
EXTRAPOLATION FOR MULTILINEAR MUCKENHOUPT
CLASSES AND APPLICATIONS
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Abstract. In this paper we solve a long standing problem about the multivari-
able Rubio de Francia extrapolation theorem for the multilinear Muckenhoupt
classes A~p, which were extensively studied by Lerner et al. and which are the nat-
ural ones for the class of multilinear Calderón-Zygmund operators as well as for
some bilinear rough singular integral operators. Furthermore, we go beyond the
classes A~p and extrapolate within the classes A~p,~r which appear naturally associ-
ated to the weighted norm inequalities for multilinear sparse forms which control
fundamental operators such as the bilinear Hilbert transform. We give several
applications which can be easily obtained using extrapolation. First, weighted
norm inequalities (scalar and vector-valued) for the bilinear rough singular inte-
gral operators are established. Second, for the bilinear Hilbert transform one can
extrapolate from the recent result of Culiuc et al. who considered the Banach
range, extend the estimates to the quasi-Banach range, and furthermore, prove
trivially vector-valued inequalities. We also extend recent results of Carando et
al. on Marcinkiewicz-Zygmund estimates for multilinear Calderón-Zygmund op-
erators. Finally, our last application gives new weighted estimates (scalar and
vector-valued) for the commutators of multilinear Calderón-Zygmund operators,
bilinear rough singular integral operators, and for the bilinear Hilbert transform
with BMO functions using ideas from Bényi et al.
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1. Introduction

The Rubio de Francia extrapolation theorem [34] is a powerful tool in harmonic
analysis which states that if a given operator T is bounded on Lp0(w) for some
fixed p0, 1 ≤ p0 <∞, and for all w ∈ Ap0 , then T is indeed bounded on all Lp(w)
for all 1 < p <∞ and for all w ∈ Ap. This is quite practical as it suffices to choose
some particular exponent which could be natural for the operator in question and
establish the weighted estimates for it. This, for instance, allows one to immediately
obtain vector valued weighted estimates showing that T is bounded on Lp`s(w) for
all 1 < p, s < ∞ and all w ∈ Ap. On the other hand, the classical Rubio de
Francia extrapolation theorem is only suitable for operators for which we know or
expect to have estimates in the range (1,∞). There are other versions considering
estimates within the smaller classes of weights of the form A p

p−
∩ RH( p+

p

)′ which

are naturally adapted to range p ∈ (p−, p+) (see [1]) or off-diagonal extrapolation
results for the classes Ap,q which are natural for estimates from Lp to Lq where
p 6= q (see [25]). We refer the reader to [13] for the development of extrapolation
and a more complete list of references (see also [19]).

In the multivariable setting there are some Rubio de Francia extrapolation re-
sults. In [23] it was shown that if T is bounded from Lp1(w1) × · · · × Lpm(wm) to

Lp(w
p
p1
1 . . . w

p
pm
m ) for some fixed exponents 1 < p1, . . . , pm < ∞, 1

p
= 1

p1
+ · · · + 1

pm
,

and for all wi ∈ Api , then the same holds for all possible values of pj. Much as
before, this extrapolation result for products of Muckenhoupt classes is adapted
to the ranges pj ∈ (1,∞) and the recent paper [12] extended extrapolation to
the classes of weights wj ∈ A pj

p−
j

∩ RH( p+
j
p

)′ which are associated with the ranges

pj ∈ (p−j , p
+
j ). These results are very natural extensions of the Rubio de Francia

extrapolation theorem, but they treat each variable separately with its own Muck-
enhoupt class of weights (this fact also appears in the proofs, see [19] or [12]) and do
not quite use the multivariable nature of the problem. In this direction [30] intro-
duced some multilinear Muckenhoupt classes. Namely, given ~p = (p1, . . . , pm) with
1 ≤ p1, . . . , pm < ∞, one says that ~w = (w1, . . . , wm) ∈ A~p provided 0 < wi < ∞
a.e. for every i = 1, . . . ,m and

[~w]A~p = sup
Q

(
−
∫
Q

wdx
) 1
p

m∏
i=1

(
−
∫
Q

w
1−p′i
i dx

) 1
p′
i <∞,

where 1
p

= 1
p1

+ · · · + 1
pm

and w = w
p
p1
1 . . . w

p
pm
m (here, when pi = 1, the term

corresponding to wi needs to be replaced by ess supQw
−1
i ). These classes of weights

contain some multivariable structure in their definition and, as a matter of fact,
characterize the boundedness from Lp1(w1)×· · ·×Lpm(wm) into Lp(w) (where one
has to replace Lp(w) with Lp,∞(w) when at least one pi = 1) of the multi-sublinear
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Hardy-Littlewood maximal function

M(f1, . . . , fm)(x) = sup
Q3x

m∏
i=1

(
−
∫
Q

|fi(y)|dy
)
.

Notice that M(f1, . . . , fm)(x) . Mf1(x) . . .Mfm(x), where M is the regular Har-
dy-Littlewood maximal function, and hence Ap1 × · · · × Apm ⊂ A~p, however the
inclusion is strict. This indicates that the multivariable operators are generally
speaking richer than the simple multiplication of operators in each component.

One of the main goals of this paper is to establish a Rubio de Francia extrap-
olation theorem valid in the context of the multilinear classes A~p. Before stating
the precise result we find illustrative to present some easy examples of weights
which shed light on the structure of the multilinear classes and explain why such
extrapolation result has been open for more than ten years. For the sake of sim-
plicity, let us consider the bilinear case with ~p = (1, 1) so that p = 1

2
. Having

~w = (w1, w2) ∈ A(1,1) can be translated into w
1
2
1 , w

1
2
2 , w

1
2
1 w

1
2
2 ∈ A1 (see [30] or

Lemma 5.3). Hence, ~w = (w1, w2) ∈ A(1,1), in contrast with ~w ∈ A1 × A1, im-

poses less on each weight individually (since wi ∈ A1 easily implies w
1
2
i ∈ A1).

But it incorporates a link between w1 and w2, which are no longer independent,

since the product weight needs to satisfy w
1
2
1 w

1
2
2 ∈ A1. For instance, we can take

w1(x) = |x|−n and w2(x) ≡ 1 so that ~w = (w1, w2) ∈ A(1,1), while w1 /∈ A1 since
w1 is not even locally integrable. On the other hand, once we pick w1(x) = |x|−n,
there is a restriction on the possible weights w2 for which ~w = (w1, w2) ∈ A(1,1)

since we would need to have that |x|−n2w
1
2
2 ∈ A1 and this does not allow to take,

for example, w2(x) = |x|−n. With these examples we can see already some of the
difficulties that one encounters when trying to work with the multilinear classes
of weights: first, one needs to work with component weights that are linked one
another and, second, each individual weight might be non locally integrable but
collectively the product should behave well. This might explain why any attempt
to obtain a Rubio de Francia extrapolation theorem has been unsuccessful in the
last years: the proofs for product weights in [23], [19], [12] treat each component
independently and the conditions on the weights make them locally integrable, thus
they do not naturally extend to the multilinear classes.

In this paper we overcome these difficulties and obtain a multivariable Rubio
de Francia extrapolation theorem which is not only valid for the classes A~p but
also goes beyond and allows us to work with the classes A~p,~r. The former classes
are the natural ones for M, for multilinear Calderón-Zygmund operator, and for
some bilinear rough singular integral operators, but the latter classes are related
operators with restricted ranges of boundedness. Indeed, these classes appeared
in [16] where weighted norm inequalities were obtained for the bilinear Hilbert
transform in the case when the target space is Banach. One of the consequences of
our main result is that extrapolation automatically extends these estimates to the
case where the target spaces are quasi-Banach. Additionally, our method allows us
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to provide a trivial alternative proof of some of the vector-valued inequalities for
the bilinear Hilbert transform obtained in [3, 4, 5, 6] (see also [16]). To illustrate
the applicability of our method we also prove weighted estimates for more singular
operators such as the commutators of multilinear operators with BMO functions.
Very recently in [7] weighted norm inequalities were proved by using the so-called
Cauchy integral trick for operators satisfying weighted estimates associated within
the class A~p. However, as this trick uses Minkowski’s inequality, the estimates
obtained in [7] were only valid in the Banach range. As a result of our extrapolation
result we can extend them to the quasi-Banach range. As we are also able to work
with the classes A~p,~r, we can apply these ideas to prove new weighted estimates
and vector-valued inequalities for the commutator of the bilinear Hilbert transform
with BMO functions.

In order to state our main result we need some notation. We shall work on Rn,
n ≥ 1, and by a cube Q in Rn we shall understand a cube with sides parallel to
the coordinate axes. Given a cube Q and f ∈ L1

loc(Rn) we use the notation

−
∫
Q

fdx =
1

|Q|

∫
Q

fdx.

Hereafter, m ≥ 2. Given ~p = (p1, . . . , pm) with 1 ≤ p1, . . . , pm < ∞ and ~r =
(r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 <∞, we say that ~r � ~p whenever

ri ≤ pi, i = 1, . . . ,m; and r′m+1 > p, where
1

p
:=

1

p1

+ · · ·+ 1

pm
.

Analogously, we say that ~r ≺ ~p if ~r � ~p and moreover ri < pi for every i = 1, . . . ,m.
Notice that the fact that ~r � ~p forces that

∑m+1
i=1

1
ri
> 1 and also 1

p
≤
∑m

i=1
1
ri

.

Hence, if
∑m

i=1
1
ri
> 1 then we allow p to be smaller than one.

Under these assumptions we can now introduce the classes of multilinear Muck-
enhoupt weights that we consider in the present paper, in Section 2.3 below we
introduce some model operators whose weighted norm inequalities are governed by
these classes. We say that ~w = (w1, . . . , wm) ∈ A~p,~r, provided 0 < wi <∞ a.e. for
every i = 1, . . . ,m and

[~w]A~p,~r = sup
Q

(
−
∫
Q

w

r′m+1
r′
m+1

−pdx
) 1
p
− 1
r′
m+1

m∏
i=1

(
−
∫
Q

w
ri

ri−pi
i dx

) 1
ri
− 1
pi <∞,

where w =
∏m

i=1w
p
pi
i . When rm+1 = 1 the term corresponding to w needs to be

replaced by
(
−
∫
Q
wdx

) 1
p
. Analogously, when pi = ri, the term corresponding to

wi needs to be replaced by ess supQw
− 1
pi

i . We note that A~p,(1,...,1) agrees with A~p

introduced above.
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We shall use the abstract formalism of extrapolation families. Hereafter F will
denote a family of (m+ 1)-tuples (f, f1, . . . , fm) of non-negative measurable func-
tions. This approach to extrapolation has the advantage that, for instance, vector-
valued inequalities are an immediate consequence of our extrapolation results. We
will discuss applying this formalism to prove norm inequalities for specific opera-
tors below. For complete discussion of this approach to extrapolation in the linear
setting, see [13].

Our main result is the following:

Theorem 1.1. Let F be a collection of (m + 1)-tuples of non-negative functions.
Assume that we have a vector ~r = (r1, . . . , rm+1), with 1 ≤ r1, . . . , rm+1 < ∞, and
exponents ~p = (p1, . . . , pm), with 1 ≤ p1, . . . , pm < ∞ and ~r � ~p, such that given
any ~w = (w1, . . . , wm) ∈ A~p,~r the inequality

(1.2) ‖f‖Lp(w) ≤ C([~w]A~p,~r)
m∏
i=1

‖fi‖Lpi (wi)

holds for every (f, f1, . . . , fm) ∈ F , where 1
p

:= 1
p1

+ · · · + 1
pm

and w :=
∏m

i=1w
p
pi
i .

Then for all exponents ~q = (q1, . . . , qm), with ~r ≺ ~q, and for all weights ~v =
(v1, . . . , vm) ∈ A~q,~r the inequality

(1.3) ‖f‖Lq(v) ≤ C([~v]A~q,~r)
m∏
i=1

‖fi‖Lqi (vi)

holds for every (f, f1, . . . , fm) ∈ F , where 1
q

:= 1
q1

+ · · ·+ 1
qm

and v :=
∏m

i=1 v
q
qi
i .

Moreover, for the same family of exponents and weights, and for all exponents
~s = (s1, . . . , sm) with ~r ≺ ~s

(1.4)

∥∥∥∥(∑
j

(f j)s
) 1
s

∥∥∥∥
Lq(v)

≤ C([~v]A~q,~r)
m∏
i=1

∥∥∥∥(∑
j

(f ji )si
) 1
si

∥∥∥∥
Lqi (vi)

for all {(f j, f j1 , . . . , f jm)}j ⊂ F and where 1
s

:= 1
s1

+ · · ·+ 1
sm

.

As a direct corollary of our main theorem, taking ~r = (1, . . . , 1), we provide the
promised multivariable Rubio de Francia extrapolation theorem:

Corollary 1.5. Let F be a collection of m + 1-tuples of non-negative functions.
Assume that we have exponents ~p = (p1, . . . , pm), with 1 ≤ p1, . . . , pm < ∞, such
that given any ~w = (w1, . . . , wm) ∈ A~p the inequality

‖f‖Lp(w) ≤ C([~w]A~p)
m∏
i=1

‖fi‖Lpi (wi)

holds for every (f, f1, . . . , fm) ∈ F , where 1
p

:= 1
p1

+ · · · + 1
pm

and w :=
∏m

i=1w
p
pi
i .

Then for all exponents ~q = (q1, . . . , qm), with 1 < q1, . . . , qm < ∞, and for all
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weights ~v = (v1, . . . , vm) ∈ A~q the inequality

‖f‖Lq(v) ≤ C([~v]A~q)
m∏
i=1

‖fi‖Lqi (vi)

holds for every (f, f1, . . . , fm) ∈ F , where 1
q

:= 1
q1

+ · · ·+ 1
qm

and v :=
∏m

i=1 v
q
qi
i .

Moreover, for the same family of exponents and weights, and for all exponents
~s = (s1, . . . , sm) with 1 < s1, . . . , sm <∞,∥∥∥∥(∑

j

(f j)s
) 1
s

∥∥∥∥
Lq(v)

≤ C([~v]A~q)
m∏
i=1

∥∥∥∥(∑
j

(f ji )si
) 1
si

∥∥∥∥
Lqi (vi)

for all {(f j, f j1 , . . . , f jm)}j ⊂ F , where 1
s

:= 1
s1

+ · · ·+ 1
sm

.

Remark 1.6. As done in [23, Section 6] one can formulate the previous results in
terms of weak-type estimates. More precisely, in the context of Theorem 1.1, if in
(1.2) the left hand side term is replaced by ‖f‖Lp,∞(w) then in the conclusion we
will have ‖f‖Lq,∞(v). The same occurs with Corollary 1.5.

Remark 1.7. As discussed in [12, Section 1] one can easily get versions of the
previous results where we make the a priori assumption that the left-hand sides of
both our hypothesis and conclusion are finite. In certain applications this assump-
tion is reasonable: for instance, when proving Coifman-Fefferman type inequalities
(cf. [13]). The precise formulations and the proofs are left to the interested reader.

Remark 1.8. One can see that in Theorem 1.1 if we start with pi0 = ri0 for some
given i0 then in the conclusion we can relax qi0 > ri0 to qi0 ≥ ri0 , likewise, for
Corollary 1.5, if pi0 = 1 for some given i0 then in the conclusion we can allow
qi0 ≥ 1. To justify this, one just needs to apply the extrapolation procedure in all
the other components which will eventually prove the case qi0 = pi0 = ri0 . Apply
finally the extrapolation on the component i0 to obtain the case qi0 > ri0 . Further
details are left to the interested reader.

Remark 1.9. The formalism of extrapolation families is very useful to derive
vector-valued inequalities. Indeed, as we will in Section 4.3, from the main part
of Theorem 1.1 (that is, the fact that (1.2) implies (1.3)) one can easily obtain
that (1.4) holds. This is done by extrapolation choosing an appropriate extrapo-
lation family. This idea can be further exploited to obtain weighted vector-valued
inequalities of the form

(1.10)

∥∥∥∥(∑
j

(∑
k

(f jk)s
) t

s
) 1

t
∥∥∥∥
Lp(v)

.
m∏
i=1

∥∥∥∥(∑
j

(∑
k

(f jki )si
) ti

si

) 1
ti

∥∥∥∥
Lqi (vi)

.
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The argument to show this is in Section 4.4 and it is straightforward to see that
one can repeat this procedure to obtain iterated vector-valued inequalities with
arbitrary number of “sums”. The precise statements are left to the interested
reader.

To conclude with this introduction let us briefly present one of the novel ideas
that we introduce to obtain our extrapolation result. As mentioned before, the
conditions A~p or A~p,~r contain implicitly some link between the different components
of the vector weight. In Lemma 3.2 we present a structural result for the classes
A~p,~r which makes this connection explicit. Although the result is quite technical,
in the bilinear case and for the class A(1,1) it has a very simple and illustrative

statement: ~w = (w1, w2) ∈ A(1,1) if and only if w
1
2
1 ∈ A1 and w

1
2
2 ∈ A1(w

1
2
1 )

(the latter means that w
1
2
2 satisfies an A1 condition with respect to the underlying

measure w
1
2
1 ). This equivalence allows us, among other things, to easily construct

vector weights in A(1,1): we simply use that A1 weights are essentially a Hardy-
Littlewood maximal function raised to a power strictly smaller than 1. On the other
hand, we highlight that this is one of the key ideas that have allowed us to obtain
our Rubio de Francia extrapolation for multilinear Muckenhoupt classes: roughly
speaking we reduce matters to some off-diagonal extrapolation in one component
with respect to some fixed doubling measure (in the previous example this would

be w
1
2
1 ) and then iterate this procedure for the other components.

The plan of the paper is as follows. In the following section we present some
immediate applications of our extrapolation results. We easily reprove some vector-
valued inequalities for bilinear (for the sake of specificity) Calderón-Zygmund oper-
ators. Next we look into some sparse domination formulas and how these easily give
estimates in the Banach case (by a direct computation) and in the quasi-Banach
case by extrapolation. From these we automatically obtain vector-valued inequal-
ities. In Sections 2.4 and 2.5 we pay special attention to the important cases of
some bilinear rough singular integral operators and the bilinear Hilbert transform
respectively and explain how extrapolation easily produces a plethora of weighted
norm inequalities starting from the estimates proved in [2] and [16]. The study of
the commutators with BMO functions is in Section 2.6 where we obtain estimates
that are new for the multilinear Calderón-Zygmund operators, the bilinear rough
singular integral operators, and the bilinear Hilbert transform. In Section 3 we
give some auxiliary results including Lemma 3.2 which gives the characterization
of the class A~p,~r mentioned above. The proof of our main result and the estimates
for the commutators are given respectively in Sections 4 and 5.

2. Applications

Here we present some applications. In some cases we give elementary proofs of
some known estimates but in other we prove new estimates.
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2.1. Multilinear Calderón-Zygmund operators. For the sake of conciseness
let us just handle the bilinear case. We recall the definition of the bi-sublinear
Hardy-Littlewood maximal function

M(f, g)(x) = sup
Q3x

(
−
∫
Q

|f(y)|dy
)(
−
∫
Q

|g(y)|dy
)
.

Given a bilinear operator T a priori defined from S × S into S ′ of the form

T (f, g)(x) =

∫
Rn

∫
Rn
K(x, y, z)f(y)g(z) dydz

we say that T is a bilinear Calderón-Zygmund operator if it can be extended as
a bounded operator from Lp1 × Lp2 to Lp for some 1 < p1, p2 < ∞ with 1/p1 +
1/p2 = 1/p, and its distributional kernel K coincides, away from the diagonal
{(x, y, z) ∈ R3n : x = y = z}, with a function K(x, y, z) locally integrable which
satisfies estimates of the form

|∂αK(x, y, z)| .
(
|x− y|+ |x− z|+ |y − z|

)−2n−|α|
, |α| ≤ 1.

The estimates on K above are not the most general that one can impose in such
theory, see [24]. Bilinear Calderón-Zygmund operators andM are known to satisfy
weighted norm inequalities for the classes A~p = A~p,(1,1,1), see [30]. As a consequence
of Theorem 1.1 we easily obtain the following vector-valued inequalities:

Corollary 2.1. Let T be a bilinear Calderón-Zygmund operator. For every ~p =
(p1, p2), ~s = (s1, s2) with 1 < p1, p2, s1, s2 < ∞ and for every ~w = (w1, w2) ∈ A~p

one has∥∥∥∥(∑
j

M(fj, gj)
s
) 1
s

∥∥∥∥
Lp(w)

.

∥∥∥∥(∑
j

|fj|s1
) 1
s1

∥∥∥∥
Lp1 (w1)

∥∥∥∥(∑
j

|gj|s2
) 1
s2

∥∥∥∥
Lp2 (w2)

and∥∥∥∥(∑
j

|T (fj, gj)|s
) 1
s

∥∥∥∥
Lp(w)

.

∥∥∥∥(∑
j

|fj|s1
) 1
s1

∥∥∥∥
Lp1 (w1)

∥∥∥∥(∑
j

|gj|s2
) 1
s2

∥∥∥∥
Lp2 (w2)

,

where 1
p

= 1
p1

+ 1
p2

, 1
s

= 1
s1

+ 1
s2

, and w = w
p
p1
1 w

p
p1
2 .

Notice that as explained in Remark 1.9 one can easily obtain iterated weighted
vector-valued inequalities, the precise statement is left to the interested reader.

We can also use extrapolation to prove Marcinkiewicz-Zygmund inequalities for
multilinear Calderón-Zygmund operators (here as before we just present the bilinear
case). Very recently Carando et al. [9] extended some result from [23] and [8] by
proving the following weighted Marcinkiewicz-Zygmund inequalities. Let T be a
bilinear Calderón-Zygmund operator. Let 1 < r ≤ 2 and let 1 < q1, q2 < ∞ if
r = 2 or 1 < q1, q2 < r if 1 < r < 2. Then for ~w = (w1, w2) ∈ A~q there holds

(2.2)

∥∥∥∥(∑
i,j

|T (fi, gj)|r
) 1

r
∥∥∥∥
Lq(w)

≤
∥∥∥∥(∑

i

|fi|r
) 1

r
∥∥∥∥
Lq1 (w1)

∥∥∥∥(∑
j

|gj|r
) 1

r
∥∥∥∥
Lq2 (w2)

,
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where 1
q

= 1
q1

+ 1
q2

and w = w
q
q1
1 w

q
q2
2 .

By using extrapolation we can remove the restriction q1, q2 < r when 1 < r < 2
(for a version of the following result in the context of product of Muckenhoupt
classes the reader is referred to [12]).

Corollary 2.3. Let T be bilinear Calderón-Zygmund operator. Given 1 < r ≤ 2
and 1 < q1, q2 <∞, then (2.2) holds for all ~w = (w1, w2) ∈ A~q.

2.2. Multilinear sparse forms: bilinear Calderón-Zygmund operators. In
the previous section we derived some vector-valued estimates for bilinear Calderón-
Zygmund operators as a consequence of the theory developed in [30]. Here we would
like to show that these can be easily obtained from a particular choice of ~p with
the help of a certain sparse domination which will also motivate the definition
of more general multilinear sparse operators. We start with an estimate proved
independently and simultaneously in [11] and [29]: for any f, g ∈ C∞c (Rn), one has

(2.4) |T (f, g)| .
3n∑
i=1

TSi(f, g),

where, for each i,one has that Si = {Q} ⊂ Di (here Di is a dyadic grid) is a sparse
family with sparsity constant 1

2
and

TSi(f, g) =
∑
Q∈Si

(
−
∫
Q

|f |dx
)(
−
∫
Q

|g|dx
)
χQ.

Let us recall that S = {Q} is sparse family with constant ζ ∈ (0, 1) if for every
Q ∈ S there exists EQ ⊂ Q such that |EQ| > ζ|Q| and the sets {EQ}Q∈S are
pairwise disjoint.

To proceed we follow an argument in [17], see also [32], which in turn is a
bilinear extension of the linear case proof in [14]. We pick the “natural” exponents

p1 = p2 = 3 and p = 3
2
, and take ~w = (w1, w2) ∈ A(3,3), let w = w

1
2
1 w

1
2
2 , and

write σ1 = w
1−p′1
1 = w

− 1
2

1 , σ2 = w
1−p′2
2 = w

− 1
2

2 . Without loss of generality we may
assume that f, g ≥ 0 and use duality to see that there exists 0 ≤ h ∈ L3(w−2) with
‖h‖L3(w−2) = 1 such that

(2.5) ‖T (f, g)‖
L

3
2 (w)

=

∫
Rn
h|T (f, g)|dx . sup

S

∫
Rn
hTS(f, g)dx = sup

S
ΛS(f, g, h),

where we have used (2.4),

ΛS(f, g, h) :=
∑
Q∈S

|Q|
(
−
∫
Q

hdx
)(
−
∫
Q

fdx
)(
−
∫
Q

gdx
)
,

and the sup runs over all sparse collections S with sparsity constant 1
2
. To continue

with our estimate we just need to estimate an arbitrary ΛS :

ΛS(f, g, h) =
∑
Q∈S

|Q|
(
−
∫
Q

hw−1dw
)(
−
∫
Q

fσ−1
1 dσ1

)(
−
∫
Q

gσ−1
2 dσ2

)
(2.6)
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×
(
−
∫
Q

wdx
)(
−
∫
Q

σ1dx
)(
−
∫
Q

σ2dx
)

≤ 2[~w]
3
2
A(3,3)

∑
Q∈S

|EQ|
(
−
∫
Q

hw−1dw
)(
−
∫
Q

fσ−1
1 dσ1

)(
−
∫
Q

gσ−1
2 dσ2

)
≤ 2[~w]

3
2
A(3,3)

∫
Rn
MD

w (hw−1)MD
σ1

(fσ−1
1 )MD

σ2
(gσ−1

2 )

≤ 2[~w]
3
2
A(3,3)
‖MD

w (hw−1)‖L3(w)‖MD
σ1

(fσ−1
1 )‖L3(σ1)‖MD

σ2
(gσ−1

2 )‖L3(σ2)

≤ 27

4
[~w]

3
2
A(3,3)
‖hw−1‖L3(w)‖fσ−1

1 ‖L3(σ1)‖gσ−1
2 ‖L3(σ2)

=
27

4
[~w]

3
2
A(3,3)
‖f‖L3(w1)‖g‖L3(w2),

where we have used that S is a sparse family with constant 1
2
, hence the sets

{EQ}Q∈S are pairwise disjoint; Hölder’s inequality; and finally that MD
µ , the dyadic

maximal operator associated with the dyadic grid D and with underlying measure µ,
is bounded on L3(µ) with bound 3′ = 3

2
(see for instance [14, Lemma 2.3]). Collect-

ing the obtained estimates we therefore conclude that T : L3(w1)×L3(w2)→ L
3
2 (w)

for every ~w = (w1, w2) ∈ A(3,3) and where w = w
1
2
1 w

1
2
2 . Using Corollary 1.5 with

~p = (3, 3) and the family F consisting in the collection of 3-tuples (|T (f, g)|, |f |, |g|)
with f, g ∈ C∞c (Rn) we easily conclude that T : Lp1(w1) × Lp2(w2) → Lp(w) for

every 1 < p1, p2 <∞ where 1
p

= 1
p1

+ 1
p1

, ~w = (w1, w2) ∈ A(p1,p2) and w = w
p
p1
1 w

p
p2
2 .

Also, we automatically get the corresponding vector-valued inequalities.

2.3. Multilinear sparse forms: the general case. In this section we present
some multilinear sparse forms whose weighted norm inequalities are governed by
the class A~p,~r. Here we would like to emphasize that the natural argument based on
duality gives estimates in the Banach range, and extrapolation allows us to extend
them to the case on which the target space is quasi-Banach. Let us introduce the
sparse forms. Given a dyadic grid D, a sparse family S ⊂ D, and ~r = (r1, . . . , rm+1)
with ri ≥ 1, for every 1 ≤ i ≤ m+ 1, and 1

r1
+ · · ·+ 1

rm+1
> 1, let us define

ΛS,~r(f1, . . . , fm, h) =
∑
Q∈S

|Q|
(
−
∫
Q

|h|rm+1dx
) 1
rm+1

m∏
i=1

(
−
∫
Q

|fi|ridx
) 1
ri .

Our goal is to present a general framework to establish weighted estimates for
operators which are controlled by sparse forms ΛS,~r. In that case we only need to
establish the corresponding estimates for ΛS,~r and this is a quite easy task.

Fix ~r = (r1, . . . , rm+1), with ri ≥ 1 for 1 ≤ i ≤ m + 1 and a sparsity constant
ζ ∈ (0, 1). Consider an operator T (we do not need any linearity or sublinearity)
and we seek to show that T : Lp1(w1)×· · ·×Lpm(wm)→ Lp(w) for ~p in some range

and where as usual w =
∏m

i=1w
p
pi
i . By duality, and provided that p > 1, we can
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find 0 ≤ h ∈ Lp′(w1−p′) with ‖h‖Lp′ (w1−p′ ) = 1 so that

‖T (f1, . . . , fm)‖Lp(w) =

∣∣∣∣∫
Rn
hT (f1, . . . , fm)dx

∣∣∣∣ .
Our main assumption is that

(2.7)

∣∣∣∣∫
Rn
hT (f1, . . . , fm)dx

∣∣∣∣ . sup
S

ΛS,~r(f1, . . . , fm, h),

where the sup runs over all sparse families with sparsity constant ζ.

We next present some operators satisfying the previous assumption. First, if
T is a bilinear Calderón-Zygmund operator as before, then (2.5) shows that (2.7)
holds with ~r = (1, 1, 1) and the sparsity constant is ζ = 1

2
—the same occurs with

multilinear Calderón-Zygmund operators with ~r = (1, . . . , 1) (see [11] or [29]).

The second example is a class of rough bilinear singular integrals given by

TΩ(f1, f2)(x) = p.v.

∫
Rn

∫
Rn
f1(x− y1)f2(x− y2)

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2n

dy1dy2.

where Ω ∈ L∞(S2n−1) has vanishing integral. These were introduced by Coifman
and Meyer and further studied by Grafakos, He and Honźık [21]. Barron in [2,
Therorem 1] shows that TΩ satisfies (2.7) with ~r = (s, s, s) for any 1 < s <∞.

The last example is that of the bilinear Hilbert transform defined as

BH(f, g)(x) = p.v

∫
R
f(x− t)g(x+ t)

dt

t
.

It is a bilinear operator whose multiplier, unlike the ones for bilinear Calderón-
Zygmund operators which are singular only at the origin, is singular along a line
when viewed in the frequency plane. Lacey and Thiele [27, 28] (see also [22]) showed
that BH maps Lp1 × Lp2 → Lp for 1 < p1, p2 ≤ ∞ and 1

p
= 1

p1
+ 1

p2
< 3

2
. In [16,

Theorem 2], this operator and some other bilinear multipliers have been shown to
satisfy (2.7) with ~r = (r1, r2, r3) satisfying 1 < r1, r2, r3 <∞ and

(2.8)
1

min{r1, 2}
+

1

min{r2, 2}
+

1

min{r3, 2}
< 2.

Continuing with our argument, for all the previous examples we are going to
see that (2.7) allows us to reduce the weighted norm inequalities of T to those
of the sparse forms ΛS,~r. However, this eventually produces estimates in Lp(w)
where p > 1 and this is where extrapolation is relevant, since it permits us to
easily remove such restriction. As done before for the bilinear Calderón-Zygmund
operators we are going to obtain estimates for some particular choice of ~p. Take
~p = (p1, . . . , pm) where

pi =
ri
r
, 1 ≤ i ≤ m, and

1

r
=

m+1∑
i=1

1

ri
> 1,
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and let

1

p
= r

m∑
i=1

1

ri
= 1− r

rm+1

=
1

( rm+1

r
)′
.

Note that ~r ≺ ~p. Fix ~w ∈ A~p,~r and let w =
∏m

i=1 w
p
pi
i . We set

(2.9) σm+1 = w

r′m+1
r′
m+1

−p = w(p′−1) r
1−r ; σi = w

ri
ri−pi
i = w

− r
1−r

i , 1 ≤ i ≤ m,

hence
(2.10)

[w]
1

1−r
A~p,~r

= sup
Q

(
−
∫
Q

w

r′m+1
r′
m+1

−pdx
) 1
rm+1

m∏
i=1

(
−
∫
Q

w
ri

ri−pi
i dx

) 1
ri = sup

Q

m+1∏
i=1

(
−
∫
Q

σidx
) 1
ri

and

(2.11)
m+1∏
i=1

σ
r
ri
i = w

r
p(1−r)

m∏
i=1

w
− r
pi(1−r)

i = 1

Assume next that f1, . . . , fm, h ≥ 0 and set fm+1 = h. Given a sparse family
S ⊂ D with sparsity constants ζ, we proceed as in (2.6) to obtain

ΛS,~r(f1, . . . , fm, h) =
∑
Q∈S

|Q|
m+1∏
i=1

(
−
∫
Q

f rii dx
) 1
ri(2.12)

=
∑
Q∈S

|Q|
m+1∏
i=1

(
−
∫
Q

f rii σ
−1
i dσi

) 1
ri

m+1∏
i=1

(
−
∫
Q

σidx
) 1
ri

≤ ζ−1[~w]
1

1−r
A~p,~r

∑
Q∈S

|EQ|
m+1∏
i=1

(
−
∫
Q

f rii σ
−1
i dσi

) 1
ri

≤ ζ−1[~w]
1

1−r
A~p,~r

∫
Rn

m+1∏
i=1

MD
σi

(f rii σ
−1
i )

1
ri dx

= ζ−1[~w]
1

1−r
A~p,~r

∫
Rn

m+1∏
i=1

MD
σi

(f rii σ
−1
i )

1
ri σ

r
ri
i dx

≤ ζ−1[~w]
1

1−r
A~p,~r

m+1∏
i=1

∥∥MD
σi

(f rii σ
−1
i )
∥∥ 1
ri

L
1
r (σi)

≤ ζ−1(1− r)−(m+1)[~w]
1

1−r
A~p,~r

m+1∏
i=1

∥∥f rii σ−1
i ‖

1
ri

L
1
r (σi)

= ζ−1(1− r)−(m+1)[~w]
1

1−r
A~p,~r
‖h‖Lp′ (w1−p′ )

m+1∏
i=1

‖fi‖Lpi (wi),
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where we have used that S is a sparse family with constant ζ, hence the sets
{EQ}Q∈S are pairwise disjoint; (2.11); Hölder’s inequality along with

∑m
i=1

r
ri

= 1;

that MD
µ (the dyadic maximal operator associated with the dyadic grid D and with

underlying measure µ) is bounded on L
1
r (µ) with bound (1 − r)−1 since r < 1

(see for instance [14, Lemma 2.3]); and finally (2.9). If we now plug the obtained
inequality in (2.7) and use that ‖h‖Lp′ (w1−p′ ) = 1 we conclude as desired that

(2.13) ‖T (f1, . . . , fm)‖Lp(w) ≤ ζ−1(1− r)−(m+1)[~w]
1

1−r
A~p,~r

m+1∏
i=1

‖fi‖Lpi (wi),

for all ~w ∈ A~p,~r where w =
∏m

i=1w
p
pi
i .

Remark 2.14. Notice that we have shown that ~w ∈ A~p,~r is sufficient for (2.12).
Furthermore, it can be seen that it is also necessary. Indeed if we just take S
consisting on a single arbitrary cube Q and we let fi = σ

1
ri
i χQ then

|Q|
m+1∏
i=1

(
−
∫
Q

σidx
) 1
ri = ΛS,~r(f1, . . . , fm, fm+1)

≤ C0‖fm+1‖Lp′ (w1−p′ )

m+1∏
i=1

‖fi‖Lpi (wi) = C0

m+1∏
i=1

∥∥f rii σ−1
i ‖

1
ri

L
1
r (σi)

= C0|Q|

which eventually leads to
m+1∏
i=1

(
−
∫
Q

σidx
) 1
ri ≤ C0.

Taking the sup over all cubes and using (2.10) we immediately see that ~w ∈ A~p,~r

with [w]A~p,~r ≤ C1−r
0 .

If we now use (2.13) as a starting estimate, Theorem 1.1 immediately gives the
following result:

Corollary 2.15. Fix ~r = (r1, . . . , rm+1), with ri ≥ 1 for 1 ≤ i ≤ m + 1, and∑m+1
i=1

1
ri
> 1, and a sparsity constant ζ ∈ (0, 1). Let T be an operator so that for

every f1, . . . , fm, h ∈ C∞c (Rn)

(2.16)

∣∣∣∣∫
Rn
hT (f1, . . . , fm)dx

∣∣∣∣ . sup
S

ΛS,~r(f1, . . . , fm, h),

where the sup runs over all sparse families with sparsity constant ζ. Then for all
exponents ~q = (q1, . . . , qm), with ~r ≺ ~q, for all weights ~v = (v1, . . . , vm) ∈ A~q,~r, and
for all f1, . . . , fm ∈ C∞c (Rn)

‖T (f1, . . . , fm)‖Lq(v) .
m∏
i=1

‖fi‖Lqi (vi),
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where 1
q

:= 1
q1

+ · · · + 1
qm

and v :=
∏m

i=1 v
q
qi
i . Moreover, for the same family of

exponents and weights, and for all exponents ~s = (s1, . . . , sm) with ~r ≺ ~s∥∥∥∥(∑
j

|T (f j1 , . . . , f
j
m)|s

) 1
s

∥∥∥∥
Lq(v)

.
m∏
i=1

∥∥∥∥(∑
j

|f ji |si
) 1
si

∥∥∥∥
Lqi (vi)

,

for all f j1 , . . . , f
j
m ∈ C∞c (Rn) and where 1

s
:= 1

s1
+ · · ·+ 1

sm
.

We would like to observe that iterated weighted vector-valued inequalities can
be obtained from Remark 1.9, details are left to the interested reader.

2.4. Bilinear rough singular integral operators. In this section, we establish
weighted norm inequalities for the bilinear rough singular integral operators TΩ

introduced above. The unweighted estimates were obtained in [21]. The first re-
sult with weights in the Banach range is due to Cruz-Uribe and Naibo in [15]. As
mentioned above, Barron [2] established the sparse domination and one can get, as
a consequence, weighted estimates for the class A~p in the range 1 < p1, p2, p < ∞
(such estimates were not stated in [2], but one can easily prove them by combin-
ing [2, Corollary 1.3] with the openness property of the multilinear Muckenhoupt
classes A~p). On the other hand, using a different approach, Chen, He and Song in

[10] obtained that TΩ : L2(w1) × L2(w2) → L1(w
1
2
1 w

1
2
2 ) for every (w1, w2) ∈ A(2,2),

along with some quantitative control of the associated operator norm. Either from
the latter result or from the sparse domination [2, Theorem 1], our extrapolation
results gives the following:

Corollary 2.17. Let TΩ be a bilinear rough singular integral operators with Ω ∈
L∞(S2n−1) and

∫
S2n−1 Ωdσ = 0. For every ~p = (p1, p2), ~s = (s1, s2) with 1 <

p1, p2, s1, s2 <∞ and for every ~w = (w1, w2) ∈ A~p one has

TΩ : Lp1(w1)× Lp2(w2)→ Lp(w),

and∥∥∥∥(∑
j

|TΩ(fj, gj)|s
) 1
s

∥∥∥∥
Lp(w)

.

∥∥∥∥(∑
j

|fj|s1
) 1
s1

∥∥∥∥
Lp1 (w1)

∥∥∥∥(∑
j

|gj|s2
) 1
s2

∥∥∥∥
Lp2 (w2)

,

where 1
p

= 1
p1

+ 1
p2

, 1
s

= 1
s1

+ 1
s2

, and w = w
p
p1
1 w

p
p1
2 .

2.5. The bilinear Hilbert transform. In this section we establish weighted
norm inequalities and vector-valued inequalities for the bilinear Hilbert transform.
As discussed in the previous sections this operator fits into Corollary 2.15 with
m = 2 and with ~r = (r1, r2, r3) satisfying (2.8). As a matter of fact it was shown
in [16, Theorem 3] (see also [5]) that∫

Rn
h|BH(f, g))|dx . sup

S
ΛS,~r(f, g, h),
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where the sup runs over all sparse families with sparsity constant 1
6
. As a con-

sequence of this, it is obtained in [16, Corollary 4] that if ~r ≺ ~p with p > 1 and
~w = (w1, w2) ∈ A~p,~r then

BH : Lp1(w1)× Lp2(w2)→ Lp(w)

with w = w
p
p1
1 w

p
p2
2 . As an immediate consequence of Theorem 1.1 (or of Corollary

2.15) we can get estimates for p ≤ 1 (reproving some of the estimates in [5]).
This extends the recent results in [12] where the case of product of Ap classes was
obtained by extrapolation.

On the other hand, as a corollary of our theory we can trivially reprove some of
the vector-valued weighted norm inequalities from [3, 4, 5, 6, 16] (see also [26], [35]
for earlier results). Also, we go beyond [12, Section 5] where weighted estimates
were derived for product of Ap classes. Here it is important to emphasize that
[12] did not recover the full range of vector-valued estimates from [3, 4] in the
unweighted situation. The problem there is that extrapolation is done for product
of Ap classes and this adds some unavoidable restriction in the exponents. Our
extrapolation result is able to fine-tune and remove that restriction, this occurs
since we work with more general classes of weights. Let us also note that our
extrapolation method allows us to obtain weighted estimates (and also vector-
valued inequalities) in the quasi-Banach range (i.e., p < 1) as a result of the
estimates in the Banach case (i.e., p ≥ 1).

Corollary 2.18. Let ~r = (r1, r2, r3) be such that 1 < r1, r2, r3 <∞ and

(2.19)
1

min{r1, 2}
+

1

min{r2, 2}
+

1

min{r3, 2}
< 2.

Let ~p = (p1, p2), ~s = (s1, s2) with 1 < p1, p2, s1, s2 < ∞, and set 1
p

:= 1
p1

+ 1
p2

,
1
s

:= 1
s1

+ 1
s2

. If ~r ≺ ~p and ~w = (w1, w2) ∈ A~p,~r then

BH : Lp1(w1)× Lp2(w2)→ Lp(w),

where w = w
p
p1
1 w

p
p2
2 . Moreover, if additionally ~r ≺ ~s then BH : Lp1`s1 (w1) ×

Lp2`s2 (w2)→ Lp`s(w), that is,∥∥∥∥(∑
j

|BH(fj, gj)|s
) 1
s

∥∥∥∥
Lp(w)

.

∥∥∥∥(∑
j

|fj|s1
) 1
s1

∥∥∥∥
Lp1 (w1)

∥∥∥∥(∑
j

|gj|s2
) 1
s2

∥∥∥∥
Lp2 (w2)

.

We note that in the previous result we must have p > 2
3

(and also s > 2
3
). Indeed,

the fact that ~r ≺ ~p and (2.19) give

1

p
=

1

p1

+
1

p2

<
1

r1

+
1

r2

≤ 1

min{r1, 2}
+

1

min{r2, 2}
< 2− 1

min{r3, 2}
≤ 3

2
.

Corollary 2.18 can be reformulated in the following equivalent form (details are
left to the interested reader): given ~p = (p1, p2) with 1 < p1, p2 < ∞ and setting
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1
p

:= 1
p1

+ 1
p2

, if there exist 0 ≤ γ1, γ2, γ3 < 1 with γ1 + γ2 + γ3 = 1 such that

1

p1

<
1 + γ1

2
,

1

p2

<
1 + γ2

2
,

1

p
>

1− γ3

2
,

then BH : Lp1(w1) × Lp2(w2) → Lp(w) for every ~w = (w1, w2) ∈ A~p,~r with ~r =

( 2
1+γ1

, 2
1+γ2

, 2
1+γ3

) and where w = w
p
p1
1 w

p
p2
2 . In the vector-valued case, if we further

take ~s = (s1, s2) and let 1
s

:= 1
s1

+ 1
s2

, the assumption

max

{
1

s1

,
1

p1

}
<

1 + γ1

2
, max

{
1

s2

,
1

p2

}
<

1 + γ2

2
, min

{
1

s
,
1

p

}
>

1− γ3

2
,

yields as well BH : Lp1`s1 (w1) × Lp2`s2 (w2) → Lp`s(w). These should be compared
with [12, Section 5] where some extra restrictions on the exponent are present due
to the fact that the extrapolation there is done with product weights. Moreover,
we extend and reprove some results obtain by Benea and Muscalu in [5, Section
6.3] (see also [6, Section 1.4]). For instance, the previous estimates for p < 1
reprove [5, Proposition 19], and also extend [5, Corollary 21], which gives vector-
valued weighted norm inequalities with product weights rather than with the more
general class A~p,~r. Note that in contrast with the helicoidal method in [3, 4, 5, 6],
we do not consider the cases where some pi’s or si’s are infinity. These will be
treated in the forthcoming paper [31].

One can put easy examples of weights for which the previous estimates hold. For
instance, given ~p = (p1, p2) with 1 < p1, p2 <∞ such that 1

p
:= 1

p1
+ 1

p2
< 3

2
,

(2.20) BH : Lp1(|x|−a)× Lp2(|x|−a) −→ Lp(|x|−a),

if a = 0 or if

1−min
{

max
{

1,
p1

2

}
,max

{
1,
p2

2

}}
< a

< 1− p
(

max

{
0,

1

p1

− 1

2

}
+ max

{
0,

1

p2

− 1

2

})
.

As a result, (2.20) holds for all 0 ≤ a < 1
2
. This extends [12, Corollary 1.23]. To

prove this, one easily sees that ~w = (|x|−a, |x|−a) ∈ A~q,~r with ~r ≺ q if and only if

1−min

{
q1

r1

,
q2

r2

}
< a < 1− q

r′3
.

Using this and choosing (roughly) γ1 = max{0, 2
p1
− 1}, γ2 = max{0, 2

p1
− 1},

γ3 = 1 − γ1 − γ2 one can obtain the desired estimate for BH. Analogously, given
~p = (p1, p2), ~s = (s1, s2) with 1 < p1, p2, s1, s2 <∞ such that 1

p
:= 1

p1
+ 1

p2
< 3

2
and

1
s

:= 1
s1

+ 1
s2
< 3

2
we have that∥∥∥∥(∑

k

|BH(fk, gk)|s
) 1

s
∥∥∥∥
Lp(|x|−a)
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≤ C

∥∥∥∥(∑
k

|fk|s1
) 1

s1

∥∥∥∥
Lp1 (|x|−a)

∥∥∥∥(∑
k

|gk|s2
) 1

s2

∥∥∥∥
Lp2 (|x|−a)

.

holds if

1−min

{
max

{
1,
p1

2
,
p1

s1

}
,max

{
1,
p2

2
,
p2

s2

}}
< a

< 1− p
(

max

{
0,

1

p1

− 1

2
,

1

s1

− 1

2

}
+ max

{
0,

1

p2

− 1

2
,

1

s2

− 1

2

})
.

Notice that this interval could be empty since even in the unweighted situation
there are some natural restrictions for the vector valued inequalities to hold.

Remark 2.21. In [3, 4, 5, 6] the authors also prove iterated vector-valued inequal-
ities such as BH : Lp1

`
s1

`t1

× Lp2
`
s2

`t2

→ Lp`s
`t

, again with restrictions on the possible

values of the pi depending on the si and ti. Our method gives as a corollary these
inequalities and their corresponding weighted versions (when all the exponents are
finite) by extrapolation (see Remark 1.9). The precise statements are left to the
interested reader.

2.6. Commutators with BMO functions. Our extrapolation result also gives
estimates for commutators with BMO functions. Recently, [7, Theorem 4.13]
showed that if a multilinear operator T maps continuously Lp1(w1)×· · ·×Lpm(wm)
into Lp(w) for some 1 < p1, . . . pm < ∞ and 1 < p < ∞ with 1

p
:= 1

p1
+ · · · + 1

pm

and for all w = (w1, . . . , wm) ∈ A~p where w :=
∏m

i=1w
p
pi
i , then the multilinear

commutators with BMO functions satisfy the very same inequalities. Our extrap-
olation result applied to the hypotheses immediately yields that we can remove
the restriction p > 1 as all the weighted estimates are equivalent to a single one.
Moreover, if we extrapolate from the conclusion we can also extend the weighted
estimates to the quasi-Banach range. Here it is important to emphasize that the
method extensively developed in [7] elaborates on the commonly used Cauchy in-
tegral trick which in turn uses Minkowski’s inequality, hence it requires to work
in the Banach range. Nonetheless, our extrapolation result gives a posteriori that
such restriction can be removed.

Let us thus begin by defining the main objects that we will be dealing with in
this setting. We recall here the definition of the John-Nirenberg space of functions
of bounded mean oscillation. We say that a locally integrable function b ∈ BMO if

‖b‖BMO := sup
Q
−
∫
Q

|b− bQ| dx < +∞,

where the supremum is taken over the collection of all cubes Q ⊂ Rn and where
bQ = −

∫
Q
bdx.

Let T denote an m-linear operator from X1 × · · · × Xm into Y , where Xj, 1 ≤
j ≤ m, and Y are some normed spaces. In our statements the Xj and Y will be
appropriate weighted Lebesgue spaces. For (f1, f2, . . . , fm) ∈ X1 ×X2 × · · · ×Xm
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and for a measurable vector b = (b1, b2, . . . , bm), and 1 ≤ j ≤ m, we define,
whenever it makes sense, the (first order) commutators

[T,b]ej(f1, f2, . . . , fm) = bjT (f1, . . . , fj, . . . fm)− T (f1, . . . , bjfj, . . . fm);

we denoted by ej the basis element taking the value 1 at component j and 0 in
every other component, therefore expressing the fact that the commutator acts as
a linear one in the j-th variable and leaving the rest of the entries of (f1, f2, . . . , fm)
untouched. Then, if k ∈ N, we define

[T,b]kej = [· · · [[T,b]ej ,b]ej · · · ,b]ej ,

where the commutator is performed k times. Finally, if α = (α1, α2, . . . , αm) ∈
(N ∪ {0})m is a multi-index, we define

[T,b]α = [· · · [[T,b]α1e1 ,b]α2e2 · · · ,b]αmem .

Informally, if the multilinear operator T has a kernel representation of the form

T (f1, f2, . . . , fm)(x) =

∫
Rnm

K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 . . . dym,

then [T,b]α(f1, f2, . . . , fm)(x) can be expressed in a similar way, with kernel

m∏
j=1

(bj(x)− bj(yj))αjK(x, y1, . . . , ym).

Next we present our promised application for commutators in the context of the
classes A~p,~r. Here it is important to emphasize that our only assumption on T ,
besides the initial weighted norm inequalities, is that T is multilinear.

Theorem 2.22. Let T be an m-linear operator and let ~r = (r1, . . . , rm+1), with
1 ≤ r1, . . . , rm+1 < ∞. Assume that there exists ~p = (p1, . . . , pm), with 1 ≤
p1, . . . , pm <∞ and ~r � ~p, such that for all ~w = (w1, . . . , wm) ∈ A~p,~r, we have

‖T (f1, f2, . . . , fm)‖Lp(w) .
m∏
i=1

‖fi‖Lpi (wi),

where 1
p

:= 1
p1

+ · · ·+ 1
pm

and w :=
∏m

i=1w
p
pi
i .

Then, for all exponents ~q = (q1, . . . , qm), with ~r ≺ ~q, for all weights ~v =
(v1, . . . , vm) ∈ A~q,~r, for all b = (b1, . . . , bm) ∈ BMOm, and for each multi-index
α, we have

(2.23) ‖[T, b]α(f1, f2, . . . , fm)‖Lq(v) .
m∏
i=1

‖bi‖αiBMO‖fi‖Lqi (vi),
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where 1
q

:= 1
q1

+ · · · + 1
qm

and v :=
∏m

i=1 v
q
qi
i . Moreover if ~s = (s1, . . . , sm), with

~r ≺ ~s, then
(2.24)∥∥∥∥(∑

j

|[T, b]α(f j1 , f
j
2 , . . . , f

j
m)|s

) 1
s

∥∥∥∥
Lq(v)

.
m∏
i=1

‖bi‖αiBMO

∥∥∥∥(∑
j

|f ji |si
) 1
si

∥∥∥∥
Lqi (vi)

,

where 1
s

:= 1
s1

+ · · ·+ 1
sm

.

The proof is postponed until Section 5. From this, [30], and Corollary 2.17 we
can trivially obtained the following result which extends [7]:

Corollary 2.25. Let T be an m-linear Calderón-Zygmund operator or a bilinear
rough singular integral with symbol Ω ∈ L∞(S2n−1) satisfying

∫
S2n−1 Ωdσ = 0. Then,

(2.23) and (2.24) hold for all exponents ~q = (q1, . . . , qm), ~s = (s1, . . . , sm), with 1 <
qi, si < ∞, 1 ≤ i ≤ ∞, for all weights ~v ∈ A~q, for all b = (b1, . . . , bm) ∈ BMOm,
and for each multi-index α.

From Corollary 2.15 and Theorem 2.22 one can easily obtain the following:

Corollary 2.26. Given ~r = (r1, . . . , rm+1), with ri ≥ 1 for 1 ≤ i ≤ m + 1 and∑m+1
i=1

1
ri
> 1, and an m-linear operator T satisfying (2.16), it follows that (2.23)

and (2.24) hold for all exponents ~q = (q1, . . . , qm), ~s = (s1, . . . , sm), with ~r ≺ ~q and
~r ≺ ~s, for all weights ~v = (v1, . . . , vm) ∈ A~q,~r, for all b = (b1, . . . , bm) ∈ BMOm,
and for each multi-index α.

Our last application of Theorem 2.22, with the help of Corollary 2.18, solves a
problem about the boundedness of the commutators of the bilinear Hilbert trans-
form with functions in BMO which as far as we know can not be obtained using
other methods.

Corollary 2.27. Assume that ~r = (r1, r2, r3), 1 < r1, r2, r3 < ∞, verifies (2.19).
For all exponents ~p = (p1, p2), ~s = (s1, s2) with ~r ≺ ~p and ~r ≺ ~s where 1

p
= 1

p1
+ 1

p2

and 1
s

= 1
s1

+ 1
s2

, for all weights ~w = (w1, w2) ∈ A~p,~r, for all b = (b1, b2) ∈ BMO2,

and for each multi-index α = (α1, α2) it follows that

‖[BH, b]α(f, g)‖Lp(w) . ‖b1‖α1
BMO‖b2‖α2

BMO‖f‖Lp1 (w1)‖g‖Lp2 (w2),

and∥∥∥∥(∑
j

|[BH, b]α(fj, gj)|s
) 1
s

∥∥∥∥
Lp(w)

. ‖b1‖α1
BMO‖b2‖α2

BMO

∥∥∥∥(∑
j

|fj|s1
) 1
s1

∥∥∥∥
Lp1 (w1)

∥∥∥∥(∑
j

|gj|s2
) 1
s2

∥∥∥∥
Lp2 (w2)

,

where w := w
p
p1
1 w

p
p2
1 .
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Note that all the previous estimates admit iterated weighted vector-valued ex-
tensions along the lines pointed out in Remark 1.9. We leave the details to the
interested reader.

3. Auxiliary results

We first introduce some notation. Given a cube Q, its side-length will be denoted
by `(Q) and for any λ > 0 we let λQ be the cube concentric with Q whose side-
length is λ`(Q). Let µ be a doubling measure on Rn, that is, µ is a non-negative
Borel regular measure such that µ(2Q) ≤ Cµµ(Q) < ∞ for every cube Q ⊂ Rn.
Given a Borel set E ⊂ Rn with 0 < µ(E) <∞ we use the notation

−
∫
E

fdµ =
1

µ(E)

∫
E

fdµ.

Next we give the basic properties of weights that we will need below. For proofs
and further information, see [18, 20]. By a weight we mean a measurable function
v such that 0 < v <∞ µ-a.e. For 1 < p <∞, we say that v ∈ Ap(µ) if

[v]Ap(µ) = sup
Q
−
∫
Q

v dµ

(
−
∫
Q

v1−p′ dµ

)p−1

<∞,

where the supremum is taken over all cubes Q ⊂ Rn. The quantity [v]Ap(µ) is called
the Ap(µ) constant of v. Notice that it follows at once from this definition that if
v ∈ Ap(µ), then v1−p′ ∈ Ap′(µ). When p = 1 we say that v ∈ A1(µ) if

[v]A1(µ) = sup
Q
−
∫
Q

v dµ ess sup
Q

v−1 <∞,

where the essential supremum is taken with respect to the underlying doubling
measure µ. The Ap(µ) classes are properly nested: for 1 < p < q, A1(µ) ( Ap(µ) (
Aq(µ). We denote the union of all the Ap(µ) classes, 1 ≤ p <∞, by A∞(µ).

Given 1 ≤ p <∞ and 0 < r <∞ we say that v ∈ Ap,r(µ) if

[v]Ap,r(µ) = sup
Q
−
∫
Q

vr dµ

(
−
∫
Q

v−p
′
dx

) r
p′

<∞,

when p > 1 and

[v]Ap,r(µ) = sup
Q
−
∫
Q

vr dµ ess sup
Q

v−r <∞

when p = 1. Notice that clearly v ∈ Ap,r(µ) if and only if vr ∈ A1+ r
p′

(µ) with

[v]Ap,r(µ) = [vr]A1+ r
p′

(µ).

When µ is the Lebesgue measure we will simply write Ap, Ap,r, . . . . It is well-
known that if w ∈ A∞ then dw = w(x)dx is a doubling measure. Besides, since
0 < w < ∞ a.e. then the Lebesgue measure and w have the same null measure
sets hence the essential suprema and infima with respect to the Lebesgue measure
and w agree.
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To prove our main result we need some off-diagonal extrapolation theorem proved
by Duoandikoetxea in [19] for the Lebesgue measure but whose proof readily ex-
tends to any underlying doubling measure.

Theorem 3.1 ([19, Theorem 5.1]). Let µ be a doubling measure on Rn, n ≥ 1, and
let F be a family of pairs (F,G) of non-negative Borel functions. Let 1 ≤ p0 <∞
and 0 < q0, r0 < ∞ and assume that for all w ∈ Ap0,r0(µ) and for all (F,G) ∈ F
we have the inequality(∫

Rn
F q0wq0dµ

) 1
q0 ≤ N([w]Ap0,r0 )

(∫
Rn
Gp0wp0dµ

) 1
p0 ,

where N is an increasing function. Then there exists another increasing function

Ñ such that for all 1 < p <∞ and 0 < q, r <∞ verifying

1

q
− 1

q0

=
1

r
− 1

r0

=
1

p
− 1

p0

,

for all w ∈ Ap,r(µ), and for all (F,G) ∈ F we have(∫
Rn
F qwqdµ

) 1
q ≤ Ñ([w]Ap,r)

(∫
Rn
Gpwpdµ

) 1
p
.

In preparation for proving our main result we need some notation. Given
~p = (p1, . . . , pm) with 1 ≤ p1, . . . , pm < ∞ and ~r = (r1, . . . , rm+1) with 1 ≤
r1, . . . , rm+1 <∞ so that ~r � ~p we set

1

r
:=

m+1∑
i=1

1

ri
,

1

pm+1

:= 1− 1

p
, and

1

δi
=

1

ri
− 1

pi
, i = 1, . . . ,m+ 1.

Notice that as observed above we have that 0 < r < 1 and formally 1
pm+1

= 1
p′

which could be negative or zero if p ≤ 1. Note that in this way
m+1∑
i=1

1

pi
= 1 and

m+1∑
i=1

1

δi
=

1

r
− 1 =

1− r
r

.

Also, ~r � ~p means that ri ≤ pi, hence δ−1
i ≥ 0, for every 1 ≤ i ≤ m and rm+1 <

pm+1, that is, δ−1
m+1 > 0. On the other hand, ~r ≺ ~p means that ri < pi or δ−1

i > 0
for every 1 ≤ i ≤ m+ 1. Notice that with this notation w ∈ A~p,~r can be written as

[~w]A~p,~r = sup
Q

(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

m∏
i=1

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi <∞,

and, when pi = ri (i.e., δ−1
i = 0), we need to replace the corresponding term with

ess supQw
− 1
pi

i .

The following lemma gives a new characterization of the weighted class A~p,~r,
which is of independent interest. Moreover, as we will see later, it will allow us
to prove our multivariable extrapolation result from a one-variable extrapolation
result with some underlying measure depending on the weights.
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Lemma 3.2. Let ~p = (p1, . . . , pm) with 1 ≤ p1, . . . , pm <∞ and ~r = (r1, . . . , rm+1)
with 1 ≤ r1, . . . , rm+1 <∞ be such that ~r � ~p. Using the previous notation we set

(3.3)
1

%
:=

1

rm
− 1

r′m+1

+
m−1∑
i=1

1

pi
=

1

δm
+

1

δm+1

> 0,

and for every 1 ≤ i ≤ m− 1

1

θi
:=

1− r
r
− 1

δi
=

(
m+1∑
j=1

1

δj

)
− 1

δi
> 0.

Then the following hold:

(i) Given ~w = (w1, . . . , wm) ∈ A~p,~r, write w :=
∏m

i=1 w
p
pi
i and set

(3.4) ŵ :=
(m−1∏

i=1

w
1
pi
i

)%
and W := w

rm
p ŵ

− rm
δm+1 = w

rm
pm
m ŵ

rm
δm

Then,

(i.1) w
θi
pi
i ∈ A 1−r

r
θi

with
[
w

θi
pi
i

]
A 1−r

r θi

≤ [~w]θiA~p,~r , for every 1 ≤ i ≤ m− 1.

(i.2) ŵ ∈ A 1−r
r
% with [ŵ]A 1−r

r %
≤ [~w]%A~p,~r .

(i.3) W ∈ A pm
rm

,
δm+1
rm

(ŵ) with [W ]A pm
rm

,
δm+1
rm

(ŵ) ≤ [~w]
δm+1

A~p,~r
.

(ii) Given w
θi
pi
i ∈ A 1−r

r
θi

, 1 ≤ i ≤ m− 1, such that

(3.5) ŵ =
(m−1∏

i=1

w
1
pi
i

)%
∈ A 1−r

r
%

and W ∈ A pm
rm

,
δm+1
rm

(ŵ), let us set

(3.6) wm := W
pm
rm ŵ

pm
δm .

Then ~w = (w1, . . . , wm) ∈ A~p,~r and, moreover,

[~w]A~p,~r ≤ [W ]
1

δm+1

A pm
rm

,
δm+1
rm

(ŵ)[ŵ]
1
%

A 1−r
r %

m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

.

(iii) For any measurable function f ≥ 0 and in the context of (i) or (ii) there hold

(3.7) ‖f‖Lp(w) =
∥∥∥(fŵ− 1

r′
m+1

)rm∥∥∥ 1
rm

L
p
rm (W

p
rm dŵ)

and

(3.8) ‖f‖Lpm (wm) =
∥∥∥(fŵ− 1

rm

)rm∥∥∥ 1
rm

L
pm
rm (W

pm
rm dŵ)

.
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Proof. We start observing that equalities (3.4) in (i), or (3.5) and (3.6) in case (ii),
easily yield

(3.9) −
∫
Q

W
δm+1
rm dŵ =

(
−
∫
Q

ŵdx
)−1(

−
∫
Q

w
δm+1
p dx

)
and whenever δ−1

m 6= 0 (i.e., rm < pm)

−
∫
Q

W−( pm
rm

)′dŵ = −
∫
Q

w
− rm
pm

( pm
rm

)′

m ŵ
rm
δm

( pm
rm

)′dŵ =
(
−
∫
Q

ŵdx
)−1(

−
∫
Q

w
− δm
pm

m dx
)
.

These equalities yield if δ−1
m 6= 0

(3.10)
(
−
∫
Q

W
δm+1
rm dŵ

)(
−
∫
Q

W−( pm
rm

)′dŵ
) δm+1

rm
(
pm
rm

)′

=
(
−
∫
Q

ŵdx
)−1− δm+1

δm
(
−
∫
Q

w
δm+1
p dx

)(
−
∫
Q

w
− δm
pm

m dx
) δm+1

δm

Thus, if δ−1
m 6= 0 and

∑m−1
i=1

1
δi
> 0 then

(
−
∫
Q

W
δm+1
rm dŵ

)(
−
∫
Q

W−( pm
rm

)′dŵ
) δm+1

rm
(
pm
rm

)′
(3.11)

=

[(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
) 1
%

( 1−r
r
%−1)(

−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) 1
δm

×
(
−
∫
Q

ŵdx
)− 1

%
(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
)− 1

%
( 1−r
r
%−1)

]δm+1

.

On the other hand, if
∑m−1

i=1
1
δi
> 0 and δ−1

m = 0(
−
∫
Q

W
δm+1
rm dŵ

)
=
(
−
∫
Q

ŵdx
)−1(

−
∫
Q

w
δm+1
p dx

)
(3.12)

=

[(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
) 1
%

( 1−r
r
%−1)(

−
∫
Q

w
δm+1
p dx

) 1
δm+1

×
(
−
∫
Q

ŵdx
)− 1

%
(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
)− 1

%
( 1−r
r
%−1)

]δm+1

since % = δm+1.

We proceed to establish (i). Assume that ~w ∈ A~p,~r. To see (i.1) we fix 1 ≤ i ≤
m−1 and set I = {j : 1 ≤ j ≤ m, δ−1

j 6= 0} and I ′ = {1, . . . ,m}\I. Set 1
ηi

:= θi
δm+1

and 1
ηj

:= θi
δj

for j ∈ I with j 6= i so that 1
ηi

+
∑

i 6=j∈I
1
ηj

= 1. Thus, Hölder’s

inequality easily gives
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−
∫
Q

w
θi
pi
i dx = −

∫
Q

(
w

θi
p

∏
1≤j≤m
j 6=i

w
− θi
pj

j

)
dx

≤
(
−
∫
Q

w
θi
p
ηidx

) 1
ηi

( ∏
i 6=j∈I

(
−
∫
Q

w
− θi
pj
ηj

j

) 1
ηj

)( ∏
i 6=j∈I′

ess sup
Q

w
− θi
pj

j

)
=
(
−
∫
Q

w
δm+1
p dx

) θi
δm+1

( ∏
i 6=j∈I

(
−
∫
Q

w
−
δj
pj

j

) θi
δj

)( ∏
i 6=j∈I′

ess sup
Q

w
− 1
pj

j

)θi
.

When pi = ri then θi = r
1−r and this inequality readily gives w

θi
pi
i ∈ A1 with[

w
θi
pi
i

]
A1

≤ [~w]θiA~p,~r . When pi > ri we just need to observe that θi
pi

(1−(1−r
r
θi)
′) = − δi

pi

and again we eventually see that w
θi
pi
i ∈ A 1−r

r
θi

with
[
w

θi
pi
i

]
A 1−r

r θi

≤ [~w]θiA~p,~r .

To obtain (i.2) we need to consider three cases.

Case 1:
∑m

i=1
1
δi

= 0, that is, pj = rj for 1 ≤ j ≤ m.

In this case 1
%

= 1
δm+1

= 1−r
r

and we can easily see that ŵ ∈ A1 with the right

bound:

−
∫
Q

ŵdx = −
∫
Q

w
δm+1
p w

− δm+1
pm

m dx ≤ −
∫
Q

w
δm+1
p dx ess sup

Q
w
− δm+1

pm
m

≤ [w]
δm+1

A~p,~r

(m−1∏
i=1

ess inf
Q

w
1
pi
i

)δm+1

≤ [w]%A~p,~r ess inf
Q

ŵ.

Case 2:
∑m−1

i=1
1
δi

= 0 (i.e., pj = rj for 1 ≤ j ≤ m− 1), and δ−1
m 6= 0.

In this case 1
%

= 1
δm+1

+ 1
δm

= 1−r
r

and also we need to check that ŵ ∈ A1. To

show this we use Hölder’s inequality with δm+1

%
= 1 + δm+1

δm
> 1 to obtain

−
∫
Q

ŵdx = −
∫
Q

w
%
pw
− %
pm

m dx ≤
(
−
∫
Q

w
δm+1
p dx

) %
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) %
δm

≤ [w]%A~p,~r

(m−1∏
i=1

ess inf
Q

w
1
pi
i

)%
≤ [w]%A~p,~r ess inf

Q
ŵ,

which proves the desired membership and bound.

Case 3:
∑m−1

i=1
1
δi
> 0.

In this case

1− r
r

=
m+1∑
i=1

1

δi
=

m−1∑
i=1

1

δi
+

1

%
>

1

%
.
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Let I = {i : 1 ≤ i ≤ m− 1, δ−1
i 6= 0} 6= ∅ and I ′ = {1, . . . ,m− 1} \ I. Set

1

ηi
:=

1

δi

(m−1∑
j=1

1

δj

)−1

=
1

δi

(m+1∑
j=1

1

δj
− 1

δm
− 1

δm+1

)−1

=
1

δi

(1− r
r
− 1

%

)−1

for every i ∈ I, and note that
∑

i∈I
1
ηi

= 1. Then Hölder’s inequality leads to

(3.13)
(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1−r
r
%−1

=
(
−
∫
Q

∏
i∈I

w
− δi
pi

1
ηi

i

∏
i∈I′

w
− 1
pi
%(( 1−r

r
%)′−1)

i dx
) 1−r

r
%−1

≤
∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) %
δi

(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)%
.

On the other hand, if δ−1
m 6= 0 we can use Hölder’s inequality with δm+1

%
= 1+ δm+1

δm
>

1 to obtain

(3.14) −
∫
Q

ŵdx = −
∫
Q

w
%
pw
− %
pm

m dx ≤
(
−
∫
Q

w
δm+1
p dx

) %
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) %
δm
.

If δ−1
m = 0 then % = δm+1 and

(3.15) −
∫
Q

ŵdx = −
∫
Q

w
%
pw
− %
pm

m dx ≤
(
−
∫
Q

w
δm+1
p dx

) %
δm+1

(
ess sup

Q
w
− 1
pm

m

)%
.

If we now combine (3.13) with either (3.14) or (3.15) we readily see that ŵ ∈ A 1−r
r
%

with [ŵ]A 1−r
r %
≤ [~w]%A~p,~r . This completes the proof of (i.2).

To see (i.3) we proceed as before considering three cases.

Case 1:
∑m

i=1
1
δi

= 0, that is, pj = rj for 1 ≤ j ≤ m.

In this case we first observe that

(3.16) 1 = −
∫
Q

ŵŵ−1dx ≤
(
−
∫
Q

ŵdx
)

ess sup
Q

ŵ−1 ≤
(
−
∫
Q

ŵdx
)m−1∏

i=1

ess sup
Q

w
− %
pi

i .

This and (3.9) imply

−
∫
Q

W
δm+1
rm dŵ =

(
−
∫
Q

ŵdx
)−1(

−
∫
Q

w
δm+1
p dx

)
≤ [~w]

δm+1

A~p,~r

(m−1∏
i=1

ess sup
Q

w
− δm+1

pi
i

)( m∏
i=1

ess sup
Q

w
− 1
pi

i

)−δm+1

= [~w]
δm+1

A~p,~r

(
ess sup

Q
w
− 1
pm

m

)−δm+1 = [~w]
δm+1

A~p,~r

(
ess sup

Q
W− δm+1

rm

)−1
,

where we have used that since in this case % = δm+1 and that W = w
rm
pm
m = wm

since pm = rm. This shows that W ∈ A
1,
δm+1
rm

(ŵ) with [W ]A
1,
δm+1
rm

(ŵ) ≤ [~w]
δm+1

A~p,~r
.

Notice that we have implicitly used that since 0 < ŵ <∞ a.e. then the Lebesgue
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measure and ŵ have the same null measure sets, hence the essential suprema and
infima with respect to the Lebesgue measure and ŵ agree.

Case 2:
∑m−1

i=1
1
δi

= 0 (i.e., pj = rj for 1 ≤ j ≤ m− 1), and δ−1
m 6= 0.

In this case we use (3.10) and (3.16) to obtain the desired estimate:

(
−
∫
Q

W
δm+1
rm dŵ

)(
−
∫
Q

W−( pm
rm

)′dŵ
) δm+1

rm
(
pm
rm

)′

=
(
−
∫
Q

ŵdx
)−1− δm+1

δm
(
−
∫
Q

w
δm+1
p dx

)(
−
∫
Q

w
− δm
pm

m dx
) δm+1

δm

≤
(
−
∫
Q

w
δm+1
p dx

)(
−
∫
Q

w
− δm
pm

m dx
) δm+1

δm
(m−1∏

i=1

ess sup
Q

w
− 1
pi

i

)δm+1

≤ [~w]
δm+1

A~p,~r
.

Case 3:
∑m−1

i=1
1
δi
> 0.

We saw in the proof of (i.2) above that 1−r
r
% > 1 hence Hölder’s inequality with

that exponent gives

1 =
(
−
∫
Q

ŵ
r%
1−r ŵ−

r%
1−r dx

) 1−r
r
%

≤
(
−
∫
Q

ŵdx
)(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1−r
r
%−1

.

This, (3.11) and (3.13) yield if we further assume that δ−1
m 6= 0 (that is rm < pm):[(

−
∫
Q

W
δm+1
rm dŵ

)(
−
∫
Q

W−( pm
rm

)′dŵ
) δm+1

rm
(
pm
rm

)′
] 1
δm+1

≤
(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
) 1
%

( 1−r
r
%−1)(

−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) 1
δm

≤
(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) 1
δm
(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)
≤ [~w]A~p,~r .

Taking the sup over all cubes we conclude as desired that W ∈ A pm
rm

,
δm+1
rm

(ŵ) with

[W ]A pm
rm

,
δm+1
rm

(ŵ) ≤ [~w]
δm+1

A~p,~r
. On the other hand, if δ−1

m = 0, i.e., rm = pm, we can

invoke (3.12) and (3.13)(
−
∫
Q

W
δm+1
rm dŵ

)
≤
[(
−
∫
Q

ŵ1−
(

1−r
r
%
)′
dx
) 1
%

( 1−r
r
%−1)(

−
∫
Q

w
δm+1
p dx

) 1
δm+1

]δm+1

≤
[(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)]δm+1
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≤ [~w]
δm+1

A~p,~r
ess inf

Q
w

δm+1
pm

m = [~w]
δm+1

A~p,~r
ess inf

Q
W

δm+1
rm ,

since in this case % = δm+1 and W = w
rm
pm
m = wm. This completes the proof of (i.3)

and hence that of (i).

We now turn our attention (ii). Fix w
θi
pi
i ∈ A 1−r

r
θi

, 1 ≤ i ≤ m − 1, so that

ŵ ∈ A 1−r
r
% (see (3.5)); and W ∈ A pm

rm
,
δm+1
rm

(ŵ). Let wm be as in (3.6). Our goal is

to see that ~w ∈ A~p,~r and, much as before, we split the proof in three cases:

Case 1:
∑m

i=1
1
δi

= 0, that is, pj = rj for 1 ≤ j ≤ m.

Note that in this case θi = r
1−r for every 1 ≤ i ≤ m − 1. This and Hölder’s

inequality yield

(3.17) ess inf
Q

(m−1∏
i=1

w
1
pi
i

)
≤
(
−
∫
Q

m−1∏
i=1

w
θi
pi

1
m−1

i dx
) (m−1)(1−r)

r

≤
m−1∏
i=1

(
−
∫
Q

w
θi
pi
i dx

) 1
θi ≤

m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A1

ess inf
Q

w
1
pi
i ,

where in the last estimate we have used that in the present scenario 1−r
r
θi = 1.

This and (3.9) give(
−
∫
Q

w
δm+1
p dx

) 1
δm+1 =

(
−
∫
Q

W
δm+1
rm dŵ

) 1
δm+1

(
−
∫
Q

ŵdx
) 1
δm+1

≤ [W ]
1

δm+1

A
1,
δm+1
rm

(ŵ)[ŵ]
1

δm+1

A1
ess inf

Q
W

1
rm ess inf

Q
ŵ

1
δm+1

= [W ]
1

δm+1

A
1,
δm+1
rm

(ŵ)[ŵ]
1

δm+1

A1
ess inf

Q
w

1
pm
m ess inf

Q

(m−1∏
i=1

w
1
pi
i

)
≤ [W ]

1
δm+1

A
1,
δm+1
rm

(ŵ)[ŵ]
1

δm+1

A1

(m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A1

)( m∏
i=1

ess inf
Q

w
1
pi
i

)
,

where we have used that pm = rm, wm = W
pm
rm = W and that % = δm+1. This

readily leads to the desired estimate.

Case 2:
∑m−1

i=1
1
δi

= 0 (i.e., pj = rj for 1 ≤ j ≤ m− 1), and δ−1
m 6= 0.

Using (3.10) and (3.17) we see that(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) 1
δm

=
(
−
∫
Q

W
δm+1
rm dŵ

) 1
δm+1

(
−
∫
Q

W−( pm
rm

)′dŵ
) 1

rm(
pm
rm

)′
(
−
∫
Q

ŵdx
) 1
%
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≤ [W ]
1

δm+1

A pm
rm

,
δm+1
rm

(ŵ)[ŵ]
1
%

A1
ess inf

Q

(m−1∏
i=1

w
1
pi
i

)
≤ [W ]

1
δm+1

A pm
rm

,
δm+1
rm

(ŵ)[ŵ]
1

δm+1

A1

(m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A1

)(m−1∏
i=1

ess inf
Q

w
1
pi
i

)
,

which readily gives that ~w ∈ A~p,~r with the desired bound.

Case 3:
∑m−1

i=1
1
δi
> 0.

Let us set ηi = 1−r
r

(m − 1)θi for 1 ≤ i ≤ m − 1 and ηm = (m − 1)(1−r
r
%)′ and

note that
m∑
i=1

1

ηi
=

r

(m− 1)(r − 1)

m−1∑
i=1

1

θi
+

1

(m− 1)(1−r
r
%)′

= 1− r

(m− 1)(r − 1)

m−1∑
i=1

1

δi
+

1

m− 1
− 1

m− 1

r

(1− r)%

= 1− r

(m− 1)(r − 1)

(1− r
r
− 1

%

)
+

1

m− 1
− 1

m− 1

r

(1− r)%
= 1.

Thus Hölder’s inequality with the exponents ηi, 1 ≤ i ≤ m, yields

1 =
(
−
∫
Q

ŵ−
r

(m−1)(1−r)% ŵ
r

(m−1)(1−r)%dx
) 1−r

r
(m−1)

=
(
−
∫
Q

ŵ(1−( 1−r
r
%)′) 1

ηm

m−1∏
i=1

w
θi
pi

1
ηi

i dx
) 1−r

r
(m−1)

≤
(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1
%

( 1−r
r
%−1)

m−1∏
i=1

(
−
∫
Q

w
θi
pi
i dx

) 1
θi .

On the other hand, if we let I = {j : 1 ≤ j ≤ m − 1, δ−1
j 6= 0} 6= ∅ and I ′ =

{1, . . . ,m − 1} \ I we observe that θi
pi

((1−r
r
θi)
′ − 1) = δi

pi
and hence the previous

estimate yields(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)
≤

m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

(
−
∫
Q

w
θi
pi
i dx

)− 1
θi

≤
(m−1∏

i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

)(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1
%

( 1−r
r
%−1)

.

This and (3.11) gives when 1
δm
6= 0(

−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
−
∫
Q

w
− δm
pm

m dx
) 1
δm
(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)
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≤
(m−1∏

i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

)[(
−
∫
Q

W
δm+1
rm dŵ

)(
−
∫
Q

W−( pm
rm

)′dŵ
) δm+1

rm
(
pm
rm

)′
] 1
δm+1

×
(
−
∫
Q

ŵdx
) 1
%
(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1
%

( 1−r
r
%−1)

.

≤ [W ]
1

δm+1

A pm
rm

,
δm+1
rm

(ŵ)[ŵ]
1
%

A 1−r
r %

m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

.

On the other hand, if 1
δm

= 0 we invoke (3.12):(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

(
ess sup

Q
w
− 1
pm

m

)(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)(∏
i∈I′

ess sup
Q

w
− 1
pi

i

)
≤
(m−1∏

i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

)[(
−
∫
Q

W
δm+1
rm dŵ

)(
ess sup

Q
W− δm+1

rm

)] 1
δm+1

×
(
−
∫
Q

ŵdx
) 1
%
(
−
∫
Q

ŵ1−( 1−r
r
%)′dx

) 1
%

( 1−r
r
%−1)

≤ [W ]
1

δm+1

A
1,
δm+1
rm

(ŵ)[ŵ]
1
%

A 1−r
r %

m−1∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

,

since in this case pm = rm, % = δm+1, and W = w
rm
pm
m = wm. This completes the

proof of (ii).

To finish we observe that (3.7) and (3.8) follow at once from the definition of %
and either (3.4) for (i) or (3.6) for (ii). This completes the proof. �

4. Proof of Theorem 1.1

The proof of Theorem 1.1 (and Remark 1.8) is split in three main steps. First,
we prove a restricted version on which all the exponents remain fixed but one. For
simplicity in the presentation we will fix pi, 1 ≤ i ≤ m − 1, and vary pm. On the
other hand, since we can rearrange the fi’s this clearly extends to any other choice.
Second, we iterate the first step to eventually pass from ~p to a generic ~q. Last, we
see how the easily derive the vector-valued inequalities.

4.1. Step 1: Extrapolation on one component. We first prove a particular
version on which we only change one component in ~p (say the last one). Fix then
~q = (q1, . . . , qm−1, qm), with ~r � ~q and rm < qm so that qi = pi, 1 ≤ i ≤ m − 1.

Letting ~v ∈ A~q,~r, we set 1
q

:=
∑m

i=1
1
qi

and v :=
∏m

i=1 v
q
qi
i . Define

1

r
:=

m+1∑
i=1

1

ri
;

1

pm+1

:= 1− 1

p
;

1

qm+1

:= 1− 1

q
,
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and, for i=1,. . . , m+1,

1

δi
=

1

ri
− 1

pi
,

1

δ̃i
=

1

ri
− 1

qi
.

Observe that δi = δ̃i for 1 ≤ i ≤ m− 1. This means that in view of (3.3)

1

%
:=

1

rm
− 1

r′m+1

+
m−1∑
i=1

1

pi
=

1

rm
− 1

r′m+1

+
m−1∑
i=1

1

qi
=

1

δm
+

1

δm+1

=
1

δ̃m
+

1

δ̃m+1

For every 1 ≤ i ≤ m− 1 we set wi := vi. We then apply Lemma 3.2(i) to ~v ∈ A~q,~r
and (i.1) yields for every 1 ≤ i ≤ m− 1,

w
θi
pi
i = w

θi
qi
i ∈ A 1−r

r
θi
, where

1

θi
:=

1− r
r
− 1

δ̃i
;

while (i.2) gives

ŵ :=
(m−1∏

i=1

w
1
pi
i

)%
∈ A 1−r

r
%;

and finally (i.3) implies that

(4.1) V := v
rm
q ŵ

− rm
δ̃m+1 ∈ A

qm
rm

,
δ̃m+1
rm

(ŵ).

Notice that in particular ŵ ∈ A∞, hence it is a doubling measure which is fixed in
the rest of the argument.

Let W ∈ A pm
rm

,
δm+1
rm

(ŵ) be an arbitrary weight and, in concert with (3.6), set

wm := W
pm
rm ŵ

pm
δm . Since w

θi
pi
i ∈ A 1−r

r
θi

for 1 ≤ i ≤ m − 1 and ŵ ∈ A 1−r
r
%, we can

apply Lemma 3.2(ii) with ~p and ~r to see that ~w = (w1, . . . , wm) ∈ A~p,~r (notice that
% is fixed and depends on pi = qi, 1 ≤ i ≤ m− 1, rm, rm+1). Thus, by hypothesis
it follows that (1.2) holds. Invoking Lemma 3.2(iii) we then see that for every
(f, f1, . . . , fm) ∈ F

(4.2)
∥∥∥(fŵ− 1

r′
m+1

)rm∥∥∥ 1
rm

L
p
rm (W

p
rm dŵ)

= ‖f‖Lp(w) .
m∏
i=1

‖fi‖Lpi (wi)

=
(m−1∏

i=1

‖fi‖Lpi (wi)
)∥∥∥(fmŵ− 1

rm

)rm∥∥∥ 1
rm

L
pm
rm (W

pm
rm dŵ)

.

Let us introduce

G :=

{((
fŵ
− 1
r′
m+1

)rm
,
((m−1∏

i=1

‖fi‖Lpi (wi)
)
fmŵ

− 1
rm

)rm)
: (f, f1, . . . , fm) ∈ F

}
,

and (4.2) can be written as

‖F‖
L

p
rm (W

p
rm dŵ)

. ‖G‖
L
pm
rm (W

pm
rm dŵ)

, ∀ (F,G) ∈ G,
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which holds for every W ∈ A pm
rm

,
δm+1
rm

(ŵ). This allows us to employ Theorem 3.1 to

obtain that for every sm with rm < sm <∞ and 0 < s, τ <∞ such that

(4.3)
1

s
− 1

p
=

1

τ
− 1

δm+1

=
1

sm
− 1

pm
,

and for every U ∈ A sm
rm

, τ
rm

(ŵ) the following estimate holds

(4.4) ‖F‖
L

s
rm (U

s
rm dŵ)

. ‖G‖
L
sm
rm (U

sm
rm dŵ)

, ∀ (F,G) ∈ G.

Next let s =: q, sm =: qm and τ = δ̃m+1. Notice that by assumption rm < qm =
sm. Since qi = pi for 1 ≤ i ≤ m− 1, it follows that

1

s
− 1

p
=

1

q
− 1

p
=

m∑
i=1

( 1

qi
− 1

pi

)
=

1

qm
− 1

pm
=

1

sm
− 1

pm

and
1

τ
− 1

δm+1

=
1

δ̃m+1

− 1

δm+1

=
1

pm+1

− 1

qm+1

=
1

q
− 1

p
=

1

s
− 1

p
,

thus (4.3) holds. On the other hand, note that (4.1) gives V ∈ A
qm
rm

,
δ̃m+1
rm

(ŵ) =

A sm
rm

, τ
rm

(ŵ). All these imply that (4.4) holds with U = V and these choices of

parameters. Consequently, Lemma 3.2(iii) (applied with ~q and ~r) yields for every
(f, f1, . . . , fm) ∈ F

‖f‖Lq(v) =
∥∥∥(fŵ− 1

r′
m+1

)rm∥∥∥ 1
rm

L
q
rm (V

q
rm dŵ)

= ‖F‖
1
rm

L
q
rm (V

q
rm dŵ)

. ‖G‖
1
rm

L
qm
rm (V

qm
rm dŵ)

=
(m−1∏
i=1

‖fi‖Lpi (wi)
)∥∥∥(fmŵ− 1

rm

)rm∥∥∥ 1
rm

L
qm
rm (W

qm
rm dŵ)

=
m∏
i=1

‖fi‖Lqi (wi),

which is desired estimate in the present case.

4.2. Step 2: Extrapolation on all components. To complete the proof of
Theorem 1.1 (and of Remark 1.8) we need to extrapolate from the given ~p =
(p1, . . . , pm) with ~r � ~p to an arbitrary ~q = (q1, . . . , qm) satisfying ~r ≺ ~q. In view
of Remark 1.8 if pi = ri for some 1 ≤ i ≤ m we can allow ri ≤ qi. This means that
~r � ~q with rj < qj for those j’s for which rj < pj.

Schematically, in the previous section we have shown that

(4.5) ~t = (t1, . . . , tm−1, tm) with ~r � ~t extrapolates to

~s = (t1, . . . , tm−1, sm) whenever ~r � ~s and rm < sm.

By this we mean that if (1.2) holds for the exponent ~t and for all ~w ∈ A~t,~r, then
(1.2) holds for the exponent ~s and for all ~w ∈ A~s,~r with rm < sm. Notice that in

(4.5) the first m − 1 components in ~t and ~s are frozen. Switching the roles of fi
and fm for some fixed 1 ≤ i ≤ m − 1 and using the same schematic notation we
can freeze all the components but the i-th to obtain
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(4.6) ~t = (t1, . . . , ti−1, ti, ti+1, . . . , tm) with ~r � ~t extrapolates to

~s = (t1, . . . , ti−1, si, ti+1, . . . , tm) whenever ~r � ~s and ri < si.

To prove our desired estimates we shall iterate (4.6) and at any stage we need to
check that new vector of exponents ~s satisfies ~r � ~s and ri < si. We consider two
cases:

Case 1: pi ≤ qi for all 1 ≤ i ≤ m.

In this case, our first goal is to see that

(4.7) ~p = (p1, . . . , pm) extrapolates to ~t = (t1, t2, . . . , tm) = (q1, p2, . . . , pm).

First, if q1 = p1 there is nothing to see. Otherwise, if p1 < q1 we have that
r1 ≤ p1 < q1 = t1 and also ri ≤ pi = ti for every 2 ≤ i ≤ m. Moreover,

1

t
=

m∑
i=1

1

ti
=

1

q1

+
m∑
i=2

1

pi
≥

m∑
i=1

1

qi
=

1

q
>

1

r′m+1

,

since ~r � ~q. Thus ~r � ~t with r1 < q1 in which case (4.6) applies with i = 1 and
(4.7) follows.

Next from the conclusion of (4.7) we can extrapolate to ~s = (s1, . . . , sm) =
(q1, q2, p3, . . . , pm). If q2 = p2 there is nothing to do, otherwise, r1 ≤ p1 ≤ q1 = s1,
r2 ≤ p2 < q2 = s2 and ri ≤ pi ≤ qi = si for i = 3, . . . ,m . Moreover,

1

s
=

m∑
i=1

1

si
=

1

q1

+
1

q2

+
m∑
i=3

1

pi
≥

m∑
i=1

1

qi
=

1

q
>

1

r′m+1

,

since ~r � ~q. Thus ~r � ~s with r2 < s2 in which case (4.6) applies with i = 2
and we have the desired weighted estimates with the exponent ~s = (s1, . . . , sm) =
(q1, q2, p3, . . . , pm). We iterate this procedure with i = 3, . . . ,m and in the last
step we analogously pass from (q1, . . . , qm−1, pm) to (q1, . . . , qm). The proof of the
present case is then complete.

Case 2: There exists some i such that pi > qi. In this case, rearranging the terms
if needed we may assume that pi > qi for 1 ≤ i ≤ i0 and pi ≤ qi for i0 + 1 ≤ i0 ≤ m
where 1 ≤ i0 ≤ m (if i0 = m we just have pi > qi for all 1 ≤ i ≤ m).

We proceed as before and iterate (4.6) so that in the i-th step we pass from
~t = (t1, . . . , tm) to ~s = (s1, . . . , sm) where tj = sj = qj for 1 ≤ j ≤ i − 1, ti = pi,
si = qi, and tj = sj = pj for i + 1 ≤ j ≤ m. We may assume that pi 6= qi, for
otherwise there is nothing to prove. Note that since rj ≤ pj, qj then clearly rj ≤ sj
for every 1 ≤ j ≤ m. To justify that we can invoke (4.6) we consider two cases.

First, if 1 ≤ i ≤ i0 we note that ri ≤ qi < pi, hence pi 6= ri in which case as
explained above ri < qi (see Remark 1.8). Moreover, since 1 ≤ i ≤ i0,

1

s
=

m∑
j=1

1

sj
=

i∑
j=1

1

qj
+

m∑
j=i+1

1

pj
>

m∑
j=1

1

pj
=

1

p
>

1

r′m+1

.

Altogether, we have seen that ~r � ~s and ri < qi. Thus we can invoke (4.6).
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Consider next the case i0 + 1 ≤ i ≤ m (if i0 = m this case is vacuous). In this
scenario, ri ≤ pi < qi (recall that we have disregarded the trivial case qi = pi). In
addition, since i0 + 1 ≤ i ≤ m,

1

s
=

m∑
j=1

1

sj
=

i∑
j=1

1

qj
+

m∑
j=i+1

1

pj
≥

m∑
j=1

1

qj
=

1

q
>

1

r′m+1

.

Thus, ~r � ~s and ri < qi which justify the use of (4.6).

In both scenarios we can then perform the i-th step of the iteration and this
completes the proof of (1.3) for a generic ~q.

4.3. Step 3: Vector-valued inequalities. We now turn our attention to the
vector-valued inequalities. Fix ~s = (s1, . . . , sm) with ~r ≺ ~s where 1

s
:=
∑m

i=1
1
si

.
Define a new family F~s consisting on the m+ 1-tuples of the form

(F, F1, . . . , Fm) =

((∑
j

(f j)s
) 1
s
,
(∑

j

(f j1 )s1
) 1
s1 , . . . ,

(∑
j

(f jm)sm
) 1
sm

)
where {(f j, f j1 , . . . , f jm)}j ⊂ F . Without loss of generality we may assume that
all of the sums in the definition of F~s are finite; the conclusion for infinite sums
follows at once from the monotone convergence theorem. For any v ∈ A~s,~r, write

v :=
∏m

i=1 v
s
si
i and apply (1.3) with ~s in place of ~q and Hölder’s inequality to obtain

(4.8) ‖F‖Ls(v) =

(∑
j

‖f j‖sLs(v)

) 1
s

.

(∑
j

m∏
i=1

‖f ji ‖sLsi (vi)
) 1

s

≤
m∏
i=1

(∑
j

‖f ji ‖
si
Lsi (vi)

) 1
si

=
m∏
i=1

‖Fi‖Lsi (vi),

for every (F, F1, . . . , Fm) ∈ F~s. We can now apply the first part of Theorem 1.1 to
F~s where we use as our initial estimate (4.8) in place of (1.2). Thus, (1.3) holds
for F~s and this gives us immediately (1.4). This completes the proof of Theorem
1.1. �

4.4. Proof of Remark 1.9. The iterated vector-valued inequality in Remark 1.9
follow easily by repeating the argument in the previous section. Fixed ~s and ~t and
with F~s as defined in the previous section we consider a new family (F~s)~t consisting
on the (m+ 1)-tuples

(F,F1, . . . ,Fm) =

((∑
j

(F j)t
) 1
t
,
(∑

j

(F j
1 )t1
) 1
t1 , . . . ,

(∑
j

(F j
m)tm

) 1
tm

)
where {(F j, F j

1 , . . . , F
j
m)}j ⊂ F~s. Without loss of generality we may assume that

all of the sums in the definition of (F~s)~t are finite; the conclusion for infinite sums
follows at once from the monotone convergence theorem. Next for any v ∈ A~t,~r,
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write v :=
∏m

i=1 v
t
ti
i and apply (1.4) with ~t in place of ~q and Hölder’s inequality to

obtain

(4.9) ‖F‖Lt(v) =

(∑
j

‖F j‖tLt(v)

) 1
t

.

(∑
j

m∏
i=1

‖F j
i ‖tLti (vi)

) 1
s

≤
m∏
i=1

(∑
j

‖F j
i ‖

ti
Lti (vi)

) 1
ti

=
m∏
i=1

‖Fi‖Lti (vi),

for every (F,F1, . . . ,Fm) ∈ (F~s)~t. We can now apply the first part of Theorem 1.1
to (F~s)~t where we use as our initial estimate (4.9) in place of (1.2). Thus, (1.3)
holds for (F~s)~t and this gives us immediately (1.10). Note that repeating this idea
one can easily obtain iterated vector-valued inequalities with arbitrary number of
“sums”. �

5. Proof of Theorem 2.22

We need the following auxiliary result in the spirit of [7].

Proposition 5.1. Let T be an m-linear operator and let ~r = (r1, . . . , rm+1), with
1 ≤ r1, . . . , rm+1 < ∞. Assume that there exists ~s = (s1, . . . , sm), with 1 ≤
s1, . . . , sm <∞, 1 < s <∞, and ~r ≺ ~s, such that for all ~w = (w1, . . . , wm) ∈ A~s,~r,
we have

‖T (f1, f2, . . . , fm)‖Ls(w) .
m∏
i=1

‖fi‖Lsi (wi),

where 1
s

:= 1
s1

+ · · ·+ 1
sm

and w :=
∏m

i=1 w
s
si
i .

Then, for all weights ~v ∈ A~s,~r, for all b = (b1, . . . , bm) ∈ BMOm, and for each
multi-index α, we have

(5.2) ‖[T, b]α(f1, f2, . . . , fm)‖Ls(v) .
m∏
i=1

‖bj‖αiBMO‖fi‖Lsi (vi),

where v :=
∏m

i=1 v
s
si
i .

Assuming this result momentarily and adopting the notation introduced just
before Lemma 3.2 we let ~s = (s1, . . . , sm) with set si = ri

r
, 1 ≤ i ≤ m. Since r < 1

it follows at once that ri < si for every 1 ≤ i ≤ m and

1

s
:=

m∑
i=1

1

si
= r

m∑
i=1

1

ri
= r

(
1

r
− 1

rm+1

)
> 1− 1

rm+1

=
1

r′m+1

.

Hence, ~r ≺ ~s and we can invoke Theorem 1.1 to show that

‖T (f1, f2, . . . , fm)‖Ls(w) .
m∏
i=1

‖fi‖Lsi (wi)
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for all ~w = (w1, . . . , wm) ∈ A~s,~r, where w :=
∏m

i=1w
s
si
i .

At this point we observe that by construction s > 1, therefore Proposition 5.1
applies and we conclude that (5.2) holds for all ~v ∈ A~s,~r. To remove the restriction
s > 1 we apply again Theorem 1.1 and (2.23), and (2.24) follows. The proof is
complete modulo that of Proposition 5.1. �

We state some auxiliary result similar to Lemma 3.2 (see [30, Theorem 3.6] for
the case ~r = (1, . . . , 1)). Then proof is given at the end of this section.

Lemma 5.3. Let ~p = (p1, . . . , pm) with 1 < p1, . . . , pm <∞ and ~r = (r1, . . . , rm+1)
with 1 ≤ r1, . . . , rm+1 <∞ be such that ~r � ~p. Set, for every 1 ≤ i ≤ m,

1

θi
:=

1− r
r
− 1

δi
=

m+1∑
j=1

1

δj
− 1

δi
> 0,

where we are using the notation introduced before Lemma 3.2. Then the following
hold:

(i) Given ~w = (w1, . . . , wm) ∈ A~p,~r, write w :=
∏m

i=1 w
p
pi
i . Then w

θi
pi
i ∈ A 1−r

r
θi

with
[
w

θi
pi
i

]
A 1−r

r θi

≤ [~w]θiA~p,~r , for every 1 ≤ i ≤ m, and w
δm+1
p ∈ A 1−r

r
δm+1

with[
w

δm+1
p

]
A 1−r

r δm+1

≤ [~w]
δm+1

A~p,~r
.

(ii) Given w
θi
pi
i ∈ A 1−r

r
θi

, 1 ≤ i ≤ m, write w :=
∏m

i=1w
p
pi
i and assume that

w
δm+1
p ∈ A 1−r

r
δm+1

. Then ~w = (w1, . . . , wm) ∈ A~p,~r and, moreover,

[~w]A~p,~r ≤
[
w

δm+1
p

] 1
δm+1

A 1−r
r δm+1

m∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

Proof of Proposition 5.1. The proof is a modification of [7, Proof of Theorem 4.13]
and we only point out the main changes. As there we introduce

‖h‖BMO := sup
Q
‖h− hQ‖expL,Q = sup

Q
inf

{
λ > 0 : −

∫
Q

(
e
|h(x)−hQ|

λ − 1

)
dx ≤ 1

}
.

Note that by the John-Nirenberg inequality ‖h‖BMO ≤ ‖h‖BMO ≤ Cn‖h‖BMO.
Without loss of generality, we assume that bi, 1 ≤ i ≤ m, are real valued and nor-
malized so that ‖bi‖BMO = 1. By following the argument in [7, Proof of Theorem

4.3] with the Cauchy integral trick, given ~v ∈ A~s,~r we write v :=
∏m

i=1 v
s
si
i and one

can see that everything reduces to showing that for some appropriate γ1, . . . , γm > 0
(to be chosen later) and for |z1| = γ1, . . . , |zm| = γm, we have that ~w ∈ A~s,~r where

~w := (w1, . . . , wm) := (v1eb1 , . . . , vmebm) := (v1e
−Re(z1)s1b1 , . . . , vme

−Re(zm)smbm).
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By Lemma 5.3(i), applied to ~v ∈ A~s,~r, it follows that v
δm+1
s ∈ A 1−r

r
δm+1

and v
θi
si
i ∈

A 1−r
r
θi

or, equivalently, v
− δi
si

i ∈ A 1−r
r
δi

for 1 ≤ i ≤ m. Using [33, Lemma 3.28] for

any of these weights, there exists η > 1 with

η′ ∼ max
{[
v
δm+1
s

]
A 1−r

r δm+1

,
[
v
− δ1
s1

i

]
A 1−r

r δ1

, . . . ,
[
v
− δm
sm

m

]
A 1−r

r δm

}
≤ [~v]

max{δ1,...,δm+1}
A~s,~r

so that the following reverse Hölder inequalities hold:(
−
∫
Q

v
δm+1
s

ηdx

) 1
η

≤ 2−
∫
Q

v
δm+1
s dx

and, for i = 1, . . . ,m, (
−
∫
Q

v
− δi
si
η

i dx

) 1
η

≤ 2−
∫
Q

v
− δi
si

i dx.

Writing w :=
∏m

i=1w
s
si
i , using the previous estimates and Hölder’s inequality with∑m

i=1
s
si

= 1 we get(
−
∫
Q

w
δm+1
s dx

) 1
δm+1

m∏
i=1

(
−
∫
Q

w
− δi
si

i dx
) 1
δi

=

(
−
∫
Q

v
δm+1
s

m∏
i=1

e
δm+1
si

bi
dx

) 1
δm+1 m∏

i=1

(
−
∫
Q

v
− δi
si

i e
− δi
si

bi
dx
) 1
δi

≤
(
−
∫
Q

v
δm+1
s

ηdx

) 1
δm+1η

m∏
i=1

(
−
∫
Q

v
− δi
si
η

i dx
) 1
δiη

(
−
∫
Q

m∏
i=1

e
δm+1
si

η′

bi
dx

) 1
δm+1η

′ m∏
i=1

(
−
∫
Q

e
− δi
si
η′

bi
dx
) 1
δiη
′

≤ 2
1−r
r [~v]A~s,~r

m∏
i=1

(
−
∫
Q

e
δm+1
s

η′

bi
dx

) s
δm+1η

′si
(
−
∫
Q

e
− δi
si
η′

bi
dx
) 1
δiη
′

≤ 2
1−r
r [~v]A~s,~r

m∏
i=1

[
e
δm+1
s

η′

bi

] s
δm+1η

′si

A
1+

δm+1si
δis

≤ 2
1−r
r

+2
∑m
i=1 γi [~v]A~s,~r ,

where the last estimate holds provided

γi ≤
1

η′
min

{ 1

δi
,

s

δm+1si

}
,
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and where we have used that for every 1 ≤ q < ∞, λ ∈ R and h ∈ BMO we have
that [

eλh
]
Aq
≤ 4|λ| ‖h‖BMO , |λ| ≤ min {1, q − 1}

‖h‖BMO
,

see [7, Lemma 3.5]. We have eventually shown that ~w ∈ A~s,~r. From here the
argument in [7, Proof of Theorem 4.13] goes through and we can conclude the
desired estimate, further details are left to the interested reader. �

Proof of Lemma 5.3. We start with (i). Note that in Lemma 3.2(i.1) we have

already shown that w
θi
pi
i ∈ A 1−r

r
θi

with
[
w

θi
pi
i

]
A 1−r

r θi

≤ [~w]θiA~p,~r , for every 1 ≤ i ≤

m − 1. Notice however that the proof works in the very same way for the case

i = m. Thus, it remains to show that w
δm+1
p ∈ A 1−r

r
δm+1

. To proceed let us

introduce I := {1 ≤ i ≤ m : δ−1
i 6= 0} and I ′ := {1, . . . ,m} \ I. If I = ∅, then

1−r
r

= 1
δm+1

and trivially[
w

δm+1
p

]
A 1−r

r δm+1

=
[
w

δm+1
p

]
A1

= sup
Q

(
−
∫
Q

w
δm+1
p dx

)
ess sup
x∈Q

w(x)−
δm+1
p

≤ sup
Q

(
−
∫
Q

w
δm+1
p dx

) m∏
i=1

ess sup
x∈Q

wi(x)
− δm+1

pi ≤ [~w]
δm+1

A~p,~r
.

Consider next the case I 6= ∅. For i ∈ I let us set

1

ηi
:=

1

δi

( m∑
j=1

1

δj

)−1

=
1

δi

(m+1∑
j=1

1

δj
− 1

δm+1

)−1

=
1

δi

(1− r
r
− 1

δm+1

)−1

and note that
∑

i∈I
1
ηi

= 1. Then Hölder’s inequality easily leads to the desired
estimate:[

w
δm+1
p

]
A 1−r

r δm+1

= sup
Q

(
−
∫
Q

w
δm+1
p dx

)(
−
∫
Q

w
δm+1
p

(1−( 1−r
r
δm+1)′)dx

) 1−r
r
δm+1−1

≤ sup
Q

(
−
∫
Q

w
δm+1
p dx

)(
−
∫
Q

∏
i∈I

w
− δi
piηi

i dx
) 1−r

r
δm+1−1 ∏

i∈I′
ess sup
x∈Q

wi(x)
− δm+1

pi

≤ sup
Q

(
−
∫
Q

w
δm+1
p dx

)(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) δm+1

δi

)∏
i∈I′

ess sup
x∈Q

wi(x)
− δm+1

pi

≤ [~w]
δm+1

A~p,~r
,

and this completes the proof of (i).

Let us now obtain (ii). Assume first that I = ∅, thus for every 1 ≤ i ≤ m we
have δ−1

i = 0 and θi = r
1−r = δm+1. Then Hölder’s inequality gives
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ess inf
Q

w
1
p ≤

(
−
∫
Q

w
δm+1
mp dx

) 1
mδm+1 =

(
−
∫
Q

m∏
i=1

w
θi
pi

1
m

i dx
) 1
mδm+1

≤
m∏
i=1

(
−
∫
Q

w
θi
pi
i dx

) 1
δm+1 ≤

m∏
i=1

[
w

θi
pi
i

] 1
θi

A1

ess inf
Q

w
1
pi
i ,

and thus

[~w]A~p,~r = sup
Q

(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

m∏
i=1

ess sup
x∈Q

wi(x)
− 1
pi

≤
[
w

δm+1
p

] 1
δm+1

A1

(
ess inf

Q
w

1
p
) m∏
i=1

ess sup
x∈Q

wi(x)
− 1
pi

≤
[
w

δm+1
p

] 1
δm+1

A1

m∏
i=1

[
w

θi
pi
i

] 1
θi

A1

.

Next we consider the case when I 6= ∅. Set

1

θm+1

:=
1− r
r
− 1

δm+1

=
m+1∑
j=1

1

δj
− 1

δm+1

> 0,

Since,
∑m+1

i=1
1
θi

= m(1−r)
r

, Hölder’s inequality easily gives

1 =
(
−
∫
Q

w−
1
p

r
m(1−r)w

1
p

r
m(1−r)dx

)m(1−r)
r

=
(
−
∫
Q

w−
1
p

r
m(1−r)

m∏
i=1

w
1
pi

r
m(1−r)

i dx
)m(1−r)

r

≤
(
−
∫
Q

w−
θm+1
p dx

) 1
θm+1

m∏
i=1

(
−
∫
Q

w
θi
pi
i dx

) 1
θi

=
(
−
∫
Q

w
δm+1
p

(1−( 1−r
r
δm+1)′)dx

) 1
δm+1

( 1−r
r
δm+1−1)

m∏
i=1

(
−
∫
Q

w
θi
pi
i dx

) 1
θi .

This and our assumptions give the desired estimate

[~w]A~p,~r = sup
Q

(
−
∫
Q

w
δm+1
p dx

) 1
δm+1

(∏
i∈I

(
−
∫
Q

w
− δi
pi

i dx
) 1
δi

)∏
i∈I′

ess sup
x∈Q

wi(x)
− 1
pi

≤
[
w

δm+1
p

] 1
δm+1

A 1−r
r δm+1

m∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

× sup
Q

(
−
∫
Q

w
δm+1
p

(1−( 1−r
r
δm+1)′)dx

)− 1
δm+1

( 1−r
r
δm+1−1)

m∏
i=1

(
−
∫
Q

w
θi
pi
i dx

)− 1
θi

≤
[
w

δm+1
p

] 1
δm+1

A 1−r
r δm+1

m∏
i=1

[
w

θi
pi
i

] 1
θi

A 1−r
r θi

.
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This completes the proof. �
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