HA f € B(O, (e + 1)N) and much as before

n l
IGENSllrowy < Cllfll2@nN2w(B(O, (@ + 1N))» < co.

Hence, it is enough to show part (b) with Gy in place of Gy with constants uniform in N. We
follow the proof of part (a), replacing QP ~ and Np with G} HN and Ny, respectively, (Gp v with Gp x

when a = 1). We also need to replace u(y, r) with v(y, 1) := e~ ’L f() and 1V, ;u(y, y) with tVyv(y, 1).
We also use the ellipticity of the matrix A (see (2.7)) instead of the properties of the block matrix B
defined in (7.11). Then, we have that

[ Gusererars [[ - weopavars [[ mwoiorayai=T+ i
ELNQ; B(E;,NQ)) B(E},NQ;)

From here the proof proceeds much as the proof of part (a): term I is estimated as term /, and term
11 as term /1 but, in this case, as in the proof of [19, Theorem 6.1], we need to use the following
parabolic Caccioppoli inequality (see [19, Lemma 2.8]):

Lemma 7.20. Suppose 0,f = —Lf in I(xo, ty), where I(xo, to) = B(xo,r) X [t — cr?, tp], to > 4er?
and ¢ > 0. Then, there exists C = C(A, A, ¢) > 0 such that

/ / IV, f(x, ) dx dt <5 / If (x, £)[>dx dt.
1 (x0,t0) L (x0,t0)

O

Remark 7.21. Following the explanation of [23, Remark 4.22], one can see that Proposition 7.2
holds for all functions f € LY(w) with w € Ay, and g € W,,(p—(L), p+(L)). Details are left to the
interested reader.
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7.4. Characterization of the weighted Hardy spaces associated with Ny and Np. The proof of
Theorem 3.11 requires several steps. The first one consists in obtaining that the L'(w) norms of the
non-tangential maximal functions applied to (w, p, &, M) — molecules are uniformly controlled.

Proposition 7.22. Let w € A, let p € W, (p_(L), p+(L)), € > 0, and M € N such that M >

% (rw - ﬁ), and let m be a (w, p, e, M) — molecule. There hold:

(@) ”NHm”Ll(W) + HNPm”Ll(w) <C.
(b) For all f < HlL,p,S,M(W); ”NHfHLl(w) + ”NPf”Ll(w) < ”f”Hi,p.s,M(W)'

Proof. Assuming part (a), the proof of part (b) is similar to that of Proposition 5.3, part (b), but
applying Proposition 7.1 instead of [23, Theorems 1.12 and 1.13].

Let us prove part (a). Fix w € Aw, p € W, (p-(L), p+(L)), € > 0, M € N such that M >
% (rw — ﬁ . Then, take m a (w, p, &, M) — molecule, and Q a cube associated with m. Besides
we fix po, ¢, and 7 with p_(L) < py < min{2, p} < max{2,p} < g < p(L) and 7 > r,, so that
weAr NRH (

q
P

PO pPo

)fandM> 5 (?— i).

We start by dealing with Ny. For every x € R", we have

1

d 2
Ngm(x) < sup / |e_’2Lm(z)|27f
(DEl(x), 0<t<E(Q) J B(y.0) L
1

d-\?
+ sup / |e"2Lm(z)I2fZ =: Fym(x) + Fom(x).
B "

O.0DEl(x), 1>£(Q)

Besides, recalling the notation introduced in (3.1), we can write m = ) .., mlcyg) = > _js; M.
Hence,

(723)  [IFimllpgy $ > Iheg Fimillpg + > > MejgpFimillgy =2 > L+ > I

i>1 i1 j>4 i>1 >l j4
To estimate /;, we apply Holder’s inequality, Proposition 7.1, and (3.3) for k = 0:
1 1 .
(7.24) I; S w(@)7 [INumillrowy S ()P Imillzrawy < 27

As for I};, note that for every x € C;(Q;), 0 <t < £(Q), and (y,1) € I'(x), we have that B(y,?) C
27*20;\ 29-10;. Then, applying that {e "L}, € Foo(LP® — L2) and Lemma 4.6, we get

%
_p2 dz
Fim(x) < | sup / le thi(Z)|27
0<1=0(Q) J2i*10\2i-10; 4
402

< sup £ e 2 |Imyllpe@n S w(Q) e
0<1<{(Q)

—c4Jt

Therefore, taking the norm in L'(w) in the previous expression and using that w € A.,, we obtain
that I;; < e**"". This, (7.23), and (7.24) yield [|F1ml|1,, < C.

We turn now to estimate the norm in L!'(w) of Fom. Considering Bg := (I — e‘[(Q)ZL)M ,Ag =
I - Bg, and m := (£(Q)*L)"™m, and noticing that we can write m = Y. fitlcg) =0 D g M-
Then, for every x € R”,

M
m(x) = Bom(x) + Agm(x) = » (BQmi(x) +)  Crm(kb(Q* L™ e_ke(Q)2L1T1,-(x)> .

i>1 k=1
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Besides, proceeding as in (7.24) and applying the fact that, for every 1 < k < M, the operators
(kE(Q)*L)M e +UQPL and By are bounded on LP(w) (see [6]), we have that

M
CLPCONL] ~
(7.25) Z (HlinFQBQm[HLl(W) + Z H116Q,~F2(kf(Q)2L)Me kt(Q) LmiHUm) <C.
k=1

i>1

Next, consider 6y := VM + 1 and note that, for every j > 4,i > 1, x € C;j(Q)), €{(Q)/Ou <
t < 27730(0) /6w, and (y, Oy1) € T(x), we have that B(y, Oy1) C 2/*2Q; \ 2/~ Q;. Therefore, since
{e‘tzL}Do € Foo(LP* —L*) and by the LPO(R™) — LPO(R") off-diagonal estimates satisfied by the family
{e"zLBQ}t>o (see (5.12)), applying [23, Lemma 2.1] (see also [18, Lemma 2.3]), and Lemma 4.6,
we have

oM » -
¢ _n _ 4eo? ¢ .
FyBomi(x) < [[millzro ) sup <(Q)> fwe™ 2+ sup ((Q)> £ 7o
27300
>

-3 t
1), 23
oy ISy, t

oM
< w(Q)! 2—i(2M+g)2—j<2M+%) )

Then, using (2.5), we easily obtain that

(7.26) ;00 FaBomillpg,y < 27 @M +9277 (2044 75n)

forall j >4 andi > 1.

Note now that, for every j > 4,i > 1, x € C;(Q)), €(Q)/ V2 <t < 27736(Q)/ V2, and (y, V2t) €
['(x), we have that B(y, V2¢) ¢ 2/+2Q;\ 271 Q;. Then, proceeding as in the estimate of F,Bgm;, but
using this time the off-diagonal estimates satisfied by the family {tzLe"zL}

satisfied by {e_tzLBQ}»o, we have that, for every 1 <k < M,

~0 Instead of the ones

Fy ((ke@PLMe™ @) ()
< i () (!
i O ﬁt)el"(x),»% 2+ kt(Q)? B(y, V21)

. f(Q) 2M o _C4j+i[é(Q)2 f(Q) 2M o
< Imillzro gy sup — t he 2 4+ sup —= )
eIl

4 YN0 ! EamiC)
V2T W2 V2

s W(Qi)_l 2—i(2M+€)2_j<2M+%) .

L2 + kE(Q)?)LyM e~ (PRI L, (Z)‘Z CZ:) 2

Then, [|1c,g)FaAomll gy < 27@M927 (244557) forall j > 4 and i > 1. This, (7.26), and
(7.25), and splitting the norm of Fom as in (7.23), allow us to conclude that [|[Fom||i(,, < C.

We now consider Np. Note that, in the proof of Proposition 7.1, part (b), (and following the no-
tation introduced there with f = m) we saw that Npm(x) < mpm(x) + Ngm(x). Then, since we have
already proved that [[Ngml|1(,, < C, we just need to consider mpm. Applying, the subordination

1
4
mpm(x) < sup / u
0

formula (6.2), we have that
2 d
( / (et — e—f2L>m<z>|2,f)
el (x) B(y.1) 4

(o] t2 d M
+ sup / eyt (/ (= e_tzL)m(z)Izrf) =1+l
Gel(x) J B(y,1) t u

D=
D=

du
u

D=
‘ U
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Note that /7 is bounded by the term /1 (with f = m) in the proof of Proposition 7.1, part (b). Hence,
applying [23, Proposition 3.2] and Proposition 5.3, part (a), we get

(9]

o) ~ 4 ~
S / e SH " Fll i < / ue dullSumlpi, < C,
i i

recall the definition of S;‘fl‘/;’ in (2.13) and (2.14).

Next, we estimate /. We shall use the notation introduced before for m;, m;, By, and Ag, and
also in (3.1). Proceeding as in the estimate of the term / (with f = m) in the proof of Proposition
7.1, part (b), we have

Po

1
= P
—c4l a2 2 dr ’ '
(7.27) 1<) e sup FLe Fm@)lP - | dz
B(y,2/“t) r

o1 (e (x) -

. a2 %
.
<> e sup ][ < / |r2Le"2Lm(z>|2> dz
(,)el(x),0<1<(0) B(,2H11) 0 r

>1

0 m

i o dr\ ’
+ Z P sup ][ / IrZLe_rsz(z)lzf dz
HEL(x),>6(Q) \J B(y,2!+11) - r

>1 2

=: Z e_C4l (Fum(x) + Fz,lm(x)) .

>1

We first estimate F'; ym(x). Note that considering the following vertical square functions

1
«o) dr\ 2
guim(x) = (/ |r2Le"2Lm(x)|2r> and
0 r

1

00 2\ 2M 2
gH,Zﬁ:[(x) = (/ <€(Q) > |(r2L)M+le—r2LﬁjI(x)|2dr> .
(9]

r2 r
We have that

1

Po
(7.28) Fim(x) < sup <][ |gH,1m<z)|P°dz)
,0€el(x),0<t<8(Q) \J B(y,2!+11)

1

~ Po ~
+ sup (][ ler2m(2)|” 0d2> = F{ m(x) + F{ m(x).
(vHEM@).0<1<6(Q) \J B(y2+11)

Applying Holder’s inequality, (2.5) and by the boundedness on L”(w) of the maximal operator M,
(recall that w € A » ) and the vertical square function gy 1 (see [7]), and by (3.3), we have that
Po

1 o
1030, FL i 1y S Marea o Mg (@HIMDIL1 0y S W' 0T IMpy (81111l Loy < 277277,
Now observe that foreveryi > 1, j > 1+ 3,x € C;(Q;),0 <t < {(Q), and (y, 1) € I'(x) we have that
B(y,2"*1t) c 2/*2Q; \ 2/-1Q;. Then, applying Holder’s inequality, Minkowski’s integral inequality,

the fact that w € RH < ) and {rzLe"zL}r>0 € F(LP° — L7), and Lemma 4.6, we obtain that

q
p

, 1
| lc,-(Q,-)FilmiHLl(w) S w2 ON T IMypy(Lyi2 251 0,811 M) L2 ()

. 1 : : _1
S WM QN Ly g 0,801 MillLrery < W ORI 0474 1y 9001 0,811 Ml Loy
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1
6O ivigor ! N
j j -1 _eao? o o dr B
S wM QIR QT Il o ey (/ e il ) < e,
0

,

Therefore,

(7.29) IF iy S > Mg, FLmullzgn + > > ejopFi millpgy < 27
i1 izl j2I+3

Similarly, noticing that gg 2, (disregarding the factor (L(Q)*/r*)*M

bounded on L”(w) (see [7]), we get

since it is controlled by one), is

~ 1 ~ o
[ Ly, F1 1 w(2' Q)7 My (gr2)lLrgn < 27277,

HL](W) S
and, since {(F2L)M*1e L}, o € F(LP° — L9), proceeding as before,

||1Cj(Qi)F12J]TTiHL1(w)

1
oM - 3
- ~ 1 © /P(0)? _ 402 on o dr
$W(2]+1Qi)|2]+1Qi| q||ml.||Lp0(R,,) (/ ( (Q) > e 2, ot )
14(9)

r? r
<o) (2M *70 —n?) y-i2M+e)

Hence, splitting || F7 ||, as in (7.29), and by (7.28), we obtain that [|F1 |, < 2.

Let us turn to the estimate of F, ;m. Consider the vertical square function

N am 2
aun ) = < /. <“rQ)) |(r2L)M+1e"2LrTw(x)|2‘i”> ,

V2
and note that

(7.30)
1
~ Po
IF2milpion < >3 | || Tesen sup (][ |gH,tm,-(z>|f’°dz)
i~ j>1 GDEF(),L(Q)<t=2771-4¢(Qy) W B(p.2M1n) L(w)
1
~ Po
+1|1c0 sup (][ |9H,tmi(Z)|p0dZ>
(NEC(),1>207=4¢(Q) W B2 Li(w)
. 1 ~ 2 -~
= Z Z (chj(Qf)FZ,lmi”Ll w T ||1Cj(Qi)F2,lmi”L1(w))
izl j>1
< Z ||12/+3Q,-Fi1fﬁi”Ll(w) + Z Z ||1C,~(Q,-)F%,1“~1i||Ll(w)
i>1 i>1 j2I+3
2 ~ 2~
+ ) g, F3 lliign + > Y Ie)F3 il
i>1 >l j2I+3

Next, for every £(Q) < t < V2r we have that om, is controlled by gy (where gy is defined in the
proof of Proposition 7.1, part ) and gy is bounded on L”(w) (see [7]), hence, fora = 1, 2,

~ 1 - 1 .
| Lo, FS i < w'O)7 My (gu)lILrawy € w0 IMillzoqe < 217277,

HL'(W)

We observe now that foreveryi > 1, j > I+3,x € C;(Q)), {(Q) <t < %{—jf(Qi), and (y, 1) € I'(x), we

have that B(y, 2/*1¢) ¢ 2/+2Q;\ 2/~ ;. Therefore, arguing as in the estimate of HIC,«(QI.)F} lmiHLl(W)
and ||1¢;0) F7 M|, (s We have that

~ ; L ~ i —j(2M+L —nF
|1c;00F2,m| Ly S W@ OV IMpy(Lpi2 91051 9,810 Tl p ey < 27 M2 i(oms; nr),
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and

2~y r

r
V2

1

_ : o ® (O™ on(1-1yar\®
e < W2 QIRP QI i llm e </ ( > Sl

< pclp=iCM+e)y~] (2M+%—n?) '

Consequently, by (7.30) we conclude that |[F2 ml[z1(,) < 2/ Then, in view of (7.27), this and the
estimate obtained for ||y ym||z1(,, imply that ||[/||,1(,, < C, which finishes the proof.

O
Hence, we are ready to prove the next proposition which easily implies Theorem 3.11.
Proposition 7.31. Let w € Aw, p € W, (p_(L), p+(L)), M € N such that M > 5 (rw - %), and
g0 =2M + 2+ 5 — ryn, there hold

(a) H}\,H,p(w) = H}SH’p(w) = Hi,p’go’M(w), with equivalent norms.

(b) H}Vp’p(w) = ngp,p(w) = HlL,p’SO’M(w), with equivalent norms.

Proof. Fix w € Aw, p € Wy(p_(L), p+(L)), M € N such that M > % (r,, — 1), and &g = 2M + 2 +
n
7~ rywhn.

In order to prove part (a), note that for f € HL .20, (W), Proposition 7.22, part (b) yields that
My, o = NS lsy S 0o

Therefore, since in particular f € L”(w), we have that f € H/lv p(w).

Take now f € H/l\/H, »(W). Lemma 4.4, part (), Proposition 7.2, part (b), and Remark 7.21 imply
ISt L1 o) S NIGHS L1y S INES L1

Then f € H}SH’ p(w). Consequently, from Proposition 5.1, part (a), f € HlL’p,so’ »(w) and

||f||H1L.p,£0’M(W) < ||f|IH§H,I:(W) < ”f“H/‘VH,p(w)

As for part (b), take f € ]H[i p.50,u(W) and apply Proposition 7.22, part (b), to obtain
by, o = INR Al < 10y, o
Hence, since again f € L”(w), we have that f € H/lvp, p(w).
Finally, notice that for f € H/lvp, (W) Proposition 7.2, part (a), and Remark 7.21 imply that
G fllLiowy S NPl

Therefore, f € ngmp(w). Then, applying Proposition 6.1, part (c), we conclude that

Il o S Wby ooy S WMy -
and f € Hy . (W)
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