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Abstract. We consider two-weight estimates for singular integral operators and
their commutators with bounded mean oscillation functions. Hörmander type con-
ditions in the scale of Orlicz spaces are assumed on the kernels. We prove weighted
weak-type estimates for pairs of weights (u, Su) where u is an arbitrary nonnegative
function and S is a maximal operator depending on the smoothness of the kernel.
We also obtain sufficient conditions on a pair of weights (u, v) for the operators to
be bounded from Lp(v) to Lp,∞(u). One-sided singular integrals, as the differen-
tial transform operator, are under study. We also provide applications to Fourier
multipliers and homogeneous singular integrals.
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1. Introduction

The Calderón-Zygmund decomposition is a very powerful tool in Harmonic Analysis.
Since its discovery in [6], many results have used it to derive boundedness properties
of singular integral operators. For instance, using that the Hilbert or the Riesz trans-
forms are bounded on L2, and by means of the Calderón-Zygmund decomposition,
one proves that these classical operators are of weak-type (1, 1). From this starting
point, in the literature one can find many boundedness results for the Hilbert and the
Riesz transforms: estimates on Lp, one-weight and two-weight norm inequalities, etc.

The Calderón-Zygmund theory generalizes these ideas to provide a general frame-
work allowing one to deal with singular integral operators. A typical Calderón-
Zygmund convolution operator T is bounded on L2(Rn) and has a kernel K on which
different conditions are assumed. In the easiest case, K behaves as the kernel of the
Hilbert or Riesz transforms. That is, K decays as |x|−n and its gradient as |x|−n−1. It
was already proved in [15] that these assumptions can be relaxed in order to show that
T is of weak-type (1, 1): it suffices to impose that K satisfies the so-called Hörmander
condition (we write K ∈ H1),∫

|x|>c |y|
|K(x− y)−K(x)| dx ≤ C, y ∈ Rn, c > 1.

From here, and by interpolation, T is bounded on Lp(Rn) with 1 < p <∞.
The underlying measure dx can be replaced by w(x) dx where w is a Muckenhoupt

Ap weight: The Hilbert and the Riesz transforms are bounded on Lp(w) = Lp(w(x) dx)
if and only if w ∈ Ap for 1 < p < ∞. For p = 1, the weak-type (1, 1) with respect
to w holds if and only if w ∈ A1. The decay assumed before on the kernel and its
gradient guarantees the same weighted estimates for the operator T . However, the
Hörmander condition does not suffice to derive such estimates as it is proved in [14]
(see also [21]). One can relax the decay conditions assumed on the kernel and still
prove the previous weighted norm inequalities. Namely, it is enough to impose that
K satisfies the following Lipschitz condition (we write K ∈ H∗∞):

|K(x− y)−K(x)| ≤ C
|y|α

|x|α+n
, |x| > c |y|.

With this condition in hand, one can show Coifman’s estimate (see [7]): for any
0 < p <∞ and any w ∈ A∞∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
Mf(x)pw(x) dx. (1.1)

These estimates can be seen as a control of the operator T by the Hardy-Littlewood
maximal function M and this allows one to show that T satisfies most of the weighted
estimates that M does (see [13] for more details).

When relaxing the H∗∞ condition, the operators become more singular and less
smoother. Thus, the Coifman estimates to be expected will have a worse maximal
operator on the right-hand side. For instance, one has a scale of Hörmander conditions
based on the Lebesgue spaces Lr for 1 ≤ r ≤ ∞ (see [17], [34] and [37]). A singular
integral operator, with kernel satisfying the Lr-Hörmander condition, 1 < r ≤ ∞,
satisfies a Coifman estimate with the maximal operator Mr′ in the right-hand side
(here Mr′f(x) = M(|f |r′)(x)1/r′). These estimates are shown to be sharp in [21].
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Let us notice that as r goes to 1 then r′ goes to ∞ and the corresponding Coifman
estimates get worse. In particular, when K ∈ H1 one lacks the Coifman estimates
(see [21]).

Sometimes, this scale of Hörmander conditions based on the Lebesgue spaces is not
sufficiently fine and gives estimates that are not accurate enough. For instance, let us
consider the differential transform operator studied in [16] and [4]:

T+f(x) =
∑
j∈Z

νj
(
Djf(x)−Dj−1f(x)

)
, (1.2)

where
∥∥{νj}j∥∥∞ <∞ and

Djf(x) =
1

2j

∫ x+2j

x

f(t) dt .

We have that T+ is a singular integral operator with kernel K supported in (−∞, 0),
and therefore T+ is a one-sided singular integral operator (that is the reason why we
write T+). In [4] it was shown that K ∈ ∩r≥1Hr (here Hr is the Hörmander condition
associated with Lr, see the precise definition below). Thus one can show that T+

satisfies a Coifman estimate with Mq in the right-hand side for any 1 < q < ∞.
Indeed, exploiting the fact that T+ is a one-sided operator one can do better: Mqf
can be replaced by the pointwise smaller operator M+

q f (the corresponding one-sided
maximal function) and A∞ by the bigger class A+

∞ (see the precise definitions and more
details below). Notice that one can take any 1 < q <∞, with the case q = 1 remaining
open (in general, K /∈ H∞). Nevertheless, there are other maximal operators that one
can write between M (or M+) and Mq (or M+

q ): any iteration of the Hardy-Littlewood
maximal function, or maximal operators associated with Orlicz spaces lying between
L1 and Lq, such as L (logL)α, α > 0.

These ideas motivated [19] on which new classes of Hörmander conditions based on
Orlicz spaces were introduced. Roughly, given a Young function A, associated with
the Orlicz space LA one can define a Hörmander class HA (see Definition 2.3). Thus,
a singular integral operator with kernel in HA is controlled in the sense of Coifman by
the maximal operator MA (which is the maximal function associated with the space

LA) where A is the conjugate function of A. This was obtained in [19] as well as the
one-sided case (see Theorems 2.4 and 3.11 below).

For the differential transform T+ introduced above one can show that K ∈ H
et

1/(1+ε)

for any ε > 0. Thus T+ satisfies a Coifman type estimate with M+
L (logL)1+ε on the right

hand side —in terms of iterations one can write (M+)3— and this maximal operator
is pointwise smaller than M+

q for any 1 < q <∞.
Coifman’s estimates are important from the point of view of weighted norm in-

equalities since they encode a lot of information about the singularity of the operator
T (see [9] and [13]). In some sense, T behaves as the maximal operator that controls
it. For instance, from (1.1) one shows that T is bounded on Lp(w) for 1 < p < ∞,
w ∈ Ap. Also one can see that T is of weak-type (1, 1) for weights in A1, T is bounded
on weighted rearrangement invariant function spaces, T satisfies weighted modular
inequalities (see [13]), etc. All these one-weight estimates are based on the fact that
(1.1) is valid for any weight in A∞ and the weight always moves within this class.
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The situation changes when one works with two-weight inequalities. Let us focus on
the endpoint estimates for p = 1. In the one-weight case, M is bounded from L1(w)
to L1,∞(w) for every w ∈ A1. Also, there is a version of (1.1) in the sense of L1,∞(w),
that is, ‖Tf‖L1,∞(w) . ‖Mf‖L1,∞(w) for every w ∈ A∞ (see [9]). These two facts imply
at once that T is of weak-type (1, 1) for weights in A1. In the two-weight case, Vitali’s
covering lemma easily gives that for every weight u (a weight is a non-negative locally
integrable function)

u{x ∈ Rn : Mf(x) > λ} . 1

λ

∫
Rn
|f(x)|Mu(x) dx.

However, this estimate is not known for the singular integral operators with smooth
kernel. Even for the Hilbert or the Riesz transforms the validity of this estimate is
an open question. Reasoning as above, one seeks pairs of weights (u, Su) for which
these operators are of weak-type (1, 1), where S will be a maximal operator worse, in
principle, than M . For instance, one can put S = Mq for every 1 < q <∞: using that
Mqu ∈ A1 and Coifman’s estimate (in L1,∞) one easily obtains the estimate proved in
[8]

‖Tf‖L1,∞(u) ≤ ‖Tf‖L1,∞(Mqu) . ‖Mf‖L1,∞(Mqu) . ‖f‖L1(Mqu).

As observed before, there are some other maximal operators that lie between M and
Mq, such as the iterations of M or ML (logL)α , α > 0. In [27], by means of the Calderón-
Zygmund decomposition, it was proved that if T is a singular integral operator with
smooth kernel (say K ∈ H∗∞), as the Hilbert or Riesz transform, then for any ε > 0
and any weight u,

u{x ∈ Rn : |Tf(x)| > λ} . 1

λ

∫
Rn
|f(x)|ML (logL)εu(x) dx. (1.3)

Note that in terms of iterations one can write M2.
The goal of this paper is to study estimates like (1.3) for operators T with less

smoother kernels. That is, if we impose that the kernel of T satisfies a Hörmander
condition in the scale of Orlicz spaces, we look for a maximal operator S so that T
is of weak-type (1, 1) with respect to the pair of weights (u, Su). The main technique
to be used is the Calderón-Zygmund decomposition. The bad part, where the best
possible result is always obtained, is handled by using the smoothness of the kernel.
For the good part, one needs a strong two-weight estimate that usually follows from a
Coifman estimate (see Theorem 2.6). We also obtain weighted endpoint inequalities
for the commutators of such operators with BMO functions. The corresponding Coif-
man estimates have been studied in [18]. One of our main examples is the differential
transform operator presented above, thus we also pay attention to the one-sided oper-
ators in which case one can obtain better estimates by replacing a maximal operator
by its corresponding one-sided analog.

The paper is organized as follows. The following section contains some of the
preliminaries and definitions that are needed to state our results. In Section 3 we
state our main results on singular integral operators, their commutators with BMO
functions and also we consider the one-sided case. Some applications, including the
differential transform operator and multipliers, are given in Section 4. Finally, Sections
5 and 6 contain the proof of our main results.
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2. Preliminaries

2.1. Young functions and Orlicz spaces. We recall some of the needed background
for Orlicz spaces, we refer the reader to [32] and [3] for a complete account of this
topic. A function A : [0,∞) −→ [0,∞) is a Young function if it is continuous, convex,
increasing and satisfies A(0) = 0, A(∞) = ∞. We will assume that the Young
functions are normalized so that A(1) = 1. We introduce the following localized and
normalized Luxemburg norm associated with the Orlicz space LA: given a cube Q,

‖f‖A,Q = inf

{
λ > 0 :

1

|Q|

∫
Q

A
(
|f(x)|
λ

)
dx ≤ 1

}
.

For instance, when A(t) = tr with r ≥ 1, we have

‖f‖Lr,Q =

(
1

|Q|

∫
Q

|f(x)|r dx
) 1

r

.

It is well known that if A(t) ≤ C B(t) for t ≥ t0 then ‖f‖A,Q ≤ C ‖f‖B,Q. Thus the
behavior of A(t) for t ≤ t0 does not matter: if A(t) ≈ B(t) for t ≥ t0 the previous
estimate implies that ‖f‖A,Q ≈ ‖f‖B,Q. This means that in most of the cases we will
not be concerned about the value of the Young functions for t small.

We can now define the Hardy-Littlewood maximal function associated with A as

MAf(x) = sup
Q3x
‖f‖A,Q.

If A(t) = t, then MA = M is the Hardy-Littlewood maximal function. For A(t) = tr

with r > 1 we have MAf(x) = M(|f |r)(x)1/r.
Given a Young function A, we say that A is doubling, we write A ∈ ∆2, if A(2 t) ≤

CA(t) for every t ≥ t0 > 0. For 1 < p < ∞, A belongs to Bp if there exists c > 0
such that ∫ ∞

c

A(t)

tp
dt

t
<∞.

This condition appears first in [29] and it was shown that A ∈ Bp if and only if MA
is bounded on Lp(Rn).

Abusing on the notation if A(t) = tr, A(t) = et
α − 1 or A(t) = tr(1 + log+ t)α, the

Orlicz norms are respectively written as ‖ · ‖r = ‖ · ‖Lr , ‖ · ‖expLα , ‖ · ‖Lr (logL)α and the
corresponding maximal operators as Mr = MLr , MexpLα and MLr (logL)α . For k ≥ 0, it
is known that ML(logL)kf(x) ≈Mk+1f(x) where Mk is the k-times iterated of M (see
[28], [33] and [13]).

In R, we can also define the one-sided maximal functions associated with a given
Young function A:

M+
Af(x) = sup

b>x
‖f‖A,(x,b) and M−

Af(x) = sup
a<x
‖f‖A,(a,x).

The one-sided Hardy-Littlewood maximal functions M+, M− correspond to the case
A(t) = t.

Given a Young function A, let A denote its associate function: the Young function

with the property that t ≤ A−1(t)A−1
(t) ≤ 2t, t > 0. If A(t) = tr with 1 < r < ∞,

then A(t) ≈ tr
′
; if A(t) = tr log(e+ t)α, then A(t) ≈ tr

′
log(e+ t)−α(r′−1).
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One has the generalized Hölder inequality

1

|Q|

∫
Q

|f g| ≤ 2 ‖f‖A,Q‖g‖A,Q.

There is a further generalization that turns out to be useful for our purposes, see [26]:
If A, B, C are Young functions such that A−1(t)B−1(t) C−1(t) ≤ t, for all t ≥ t0 > 0 (in
what follows we assume that t0 = 1 for simplicity and clearness in the computations),

—sometimes, we will equivalently write A−1(t)B−1(t) ≤ C−1
(t)— then

‖f g h‖L1,Q ≤ C ‖f‖A,B ‖g‖B,Q ‖h‖C,Q, ‖f g‖C,Q ≤ C ‖f‖A,Q ‖g‖B,Q. (2.1)

Remark 2.1. Let us observe that when D(t) = t, which gives L1, then D(t) = 0 if
s ≤ 1 and D(t) =∞ otherwise. Although D is not a Young function one can see that

the space LD coincides with L∞. On the other hand, as the (generalized) inverse is

D−1
(t) ≡ 1, the previous Hölder inequalities make sense with the appropriate changes

if one of the three functions is D or D. We will use this throughout the paper.

Remark 2.2. The convexity of A implies that A(t)/t is increasing and so t ≤ CA(t)
for all t ≥ 1. This yields that ‖f‖L1,B ≤ C ‖f‖A,B for all Young functions A.

2.2. Muckenhoupt weights. We recall the definition of the Muckenhoupt classes
Ap, 1 ≤ p ≤ ∞. Let w be a non-negative locally integrable function and 1 ≤ p <∞.
We say that w ∈ Ap if there exists Cp <∞ such that for every ball B ⊂ Rn(

1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

w(x)1−p′ dx

)p−1

≤ Cp,

when 1 < p <∞, and for p = 1,

1

|B|

∫
B

w(y) dy ≤ C1w(x), for a.e. x ∈ B,

which can be equivalently written as Mw(x) ≤ C1w(x) for a.e. x ∈ Rn. Finally we
set A∞ = ∪p≥1Ap. It is well known that the Muckenhoupt classes characterize the
boundedness of the Hardy-Littlewood maximal function on weighted Lebesgue spaces.
Namely, w ∈ Ap, 1 < p < ∞, if and only if M is bounded on Lp(w); and w ∈ A1 if
and only if M maps L1(w) into L1,∞(w).

In R, the weighted estimates for the one-sided Hardy-Littlewood maximal function
M+ (and analogously for M−) are characterized by the classes A+

p which are defined
as follows. Given 1 < p < ∞, w ∈ A+

p , if there exists a constant Cp < ∞ such that
for all a < b < c

1

(c− a)p

(∫ b

a

w(x) dx

) (∫ c

b

w(x)1−p′ dx

)p−1

≤ Cp.

We say that w ∈ A+
1 if M−w(x) ≤ C1w(x) for a.e. x ∈ R. The class A+

∞ is defined as
the union of all the A+

p classes, A+
∞ = ∪p≥1A

+
p . The classes A−p are defined in a similar

way. It is interesting to note that Ap = A+
p ∩ A−p , Ap ( A+

p and Ap ( A−p . See [35],
[22], [23], [24] for more definitions and results.
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2.3. Singular Integral operators and Hörmader type conditions. Let T be a
singular integral operator of convolution type, that is, T is bounded on L2(Rn) and

Tf(x) = p.v.

∫
Rn
K(x− y) f(y) dy

where K is a measurable function defined away from 0. Convolution operators are
considered for simplicity, but the results presented here can be stated for variable
kernels with the appropriate changes. The precise statements and the details are left
the reader.

When n = 1 and we further assumed that the kernel K is supported on (−∞, 0)
we say that T is a one-sided singular integral and we write T+ to emphasize it. The
results that we present below for (regular) singular integrals apply to T+. However,
taking advantage of the extra assumption on the kernel, one can be more precise and
get better estimates (see Section 3.3).

We introduce the different Hörmander type conditions assumed on the kernel K.
The weakest one is the so-called Hörmander condition H1 (we simply say K ∈ H1 or
K satisfies the L1-Hörmander condition): there are constants c > 1 and C > 0 such
that ∫

|x|>c |y|
|K(x− y)−K(x)| dx ≤ C, y ∈ Rn.

The strongest one is the classical Lipschitz condition called H∗∞ (this notation is not
standard but we keep H∞ for a weaker L∞-condition, see the definition below). We
say that K ∈ H∗∞ if there are α,C > 0 and c > 1 such that

|K(x− y)−K(x)| ≤ C
|y|α

|x|α+n
, |x| > c |y|.

Between H1 and H∗∞ one finds the Lr-Hörmander conditions (which are called HLr =
Hr in the definition below). These classes appeared implicitly in the work [17] where
it is shown that classical Lr-Dini condition for K implies K ∈ Hr (see also [34] and
[37]). However, there are examples of singular integrals like the differential transform
operator from Ergodic Theory defined in (1.2), whose kernel K ∈ Hr for all 1 ≤ r <∞
but K /∈ H∞. As it was obtained in [18], K satisfies a Hörmander condition in the scale
of the Orlicz spaces that lies between the intersection of the classes Hr for 1 ≤ r <∞
and H∞. The same happens with the one-sided discrete square function considered
in [36] and [19]. All these things have motivated the definition of the LA-Hörmander
conditions in [19]:

Definition 2.3. The kernel K is said to satisfy the LA-Hörmander condition, we
write K ∈ HA, if there exist c ≥ 1, C > 0 such that for any y ∈ Rn and R > c |y|,

∞∑
m=1

(2mR)n ‖K(· − y)−K(·)‖A,|x|∼2mR ≤ C.

We say that K ∈ H∞ if K satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in place
of ‖ · ‖A,|x|∼2mR.

We have used the notation: |x| ∼ s for s < |x| ≤ 2 s and

‖f‖A,|x|∼s = ‖f χ{|x|∼s} ‖A,B(0,2 s).
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Note that if A(t) = t then HA = H1. On the other hand, since t ≤ CA(t) for t ≥ 1 we
have that HA ⊂ H1 which implies that the classical unweighted Calderón-Zygmund
theory can be applied to T . Also, it is easy to see that H∗∞ ⊂ H∞ ⊂ HA. For
convenience thorough this paper we write | · | = | · |∞ so that everything is adapted
to cubes in place of balls (with the appropriate changes everything can be written in
terms of balls). For simplicity we also assume that c = 1.

Coifman’s type estimates were proved for kernels in these classes in [19]:

Theorem 2.4 ([19]). Let A be a Young function and let T be a singular integral
operator with kernel K ∈ HA. Then for any 0 < p <∞ and w ∈ A∞,∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
MAf(x)pw(x) dx, f ∈ L∞c , (2.2)

whenever the left-hand side is finite.

Note that this improves the previous results in [17], [34] and [37] (for sharpness
issues see also [21]). Similar results are also proved for vector-valued and one-sided
operators (see [19]).

Remark 2.5. Abusing on the notation, as in Remark 2.1, if K ∈ H∞, then (2.2)
holds with MA = M , where A(t) = t. This was obtained in [21] improving the
corresponding result for the smaller class H∗∞.

The previous estimates are useful in applications as one has that T and MA have
a similar behavior (see [13]). For instance, two-weight estimates can be proved in the
following way:

Theorem 2.6 ([18]). Let A be a Young function and 1 < p < ∞. Suppose that

there exist Young functions D, E such that E ∈ Bp′ and D−1(t) E−1(t) ≤ A−1
(t) for

t ≥ t0 > 0. Set Dp(t) = D(t1/p). Let T be a linear operator such that its adjoint T ∗

satisfies (2.2). Then for any weight u,∫
Rn
|Tf(x)|p u(x) dx ≤ C

∫
Rn
|f(x)|pMDpu(x) dx. (2.3)

Remark 2.7. Abusing in the notation, the previous result contains the case A(t) = t
on which in (2.2) one has MA = M . Then, D and E are conjugate functions and so
(2.3) holds for any Dp such that D ∈ Bp′ . In particular, in (2.3) we can take the pair
of weights (u,ML (logL)p−1+δu) for any δ > 0: pick D(t) = tp (1 + log+ t)p−1+δ whose

conjugate function is D(t) ≈ tp
′
/(1 + log+ t)1+δ (p′−1) ∈ Bp′ .

3. Statements of the main results

3.1. Singular integral operators. We are going to obtain endpoint two-weight
norm inequalities for singular integral operators where different Hörmander condi-
tions are assumed on the kernel. Namely, we look for the following weak-type (1, 1)
estimates with pairs of weights (u, Su) where S will be a certain maximal function
depending on the smoothness of the kernel:

u{x ∈ Rn : |Tf(x)| > λ} ≤ C

λ

∫
Rn
|f(x)|Su(x) dx. (3.1)
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Theorem 3.1. Let T be a singular integral operator with kernel K.

(a) Let A be a Young function such that its complementary function A ∈ ∆2 and
assume that there exists r > 1 so that lim inft→∞A(t)/tr > 0. If K ∈ HA then
(3.1) holds for the pairs of weights (u,MAu).

(b) Let A be a Young function and assume that there exist 1 < p < ∞, and Young

functions D and E such that D−1(t) E−1(t) ≤ A−1
(t) for t ≥ t0 > 0 with E ∈ Bp′.

If K ∈ HA then, (3.1) holds for the pairs of weights (u,MDpu) with Dp(t) =

D(t1/p).

(c) If K ∈ H∞, then (3.1) holds for the pairs of weights (u,ML(logL)εu) for any
ε > 0.

Remark 3.2. In part (c) we improve [27], as we consider a wider class of kernels
(recall that H∗∞ ( H∞).

Remark 3.3. Let us notice that when lim inft→∞A(t)/tr > 0, the pair of weights in
(a) is better than the one in (b): one can see that A(t) . Dp(t) for t ≥ 1. Take an
arbitrary t ≥ 1. The fact that E ∈ Bp′ implies E(t) . tp

′
. Also, A(t) ≥ t as A is

a Young function. Then, from the condition assumed on A, D and E it follows that
D−1(t) . t1/p and therefore

A−1
(t) ≥ D−1(t) E−1(t) & D−1(t)p t1/p

′
/D−1(t)p−1 & D−1(t)p = D−1

p (t).

Remark 3.4. We would like to emphasize that in part (a) the associated Coifman
estimate in Theorem 2.4 tells us that T is controlled by MA. Here we show that
the pair of weights of the form (u,MAu) is valid. In the previous remark, we have
observed that in (b) one gets a bigger maximal operator MDp . In many applications,
although we take p very close to 1, we always obtain a maximal operator pointwise
greater than MA. This is the case in (c) which covers the classical Hilbert and Riesz
transforms. Here as these operators are controlled by M (in the sense of Coifman) one
would wish to show that the pair of weights (u,Mu) is valid. However this remains
as an open question and the best known result is (u,ML(logL)εu).

There is a general extrapolation principle that allows one to pass from pairs of
weights (u, Su), with S being a maximal operator, to general pairs of weights (u, v).
The main ideas are implicit in [11], [12] and are further exploited in [10]. Below we
present a proof in the one-sided case (see Theorem 3.14), that can be easily adapted
to the present situation.

Theorem 3.5. Let F be a Young function and assume that a given operator T satisfies

u{x ∈ Rn : |Tf(x)| > λ} ≤ C

λ

∫
Rn
|f(x)|MFu(x) dx (3.2)

for every weight u and λ > 0. Given 1 < p < ∞, let G, H be Young functions such
that G−1(t)H−1(t) ≤ F−1(t) for all t ≥ t0 > 0 and H ∈ Bp′. Then for any pair of
weights (u, v) satisfying

‖u1/p‖G,Q ‖v−1/p‖Lp′ ,Q ≤ C (3.3)
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and for any and λ > 0 we have

u{x ∈ Rn : |Tf(x)| > λ} ≤ C

λp

∫
Rn
|f(x)|p v(x) dx. (3.4)

3.2. Commutators with BMO functions. We are going to consider commutators
of singular integral operators with BMO functions. Let us remind that a locally
integrable functions b is in BMO if

‖b‖BMO = sup
Q

1

|Q|

∫
Q

|b(x)− bQ| dx <∞,

where the sup runs over all cubes Q ⊂ Rn with the sides parallel to the coordinate
axes and where bQ stands for the average of b over Q.

We define the (first-order) commutator by

T 1
b f(x) = [b, T ]f(x) = b(x)Tf(x)− T (b f)(x).

The higher order commutators T kb are defined by induction as T kb = [b, T k−1
b ] for k ≥ 2.

Note that for every k ≥ 1

T kb f(x) = p.v.

∫
Rn

(b(x)− b(y))kK(x− y) f(y) dy.

For k = 0 we understand that T 0
b = T .

In [18], Coifman’s type estimates were proved for commutators of singular integral
operators with kernels in the following Hörmander classes that depend on the order
of the commutator.

Definition 3.6. Let A be a Young function and k ∈ N. We say that the kernel K
satisfies the LA,k-Hörmander condition, we write K ∈ HA,k, if there exist c ≥ 1 and
C > 0 (depending on A and k) such that for all y ∈ Rn and R > c |y|

∞∑
m=1

(2mR)nmk ‖K(· − y)−K(·)‖A,|x|∼2mR ≤ C.

We say that K ∈ H∞,k if K satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in
place of ‖ · ‖A,|x|∼2mR.

As before, for simplicity we will assume that c = 1. For these classes the following
Coifman estimates are obtained:

Theorem 3.7 ([18]). Let b ∈ BMO and k ≥ 0.

(a) Let A, B be Young functions, such that A−1
(t)B−1(t) C −1

k (t) ≤ t for t ≥ t0 > 0

with Ck(t) = et
1/k − 1. If T is a singular integral operator with kernel K ∈

HB ∩HA,k (or, in particular, K ∈ HB,k), then for any 0 < p <∞, w ∈ A∞,∫
Rn
|T kb f(x)|pw(x) dx ≤ C ‖b‖p kBMO

∫
Rn
MAf(x)pw(x) dx, f ∈ L∞c , (3.5)

whenever the left-hand side is finite.

(b) If K ∈ H∞ ∩ Het
1/k

,k
(or, in particular, K ∈ H∞,k) then (3.5) holds with Mk+1

—the k + 1-iteration of M— in place of MA.
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This result and Theorem 2.6 can be used to derived endpoint estimates of the form

u{x ∈ Rn : |T kb f(x)| > λ} ≤ C

∫
Rn
Ck
(
‖b‖kBMO |f(x)|

λ

)
Su(x) dx, (3.6)

where Ck(t) = t (1 + log+ t)k.

Theorem 3.8. Let T be a singular integral operator with kernel K, k ∈ N, b ∈ BMO
and let T kb be the k-th order commutator of T .

(a) Let A, B be Young functions such that A−1
(t)B−1(t) C −1

k (t) ≤ t for t ≥ t0 > 0

with Ck(t) = et
1/k − 1. Let K ∈ HB ∩HA,k (or, in particular, K ∈ HB,k).

(a.1) If A ∈ ∆2 and there exists r > 1 so that lim inft→∞A(t)/tr > 0, then (3.6)
holds for the pairs of weights (u,MAu).

(a.2) Assume that there exist 1 < p < ∞, and Young functions D and E such

that D−1(t) E−1(t) ≤ A−1
(t) for t ≥ t0 > 0 with E ∈ Bp′. Then, (3.6) holds

for the pairs of weights (u,MDpu) with Dp(t) = D(t1/p).

(b) If K ∈ H∞ ∩Het
1/k

,k
(or, in particular, K ∈ H∞,k), then (3.6) holds for the pairs

of weights (u,ML(logL)k+εu) for any ε > 0.

Remark 3.9. In part (b) we obtain the same result as in [30], but considering a
weaker condition on the kernel K, since H∗∞ ( H∞ ∩Het

1/k
,k

.

Remark 3.10. Notice that we can understand (b) as an extension of (a) when B
corresponds to L∞ and so A(t) = Ck(t) = et

1/k − 1. Observe that in that case we also

have A−1
(t)B−1(t) C −1

k (t) ≤ t (where B−1(t) ≡ 1).

This result can be extended to the multilinear commutators considered in [31].

Given k ≥ 1, a singular integral operator T with kernel K and a vector~b = (b1, . . . , bk)
of locally integrable functions, the multilinear commutator is defined as

T~bf(x) =

∫
Rn

( k∏
l=1

(
bl(x)− bl(y)

))
K(x, y) f(y) dy.

When k = 0 we understand that T~b = T . Notice that if k = 1 and ~b = b then T~b = T 1
b .

For k ≥ 1 if b1 = · · · = bk = b then T~b = T kb .
For standard commutators, one assumes that b ∈ BMO, and by John-Nirenberg’s

inequality we have that ‖b‖BMO ≈ supQ ‖b−bQ‖expL,Q. This can be seen as a supremum
of the oscillations of b on the space expL. As it was done in [31], when dealing with
multilinear commutators, the symbols bj are assumed to be in one of these oscillation
spaces. Given s ≥ 1 we set

‖f‖Osc(expLs) = sup
Q
‖f − fQ‖expLs,Q

and the space Osc(expLs) is the set of measurable functions f ∈ L1
loc(Rn) such that

‖f‖Osc(expLs) <∞. Let us notice that Osc(expLs) ⊂ Osc(expL1) = BMO. We assume
that for each 1 ≤ l ≤ k, bl ∈ Osc(expLsl) with sl ≥ 1 and we set 1

s
= 1

s1
+ · · · + 1

sk
.
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For these commutators in [18, Theorem 7.1] it is shown that under the previous

conditions if K ∈ HB,k and A−1
(t)B−1(t) C −1

1/s(t) ≤ t with C1/s(t) = et
s
, then T~b

satisfies a Coifman estimate with MA on the right-hand side. In the case K ∈ H∞,k,
the maximal operator is ML (logL)1/s . In this way, we can extend Theorem 3.8 to the
multilinear commutators: in (a) we assume K ∈ HB,k and replace k by 1/s, and in
(b) we assume K ∈ H∞,k and replace k by 1/s. The precise formulation is left to
the interest reader. The proof of this result follows the same scheme, see Remark 5.2
below.

3.3. One-sided operators. In R we can consider a smaller class of operators and
obtain estimates for the so-called one-sided operators. These are singular integral
operators with kernels supported on (−∞, 0) and we write T+ to emphasize it. One
can also consider operators T− with kernels supported on (0,∞), for simplicity we
restrict ourselves to the first type.

Let us highlight that one-sided operators are singular integral operators, therefore
the previous results can be applied to them. However, exploiting the fact that they
are supported on (−∞, 0) one can obtain better estimates. For instance, if K ∈
H∗∞ (indeed K ∈ H∞ suffices) then T+ can be controlled by M on Lp(w) for every
0 < p < ∞ and w ∈ A∞, consequently T+ is bounded on Lp(w) for every w ∈ Ap,
1 < p <∞. These follow from the classical theory for Calderón-Zygmund operators.
However, exploiting the fact that the kernel of T+ is supported on (−∞, 0) one can do
better: in the Coifman estimate we can write the pointwise smaller one-sided maximal
operator M+ and consider a bigger class of weights w ∈ A+

∞; thus T+ is bounded on
Lp(w) for every w ∈ A+

p , 1 < p <∞ (note that we have that Ap ( A+
p ).

The same happens with Theorems 2.4, 3.7 and 2.6:

Theorem 3.11 ([19], [18]). Let T+ be a one-sided singular integral operator with
kernel K supported in (−∞, 0).

(i) Under the assumptions of Theorem 2.4 or 3.7, one can improve (2.2) and (3.5):
A∞ is replaced by the bigger class of weights A+

∞, and MA is replaced by the
pointwise smaller operator M+

A —in (b) of Theorem 3.7 Mk+1 is replaced by

(M+)k+1—.

(ii) Under the assumptions of Theorem 2.6, if the adjoint of T+ —which is a one-
sided operator with kernel supported on (0,∞)— satisfies (2.2) for all 0 < p <
∞, w ∈ A−∞ and with M−

Af on the right-hand side, then, for any weight u, it

follows that T+ verifies (2.3) with M−
Dpu in place of MDpu.

Here, we can obtain one-sided versions of Theorems 3.1 and 3.8:

Theorem 3.12. Let T+ be a singular integral operator with kernel K supported in
(−∞, 0).

(i) Under the assumptions of Theorem 3.1, then T+ satisfies (3.1) for the pairs of
weights (u,M−

Au) in (a), (u,M−
Dpu) in (b), and (u,M−

L (logL)εu) in (c).
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(ii) Under the assumptions of Theorem 3.8, then T+,k
b —which is the k-th order

commutator of T+— satisfies (3.6) for the pairs of weights (u,M−
Au) in (a.1),

(u,M−
Dpu) in (a.2), and (u,M−

L (logL)k+ε
u) in (b).

Remark 3.13. In (i) when K ∈ H∞ we improve the results in [1] where the stronger
condition K ∈ H∗∞ was assumed. For examples of these kernels see that reference.

We can also get an improvement of the estimates in Theorem 3.5 when we start
with pairs based on one-sided maximal functions:

Theorem 3.14. Let F be a Young function and assume that a given operator T
satisfies (3.2) with M−

F in place of MF . Let 1 < p <∞, and G, H be as in Theorem
3.5. If (u, v) is a pair of weights such that, for all a < b < c with b− a < c− b,

‖u1/p‖G,(a,b) ‖v−1/p‖Lp′ ,(b,c) ≤ C,

we have for all λ > 0

u{x ∈ R : |Tf(x)| > λ} ≤ C

λp

∫
R
|f(x)|p v(x) dx.

Let us notice that here one does not need to work with one-sided operators as this
abstract result does not use any property of T but the initial two-weight estimate
which involves the one-sided maximal function M−

F . Notice that when applying this

result, T will be T+ or T+,k
b from Theorem 3.12.

To prove Theorem 3.14 we need to find sufficient conditions on (u, v) that guarantee
the boundedness of M−

F from Lp(v) to Lp(u). This result with MF appears in [11]
and here we extend it to the one-sided case. For convenience we state it in terms of
M+
F , to pass to M−

F one just switches the intervals of integration in the corresponding
Muckenhoupt type condition.

Theorem 3.15. Let 1 < p < ∞ and let A, B, C be Young functions such that
B−1(t) C−1(t) ≤ A−1(t), for all t ≥ t0 > 0, with C ∈ Bp. If (u, v) is a pair of weights
such that, for all a < b < c with b− a < c− b,

‖u1/p‖Lp,(a,b)‖v−1/p‖B,(b,c) ≤ C, (3.7)

then ∫
R
M+
Af(x)p u(x) dx ≤ C

∫
R
|f(x)|p v(x) dx.

4. Applications

In this section we present some applications. As we have already observed, our
results include those in [27] and [30] for Calderón-Zygmund singular integrals operators
with kernels in H∗∞. We observed before that weaker conditions on the kernels, say
H∞ for T and K ∈ H∞ ∩Het

1/k
,k

(or, in particular, K ∈ H∞,k) for T kb , lead us to the

same conclusions.
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4.1. The differential transform operator. Consider the differential transform op-
erator studied in [16] and [4]

T+f(x) =
∑
j∈Z

νj
(
Djf(x)−Dj−1f(x)

)
, (4.1)

where
∥∥{νj}j∥∥∞ <∞ and

Djf(x) =
1

2j

∫ x+2j

x

f(t) dt .

This operator appears when studying the rate of convergence of the averages Djf .
Let us observe that Djf −→ f a.e. when j → −∞ and Djf −→ 0 when j → ∞.
Notice that T+f(x) = K ∗ f(x), where

K(x) =
∑
j∈Z

νj

(
1

2j
χ(−2j ,0)(x)− 1

2j−1
χ(−2j−1,0)(x)

)
.

Since K is supported in (−∞, 0), then T+ is a one-sided singular integral operator
(so we write T+). In [4] it is proved that, for appropriate functions f ,

T+f(x) = lim
(N1,N2)→(−∞,∞)

N2∑
N1

νj
(
Djf(x)−Dj−1f(x)

)
for a.e. x ∈ R.

It was shown that K ∈ ∩r≥1Hr and so T+ is bounded on Lp(w) for all w ∈ A+
p ,

1 < p <∞, and maps L1(w) into L1,∞(w) for all w ∈ A+
1 .

When trying to prove Coifman’s type estimates for T+, one obtains that T+ is
controlled by M+

s for every 1 < s < ∞. In general K /∈ H∞ (see [18] for the case
{νj} = {(−1)j}), thus it is not clear whether one can take s = 1, that is, whether T+

behaves as a one-sided singular integral operator with smooth kernel. This motivated
the new Hörmander type conditions in [19], [18]: If one shows that its kernel belongs
to some class near L∞ then one would obtain a maximal operator near M+. In [18] it
was shown that K ∈ H

et
1/(1+ε) for any ε > 0 and that K ∈ H

et
1/(1+k+ε)

,k
, for any ε > 0

and k ≥ 1. Thus, by Theorems 2.4 and 3.7 for any k ≥ 0, ε > 0, 0 < p < ∞, and
w ∈ A+

∞ ∫
R
|T+,k
b f(x)|pw(x) dx ≤ C

∫
R
M+

L (logL)k+1+εf(x)pw(x) dx.

Applying Theorem 3.12 we obtain the following endpoint estimates:

Theorem 4.1. Let b ∈ BMO and k ≥ 0. Let T+ be the differential transform operator
defined above, and let T+,k

b be its k-th order commutator. Then, for any ε > 0,

u{x ∈ R : |T+,k
b f(x)| > λ} ≤ C

∫
R
Ck
(
|f(x)|
λ

)
M−

L(logL)k+1+εu(x) dx,

for all λ > 0.

Note that this result includes the case k = 0 on which T+,0
b = T+.

Remark 4.2. One can write the last estimate in terms of iterations of M− since
M−

L(logL)k+1+εu(x) ≤ C(M−)k+3u(x), for ε > 0 small enough. Thus, the previous

estimate holds for the pair of weights (u, (M−)k+3u).
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Proof of Theorem 4.1. Given k ≥ 0 and ε > 0 we fix D(t) = tp (1 + log+ t)k+1+ε

so that Dp(t) ≈ t (1 + log+ t)k+1+ε. We take 1 < p < 1 + ε/(2 (k + 2)), A(t) ≈
exp(t1/(1+k+ε/(2 p))) − 1 and B(t) ≈ exp(t1/(1+ε/(2 p))) − 1. Then, as mentioned before
K ∈ HB ∩ HA,k (note that for k = 0, we just have K ∈ HA). We also notice

that for k ≥ 1 it follows that A−1
(t)B−1(t) C −1

k (t) . t for t ≥ 1. Next, we pick
E(t) ≈ tp

′
/(1 + log+ t)ε (p′−1)/2−(k+1) and observe that our choice of p guarantees that

ε (p′− 1)/2− (k+ 1) > 1, therefore E ∈ Bp′ . Besides, we have D−1(t) E−1(t) . A−1
(t)

for t ≥ 1. Then applying Theorem 3.12, that is, the one-sided version of Theorem 3.1
part (b) when k = 0, and the one-sided version of Theorem 3.8 part (a.2) when k ≥ 1,
we conclude the desired estimate. �

As a corollary of Theorem 4.1, applying Theorem 3.14 we get the following weak-
type estimates for general pairs of weights (u, v):

Corollary 4.3. Let b ∈ BMO and k ≥ 0. Let T+ be the differential transform operator
defined above, and let T+,k

b be its k-th order commutator. Then, for any ε > 0, if (u, v)
is a pair of weights such that, for all a < b < c with b− a < c− b,

‖u1/p‖Lp (logL)(k+2) p−1+ε,(a,b) ‖v−1/p‖Lp′ ,(b,c) ≤ C,

we have for all λ > 0

u{x ∈ R : |T+,k
b f(x)| > λ} ≤ C

λp

∫
R
|f(x)|p v(x) dx.

The proof of this result follows at once from Theorem 3.14. The starting estimate
is given by Theorem 4.1, so F(t) = t (1 + log+ t)k+1+ε for every ε > 0, and we take
H(t) = tp

′
/(1 + log+ t)1+δ ∈ Bp′ for any δ > 0. This leads to the desired function G.

Details are left to the interested reader.

4.2. An example of a one-sided operator with K ∈ H∞ ∩Het
1/k

, k
. We consider

the one-sided operator

T+f(x) =
∑
j∈Z

νj
(
Djf(x)−Dj−1f(x)

)
,

where
∥∥{νj}j∥∥∞ <∞ and

Djf(x) =
1

2j(1 + j2)

∫ x+2j

x

f(t) dt.

Observe that

K(x) =
∑
j∈Z

νj

(
1

2j(1 + j2)
χ(−2j ,0)(x)− 1

2j−1(1 + (j − 1)2)
χ(−2j−1,0)(x)

)
.

This operator is similar to the previous one. In [18] was proved that K ∈ H∞∩Het
1/k

, k
.

Thus, by Theorems 2.4 and 3.7 for each k ≥ 0, 0 < p <∞, and w ∈ A+
∞∫

R
|T+,k
b f(x)|pw(x) dx ≤ C

∫
R
M+

L (logL)k
f(x)pw(x) dx. (4.2)

Note that in the right-hand side one can alternatively write (M+)k+1f as (M+)k+1f ≈
M+

L (logL)k
f a.e.. We apply Theorem 3.12, that is, when k = 0 we use the one-sided
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version of Theorem 3.1 part (c), and when k ≥ 1 we employ the one-sided version
of Theorem 3.8 part (b). Thus, we conclude the following endpoint estimates: given
b ∈ BMO, for every k ≥ 0 and for any ε > 0

u{x ∈ R : |T+,k
b f(x)| > λ} ≤ C

∫
R
Ck
(
|f(x)|
λ

)
M−

L(logL)k+ε
u(x) dx. (4.3)

Note that taking ε > 0 small enough, M−
L(logL)k+ε

u(x) ≤ C(M−)k+2u(x).

Remark 4.4. In terms of iterations of the one-sided Hardy-Littlewood maximal func-
tion, notice that in (4.2) we have k + 1 iterations and in (4.3) we have k + 2, so we
obtain an extra iteration. This is because in (c) of Theorem 3.1, in (b) of Theorem 3.8
and in their corresponding versions for one-sided operators we loose a small power of
the logarithm. This happens also with Calderón-Zygmund operators with smooth ker-
nel as the Hilbert and Riesz transforms: they are controlled, in the sense of Coifman,
by M , but the endpoint estimate holds for the pair of weights (u,M2u) —indeed one
can write (u,ML (logL)εu) for any ε > 0—. It is not known, even for the Hilbert and
Riesz transforms, whether the pair of weights (u,Mu) is valid for the corresponding
weak-type estimate.

Notice that in the case of the differential transform operator in both the Coifman
inequality and the endpoint estimate the number of iterations for the k-th order
commutator is k+ 3. This happens as we already have a small power of the logarithm
floating around.

From Theorem 3.14 proceeding as in Corollary 4.3 we obtain the following two-
weight weak-type estimates: given b ∈ BMO, for every k ≥ 0 and for any ε > 0 if
(u, v) is a pair of weights such that, for all a < b < c with b− a < c− b,

‖u1/p‖Lp (logL)(k+1) p−1+ε,(a,b) ‖v−1/p‖Lp′ ,(b,c) ≤ C,

then T+,k
b f maps Lp(v) into Lp,∞(u). This extends the sharp results obtained in

[11] for Calderón-Zygmund operators with smooth kernels to the setting of one-sided
operators.

4.3. Multipliers. Let m ∈ L∞(Rn) and consider the multiplier operator T defined

a priori for f in the Schwartz class by T̂ f(ξ) = m(ξ) f̂(ξ). Given 1 < s ≤ 2 and
0 ≤ l ∈ N we say that m ∈M(s, l) if

sup
R>0

R|α| ‖Dαm‖Ls,|ξ|∼R < +∞, for all |α| ≤ l.

In [18] it was proved the following: let m ∈ M(s, l), with 1 < s ≤ 2, 0 ≤ l ≤ n
and l > n/s. Then for all k ≥ 0 and any ε > 0 we have that for all 0 < p < ∞ and
w ∈ A∞, ∫

Rn
|T kb f(x)|pw(x) dx ≤ C

∫
Rn
Mn/l+εf(x)pw(x) dx. (4.4)

The proof of such estimates consists in obtaining that a family of truncations of
the kernel {KN}N are uniformly in HLr (logL)k r,k with r′ = n/l + ε. Thus, taking

A(t) = tr, B(t) = tr (1 + log+ t)k r we have KN ∈ HB ∩HA,k (this follows easily from

KN ∈ HLr (logL)k r,k). Notice that A−1
(t)B−1(t) C−1

k (t) . t for t ≥ 1 and therefore

(4.4) follows from Theorem 3.7 for the k-th order commutators of TN (which is the
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operator whose kernel is KN) with constants that are independent of N . A standard
approximation argument leads to the desired estimate for T kb . We refer the reader to
[18] for more details.

The same argument allows us to apply Theorem 3.1 part (a) and Theorem 3.8
part (a.1) to TN . Observe that A(t) = tr

′
, then choosing 1 < s < r′ we obtain

lim inft→∞A(t)/ts = +∞. Therefore, taking limits we have the following result:

Theorem 4.5. Let m ∈M(s, l) with 1 < s ≤ 2, 0 ≤ l ≤ n and l > n/s. Then for all
k ≥ 0 and any ε > 0 we have

u{x ∈ Rn : |T kb f(x)| > λ} ≤ C

∫
Rn
Ck
(
|f(x)|
λ

)
Mn/l+εu(x)) dx.

From this estimate one can obtain weak-type estimates for general pairs of weights
by using Theorem 3.5. The precise statements are left to the reader.

4.4. Kernels related to Hr and MLr . Implicit in [34] (see also [17], [37]) and as
it was observed in [21] when K ∈ HLr , that is, when the kernel satisfies the Lr-
Hörmander condition, then one obtains that T is controlled by MLr′ . In [18] different
extensions of that inequality for the higher order commutators where considered.
Following the notation of Theorem 3.7 these are the different conditions and maximal
operators obtained: for every 1 < r <∞ and k ≥ 0, we have

HB,k HB ∩HA,k MAf

HLr,k HLr ∩HLr (logL)−k r,k MLr′ (logL)k r′f

HLr (logL)k r,k HLr (logL)k r ∩HLr,k MLr′f

HLr (logL)k,k HLr (logL)k ∩HLr (logL)−k (r−1),k MLr′ (logL)kf ≈ (MLr′ )
k+1

Table 1. Examples of different Hr-conditions

Thus, applying Theorem 3.1 part (a) and Theorem 3.8 part (a.1) we obtain that
T kb satisfies (3.6) with the different pairs of weights (u,MAu) in the previous table.

4.5. Homogeneous Singular Integrals. Denote by Σ = Σn−1 the unit sphere on
Rn. For x 6= 0, we write x′ = x/|x|. Let us consider Ω ∈ L1(Σ). This function can be
extended to Rn \ {0} as Ω(x) = Ω(x′) (abusing on the notation we call both functions
Ω). Thus Ω is a function homogeneous of degree 0. We assume that

∫
Σ

Ω(x′)dσ(x′) =
0. Set K(x) = Ω(x)/|x|n and let T be the operator associated with the kernel K.

Given a Young function A we define the LA-modulus of continuity of Ω as

$A(t) = sup
|y|≤t
‖Ω(·+ y)− Ω(·)‖A,Σ.

Fix Ω ∈ LB(Σ) and T as above. Let k ≥ 0 and A, B be Young functions such that

A−1
(t)B−1(t) C −1

k (t) ≤ t for all t ≥ 1. If∫ 1

0

$B(t)
dt

t
+

∫ 1

0

(
1 + log

1

t

)k
$A(t)

dt

t
<∞,
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then it was proved in [18] that K ∈ HB ∩HA,k and therefore∫
Rn
|T kb f(x)|pw(x) dx ≤ C

∫
Rn
MAf(x)pw(x) dx,

for every 0 < p <∞ and w ∈ A∞.
Once it is known that K ∈ HB∩HA,k one can apply Theorems 3.1 and 3.8 to derive

the corresponding two-weight endpoint estimates. The precise statements and further
details are left to the interested reader.

5. Proofs of the main results

Proof of Theorem 3.1. Without loss of generality we can assume that u is bounded
and has compact support (otherwise we prove the corresponding estimate for uN =
min{u,N} χB(0,N) with bounds independent of N and apply the monotone conver-

gence theorem). We assume that 0 ≤ f ∈ L∞c (Rn) and consider the standard
Calderón-Zygmund decomposition of f al level λ: there exists a collection of max-
imal (and so disjoint) dyadic cubes {Qj}j (with center xj and sidelength 2 rj) such
that

λ <
1

|Qj|

∫
Qj

f ≤ 2nλ. (5.1)

We write f = g + h where

g = f χRn\∪jQj +
∑
j

fQj χQj
, h =

∑
j

hj =
∑
j

(f − fQj) χQj

where fQj denotes the average of f over Qj. Let us recall that 0 ≤ g(x) ≤ 2n λ a.e.

and also that each hj has vanishing integral. We set Q̃j = 2Qj, Ω̃ = ∪jQ̃j, and
ũ = u χRn\Ω̃. Then,

u{x ∈ Rn : |Tf(x)| > λ} ≤ u(Ω̃) + u{x ∈ Rn \ Ω̃ : |Th(x)| > λ/2}
+ u{x ∈ Rn \ Ω̃ : |Tg(x)| > λ/2}

= I + II + III.

We estimate each term separately. The estimates for I and II are obtained in the
same way in the three cases (a), (b) and (c). We show that

I .
1

λ

∫
Rn
f(x)Mu(x) dx, II .

1

λ

∫
Rn
f(x)MAu(x) dx, (5.2)

where, in case (c), as K ∈ H∞ = HL∞ it is understood that A(t) = t so MA = ML1 =
M . Let us observe that both estimates lead us to the desired conclusions in the three
cases (a), (b) and (c). Regarding I, Mu is controlled by MAu in (a) —as A is a Young
function—, by MDpu in (b) —as we pointed out in Remark 3.3 that D−1(t) . t1/p for
t ≥ 1 which yields Dp(t) ≥ t for t ≥ 1— and by ML (logL)εu in (c). For II, MAu is
the desired weight in (a); in (b) we observed in Remark 3.3 that MAu . MDpu; and
in (c) we have MAu = Mu ≤ML (logL)εu.

Let us show the first estimate in (5.2). By (5.1) we have

I = u(∪jQ̃j) ≤
∑
j

u(Q̃j) = 2n
∑
j

u(Q̃j)

|Q̃j|
|Qj| ≤

2n

λ

∑
j

u(Q̃j)

|Q̃j|

∫
Qj

f(x) dx
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≤ 2n

λ

∑
j

∫
Qj

f(x)Mu(x) dx ≤ 2n

λ

∫
Rn
f(x)Mu(x) dx.

Next, we estimate II: as the functions hj have vanishing integral

II = u
{
x ∈ Rn \ Ω̃ :

∣∣∣∑
j

Thj(x)
∣∣∣ > λ/2

}
≤ 2

λ

∑
j

∫
Rn\Ω̃
|Thj(x)|u(x) dx

≤ 2

λ

∑
j

∫
Rn\Ω̃

∣∣∣ ∫
Qj

(K(x− y)−K(x− xQj))hj(y) dy
∣∣∣u(x) dx

≤ 2

λ

∑
j

∫
Qj

|hj(y)|
∫

Rn\Q̃j
|K(x− y)−K(x− xQj)|u(x) dx dy.

We claim that for every y ∈ Qj we have∫
Rn\Q̃j

|K(x− y)−K(x− xQj)|u(x) dx . ess inf
Qj

MAu. (5.3)

This estimate drives us to

II .
1

λ

∑
j

ess inf
Qj

MAu

∫
Qj

|hj(y)| dy . 1

λ

∑
j

ess inf
Qj

MAu

∫
Qj

f(y) dy

≤ 1

λ

∑
j

∫
Qj

f(y)MAu(y) dy ≤ 1

λ

∫
Rn
f(y)MAu(y) dy.

We obtain (5.3): using the generalized Hölder inequality for A and A (when K ∈ H∞
we understand that A(t) = t and so we have the corresponding L1 − L∞ Hölder
estimate)∫

Rn\Q̃j
|K(x− y)−K(x− xQj)|u(x) dx

≤
∞∑
k=1

∫
|x−xQj |∼2k rj

|K(x− y)−K(x− xQj)|u(x) dx

.
∞∑
k=1

(2krj)
n ‖K(· − y)−K(· − xQj)‖A,|x−xQj |∼2k rj ‖u‖A,|x−xQj |≤2k+1 rj

≤ C ess inf
Qj

MAu,

where in the last estimate we have used that K ∈ HA.
To complete the proof, it remains to estimate III. Here, the proof is different in

each case. We start with (a). As lim inft→∞A(t)/tr > 0, there exists c = cr such
that A(t) ≥ c tr for every t ≥ 1. On the other hand, using that A ∈ ∆2 there exist
1 < s < ∞ (indeed we can take s > r) such that A(t) ≤ C ts for every t ≥ 1 (this
follows by iterating the ∆2-condition). Then, taking p > s we have

III = u{x ∈ Rn \ Ω̃ : |Tg(x)| > λ/2} ≤ 2p

λp

∫
Rn
|Tg(x)|p ũ(x) dx

≤ 2p

λp

∫
Rn
|Tg(x)|pMrũ(x) dx .

1

λp

∫
Rn

MAg(x)pMrũ(x) dx, (5.4)
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where in the last inequality we have used Theorem 2.4 and the fact that Mrũ ∈ A1 ⊂
A∞ as r > 1. Notice that one has to check that the left-hand side of (2.2) is finite.
Indeed, as we have assumed that u ∈ L∞ we have∫

Rn
|Tg(x)|pMrũ(x) dx ≤ ‖u‖L∞

∫
Rn
|Tg(x)|p dx . ‖u‖L∞

∫
Rn

g(x)p dx

. ‖u‖L∞ λp−1

∫
Rn

g(x) dx = ‖u‖L∞ λp−1

∫
Rn

f(x) dx <∞,

where we have used that T is bounded on Lp(Rn) as K ∈ HA ⊂ H1; and also that f
and u are bounded with compact support. We can continue with the estimate of III:
as A(t) ≤ C ts for every t ≥ 1 it follows that

III .
1

λp

∫
Rn

Msg(x)pMrũ(x) dx =
1

λp

∫
Rn

M(gs)(x)p/sMrũ(x) dx

.
1

λp

∫
Rn

g(x)pMrũ(x) dx .
1

λp

∫
Rn

g(x)pMAũ(x) dx, (5.5)

where we have used that Mrũ ∈ A1, therefore M is bounded on Lp/s(Mrũ) and also
that A(t) ≥ c tr for every t ≥ 1. We claim that∫

∪jQj
g(x)MAũ(x) dx .

∫
∪jQj

f(x)MAũ(x) dx. (5.6)

From (5.5), this estimate and the fact that 0 ≤ g(x) ≤ 2n λ a.e. yield

III .
1

λ

∫
Rn

g(x)MAũ(x) dx =
1

λ

∫
Rn\∪jQj

f(x)MAũ(x) dx+
1

λ

∫
∪jQj

g(x)MAũ(x) dx

.
1

λ

∫
Rn

f(x)MAũ(x) dx ≤ 1

λ

∫
Rn

f(x)MAu(x) dx,

which is the desired estimate for III.
To complete the proof of (a) we need to show (5.6). We first obtain that for any

Young function C, any weight v with MCv <∞ a.e, and any cube Q we have

MC(v χRn\2Q)(y) ≈ ess inf
z∈Q

MC(vχRn\2Q)(z), a.e y ∈ Q. (5.7)

Let y ∈ Q and R be any cube such that y ∈ R. If R\2Q = Ø then ‖vχRn\2Q ‖C,R = 0.

Otherwise, we have that `(R) > `(Q)/2 which implies that Q ⊂ 5R. Then,

‖vχRn\2Q ‖C,R . ‖vχRn\2Q ‖C,5R ≤ ess inf
z∈Q

MC(vχRn\2Q)(z),

and taking the supremum over all the cubes R 3 y we conclude the desired estimate.
Next, we use (5.7) to obtain (5.6):∫
∪jQj

g(x)MAũ(x) dx =
∑
j

∫
Qj

g(x)MAũ(x) dx =
∑
j

fQj

∫
Qj

MA(ũχRn\2Qj)(x) dx

.
∑
j

∫
Qj

f(x) dx ess inf
z∈Qj

MA(ũχRn\2Qj)(z) ≤
∑
j

∫
Qj

f(x)MA(ũχRn\2Qj)(x) dx

=

∫
∪jQj

f(x)MAũ(x) dx.
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This completes the proof of (a).
To show (b), we only have to estimate III. The argument is very similar, the

main change consists of proving (5.5) with Dp in place of A. Once we have that,
the argument presented above adapts trivially to the present situation and so the
desired estimate for III follows. Note that our hypotheses guarantee that we can
apply Theorem 2.4 to the adjoint of T —let us observe that T ∗ = T̃ where T̃ is the
singular operator with kernel K̃(x) = K(−x) ∈ HA— and then Theorem 2.6 yields

III = u{x ∈ Rn \ Ω̃ : |Tg(x)| > λ/2} ≤ 2p

λp

∫
Rn
|Tg(x)|p ũ(x) dx

.
1

λp

∫
Rn

g(x)pMDpũ(x) dx. (5.8)

As just mentioned, the ideas used before applied straightforward and the desired
estimate follows at once.

Finally, we show (c). Given ε > 0 we pick p > 1 and δ > 0 so that p−1+δ = ε (note
that p is taken very close to 1 and δ very small). Then, by Remark 2.7, (2.3) holds for
the pair of weights (u,ML (logL)εu). Then, the previous case mutatis mutandis leads
us to the desired estimate.

Remark 5.1. There is another argument to derive (c): Given ε > 0 we pick p > 1 and
δ > 0, so that p− 1 + 2 δ = ε. Let A(t) = t (1 + log+)δ/p. Note that H∞ ⊂ HA and so
K ∈ HA. We takeD(t) = tp (1+log+ t)p−1+2 δ and E(t) ≈ tp

′
/(1+log+ t)1+δ (p′−1) ∈ Bp′ .

Then, we can apply (b) to obtain the desired estimate for the pair of weights (u,MDpu).

To conclude we observe that Dp(t) = D(t1/p) = t (1 + log+ t)ε.

�

Proof of Theorem 3.8. The argument follows the scheme of the proof of Theorem 3.1,
which corresponds to the case k = 0, and we only give the main changes. We proceed
by induction to obtain (a). The proof of (b) follows as in Theorem 3.1 from (a.2) by
a suitable choice of A and B (see Remark 5.1).

We assume that the cases m = 0, 1, . . . , k − 1 are proved and we show the desired
estimate for T kb . Thus, we fix a weight u ∈ L∞c and 0 ≤ f ∈ L∞c . By homogeneity we
can also assume that ‖b‖BMO = 1.

We recall some properties of BMO to be used later. Given b ∈ BMO, a cube Q,
j ≥ 0 and q > 0, by John-Nirenberg’s theorem we have

‖(b− bQ)j‖Lq ,Q ≤ ‖(b− bQ)j‖Cj ,Q = ‖b− bQ‖jexpL,Q ≤ C ‖b‖jBMO. (5.9)

On the other hand, for every l ≥ 1 and b ∈ BMO, we have

|bQ − b2lQ| ≤
l∑

m=1

|b2m−1Q − b2mQ| ≤ 2n
l∑

m=1

‖b− b2mQ‖L1,2mQ ≤ 2n l ‖b‖BMO. (5.10)

We perform the Calderón-Zygmund decomposition of f at level λ. Let g, h =
∑

j hj,

Qj, Q̃j, Ω̃ and ũ be as in the proof of Theorem 3.1. Then,

u{x ∈ Rn : |T kb f(x)| > λ} ≤ u(Ω̃) + u{x ∈ Rn \ Ω̃ : |T kb h(x)| > λ/2}
+ u{x ∈ Rn \ Ω̃ : |T kb g(x)| > λ/2}
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= I + II + III,

and we estimate each term separately. For I we obtain the first estimate in (5.2)
exactly as before. Then,

I .
1

λ

∫
Rn
f(x)Mu(x) dx ≤

∫
Rn
Ck
(
|f(x)|
λ

)
Mu(x) dx

and we observe that Mu is pointwise controlled by either MAu, MDpu or ML (logL)k+εu.
So the desired estimate follows in all cases.

Next, we estimate II by using the induction hypothesis and the conditions assumed
on the kernel. As in [28] we can write

T kb h(x) =
∑
j

T kb hj(x) =
k−1∑
m=0

Ck,mT
m
b

(∑
j

(b− bQj)k−mhj
)

(x)

+
∑
j

(b(x)− bQj)k Thj(x) = F1(x) + F2(x), (5.11)

and we estimate each function in turn.
For F1 we would like to use the induction hypothesis. We start with (a.1). If

0 ≤ m ≤ k − 1 then HA,k ⊂ HA,m and so K ∈ HB ∩HA,m. Also, as Ck(t) ≤ Cm(t) we
have

A−1
(t)B−1(t) C−1

m (t) ≤ A−1
(t)B−1(t) C−1

k (t) ≤ t.

Thus the hypotheses on (a) are satisfied for every 0 ≤ m ≤ k − 1 and therefore

u{x ∈ Rn \ Ω̃ : |F1(x)| > λ/4} ≤
k−1∑
m=0

ũ
{
x :
∣∣∣Tmb (∑

j

(b− bQj)k−mhj
)

(x)
∣∣∣ > λ/C

}

.
k−1∑
m=0

∫
Rn
Cm


∣∣∣∑j(b− bQj)k−mhj

∣∣∣
λ

 MAũ dx

.
k−1∑
m=0

∑
j

∫
Qj

Cm
( |b− bQj |k−m|hj|

λ

)
MAũ dx

.
k−1∑
m=0

∑
j

ess inf
Qj

MAũ

∫
Qj

Cm
( |b− bQj |k−m|hj|

λ

)
dx,

where in the last estimate we have used (5.7). Let us observe that C−1
k (t) C−1

k−m(t) .
C−1
m (t). Then, Young’s inequality implies∫

Qj

Cm
( |b− bQj |k−m|hj|

λ

)
dx .

∫
Qj

Ck
(
|hj|
c λ

)
dx+

∫
Qj

Ck−m(c |b− bQj |k−m) dx

.
∫
Qj

Ck
(
|hj|
λ

)
dx+

∫
Qj

ec |b−bQj | dx .
∫
Qj

Ck
(
|hj|
λ

)
dx+ |Qj| (5.12)

as ‖b‖BMO = 1 implies, by John-Nirenberg’s theorem, that ‖b − bQj‖expL,Qj ≤ c−1.

Besides, using that Ck(t)δ, 0 < δ < 1, is concave and so subadditive it follows that



GENERALIZED HÖRMANDER CONDITIONS AND WEIGHTED ENDPOINT ESTIMATES 23

Ck is quasi-subadditive —that is, Ck(t1 + t2) . Ck(t1) + Ck(t2). Therefore, by Jensen’s
inequality for Ck∫

Qj

Ck
(
|hj|
λ

)
dx ≤

∫
Qj

Ck
(
f

λ

)
dx+ |Qj| Ck

(
fQj
λ

)
≤ 2

∫
Qj

Ck
(
f

λ

)
dx.

Also, (5.1) implies

|Qj| ≤
1

λ

∫
Qj

f dx ≤
∫
Qj

Ck
(
f

λ

)
dx.

Plugging these estimates into (5.12) we obtain

u{x ∈ Rn \ Ω̃ : |F1(x)| > λ/4} .
k−1∑
m=0

∑
j

ess inf
Qj

MAũ

∫
Qj

Ck
(
f

λ

)
dx

.
∑
j

∫
Qj

Ck
(
f

λ

)
MAũ dx ≤

∫
Rn
Ck
(
f

λ

)
MAu dx.

This gives the desired estimate for F1 in case (a.1). Notice that the same computations
hold in case (a.2) replacing everywhere MA by MDp .

Next, we estimate F2:

u{x ∈ Rn \ Ω̃ : |F2(x)| > λ/4} ≤ 4

λ

∑
j

∫
Rn\Ω̃
|b(x)− bQj |k |Thj(x)|u(x) dx

≤ 4

λ

∑
j

∫
Rn\Ω̃
|b(x)− bQj |k

∫
Qj

|K(x− y)−K(x− xQj)||hj(y)| dy u(x) dx

≤ 4

λ

∑
j

∫
Qj

|hj(y)|
∫

Rn\Q̃j
|K(x− y)−K(x− xQj)| |b(x)− bQj |k u(x) dx dy.

We claim that for every cube Q (whose center is xQ) and for every y ∈ Q we have∫
Rn\2Q

|K(x− y)−K(x− xQ)| |b(x)− bQ|k u(x) dx . ess inf
Q

MAu. (5.13)

This estimate applied to each Qj implies

u{x ∈ Rn \ Ω̃ : |F2(x)| > λ/4} . 1

λ

∑
j

ess inf
Qj

MAu

∫
Qj

|hj(y)| dy

.
1

λ

∑
j

ess inf
Qj

MAu

∫
Qj

f(y) dy ≤ 1

λ

∑
j

∫
Qj

f(y)MAu(y) dy

≤ 1

λ

∫
Rn
f(y)MAu(y) dy ≤

∫
Rn
Ck
(
|f(x)|
λ

)
MAu(y) dy.

Note that this leads to the desired estimate in (a.1) and also in (a.2) (we observed in
Remark 3.3 that MAu . MDpu). Collecting the obtained inequalities for F1 and F2

we complete the estimate of II.
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We show (5.13). Let Q be a cube with center xQ and sidelength 2 r. Using (5.10);
the generalized Hölder inequality for A and A, and also for A, B and Ck; and (5.9)∫

Rn\2Q
|K(x− y)−K(x− xQ)| |b(x)− bQ|k u(x) dx

.
∞∑
l=1

∫
|x−xQ|∼2l r

|K(x− y)−K(x− xQ)| |b(x)− b2l+1Q|k u(x) dx

+
∞∑
l=1

lk
∫
|x−xQ|∼2l r

|K(x− y)−K(x− xQ)|u(x) dx

.
∞∑
l=1

(2l r)n ‖K(· − y)−K(· − xQ)‖B,|x−xQj |∼2l r ‖(b− b2l+1Q)k‖Ck,2l+1Q ‖u‖A,2l+1Q

+
∞∑
l=1

(2l r)n lk‖K(· − y)−K(· − xQ)‖A,|x−xQ|∼2l r ‖u‖A,2l+1Q

. ess inf
Q

MAu,

where we have used that K ∈ HB ∩HA,k.
To complete the proof we need to estimate III. The proof is almost identical to

that of Theorem 3.1. For the case (a.1), in (5.4) we apply Theorem 3.7 in place of
Theorem 2.4. Once we have that estimate, the proof follows the same computations
once we check that |T kb g|pMrũ ∈ L1(Rn) (we show this below). For the case (a.2) we
need to show that T kb satisfies the corresponding estimate in (5.8). But this follows
from Theorem 2.6 as we can apply Theorem 3.7 to the adjoint of T kb —note that

(T kb )∗ = (T ∗)k−b and T ∗ is a singular integral operator with kernel K̃(x) = K(−x) ∈
HB ∩HA,k.

As just mentioned we only need to check that |T kb g|pMrũ ∈ L1(Rn). Since u ∈ L∞,
it suffices to see that T kb g ∈ Lp(Rn) for p large enough. This is trivial if one assumes
that b ∈ L∞ as our assumption on K implies that K ∈ H1 and thus T is bounded on
Lp(Rn) for every 1 < p <∞:

‖T kb g‖Lp(Rn) =
∥∥∥ k∑
m=0

Cm,k b
k−m T (bm g)

∥∥∥
Lp(Rn)

. ‖b‖kL∞ ‖g‖Lp(Rn)

≤ ‖b‖kL∞ λ(p−1)/p ‖f‖1/p

L1(Rn) <∞.

Thus, we obtain (3.6) with Su = MAu under the additional assumption that b ∈ L∞.
We pass to an arbitrary b ∈ BMO: for any N > 0 we define bN(x) = b(x) if −N ≤
b(x) ≤ N , bN(x) = N if b(x) > N and bN(x) = −N if b(x) < −N . It is not hard to
prove that |bN(x)− bN(y)| ≤ |b(x)− b(y)| and hence ‖bN‖BMO ≤ 2 ‖b‖BMO. Therefore,
as bN ∈ L∞ we can use (3.6) with bN in place of b and so

u{x ∈ Rn : |T kbNf(x)| > λ} ≤ C

∫
Rn
Ck
(
‖bN‖kBMO |f(x)|

λ

)
MAu(x) dx

≤ C

∫
Rn
Ck
(
‖b‖kBMO |f(x)|

λ

)
MAu(x) dx (5.14)
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where C does not depend on N . Since f ∈ L∞c it follows that for 0 ≤ m ≤ k,
(bN)m f −→ bm f as N → ∞ in Lq for q > 1. The fact that T is bounded on Lq

implies T ((bN)m f) −→ T (bm f) as N → ∞ in Lq. Passing to a subsequence the
convergence is almost everywhere and so using that

T kbNf(x) =
k∑

m=0

Cm,k bN(x)k−m T (bmN f)(x)

it follows that T kbNj
f(x) −→ T kb f(x) for a.e. x ∈ Rn as j →∞. Then, we clearly have

that χ{Tkb f>λ}(x) ≤ lim infj→∞χ{TkbNj f>λ}
(x) a.e. Thus, Fatou’s lemma and (5.14)

drive us to the desired estimate for T kb . This completes the proof of (a).

To obtain (b), we proceed as in Remark 5.1. Given ε > 0 we pick p > 1 and δ > 0

so that (k+1) p−1+2 δ = k+ε. Let A(t) = exp(t
1

k+δ/p )−1 and B(t) = exp(tp/δ)−1.

Note that we have A−1
(t)B−1(t) C −1

k (t) . t. Also, H∞ ⊂ HB and H
et

1/k
,k
⊂ HA,k

(as A(t) . et
1/k − 1 for t ≥ 1). Then K ∈ HB ∩ HA,k. We apply (a.2) with D(t) =

tp (1 + log+ t)(k+1) p−1+2 δ and E(t) ≈ tp
′
/(1 + log+ t)1+δ (p′−1) ∈ Bp′ (note that we have

D−1(t) E−1(t) ≤ A−1
(t)). Then we obtain the desired estimate for the pair of weights

(u,MDpu). To conclude we observe that Dp(t) = D(t1/p) = t (1 + log+ t)k+ε. �

Remark 5.2. The proof for the multilinear commutators follows the same scheme,
we just give some of the changes, leaving details to the reader. To estimate II we use
ideas from [31] and replace (5.11) by

|T~bh(x)| .
∑
σ1,σ2

∣∣T~bσ2(∑
j

πσ1(
~b− ~λj)hj

)
(x)
∣∣+
∑
j

|π{1,...,k}(~b− ~λj)| |Thj(x)|

= F1(x) + F2(x),

where the first sum runs over all partitions σ1, σ2 of {1, . . . , k} with σ1 6= Ø; T~bσ2
is the

multilinear commutator associated with the vector ~bσ2 = (bσ2(l))l; πσ1(~v) =
∏

l vσ1(l)

and π{1,...,k}(~v) =
∏k

l=1 vl; and ~λj =
(
(b1)Qj , . . . (bk)Qj

)
. With this in hand we estimate

F1 using the induction hypothesis as #σ2 ≤ k − 1, and we estimate F2 using that
K ∈ HB,k (see [18]).

The estimate for III is obtained by using [18, Theorem 7.1] and observing that
(T~b)

∗ = (T ∗)−~b and that T ∗ is a singular integral operator with kernel K̃(x) =
K(−x) ∈ HB,k.

6. Proofs in the one-sided case

Proof of Theorem 3.12, Part (i). The proof follows the same scheme of the proof of
Theorem 3.1. We will only highlight some of the details. Again, we can assume that
u is bounded and has compact support, also 0 ≤ f ∈ L∞c (R). Let

Ω = {x ∈ R : M+f(x) > λ} =
⋃
j

Ij =
⋃
j

(aj, bj),
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where Ij = (aj, bj) are the connected component of Ω and they satisfy (see[25])

1

|Ij|

∫
Ij

f(y) dy = λ.

Note that if x /∈ Ω, then for all h ≥ 0

1

h

∫ x+h

x

f(y) dy ≤ λ.

Therefore f(x) ≤ λ for a.e x ∈ R \ Ω. Let Î−j = (cj, aj) with cj chosen so that

|Î−j | = 2 |Ij| and set

Ω̃ =
⋃
j

(Î−j ∪ Ij) =
⋃
j

Ĩj.

We write ũ = u χR\Ω̃ and f = g + h where

g = f χR\Ω +
∞∑
j=1

fIj χIj
, h =

∞∑
j=1

hj =
∞∑
j=1

(f − fIj)χIj
.

Observe that 0 ≤ g(x) ≤ λ for a.e. x and also that hj has vanishing integral. Then

u{x ∈ R : |T+f(x)| > λ} ≤ u(Ω̃) + u{x ∈ R \ Ω̃ : |T+h(x)| > λ/2}
+ u{x ∈ R \ Ω̃ : |T+g(x)| > λ/2}

= I + II + III.

Now we proceed in the same way as in the proof of Theorem 3.1. We estimate I:

I = u(Ω̃) = u(∪j Ĩj) ≤
∑
j

(
u(Î−j ) + u(Ij)

)
.

For each j we have

u(Î−j ) =
u(Î−j )

|Ij|
|Ij| =

u(Î−j )

|Ij|
1

λ

∫
Ij

|f(x)| dx ≤ 3

λ

∫
Ij

|f(x)|M−u(x) dx,

and then ∑
j

u(Î−j ) .
1

λ

∫
Ω

|f(x)|M−u(x) dx ≤ 1

λ

∫
R
|f(x)|M−u(x) dx.

On the other hand, using that M+ is of weak-type (1,1) with respect to the pair of
weights (u,M−u) ∈ A+

1 (see [22]),∑
j

u(Ij) = u(Ω) ≤ C

λ

∫
R
f(x)M−u(x) dx,

and therefore

I ≤ C

λ

∫
R
f(x)M−u(x) dx.

Observe that, as before, M−u is controlled by M−
Au in (a), by M−

Dpu in (b) and by

M−
L(logL)εu in (c).
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We estimate II. Let rj = |Ij| = |Î−j |/2. We use that hj is supported in Ij and has
vanishing integral, also that K is supported in (−∞, 0):

II ≤ 2

λ

∑
j

∫
R\Ω̃
|Thj(x)|u(x) dx

≤ 2

λ

∑
j

∫
Ij

|hj(y)|
∫

R\Ĩj
|K(x− y)−K(x− aj)|u(x) dx dy

=
2

λ

∑
j

∫
Ij

|hj(y)|
∫ cj

−∞
|K(x− y)−K(x− aj)|u(x) dx dy

Then it suffices to obtain that for every y ∈ Ij,∫ cj

−∞
|K(x− y)−K(x− aj)|u(x) dx . ess inf

Ij
M−
Au, (6.1)

which readily leads to the desired estimate

II .
1

λ

∑
j

ess inf
Ij

M−
Au

∫
Ij

|hj(y)| dy . 1

λ

∑
j

ess inf
Ij

M−
Au

∫
Ij

f(y) dy

≤ 1

λ

∑
j

∫
Ij

f(y)M−
Au(y)dy ≤ 1

λ

∫
R
f(y)M−

Au(y)dy

We show (6.1). Let y, z ∈ Ij, using the generalized Hölder inequality for A and A,
and that K ∈ HA,∫ cj

−∞
|K(x− y)−K(x− aj)|u(x) dx =

∞∑
k=1

∫ aj−2k rj

aj−2k+1 rj

|K(x− y)−K(x− aj)|u(x) dx

.
∞∑
k=1

2k rj ‖K(· − y)−K(· − aj)‖A,|x−aj |∼2k rj ‖uχ(aj−2k+1 rj ,aj−2k rj)
‖A,|x−aj |∼2k rj

≤
∞∑
k=1

2k rj ‖K(· − y)−K(· − aj)‖A,|x−aj |∼2k rj ‖u‖A,(aj−2k+1 rj ,z)
.M−

A u(z).

To estimate III we first claim that for any Young function C, any weight v with
M−
C v <∞ a.e., and any interval I = (a, b) we have

M−
C (v χR\Î−∪I)(y) ≈ ess inf

z∈I
M−
C (vχR\Î−∪I)(z), a.e y ∈ I, (6.2)

where Î− = (c, a) with c so that |Î−| = 2 |I|. Assuming this the proofs of the three
cases (a), (b) and (c) adapts readily to the one-sided setting. For (a) one uses that
M−

r ũ ∈ A+
1 ⊂ A+

∞ and therefore M+ is bounded on Lq(M−
r ũ) for every 1 < q < ∞.

For (b) we apply (i) in Theorem 3.11 to the one-sided operator T− = (T+)∗ (whose
kernel K̃(x) = K(−x) is supported on (0,∞)) and then (ii) of Theorem 3.11 to
conclude (5.8) with M−

Dpũ in the right-hand side. In case (c) we only need to adapt
Remark 5.1 to this setting.

To complete the proof of (i) we show (6.2). Fix y, z ∈ I = (a, b) and write Î− =

(c, a), where we recall that |Î−| = 2 |I|. Observe that if c ≤ t < y then (t, y) ⊂ (c, b) =
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Î− ∪ I. Thus,

M−
C (v χR\Î−∪I)(y) = sup

t<y
‖v χR\Î−∪I ‖C,(t,y) = sup

t<c
‖v χR\Î−∪I ‖C,(t,y).

Given t < c and λ > 0, it follows that

1

y − t

∫ y

t

C

(
v(x) χR\Î−∪I(x)

λ

)
dx =

1

y − t

∫ c

t

C

(
v(x) χR\Î−∪I(x)

λ

)
dx

=
z − t
y − t

1

z − t

∫ c

t

C

(
v(x) χR\Î−∪I(x)

λ

)
dx ≤ 3

2

1

z − t

∫ z

t

C

(
v(x) χR\Î−∪I(x)

λ

)
dx

and therefore ‖v χR\Î−∪I ‖C,(t,y) ≤ 3/2 ‖v χR\Î−∪I ‖C,(t,z) which in turn gives the de-
sired estimate.

�

Using the previous ideas the proof of part (ii) in Theorem 3.12 can be obtained by
adapting the proof of Theorem 3.8. Further details are left to reader.

Proof of Theorem 3.14. By homogeneity it suffices to consider the case λ = 1. Let
1 < p < ∞ and Ω = {x : |Tf(x)| > 1}. Then, by duality, there exists G ∈ Lp

′
(u)

with ‖G‖Lp′ (u) = 1 such that

u(Ω)1/p = ‖χΩ ‖Lp(u) =

∫
Ω

G(x)u(x) dx.

Using the hypotheses and Hölder inequality

u(Ω)1/p .
∫

Rn
|f(x)|M−

F (Gu)(x) dx ≤ ‖f‖Lp(v) ‖M−
F (Gu)‖Lp′ (v1−p′ ).

Our hypotheses guarantee that we can apply Theorem 3.15 (indeed the corresponding
version for M−

F ) to obtain that M−
F maps Lp

′
(u1−p′) into Lp

′
(v1−p′). Therefore,

u(Ω)1/p . ‖f‖Lp(v) ‖Gu‖Lp′ (u1−p′ ) = ‖f‖Lp(v) ‖G‖Lp′ (u) = ‖f‖Lp(v).

�

Remark 6.1. As observed before, this proof can be easily adapted to yield Theorem
3.5: one only needs to see that (3.3) guarantee that MF is bounded from Lp

′
(u1−p′)

into Lp
′
(v1−p′) (see [11]). For further results and a deep treatment of extrapolation

results of this kind the reader is referred to [10].

Proof of Theorem 3.15. We use ideas from [33]. First we observe that it suffices to
assume that u is bounded and compactly supported (otherwise we work with uR =
u χ{|x|≤R, u(x)≤R} and take R→∞).

Fix f continuous with compact support, and for k ∈ Z we set Ωk = {x ∈ R : 2k <
M+
Af(x) < 2k+2}. For any x ∈ Ωk there exists cx > x such that 2k < ‖f‖A,(x,cx) < 2k+2.

Using the continuity of the integral it is easy to show that there exists δx ∈ (x, cx) (that
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can be taken sufficiently close to x verifying δx < (cx + x)/2) such that [x, δx) ⊂ Ωk

and 2k < ‖f‖A,(δx,cx) < 2k+2. We write I−x,k = [x, δx) and I+
x,k = (δx, cx) and therefore

Ωk =
⋃
x∈Ωk

I−x,k and 2k < ‖f‖A,I+x,k < 2k+2. (6.3)

As in [5] (see also [33, Lemma 2]) there exists a finite subcollection of pairwise disjoint
intervals {I−j,k}j∈J such that

u(Ωk) ≤ 3
∑
j∈J

u(I−j,k).

This and (6.3) yield∫
R
M+
Af(x)p u(x) dx ≤

∑
k∈Z

∫
Ωk

(M+
Af)p u dx .

∑
k∈Z

2k p u(Ωk) .
∑
k∈Z

2k p
∑
j∈J

u(I−j,k)

≤
∑
k∈Z

∑
j∈J

‖f‖pA,I+j,k u(I−j,k) =
∑
k∈Z

∑
j∈J

‖f v1/p v−1/p‖pA,I+j,k u(I−j,k)

.
∑
k∈Z

∑
j∈J

‖f v1/p‖pC,I+j,k ‖v
−1/p‖pB,I+j,k ‖u

1/p‖p
Lp,I−j,k

|I−j,k|.

Note that

‖f v1/p‖C,I+j,k ≤ 2 ‖f v1/p‖C,I−j,k∪I+j,k ≤ 2MC(f v
1/p)(x), x ∈ I−j,k.

This, (3.7), and the fact that the intervals I−j,k are pairwise disjoint and contained in
Ωk imply∫

R
M+
Af(x)p u(x) dx .

∑
k∈Z

∑
j∈J

‖f v1/p‖pC,I+j,k |I
−
j,k| .

∑
k∈Z

∑
j∈J

∫
I−j,k

MC(f v
1/p)(x)p dx

≤
∑
k∈Z

∫
Ωk

MC(f v
1/p)(x)p dx ≤ 2

∫
R
MC(f v

1/p)(x)p dx

.
∫

R
|f(x)|p v(x) dx,

where in the last estimate we have used that C ∈ Bp and consequently MC is bounded
on Lp(R) (see [29]). This completes the proof. �
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[21] J.M. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some
singular integral operators, Trans. Amer. Math. Soc. 357, (2005), 385–396

[22] F.J. Mart́ın-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal
functions, Trans. Amer. Math. Soc. 319 (1990), no. 2, 517–534.

[23] F.J. Mart́ın-Reyes, L. Pick and A. de la Torre, A+
∞ condition, Canad. J. Math. 45 (1993),

1231–1244.
[24] F.J. Mart́ın-Reyes and A. de la Torre, One Sided BMO Spaces, J. London Math. Soc. (2) 49

(1994), no. 3, 529–542.
[25] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer.

Math. Soc. 165 (1972), 207–226.
[26] R. O’Neil, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1963), 300–328.
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Carlos Pérez, Departamento de Análisis Matemático, Facultad de Matemática,
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