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Abstract. We study the efficiency of the greedy algorithm for wavelet bases in
Lorentz spaces in order to give the near best approximation. The result is used
to give sharp inclusions for the approximation spaces in terms of discrete Lorentz
sequence spaces.
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1. Introduction

Let (B, ‖ · ‖B) be a Banach (or quasi-Banach) space with a countable unconditional
basis B = {ej : j ∈ N}; that is, every x ∈ B can be uniquely represented as an
unconditionally convergent series x =

∑
j∈N sj ej, for some sequence of scalars {sj :

j ∈ N}.
An approximation algorithm for the space B and the basis B is a sequence of maps

FN : B −→ B, N ∈ N, such that for each x ∈ B, FN(x) is a linear combination of at
most N elements of the basis B. The most classical algorithm is the one given by the
partial sums operators SN(x) =

∑N
j=1 sjej, N ∈ N.

The thresholding procedure that is used in image compression and other applica-
tions can be modeled using the greedy algorithm. If x =

∑∞
j=1 sjej and the basis

elements are ordered in such a way that

‖sj1ej1‖B ≥ ‖sj2ej2‖B ≥ ‖sj3ej3‖B ≥ . . .

(handling ties arbitrarily) the greedy algorithm of step N is defined by the corre-
spondence

x =
∑
j∈N

sjej ∈ B 7−→ GN(x) =
N∑
k=1

sjkejk .

For x ∈ B, the N-term error of approximation (with respect to B) is defined by

σN(x)B = inf
{
‖x− y‖B : y ∈ ΣN

}
, (1.1)

where ΣN denotes the set of all elements y ∈ B with at most N non-null coefficients
in the basis representation. It is clear that σN(x)B ≤ ‖x−GN(x)‖B. A basis B is said
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to be greedy in (B, ‖.‖B) if there exists a constant C ≥ 1 such that

1

C
‖x−GN(x)‖B ≤ σN(x)B, ∀x ∈ B, N = 1, 2, 3 . . .

Thus, for such bases the greedy algorithm produces an almost optimal N -term ap-
proximation, which leads often to a precise identification of the approximation spaces
Aαq (B) (see [3] or [5] for precise definitions and results). A result of S.V. Konyagin
and V.N. Temlyakov ([11]) gives a characterization of greedy bases in a Banach space
B as those which are unconditional and democratic, that is, for some c > 0 we have∥∥∥∑

γ∈Γ

eγ
‖eγ‖B

∥∥∥
B
≤ c
∥∥∥∑
γ∈Γ′

eγ
‖eγ‖B

∥∥∥
B

for all finite sets of indices Γ,Γ′ ∈ N with the same cardinality.
Wavelets systems are well known examples of greedy bases for many function spaces.

In [16], V.N. Temlyakov shows that the Haar basis (and indeed any wavelet system
Lp-equivalent to it) is greedy in the Lebesgue spaces Lp(Rd), 1 < p < ∞. When
wavelets have sufficient smoothness and decay they are also greedy bases for the more
general Sobolev and Triebel-Lizorkin classes (see, e.g. [5] and [8].)

In this paper we study the efficiency of wavelet greedy algorithms in the Lorentz
spaces Lp,q(Rd). Wavelet bases are unconditional in Lp,q(Rd) for 1 < p <∞, 1 ≤ q <
∞ ([14]). When p = q, Lp,q(Rd) = Lp(Rd) and by the above mentioned result of V.N.
Temlyakov they are also greedy. But when p 6= q the Haar basis is not democratic
(hence, not greedy) in Lp,q(Rd) (see [18]). We give in Section 3 a simple proof of the
fact that admissible wavelet bases (see the definition below) are not democratic in
Lp,q(Rd) when p 6= q.

In view of this result it is interesting to ask how far wavelet bases are from being
democratic in Lp,q(Rd), p 6= q. To quantify democracy of a basis B = {ej : j ∈ N} we
consider

hr(N ;B,B) = sup
Card(Γ)=N

∥∥∥∑
γ∈Γ

eγ
‖eγ‖B

∥∥∥
B

and

hl(N ;B,B) = inf
Card(Γ)=N

∥∥∥∑
γ∈Γ

eγ
‖eγ‖B

∥∥∥
B

which we call the right and left democracy functions of B (see [6], [4] and [9].)
The main result of this paper gives a precise estimate for the right and left democ-

racy functions of wavelet admissible bases in Lp,q(Rd) in terms of the exponents p and
q.

Theorem 1.1. For 1 < p < ∞ and 1 ≤ q < ∞, let B = {ψlQ : Q ∈ D, l = 1, . . . , L}
be an admissible wavelet basis for Lp,q(Rd). Then

hl(N ;Lp,q(Rd),B) ≈ N
1

max(p,q) and hr(N ;Lp,q(Rd),B) ≈ N
1

min(p,q) .

The organization of this paper is as follows. Notation and results needed for the
proof of Theorem 1.1 will be given in Section 2. Section 3 is devoted to the proof of
this theorem. As an application of Theorem 1.1 and Theorems 4 and 5 in [10] we give
inclusions for the approximation spaces (see Section 4) in terms of discrete Lorentz
spaces (Corollary 4.3) and show that these inclusions are optimal (Lemma 4.8).
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2. Preliminaries

2.1. Lorentz spaces Lp,q(Rd). For 1 < p < ∞ and 1 ≤ q < ∞ the set of functions
f on Rd such that

‖f‖p,q =
(
q

∫ ∞
0

tq|{x : |f(x)| > t|}|
q
p
dt

t

) 1
q
<∞ (2.1)

defines the Lorentz space Lp,q(Rd). Note that ‖λf‖p,q = |λ|‖f‖p,q. In general, although
the expression (2.1) is not a norm, Lp,q(Rd) is a Banach space with a norm equivalent
to ‖.‖p,q (see [15] or [1] for more information about these spaces). When 1 < p < ∞
and 1 ≤ q < ∞ the Lorentz spaces Lp,q(Rd) are separable rearrangement invariant
Banach function spaces. Note that for a measurable set E ⊂ Rd

‖χE‖p,q =
(
q

∫ 1

0

tq|E|
q
p
dt

t

) 1
q

= |E|
1
p . (2.2)

For future reference we state the following elementary result that gives a discrete
characterization of Lorentz spaces.

Proposition 2.1. Let 1 < p < ∞ and 1 ≤ q < ∞. For any a > max{1, 2
1
p
− 1
q } we

have

(i) ‖f‖p,q ≈
(∑
k∈Z

akq|{x : |f(x)| ≥ ak}|
q
p

) 1
q

and

(ii) ‖f‖p,q ≈
(∑
k∈Z

akq|{x : ak ≤ |f(x)| < ak+1}|
q
p

) 1
q
.

2.2. Wavelet bases for Lp,q(Rd). Let D = {Qj,k = 2−j([0, 1)d + k) : j ∈ Z, k ∈ Zd}
denote the set of all dyadic cubes in Rd. We say that a finite family of functions
{ψ1, . . . , ψL} ⊂ L2(Rd) is an orthonormal wavelet system if the collection

{ψlj,k(x) = 2
jd
2 ψl(2jx− k) : j ∈ Z, k ∈ Zd, L = 1, 2, . . . , l}

is an orthonormal basis of L2(Rd). For simplicity we write ψlQ for ψlj,k when Q = Qj,k

is a dyadic cube. The reader is referred to [7], [12] for construction, examples and
properties of orthonormal wavelets. Many wavelet families are unconditional bases
for Lp(Rd), 1 < p < ∞. Moreover, there is a characterization for functions f ∈
Lp(Rd), 1 < p <∞, in terms of the wavelet coefficients 〈f, ψlQ〉, Q ∈ D, l = 1, 2 . . . , L,
that is,

‖f‖Lp(Rd) ≈ ‖Sψ(f)‖Lp(Rd), 1 < p <∞, (2.3)

where

Sψ(f)(x) =
( L∑
l=1

∑
Q∈D

|〈f, ψlQ〉|2|Q|−1χQ(x)
) 1

2
. (2.4)

The characterization (2.3) holds for the d-dimensional Haar system, for wavelets aris-
ing from r-regular multiresolution analyses (see [12], pg. 22), for wavelets belonging
to the regularity class Ro (as defined in [7], pg. 64, for d=1), and, in fact, for any
orthonormal wavelet in L2(Rd) with very mild decay conditions (see [13] and [17]). A
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wavelet system that satisfies (2.3) for all p ∈ (1,∞) is called an admissible wavelet
system.

P.M Soardi proved in [14] that admissible wavelet systems {ψlQ : Q ∈ D, l =

1, 2 . . . , L} are unconditional basis for Lp,q(Rd), 1 < p < ∞, 1 ≤ q < ∞ and there
is a characterization similar to (2.3) for these spaces.

Proposition 2.2 ([14]). Let 1 < p < ∞, 1 ≤ q < ∞ and {ψl : l = 1, . . . , L} be an
admissible wavelet system. Then, any f ∈ Lp,q(Rd) can be written in the form

f =
L∑
l=1

∑
Q∈D

〈f, ψlQ〉ψlQ

with unconditional convergence in Lp,q(Rd), and moreover

‖f‖p,q ≈ ‖Sψ(f)‖p,q (2.5)

This result was derived from the corresponding wavelet characterization of Lebesgue
spaces Lp(Rd), 1 < p < ∞, by applying Boyd’s interpolation theorem for sublinear
operators.

Remark 2.3. For the sake of simplicity, we assume throughout the paper that L = 1.
Our theorems will remain valid for any L ≥ 1, since the finite sum appearing in the
definition of Sψ(f) given in (2.4) is harmless in our computations.

2.3. A simple Lemma. We state and prove a simple result that will be used in the
proof of Theorem 1.1.

Lemma 2.4. Let N1, N2 . . . , NJ ∈ N and N = N1 + . . .+NJ . For any α > 0,

min{N,Nα} ≤
J∑
j=1

Nα
j ≤ max{N,Nα}.

Proof. If α ≤ 1,
∑J

j=1N
α
j ≤

∑J
j=1Nj = N = max{N,Nα}. On the other hand,∑J

j=1 N
α
j ≥

(∑J
j=1Nj

)α
= Nα = min{N,Nα}. If α > 1, we have

∑J
j=1 N

α
j ≤(∑J

j=1 Nj

)α
= Nα = max{N,Nα}. On the other hand,

∑J
j=1 N

α
j ≥

∑J
j=1Nj = N =

min{N,Nα} . �

3. Proof of theorem 1.1

We start by showing that

hr(N ;Lp,q,B) & N
1

min(p,q) (3.1)

and

hl(N ;Lp,q,B) . N
1

max(p,q) . (3.2)

This is done by exhibiting two examples of subsets of dyadic cubes Γ1 and Γ2, both
of cardinality N such that∥∥∥ ∑

Q∈Γ1

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈ N

1
p and

∥∥∥ ∑
Q∈Γ2

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈ N

1
q .
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By (2.5), (2.4) and (2.2), for Q ∈ D and ψ ∈ L2(Rd) an orthonormal wavelet

‖ψQ‖p,q ≈ ‖|Q|−
1
2χQ‖p,q = |Q|−

1
2 |Q|

1
p = |Q|

1
p
− 1

2 . (3.3)

Again by (2.5) we obtain, for any finite set Γ ⊂ D∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈
∥∥∥(∑

Q∈Γ

|Q|−
2
pχQ

) 1
2
∥∥∥
p,q
. (3.4)

Choose Γ1 = {Q1, Q2 . . . , QN} ⊂ D a set of disjoint dyadic cubes of the same fixed
size |Q|. Then, by (3.4) and (2.2)∥∥∥ ∑

Q∈Γ1

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈
∥∥∥ ∑
Q∈Γ1

|Q|−
1
pχQ

∥∥∥
p,q

= ‖|Q|−
1
pχ⋃

Q∈Γ1
Q‖p,q

= |Q|−
1
p

∣∣∣ ⋃
Q∈Γ1

Q
∣∣∣ 1
p

= N
1
p . (3.5)

Choose now Γ2 = {Q̃1, . . . , Q̃N} ⊂ D a pairwise disjoint family of dyadic cubes all of

them of different sizes, say |Q̃j| = 2−jd, j = 1, 2, . . . , N. By (3.4) we have∥∥∥ ∑
Q̃∈Γ2

ψQ̃
‖ψQ̃‖p,q

∥∥∥
p,q
≈
∥∥∥ N∑
j=1

|Q̃j|−
1
pχQ̃j

∥∥∥
p,q

=
∥∥∥ N∑
j=1

2
jd
p χQ̃j

∥∥∥
p,q
.

Using the discrete characterization of the Lorentz spaces given in Proposition 2.1, part

(ii), with a = 2
d
p we have∥∥∥ ∑

Q̃∈Γ2

ψQ̃
‖ψQ̃‖p,q

∥∥∥
p,q
≈
(∑
k∈Z

2
kqd
p |{x : 2

kd
p ≤

N∑
j=1

2
jd
p χQ̃j(x) < 2

(k+1)d
p }|

q
p

) 1
q

=
( N∑
j=1

2
jqd
p |Q̃j|

q
p

) 1
q

= N
1
q . (3.6)

Observe that (3.5) and (3.6) prove (3.1) and (3.2). Also observe that this shows that
wavelet admissible bases cannot be democratic in Lp,q(Rd) for p 6= q.

We now show that

hl(N ;Lp,q,B) & N
1

max(p,q) . (3.7)

Let Γ be a subset of D of cardinality N. By (3.4) and using `2(Γ) ↪→ `∞(Γ) we obtain∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈
∥∥∥(∑

Q∈Γ

|Q|−
2
pχQ(.)

) 1
2
∥∥∥
p,q
& ‖ sup

Q∈Γ
|Q|−

1
pχQ(.)‖p,q. (3.8)

Let F (x) = supQ∈Γ |Q|
− 1
pχQ(x), which is a finite value function. By part (i) of Propo-

sition 2.1 with a = 2
d
p

‖F‖qp,q ≈
∑
j∈Z

2
jqd
p |{x : F (x) ≥ 2

jd
p }|

q
p . (3.9)
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Write Γ =
⋃J
j=1 Γj where Γj = {Q ∈ Γ : |Q| = 2−dkj} with k1 > k2 > . . . > kJ . We

have
∑J

j=1Card(Γj) = Card(Γ) = N. Since the disjoint union
⋃
Q∈Γj

Q is contained

in {x : F (x) ≥ 2
kjd

p } we deduce from (3.9)

‖F‖qp,q &
J∑
j=1

2
kjqd

p

∣∣∣ ⋃
Q∈Γj

Q
∣∣∣ qp =

J∑
j=1

2
kjqd

p

( ∑
Q∈Γj

|Q|
) q
p

=
J∑
j=1

(Card(Γj))
q
p & min{N,N

q
p} (3.10)

where the last inequality is due to Lemma 2.4. From (3.8) and (3.10) we deduce∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
& min{N

1
p , N

1
q } = N

1
max(p,q) ,

showing (3.7).

Finally, we need to show the inequality∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
. N

1
min(p,q) (3.11)

for any subset Γ of D of cardinality N. We first linearize the square function. By (3.3)
and (2.4)

Sψ

(∑
Q∈Γ

ψQ
‖ψQ‖p,q

)
(x) ≈ Sψ

(∑
Q∈Γ

|Q|
1
2
− 1
pψQ

)
(x) =

(∑
Q∈Γ

|Q|−
2
pχQ(x)

) 1
2
. (3.12)

For each x ∈
⋃
Q∈ΓQ, let Qx be the smallest dyadic cube in Γ containing x. Then, we

have the pointwise estimate(∑
Q∈Γ

|Q|−
2
pχQ(x)

) 1
2 ≤

( ∑
Q⊃Qx
Q∈D

|Q|−
2
p

) 1
2

=
( ∞∑
j=0

(2jd|Qx|)−
2
p

) 1
2

= |Qx|−
1
pχQx(x)

( ∞∑
j=0

2−
2jd
p

) 1
2 ≤ cp|Qx|−

1
pχQx(x)

≤ cp

(∑
Q∈Γ

|Q|−
2
pχQ(x)

) 1
2
, (3.13)

where the last inequality holds since the right hand side contains at least the cube Qx

(and possibly more). Hence (3.12) and (3.13) show:

Sψ

(∑
Q∈Γ

ψQ
‖ψQ‖p,q

)
(x) ≈ |Qx|−

1
pχQx(x). (3.14)

This linearization procedure has been used by other authors in the context of N -
term approximation (see e.g [2], [5], [6], [8]).
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Let Γmin = {Q ∈ Γ : Q = Qx for some x ∈
⋃
Q∈ΓQ} be the set of minimal cubes

from Γ. The cubes from Γmin are not pairwise disjoint. To have a disjoint family of
sets, for each Q ∈ Γ we define, as in [6], Light(Q) = Q\Shade(Q) where

Shade(Q) =
⋃{

R : R ∈ Γ, R ( Q
}
.

Clearly ⋃
Q∈Γ

Q =
⋃

Q∈Γmin

Light(Q)

and the sets in the last union are pairwise disjoint. From (3.14) we obtain

Sψ

(∑
Q∈Γ

ψQ
‖ψQ‖p,q

)
(x) ≈

∑
Q∈Γmin

χLight(Q)(x)

|Q|
1
p

(3.15)

From (3.15) we deduce∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈
∥∥∥ ∑
Q∈Γmin

|Q|−
1
pχLight(Q)

∥∥∥
p,q
.

Write Γmin =
⋃J
j=1 Γj where Γj = {Q ∈ Γmin : |Q| = 2−kjd}, with k1 > k2 > . . . > kJ .

We have
∑J

j=1 Card(Γj) = Card(Γmin). By (ii) of Proposition 2.1 with a = 2
d
p we

obtain∥∥∥∑
Q∈Γ

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈
(∑
k∈Z

2
kqd
p |{x : 2

kd
p ≤

∑
Q∈Γmin

|Q|−
1
pχLight(Q)(x) ≤ 2

(k+1)d
p }|

q
p

) 1
q

=
( J∑
j=1

2
kjqd

p

∣∣∣ ⋃
Q∈Γj

Light(Q)
∣∣∣ qp) 1

q ≤
( J∑
j=1

2
kjqd

p

( ∑
Q∈Γj

2−kjd
) q
p
) 1
q

=
( J∑
j=1

(Card(Γj))
q
p

) 1
q ≤ max{(Card(Γmin)

1
q ), (Card(Γmin)

1
p}

≤ N
1

min(p,q)

where the next to the last equality is due to Lemma 2.4. This shows (3.11), finishing
the proof of Theorem 1.1. �

4. Inclusions for approximation spaces

In this section we will use Theorem 1.1 together with Theorems 4 and 5 of [10] to
show inclusions for approximation spaces. We recall the definition of the approxima-
tion spaces. For a Banach (or quasi-Banach) space B, given α > 0 and 0 < r < ∞
the approximation space is

Aαr (B) =
{
x ∈ B :

[∑
N≥1

[NασN(x)B]r
1

N

] 1
r
<∞

}
and

‖x‖Aαr (B) = ‖x‖B +
[∑
N≥1

[NασN(x)B]r
1

N

] 1
r
,
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where σN(x)B is the N -term error of approximation (see (1.1).) When r = ∞ the
above definition is modified in the standard way,

Aα∞(B) = {x ∈ B : sup
N≥1

NασN(x)B <∞}

and
‖x‖Aα∞(B) = ‖x‖B + sup

N≥1
NασN(x)B.

The inclusions will be given in terms of sequence spaces over the index set D. Let
Co be the set of sequences s = {sQ : Q ∈ D} for which we can find an enumeration
of the index set D = {(Qk)

∞
k=1} such that |sQ1| ≥ |sQ2| ≥ . . . and limk−→∞ |sQk | = 0.

We shall always assume that {sQk ; k ≥ 1} corresponds to such an ordering, which
coincides with the non-increasing rearrangement s∗ of s.

For each 0 < τ, r <∞ we define the discrete Lorentz space by

`τ,r = {s ∈ Co : ‖s‖lτ,r =
[∑
k≥1

(k
1
τ |sQk |)r

1

k

] 1
r
<∞}

and if r =∞
`τ,∞ = {s ∈ Co : ‖s‖lτ,∞ = sup

k≥1
k

1
τ |sQk | <∞}.

Let f ∈ Lp,q, 1 < p < ∞, 1 ≤ q < ∞, and write f =
∑

Q∈D〈f, ψQ〉ψQ. Then, define

`τ,r(Lp,q), as the set of all f ∈ Lp,q(Rd) such that the sequence {‖〈f, ψQk〉ψQk‖p,q : k ≥
1} ∈ `τ,r and

‖f‖`τ,r(Lp,q) =
∥∥‖〈f, ψQk〉ψQk‖p,q∥∥`τ,r

where as before ‖〈f, ψQ1〉ψQ1‖p,q ≥ ‖〈f, ψQ2〉ψQ2‖p,q ≥ . . .. By (3.3) we can write

‖f‖lτ,r(Lp,q) ≈ ‖|〈f, ψQk〉| |Qk|
1
p
− 1

2‖`τ,r =
[∑
k≥1

(k
1
τ |Qk|

1
p
− 1

2 |〈f, ψQk〉|)r
1

k

] 1
r

with the obvious modifications if r =∞.
For the reader’s convenience we write below the statements of Theorems 4 and 5 of

[10] adapted to our setting and our notation.

Theorem 4.1. Let 0 < p < ∞, let B = {ej : j ∈ N} be an unconditional basis of B.
The following statements are equivalent.

1. For all 0 < q < p, and s = 1
q
− 1

p
, there exists Cs <∞ such that

σN(x) ≤ Cs‖x‖`q,q(B)N
−s for all x ∈ `q,q(B) . (4.1)

2. There exists q, 0 < q < p, such that (4.1) holds for s = 1
q
− 1

p
.

3. There exists C1, such that, for all Γ ⊂ N∥∥∥∑
j∈Γ

ej
‖ej‖B

∥∥∥
B
≤ C1|Γ|1/p .

4. For all 0 < q < p, and for all 0 < r ≤ ∞, `q,r(B) ↪→ Asr(B) with s = 1
q
− 1

p
.

Theorem 4.2. Let 0 < p < ∞, let B = {ej : j ∈ N} be an unconditional basis of B.
The following statements are equivalent.

1. For all 0 < q < p, and s = 1
q
− 1

p
, there exists Cs <∞ such that

‖x‖`q,q(B) ≤ Cs‖x‖BN s for all x ∈ ΣN . (4.2)
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2. There exists q, 0 < q < p, such that (4.2) holds for s = 1
q
− 1

p
.

3. There exists C1, such that, for all Γ ⊂ N
1

C1

|Γ|1/p ≤
∥∥∥∑
j∈Γ

ej
‖ej‖B

∥∥∥
B
.

4. For all 0 < q < p, and for all 0 < r ≤ ∞, Asr(B) ↪→ `q,r(B) with s = 1
q
− 1

p
.

Corollary 4.3. Let B = {ψlQ : Q ∈ D, l = 1, 2, . . . , L} be an admissible wavelet basis

for Lp,q(Rd), 1 < p <∞, 1 ≤ q <∞. For every α > 0 and 0 < r ≤ ∞ we have

`τ
−,r(Lp,q) ↪→ Aαr (Lp,q) ↪→ `τ

+,r(Lp,q) (4.3)

where 1
τ−

= α + 1
min(p,q)

and 1
τ+ = α + 1

max(p,q)
.

Proof. For the left hand side inclusion of (4.3) use hr(N ;Lp,q(Rd),B) ≈ N
1

min(p,q)

from Theorem 1.1 and apply the implication 3 ⇒ 4 of Theorem 4 in [10] (see
Theorem 4.1) with B = Lp,q(Rd), and an admissible wavelet basis. Similarly, use

hl(N ;Lp,q(Rd),B) ≈ N
1

max(p,q) from Theorem 1.1 and apply the implication 3 ⇒ 4 of
Theorem 5 in [10] (see Theorem 4.2) to obtain the right hand inclusion. �

Corollary 4.4. (Jackson’s inequalities) Let B = {ψlQ : Q ∈ D, l = 1, 2, . . . L}
be an admissible wavelet basis for Lp,q(Rd), 1 < p < ∞, 1 ≤ q < ∞. Let α > 0,
0 < r ≤ ∞, and 1

τ−
= α+ 1

min(p,q)
. There exists C > 0 such that for all f ∈ `τ−,r(Lp,q),

σN(f)Lp,q ≤ CN−α‖f‖`τ−,r(Lp,q) for all N ≥ 1 . (4.4)

Proof. Notice that Aαr (Lp,q) ↪→ Aα∞(Lp,q) for all 0 < r ≤ ∞. By the left hand side
of inclusion (4.3) from Corollary 4.3, `τ

−,r(Lp,q) ↪→ Aα∞(Lp,q) and this inclusion is
equivalent to (4.4). �

Remark 4.5. The strongest inequality in (4.4) is obtained when r =∞. Notice that
for all r > τ−, inequality (4.4) is stronger than the one obtained in statement 1 of
Theorem 4 in [10] when adapted to our setting (see Theorem 4.1).

Corollary 4.6. (Bernstein’s inequalities) Let B = {ψlQ : Q ∈ D, l = 1, 2, . . . L}
be an admissible wavelet basis for Lp,q(Rd), 1 < p < ∞, 1 ≤ q < ∞. Let α > 0,
0 < r ≤ ∞, and 1

τ+ = α+ 1
max(p,q)

. There exists C > 0 such that for all f ∈ ΣN ⊂ Lp,q,

‖f‖`τ+,r(Lp,q) ≤ C‖f‖p,qNα for all N ≥ 1. (4.5)

Proof. If f ∈ ΣN we have σk(f)Lp,q = 0 if k ≥ N and σk(f)Lp,q ≤ ‖f‖p,q if 1 ≤ k < N .
Hence

‖f‖Aαr (Lp,q) ≤ ‖f‖p,q + ‖f‖p,q

(
N−1∑
k=1

kαr
1

k

)1/r

≈ ‖f‖p,qNα .

This inequality, together with the right hand side inclusion in (4.3) gives the result. �

Remark 4.7. Notice that for all r < τ+, inequality (4.5) is stronger than the one
obtained in statement 1 of Theorem 5 in [10] when adapted to our setting (see Theorem
4.2).

The inclusions in Corollary 4.3 are best possible in the sense described in the fol-
lowing Lemma.
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Lemma 4.8. Let B = {ψlQ : Q ∈ D, l = 1, 2, . . . L} be an admissible wavelet basis for

Lp,q(Rd), 1 < p < ∞, 1 ≤ q < ∞. For every α > 0 and 0 < r ≤ ∞ we have the
following:

(i) If the inclusion `τ̃ ,r(Lp,q) ↪→ Aαr (Lp,q) holds for some τ̃ > 0, we must have τ̃ ≤ τ−

where 1
τ−

= α + 1
min(p,q)

.

(ii) If the inclusion Aαr (Lp,q) ↪→ `τ̃ ,r(Lp,q) holds for some τ̃ > 0, we must have τ+ ≤ τ̃
where 1

τ+ = α + 1
max(p,q)

.

Proof. (i) Let Γ1 be a collection of 2N, N ∈ N, pairwise disjoint dyadic cubes of equal

size |Q| and set f1 =
∑

Q∈Γ1

ψQ
‖ψQ‖p,q

. From Lemma 1 in [10], for k = 1, 2, . . . , 2N − 1

we have

σk(f1) = inf
Γ′⊂Γ1, |Γ′|=2N−k

∥∥∥∑
Q∈Γ′

ψQ
‖ψQ‖p,q

∥∥∥
p,q
≈ (2N − k)

1
p (4.6)

where the last equivalence is due to (3.5). From (4.6) we deduce

‖f1‖Aαr (Lp,q) &
{ N∑
k=1

[kα(2N − k)
1
p ]r

1

k

} 1
r ≥ N

1
p

{ N∑
k=1

kαr
1

k

} 1
r
&

& N
1
pNα = Nα+ 1

p (4.7)

On the other hand,

‖f1‖`τ̃ ,r(Lp,q) =
{ 2N∑
k=1

(k
1
τ̃ 1)r

1

k

} 1
r ≈ (2N)

1
τ̃ ≈ N

1
τ̃ (4.8)

From the inclusion `τ̃ ,r ↪→ Aαr (Lp,q), (4.7) and (4.8) we deduce Nα+ 1
p . N

1
τ̃ for all

N = 1, 2, . . . . Thus

α +
1

p
≤ 1

τ̃
. (4.9)

Choose now Γ2 = {Q̃, . . . , Q̃2N} ⊂ D be a collection of pairwise disjoint dyadic cubes

all of them of different sizes, say |Q| = 2−jd, j = 1, 2, . . . , 2N. Set f2 =
∑

Q̃∈Γ2

ψQ̃
‖ψQ̃‖p,q

.

Using (3.6) in place of (3.5) and arguing as in (4.6) we obtain

σk(f2)Lp,q ≈ (2N − k)
1
q , k = 1, 2, . . . , 2N − 1 .

This results gives ‖f2‖Aαr (Lp,q) & Nα+ 1
q with an argument similar to that of (4.7). On

the other hand ‖f2‖`τ̃ ,r(Lp,q) ≈ N
1
τ̃ . The assumed inclusion then produces Nα+ 1

q . N
1
τ̃

for all N = 1, 2, . . . . Thus

α +
1

q
≤ 1

τ̃
. (4.10)

From (4.9) and (4.10) we deduce 1
τ−

= α+ 1
min(p,q)

≤ 1
τ̃

proving part (i) of Lemma 4.8.

(ii) Take Γ1 as in the proof of part (i). Then, by (4.6)

‖f1‖Aαr (Lp,q) . N
1
p +

{ 2N−1∑
k=1

[kα(2N − k)
1
p ]r

1

k

} 1
r
. N

1
p +N

1
p

{ 2N−1∑
k=1

kαr
1

k

} 1
r
.
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. N
1
p

+α . (4.11)

From the inclusion Aαr (Lp,q) ↪→ `τ̃ ,r(Lp,q), (4.11) and (4.8) we deduce N
1
τ̃ . N

1
p

+α,
for all N = 1, 2, . . . . Thus

1

τ̃
≤ α +

1

p
. (4.12)

Using now the function f2 of the proof of part i), and arguing similarly as above we

must have N
1
τ̃ . Nα+ 1

q for all N = 1, 2, . . . . Thus

1

τ̃
≤ α +

1

q
. (4.13)

The inequalities (4.12) and (4.13) give

1

τ̃
≤ α +

1

max(p, q)
= α +

1

τ+

proving the desired result. �

Remark 4.9. A similar result as the one in Lemma 4.8 can be obtained from Theorem
1.1 and 4 ⇒ 3 of Theorems 4 and 5 in [10] (see Theorems 4.1 and 4.2) assuming
α < 1/τ̃ in statements (i) and (ii) of the Lemma. The direct and simple proof given
above does not need to assume this condition.

Acknowledgment. We thank an anonymous referee for pointing out that paper
[10] could be used to give shorter proofs than the ones we originally designed for the
results of section 4.
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