
WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS.

PART I: WEIGHTED NORM INEQUALITIES FOR CONICAL SQUARE FUNCTIONS

JOSÉ MARÍA MARTELL AND CRUZ PRISUELOS-ARRIBAS

Abstract. This is the first part of a series of three articles. In this paper, we obtain weighted norm in-
equalities for different conical square functions associated with the Heat and the Poisson semigroups
generated by a second order divergence form elliptic operator with bounded complex coefficients.
We find classes of Muckenhoupt weights where the square functions are comparable and/or bounded.
These classes are natural from the point of view of the ranges where the unweighted estimates hold.
In doing that, we obtain sharp weighted change of angle formulas which allow us to compare conical
square functions with different cone apertures in weighted Lebesgue spaces. A key ingredient in our
proofs is a generalization of the Carleson measure condition which is more natural when estimating
the square functions below p = 2.
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1. Introduction

In the last decade, after the solution of the Kato conjecture [3], there has been a big interest in
developing a Calderón-Zygmund theory appropriate for the operators (functional calculus, Riesz
transforms, square functions, etc.) that appear naturally associated with divergence form ellip-
tic operators with complex bounded coefficients. In general, these operators cease to be classical
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2 JOSÉ MARÍA MARTELL AND CRUZ PRISUELOS-ARRIBAS

Calderón-Zygmund operators, as their kernels do not have the required decay or smoothness. This
causes, in particular, that their range of boundedness may no longer be the interval (1,∞) but some
proper (small) bounded subinterval containing p = 2. Auscher, in a very nice monograph ([1]), ob-
tained a new Calderón-Zygmund theory adapted to singular “non-integral” operators arising from
elliptic operators (see [1] for historic remarks and references). A key ingredient in the method is
and idea used systematically in [11] (see also [26]): in place of using kernels, which do not have
reasonable behavior, there is a representation of the operators in question in terms of the Heat semi-
group {e−t L}t>0 (or its gradient) that has some integral decay measured in terms of the so-called
“off-diagonal” or Gaffney type estimates. The bottom line of [1] is that the operators under con-
sideration are bounded precisely in the ranges where either the semigroup or its gradient has a nice
behavior.

After Auscher’s fundamental monograph there has been quite a number of papers whose goal
is to continue with the development of a generalized Calderón-Zygmund theory. We shall mention
some that are relevant for the goal of the present work. Auscher and the first named author of
this paper wrote a series of papers [5, 6, 7] where the weighted theory was developed and where
some appropriate classes of Muckenhoupt weights were found. While vertical square functions
(i.e., usual Littlewood-Paley-Stein functionals) behave as expected with and without weights (see,
resp., [1, 7]), conical square functions have better ranges of boundedness in the unweighted case,
even going beyond the intervals where the semigroup or its gradient has a nice behavior, see [4].

In harmonic analysis, and more in particular in the so-called Calderón-Zygmund theory, where
the typical range of Lp-boundedness is the interval (1,∞), the natural endpoint spaces are the Hardy
space H1(Rn) for p = 1 (Hp(Rn) for p < 1) and the space of bounded mean oscillation functions
BMO(Rn) for p = ∞. For instance, it is well-known that the classical Riesz transform (associated
with the Laplacian) is bounded from H1(Rn) to L1(Rn), and it becomes natural to study whether
Riesz transforms associated with general elliptic operators behave well in Hardy spaces. Classical
real-variable Hardy spaces in Rn have been deeply studied since the fundamental paper of Stein
and Weiss, [35], on systems of conjugate harmonic functions. The pioneering paper of Feffer-
man and Stein [20] showed that, besides the intimate relation between Hardy spaces and harmonic
functions, Hardy spaces can be characterized in terms of general approximations of the identity
or by general conical square functions (i.e., area functionals of Lusin type). This eventually led
to some developments of these spaces without using their connection with the Laplacian, which
could be used for general elliptic operators. However, this is not the case: if we had that the associ-
ated Riesz transform maps continuously H1(Rn) into L1(Rn), then the interpolation with the L2(Rn)
boundedness (which is the Kato conjecture) would imply boundedness on Lp(Rn) for 1 < p < 2
violating some of the results in [1] (see [27] for more details). In the same way as real-variable
Hardy spaces were originally defined in connection with the Laplacian, in the last decade there
has been a big interest in studying Hardy and other related spaces adapted to elliptic operators, see
[8, 9, 10, 12, 13, 14, 18, 19, 25, 27, 28] and the references therein. Among them we highlight
[27, 28] where Hardy spaces, BMO, and some other related spaces adapted to general divergence
form elliptic operators were successfully developed.

The goal of this series of papers is to continue with the development of generalized Calderón-
Zygmund theory for elliptic operators and study the corresponding weighted Hardy spaces. Clas-
sical (or Laplacian-adapted) weighted Hardy spaces were first introduced by J. Garcı́a-Cuerva [21]
(see also [36]). Our aim is to present a satisfactory Hardy space theory for general elliptic operators
with bounded complex coefficients complementing the results in [27, 28]. Our spaces generalize
those in [12, 14, 30] in the Euclidean setting where the adapted weighted Hardy spaces are associ-
ated with a friendlier class of non-negative self-adjoint operators whose heat kernel satisfy Gaussian
upper bounds. We also generalize [13] by considering molecules living in weighted spaces and also
by being able to fully recover [27, 28].
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In the first part of the series, which is the present paper, we study the weighted norm inequalities
for conical square functions. We establish boundedness and comparability in weighted Lebesgue
spaces of different square functions using the Heat and Poisson semigroups. In the second part,
[31], we shall use these square functions to define several weighted Hardy spaces H1

L(w). We show
that they are one and the same in view of the fact that the square functions are comparable in the
corresponding weighted spaces. We also show that Hardy spaces can be equivalently defined using
molecules and/or non-tangential maximal functions. The study of Hp

L(w) for other values of p is in
the third part [32].

In contrast with [27, 28], where some of the unweighted estimates for the conical square function
are taken off-the-shelf from [1], our first difficulty consists in proving that conical square functions
are bounded on weighted spaces for some classes of weights “adapted” to the unweighted range
of boundedness. This was left open in [4] since some of the existing arguments naturally split the
boundedness into the cases p < 2 and p > 2. That procedure, as learned from [7], is inefficient
when adding weights: to obtain the right class of weights one has to be able to work with the
whole interval where the unweighted estimates hold. Splitting the interval would lead to some
distortion in the class of weights. To illustrate this, let us recall that in [4] it is shown that the square
function G0,H , defined in (1.2) below, is bounded on Lp(Rn) for every p−(L) < p < ∞ where p−(L),
introduced in (1.7) below, is strictly smaller than 2. Using the approach in [4], and “stepping” at
p = 2, this square function is bounded on Lp(w) for every 2 < p < ∞ and w ∈ Ap/2 (see the
precise definitions below). However, as we shall see in Theorem 1.12, one has boundedness on
Lp(w) for every p−(L) < p < ∞ and w ∈ Ap/p−(L), hence in a bigger range and a wider class of
weights since p−(L) < 2. Moreover, the obtained class of weights is the natural one adapted to the
unweighted range (p−(L),∞), in view of the version of the Rubio de Francia extrapolation theorem
in [5, Theorem 4.9] or [16, Theorem 3.31]. See also [14, 30] for related issues. The goal of the
present paper is to present a library of weighted norm inequalities for the different square functions
that can be defined using the Heat or the Poisson semigroup. We look for two different types of
estimates: the first type of estimates will give us comparison among the square functions, and the
second boundedness. The main idea is to show that all these square functions can be controlled by
either SH or GH (see below), and independently to obtain that these are bounded on Lp(w) for some
range of p’s and for some class of Muckenhoupt weights.

To be more precise let us set our background hypotheses. Let A be an n×n matrix of complex and
L∞-valued coefficients defined on Rn. We assume that this matrix satisfies the following ellipticity
(or “accretivity”) condition: there exist 0 < λ ≤ Λ < ∞ such that

λ |ξ|2 ≤ Re A(x) ξ · ξ̄ and |A(x) ξ · ζ̄ | ≤ Λ |ξ| |ζ |,

for all ξ, ζ ∈ Cn and almost every x ∈ Rn. We have used the notation ξ · ζ = ξ1 ζ1 + · · · + ξn ζn
and therefore ξ · ζ̄ is the usual inner product in Cn. Note that then A(x) ξ · ζ̄ =

∑
j,k a j,k(x) ξk ζ̄ j.

Associated with this matrix we define the second order divergence form elliptic operator

L f = − div(A∇ f ),

which is understood in the standard weak sense as a maximal-accretive operator on L2(Rn, dx) with
domainD(L) by means of a sesquilinear form.

The operator −L generates a C0-semigroup, {e−tL}t>0, of contractions on L2(Rn) which is called
the Heat semigroup. Using this semigroup and the corresponding Poisson semigroup, {e−t

√
L}t>0,

one can define different conical square functions which all have an expression of the form

Q f (x) =

(∫∫
Γ(x)
|Tt f (y)|2

dy dt
tn+1

) 1
2

, x ∈ Rn.

where Γ(x) := {(y, t) ∈ Rn+1
+ : |x − y| < t} denotes the cone (of aperture 1) with vertex at x ∈ Rn (see

Section 3 for more details including a discussion about the use of cones with different apertures).
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More precisely, we introduce the following conical square functions written in terms of the Heat
semigroup, {e−tL}t>0, (hence the subscript H): for every m ∈ N,

Sm,H f (x) =

(∫∫
Γ(x)
|(t2L)me−t2L f (y)|2

dy dt
tn+1

) 1
2

,(1.1)

and, for every m ∈ N0 := N ∪ {0},

Gm,H f (x) =

(∫∫
Γ(x)
|t∇y(t2L)me−t2L f (y)|2

dy dt
tn+1

) 1
2

,(1.2)

Gm,H f (x) =

(∫∫
Γ(x)
|t∇y,t(t2L)me−t2L f (y)|2

dy dt
tn+1

) 1
2

.(1.3)

In the same manner, let us consider conical square functions associated with the Poisson semi-
group, {e−t

√
L}t>0, (hence the subscript P): given K ∈ N,

SK,P f (x) =

(∫∫
Γ(x)
|(t
√

L )2Ke−t
√

L f (y)|2
dy dt
tn+1

) 1
2

,(1.4)

and for every K ∈ N0,

GK,P f (x) =

(∫∫
Γ(x)
|t∇y(t

√
L )2Ke−t

√
L f (y)|2

dy dt
tn+1

) 1
2

,(1.5)

GK,P f (x) =

(∫∫
Γ(x)
|t∇y,t(t

√
L )2Ke−t

√
L f (y)|2

dy dt
tn+1

) 1
2

.(1.6)

Corresponding to the case m = 0 or K = 0, we simply write GH f := G0,H f , GH f := G0,H f ,
GP f := G0,P f , and GP f := G0,P f . Besides, we set SH f := S1,H f , and SP f := S1,P f .

In order to give the statements of our main results we need to introduce some notation. As in
[1] and [6], we denote by (p−(L), p+(L)) the maximal open interval on which the Heat semigroup,
{e−tL}t>0, is uniformly bounded on Lp(Rn):

p−(L) := inf
{

p ∈ (1,∞) : sup
t>0
‖e−t2L‖Lp(Rn)→Lp(Rn) < ∞

}
,(1.7)

p+(L) := sup
{

p ∈ (1,∞) : sup
t>0
‖e−t2L‖Lp(Rn)→Lp(Rn) < ∞

}
.(1.8)

Note that in place of the semigroup {e−tL}t>0 we are using its rescaling {e−t2L}t>0. We do so since
all the “Heat” square functions are written using the latter and also because in the context of the
off-diagonal estimates discussed below it will simplify some computations.

Besides, for every K ∈ N0 let us set

p+(L)K,∗ :=


p+(L) n

n − (2K + 1) p+(L)
, if (2K + 1) p+(L) < n,

∞, if (2K + 1) p+(L) ≥ n.

Corresponding to the case K = 0, we write p+(L)∗ := p+(L)0,∗.
We shall work with Muckenhoupt weights, w, which are locally integrable positive functions.

We say that a weight w ∈ A1 if, for every ball B ⊂ Rn, there holds

−

∫
B

w(x) dx ≤ Cw(y), for a.e. y ∈ B,
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or, equivalently, Mw ≤ C w a.e., where M denotes the Hardy-Littlewood maximal operator over
balls in Rn. For each 1 < p < ∞, we say that w ∈ Ap if it satisfies(

−

∫
B

w(x) dx
)(
−

∫
B

w(x)1−p′ dx
)p−1

≤ C, ∀B ⊂ Rn.

In the previous expression p′ = p/(p − 1) denotes the conjugate exponent of p. The reverse Hölder
classes are defined as follows: for each 1 < s < ∞, w ∈ RHs if, for every ball B ⊂ Rn, we have(

−

∫
B

w(x)s dx
) 1

s

≤ C−
∫

B
w(x) dx.

For s = ∞, w ∈ RH∞ provided that there exists a constant C such that for every ball B ⊂ Rn

w(y) ≤ C−
∫

B
w(x) dx, for a.e. y ∈ B.

Notice that we have excluded the case q = 1 since the class RH1 consists of all weights, and that is
the way RH1 is understood in what follows.

We sum up some of the properties of these classes in the following result, see for instance [17],
[23], or [24].

Proposition 1.9.

(i) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q < ∞.

(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.

(iii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq.

(iv) If w ∈ RHs, 1 < s < ∞, then there exists s < r < ∞ such that w ∈ RHr.

(v) A∞ =
⋃

1≤p<∞

Ap =
⋃

1<s≤∞

RHs.

(vi) If 1 < p < ∞, w ∈ Ap if and only if w1−p′ ∈ Ap′ .

(vii) For every 1 < p < ∞, w ∈ Ap if and only ifM is bounded on Lp(w). Also, w ∈ A1 if and
only ifM is bounded from L1(w) into L1,∞(w).

For a weight w ∈ A∞, define

rw := inf{1 ≤ r < ∞ : w ∈ Ar}, sw := inf{1 ≤ s < ∞ : w ∈ RHs′}.(1.10)

Notice that according to our definition sw is the conjugated exponent of the one defined in [5,
Lemma 4.1]. Given 0 ≤ p0 < q0 ≤ ∞, w ∈ A∞, and as in [5, Lemma 4.1], we have

Ww(p0, q0) :=
{

p : p0 < p < q0,w ∈ A p
p0
∩ RH( q0

p

)′} =

(
p0rw,

q0

sw

)
.(1.11)

If p0 = 0 and q0 < ∞ it is understood that the only condition that stays is w ∈ RH( q0
p

)′ . Analo-

gously, if 0 < p0 and q0 = ∞ the only assumption is w ∈ A p
p0

. FinallyWw(0,∞) = (0,∞).

Our first goal is to study the boundedness of the square functions presented in (1.1)–(1.6) on
weighted spaces Lp(w) where w ∈ A∞. Our first result establishes the boundedness of the square
functions associated with the Heat semigroup. Notice that when w ≡ 1, which corresponds to the
unweighted case, this result recovers the estimates in the range (p−(L),∞) obtained in [4].

Theorem 1.12. Let w ∈ A∞.

(a) SH, GH, and GH are bounded on Lp(w) for all p ∈ Ww(p−(L),∞).
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(b) Given m ∈ N, Sm,H, Gm,H, and Gm,H are bounded on Lp(w) for all p ∈ Ww(p−(L),∞).

Equivalently, all the previous square functions are bounded on Lp(w) for every p−(L) < p < ∞ and
every w ∈ A p

p−(L)
.

The proof of Theorem 1.12 is split into two steps. First, we prove (a) (in doing that we only need
to consider SH and GH since GH f ≤ GH f ). Second, we shall show that the square functions in (b)
are all controlled by SH in Lp(w) for every w ∈ A∞ and 0 < p < ∞ (see Theorem 1.14). Gathering
this and (a), the proof of (b) will be complete.

Our second result deals with the boundedness of the square functions related to the Poisson
semigroup. Here the formulation is more involved since the ranges where these square functions
are bounded, not only depend on p−(L) and the weight, but also on p+(L) and the parameter K. We
also notice that when w ≡ 1 we recover the estimates obtained in [4].

Theorem 1.13. Let w ∈ A∞.

(a) Given K ∈ N, SK,P is bounded on Lp(w) for all p ∈ Ww(p−(L), p+(L)K,∗).

(b) Given K ∈ N0, GK,P and GK,P are bounded on Lp(w) for all p ∈ Ww(p−(L), p+(L)K,∗).

The proof of this result is as follows. We shall first show that each square function in (a) and
(b) can be controlled by either SH or GH in Lp(w) for every w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗) (see
Theorem 1.15). This, in concert with (a) in Theorem 1.12, will easily lead to the desired estimates.

We present the two promised results containing the control of the previous square functions
by SH and GH. In the first result we deal with the square functions defined in terms of the Heat
semigroup.

Theorem 1.14. Given an arbitrary f ∈ L2(Rn) there hold:

(a) Gm,H f (x) ≤ Gm,H f (x), for every x ∈ Rn and for all m ∈ N0.

(b) Given m ∈ N, ‖Sm,H f ‖Lp(w) . ‖SH f ‖Lp(w), for all w ∈ A∞ and 0 < p < ∞.

(c) Given m ∈ N, ‖Gm,H f ‖Lp(w) . ‖SH f ‖Lp(w), for all w ∈ A∞ and 0 < p < ∞.

Finally, the following result establishes the control of the square functions associated with the
Poisson semigroup.

Theorem 1.15. Given an arbitrary f ∈ L2(Rn) there hold:

(a) GK,P f (x) ≤ GK,P f (x), for every x ∈ Rn and for all K ∈ N0.

(b) Given K ∈ N, ‖SK,P f ‖Lp(w) . ‖SH f ‖Lp(w), for all w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗).

(c) ‖GP f ‖Lp(w) . ‖GH f ‖Lp(w), for all w ∈ A∞ and w ∈ Ww(0, p+(L)∗).

(d) Given K ∈ N, ‖GK,P f ‖Lp(w) . ‖SH f ‖Lp(w), for all w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗).

Let us observe that in (b) and (d) (and also (c) with K = 0), if (2K +1) p+(L) ≥ n the correspond-
ing estimates hold for every w ∈ A∞ and every 0 < p < ∞. Otherwise, if (2K + 1) p+(L) < n, each
corresponding estimate holds for all 0 < p < p+(L)K,∗ and w ∈ RH(p+(L)K,∗/p)′ .

The organization of the paper is as follows. In Section 2 we recall the off-diagonal estimates
satisfied by the Heat and Poisson semigroups, as well as by the other related objects that define
the square functions under study. In Section 3, we consider weighted estimates in the tent spaces
introduced and developed in [15]. Crucial to us are the change-of-angle formulas which are very
useful for comparing square functions in weighted Lebesgue spaces with cones having different
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apertures and with a precise control of the variation of the angle. Another important tool is the
introduction of a modified version of the Carleson measure condition suited to deal with estimates
on Lp, for p < 2. As explained above, this will be crucial when obtaining weighted estimates
without splitting the argument into p < 2 and p > 2 as previously done in [4]. Finally, in Section 4
we prove our main results: Theorems 1.12, 1.13, 1.14, and 1.15.

2. Off-diagonal estimates

We briefly recall the notion of off-diagonal estimates. Let {Tt}t>0 be a family of linear operators
and let 1 ≤ p ≤ q ≤ ∞. We say that {Tt}t>0 satisfies Lp − Lq off-diagonal estimates of exponential
type, denoted by {Tt}t>0 ∈ F∞(Lp → Lq), if for all closed sets E, F, all f , and all t > 0 we have

‖Tt( f 1E) 1F‖Lq(Rn) ≤ Ct−n
(

1
p−

1
q

)
e−c d(E,F)2

t2 ‖ f 1E‖Lp(Rn).

Analogously, given β > 0, we say that {Tt}t>0 satisfies Lp − Lq off-diagonal estimates of polynomial
type with order β > 0, denoted by {Tt}t>0 ∈ Fβ(Lp → Lq) if for all closed sets E, F, all f , and all
t > 0 we have

‖Tt( f 1E) 1F‖Lq(Rn) ≤ Ct−n
(

1
p−

1
q

)(
1 +

d(E, F)2

t2

)−(β+ n
2

(
1
p−

1
q

))
‖ f 1E‖Lp(Rn).

The Heat and the Poisson semigroups satisfy respectively off-diagonal estimates of exponential
and polynomial type. Before making this precise, let us recall the definition of p−(L) and p+(L)
in (1.7)–(1.8) and introduce two more parameters related to the gradient of the Heat semigroup.
Let (q−(L), q+(L)) be the maximal open interval on which the gradient of the Heat semigroup, i.e.
{t∇ye−t2L}t>0, is uniformly bounded on Lp(Rn):

q−(L) := inf
{

p ∈ (1,∞) : sup
t>0
‖t∇ye−t2L‖Lp(Rn)→Lp(Rn) < ∞

}
,

q+(L) := sup
{

p ∈ (1,∞) : sup
t>0
‖t∇ye−t2L‖Lp(Rn)→Lp(Rn) < ∞

}
.

From [1] (see also [6]) we know that p−(L) = 1 and p+(L) = ∞ if n = 1, 2; and if n ≥ 3 then
p−(L) < 2 n

n+2 and p+(L) > 2 n
n−2 . Moreover, q−(L) = p−(L), q+(L)∗ ≤ p+(L), and we always have

q+(L) > 2, with q+(L) = ∞ if n = 1.
The importance of these parameters stems from the fact that, besides giving the maximal intervals

on which either the Heat semigroup or its gradient is uniformly bounded, they characterize the
maximal open intervals on which off-diagonal estimates of exponential type hold (see [1] and [6]).
More precisely, for every m ∈ N0, there hold

{(t2L)me−t2L}t>0 ∈ F∞(Lp − Lq) for all p−(L) < p ≤ q < p+(L)

and
{t∇ye−t2L}t>0 ∈ F∞(Lp − Lq) for all q−(L) < p ≤ q < q+(L).

From these off-diagonal estimates we show that, for every m ∈ N0,

{(t
√

L )2me−t
√

L}t>0, ∈ Fm+ 1
2
(Lp → Lq),

for all p−(L) < p ≤ q < p+(L), and

{t∇y(t2L)me−t2L}t>0, {t∇y,t(t2L)me−t2L}t>0 ∈ F∞(Lp → Lq),

{t∇y(t
√

L )2me−t
√

L}t>0 ∈ Fm+1(Lp → Lq), {t∇y,t(t
√

L )2me−t
√

L}t>0 ∈ Fm+ 1
2
(Lp → Lq),

for all q−(L) < p ≤ q < q+(L).
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To show these off-diagonal estimates we shall apply the following Lemma, whose proof follows
mutatis mutandis that of [26, Lemma 2.3].

Lemma 2.1. Let {Pt}t>0 and {Qt}t>0 be two families of linear operators. Given 1 ≤ p ≤ q ≤ ∞,
assume that {Pt}t>0 ∈ F∞(Lp → Lq) and {Qt}t>0 ∈ F∞(Lp → Lp). Then, for all closed sets E, F, all
f , and all t, s > 0 we have∥∥(Pt ◦ Qs)( f 1E) 1F

∥∥
Lq(Rn) ≤ Ct−n

(
1
p−

1
q

)
e−c d(E,F)2

max{t,s}2 ‖ f 1E‖Lp(Rn).

To prove our claims, let us first consider

t∇y(t2L)me−t2L = C
t
√

2
∇ye−

t2
2 L ◦

(
t2

2
L
)m

e−
t2
2 L.

Taking Pt = t√
2
∇ye−

t2
2 L and Qt =

(
t2
2 L
)m

e−
t2
2 L for all t > 0, since {Pt}t>0 ∈ F∞(Lp − Lq)

and {Qt}t>0 ∈ F∞(Lp − Lp), for all q−(L) < p ≤ q < q+(L), we conclude from Lemma 2.1 that
{t∇y(t2L)me−t2L}t>0 ∈ F∞(Lp − Lq), for all q−(L) < p ≤ q < q+(L).

To prove that {t∇y,t(t2L)me−t2L}t>0 ∈ F∞(Lp → Lq), for all q−(L) < p ≤ q < q+(L), we just need
to observe that

|t∇y,t(t2L)me−t2L f (y)| . |t∇y(t2L)me−t2L f (y)| + |(t2L)me−t2L f (y)| + |(t2L)m+1e−t2L f (y)|,

and apply the off-diagonal estimates satisfied by each term.

We next obtain the off-diagonal estimates of polynomial type satisfied by the operators related
to the Poisson semigroup. Following some ideas used in [27, Lemma 5.1], we shall combine the
subordination formula

e−t
√

L f (y) = C
∫ ∞

0

e−u
√

u
e−

t2L
4u f (y) du,(2.2)

with Minkowski’s inequality and the off-diagonal estimates satisfied by {(t2L)me−t2L}t>0 and by
{t∇y(t2L)me−t2L}t>0.

To obtain that {(t
√

L )2me−t
√

L}t>0 ∈ Fm+ 1
2
(Lp → Lq) for all p−(L) < p ≤ q < p+(L), take

two closed sets E and F, a function f supported in E, and t > 0. Apply (2.2), Minkowski’s
inequality, the off-diagonal estimates satisfied by {(tL)me−tL}t>0, and change the variable u into(
1 + d(E, F)2/t2

)−1 u:(∫
F
|(t
√

L )2me−t
√

L f (y)|q dy
) 1

q

= C
(∫

F

∣∣∣∣(t√L )2m
∫ ∞

0

e−u
√

u
e−

t2
4u L f (y) du

∣∣∣∣q dy
) 1

q

.

∫ ∞
0

e−uum+ 1
2

(∫
F

∣∣∣∣( t2

4u
L
)m

e−
t2
4u L f (y)

∣∣∣∣q dy

) 1
q du

u

.

∫ ∞
0

e−cu
(

1+
d(E,F)2

t2

)
um+ 1

2

(
t
√

u

)−n
(

1
p−

1
q

)
du
u

(∫
E
| f (y)|p dy

) 1
p

= Ct−n
(

1
p−

1
q

)(
1 +

d(E, F)2

t2

)−(m+ 1
2 + n

2

(
1
p−

1
q

)) ∫ ∞
0

e−cuum+ 1
2 + n

2

(
1
p−

1
q

)
du
u

(∫
E
| f (y)|p dy

) 1
p
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= C t−n
(

1
p−

1
q

)(
1 +

d(E, F)2

t2

)−(m+ 1
2 + n

2

(
1
p−

1
q

))(∫
E
| f (y)|p dy

) 1
p

,

where in the last equality we have used that m ≥ 0 and that p ≤ q.

We next show that {t∇y,t(t
√

L )2me−t
√

L}t>0 ∈ Fm+ 1
2
(Lp → Lq) for all q−(L) < p ≤ q < q+(L).

Apply subordination formula (2.2), and Minkowski’s inequality to obtain(∫
F
|t∇y,t(t

√
L )2me−t

√
L f (y)|q dy

) 1
q

= C
(∫

F

∣∣∣∣t∇y,t(t
√

L )2m
∫ ∞

0

e−u
√

u
e−

t2
4u L f (y) du

∣∣∣∣q dy
) 1

q

≤ C
∫ ∞

0
e−uum+1

(∫
F

∣∣∣∣∣ t
2
√

u
∇y,t

(
t

2
√

u

√
L
)2m

e−
t2
4u L f (y)

∣∣∣∣∣
q

dy

) 1
q du

u
.

Note now that∣∣∣∣∣ t
2
√

u
∇y,t

(
t

2
√

u

√
L
)2m

e−
t2
4u L f (y)

∣∣∣∣∣ ≈
∣∣∣∣∣ t
2
√

u
∇y

(
t

2
√

u

√
L
)2m

e−
t2
4u L f (y)

∣∣∣∣∣
+

∣∣∣∣∣u− 1
2

(
t

2
√

u

√
L
)2m

e−
t2
4u L f (y)

∣∣∣∣∣ +

∣∣∣∣∣u− 1
2

(
t

2
√

u

√
L
)2(m+1)

e−
t2
4u L f (y)

∣∣∣∣∣ .
Then, applying that, for all K ∈ N0, {t∇y(t

√
L)2Ke−t2L}t>0, {(t2L)Ke−t2L}t>0 ∈ F∞(Lp → Lq), we

have (∫
F
|t∇y,t(t

√
L )2me−t

√
L f (y)|q dy

) 1
q

. t−n
(

1
p−

1
q

) ∫ ∞
0

(
um+1+ n

2

(
1
p−

1
q

)
+ um+ 1

2 + n
2

(
1
p−

1
q

))
e−c

(
1+

d(E,F)2

t2

)
u du

u
‖ f ‖Lp(E)

≤ C t−n
(

1
p−

1
q

)(
1 +

d(E, F)2

t2

)−(m+ 1
2 + n

2

(
1
p−

1
q

))
‖ f ‖Lp(E).

Finally to show that {t∇y(t
√

L )2me−t
√

L}t>0 ∈ Fm+1(Lp → Lq) we proceed as above. Applying
that, for all K ∈ N0, {t∇y(t

√
L)2Ke−t2L}t>0 ∈ F∞(Lp → Lq), we have

(∫
F
|t∇y(t

√
L )2me−t

√
L f (y)|q dy

) 1
q

= C
(∫

F

∣∣∣∣t∇y(t
√

L )2m
∫ ∞

0

e−u
√

u
e−

t2
4u L f (y) du

∣∣∣∣q dy
) 1

q

≤ C
∫ ∞

0
e−uum+1

(∫
F

∣∣∣∣∣ t
2
√

u
∇y

(
t

2
√

u

√
L
)2m

e−
t2
4u L f (y)

∣∣∣∣∣
q

dy

) 1
q du

u

. t−n
(

1
p−

1
q

) ∫ ∞
0

um+1+ n
2

(
1
p−

1
q

)
e−c

(
1+

d(E,F)2

t2

)
u du

u
‖ f ‖Lp(E)

≤ C t−n
(

1
p−

1
q

)(
1 +

d(E, F)2

t2

)−(m+1+ n
2

(
1
p−

1
q

))
‖ f ‖Lp(E).
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3. Tent spaces

We start with some definitions. Let Rn+1
+ denote the upper-half space, that is, the set of points

(y, t) ∈ Rn × R with t > 0. Given α > 0 and x ∈ Rn we define the cone of aperture α with vertex at
x by

Γα(x) := {(y, t) ∈ Rn+1
+ : |x − y| < αt}.

When α = 1 we simply write Γ(x). For a closed set E in Rn, set

Rα(E) :=
⋃
x∈E

Γα(x).

When α = 1 we simplify the notation by writing R(E) instead of R1(E).
We also define the operatorAα, α > 0, (and simply writeA when α = 1) by

AαF(x) :=
(∫∫

Γα(x)
|F(y, t)|2

dy dt
tn+1

) 1
2

.(3.1)

3.1. Change of angles. Related to the above operators we obtain Proposition 3.2, which is a
weighted version of [15, Proposition 4] and [2], see also [29].

Proposition 3.2 (Change of angles). Let 0 < α ≤ β < ∞.

(i) For every w ∈ Ar, 1 ≤ r < ∞, there holds

‖AβF‖Lp(w) ≤ C
(
β

α

) nr
p

‖AαF‖Lp(w) for all 0 < p ≤ 2r.

(ii) For every w ∈ RHs′ , 1 ≤ s < ∞, there holds

‖AαF‖Lp(w) ≤ C
(
α

β

) n
sp

‖AβF‖Lp(w) for all
2
s
≤ p < ∞.

In Remark 3.25 below we shall show that the previous estimates are sharp: the exponents nr/p
in (i) and n/sp in (ii) cannot be improved. This should be compared with [2] where the unweighted
case was considered (see also [29]).

To prove this proposition we need the following extrapolation result:

Lemma 3.3. Let F be a given family of pairs ( f , g) of non-negative and not identically zero mea-
surable functions on Rn.

(a) Suppose that for some fixed exponent p0, 1 ≤ p0 < ∞, and every weight w ∈ Ap0 ,

(3.4)
∫
Rn

f (x)p0 w(x) dx ≤ Cw

∫
Rn

g(x)p0 w(x) dx, ∀ ( f , g) ∈ F .

Then, for all 1 < p < ∞ and for all w ∈ Ap,

(3.5)
∫
Rn

f (x)p w(x) dx ≤ Cw,p

∫
Rn

g(x)p w(x) dx, ∀ ( f , g) ∈ F .

(b) Suppose that for some fixed exponent q0, 1 ≤ q0 < ∞, and every weight w ∈ RHq′0 ,

(3.6)
∫
Rn

f (x)
1

q0 w(x) dx ≤ Cw

∫
Rn

g(x)
1

q0 w(x) dx, ∀ ( f , g) ∈ F .

Then, for all 1 < q < ∞ and for all w ∈ RHq′ ,

(3.7)
∫
Rn

f (x)
1
q w(x) dx ≤ Cw,q

∫
Rn

g(x)
1
q w(x) dx, ∀ ( f , g) ∈ F .
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Part (a) is the so-called Rubio de Francia extrapolation theorem (cf. [22, 33]) written in terms of
pairs of functions rather than in terms of boundedness of operators. The reader is referred to [16]
for a complete account of this topic. There is, however, a subtle difference between (a) and [16,
Theorem 3.9]: in the latter both the hypothesis and the conclusions are assumed to hold for all pairs
( f , g) ∈ F for which the left-hand sides are finite. Here we do not make such assumptions and, in
particular, we do have that the infiniteness of the left-hand side will imply that of the right-hand one.
This formulation is more convenient for our purposes and its proof becomes a simple consequence
of [16, Theorem 3.9]. The extrapolation result in (b) is not written explicitly in [16], but can be
easily obtained using [5, Theorem 4.9] and [16, Theorem 3.31] (see also [4, Proposition 2.3] for a
particular case).

Proof. We start with (a). Given a family F as in the statement and an arbitrary large number N > 0
we consider the new family

FN :=
{

( fN , g) : ( f , g) ∈ F , fN := f 1{x∈B(0,N): f (x)≤N}
}
.

Note that

(3.8)
∫
Rn

fN(x)rw(x)dx ≤ Nrw(B(0,N)) < ∞, for all 0 < r < ∞ and w ∈ A∞.

From (3.4) and the fact that fN ≤ f , we clearly obtain that the same estimate holds for every pair
in FN (with a constant uniform on N) with a left-hand side that is always finite by (3.8). Thus we
can apply [16, Theorem 3.9] to FN to conclude that (3.5) holds for all pairs ( fN , g) ∈ FN (with a
constant uniform on N), since again the left-hand side is always finite by (3.8). To complete the
proof we just need to invoke the Monotone Convergence Theorem.

We next obtain (b). Let us fix 1 < q < ∞ and w ∈ RHq′ . As before we first work with FN .
Since w ∈ RHq′ ⊂ A∞, there exists p0 such that w ∈ Ap0 . We set p+ := 2q, r0 := 2q

q0
and pick

0 < p− < min
{

2q
q0
, 2

p0
, 2
}

. We then have that 0 < p− < r0 ≤ p+, and for all w0 ∈ A r0
p−
∩ RH( p+

r0

)′ ⊂
RH( p+

r0

)′ = RHq′0 ,

(3.9)
∫
Rn

(
fN(x)

1
2q

)r0
w0(x)dx =

∫
Rn

fN(x)
1

q0 w0(x)dx ≤
∫
Rn

f (x)
1

q0 w0(x)dx

≤ C
∫
Rn

g(x)
1

q0 w0(x)dx = C
∫
Rn

(
g(x)

1
2q

)r0
w0(x)dx,

with C independent of N, and for every pair ( fN , g) ∈ FN . Note that for each pair the left-hand side
is finite by (3.8). Therefore, applying [5, Theorem 4.9] or [16, Theorem 3.31], we obtain, for all
p− < p < p+ and for all w̃ ∈ A p

p−
∩ RH( p+

p

)′ ,
∫
Rn

fN(x)
p

2q w̃(x)dx ≤ C
∫
Rn

g(x)
p

2q w̃(x)dx,(3.10)

with C independent of N, for every pair ( fN , g) ∈ FN . Then, note that p = 2 satisfies that p− < p <
p+ and also w ∈ Ap0 ∩ RHq′ ⊂ A 2

p−
∩ RH( p+

2 )′ . Thus, we can apply (3.10) with p = 2 and w̃ = w to
obtain ∫

Rn
fN(x)

1
q w(x)dx ≤ C

∫
Rn

g(x)
1
q w(x)dx,

with C independent of N. Letting N → ∞, the Monotone Convergence Theorem yields the desired
estimate (3.7). �
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Before proving Proposition 3.2 let us recall the following property satisfied by Muckenhoupt
weights. Given 1 ≤ p, q < ∞, for every ball B and every measurable set E ⊂ B,

w(E)
w(B)

≥ [w]−1
Ap

(
|E|
|B|

)p

, ∀w ∈ Ap,(3.11)

and

w(E)
w(B)

≤ [w]RHq′

(
|E|
|B|

) 1
q

, ∀w ∈ RHq′ .(3.12)

Proof of Proposition 3.2, part (i). We first observe that if 0 < α ≤ β < ∞ then AβF(x) = Aβ/αF̃,
where F̃(x, t) = α

n
2 F(x, t/α). Thus, we can reduce matters to obtaining that for every α ≥ 1 and for

every w ∈ Ar, 1 ≤ r < ∞, there holds

(3.13) ‖AαF‖Lp(w) ≤ Cα
nr
p ‖AF‖Lp(w), for all 0 < p ≤ 2r.

We then prove (3.13) by splitting the proof into three steps. We first obtain the case p = 2 and
1 ≤ r < ∞. From this, we extrapolate concluding the desired estimate in the ranges 0 < p ≤ 2 r and
1 < r < ∞. Finally, we shall consider the case r = 1 and 0 < p < 2.

Fix from now on α > 1. For the first step, let p = 2 and w ∈ Ar0 , 1 ≤ r0 < ∞. From (3.11), we
easily obtain

‖AαF‖L2(w) =

(∫
Rn

∫ ∞
0

∫
|x−y|<αt

|F(y, t)|2
dy dt
tn+1 w(x)dx

) 1
2

(3.14)

=

(∫
Rn

∫ ∞
0
|F(y, t)|2w(B(y, αt))

dy dt
tn+1

) 1
2

. α
nr0
2

(∫
Rn

∫ ∞
0
|F(y, t)|2w(B(y, t))

dy dt
tn+1

) 1
2

= α
nr0
2

(∫
Rn

∫ ∞
0

∫
|x−y|<t

|F(y, t)|2
dy dt
tn+1 w(x)dx

) 1
2

= α
nr0
2 ‖AF‖L2(w).

We shall extrapolate from this inequality. To set the stage, take an arbitrary 1 ≤ r0 < ∞ and
consider F the family of pairs ( f , g) =

(
(AαF)

2
r0 , αn (AF)

2
r0
)
. Notice that (3.14) immediately

gives that for every w ∈ Ar0∫
Rn

f (x)r0 w(x) dx =

∫
Rn
AαF(x)2 w(x) dx ≤ C αn r0

∫
Rn
AF(x)2 w(x) dx = C

∫
Rn

g(x)r0 w(x) dx,

where C does not depend on α. Next, we apply (a) in Lemma 3.3 to conclude that for every
1 < r < ∞ and for every w ∈ Ar∫
Rn
AαF(x)

2 r
r0 w(x) dx =

∫
Rn

f (x)r w(x) dx ≤ C
∫
Rn

g(x)r w(x) dx = C αn r
∫
Rn
AF(x)

2 r
r0 w(x) dx,

where C does not depend on α. From this, using that 1 ≤ r0 < ∞ is arbitrary, we conclude (3.13)
under the restriction 1 < r < ∞.

To complete the proof it remains to consider the case r = 1, (i.e., w ∈ A1) and 0 < p < 2. Notice
that if ‖AF‖Lp(w) = ∞ the inequality follows immediately. So, we can assume that ‖AF‖Lp(w) < ∞.

For a fixed λ > 0, set

Eλ := {x ∈ Rn : AF(x) ≤ λ}, Oλ := Rn\Eλ = {x ∈ Rn : AF(x) > λ}.
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Then, for each 0 < γ < 1, we also consider the set of global γ-density with respect to Eλ defined by

E∗λ :=
{

x ∈ Rn :
|Eλ ∩ B|
|B|

≥ γ, ∀B centered at x
}

and denote its complement by

O∗λ =

{
x ∈ Rn : ∃ r > 0 such that

|Oλ ∩ B(x, r)|
|B(x, r)|

> 1 − γ
}

=
{

x ∈ Rn :M(1Oλ)(x) > 1 − γ
}
,

(3.15)

whereM is the centered Hardy-Littlewood maximal operator.
Note that if xk → x then 1Γ(xk)(y, t)→ 1Γ(x)(y, t) for a.e. (y, t) ∈ Rn+1

+ . This and the Fatou Lemma
clearly imply that Eλ is closed. We next show that, for each 0 < γ < 1, E∗λ is a nonempty closed
set contained in Eλ. Notice that the fact thatM : L1(w) → L1,∞(w), since w ∈ A1, and our earlier
assumption (‖AF‖Lp(w) < ∞) give

w(O∗λ) = w
({

x ∈ Rn :M(1Oλ)(x) > 1 − γ
})
.

1
1 − γ

w(Oλ) ≤
1

(1 − γ) λp ‖AF‖pLp(w) < ∞.

This immediately implies that E∗λ cannot be empty.
Next, we see that E∗λ ⊂ Eλ, for all 0 < γ < 1. This follows from the fact that Eλ is closed: if

x < Eλ, there exists r > 0 such that B(x, r) ∩ Eλ = ∅, and then x < E∗λ.

Finally, we show that E∗λ is closed. Let {xk}k ⊂ E∗λ be such that xk → x. Take an arbitrary r > 0
and define the functions fk = 1Eλ∩B(xk ,r) which satisfy fk → 1Eλ∩B(x,r) a.e. in Rn. Note also that for
k large enough fk ≤ 1B(x,2r) (since xk ∈ B(x, r)). Thus, by the Dominated Convergence Theorem,
we conclude that

|Eλ ∩ B(x, r)| = lim
k→∞

∫
Rn

fk(y) dy = lim
k→∞
|Eλ ∩ B(xk, r)|.

On the other hand, since xk ∈ E∗λ we have that |Eλ ∩ B(xk, r)| ≥ γ|B(xk, r)| = γ|B(x, r)|. This in turn
implies that for every r > 0

|Eλ ∩ B(x, r)|
|B(x, r)|

≥ γ,

which yields that x ∈ E∗λ and hence E∗λ is closed.
After these preparations, given (y, t) ∈ Rα(E∗λ), there exists x̄ ∈ E∗λ such that |x̄ − y| < αt.

Therefore, for z = y − t
2

y−x̄
|y−x̄| we have that B

(
z, t

2

)
⊂ B(x̄, αt) ∩ B(y, t) and

|B(x̄, αt) \ B(y, t)| ≤
∣∣∣B(x̄, αt) \ B

(
z,

t
2

)∣∣∣ = |B(x̄, αt)| −
∣∣∣B(z,

t
2

)∣∣∣
= |B(x̄, αt)|

(
1 −

1
2nαn

)
= cα |B(x̄, αt)| ,

with cα =
(
1 − 1

2nαn

)
< 1. This and the fact that x̄ ∈ E∗λ yield

γ|B(x̄, αt)| ≤ |Eλ ∩ B(x̄, αt)| = |Eλ ∩ B(x̄, αt) \ B(y, t)| + |Eλ ∩ B(x̄, αt) ∩ B(y, t)|
≤ cα |B(x̄, αt)| + |Eλ ∩ B(y, t)|.

Choosing γ = 1+cα
2 we conclude that

|Eλ ∩ B(y, t)| ≥
1

2n+1αn |B(x̄, αt)| =
1

2n+1αn |B(y, αt)|.(3.16)

From this and (3.11), we have for every (y, t) ∈ Rα(E∗λ),

w(Eλ ∩ B(y, t))
w(B(y, αt))

≥ [w]−1
A1

|Eλ ∩ B(y, t)|
|B(y, αt)|

≥
1

2n+1αn[w]A1

.(3.17)
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We use this to show that∫
E∗λ

AαF(x)2w(x) dx =

∫
E∗λ

∫ ∞
0

∫
Rn
|F(y, t)|21B(0,1)

( x − y
αt

)
w(x)

dy dt
tn+1 dx(3.18)

≤

∫∫
Rα(E∗λ)

|F(y, t)|2
∫

B(y,αt)
w(x) dx

dy dt
tn+1

≤ 2n+1αn[w]A1

∫∫
Rα(E∗λ)

|F(y, t)|2
∫

B(y,t)∩Eλ
w(x) dx

dy dt
tn+1

≤ 2n+1αn[w]A1

∫
Eλ
AF(x)2w(x) dx.

Therefore, from (3.18), (3.15), and the fact thatM : L1(w)→ L1,∞(w) (because w ∈ A1), we obtain

w({x : AαF(x) > λ}) ≤ w({x ∈ O∗λ : AαF(x) > λ}) + w({x ∈ E∗λ : AαF(x) > λ})

≤ w({x :M(1Oλ)(x) > 1 − γ}) +
1
λ2

∫
E∗λ

AαF(x)2w(x) dx

. αn[w]A1w(Oλ) + αn[w]A1

1
λ2

∫
Eλ
AF(x)2w(x) dx

= αn[w]A1w({x : AF(x) > λ}) + αn[w]A1

1
λ2

∫
Eλ
AF(x)2w(x) dx.

Using this and that 0 < p < 2 it follows that

‖AαF‖pLp(w) =

∫ ∞
0

p λp w({x : AαF(x) > λ})
dλ
λ

. αn[w]A1

(∫ ∞
0

p λp w({x : AF(x) > λ})
dλ
λ

+

∫ ∞
0

pλp−2
∫

Eλ
AF(x)2w(x) dx

dλ
λ

)
≤ αn[w]A1

(
‖AF‖pLp(w) +

∫
Rn
AF(x)2

∫ ∞
AF(x)

pλp−2 dλ
λ

w(x) dx
)

= C αn[w]A1‖AF‖pLp(w).

This completes the proof of (i). �

Proof of Proposition 3.2, part (ii). As before, we can reduce matters to showing that for every α ≥
1 and for every w ∈ RHs′ , 1 ≤ s < ∞, there holds

(3.19) ‖AF‖Lp(w) ≤ Cα−
n
sp ‖AαF‖Lp(w), for all

2
s
≤ p < ∞.

We show this estimate considering three cases: p = 2 and 1 ≤ s < ∞, 2/s ≤ p < ∞ and 1 < s < ∞,
and s = 1 and 2 < p < ∞.

We start by taking p = 2 and w ∈ RHs′0 with 1 ≤ s0 < ∞. We proceed as in (3.14) and use (3.12)
to obtain

(3.20) ‖AF‖L2(w) =

(∫
Rn

∫ ∞
0
|F(y, t)|2w(B(y, t))

dy dt
tn+1

) 1
2

. α
− n

2s0

(∫
Rn

∫ ∞
0
|F(y, t)|2w(B(y, αt))

dy dt
tn+1

) 1
2

= α
− n

2s0 ‖AαF‖L2(w).

For the second case we shall extrapolate from (3.20). Take an arbitrary 1 ≤ s0 < ∞ and consider
F the family of pairs ( f , g) =

(
(AF)2 s0 , α−n (AαF)2 s0

)
. Notice that (3.20) immediately gives that,
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for every w ∈ RHs′0 ,∫
Rn

f (x)
1
s0 w(x) dx =

∫
Rn
AF(x)2 w(x) dx ≤ C α

− n
s0

∫
Rn
AαF(x)2 w(x) dx = C

∫
Rn

g(x)
1
s0 w(x) dx,

where C does not depend on α. Next, we apply (b) in Lemma 3.3 to conclude that, for every
1 < s < ∞ and for every w ∈ RHs′ ,∫
Rn
AF(x)

2 s0
s w(x) dx =

∫
Rn

f (x)
1
s w(x) dx ≤ C

∫
Rn

g(x)
1
s w(x) dx = C α−

n
s

∫
Rn
AαF(x)

2 s0
s w(x) dx,

where C does not depend on α. From this, using that 1 ≤ s0 < ∞ is arbitrary we conclude (3.19)
under the restriction 1 < s < ∞.

Finally, we show (3.19) for all 2 < p < ∞ and w ∈ RH∞ (i.e., s = 1). Without loss of generality,
we may assume that α > 32 (for 1 ≤ α ≤ 32 we just use that AF ≤ AαF). Let us also assume
that ‖AαF‖Lp(w) < ∞. Otherwise, there is nothing to prove. Besides, since w ∈ RH∞ there exists
r > 1, which can be assumed to satisfy r ≥ p/2, such that w ∈ Ar. Then we can apply part (i) with
β = 6

√
nα and obtain that

(3.21) ‖A6
√

nαF‖Lp(w) ≤ C
(

6
√

nα
α

) n r
p

‖AαF‖Lp(w) = C‖AαF‖Lp(w) < ∞,

where C does not depend on α.
After these observations, for every λ > 0, consider the set

Oλ := {x ∈ Rn : A6
√

nαF(x) > λ}.

We shall show that

w({x ∈ Rn : AF(x) > 2λ}) .
α−n

λ2

∫
Oλ

|A6
√

nαF(x)|2w(x)dx.(3.22)

Note that the previous estimate is trivial when Oλ = ∅: both sides vanish since AF ≤ A6
√

nαF.
We may then assume that Oλ , ∅. From the arguments in the proof of (i) we clearly have that Oλ

is open. Also (3.21) and Chebychev’s inequality give that w(Oλ) < ∞, which in turn yields that
Oλ ( R

n. We can then take a Whitney decomposition of Oλ (cf. [34, Chapter VI]): there exists a
family of closed cubes {Q j} j∈N with disjoint interiors so that

(3.23) Oλ =
⋃
j∈N

Q j, diam(Q j) ≤ d(Q j,R
n \ Oλ) ≤ 4diam(Q j),

∑
j

1Q∗j ≤ 12n 1Oλ ,

where Q∗j := 9
8 Q j.

On the other hand, sinceAF ≤ A6
√

nαF, we have that

w({x ∈ Rn : AF(x) > 2λ}) = w({x ∈ Oλ : AF(x) > 2λ}) =
∑
j∈N

w({x ∈ Q j : AF(x) > 2λ}).(3.24)

Fix j ∈ N and, for every x ∈ Q j, write

AF(x) ≤ G j(x) + H j(x) :=

(∫ ∞
`(Q j)
α

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1

) 1
2

+

∫ `(Q j)
α

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1

 1
2

.

Pick x j ∈ R
n \ Oλ such that d(x j,Q j) ≤ 4diam(Q j). Notice that for every x ∈ Q j and t ≥ `(Q j)/α

we have that B(x, t) ⊂ B(x j, 6
√

nαt). Then,

G j(x)2 =

∫ ∞
`(Q j)
α

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1 ≤

∫ ∞
`(Q j)
α

∫
B(x j,6

√
nαt)
|F(y, t)|2

dy dt
tn+1 ≤ A

6
√

nαF(x j)2 ≤ λ2,
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where we have used that x j ∈ R
n \ Oλ in the last inequality. Using this and that w ∈ RH∞, we have

w({x ∈ Q j : AF(x) > 2λ}) ≤ w({x ∈ Q j : H j(x) > λ})

≤
1
λ2

∫
Q j

H j(x)2w(x)dx

≤
1
λ2

∫∫
R(Q j)

1(0,α−1`(Q j))(t)|F(y, t)|2w(B(y, t))
dy dt
tn+1

.
α−n

λ2

∫∫
R(Q j)

1(0,α−1`(Q j))(t)|F(y, t)|2w(B(y, 32−1αt))
dy dt
tn+1

≤
α−n

λ2

∫
Q∗j

∫ ∞
0

∫
B(x,32−1αt)

|F(y, t)|2
dy dt
tn+1 w(x)dx

≤
α−n

λ2

∫
Q∗j

A6
√

nαF(x)2w(x)dx.

Then, by (3.24) and the bounded overlap of the family {Q∗j} j∈N, we conclude (3.22):

w({x ∈ Rn : AF(x) > 2λ}) .
α−n

λ2

∑
j∈N

∫
Q∗j

|A6
√

nαF(x)|2w(x)dx .
α−n

λ2

∫
Oλ

|A6
√

nαF(x)|2w(x)dx.

This, the fact that 2 < p < ∞, and (3.21) give

‖AF‖pLp(w) = 2p
∫ ∞

0
p λp w {x : AF(x) > 2λ}

dλ
λ
. α−n

∫ ∞
0

λp−2
∫

Oλ

(
A6
√

nαF(x)
)2w(x)dx

dλ
λ

. α−n
∫
Rn

(
A6
√

nαF(x)
)2
∫ A6

√
nαF(x)

0
λp−2 dλ

λ
w(x)dx . α−n‖A6

√
nαF‖pLp(w) . α

−n‖AαF‖pLp(w).

This completes the proof. �

As announced before, we next discuss the sharpness of Proposition 3.2.

Remark 3.25. Let us consider the weights wθ(x) = |x|−θ. It is standard to show that wθ ∈ Ar if and
only if −n(r − 1) < θ < n (with the possibility of taking θ = 0 when r = 1). Besides, wθ ∈ RHs′ if
and only if −∞ < θ < n

s′ (with the possibility of taking θ = 0 when s = 1). We shall use this family
of weights to show that the exponents obtained in Proposition 3.2 parts (i) and (ii) are sharp.

We proceed as in [2], where the unweighted case was considered. Set B := B(0, 1
4 ) and a(y, t) :=

1B(y)1[ 1
2 ,1](t). It is straightforward to show that

Aa(x) ≤ C15B(x), ∀ x ∈ Rn, and Aa(x) ≥ C, ∀ x ∈ B,

and, for every α ≥ 1,

Aαa(x) ≤ C1(4α+1)B(x), ∀ x ∈ Rn, and Aαa(x) ≥ C, ∀ x ∈ (2α − 1)B.

Hence,

(3.26) ‖Aa‖Lp(wθ) ≈ 1 and ‖Aαa‖Lp(wθ) ≈ α
n−θ

p ,

where the implicit constants may depend on θ but are independent of α.
To see that the exponent in part (i) is sharp, assume by way of contradiction, that there exists

0 < % < nr
p such that for all α ≥ 1, w ∈ Ar, 1 ≤ r < ∞, and 0 < p ≤ 2r there holds

(3.27) ‖AαF‖Lp(w) ≤ Cwα
nr
p −%‖AF‖Lp(w).
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Take 1 ≤ r < ∞ 0 < p ≤ 2r, and set θ := −n(r − 1) +
%p
2 . Note that −n(r − 1) < θ < n and therefore

wθ ∈ Ar. Applying (3.26) and (3.27), there exists Cθ so that for every α > 1 there holds

α
nr
p −

%
2 = α

n−θ
p ≈ ‖Aαa‖Lp(wθ) ≤ Cθα

nr
p −%‖Aa‖Lp(wθ) ≈ Cθ α

nr
p −%,

where the implicit constants may depend on θ but are independent of α. This clearly leads to a
contradiction since α

nr
p −

%
2 � α

nr
p −% when α→ ∞.

We next see that the exponent in part (ii) is sharp. Again we proceed by way of contradiction:
let us assume that there exists % > 0 such that for all α ≥ 1, w ∈ RHs′ , 1 ≤ s < ∞, and 2

s ≤ p < ∞
there holds

(3.28) ‖AF‖Lp(w) ≤ Cwα
− n

sp−%‖AαF‖Lp(w).

Take 1 ≤ s < ∞, 2
s ≤ p < ∞, and pick θ := n

s′ −
%p
2 . Observe that −∞ < θ < n

s′ and therefore
wθ ∈ RHs′ . Applying (3.26) and (3.28), there exists Cθ so that for every α > 1 there holds

1 ≈ ‖Aa‖Lp(wθ) ≤ Cθα
− n

sp−%‖Aαa‖Lp(wθ) ≈ Cθ α
− n

sp−%+
n−θ

p = Cθ α
−
%
2 ,

where the implicit constants may depend on θ but are independent of α. Note that the right-hand
side tends to 0 as α→ ∞ and this readily leads to a contradiction.

Proposition 3.2 gives us a way to compare the norms ofAαF in Lp(w) for different angles α. In
that result, the emphasis is on the class of weights: fixed a class of weights (Ar in (a) or RHs′ in (b)),
we estimate the change of angles in Lp(w) for some range of p’s. In some other situations it may
be interesting to give formulas where the emphasis is on the exponent p. This is contained in the
following result whose elementary proof follows from Proposition 3.2 and is left to the interested
reader:

Proposition 3.29. Let w ∈ A∞, 0 < α ≤ β < ∞ and 0 < p < ∞. There hold:

(i) ‖AβF‖Lp(w) ≤ C
(
β

α

) nr
p

‖AαF‖Lp(w), for r > max{ p
2 , rw}, and for r = max{ p

2 , rw} if rw <
p
2 or

w ∈ A1.

(ii) ‖AαF‖Lp(w) ≤ C
(
α

β

) n
sp

‖AβF‖Lp(w), for 1
s < min{ p

2 ,
1
sw
}, and for 1

s = min{ p
2 ,

1
sw
} if p

2 < 1
sw

or w ∈ RH∞.

Related to the change of angles, we establish the following result, which will be required in the
proof of Theorem 1.15.

Proposition 3.30. Let 1 ≤ q ≤ s < ∞, w ∈ RHs′ , and 0 ≤ α ≤ 1. Then, for every t > 0, we have∫
Rn

(∫
B(x,αt)

|h(y, t)| dy
) 1

q

w(x)dx . α
n
s

∫
Rn

(∫
B(x,t)
|h(y, t)| dy

) 1
q

w(x)dx.(3.31)

Proof. We fix t > 0, 0 < α ≤ 1, and 1 ≤ q < ∞. Set

Gα(x, t) :=
(∫

B(x,αt)
|h(y, t)| dy

) 1
q

.

For α = 1, we simply write G(x, t). Then, from (3.12), for all 1 ≤ s0 < ∞ and w ∈ RHs′0 , we have

(3.32)
∫
Rn

Gα(x, t)qw(x)dx =

∫
Rn
|h(y, t)|w(B(y, αt)) dy

. α
n
s0

∫
Rn
|h(y, t)|w(B(y, t)) dy = α

n
s0

∫
Rn

G(x, t)q w(x)dx.
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This gives (3.31) for q = 1, and thus we may assume that q > 1. We shall extrapolate from (3.32).
Take an arbitrary 1 ≤ s0 < ∞ and consider F the family of pairs ( f , g) =

(
Gα(·, t)q s0 , αn G(·, t)q s0

)
.

Notice that (3.32) immediately gives that, for every w ∈ RHs′0 ,∫
Rn

f (x)
1
s0 w(x) dx =

∫
Rn

Gα(x, t)q w(x) dx ≤ C α
n
s0

∫
Rn

G(x, t)q w(x) dx = C
∫
Rn

g(x)
1
s0 w(x) dx,

where C does not depend on α. Next, we apply (b) in Lemma 3.3 to conclude that, for every
1 < s < ∞ and for every w ∈ RHs′ ,∫
Rn

Gα(x, t)
q s0

s w(x) dx =

∫
Rn

f (x)
1
s w(x) dx ≤ C

∫
Rn

g(x)
1
s w(x) dx = C α

n
s

∫
Rn

G(x, t)
q s0

s w(x) dx,

where C does not depend on α. From this, if 1 < q ≤ s < ∞ we can take s0 = s/q and conclude
(3.31) as desired. �

3.2. A new version of the Carleson measure condition. Let us recall the following maximal
operator from [15]

CF(x) := sup
B3x

(
1
|B|

∫ rB

0

∫
B
|F(y, t)|2

dy dt
t

) 1
2

.

Recall that CF ∈ L∞(Rn) means that |F(y, t)|2 dy dt
t is a Carleson measure in Rn+1

+ .
Given 0 < p < ∞, we now introduce a new maximal operator

CpF(x0) = sup
B3x0

(
1
|B|

∫
B

(∫ rB

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1

) p
2

dx

) 1
p

,(3.33)

where the supremum is taken over all balls B ⊂ Rn and where rB denotes the corresponding radius.
This operator is a version of C which will be very useful for our purposes. Indeed, for p = 2, we

shall see that CF ≈ C2F. First, applying Fubini we have

C2F(x0) = sup
B3x0

(
1
|B|

∫
B

∫ rB

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1 dx

) 1
2

≤ sup
B3x0

(
1
|B|

∫
2B

∫ rB

0
|F(y, t)|2

(∫
B(y,t)

1 dx
)

dy dt
tn+1

) 1
2

. sup
B3x0

(
1
|2B|

∫ 2rB

0

∫
2B
|F(y, t)|2

dy dt
t

) 1
2

= CF(x0).

For the reverse inequality, there holds

CF(x0) = sup
B3x0

(
1
|B|

∫ rB

0

∫
B
|F(y, t)|2

dy dt
t

) 1
2

. sup
B3x0

(
1
|B|

∫ rB

0

∫
B
|F(y, t)|2

(∫
B(y,t)

1 dx
)

dy dt
tn+1

) 1
2

. sup
B3x0

(
1
|2B|

∫
2B

∫ 2rB

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1 dx

) 1
2

= C2F(x0).

Our next result shows how Cp0 and A compare to each other. The case p0 = 2 and w ≡ 1
appears in [15] and as a result one sees thatAF and CF ≈ C2F are comparable in Lp(Rn) for every
2 < p < ∞. Our result gives comparability of AF and Cp0 F in the range p0 < p < ∞ and, in
particular, if p0 < 2 we can go below p = 2.
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Proposition 3.34.

(a) If 0 < p0, p < ∞, w ∈ A∞ and F ∈ L2
loc(Rn+1

+ ) then

‖AF‖Lp(w) . ‖Cp0 F‖Lp(w).

(b) If 0 < p0 < p < ∞ and w ∈ A p
p0

then

‖Cp0 F‖Lp(w) . ‖AF‖Lp(w).

Proof. The proof of (a) uses a good-λ argument. Then, it requires to know that the quantity to be
hidden is a priori finite. To guarantee this we divide the proof into two steps. The first step consists
in proving (a) for all F ∈ L2(Rn+1

+ ) such that, for some N > 1, supp F ⊂ KN := 1B(0,N)(y)1(N−1,N)(t).
In the second step we shall consider general functions F ∈ L2

loc(Rn+1
+ ) and define, FN := F1KN ,

N ≥ 1. Clearly FN ∈ L2(Rn+1
+ ) and supp FN ⊂ KN , and hence we can apply step 1 to FN . By a

limiting argument we shall obtain the desired estimate for F.

Step 1: Take F ∈ L2(Rn+1
+ ) such that, for some N > 1, supp F ⊂ KN , and note that under this

assumption ‖AF‖Lp(w) < ∞. Indeed, suppAF ⊂ B(0, 2N), and then

‖AF‖Lp(w) ≤ N
n+1

2 ‖F‖L2(Rn+1
+ )w(B(0, 2N))

1
p < ∞.

We claim that it is enough to prove that there exist α > 1 and a constant c such that for all
0 < γ ≤ 1 and 0 < λ < ∞ we have

w({x ∈ Rn : AF(x) > 2λ,Cp0 F(x) ≤ γλ}) ≤ cγcww({x ∈ Rn : AαF(x) > λ}).(3.35)

Assuming this momentarily it follows that

w({x ∈ Rn : AF(x) > 2λ})

≤ w({x ∈ Rn : AF(x) > 2λ,Cp0 F(x) ≤ γλ}) + w({x ∈ Rn : Cp0 F(x) > γλ})

≤ cγcww({x ∈ Rn : AαF(x) > λ}) + w({x ∈ Rn : Cp0 F(x) > γλ}).

This easily gives

‖AF‖pLp(w) ≤ Cγ,p‖Cp0 F‖pLp(w) + cγcw‖AαF‖pLp(w).

From Proposition 3.2 we know that ‖AαF‖Lp(w) ≤ c(α, p)‖AF‖Lp(w). Then, by choosing γ small
enough so that cγcwc(α, p)p < 1, and since ‖AF‖Lp(w) < ∞, we easily conclude that

‖AF‖Lp(w) . ‖Cp0 F‖Lp(w).

To complete the proof it remains to show (3.35). We argue as in [15]. Write Oλ = {x ∈ Rn :
AαF(x) > λ}. We may assume that w(Oλ) < ∞ (otherwise, there is nothing to prove) and this in
turn implies that Oλ ( R

n. Without loss of generality we can also suppose that Oλ , ∅ (otherwise,
both terms in (3.35) vanish, since AαF ≥ AF because α > 1, and again the proof is trivial). Note
finally that Oλ is open, fact that can be proved much as in the proof of Proposition 3.2. We can
then take a Whitney decomposition of Oλ (cf. [34, Chapter VI]): there exists a family of closed
cubes {Q j} j∈N with disjoint interiors satisfying (3.23). In particular, for each j ∈ N we can pick
x j ∈ R

n \ Oλ such that d(x j,Q j) ≤ 4diam(Q j). Furthermore, since α > 1 we haveAαF ≥ AF and

w({x ∈ Rn : AF(x) > 2λ,Cp0 F(x) ≤ γλ}) = w({x ∈ Oλ : AF(x) > 2λ,Cp0 F(x) ≤ γλ})

=
∑
j∈N

w({x ∈ Q j : AF(x) > 2λ,Cp0 F(x) ≤ γλ}).

Thus, to show (3.35), it is enough to prove

|{x ∈ Q j : AF(x) > 2λ,Cp0 F(x) ≤ γλ}| ≤ cγp0 |Q j|,(3.36)
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which, together with w ∈ A∞ (cf. (3.12)), would imply

w({x ∈ Q j : AF(x) > 2λ,Cp0 F(x) ≤ γλ}) ≤ cγcww(Q j),

and summing in j we would get (3.35).
Let us now fix j ∈ N and obtain (3.36). There is nothing to prove if the set on its left-hand side

is empty. Thus, we assume that there exists x̄ j ∈ {x ∈ Q j : AF(x) > 2λ,Cp0 F(x) ≤ γλ}. Let B j be
the ball such that Q j ⊂ B j with 2rB j = diam(Q j). Then, d(x j,Q j) ≤ 8rB j and Q j ⊂ B(x j, 10rB j).

We now write

F(x, t) = F1, j(x, t) + F2, j(x, t) := F(x, t) 1[rB j ,∞)(t) + F(x, t) 1(0,rB j )(t).

In particular,AF(x) ≤ AF1, j(x) +AF2, j(x). Easy calculations lead to obtain that for every α ≥ 11
there holds

AF1, j(x)2 =

∫ ∞
rB j

∫
|x−y|<t

|F(y, t)|2
dy dt
tn+1 ≤

∫ ∞
0

∫
|x j−y|<αt

|F(y, t)|2
dy dt
tn+1 = AαF(x j)2 ≤ λ2,(3.37)

where in the last inequality we have used the fact that x j ∈ R
n \ Oλ. On the other hand, by our

choice of x̄ j ∈ Q j ⊂ B j, it follows that

1
|B j|

∫
B j

AF2, j(x)p0 dx =
1
|B j|

∫
B j

(∫ rB j

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1

) p0
2

dx ≤ Cp0 F(x̄ j)p0 ≤ (γλ)p0 .

(3.38)

Using (3.37), Chebychev’s inequality, and (3.38) we conclude (3.36):

|{x ∈ Q j : AF(x) > 2λ,Cp0 F(x) ≤ γλ}| ≤ |{x ∈ Q j : AF2, j(x) > λ}|

≤
1
λp0

∫
Q j

AF2, j(x)p0 dx ≤ γp0 |B j| ≤ cγp0 |Q j|.

This completes the proof of Step 1.

Step 2: Take F ∈ L2
loc(Rn+1

+ ) and define, for every N > 1, FN := F1KN . Then, since FN ∈

L2(Rn+1
+ ) and supp FN ⊂ KN , we can apply Step 1 and obtain that

‖AFN‖Lp(w) . ‖Cp0 FN‖Lp(w) ≤ ‖Cp0 F‖Lp(w),

where the implicit constant is uniform on N. Finally since FN ↗ F in Rn+1
+ , the Monotone Conver-

gence Theorem yields the desired estimate. This finishes the proof of (a).

We next turn to prove (b). For every x0 ∈ R
n and any ball B ⊂ Rn such that x0 ∈ B, we have(

−

∫
B

(∫ rB

0

∫
B(x,t)
|F(y, t)|2

dy dt
tn+1

) p0
2

dx

) 1
p0

≤

(
−

∫
B
|AF(x)|p0 dx

) 1
p0
≤ Mp0(AF)(x0),

where for any function, h, Mp0h(x) := M
(
|h|p0

)
(x)1/p0 . Taking the supremum over all balls con-

taining x0, we conclude that Cp0 F(x0) ≤ Mp0(AF)(x0). Besides, since Mp0 : Lp(w) → Lp(w)
(because w ∈ A p

p0
and p > p0) we finally conclude that

‖Cp0 F‖Lp(w) ≤ ‖Mp0(AF)‖Lp(w) . ‖AF‖Lp(w).

This completes the proof. �



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 21

We conclude this section by stating some easy consequences of the previous results for other tent
spaces. Prior to formulating the resulting estimates, we define, for each 0 < q < ∞, the following
operators

Aα
q F(x) :=

(∫∫
Γα(x)
|F(x, t)|q

dy dt
tn+1

) 1
q

, CqF(x) := sup
B3x

(
1
|B|

∫ rB

0

∫
B
|F(y, t)|q

dy dt
t

) 1
q

,

and

Cq,p0 F(x) := sup
B3x

(
−

∫
B

(∫ rB

0

∫
B(x,t)
|F(y, t)|q

dy dt
tn+1

) p0
q

dx

) 1
p0

.

Much as before we have that CqF ≈ Cq,qF. Besides, we obtain the following analogues of Propo-
sitions 3.2 and 3.34.

Proposition 3.39. Let 0 < q < ∞ and 0 < α ≤ β < ∞.

(i) For every w ∈ Ar, 1 ≤ r < ∞, there holds

‖Aβ
qF‖Lp(w) ≤ C

(
β

α

) nr
p

‖Aα
q F‖Lp(w), for all 0 < p ≤ qr.

(ii) For every w ∈ RHs′ , 1 ≤ s < ∞, there holds

‖Aα
q F‖Lp(w) ≤ C

(
α

β

) n
sp

‖Aβ
qF‖Lp(w), for all

q
s
≤ p < ∞.

Proposition 3.40.

(a) If 0 < p0, p < ∞, w ∈ A∞, and F ∈ Lq
loc(Rn+1

+ ) then

‖AqF‖Lp(w) . ‖Cq,p0 F‖Lp(w).

(b) If 0 < p0 < p < ∞ and w ∈ A p
p0

then

‖Cq,p0 F‖Lp(w) . ‖AqF‖Lp(w).

The proofs of these results follow immediately from Propositions 3.2 and 3.34, and the equalities

Aα
q F(x) = Aα(|F|

q
2 )(x)

2
q and Cq,p0 F(x) = C 2 p0

q

(
|F|

q
2
)
(x)

2
q .

4. Proofs of the main results

In this section we shall prove Theorems 1.12, 1.13 , 1.14, and 1.15.

Let us first fix some notation. Given a ball B ∈ Rn, and unless otherwise specified, we write xB
and rB to denote respectively its center and its radius, so that B = B(xB, rB). For every λ > 0 let
λB = B(xB, λ B) be the ball concentric with B whose radius is λ rB. Finally, we write

C1(B) := 4B, C j(B) := 2 j+1B \ 2 jB, j ≥ 2.

4.1. Proof of Theorem 1.12.
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4.1.1. Proof of Theorem 1.12, part (a). Let us start by introducing more notation. From now on,
Qt denotes t2Le−t2L, t∇ye−t2L, or t∇y,te−t2L in such a way that, if we write

Ã f (x) :=
(∫∫

Γ(x)
|Qt f (y)|2

dy dt
tn+1

) 1
2

,

then Ã f is respectively SH f , GH f , or GH f .

The boundedness of Ã follows from the combination of Proposition 3.34 and the following
auxiliary result.

Proposition 4.1. Let Qt denote t2Le−t2L, t∇ye−t2L, or t∇y,te−t2L. If we set

C̃p0 f (x) := sup
B3x

(
1
|B|

∫
B

(∫ rB

0

∫
B(x,t)
|Qt f (y)|2

dy dt
tn+1

) p0
2

dx

) 1
p0

,

then, for every p−(L) < p0 ≤ 2, there holds

(4.2) C̃p0 f (x) .Mp0 f (x), x ∈ Rn.

Assuming this result momentarily we prove Theorem 1.12, part (a). Note that taking F(y, t) =

Qt f (y) in (3.1) and in (3.33) we have that Ã f (x) = AF(x) and C̃p0 f (x) = Cp0 F(x). Thus (4.2), in
concert with (a) in Proposition 3.34, implies that, for every 0 < p < ∞ and w ∈ A∞,

‖Ã f ‖Lp(w) . ‖C̃p0 f ‖Lp(w) . ‖Mp0 f ‖Lp(w), for all p−(L) < p0 ≤ 2,

provided Qt f ∈ L2
loc(Rn+1

+ ). Hence, the above estimate holds for all functions f ∈ L∞c (Rn). Next, fix
w ∈ A∞ and p ∈ Ww(p−(L),∞). Then, there exists p−(L) < p0 ≤ 2 (close enough to p−(L)), such
that w ∈ A p

p0
. Therefore,Mp0 is bounded on Lp(w) and consequently the previous estimate leads to

‖Ã f ‖Lp(w) ≤ C ‖ f ‖Lp(w), ∀ f ∈ L∞c (Rn).(4.3)

A routine density argument allows one to extend this estimate to all functions in Lp(w).
Let us notice that (4.2) with p0 = 2 appears implicit in [4, p. 5479]. Having used that estimate

we would have obtained (4.3) for every 2 < p < ∞ and w ∈ Ap/2. However, using Cp0 with p0
very close to p−(L) allows to obtain better estimates: (4.3) holds for every p−(L) < p < ∞ and
w ∈ Ap/p−(L).

We are left with the proof of Proposition 4.1, in which we shall use the following unweighted
estimates for the conical square functions that we are currently considering.

Proposition 4.4. The square functions SH, GH, and GH are bounded on Lp(Rn) for every p−(L) <
p ≤ 2.

Let us note that the boundedness of GH has been established in [1, Section 6.2]. On the other
hand, one can easily see that GH . GH + SH, and therefore we only have to consider SH. In turn,
this operator will be handled by using a Calderón-Zygmund type result from [7] after the proof of
Proposition 4.1.

We would like to observe that, a posteriori, Theorem 1.12, part (a), applied with w ≡ 1, implies
that SH, GH, and GH are also bounded on Lp(Rn) for every 2 ≤ p < ∞ (and therefore in the range
p−(L) < p < ∞). The case GH was obtained in [4, Theorem 3.1, part (2)].

Proof of Proposition 4.1. Fix p−(L) < p0 ≤ 2 and x0 ∈ R
n. Take an arbitrary ball B 3 x0 and split

f into its local and global parts: f = floc + fglob := f 14B + f 1Rn\4B.

For floc, we use that Ã is bounded on Lp0(Rn) by Proposition 4.4:
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1
|B|

∫
B

(∫ rB

0

∫
B(x,t)
|Qt floc(y)|2

dy dt
tn+1

) p0
2

dx

) 1
p0

≤

(
1
|B|

∫
Rn
Ã floc(x)p0 dx

) 1
p0

.

(
1
|B|

∫
Rn
| floc(x)|p0 dx

) 1
p0
.

(
1
|4B|

∫
4B
| f (x)|p0 dx

) 1
p0
.Mp0 f (x0).

As for fglob, since {Qt}t>0 ∈ F∞(Lp0 → L2) —where we recall that Qt is t2Le−t2L, t∇ye−t2L, or
t∇y,te−t2L— and since supp fglob ⊂ R

n \ 4B, we have(
1
|B|

∫
B

(∫ rB

0

∫
B(x,t)
|Qt fglob(y)|2

dy dt
tn+1

) p0
2

dx

) 1
p0

.
∑
j≥2

(∫ rB

0

∫
2B
|Qt( f 1C j(B))(y)|2

dy dt
tn+1

) 1
2

.
∑
j≥2

(∫ rB

0

(∫
2 j+1B

| f (y)|p0 dy
) 2

p0
t−2 n( 1

p0
− 1

2 )e−c
4 jr2

B
t2

dt
tn+1

) 1
2

.Mp0 f (x0)
∑
j≥2

(∫ rB

0
(2 jrB)

2n
p0 t−

2n
p0 e−c

4 jr2
B

t2
dt
t

) 1
2

.Mp0 f (x0).

Gathering the estimates obtained for floc and for fglob we conclude that(
1
|B|

∫
B

(∫ rB

0

∫
B(x,t)
|Qt f (y)|2

dy dt
tn+1

) p0
2

dx

) 1
p0

.Mp0 f (x0).

Taking the supremum over all balls B such that x0 ∈ B we readily conclude the desired estimate. �

Proof of Proposition 4.4. As explained above we only need to consider the operator SH. It is well-
known that SH is bounded on L2(Rn). Fix then p−(L) < p < 2 and take p−(L) < p0 < p < 2.
We shall apply [7, Theorem 2.4] (see also [1] and [5]). We claim that given f ∈ L∞c (Rn) with
supp f ⊂ B ⊂ Rn, the following estimates hold(

−

∫
C j(B)

∣∣∣SH(I − e−r2
BL)M f

∣∣∣p0
dx

) 1
p0

≤ g( j)
(
−

∫
B
| f |p0 dx

) 1
p0
, j ≥ 2,(4.5)

and (
−

∫
C j(B)

∣∣∣I − (I − e−r2
BL)M f

∣∣∣2 dx

) 1
2

≤ g( j)
(
−

∫
B
| f |p0 dx

) 1
p0
, j ≥ 1,(4.6)

with g( j) = C 2− j (2M+ n
p0

). Assuming this momentarily and taking M large enough in such a
way that

∑
j≥1 g( j)2 jn < ∞, [7, Theorem 2.4] implies that SH is of weak-type (p0, p0) and, by

Marcinkiewicz’s interpolation Theorem, bounded on Lp(Rn), which is our goal.
In view of the previous considerations we need to obtain (4.5) and (4.6). Fix a ball B. For

f ∈ L∞c (Rn) with supp f ⊂ B, we first prove (4.5). Define Ar2
B

:= (I − e−r2
BL)M and by Fubini (or see

[15, Lemma 1]) conclude that(
−

∫
C j(B)

∣∣∣SHAr2
B

f (x)
∣∣∣p0

dx

) 1
p0

≤

(
−

∫
C j(B)

∣∣∣SHAr2
B

f (x)
∣∣∣2 dx

) 1
2

. |2 jB|−
1
2

(∫∫
R(C j(B))

∣∣∣t2Le−t2LAr2
B

f (y)
∣∣∣2 dy dt

t

) 1
2
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. |2 jB|−
1
2

(∫
Rn\2 j−1B

∫ ∞
0

∣∣∣t2Le−t2LAr2
B

f (y)
∣∣∣2 dt dy

t

) 1
2

+ |2 jB|−
1
2

(∫
2 j−1 B

∫ ∞
2 j−1rB

∣∣∣t2Le−t2LAr2
B

f (y)
∣∣∣2 dt dy

t

) 1
2

=: |2 jB|−
1
2 (I + II).

We estimate each term in turn. Before that, let us remind the following off-diagonal estimate ob-
tained in [26, p. 504]:

(4.7)
∥∥∥∥ s2

t2

(
e−s2L − e−(s2+t2)L)( f 1E)

∥∥∥∥
L2(F)

≤ C e−c d(E,F)2

s2 ‖ f ‖L2(E), 0 < t ≤ s,

with C independent of t and s. This and Lemma 2.1 imply that for every M ≥ 1 there exists C such
that for every 0 < t ≤ s there holds

(4.8)

∥∥∥∥∥s2L e−s2L
(

s2

t2

)M (
e−s2L − e−(s2+t2)L)M( f 1E)

∥∥∥∥∥
L2(F)

≤ C s−n
(

1
p0
− 1

2

)
e−c d(E,F)2

s2 ‖ f ‖Lp0 (E).

After these preparations we estimate II. Doing the change of variables t =
√

M + 1 s and using
(4.8), easy calculations lead to obtain

II .
(∫ ∞

c2 jrB

∥∥∥s2Le−s2L(e−s2L − e−(s2+r2
B)L)M f

∥∥∥2

L2(2 j−1 B)

ds
s

) 1
2

.

(∫ ∞
c2 jrB

(rB

s

)4M
s−2n

(
1

p0
− 1

2

)
ds
s

) 1
2

‖ f ‖Lp0 (B)

. 2− j (2M+ n
p0

)
|2 jB|

1
2

(
−

∫
B
| f (x)|p0 dx

) 1
p0
.

Let us next estimate I. We proceed as in [26] or [27, p. 53-56]. Change variables as before to
obtain

I .
(∫ rB

0

∥∥∥s2Le−(M+1)s2L(I − e−r2
BL)M f

∥∥∥2

L2(Rn\2 j−1B)

dt
t

) 1
2

+

(∫ ∞
rB

∥∥∥s2Le−s2L(e−s2L − e−(s2+r2
B)L)M f

∥∥∥2

L2(Rn\2 j−1B)

dt
t

) 1
2

=: I1 + I2.

For I2, employ (4.8) and conclude that

I2 .

(∫ ∞
rB

(rB

s

)4M
s−2n

(
1

p0
− 1

2

)
e−c

4 j r2
B

s2
ds
s

) 1
2

‖ f ‖Lp0 (B) . 2− j (2M+ n
p0

)
|2 jB|

1
2

(
−

∫
B
| f (x)|p0 dx

) 1
p0
.

For I1, expand
(
I − e−r2

BL
)M and use the Lp0 − L2 off-diagonal estimates satisfied by the Heat

semigroup:

I1 .

(∫ rB

0

∥∥∥s2Le−(M+1)s2L f
∥∥∥2

L2(Rn\2 j−1B)

ds
s

) 1
2

+ sup
1≤k≤M

(∫ rB

0

∥∥∥∥s2Le−
(

(M+1)s2+kr2
B

)
L f
∥∥∥∥2

L2(Rn\2 j−1B)

ds
s

) 1
2
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.

(∫ rB

0
s−2n

(
1

p0
− 1

2

)
e−c

4 j r2
B

s2
ds
s

) 1
2

‖ f ‖Lp0 (B)

+ sup
1≤k≤M

(∫ rB

0

(
s2

(M + 1)s2 + kr2
B

)2 (
(M + 1)s2 + kr2

B
)−n

(
1

p0
− 1

2

)
e
−c

4 j r2
B

(M+1)s2+kr2
B

ds
s

) 1
2

‖ f ‖Lp0 (B)

. e−c 4 j
|2 jB|

1
2

(
−

∫
B
| f (x)|p0 dx

) 1
p0

+ e−c 4 j
|2 jB|

1
2

(
−

∫
B
| f (x)|p0 dx

) 1
p0

(∫ rB

0

(
s2

r2
B

)2 ds
s

) 1
2

. e−c 4 j
|2 jB|

1
2

(
−

∫
B
| f (x)|p0 dx

) 1
p0
.

Gathering all the estimates that we have obtained we complete the proof of (4.5):(
−

∫
C j(B)

∣∣∣SHAr2
B

f (x)
∣∣∣p0

dx

) 1
p0

≤ C2− j (2M+ n
p0

)
(
−

∫
B
| f (x)|p0 dx

) 1
p0
.

To prove (4.6), we use that {e−t2L}t>0 ∈ F∞(Lp0 → L2) and for every j ≥ 1(
−

∫
C j(B)

|I − (I − e−r2
BL)M f |2

) 1
2

≤

M∑
k=1

Ck,M

(
−

∫
C j(B)

|e−kr2
BL f |2

) 1
2

. e−c4 j
(
−

∫
B
| f (x)|p0 dx

) 1
p0
.

�

4.1.2. Proof of Theorem 1.12, part (b). Take w ∈ A∞, m ∈ N, and f ∈ L∞c (Rn), and apply Theorem
1.14 (see below for its proof). Then, for all 0 < p < ∞,

‖Gm,H f ‖Lp(w) . ‖SH f ‖Lp(w), ‖Gm,H f ‖Lp(w) . ‖SH f ‖Lp(w), and ‖Sm,H f ‖Lp(w) . ‖SH f ‖Lp(w).

Now, use Theorem 1.12 part (a) to conclude that for all p ∈ Ww(p−(L),∞)

‖Gm,H f ‖Lp(w) . ‖ f ‖Lp(w), ‖Gm,H f ‖Lp(w) . ‖ f ‖Lp(w), and ‖Sm,H f ‖Lp(w) . ‖ f ‖Lp(w),

for all f ∈ L∞c (Rn). By a standard density argument these estimates easily extend to all functions
f ∈ Lp(w). �

4.2. Proof of Theorem 1.13.

4.2.1. Proof of Theorem 1.13, part (a). From Theorem 1.15 part (b) (see below for its proof), given
w ∈ A∞, we have for all K ∈ N, p ∈ Ww(0, p+(L)K,∗), and f ∈ L∞c (Rn)

‖SK,P f ‖Lp(w) . ‖SH f ‖Lp(w).

Hence, applying Theorem 1.12 part (a), we obtain, for all p ∈ Ww(p−(L), p+(L)K,∗),

‖SK,P f ‖Lp(w) . ‖ f ‖Lp(w), f ∈ L∞c (Rn).

A density argument allows us to complete the proof. �



26 JOSÉ MARÍA MARTELL AND CRUZ PRISUELOS-ARRIBAS

4.2.2. Proof of Theorem 1.13, part (b). Take w ∈ A∞ and apply Theorem 1.15 parts (a), (c), and
(d) (the proof of this result is given below) to obtain, for all K ∈ N, p ∈ Ww(0, p+(L)K,∗), and
f ∈ L∞c (Rn)

‖GK,P f ‖Lp(w) . ‖SH f ‖Lp(w) and ‖GK,P f ‖Lp(w) . ‖SH f ‖Lp(w),

and
‖GP f ‖Lp(w) . ‖GH f ‖Lp(w) and ‖GP f ‖Lp(w) . ‖GH f ‖Lp(w).

Now, apply Theorem 1.12, part (a), and conclude, by a density argument, that for all K ∈ N0,
p ∈ Ww(p−(L), p+(L)K,∗), and f ∈ Lp(w), there hold

‖GK,P f ‖Lp(w) . ‖ f ‖Lp(w) and ‖GK,P f ‖Lp(w) . ‖ f ‖Lp(w).

�

4.3. Proof of Theorem 1.14. We first note that part (a) is trivial.

4.3.1. Proof of Theorem 1.14, part (b). For m = 1 there is nothing to prove. So, take m ∈ N such
that m ≥ 2 and consider

T t2
2

:=
(

t2
2 L
)m−1

e−
t2
2 L.

Fix 0 < p < ∞ and w ∈ A∞. Pick r ≥ max{ p
2 , rw} so that w ∈ Ar and 0 < p ≤ 2r. Then, from

{(t2L)me−t2L}t>0 ∈ F∞(L2 → L2) and applying Proposition 3.2 in the next-to-last inequality, we have

‖Sm,H f ‖Lp(w) .

∫
Rn

(∫∫
Γ(x)

∣∣∣∣T t2
2

(
t2
2 Le−

t2
2 L f
)

(y)
∣∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

 1
p

.
∑
j≥1

∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣∣T t2
2

(( t2
2 Le−

t2
2 L f
)
1C j(B(x,t))

)
(y)
∣∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

 1
p

.
∑
j≥1

e−c4 j

∫
Rn

(∫ ∞
0

∫
B(x,2 j+1t)

∣∣∣∣ t2
2 Le−

t2
2 L f (y)

∣∣∣∣2 dy dt
tn+1

) p
2

w(x) dx

 1
p

.
∑
j≥1

e−c4 j

(∫
Rn

(∫ ∞
0

∫
B(x,2 j+1

√
2t)

∣∣∣t2Le−t2L f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p

.
∑
j≥1

2 j nr
p e−c4 j

(∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣t2Le−t2L f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p

. ‖SH f ‖Lp(w). �

4.3.2. Proof of Theorem 1.14, part (c). Take m ∈ N and consider

A t2
2

:= t√
2
∇y,te−

t2
2 L and B t2

2 ,m
:=
(

t2
2 L
)m

e−
t2
2 L.

Fix 0 < p < ∞ and w ∈ A∞. Pick r ≥ max{ p
2 , rw} so that w ∈ Ar and 0 < p ≤ 2r. Then, applying

the L2 − L2 off-diagonal estimates satisfied by {t∇y,te−t2L}t>0 and Proposition 3.2, we obtain

‖Gm,H f ‖Lp(w) .

(∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣A t2
2

B t2
2 ,m

f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p
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.
∑
j≥1

(∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣A t2
2

((
B t2

2 ,m
f
)
1C j(B(x,t))

)
(y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p

.
∑
j≥1

e−c4 j

(∫
Rn

(∫ ∞
0

∫
B(x,2 j+1t)

∣∣∣B t2
2 ,m

f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p

.
∑
j≥1

e−c4 j

(∫
Rn

(∫ ∞
0

∫
B(x,2 j+1

√
2t)

∣∣Bt2,m f (y)
∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p

.
∑
j≥1

e−c4 j
2 j nr

p ‖Sm,H f ‖Lp(w)

. ‖SH f ‖Lp(w),

where in the last inequality we have used part (b). �

4.4. Proof of Theorem 1.15. We first note that part (a) is trivial.

4.4.1. Proof of Theorem 1.15, part (b). In view of Theorem 1.14, part (b), and Lemma 3.3, it is
enough to show that

‖SK,P f ‖Lp(w) . ‖SK,H f ‖Lp(w),(4.9)

for all w ∈ A∞, K ∈ N, and p ∈ Ww(0, p+(L)K,∗), with 1 ≤ p. Set

Bt,K :=
(
t2L
)K

e−t2L,

and apply the subordination formula (2.2) and Minkowski’s inequality:

∥∥SK,P f
∥∥

Lp(w) .

∫
Rn

(∫∫
Γ(x)

∣∣∣∣(t2L)K
∫ ∞

0
e−uu

1
2 e−

t2
4u L f (y)

du
u

∣∣∣∣2 dy dt
tn+1

) p
2

w(x) dx

 1
p

.

∫ ∞
0

e−uu
1
2

∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣∣(t2L)Ke−
t2
4u L f (y)

∣∣∣∣2 dy dt
tn+1

) p
2

w(x) dx

 1
p

du
u

.

∫ 1
4

0
e−uuK+ 1

2

(∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣B t
2
√

u ,K
f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p du

u

+

∫ ∞
1
4

e−uuK+ 1
2

(∫
Rn

(∫ ∞
0

∫
B(x,t)

∣∣∣B t
2
√

u ,K
f (y)
∣∣∣2 dy dt

tn+1

) p
2

w(x) dx

) 1
p du

u

=: I + II.

For I, fix 2 < q̃ < ∞ and apply Jensen’s inequality to the integral in y. Then,

(4.10) I .
∫ 1

4

0
uK+ 1

2

∫
Rn

(∫ ∞
0

(∫
B(x,t)

∣∣∣B t
2
√

u ,K
f (y)
∣∣∣q̃ dy

) 2
q̃ dt

t
2n
q̃ +1

) p
2

w(x) dx


1
p

du
u

=:
∫ 1

4

0
uK+ 1

2

(∫
Rn
J(u, x)p w(x) dx

) 1
p du

u
.
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Fix 0 < u < 1
4 . Note that since 1 < q̃

2 < ∞, for α := 2
√

u ∈ (0, 1] and q := q̃
2 we can apply

Proposition 3.30 and conclude, for all 1 < q̃
2 ≤ s < ∞ and w0 ∈ RHs′ ,∫

Rn
J(u, x)2w0(x)dx =

∫ ∞
0

∫
Rn

(∫
B(x,2

√
u t

2
√

u )

∣∣∣B t
2
√

u ,K
f (y)
∣∣∣q̃ dy

) 2
q̃

w0(x)dx
dt

t
2n
q̃ +1

(4.11)

. u
n
2s

∫
Rn

∫ ∞
0

(∫
B(x, t

2
√

u )

∣∣∣B t
2
√

u ,K
f (y)
∣∣∣q̃ dy

) 2
q̃ dt

t
2n
q̃ +1

w0(x)dx

. u
n
2s−

n
q̃

∫
Rn

∫ ∞
0

(∫
B(x,t)

∣∣Bt,K f (x)
∣∣q̃ dy

) 2
q̃ dt

t
2n
q̃ +1

w0(x)dx

=: u
n
2s−

n
q̃

∫
Rn
T (x)2 w0(x)dx,

where in the last inequality we have changed the variable t into 2
√

ut. Assuming further that
2 < q̃ < p+(L) and applying L2 − Lq̃ off-diagonal estimates and Proposition 3.2, we can bound the
last integral above as follows∫

Rn
T (x)2 w0(x)dx .

∫
Rn

∫ ∞
0

(∫
B(x,t)

∣∣∣∣e− t2
2 LB t√

2
,K f (x)

∣∣∣∣q̃ dy

) 2
q̃ dt

t
2n
q̃ +1

w0(x)dx

.
∑
j≥1

e−c4 j
∫
Rn

∫ ∞
0

∫
B(x,2 j+1t)

∣∣∣B t√
2
,K f (x)

∣∣∣2 dy dt
tn+1 w0(x)dx

.
∑
j≥1

e−c4 j
∫
Rn

∫ ∞
0

∫
B(x,2 j+1

√
2t)

∣∣Bt,K f (x)
∣∣2 dy dt

tn+1 w0(x)dx

.
∑
j≥1

2 jnre−c4 j
‖SK,H f ‖2L2(w0)

. ‖SK,H f ‖2L2(w0),

where r > rw0 . This and (4.11) yield, for all 2 < q̃ < p+(L), q̃
2 ≤ s < ∞, and w0 ∈ RHs′ ,∫

Rn

(
J(u, x)2s) 1

s w0(x)dx .
∫
Rn

(
usγ(s,q̃)SK,H f (x)2s

) 1
s

w0(x)dx,

where γ(s, q̃) := n
2s −

n
q̃ . Next, we apply Lemma 3.3, part (b), for q0 := s and for the pairs of

functions
(
J(u, x)2s, usγ(s,q̃)SK,H f (x)2s

)
. Hence, for all 2 < q̃ < p+(L), q̃

2 ≤ s < ∞, 1 < q < ∞, and
w̃ ∈ RHq′ , ∫

Rn
J(u, x)

2s
q w̃(x)dx . u

sγ(s,̃q)
q

∫
Rn
SK,H f (x)

2s
q w̃(x)dx.(4.12)

We now distinguish two cases. Assume first that n ≤ (2K + 1)p+(L). Under this assump-
tion, for every 0 < p < ∞ and w ∈ A∞, we take s > sw max

{ p
2 , 1
}

, max
{

2, 2sp+(L)
p+(L)+2s

}
< q̃ <

min {p+(L), 2s}, (if p+(L) = ∞ take q̃ := 2s), and q := 2s
p . Then, we have that 2 < q̃ < p+(L),

q̃
2 ≤ s < ∞, 1 ≤ sw < q < ∞, and w ∈ RHq′ . Hence, applying (4.12), we obtain∫

Rn
J(u, x)pw(x)dx . u

np
4s −

np
2̃q

∫
Rn
SK,H f (x)pw(x)dx.(4.13)
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Besides, note that from our choices of s and q̃, we have that

K +
1
2

+
n
4s
−

n
2q̃

> K +
1
2
−

n
2p+(L)

≥ 0.

Consequently, plugging (4.13) into (4.10) we obtain

I .
∫ 1

4

0
uK+ 1

2 + n
4s−

n
2̃q

du
u
‖SK,H f ‖Lp(w) . ‖SK,H f ‖Lp(w).(4.14)

Consider now the case n > (2K + 1)p+(L). Fix w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗). Then w ∈
RH( p+(L)K,∗

p

)′ and 0 < p < p+(L)n
sw(n−(2K+1)p+(L)) . Therefore, it is possible to pick ε1 > 0 small enough

and 2 < q̃ < p+(L) so that

0 < p <
q̃n

sw(1 + ε1)(n − (2K + 1)q̃)
.

Besides, since q̃ < q̃n/(n − (2K + 1)q̃) there also exists ε2 > 0 so that

q̃ <
q̃n

(1 + ε2)(n − (2K + 1)q̃)
.

Take ε0 := min{ε1, ε2}, s := q̃n
2(1+ε0)(n−(2K+1)q̃) , and q := 2s

p . Then our choices guarantee that

2 < q̃ < p+(L), q̃
2 ≤ s < ∞, 1 ≤ sw < q < ∞, and w ∈ RHq′ . Therefore, we can apply (4.12) and

obtain ∫
Rn
J(u, x)pw(x)dx . u

np
4s −

np
2̃q

∫
Rn
SK,H f (x)pw(x)dx.(4.15)

Again, our choices of s and q̃ imply

K +
1
2

+
n
4s
−

n
2q̃

= ε0

(
n
2q̃
− K −

1
2

)
> ε0

(
n

2p+(L)
− K −

1
2

)
> 0.

This, (4.10), and (4.15) give

I .
∫ 1

4

0
uK+ 1

2 + n
4s−

n
2̃q

du
u
‖SK,H f ‖Lp(w) . ‖SK,H f ‖Lp(w).

Gathering this estimate and (4.14), we conclude that, for all w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗) with
1 ≤ p,

I . ‖SK,H f ‖Lp(w).

We finally estimate II. Take F(y, t) = Bt,K f (y) and pick r ≥ max{ p
2 , rw} so that w ∈ Ar and

1 ≤ p ≤ 2r. Hence, we have

II .
∫ ∞

1
4

e−uuK+ 1
2−

n
4 ‖A2

√
uF‖Lp(w)

du
u
.

∫ ∞
1
4

e−uuK+ 1
2 + nr

p −
n
4 ‖AF‖Lp(w)

du
u
. ‖SK,H f ‖Lp(w).

This estimate, together with the one obtained for I and the observations made at the beginning of
the proof, allows us to finish the proof. �

4.4.2. Proof of Theorem 1.15, parts (c) and (d). We first invoke [4, Lemma 3.5]: for every K ∈ N0,
f ∈ L2(Rn) and x ∈ Rn, there holds

GK,P f (x) . K
(∫ ∞

0

∫
B(x,2t)

|(t2L)Ke−t2L f (y)|2
dy dt
tn+1

) 1
2

(4.16)

+

(∫ ∞
0

∫
B(x,2t)

|t∇y,t(t2L)Ke−t2L f (y)|2
dy dt
tn+1

) 1
2
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+

(∫ ∞
0

∫
B(x,2t)

|(t2L)K(e−t
√

L − e−t2L) f (y)|2
dy dt
tn+1

) 1
2

.

The first and second term in the right-hand side of the above inequality will be easily controlled in
Lp(w), applying Proposition 3.2, by SK,H f and GK,H f respectively. So, we just need to deal with
the third term. To this end we define

GK,P f (x) :=
(∫ ∞

0

∫
B(x,2t)

|(t2L)K(e−t
√

L − e−t2L) f (y)|2
dy dt
tn+1

) 1
2

.

We claim that for all K ∈ N0, w ∈ A∞, and p ∈ Ww(0, p+(L)K,∗), the following estimate holds:

‖GK,P f ‖Lp(w) . ‖SK+1,H f ‖Lp(w).(4.17)

Assuming this momentarily and applying Proposition 3.2 to the first two terms in the right-hand
side of (4.16) we conclude, for all K ∈ N0, w ∈ A∞, and p ∈ Ww(0, p+(L)K,∗),

‖GK,P f ‖Lp(w) . K‖SK,H f ‖Lp(w) + ‖GK,H f ‖Lp(w) + ‖SK+1,H f ‖Lp(w).(4.18)

For K ∈ N, apply Theorem1.14 parts (b) and (c). This proves part (d). To obtain part (c), we take
K = 0 in (4.18). Note that clearly SH f ≤ 1

2GH f and therefore

‖GP f ‖Lp(w) . ‖GH f ‖Lp(w) + ‖SH f ‖Lp(w) . ‖GH f ‖Lp(w).

To complete the proof we need to obtain (4.17). Note that in view of Lemma 3.3 it is enough to
prove (4.17) for p ≥ 1. Given 1 ≤ p < ∞, apply the subordination formula (2.2) and Minkowski’s
inequality:

‖GK,P f ‖Lp(w) .

∫ ∞
0

e−uu
1
2

(∫
Rn

(∫ ∞
0

∫
B(x,2t)

|(t2L)K(e−
t2
4u L − e−t2L) f (y)|2

dy dt
tn+1

) p
2

w(x)dx

) 1
p du

u

=:
∫ ∞

0
e−uu

1
2 F(u)

du
u
≤

∫ 1
4

0
u

1
2 F(u)

du
u

+

∫ ∞
1
4

e−uu
1
2 F(u)

du
u

=: I + II.

Fix 0 < u < 1
4 , and note that

∣∣(e− t2
4u L − e−t2L) f

∣∣ . ∫ t
2
√

u

t

∣∣r2Le−r2L f
∣∣dr

r
.

We set HK(y, r) := (r2L)K+1e−r2L f (y). Using the previous estimate and applying Minkowski’s and
Jensen’s inequalities, it follows that

F(u) .

∫
Rn

∫ ∞
0

(∫ t
2
√

u

t

(∫
B(x,2t)

|(t2L)Kr2Le−r2L f (y)|2dy
) 1

2 dr
r

)2
dt

tn+1


p
2

w(x)dx


1
p

. u−
1
4

∫
Rn

(∫ ∞
0

∫ t
2
√

u

t

∫
B(x,2t)

|HK(y, r)|2
( t

r

)4 K
dy

dr
r2

dt
tn

) p
2

w(x)dx

 1
p

. u−
1
4

(∫
Rn

(∫ ∞
0

∫ r

2
√

ur

∫
B(x,2t)

|HK(y, r)|2
( t

r

)4 K
dy

dt
tn

dr
r2

) p
2

w(x)dx

) 1
p

.
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Take 2 < q̃ < ∞, apply Jensen’s inequality to the integral in y, and change the variable t into rt to
obtain

F(u) . u−
1
4

∫
Rn

(∫ ∞
0

∫ r

2
√

ur

(∫
B(x,2t)

|HK(y, r)|q̃dy
) 2

q̃ ( t
r

)4 K dt

t
2n
q̃

dr
r2

) p
2

w(x)dx


1
p

. u−
1
4

∫
Rn

(∫ ∞
0

∫ 1

2
√

u

(∫
B(x,2rt)

|HK(y, r)|q̃dy
) 2

q̃

t4K dt

t
2n
q̃

dr

r
2n
q̃ +1

) p
2

w(x)dx


1
p

=: u−
1
4

(∫
Rn

Ĥ(x, u)pw(x)dx
) 1

p

.

Note that 1 < q̃
2 . Then for α := t ∈ (0, 1) and q := q̃

2 we can apply Proposition 3.30 and obtain for
all q̃

2 ≤ s < ∞ and w0 ∈ RHs′

∫
Rn

Ĥ(x, u)2w0(x)dx =

∫ 1

2
√

u

∫ ∞
0

∫
Rn

(∫
B(x,2rt)

|HK(y, r)|q̃dy
) 2

q̃

w0(x)dx
dr

r
2n
q̃ +1

t4K dt

t
2n
q̃

(4.19)

.

∫ 1

2
√

u
t4K− 2n

q̃ + n
s +1 dt

t

∫ ∞
0

∫
Rn

(∫
B(x,2r)

|HK(y, r)|q̃dy
) 2

q̃

w0(x)dx
dr

r
2n
q̃ +1

= C(u, s, q̃)
∫
Rn

H̃K(x)2w0(x)dx,

where

C(u, s, q̃) :=
∫ 1

2
√

u
tθ

dt
t

:=
∫ 1

2
√

u
t4K− 2n

q̃ + n
s +1 dt

t

and

H̃K(x) :=

(∫ ∞
0

(∫
B(x,2r)

|HK(y, r)|q̃dy
) 2

q̃ dr

r
2n
q̃ +1

) 1
2

.

If we further assume q̃ < p+(L), then {(r2L)K+1e−r2L}r>0 ∈ F∞(L2 → Lq̃). Use that HK(y, r) =

2K+1e−
r2
2 L HK

(
y, r√

2

)
and apply Proposition 3.2 to obtain∫

Rn
H̃K(x)2w0(x)dx .

∑
j≥1

e−c4 j
∫
Rn

∫ ∞
0

∫
B(x,2 j+2r)

∣∣HK
(
y, r√

2

)∣∣2 dy dr
rn+1 w0(x)dx

.
∑
j≥1

e−c4 j
∫
Rn

∫ ∞
0

∫
B(x,2 j+2

√
2r)

∣∣HK(y, r)
∣∣2 dy dr

rn+1 w0(x)dx

.
∑
j≥1

2 jnre−c4 j
∫
Rn
SK+1,H f (x)2w0(x)dx

.

∫
Rn
SK+1,H f (x)2w0(x)dx,

where r > rw0 is so that w0 ∈ Ar and 0 < 2 ≤ 2r. This, together with (4.19), yields for all
2 < q̃ < p+(L), q̃

2 ≤ s < ∞, and w0 ∈ RHs′∫
Rn

(
Ĥ(x, u)2s

) 1
s

w0(x)dx .
∫
Rn

(
C(u, s, q̃)sSK+1,H f (x)2s) 1

s w0(x)dx.
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Applying Lemma 3.3, part (b), to the pairs of functions
(
Ĥ(x, u)2s,C(u, s, q̃)sSK+1,H f (x)2s

)
and

with q0 := s, we have for all 2 < q̃ < p+(L), q̃
2 ≤ s < ∞, 1 < q < ∞, and w̃ ∈ RHq′∫

Rn
Ĥ(x, u)

2s
q w̃(x)dx . C(u, s, q̃)

s
q

∫
Rn
SK+1,H f (x)

2s
q w̃(x)dx.(4.20)

Consider now two cases: n ≤ (2K + 1)p+(L) and n > (2K + 1)p+(L).

Assume first that n ≤ (2K + 1)p+(L). Fix 0 < p < ∞ and w ∈ A∞. Take s > sw max
{ p

2 , 1
}

,

max
{

2, 2sp+(L)
p+(L)+2s

}
< q̃ < min {p+(L), 2s}, (if p+(L) = ∞ take q̃ := 2s), and q := 2s

p . Then, 2 < q̃ <

p+(L), q̃
2 ≤ s < ∞, 1 ≤ sw < q < ∞, and w ∈ RHq′ . Hence, (4.20) yields

F(u) . u−
1
4

(∫
Rn

Ĥ(x, u)pw(x)dx
) 1

p

. u−
1
4 C(u, s, q̃)

1
2 ‖SK+1,H f (x)‖Lp(w).

Note that from our choices of s and q̃ we have

θ := 4K −
2n
q̃

+
n
s

+ 1 > 4K −
2n

p+(L)
+ 1 > −1.

Therefore, taking −1 < θ̃ < min{θ, 0}, we obtain

C(u, s, q̃) =

∫ 1

2
√

u
tθ

dt
t
≤

∫ 1

2
√

u
tθ̃

dt
t
. u

θ̃
2 ,

and hence

(4.21) I =

∫ 1
4

0
u

1
2 F(u)

du
u
.

∫ 1
4

0
u

1
4 C(u, s, q̃)

1
2

du
u
‖SK+1,H f ‖Lp(w)

.

∫ 1
4

0
u

1+̃θ
4

du
u
‖SK+1,H f ‖Lp(w) . ‖SK+1,H f ‖Lp(w).

We next consider the case n > (2K + 1)p+(L). Fix w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗). Then w ∈
RH( p+(L)K,∗

p

)′ and 0 < p < p+(L)n
sw(n−(2K+1)p+(L)) . There exists ε1 > 0 small enough and 2 < q̃ < p+(L),

such that

0 < p <
q̃n

sw(1 + ε1)(n − (2K + 1)q̃)
.

Besides, since q̃ < q̃n/(n − (2K + 1)q̃), there also exists ε2 > 0 such that

q̃ <
q̃n

(1 + ε2)(n − (2K + 1)q̃)
.

Pick ε0 := min{ε1, ε2}, s := q̃n
2(1+ε0)(n−(2K+1)q̃) , and q := 2s

p . Then, 2 < q̃ < p+(L), q̃
2 ≤ s < ∞,

1 ≤ sw < q < ∞, and w ∈ RHq′ . Therefore, (4.20) yields

F(u) . u−
1
4

(∫
Rn

Ĥ(x, u)pw(x)dx
) 1

p

. u−
1
4 C(u, s, q̃)

1
2 ‖SK+1,H f ‖Lp(w).

Once more, from our choices of s and q̃ we have

θ := 4K −
2n
q̃

+
n
s

+ 1 = −1 + 2ε0

(
n
q̃
− (2K + 1)

)
> −1 + 2ε0

(
n

p+(L)
− (2K + 1)

)
> −1.

Hence, taking −1 < θ̃ < min{θ, 0}, we obtain

C(u, s, q̃) =

∫ 1

2
√

u
tθ

dt
t
≤

∫ 1

2
√

u
tθ̃

dt
t
. u

θ̃
2 .
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Therefore,

I =

∫ 1
4

0
u

1
2 F(u)

du
u
.

∫ 1
4

0
u

1
4 C(u, s, q̃)

1
2

du
u
‖SK+1,H f ‖Lp(w)

.

∫ 1
4

0
u

1+̃θ
4

du
u
‖SK+1,H f ‖Lp(w) . ‖SK+1,H f ‖Lp(w).

This and (4.21) give I . ‖SK+1,H f ‖Lp(w) for all w ∈ A∞ and p ∈ Ww(0, p+(L)K,∗) with p ≥ 1.

To estimate II we fix 1
4 ≤ u < ∞ and observe that∣∣∣∣(e− t2

4u L − e−t2L) f
∣∣∣∣ . ∫ t

t
2
√

u

∣∣∣r2Le−r2L f
∣∣∣ dr

r
.

Set Tr2,K := (r2L)K+1e−r2L and pick r̃ ≥ max{ p
2 , rw} so that w ∈ Ar̃ and 1 ≤ p ≤ 2r̃. Then, applying

Jensen’s inequality, Fubini, the fact that we are integrating in t < 2
√

ur, and Proposition 3.2, we
have

F(u) .

∫
Rn

∫ ∞
0

(∫ t

t
2
√

u

(∫
B(x,2t)

|(t2L)KTr2,0 f (y)|2dy
) 1

2 dr
r

)2
dt

tn+1


p
2

w(x)dx


1
p

.

∫
Rn

(∫ ∞
0

∫ t

t
2
√

u

∫
B(x,2t)

|(t2L)KTr2,0 f (y)|2dy
dr
r2

dt
tn

) p
2

w(x)dx

 1
p

=

∫
Rn

(∫ ∞
0

∫ 2
√

ur

r

∫
B(x,2t)

|(t2L)KTr2,0 f (y)|2dy
dt
tn

dr
r2

) p
2

w(x)dx

 1
p

. uK

∫
Rn

(∫ ∞
0

∫ 2
√

ur

r

∫
B(x,4

√
ur)
|Tr2,K f (y)|2dy dt

dr
rn+2

) p
2

w(x)dx

 1
p

. uK+ 1
4

(∫
Rn

(∫ ∞
0

∫
B(x,4

√
ur)
|(r2L)K+1e−r2L f (y)|2dy

dr
rn+1

) p
2

w(x)dx

) 1
p

. uK+ 1
4 + ñr

2p

(∫
Rn

(∫ ∞
0

∫
B(x,r)

|(r2L)K+1e−r2L f (y)|2dy
dr

rn+1

) p
2

w(x)dx

) 1
p

= uK+ 1
4 + ñr

2p ‖SK+1,H f ‖Lp(w).

Hence,

II =

∫ ∞
1
4

e−uu
1
2 F(u)

du
u
.

∫ ∞
1
4

e−uuK+ 3
4 + ñr

2p
du
u
‖SK+1,H f ‖Lp(w) . ‖SK+1,H f ‖Lp(w)

Gathering this estimate and the one obtained for I, from the observations made above, the proof of
(4.17) is complete. �

Remark 4.22. We note that Theorems 1.14 and 1.15 are restricted to functions f ∈ L2(Rn). How-
ever, an inspection of the proof and a routine and tedious density argument allow us to extend
these estimates to bigger classes of functions. For instance, we can take any function f ∈ Lq(w̃)
with w̃ ∈ A∞ and q ∈ Ww̃(p−(L), p+(L)). In that range the Heat and the Poisson semigroups are
uniformly bounded and satisfy off-diagonal estimates, hence the square functions under study are
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meaningfully defined. Moreover, L has a bounded holomorphic functional calculus on Lq(w̃) (see
[5], [6], and [7]). Further details are left to the interested reader.
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[29] A.K. Lerner, On sharp aperture-weighted estimates for square functions. Preprint (2013).
[30] S. Liu, L. Song, An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators, J. Funct.

Anal. 265 (2013), no. 11, 2709–2723.



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 35

[31] J.M. Martell, C. Prisuelos-Arribas Weighted Hardy spaces associated with elliptic operators. Part II: Characteri-
zations of H1

L(w). Preprint 2017, arXiv:1701.00920.
[32] C. Prisuelos-Arribas, Weighted Hardy spaces associated with elliptic operators. Part III: Characterizations of

Hp
L(w) and the weighted Hardy space associated with the Riesz transform. In preparation.

[33] J.L. Rubio de Francia, Factorization theory and Ap weights, Amer. J. Math. 106 (1984), no. 3, 533–547.
[34] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series. no. 30,

Princeton University Press, Princeton, N.J. (1970).
[35] E.M. Stein, G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta

Math. 103 (1960) 25–62.
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