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Abstract. Let L be a second-order, homogeneous, constant (complex) coefficient elliptic
system in Rn. The goal of this article is to prove a Fatou-type result, regarding the a.e.
existence of the nontangential boundary limits of any null-solution u of L in the upper-half
space, whose nontangential maximal function satisfies an integrability condition with respect
to the weighted Lebesgue measure (1 + |x′|n−1)−1dx′ in Rn−1 ≡ ∂Rn+. This is the best result
of its kind in the literature. In addition, we establish a naturally accompanying integral
representation formula involving the Agmon-Douglis-Nirenberg Poisson kernel for the system
L. Finally, we use this machinery to derive well-posedness results for the Dirichlet boundary
value problem for L in Rn+ formulated in a manner which allows for the simultaneous treatment
of a variety of function spaces.

Dedicated to Wolfgang Sprössig on the occasion of his 70th birthday

1. Introduction

Let n ∈ N with n ≥ 2 denote the dimension of the Euclidean ambient space. Fix an integer
M ∈ N and consider the second-order, homogeneous, M ×M system, with constant complex
coefficients in Rn, written (with the usual convention of summation over repeated indices in
place) as

Lu :=
(
aαβrs ∂r∂suβ

)
1≤α≤M

, (1.1)

when acting on vector-valued distributions u = (uβ)1≤β≤M in an open subset of Rn. Through-
out, we shall assume that L is elliptic in the sense that there exists a real number c > 0
such that the following Legendre-Hadamard condition is satisfied:

Re
[
aαβrs ξrξsηαηβ

]
≥ c|ξ|2|η|2 for every

ξ = (ξr)1≤r≤n ∈ Rn and η = (ηα)1≤α≤M ∈ CM .
(1.2)

Examples to keep in mind are the Laplacian and the Lamé system.

As is known from the classical work of S. Agmon, A. Douglis, and L. Nirenberg in [1] and
[2], every operator L as in (1.1)-(1.2) has a Poisson kernel, denoted by PL (an object whose
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properties mirror the most basic characteristics of the classical harmonic Poisson kernel). For
details, see Theorem 2.3 below.

The main goal of this paper is to establish a Fatou-type theorem and a naturally accom-
panying Poisson integral representation formula for null-solutions of an elliptic system L, as
above, in the upper-half space defined in the upper-half space

Rn+ :=
{

(x′, xn) ∈ Rn−1 × R : xn > 0
}
. (1.3)

Among other things, this is going to yield versatile well-posedness results for the Dirichlet
problem in Rn+ for such systems. Prior to formulating the main result, some comments on the
notation used are in order. Given a function u defined in Rn+, by Nκu we shall denote the
nontangential maximal function of u with aperture κ; see (2.2) for a precise definition. Next,

by u
∣∣κ−n.t.

∂Rn+
we denote the (κ-)nontangential limit of the given function u on the boundary of

the upper half-space (canonically identified with Rn−1), as defined in (2.3). Finally, given any
d ∈ N, the Lebesgue measure in Rd will be denoted by L d.

Theorem 1.1 (A Fatou-Type Theorem and Poisson’s Integral Formula). Let L be an M ×M
system with constant complex coefficients as in (1.1)-(1.2), and fix some aperture parameter
κ > 0. Then 

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,∫

Rn−1

(
Nκu

)
(x′)

dx′

1 + |x′|n−1
<∞,

(1.4)

implies that 

u
∣∣κ−n.t.

∂Rn+
exists at L n−1-a.e. point in Rn−1,

u
∣∣κ−n.t.

∂Rn+
belongs to

[
L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)]M
,

u(x′, t) =
(
PLt ∗

(
u
∣∣κ−n.t.

∂Rn+

))
(x′) for each (x′, t) ∈ Rn+,

(1.5)

where PL =
(
PLβα

)
1≤β,α≤M is the Agmon-Douglis-Nirenberg Poisson kernel for the system L

in Rn+ and PLt (x′) := t1−nPL(x′/t) for each x′ ∈ Rn−1 and t > 0.

This refines [7, Theorem 6.1, p. 956]. We also wish to remark that even in the classical case
when L := ∆, the Laplacian in Rn, Theorem 1.1 is more general (in the sense that it allows
for a larger class of functions) than the existing results in the literature. Indeed, the latter
typically assume an Lp integrability condition for the harmonic function which, in the range
1 < p < ∞, implies our weighted L1 integrability condition for the nontangential maximal
function demanded in (1.4). In this vein see, e.g., [4, Theorems 4.8-4.9, pp. 174-175], [13,
Corollary, p. 200], [14, Proposition 1, p. 119].

A special case of Theorem 1.1 worth singling out is as follows. Recall the Agmon-Douglis-
Nirenberg kernel function

KL ∈
⋂
ε>0

[
C∞

(
Rn+ \B(0, ε)

)]M×M
,

KL(x) := PLt (x′) for all x = (x′, t) ∈ Rn+,
(1.6)

associated with the elliptic system L as in Theorem 2.3. Fix some to > 0 and define

u(x) := KL(x′, t+ to) = PLt+to(x
′) for all x = (x′, t) ∈ Rn+. (1.7)
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Then
u ∈

[
C∞

(
Rn+
)]M×M

, Lu = 0 in Rn+, u
∣∣
∂Rn+

= PLto on Rn−1. (1.8)

In addition, (2.12) ensures that there exists a finite constant Cto > 0 with the property that
|u(x)| ≤ Cto(1 + |x|)1−n for each x ∈ Rn+. For each fixed κ > 0 this readily entails(

Nκu
)
(x′) ≤ C

1 + |x′|n−1
, ∀x′ ∈ Rn−1. (1.9)

This, in turn, guarantees that the finiteness condition demanded in (1.9) is presently satisfied.
Having verified all hypotheses of Theorem 1.1, from the Poisson integral representation formula
in the last line of (1.5) and (1.7)-(1.8) we conclude that

PLt+to(x
′) = u(x′, t) =

(
PLt ∗ PLto

)
(x′) for all (x′, t) ∈ Rn+, (1.10)

where the convolution between the two matrix-valued functions in (1.10) is understood in a
natural fashion, taking into account the algebraic multiplication of matrices. Ultimately, this
provides an elegant proof of the following result (first established in [7, Theorem 5.1] via a
conceptually different argument):

the Agmon-Douglis-Nirenberg Poisson kernel PL associated
with any given elliptic system L as in Theorem 2.3 satisfies
the semi-group property PLt0+t1 = PLt0 ∗ P

L
t1 for all t0, t1 > 0.

(1.11)

Here is another important corollary of Theorem 1.1, which refines [7, Theorem 3.2, p. 935].

Corollary 1.2 (A General Uniqueness Result). Let L be an M ×M system with constant
complex coefficients as in (1.1)-(1.2), and fix an aperture parameter κ > 0. Then

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,∫

Rn−1

(
Nκu

)
(x′)

dx′

1 + |x′|n−1
< +∞,

u
∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e. point on Rn−1,


=⇒ u = 0 in Rn+. (1.12)

Theorem 1.1 also interfaces tightly with the topic of boundary value problems. To elaborate
on this aspect, we need more notation. Denote by M the collection of all (equivalence classes
of) Lebesgue measurable functions f : Rn−1 → [−∞,∞] such that |f | <∞ at L n−1-a.e. point
in Rn−1. Also, call a subset Y of M a function lattice if the following properties hold:

(i) whenever f, g ∈ M satisfy 0 ≤ f ≤ g at L n−1-a.e. point in Rn−1 and g ∈ Y then
necessarily f ∈ Y;

(ii) 0 ≤ f ∈ Y implies λf ∈ Y for every λ ∈ (0,∞);
(iii) 0 ≤ f, g ∈ Y implies max{f, g} ∈ Y.

In passing, note that, granted (i), one may replace (ii)-(iii) above by the condition: 0 ≤ f, g ∈ Y
implies f + g ∈ Y. As usual, we set log+ t := max

{
0 , ln t

}
for each t ∈ (0,∞). Also, the

symbol M is reserved for the Hardy-Littlewood maximal operator in Rn−1; see (2.6).

We are now in a position to discuss the following refinement of [7, Theorem 1.1, p. 915].

Corollary 1.3 (A Template for the Dirichlet Problem). Let L be an M × M system with
constant complex coefficients as in (1.1)-(1.2), and fix an aperture parameter κ > 0. Also,
assume that

Y ⊆ L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)
, Y is a function lattice, (1.13)
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and that

X is a collection of CM -valued measurable
functions on Rn−1 satisfying MX ⊆ Y.

(1.14)

Then the (X,Y)-Dirichlet boundary value problem for the system L in the upper-half space,
formulated as 

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,
Nκu ∈ Y,

u
∣∣κ−n.t.

∂Rn+
= f ∈ X,

(1.15)

has a unique solution. Moreover, the solution u of (1.15) is given by

u(x) = (PLt ∗ f)(x′) for all x = (x′, t) ∈ Rn−1 × (0,∞) = Rn+, (1.16)

where PL is the Poisson kernel for L in Rn+, and satisfies(
Nκu

)
(x′) ≤ CMf(x′), ∀x′ ∈ Rn−1, (1.17)

for some constant C ∈ (0,∞) that depends only on L, n, and κ.

Corollary 1.3 contains as particular cases a multitude of well-posedness results for elliptic
systems in the upper-half space. For example, one may take Muckenhoupt weighted Lebesgue

spaces X :=
[
Lp(Rn−1, wL n−1)

]M
and Y := Lp(Rn−1, wL n−1) with p ∈ (1,∞) and w ∈ Ap,

or Morrey spaces in Rn−1; for more on this, as well as other examples, see [7].

Here we wish to identify the most inclusive setting in which Corollary 1.3 yields a well-
posedness result. Specifically, in view of the assumptions made in (1.13)-(1.14) it is natural to
consider the linear space

Z :=
{
f ∈

[
L1
(
Rn−1 , dx′

1+|x′|n−1

)]M
: Mf ∈ L1

(
Rn−1 , dx′

1+|x′|n−1

)}
=
{
f : Rn−1 → CM : measurable and Mf ∈ L1

(
Rn−1 , dx′

1+|x′|n−1

)}
(1.18)

(recall that M is the Hardy-Littlewood maximal operator in Rn−1) equipped with the norm

‖f‖Z := ‖f‖
[L1(Rn−1, dx′

1+|x′|n−1 )]M
+ ‖Mf‖

L1
(
Rn−1, dx′

1+|x′|n−1

)
≈ ‖Mf‖

L1
(
Rn−1, dx′

1+|x′|n−1

), ∀ f ∈ Z . (1.19)

Then, Corollary 1.3 applied with X := Z and Y := L1
(
Rn−1 , dx′|

1+|x′|n−1

)
yields the following

result.

Corollary 1.4 (The Most Inclusive Well-Posedness Result). Let L be an M ×M system with
constant complex coefficients as in (1.1)-(1.2), and fix an aperture parameter κ > 0. Then the
following boundary-value problem is well-posed:

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,∫

Rn−1

(
Nκu

)
(x′)

dx′

1 + |x′|n−1
<∞,

u
∣∣κ−n.t.

∂Rn+
= f ∈ Z .

(1.20)
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The relevance of the fact that (1.4) implies (1.5) in the context of all the aforementioned

boundary value problems (cf. (1.15), (1.20)) is that the nontangential boundary trace u
∣∣κ−n.t.

∂Rn+
is guaranteed to exist by the other conditions imposed on the function u in the formulation
of the said problems, and that the solution may be recovered from the boundary datum via
convolution with the Poisson kernel canonically associated with the system L.

The type of boundary value problems treated here, in which the size of the solution is mea-
sured in terms of its nontangential maximal function and its trace is taken in a nontangential
pointwise sense, has been dealt with in the particular case when L = ∆, the Laplacian in Rn, in
a number of monographs, including [3], [4], [13], [14], and [15]. In all these works, the existence
part makes use of the explicit form of the harmonic Poisson kernel, while the uniqueness relies
on either the Maximum Principle, or the Schwarz reflection principle for harmonic functions.
Neither of the latter techniques may be adapted successfully to prove uniqueness in the case
of general systems treated here, and our approach is more in line with the work in [7] (which
involves Green function estimates and a sharp version of the Divergence Theorem), with some
significant refinements. A remarkable aspect is that our approach works for the entire class of
elliptic systems L as in (1.1)-(1.2).

2. Preliminary Matters

Throughout, N stands for the collection of all strictly positive integers, and N0 := N ∪ {0}.
As such, for each k ∈ N, we denote by Nk0 the collection of all multi-indices α = (α1, . . . , αk)
with αj ∈ N0 for 1 ≤ j ≤ k. Also, fix n ∈ N with n ≥ 2. We shall work in the upper-half
space Rn+, whose topological boundary ∂Rn+ = Rn−1 × {0} will be frequently identified with
the horizontal hyperplane Rn−1 via (x′, 0) ≡ x′. The origin in Rn−1 is denoted by 0′ and we let
Bn−1(x′, r) stand for the (n− 1)-dimensional Euclidean ball of radius r centered at x′ ∈ Rn−1.
Having fixed κ > 0, for each boundary point x′ ∈ ∂Rn+ introduce the conical nontangential
approach region with vertex at x′ as

Γκ(x′) :=
{
y = (y′, t) ∈ Rn+ : |x′ − y′| < κ t

}
. (2.1)

Given a vector-valued function u : Rn+ → CM , the nontangential maximal function of u is
defined by (

Nκu
)
(x′) := sup

{
|u(y)| : y ∈ Γκ(x′)

}
, x′ ∈ ∂Rn+ ≡ Rn−1. (2.2)

Whenever meaningful, we also define the nontangential trace of u as

u
∣∣κ−n.t.

∂Rn+
(x′) := lim

Γκ(x′)3y→(x′,0)
u(y) for x′ ∈ ∂Rn+ ≡ Rn−1. (2.3)

In the sequel, we shall need to consider a localized version of the nontangential maximal
operator. Specifically, given any E ⊂ Rn+, for each u : E → CM we set(

NE
κ u
)
(x′) := sup

{
|u(y)| : y ∈ Γκ(x′) ∩ E

}
, x′ ∈ ∂Rn+ ≡ Rn−1. (2.4)

Hence, NE
κ u = Nκũ where ũ is the extension of u to Rn+ by zero outside E. In the scenario

when u is originally defined in the entire upper-half space Rn+ we may therefore write

NE
κ u = Nκ(1Eu), (2.5)

where 1E denotes the characteristic function of E.

The action of the Hardy-Littlewood maximal operator in Rn−1 on any Lebesgue measurable
function f defined in Rn−1 is given by(

Mf
)
(x′) := sup

r>0
−
∫
Bn−1(x′,r)

|f | dL n−1, ∀x′ ∈ Rn−1, (2.6)
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where the barred integral denotes mean average (for functions which are CM -valued the average
is taken componentwise).

We next recall a useful weak compactness result from [7, Lemma 6.2, p. 956]. To state it,
denote by Cvan(Rn−1) the space of continuous functions in Rn−1 vanishing at infinity.

Lemma 2.1. Let v : Rn−1 → (0,∞) be a Lebesgue measurable function and consider a sequence
{fj}j∈N in the weighted Lebesgue space L1(Rn−1 , vL n−1) such that

F := sup
j∈N
|fj | ∈ L1(Rn−1 , vL n−1). (2.7)

Then there exists a subsequence
{
fjk
}
k∈N of {fj}j∈N and a function f ∈ L1(Rn−1 , vL n−1)

with the property that∫
Rn−1

fjk(x′)ϕ(x′)v(x′) dx′ −→
∫
Rn−1

f(x′)ϕ(x′)v(x′) dx′ as k →∞, (2.8)

for every ϕ ∈ Cvan(Rn−1).

We next discuss the notion of Poisson kernel in Rn+ for an operator L as in (1.1)-(1.2).

Definition 2.2. Let L be an M×M system with constant complex coefficients as in (1.1)-(1.2).
A Poisson kernel for L in Rn+ is a matrix-valued function

PL =
(
PLαβ

)
1≤α,β≤M : Rn−1 −→ CM×M (2.9)

such that the following conditions hold:

(a) there exists C ∈ (0,∞) such that |PL(x′)| ≤ C

(1 + |x′|2)
n
2

for each x′ ∈ Rn−1;

(b) the function PL is Lebesgue measurable and

∫
Rn−1

PL(x′) dx′ = IM×M , the M×M identity

matrix;

(c) if KL(x′, t) := PLt (x′) := t1−nPL(x′/t), for each x′ ∈ Rn−1 and t ∈ (0,∞), then the
function KL =

(
KL
αβ

)
1≤α,β≤M satisfies (in the sense of distributions)

LKL
·β = 0 in Rn+ for each β ∈ {1, . . . ,M}, (2.10)

where KL
·β :=

(
KL
αβ

)
1≤α≤M .

Poisson kernels for elliptic boundary value problems in a half-space have been studied ex-
tensively in [1], [2], [5, §10.3], [10], [11], [12]. Here we record a corollary of more general work
done by S. Agmon, A. Douglis, and L. Nirenberg in [2].

Theorem 2.3. Any M ×M system L with constant complex coefficients as in (1.1)-(1.2) has
a Poisson kernel PL in the sense of Definition 2.2, which has the additional property that the
function

KL(x′, t) := PLt (x′) for all (x′, t) ∈ Rn+, (2.11)

satisfies KL ∈
[
C∞

(
Rn+ \ B(0, ε)

)]M×M
for every ε > 0, and has the property that for each

multi-index α ∈ Nn0 there exists Cα ∈ (0,∞) such that∣∣(∂αKL)(x)
∣∣ ≤ Cα |x|1−n−|α|, for every x ∈ Rn+ \ {0}. (2.12)
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Here and elsewhere, the convolution between two functions, which are matrix-valued and
vector-valued, respectively, takes into account the algebraic multiplication between a matrix
and a vector in a natural fashion.

The next result we recall has been proved in [7, Theorem 3.1, p. 934].

Proposition 2.4. Let L be an M ×M system with constant complex coefficients as in (1.1)-
(1.2), and recall the Poisson kernel PL for L in Rn+ from Theorem 2.3. Also, fix some arbitrary
aperture parameter κ > 0. Given a function

f ∈
[
L1
(
Rn−1 ,

dx′

1 + |x′|n
)]M

, (2.13)

set
u(x′, t) := (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+. (2.14)

Then u is meaningfully defined via an absolutely convergent integral,

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+, u

∣∣κ−n.t.

∂Rn+
= f at L n−1-a.e. point in Rn−1 (2.15)

(with the last identity valid in the set of Lebesgue points of f), and there exists a constant
C = C(n,L, κ) ∈ (0,∞) with the property that(

Nκu
)
(x′) ≤ C

(
Mf

)
(x′), ∀x′ ∈ Rn−1. (2.16)

A key ingredient in the proof of our main result is understanding the nature of the Green
function associated with a given elliptic system. While we elaborate on this topic in Theo-
rem 2.6 below, we begin by providing a suitable definition for the said Green function (which,
in particular, is going to ensure its uniqueness). To set the stage, denote by D′(Rn+) the space
of distributions in Rn+.

Definition 2.5. Let L be an M ×M system with constant complex coefficients as in (1.1)-
(1.2). Call GL(·, ·) : Rn+ × Rn+ \ diag → CM×M a Green function for L in Rn+ provided for
each y = (y′, yn) ∈ Rn+ the following properties hold (for some aperture parameter κ > 0):

GL(· , y) ∈
[
L1

loc(Rn+)
]M×M

, (2.17)

GL(· , y)
∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e. point in Rn−1 ≡ ∂Rn+, (2.18)∫

Rn−1

(
N Rn+\B(y,yn/2)
κ GL(· , y)

)
(x′)

dx′

1 + |x′|n−1
<∞, (2.19)

L
[
GL(· , y)

]
= −δy IM×M in

[
D′(Rn+)

]M×M
, (2.20)

where the M ×M system L acts in the “dot” variable on the columns of G.

The existence and basic properties of the Green function just defined are discussed in our
next theorem (a proof of which may be found in [6]). Before stating it, we make two conventions
regarding notation. First, we agree to abbreviate diag := {(x, x) : x ∈ Rn+} for the diagonal
in the Cartesian product Rn+ × Rn+. Second, given a function G(·, ·) of two vector variables,
(x, y) ∈ Rn+×Rn+ \diag, for each k ∈ {1, . . . , n} we agree to write ∂XkG and ∂YkG, respectively,
for the partial derivative of G with respect to xk, and yk. This convention may be iterated,

lending a natural meaning to ∂αX∂
β
YG, for each pair of multi-indices α, β ∈ Nn0 . We are now

ready to present the result alluded to above.

Theorem 2.6. Assume that L is an M ×M system with constant complex coefficient as in
(1.1)-(1.2). Then there exists a unique Green function GL(·, ·) for L in Rn+, in the sense of
Definition 2.5. Moreover, this Green function also satisfies the following additional properties:
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(1) Given κ > 0, for each y ∈ Rn+ and each compact neighborhood K of y in Rn+ there
exists a finite constant Cy = C(n,L, κ,K, y) > 0 such that for every x′ ∈ Rn−1 there
holds

N
Rn+\K

κ

(
GL(·, y)

)
(x′) ≤ Cy

1 + log+ |x′|
1 + |x′|n−1

. (2.21)

Moreover, for any multi-indices α, β ∈ Nn0 such that |α| + |β| > 0, there exists some
constant Cy = C(n,L, κ, α, β,K, y) ∈ (0,∞) such that

N Rn+\K
κ

(
(∂αX∂

β
YG

L)(·, y)
)
(x′) ≤ Cy

1 + |x′|n−2+|α|+|β| . (2.22)

(2) For each fixed y ∈ Rn+, there holds

GL(· , y) ∈
[
C∞

(
Rn+ \B(y, ε)

)]M×M
for every ε > 0. (2.23)

As a consequence of (2.23) and (2.18), for each fixed y ∈ Rn+ one has

GL(·, y)
∣∣∣
∂Rn+

= 0 everywhere on Rn−1. (2.24)

(3) For each α, β ∈ Nn0 the function ∂αX∂
β
YG

L is translation invariant in the tangential
variables, in the sense that(

∂αX∂
β
YG

L
)(
x− (z′, 0), y − (z′, 0)

)
=
(
∂αX∂

β
YG

L
)
(x, y)

for each (x, y) ∈ Rn+ × Rn+ \ diag and z′ ∈ Rn−1,
(2.25)

and is positive homogeneous, in the sense that(
∂αX∂

β
YG

L
)
(λx, λy) = λ2−n−|α|−|β|(∂αX∂βYGL)(x, y)

for each x, y ∈ Rn+ with x 6= y and λ ∈ (0,∞),

provided either n ≥ 3, or |α|+ |β| > 0.

(2.26)

(4) If GL
>
(·, ·) denotes the (unique, by the first part of the statement) Green function for

L> (the transposed of L) in Rn+, then

GL(x, y) =
[
GL
>
(y, x)

]>
, ∀ (x, y) ∈ Rn+ × Rn+ \ diag. (2.27)

Hence, as a consequence of (2.27), (2.18), and (2.23), for each fixed x ∈ Rn+ and ε > 0,

GL(x, ·) ∈
[
C∞

(
Rn+ \B(x, ε)

)]M×M
and GL(x, ·)

∣∣∣
∂Rn+

= 0 on Rn−1. (2.28)

(5) For any multi-indices α, β ∈ Nn0 there exists a finite constant Cαβ > 0 such that∣∣(∂αX∂βYGL)(x, y)
∣∣ ≤ Cαβ|x− y|2−n−|α|−|β|,

∀ (x, y) ∈ Rn+ × Rn+ \ diag, if either n ≥ 3, or |α|+ |β| > 0,
(2.29)

and, corresponding to |α| = |β| = 0 and n = 2, there exists C ∈ (0,∞) such that∣∣GL(x, y)
∣∣ ≤ C + C

∣∣ln |x− y|∣∣, ∀ (x, y) ∈ R2
+ × R2

+ \ diag, (2.30)

where y := (y′,−yn) ∈ Rn is the reflexion of y = (y′, yn) ∈ Rn+ across the boundary of
the upper-half space.
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(6) The Agmon-Douglis-Nirenberg Poisson kernel PL =
(
PLγα

)
1≤γ,α≤M for L in Rn+ from

Theorem 2.3 is related to the Green function GL for L in Rn+ according to the formula

PLγα(z′) = aβαnn
(
∂YnG

L
γβ

)(
(z′, 1), 0

)
, ∀ z′ ∈ Rn−1,

for each α, γ ∈ {1, . . . ,M}.
(2.31)

We shall now record the following versatile version of interior estimates for second-order
elliptic systems. A proof may be found in [8, Theorem 11.9, p. 364].

Theorem 2.7. Consider a homogeneous, constant coefficient, second-order, system L sat-
isfying the weak ellipticity condition det [L(ξ)] 6= 0 for each ξ ∈ Rn \ {0}. Then for each
null-solution u of L in a ball B(x,R) (where x ∈ Rn and R > 0), 0 < p < ∞, λ ∈ (0, 1),
` ∈ N0, and 0 < r < R, one has

sup
z∈B(x,λr)

|∇`u(z)| ≤ C

r`

(
−
∫
B(x,r)

|u|p dL n

)1/p

, (2.32)

where C = C(L, p, `, λ, n) > 0 is a finite constant.

We conclude by recording a suitable version of the divergence theorem recently obtained in
[9]. To state it requires a few preliminaries which we dispense with first. We shall write E ′(Rn+)
for the subspace of D′(Rn+) consisting of those distributions which are compactly supported.
Hence,

E ′(Rn+) ↪→ D′(Rn+) and L1
loc(Rn+) ↪→ D′(Rn+). (2.33)

For each compact set K ⊂ Rn+, define E ′K(Rn+) :=
{
u ∈ E ′(Rn+) : suppu ⊂ K

}
and consider

E ′K(Rn+) + L1(Rn+) :=
{
u ∈ D′(Rn+) : ∃ v1 ∈ E ′K(Rn+) and ∃ v2 ∈ L1(Rn+)

such that u = v1 + v2 in D′(Rn+)
}
. (2.34)

Also, introduce C∞b (Rn+) := C∞(Rn+)∩L∞(Rn+) and let
(
C∞b (Rn+)

)∗
denote its algebraic dual.

Moreover, we let (C∞b (Rn+))∗
(
· , ·
)
C∞b (Rn+)

denote the natural duality pairing between these spaces.

It is useful to observe that for every compact set K ⊂ Rn+ one has

E ′K(Rn+) + L1(Rn+) ⊂
(
C∞b (Rn+)

)∗
. (2.35)

Theorem 2.8 ([9]). Assume that K ⊂ Rn+ is a compact set and that ~F ∈
[
L1

loc(Rn+)
]n

is a
vector field satisfying the following conditions (for some aperture parameter κ > 0):

(a) div ~F ∈ E ′K(Rn+) + L1(Rn+), where the divergence is taken in the sense of distributions;

(b) the nontangential maximal function N Rn+\K
κ

~F belongs to L1(Rn−1);

(c) the nontangential boundary trace ~F
∣∣κ−n.t.

∂Rn+
exists (in Cn) at L n−1-a.e. point in Rn−1.

Then, with en := (0, . . . , 0, 1) ∈ Rn and “dot” denoting the standard inner product in Rn,

(C∞b (Rn+))∗
(
div ~F , 1

)
C∞b (Rn+)

= −
∫
Rn−1

en ·
(
~F
∣∣κ−n.t.

∂Rn+

)
dL n−1. (2.36)
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3. Proofs of Main Results

We take on the task of presenting the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix an arbitrary point x? ∈ Rn+ and bring in GL
>

( · , x?), the Green

function with pole at x? for L>, the transposed of the operator L (cf. Definition 2.5 and
Theorem 2.6 for details on this matter). For ease of notation, abbreviate

G(·) := GL
>

( · , x?) in Rn+ \ {x?}. (3.1)

By design, this is a matrix-valued function, say G = (Gαγ)1≤α,γ≤M . We shall apply Theo-
rem 2.8 to a suitably chosen vector field. To set the stage, consider the compact set

K? := B(x?, r) ⊂ Rn+, where r := dist (x?, ∂Rn+) · κ
2
√

4+κ2
. (3.2)

For each ε > 0 consider the function uε : Rn+ → CM given by

uε(x) := u(x′, xn + ε) for all x = (x′, xn) ∈ Rn+. (3.3)

Then

uε ∈
[
C ∞(Rn+ )

]M
, Luε = 0 in Rn+, and Nκuε ≤ Nκu on Rn−1. (3.4)

Fix ε > 0 along with some β ∈ {1, . . . ,M} and, using the summation convention over repeated
indices, define the vector field

~F :=
(
uεα a

γα
kj ∂kGγβ −Gαβ a

αγ
jk ∂ku

ε
γ

)
1≤j≤n

at L n-a.e. point in Rn+. (3.5)

From (3.5), Theorem 2.6, and the fact that uε ∈
[
C ∞(Rn+ )

]M
it follows that

~F ∈
[
L1

loc(Rn+)
]n ∩ [C∞(Rn+ \K?)

]n
(3.6)

and, on account of (2.24) (used for L> in place of L), we have

~F
∣∣∣
∂Rn+

=
((
uεα
∣∣
∂Rn+

)
aγαkj
(
∂kGγβ

)∣∣
∂Rn+

)
1≤j≤n

. (3.7)

Next, in the sense of distributions in Rn+, we may compute

div ~F = (∂ju
ε
α) aγαkj (∂kGγβ) + uεα a

γα
kj (∂j∂kGγβ)

− (∂jGαβ) aαγjk (∂ku
ε
γ)−Gαβ aαγjk (∂j∂ku

ε
γ)

=: I1 + I2 + I3 + I4, (3.8)

where the last equality defines the Ii’s. Changing variables j′ = k, k′ = j, α′ = γ, and γ′ = α
in I3 yields

I3 = −(∂k′Gγ′β) aγ
′α′

k′j′ (∂j′u
ε
α′) = −I1. (3.9)

As regards I4, we have

I4 = −Gαβ (Luε)α = 0, (3.10)

by (3.4). Finally,

I2 = uεα(LA>G·β)α = uεα(L>G·β)α

= −uεαδαβδx? = −uεβ δx? = −uεβ(x?) δx? . (3.11)

Collectively, these equalities permit us to conclude that, in the sense of distributions in Rn+,

div ~F = −uεβ(x?) δx? ∈ E ′(Rn+). (3.12)
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In particular,

div ~F ∈ D′(Rn+) induces a continuous functional in
(
C∞b (Rn+)

)∗
. (3.13)

Moving on, fix x′ ∈ Rn−1 ≡ ∂Rn+ and pick an arbitrary point

y = (y′, yn) ∈ Γκ/2(x′) \K?. (3.14)

Choose a rectifiable path γ : [0, 1]→ Rn+ joining (x′, 0) with y in Γκ/2(x′)\K? and whose length
is ≤ Cyn. Then, for some constant C ∈ (0,∞) independent of x′ and y, we may estimate

|G(y)| = |G(y)−G(x′, 0)| =
∣∣∣ ∫ 1

0

d

dt
[G(γ(t))] dt

∣∣∣
=
∣∣∣ ∫ 1

0
(∇G)(γ(t)) · γ′(t) dt

∣∣∣ ≤ ( sup
ξ∈γ((0,1))

|(∇G)(ξ)|
)∫ 1

0
|γ′(t)| dt

≤ Cyn · N
Rn+\K?
κ/2 (∇G)(x′), (3.15)

using the fact that G vanishes on ∂Rn+, the Fundamental Theorem of Calculus, Chain Rule,
and (2.4). Next, define

a :=
κ

2(κ+ 1)
∈
(
0, 1

2

)
(3.16)

and write, using interior estimates (cf. Theorem 2.7) for the function uε,

|(∇uε)(y)| ≤ C

yn
−
∫
B(y,a·yn)

|uε(z)| dz

≤ Cy−1
n · sup

z∈Γκ(x′)
|uε(z)| ≤ Cy−1

n ·
(
Nκuε

)
(x′), (3.17)

since having z = (z′, zn) ∈ B(y, a · yn) entails

yn ≤ zn + |z − y| < zn + a · yn =⇒ yn < (1− a)−1zn, (3.18)

which, bearing in mind that y is as in (3.14), permits us to conclude that

|z′ − x′| ≤ |z′ − y′|+ |y′ − x′| ≤ |z − y|+ (κ/2)yn < a · yn + (κ/2)yn

= (κ/2 + a)yn <
κ/2 + a

1− a
zn = κzn, hence z ∈ Γκ(x′). (3.19)

Then combining (3.15) with (3.17) gives, on account of (2.22),

N Rn+\K?
κ/2

(
|G||∇uε|

)
(x′) ≤ C

(
N Rn+\K?
κ/2 (∇G)

)
(x′)

(
Nκuε

)
(x′)

≤ C
(
Nκu

)
(x′)

1

1 + |x′|n−1
at each point x′ ∈ Rn−1. (3.20)

Since we also have

N Rn+\K?
κ/2

(
|∇G||uε|

)
(x′) ≤

(
N Rn+\K?
κ/2 (∇G)

)
(x′)

(
Nκuε

)
(x′)

≤ C
(
Nκu

)
(x′)

1

1 + |x′|n−1
at each point x′ ∈ Rn−1, (3.21)

we conclude from (3.5), (3.20), (3.21), and the second line in (1.4) that

N Rn+\K?
κ/2

~F ∈ L1(Rn−1). (3.22)
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Having established (3.6), (3.7), (3.13), and (3.22), Theorem 2.8 applies. To write the Di-
vergence Formula (2.36) in this case, express x? as (x′, t) ∈ Rn−1 × (0,∞). Then, in view of
(3.12) and (3.7) we may write

uβ(x? + εen) = uεβ(x?) = −(C∞b (Rn+))
∗
(
div ~F , 1

)
C∞b (Rn+)

=

∫
Rn−1

en ·
(
~F
∣∣
∂Rn+

)
dL n−1

=

∫
Rn−1

uα(y′, ε)aγαkn
(
∂kGγβ

)
(y′, 0) dy′

=

∫
Rn−1

uα(y′, ε)aγαnn
(
∂nGγβ

)
(y′, 0) dy′

=

∫
Rn−1

uα(y′, ε)aγαnn(∂XnG
L>
γβ )
(
(y′, 0), x?

)
dy′

=

∫
Rn−1

uα(y′, ε)aγαnn(∂YnG
L
βγ)
(
x?, (y′, 0)

)
dy′

=

∫
Rn−1

uα(y′, ε)aγαnn(∂YnG
L
βγ)
(
(x′ − y′, t), 0

)
dy′

=

∫
Rn−1

uα(y′, ε)t1−naγ αnn (∂YnG
L
βγ)
(
((x′ − y′)/t, 1), 0

)
dy′

=

∫
Rn−1

uα(y′, ε)(PLβα)t(x
′ − y′) dy′, (3.23)

where the fifth equality uses the observation that (∂kG)(y′, 0) = 0 whenever k < n since G
vanishes (in a smooth fashion) on Rn−1 × {0}, the sixth equality is a consequence of (3.1),
the seventh equality is implied by (2.27), the eighth equality makes use of (2.25) (bearing in
mind that x? = (x′, t)), the ninth equality is seen from (2.26), and the last equality comes from
(2.31).

Since β ∈ {1, . . . ,M} and x? = (x′, t) ∈ Rn+ have been arbitrarily chosen, the argument so
far shows that

u(x′, t+ ε) =

∫
Rn−1

PLt (x′ − y′)fε(y′) dy′ for each x = (x′, t) ∈ Rn+, (3.24)

where we have abbreviated

fε := u(·, ε) : Rn−1 −→ CM for each ε > 0. (3.25)

If we also consider the weight υ : Rn−1 → (0,∞) defined as v(x′) := (1 + |x′|n−1)−1 for each
x′ ∈ Rn−1, then the last condition in (1.4) entails

sup
ε>0
|fε| ≤ Nκu ∈ L1

(
Rn−1 , vL n−1

)
. (3.26)

Granted this, the weak-∗ convergence result from Lemma 2.1 may be used for the sequence{
fε
}
ε>0
⊂ L1

(
Rn−1 , vL n−1

)
to conclude that there exists some f ∈ L1

(
Rn−1 , vL n−1

)
and

some sequence {εj}j∈N ⊂ (0,∞) which converges to zero with the property that

lim
j→∞

∫
Rn−1

ϕ(y′)fεj (y
′)

dy′

1 + |y′|n−1
=

∫
Rn−1

ϕ(y′)f(y′)
dy′

1 + |y′|n−1
(3.27)
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for every continuous function ϕ ∈ Cvan(Rn−1). The fact that there exists a constant C ∈ (0,∞)
for which

|PL(z′)| ≤ C

(1 + |z′|2)n/2
for each z′ ∈ Rn−1 (3.28)

(see item (a) of Definition 2.2) ensures for each fixed point (x′, t) ∈ Rn+ the assignment

Rn−1 3 y′ 7→ ϕ(y′) := (1 + |y′|n−1)PLt (x′ − y′) ∈ CM×M

is a continuous function which vanishes at infinity.
(3.29)

At this stage, from (3.24) and (3.27) used for the function ϕ defined in (3.29) we obtain (bearing
in mind that u is continuous in Rn+) that

u(x′, t) =

∫
Rn−1

PLt (x′ − y′)f(y′) dy′ for each x = (x′, t) ∈ Rn+. (3.30)

With this in hand, and since L1
(
Rn−1 , vL n−1

)
⊆ L1

(
Rn−1 ,

dx′

1 + |x′|n
)

, we may invoke

Proposition 2.4 to conclude that

u
∣∣κ−n.t.

∂Rn+
exists and equals f at L n−1-a.e. point in Rn−1. (3.31)

Once this has been established, all conclusions in (1.5) are implied by (3.30)-(3.31). �

We close by presenting the proof of Corollary 1.3.

Proof of Corollary 1.3. As a preamble, let us first show that

X ⊆
[
L1
(
Rn−1 ,

dx′

1 + |x′|n
)]M

. (3.32)

To justify this, pick some arbitrary f ∈ X. Then the inclusion in (1.14) gives that Mf ∈ Y,
hence Mf is not identically +∞. This implies that f ∈ [L1

loc(Rn−1)]M which, in concert with
Lebesgue’s Differentiation Theorem, implies that |f | ≤ Mf at L n−1-a.e. point in Rn−1. Since
Y is a function lattice, it follows that |f | ∈ Y. Thus, ultimately, (3.32) holds by virtue of the
inclusion in (1.13).

To prove the existence of a solution for (1.15), given any f ∈ X define u as in (1.16). Note
that (3.32) ensures that Proposition 2.4 is applicable. In turn, this guarantees that u is a

well-defined null-solution of L belonging to
[
C∞(Rn+)

]M
, satisfying the boundary condition

u
∣∣κ−n.t.

∂Rn+
= f at L n−1-a.e. point in Rn−1, as well as the pointwise estimate in (1.17). The latter

property, together with the last conditions imposed in (1.14) and (1.13), guarantees Nκu ∈ Y.
Thus, u is indeed a solution for (1.15).

At this stage, there remains to establish that the boundary value problem (1.15) can have
at most one solution. To this end, assume that both u1 and u2 solve (1.15) for the same datum

f ∈ X and set u := u1 − u2 ∈
[
C∞(Rn+)

]M
. Then Lu = 0 in Rn+ and u

∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e.

point in Rn−1. Since we also have Nκu1,Nκu2 ∈ Y, the pointwise estimate

0 ≤ Nκu ≤ Nκu1 +Nκu2 ≤ 2 max
{
Nκu1 , Nκu2

}
on Rn−1 (3.33)

forces Nκu ∈ Y by the properties of the function lattice Y. Granted this, Corollary 1.2 applies
(thanks to the first condition in (1.13)) and gives that u ≡ 0 in Rn+. Hence u1 = u2, as
wanted. �
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