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AssTrRACT. The present paper, along with its companion [HMMTZ], establishes the corre-
spondence between the properties of the solutions of a class of PDEs and the geometry of
sets in Euclidean space. We settle the question of whether (quantitative) absolute continuity
of the elliptic measure with respect to the surface measure and uniform rectifiability of the
boundary are equivalent, in an optimal class of divergence form elliptic operators satistying
a suitable Carleson measure condition. The result can be viewed as a quantitative analogue
of the Wiener criterion adapted to the singular L? data case.

The first step in this direction was taken in our previous paper [HMMTZ], where we
considered the case in which the desired Carleson measure condition on the coefficients
holds with sufficiently small constant. In this paper we establish the final, general result, that
is, the “large constant case”. The key elements of our approach are a powerful extrapolation
argument, which provides a general pathway to self-improve scale-invariant small constant
estimates, as well as a new mechanism to transfer quantitative absolute continuity of elliptic
measure between a domain and its subdomains.
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1. INTRODUCTION

The present paper, together with its companion [HMMTZ] and its converse in [KP] (see
also [DJ]) culminate many years of activity at the intersection of harmonic analysis, geo-
metric measure theory, and PDEs, devoted to the complete understanding of necessary and
sufficient conditions on the operator and the geometry of the domain guaranteeing absolute
continuity of the elliptic measure with respect to the surface measure of the boundary.

The celebrated 1924 Wiener criterion [Wie] provided the necessary and sufficient condi-
tions on the geometry of the domain responsible for the continuity of the harmonic functions
at the boundary. In the probabilistic terms, it characterized the points of the boundary which
are “seen” by the Brownian travelers coming from the interior of the domain.

The question of finding necessary and sufficient geometric conditions which could guar-
antee adequate regularity, so that, roughly speaking, the pieces of the boundary are seen
by the Brownian travelers according to their surface measure, turned out to be much more
intricate. Curiously, already in 1916 F. & M. Riesz correctly identified the key geometric
notion in this context: rectifiability of the boundary 9, i.e., the existence of tangent planes
almost everywhere with respect to arc length o on 9Q. In particular, they showed in [RR]
that harmonic measure is (mutually) absolutely continuous with respect to o for a simply
connected domain in the plane with rectifiable boundary. It took more than a hundred years
to establish the converse of the F. & M. Riesz theorem and its higher dimensional analogues.
The first such result appeared in 2016 [AHM+], and the question was fully settled for the
harmonic functions in 2018 [AHMMT].

The question of what happens in the general PDE setting has been puzzling from the
beginning. The Wiener criterion is universal: it applies to all uniformly elliptic divergence
form operators with bounded coefficients and characterizes points of continuity of the so-
lution at the boundary. It was realized early on that no such general criterion exists for de-
termining the absolute continuity of elliptic measure with respect to the surface measure to
the boundary of a domain. Some of the challenges that arise when considering this question
were highlighted by the counterexamples in [CFK], [MM]. In 1984 Dahlberg formulated a
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conjecture concerning optimal conditions on a matrix of coefficients which guarantee abso-
lute continuity of elliptic measure with respect to Lebesgue measure in a half-space. This
question was a driving force of a thread of outstanding developments in harmonic analysis
in the 80s and 90s due to Dahlberg, Jerison, Kenig, Pipher, and others, stimulating some
beautiful and far-reaching new techniques in the theory of weights and singular integral op-
erators, to mention only a few approaches. In [KP], Kenig and Pipher proved Dahlberg’s
conjecture, they showed that whenever the gradient of coefficients satisfies a Carleson mea-
sure condition (to be defined below) the elliptic measure and the Lebesgue measure are
mutually absolutely continuous on a half-space and, by a change of variables argument,
above a Lipschitz graph.

Given the aforementioned developments, it was natural to conjecture that the equivalence
of rectifiability and regularity of elliptic measure should be valid in the full generality of
Dahlberg-Kenig-Pipher (DKP) coefficients. Despite numerous attempts this question turned
out to be notoriously resistant to existing methods. The passage from the regularity of the
solutions to partial differential equations to rectifiability, or to any geometric information
on the boundary, is generally referred to as free boundary problems. This in itself is, of
course, a well-studied and rich subject. Unfortunately, the typical techniques arising from
minimization of the functionals are both too qualitative and too rigid to treat structural irreg-
ularities of rectifiable sets and such weak assumptions as absolute continuity of harmonic
measure. The latter became accessible only recently, with the development of the analy-
sis of singular integrals and similar objects on uniformly rectifiable sets. In particular, the
first converse of the F. & M. Riesz theorem, [AHM+], directly relies on the 2012 solution
of the David-Semmes conjecture regarding the boundedness of the Riesz transforms in L?
[NTV]. At the same time, the techniques stemming from such results for the harmonic func-
tions are not amenable to more general operators of the DKP type, again, due to simple yet
fundamental algebraic deficiencies: the derivatives of the coefficients do not offer sufficient
cancellations. In the first paper of the present sequence, [HMMTZ], the authors managed
to combine “classical” free boundary blow-up and compactness arguments (originated in
geometric measure theory) with scale-invariant harmonic analysis methods to show that the
desired uniform rectifiability follows from regularity of elliptic measure whenever the co-
efficients of the underlying equation exhibit small oscillations, in the appropriate Carleson
measure sense. The smallness condition, while obviously suboptimal, could not be removed
directly, for it is essentially built in the nature of the compactness arguments.

The main goal of the present paper is to addresses the conjecture in full generality. We
establish the equivalence of the absolute continuity of the elliptic measure with respect to
the surface measure and the uniform rectifiability of the boundary of a domain under the
DKP condition on the coefficients, thus providing the final, optimal geometric results (given
the assumed background hypotheses).

In order to achieve this, we rely on an extrapolation argument, a powerful harmonic
analysis self-improvement technique which allows one to “bootstrap” certain quantitative
scale-invariant results under a small constant hypothesis to the general, large-constant case.
This requires a seamless transfer of various estimates from the initial domain to a family of
special sawtooth subdomains —one of the major technical challenges of the present proof.
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We now describe our results in more detail. Throughout the paper we shall work under
the assumptions that the domain € is uniform, i.e., open and connected in a quantitative way,
and that its boundary is (n — 1)-Ahlfors regular, that is, (n — 1)-dimensional in a quantitative
way (see Section 2). Under these conditions one can, for instance, show that scale-invariant
absolute continuity of harmonic measure is related to the uniform rectifiability of the bound-
ary and even to the non-tangential accessibility of the exterior domain:

Theorem 1.1. Let Q Cc R*, n > 3, be a uniform domain (bounded or unbounded) with
Ahlfors regular boundary (see Definitions 2.8 and 2.1), set o = H" ' |sq and let w_y denote
its associated harmonic measure. The following statements are equivalent:

(a) w-a € Ax(0) (Definition 2.10).
(b) 0Q is uniformly rectifiable (Definition 2.2).

(c) Q satisfies the exterior corkscrew condition (see Definition 2.3), hence, in particular,
it is a chord-arc domain (Definition 2.9).

Postponing all the rigorous definitions to Section 2, we remark for the moment that uni-
form rectifiability is a quantitative version of the notion of rectifiability of the boundary
and the Muckenhoupt condition w € A (0) is, respectively, a quantitative form of the mu-
tual absolute continuity of w with respect to o. Thus, Theorem 1.1 above is a quantitative
form of the rigorous connection between the boundary behavior of harmonic functions and
geometric properties of sets that we alluded to above. Returning to the ties with Wiener cri-
terion, we point out that the property of the scale invariant absolute continuity of harmonic
measure with respect to surface measure, at least in the presence of Ahlfors regularity of
0Q, is equivalent to the solvability of the Dirichlet problem with data in some L”(0(2), with
p < oo”; thus, such a characterization is in some sense an analogue of Wiener’s criterion for
singular, rather than continuous data.

Theorem 1.1 in the present form appears in [AHMNT, Theorem 1.2]. That (a) implies
(b) is the main result in [HMU] (see also [HM2, HLMN]); that (b) yields (c) is [AHMNT,
Theorem 1.1]; and the fact that (c) implies (a) was proved in [DJ], and independently in
[Sem].

Theorem 1.1 and other recent results’ illuminate how the A, condition* of harmonic
measure is related to the geometry of the domain Q. Unfortunately, as we pointed out
above, their proofs do not extend to the optimal class of operators with variable coefficients.
Indeed, the best known results in this direction pertain to the “direct” rather than the “free
boundary” problem. A description of the elliptic measure in a given geometric environment,
is essentially due to C. Kenig and J. Pipher. In 2001 [KP] C. Kenig and J. Pipher proved
what they referred to as a 1984 Dahlberg conjecture: if Q C R” is a bounded Lipschitz

*See, e.g., [Hof], although the result is folkloric, and well known in less austere settings [Ken].

TWe refer the reader also to recent work of Azzam [Azz], in which the author characterizes the domains with
Ahlfors regular boundaries for which w_, € Ao (0): they are precisely the domains with uniformly rectifiable
boundary which are semi-uniform in the sense of Aikawa and Hirata [AH]; see also [AHMMT, AMT, HM3]
for related results characterizing L” solvability in the general case that w_, need not be doubling.

*And also its non-doubling version, the weak A, condition.
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domain and the elliptic matrix (A satisfies the following Carleson measure condition:

1
(1.2) sup  —— // ( sup |Vﬂ(Y)|25(Y)> dX < oo,
geo 1" B(g.)NQ \ yep(x,2X))
O<r<diam(Q) 2

where here and elsewhere we write §(-) = dist(-, 0Q2), then the corresponding elliptic mea-
sure wy, € Aw(0). As observed in [HMT1], one may carry through the proof in [KP], essen-
tially unchanged, with a slightly weakened reformulation of (1.2), namely by assuming, in
place of (1.2), the following properties:

(H1) A € Lip,.(2) and [VAS(-) € L™ (L), where 6(-) := dist(-, 0Q).

(H2) |VA?6(-) satisfies the Carleson measure assumption:

1
(1.3) Allcar == sup

1 // IVAX)PS(X)dX < .
0Q B(g,r)NQ
0<rLdiam(@) @n)

We shall refer to these hypotheses (jointly) as the Dahlberg-Kenig-Pipher (DKP) condi-
tion. Note that each of (H1) and (H2) is implied by (1.2).

Since properties (H1) and (H2) are preserved in subdomains, one can use the method of
[DJ] to extend the result of [KP] to chord-arc domains, and hence the analogue of (c) implies
(a) (in Theorem 1.1) holds for operators satisfying the DKP condition.

An attempt to address the “free boundary” part of the problem that is to prove that (a)
implies (b) or (c) led, the first, second and fourth authors of the present paper (see [HMT1])
to show that under the same background hypothesis as in Theorem 1.1, (a) implies (c) (and
hence also (b)) for elliptic operators with variable-coefficient matrices A satisfying (H1)
and the Carleson measure estimate

1
(1.4) sup —— // VAKX < co.
qedQ) r B(q,r)nQ
O<r<diam(Q)

We observe that, in the presence of hypothesis (H1), (1.4) implies (1.3). The weighted
W2 Carleson measure estimate (1.3) is both weaker, and more natural than the W'! version
(1.4). For example, operators verifying (1.3) arise as pullbacks of constant coefficient opera-
tors (see [KP, Introduction]), and also in the linearization of “A-harmonic” (i.e., generalized
p-harmonic) operators (see [LV, Section 4]). We also mention in passing that a qualitative
version of the results in [HMT1] was obtained in [ABHM]. There are also related (quan-
titative) results in [HMM1] and [AGMT] that are valid in the absence of any connectivity
hypothesis.

From the geometric measure theory point of view the main motivation for this paper
and its companion [HMMTZ] is to understand whether the elliptic measure of a DKP di-
vergence form elliptic operator distinguishes between a rectifiable and a purely unrectifi-
able boundary. As in Theorem 1.1, we make the background assumption that Q c R”",
n > 3, is a uniform domain (see Definition 2.8) with an Ahlfors regular boundary (Defini-
tion 2.1). Analytically we consider second order divergence form elliptic operators, that is,
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L = —div(A(-)V), where A = (ai j) ?j: ] is a (not necessarily symmetric) real matrix-valued
function on Q, satisfying the usual uniform ellipticity condition

(1.5) (AXE, &) = AP, KAXE DI < Algldl,  forall g, € R"\ {0},

for uniform constants 0 < 1 < A < oo, and for a.e. X € Q. We further assume that ‘A
satisfies the Dahlberg-Kenig-Pipher condition, that is, (H1) and (H2), and, additionally, that
the associated elliptic measure is an A, weight (see Definition 2.10) with respect to the
surface measure o = H" |sq. Our goal is to understand how this analytic information
yields insight on the geometry of the domain and its boundary. As mentioned above, in
[HMMTZ] we considered the case that the Carleson condition (H2) holds with sufficiently
small constants (i.e, || Allcar is small, see (1.3)). In this paper we prove the general result,
that is, the “large constant” case in which the Carleson condition (H2) is assumed merely to
be finite. We shall utilize an extrapolation (or bootstrapping) argument to pass from the case
of small Carleson norm to the general case.

Throughout this paper, and unless otherwise specified, by allowable constants, we mean
the dimension n > 3; the constants involved in the definition of a uniform domain, that is,
M,C; > 1 (see Definition 2.8); the Ahlfors regular constant C4g > 1 (see Definition 2.1);
the ratio of the ellipticity constants A/4 > 1 (see (1.5)), and the A, constants Cy > 1 and
6 € (0, 1) (see Definition 2.10).

Our main result is as follows:

Theorem 1.6. Let Q C R", n > 3, be a uniform domain with Ahlfors regular boundary and
set 0 = H" sq. Let A be a (not necessarily symmetric) uniformly elliptic matrix on Q
satisfying (H1) and (H2). Then the following are equivalent:

(1) The elliptic measure wy, associated with the operator L = — div(A(-)V) is of class
Ao With respect to the surface measure.

(2) 0Q is uniformly rectifiable.

(3) Qs a chord-arc domain.

The equivalence of (2) and (3) (under the stated background hypotheses) was previously
known: that (3) = (2) follows from the main geometric result of [DJ] (namely, that
chord-arc domains can be approximated in a big pieces sense by Lipschitz subdomains),
and the converse (2) = (3) is proved in [AHMNT]. Moreover, as mentioned above, it
was also known that (3) = (1), and the proof comprises two main ingredients: first, that
the properties (H1) and (H2) are preserved in subdomains, and therefore by the result of
[KP]%, w € A (o) in a Lipschitz subdomains of Q; and second, by the aforementioned
big piece approximation result of [DJ], that the A, property may be passed from Lipschitz
subdomains to the original chord-arc domain, by use of the maximum principle and a change
of pole argument (see [DJ] or, originally, [JK]). In this paper we close the circle by proving
the implication (1) = (2), thus providing a characterization of chord-arc domains in terms
of the properties of the elliptic measure .

$The formulation in terms of (H1) and (H2) in place of (1.2) appears in [HMT1], but the result is implicit in
[KP]; see [HMT1, Appendix A].
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The proof is based on the method of “extrapolation of Carleson measures”, by means of
which we bootstrap the small constant case treated in [HMMTZ]. This method was first
introduced in the work of Lewis and Murray [LM], based on a Corona type construction
which has its origins in the work of Carleson [Car], and Carleson and Garnett [CG]. In order
to carry out this procedure, we shall need to transfer the A, property of elliptic measure,
from the original domain to sawtooth subdomains. This last step is really the heart of the
proof.

We briefly discuss the organization of the paper. In Section 2 we present analytic and geo-
metric preliminaries. In Section 3 we first state three of the key ingredients to be used in the
proof, namely: Theorem 3.1 proved in [HMM1]; Theorem 3.7 which comes as combination
of [HMM1], [GMT]; and Theorem 3.10 obtained in [HMMTZ]. We then conclude Section
3 by outlining the rather intricate proof of Theorem 1.6, and in the process reducing matters
to two main steps. The latter are then carried out in two separate sections: in Section 4, we
prove a technical estimate showing that a continuous parameter Carleson measure, restricted
to a sawtooth subdomain, may be controlled quantitatively by a discretized version of itself.
Section 5 contains the most delicate technical part of the proof, involving transference of the
A property to sawtooth subdomains. In Section 6 we discuss the optimality of the results
and present an important corollary. In particular, in Corollary 6.3 we show that Theorem
1.6 remains true when we replace the assumptions (H1) and (H2) by weaker assumptions
involving the oscillation of the elliptic matrix in place of its gradient.

Acknowledgments: The authors would like to express their gratitude to Bruno Giuseppe
Poggi Cevallos who pointed out that the examples in [MM] could be used to access the
optimality of our results. See Proposition 6.2. They would also like to thank MSRI for its
hospitality during the Spring of 2017, all the authors were in residence there when this work
was started.

2. PRELIMINARIES

2.1. Definitions.

Definition 2.1. We say a closed set E C R" is Ahlfors regular with constant C4g > 1 if for
any g € E and 0 < r < diam(E),

Cik " P <H" Y (B(q,) NE) < Cag "',

There are many equivalent characterizations of a uniformly rectifiable set, see [DS2].
Since uniformly rectifiability is not the main focus of our paper, we only state one of the
geometric characterizations as its definition.

Definition 2.2. An Ahlfors regular set £ C R” is said to be uniformly rectifiable, if it has
big pieces of Lipschitz images of R"~!. That is, there exist 6, M > 0 such that for each geE
and 0 < r < diam(E), there is a Lipschitz mapping p : B"~'(0,7) — R” such that p has
Lipschitz norm < M and

H" (E N Bg,r) N p(B(0,r)) = 6r".

Here B"~1(0, ) denote a ball of radius r in R""!.
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Definition 2.3. An open set Q C R” is said to satisfy the (interior) corkscrew condition
(resp. the exterior corkscrew condition) with constant M > 1 if for every g € 9Q and every
0 < r < diam(Q), there exists A = A(q, r) € Q (resp. A € Qe := R\ Q) such that

2.4) B (A, ﬁ) CBg,r)NQ (resp. B <A, ﬁ) c B(g,r)N Qm.)

The point A is called a Corkscrew point (or a non-tangential point) relative to A(g,r) =
B(g,r) N 9Q in Q (resp. Qext)-

Definition 2.5. An open connected set Q2 c R" is said to satisfy the Harnack chain condi-
tion with constants M, C; > 1 if for every pair of points A, A’ € Q there is a chain of balls
By, By, ..., Bx c Q with K < M(2 + logj II) that connects A to A’, where

. |A—A'|

" min{6(A), (A"}’

Namely, A € By, A’ € Bk, By N\ Biy1 # @ and forevery 1 <k < K
2.7 Cl_l diam(By) < dist(By, 0Q) < C; diam(By).

(2.6)

We note that in the context of the previous definition if IT < 1 we can trivially form the
Harnack chain B; = B(A,36(A)/5) and B, = B(A’,36(A”)/5) where (2.7) holds with C; = 3.
Hence the Harnack chain condition is non-trivial only when IT > 1.

Definition 2.8. An open connected set Q2 C R" is said to be a uniform domain with constants
M, Cq, if it satisfies the interior corkscrew condition with constant M and the Harnack chain
condition with constants M, C.

Definition 2.9. A uniform domain Q c R” is said to be NTA if it satisfies the exterior
corkscrew condition. If one additionally assumes that 0Q is Ahlfors regular, the Q is said to
be a chord-arc domain.

For any ¢ € 0Q and r > 0, let A = A(q, r) denote the surface ball B(g, r) N 9, and let
T(A) = B(gq,r) N Q denote the Carleson region above A. We always implicitly assume that
0 < r < diam(Q). We will also write o = H" 0.

Given an open connected set ) and an elliptic operator L we let {wf }xeq be the associated
elliptic measure. In the statement of our main result we assume that w; € Ay (o) in the
following sense:

Definition 2.10. The elliptic measure associated with L in € is said to be of class A. with
respect to the surface measure oo = H =10, which we denote by wr € Ax(0), if there exist
Co > 1 and 0 < 8 < oo such that for any surface ball A(q,r) = B(g,r) N 0Q2, with x € 0Q
and 0 < r < diam(Q), any surface ball A’ = B’ N 9Q centered at 9Q with B’ C B(q, r), and
any Borel set ' C A’, the elliptic measure with pole at A(qg, r) (a corkscrew point relative to
A(g, r)) satisfies

2.11)

W) <o—<F> )*’
wlz(q’r)(A') =0 O'(A') :

We may refer to (Cy, 6) as the A, constants of wy with respect to 0.
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Since o is a doubling measure, it is well-known that the condition w;, € A (o) is equiv-
alent to the fact that w; € RH (o) for some g > 1 in the following sense: w; < o and the
Radon-Nikodym derivative k; := dwy /do satisfies the reverse Holder estimate

1 A(q.r) A+
A(g,r a A(g,r w (A)
(2.12) <][/ (kL(’I ))qd0'> < ][/ kL(q ) do = LO-(T’) ,

forall A(q, r) = B(g, r)NOQ, with x € 0Q and 0 < r < diam(L2), any surface ball A’ = B'NoQ
centered at Q2 with B’ C B(g, r).

The constants 0 < A < A from (1.5), Csx from Definition 2.1, M, C; from Definition 2.8
(see also Definitions 2.3 and 2.5), and Cy and 6 from Definition 2.10 are referred to as the
allowable constants.

2.2. Construction of sawtooth domains and Discrete Carleson measures.

Lemma 2.13 (Dyadic decomposition of Ahlfors regular set, [DS1, DS2, Chr]). Let E Cc R"
be an Ahlfors regular set. Then there exist constants ay, A1,y > 0, depending only on n and
the constants of Ahlfors regularity, such that for each k € 7Z, there is a collection of Borel
sets (“dyadic cubes”)

Dy :={Q CE:je 7
where 7 denotes some index set depending on k, satisfying the following properties.

() E = Uje 4, Q] for each k € Z.
(i1) If m > k then either Q7' C Q’; or Q"N Q/]‘. =Q.
(iii) For each pair (j, k) and each m < k, there is a unique i € _#,, such that Q’; c o
(iv) diam Q% < A;27%.
(v) Each Qlj‘- contains some surface ball A(xlj‘-, ap27%) = B(x?, a2 N E.
(vi) Forall (j,k)andall p € (0,1)
2.14) H"' ({qe 0} : dist(q. E\ 0Y) < p27"})
+H" ({ge E\ Q0 : dist(q, 05) < p27}) < A1p"H" ().
We shall denote by D = D(E) the collection of all relevant QF, i.e.,

(2.15) D = D
k

where, if diam(E) is finite, the union runs over those k such that 27k < diam(E).

Remark 2.16. For a dyadic cube Q € Dy, we shall set £(Q) = 27k and we shall refer to this
quantity as the “length” of Q. Evidently, £(Q) ~ diam(Q). We will also write x¢ for the
“center” of Q, that is, the center of the ball appearing in (v).

Assume from now on that Q is a uniform domain with Ahlfors regular boundary and set
o = H" sq. Let D = D(AQ) be the associated dyadic grid from the previous result.
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Let W = W(Q) denote a collection of (closed) dyadic Whitney cubes of Q (just dyadi-
cally divide the standard Whitney cubes from [Ste, Chapter VI] into cubes with side length
1/8 as large), so that the boxes in W form a covering of Q with non-overlapping interiors,
and which satisfy

2.17) 4 diam () < dist(41,0Q) < dist(/,0Q2) < 40 diam (I).

Let X(I) denote the center of I, let £(I) denote the side length of I, and write k = k; if
&) = 27F. We will use “boxes” to refer to the Whitney cubes as just constructed, and
“cubes” for the dyadic cubes on 0Q. Then for each pair I, J € W,

. _ ()
2.18 fINJ#@, thend™! < -~ <4,
(2.18) i @, then W
Since 1, J are dyadic boxes, then / N J is either contained in a face of /, or contained in a
face of J. By choosing 79 < 27!° sufficiently small (depending on 1), we may also suppose

that there is ¢ € (%, 1) so that if 0 < 7 < 7, for every distinct pair 1, J € W(Q),

(2.19) A+4DIN(A+4)J +0 — INJ +O;
and
(2.20) tIn(+40)I=0.

Also, J N (1 + 7)I contains an (n — 1)-dimensional cube with side length of the order of
min{{(I), £(J)}. This observation will become useful in Section 5. For such 7 € (0, () fixed,
we write I* = (1 + 7)I, I"* = (1 + 27)1, and I** = (1 + 47)I for the “fattening” of I € W.

Following [HM1, Section 3] we next introduce the notion of Carleson region and dis-
cretized sawtooth. Given a cube Q € D, the discretized Carleson region D relative to Q
is defined by

Do ={Q" eD: Q' cQ}.
Let ¥ be family of disjoint cubes {Q;} C D. The global discretized sawtooth region
relative to F is the collection of cubes Q € D that are not contained in any Q; €

Dy =D\ | Dy,
Q/E(]:

For a given Q € D the local discretized sawtooth region relative to ¥ is the collection of
cubes in Dy that are not in contained in any Q; € ¥ ;

2.21) nyQ = DQ \ U DQ/. =Dg# N DQ.
QjeF
We also introduce the “geometric” Carleson and sawtooth regions. For any dyadic cube
Q € D, pick two parameters < 1 and K > 1, and define
222)  Whi={eW:nilQ) < I <K Q). distd, ) < K2((Q)).

Taking K > 40%n, if I € ‘W and we pick Q; € D so that £(Q;) = €(I) and dist(/, 0Q) =
dist(Z, Qy), then I € (W%I. Let X denote a corkscrew point for the surface ball A(xg, rp/2).
We can guarantee that Xy is in some / € (W% provided we choose 7 small enough and K
large enough. For each I € ‘WY there is a Harnack chain connecting X(/) to Xg, we call it
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‘H;. By the definition of ’VV% we may construct this Harnack chain so that it consists of a
bounded number of balls (depending on the values of i, K). We let ‘W, denote the set of all
J € W which meet at least one of the Harnack chains H;, with I € (W%, ie.

(2.23) Wpo :={J € W : there exists I € (W% for which H; N J # @}.

Clearly (W(é C Wy. Besides, it follows from the construction of the augmented collections
Wy and the properties of the Harnack chains that there are uniform constants ¢ and C such
that

(2.24) n2(Q) <€) < CK26(Q), dist(I, Q) < CK2(Q)

for any I € Wy. In particular once 1, K are fixed, for any Q € D the cardinality of Wy is
uniformly bounded. Finally, for every Q we define its associated Whitney region

(2.25) Upg:= J r.
le Wy
We refer the reader to [HM1, Section 3] or [HMM?2, Section 2] for additional details.
For a given Q € D, the Carleson box relative to Q is defined by

(2.26) To:=int| |J Ug

Q’eDg
For a given family ¥ of disjoint cubes {Q;} C D and a given Q € D we define the local
sawtooth region relative to ¥ by

Qg o :=int U Ug | =int U r|,
[0 €D¢,Q le Wq'yQ

where W o = J 0Dy W . Analogously, we can slightly fatten the Whitney boxes and
use I™* to define new fattened Whitney regions and sawtooth domains. More precisely,

@27 Ty:=int | | J Uy |, Qpp=int| |J Uy |, Up:= |J I
Q'EDQ Ql EquQ le (W*Q’

k3

Similarly, we can define 7', QF , and Uy by using I"** in place of [**.

One can easily see that there is a constant k9 > 0 (depending only on the allowable
parameters, 1, and K) so that

(2.28) ToCTyCTy cTy CkoBoNQ=:ByNQ, VY Q eD.

Given a pairwise disjoint family ¥ c D (we also allow ¥ to be the null set) and a constant
p > 0, we derive another family ¥ (o) C D from ¥ as follows. Augment ¥ by adding cubes
Q € D whose side length £(Q) < p and let ¥ (p) denote the corresponding collection of
maximal cubes with respect to the inclusion. Note that the corresponding discrete sawtooth
region D¢, is the union of all cubes Q € D¢ such that £(Q) > p. For a given constant p and
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acube Q € D, let Dg(,) o denote the local discrete sawtooth region and let Q) o denote
the local geometric sawtooth region relative to disjoint family 7 (p).

Given Q € D and 0 < € < 1, if we take Fy = @, one has that Fo(e £(Q)) is the collection
of Q" € D such that e£(Q)/2 < €(Q’) < €£(Q). We then introduce Ug . = Qe (0)).0
which is a Whitney region relative to Q whose distance to 0€2 is of the order of € £(Q). For
later use, we observe that given Qp € D, the sets {UQ,f}QGDQO have bounded overlap with
constant that may depend on €. Indeed, suppose that there is X € Ug. N Uy  with Q,
Q' € Dy,. By construction £(Q) ~¢ 6§(X) = €(Q") and

dist(Q, Q) < dist(X, Q) + dist(X, Q") < €(Q) + €(Q") =¢ €(Q).

The bounded overlap property follows then at once.

Lemma 2.29 ([HM1, Lemma 3.61]). Let Q C R" be a uniform domain with Ahlfors regular
boundary. Then all of its Carleson boxes T g and sawtooth domains Q o, Q;’Q are uniform
domains with Ahlfors regular boundaries. In all the cases the implicit constants are uniform,
and depend only on dimension and on the corresponding constants for L.

We say that P is a fundamental chord-arc subdomain of Q if there is / € W and m;
such that

my

(2.30) P=int || JI; | where I WandINI; # Q.
j=1

Note that the fact that /N 1; # @ ensures that £(I) = {(I;). Moreover P is a chord-arc domain
with constants that only depend on n, T and the constants used in the construction of D and
W (see [HMU, Lemma 2.47] for a similar argument).

Given a sequence of non-negative numbers @ = {@g}oep We define the associated discrete
“measure” m = my:
(2.31) mD):=> ag, ~DcD
Qe

Definition 2.32. Let £ C R"” be an Ahlfors regular set, and let o be a dyadically doubling
Borel measure on E (not necessarily equal to H"!|5q). We say that m as defined in (2.31)
is a discrete Carleson measure with respect to o, if

D
(2.33) e = sup ™22 o
oeb 0(Q)
Also, fixed Qg € D we say that m is a discrete Carleson measure with respect to o in Qy if
m(Dg)

(2.34) [lmllc = su
Qo) QEDI;O o(Q)

< 00

2.3. Properties of solutions and elliptic measures. For following lemmas, we always as-
sume that 9 is a uniform domain with Ahlfors regular boundary and A(x, r) denotes the
surface ball B(x,r) N 9D centered at x € 9D. Let L = —div(A(-)V) be a real uniformly
elliptic operator, and we write w = wy, for the corresponding elliptic measure. Although in
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our main result we consider non necessarily symmetric uniformly elliptic matrices, we will
reduce matters to the symmetric case, in particular all the following properties will be used
in that case, hence during this section we assume that A is symmetric. All constants will
only depend on the allowable constants, that is, those involved in the fact that the domain in
question is uniform and has Ahlfors regularity boundary, and also in the uniform ellipticity
of A. In later sections we will apply these lemmas to Q as well as its sawtooth domains
Qg o. For a comprehensive treatment of the subject and the proofs we refer the reader to
the forthcoming monograph [HMT?2] (see also [Ken] for the case of NTA domains).

Lemma 2.35 (Comparison principle). Let u and v be non-negative solutions to Lu = Lv = 0
in B(x,4r) N D which vanish continuously on A(x,4r). Let A = A(x, r) be a corkscrew point
relative to A(x,r). Then

u(X) _ u(A)

——  forany X € B(x,r)N D.

(2-36) v(X) ~ v(A)

Lemma 2.37 (Non-degeneracy of elliptic measure). There exists a constant C > 1 such that
for any x € 0D, 0 < r < diam(0D), we have

(2.38) WXBx,NNID)>C'  forX e Bx,r/2) N D.

Lemma 2.39 (Change of pole formula). Let x € 0D and 0 < r < diam(9D) be given, and

let A = A(x,r) be a corkscrew point relative to A(x,r). Let F,F’ C A(x,r) be two Borel

subsets such that w*(F) and w*(F’) are positive. Then

WX(F)  wA(F)

WX(F) " A

In particular with the choice F = A(x, r), we have
WX (F")

~ AT
241 7wX(A(x, o~ ~ w'(F") forany X € D\ B(x,2r).

(2.40)

forany X € D\ B(x,2r).

Lemma 2.42 (CFMS estimate). There exists a constant C > 1, such that for any x € 0D,
0 < r < diam(0D), and A = A(x,r), a corkscrew point relative to A(x,r), the Green’s
function G = G, satisfies

Xo
1 G(Xp,A) LY (A(x, 1)) < CG(XO,A)

r p-1 r

(2.43) lon

for any Xog € D\ B(x,2r).

Lemma 2.44 (Doubling property of the elliptic measure). For every x € 0D and 0 < r <
diam(9D), we have

(2.45) WX (A(x,2r)) < Cw¥(A(x, 1))
forany X € D\ B(x,4r).
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Corollary 2.46 (Doubling property of the kernel). Let Q € D(ID) be a dyadic cube, and
QO € D be such that Cl_lt’(Q) < Q) < C1e(Q) and dist(Q, Q) < C1£(Q) for some C; = 1.
Suppose w € RH,(0) for some p > 1, then for X the corkscrew relative to Q we have

(2.47) /~ (k*e)’do < C / (k*)"” do,
0 0
with a constant C depending on C| and the allowable constants and where K = dw/do.

The proof is a simple corollary of the doubling property of the elliptic measure:
1 Xo(() Xo 1
(7[ (kXQ)de_>p LY (~Q) L w9 _ ][ KXo do < <][ (kXQ)pda_>p.
0 @ @  Jo 0

3. PROOF BY EXTRAPOLATION

In this section we present some powerful tools which will be key in the proof of our main
result. After that we will describe how to apply those results in our context.

We start with [HMM 1, Lemma 4.5], an extrapolation for Carleson measure result which
in a nutshell describes how the relationship between a discrete Carleson measure m and
another discrete measure m yields information about .

Theorem 3.1 (Extrapolation, [HMM]1, Lemma 4.5]). Let o be a dyadically doubling Borel
measure on 0€) (not necessarily equal to H" Vs0), and let m be a discrete Carleson measure
with respect to o (defined as in (2.31) and Definition 2.32), with constant My, that is

m(Dg)

(3.2) il := sup — X
oeb 0(Q)
Let m be another discrete non-negative measure on D defined as in (2.31), by

mD) =Y g, D cD.

Qel’

< M.

Assume there is a constant M| such that

(3.3) 0<Bo <Mio(Q) forany Q €D

and that there is a positive constant y such that for every Q € D and every family of pairwise
disjoint dyadic subcubes ¥ = {Q;} C Dy verifying

(3.4) Imzlle) = stlel]gQ m(S]-I()ch;()]) <7,

we have that m satisfies

(3.5) m(Dg o) < M10(Q).

Then m is a discrete Carleson measure, with

(3.6) llmllc := Zl;g (0

for some M, < oo depending on n, My, M1,y and the doubling constant of o

m(Dyg) < My
) < M,
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Theorem 3.7 ((HMMI1], [GMT]). Let D be an open set satisfying an interior corkscrew
condition with Ahlfors regular boundary. Then the following are equivalent:

(a) 0D is uniformly rectifiable.

(b) There exists a constant C such that for every bounded harmonic function u in D, i.e.
—Au = 0in D, and for any x € 0D and 0 < r < diam(D), there hold

1
— // IVu(Y)[* dist(Y, 0D) dY < Cllul3,.
B(x,r)nD

(3.8) "
Remark 3.9. Condition (3.8) is sometimes referred to as the Carleson measure estimate
(CME) for bounded, harmonic functions.

The direction (a) = (b) is proved by the first three authors of the present paper [HMM1,
Theorem 1.1], and the converse direction is proved by Garnett, Mourgoglou, and Tolsa
[GMT, Theorem 1.1]. As we have noted above, see Theorem 1.1, under the uniform domain
assumption, the statements (a) and/or (b) are equivalent to the fact that P is a chord-arc
domain.

Theorem 3.10 ((HMMTZ, Main Theorem]). Given the values of allowable constants M,
Cl,Car>1,A21>0,Cyp>1,and 0 < 0 < 1, there exists € > 0 depending on the
dimension n and the allowable constants, such that the following holds. Let D C R" be
a bounded uniform domain with constants M, C| and whose boundary is Ahlfors regular
with constant Cag. Let A € Lip, (D) be a symmetric elliptic matrix satisfying (1.5) with
ellipticity constants A, A, such that

(a) |VAP* dist(-, dD) satisfies the Carleson measure assumption with norm bounded by
€, that is,

1
— // IVAY) dist(Y, 0D) dY < €.
r B(x.)NQ

3.1 sup

x€0Q)
0O<r<diam(Q)

(b) The elliptic measure wy, associated with the operator L = — div(AV) is of class A,
with constants Cy and 0.

Then D is a chord-arc domain.

The proof of Theorem 1.6 is rather involved thus we sketch below the plan of the proof.

Proof of Theorem 1.6. We first reduce matters to the case on which A is symmetric. To
do so we observe that by [CHMT, Theorem 1.6], under the assumptions (H1) and (H2), if
w1 € Aw(0) then wism € Aw(0) where L™ = — div(AY™Y) and AY™ = (U5UY1_ | s the
symmetric part of A. Note that, clearly, A*Y™ is a symmetric uniformly elliptic matrix in Q
with the same ellipticity constants as A. It also satisfies (H1) and (H2) with constants which
are controlled by those of ‘A. Hence we only need to show (1) = (2) for LY™ which is
associated to the symmetric matrix A®»™. That is, we may assume to begin with, and we do
so0, that A is symmetric.
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Our main goal is to use the above extrapolation theorem with m and m two discrete
measures associated respectively with the sequences @ = {@p}gep and 8 = {Bp}gep defined
by

(3.12) g = // IVAY)P6(Y)dY,  Bo:= // IVu(Y)I*6(Y)dY,
U* Ugp

where u is an arbitrary bounded, harmonic function in Q, such that |lul|;~q) < 1; and Ugp
and Uy, are as defined in (2.25) and (2.27) respectively. We would like to observe that by
the interior Caccioppoli inequality, B¢ clearly satisfies the assumption (3.3):

Bo = // Vu(V)Pe(ydy s ) // Vu(V)Pdy < > e / u(Y)? dy

IeWy IeWo

(U //U u@)PSX)AY < (Q)" ~ o(Q).
Q

where we have used that (2.24), the bounded overlap of the family {/**};cy, and (2.28). We
will take any family of pairwise disjoint dyadic subcubes ¥ = {Q;} C Dy so that (3.4) holds
for sufficiently small y € (0, 1) to be chosen and the goal is to obtain (3.5). To achieve this
we will carry out the following steps:

Step 1: We first observe that (3.2) is equivalent to the Carleson measure assumption (H2).
This is a simple calculation which uses the fact that the Whitney boxes /** which
form U *Q have finite overlap and the definition of T in (2.26), details are left to the
reader.

Step 2: Given € > 0 we verify that the small Carleson hypothesis (3.4) implies that if y =
v(€) is small enough A satisfies the small Carleson assumption in the sawtooth
domain Q 0 that is, (3.11) holds with D = Q;L’Q and the given €. This is done in
Section 4.

Step 3: We verify that under the hypotheses (H1) and (H2), the assumption w € A, (o) in Q
is transferable to any sawtooth domain, in particular, if we write w. for the elliptic
measure associated with L in Q 7.0 then w, € Aco(H" yor Q) and the implicit
constants are uniformly controlled by the allowable constants. See Theorem 5.1 and
Corollary 5.3.

Step 4: We combine Step 2 and Step 3 with Theorem 3.10 applied to D = Q- .o and obtain
that Q- 1s a chord-arc domain. More precisely, note first that Q- F.0 is a bounded
umform domam with Ahlfors regular boundary (see Lemma 2.29) and all the im-
plicit constants are uniformly controlled by those of Q, that is, they do not depend
on Q or the family ¥. Also, Step 3 says that w, € A (H"" llag* ) and the implicit
constants are uniformly controlled by the allowable constants. Hence for the param-
eter € given by Theorem 3.10 (recall that we have assumed that A is symmetric),
which only depends on the allowable constants and is independent of Q or the fam-
ily #, we can find the corresponding y = y(€) from Step 2 so that (3.11) holds with
D = Qf , and that value of €. Thus Theorem 3.10 applied to D = Qg , yields
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that Q- o 18 a chord-arc domain with constants that only depend on the allowable
constants.

Step 5: We next apply Theorem 3.7 with D = Qg , to obtain that (3.8) holds with D =
Q;}’Q. Seeing that the latter implies (3.5) is not difficult. Indeed, note that any
Y € Qg o satisfies 6.(Y) := dist(Y, 89,}@) ~; 0(Y) (here we would like to remind
the reader that Qg o is comprised of fattened Whiney boxes I* = (1 + 7)I while for
Q;’,Q we use the fatter versions I™* = (1 + 27)I). Thus by (3.8), the fact that u is
harmonic and bounded by 1 in €, and so in Qg o> and a simple covering argument,
we can conclude that

m(Dg o) < // IVul?5(Y)dY ~ // \Vul>5,.(Y)dY
QT,Q QT,Q
< [ 1vuPs.ray < diamey o < 1! ~ 0(0)
Q7.0
which is (3.5).

After all these steps have been carried out the extrapolation for Carleson measures in
Theorem 3.1 allows us to conclude that m is a discrete Carleson measure. In other words,
we have proved that any bounded harmonic function in Q satisfies (3.8) with D = Q. As
a result, and by another use of Theorem 3.7 this time with D = Q, we derive that 0Q is
uniformly rectifiable. This completes the proof of Theorem 1.6 modulo establishing Step 2
and Step 3 and this will be done in the following sections. O

Remark 3.13. For convenience, we augment ¥ by adding all subcubes of Q of length
27N¢(Q), and let Fy denote the maximal cubes in the resulting augmented collection. Note
that for each N > 2, the sawtooth domain Qg, o is compactly contained in Q (indeed is
27N¢(Q)-away from 0Q). Note that D#v.o € Dg, 0 C Dgg forevery 2 < N < N'. In
particular, mg, < mg,, < mg and thus

mg satisfies (3.4) = myg, also satisfies the (3.4) with a constant independent of N.

We are going to prove Step 2 and Step 3 for the sawtooth domain Qg o, with constants
independent of N. Then by Step 4 and Step 5, we will have

(3.14) m(Dg, ) < Mio(Q),

with a constant M, independent of N, and thus (3.5) follows from monotone convergence
theorem by letting N — oo. To simplify the notations we drop from the index N from now
on and write ¥ = ¥ but we keep in mind that the corresponding sawtooth domain Qg o is
compactly contained in Q.

4. CONSEQUENCES OF THE SMALL CARLESON HYPOTHESIS IN THE EXTRAPOLATION THEOREM.

Set Q. = Q*f 0 and let € be given. The goal is to see that we can find y = y(e) € (0, 1) so
that (3.4) implies

4.1) // IVAY)6.(Y)dY < e},
B(x,r)NQ,
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for any x € 0Q. and any 0 < r < diam(d€2,). To see this we fix x € 9Q, and 0 < r <
diam(0Q.) = £(Q). Using that Q. C Q one has that 6,(Y) < 6(Y) and therefore (4.1) follows
at once from

4.2) // IVAY)P(Y)dY < er™!
B(x,r)NQ.,

To show (4.2), we let ¢ € (0, 1) be a small constant and M>1bea large constant to be
determined later, depending on the values of i, K used in the definition of (W% in (2.22).
We consider two cases depending on the size of r with respect to d(x) for x € JQ*. Recall
that Q. is compactly contained in Q, thus 6(x) > 0 for any x € 9Q..

Case 1. r < cd6(x). Since x € 9Q, = 0Q 7.0 there exist O, € Dy p and I, € Wy, such
that x € 0I;". We choose and fix ¢ sufficiently small (depending just on dlmensmn) so that

B(x, r) is contained in 2I,. We consider two sub-cases. First if r < yné(x) then we can
invoke (H1) to obtain

(4.3) // IVAY)P5(Y)dY < // IVAY)PS(Y)dY < // s(Y)~lay
B(x,r)NQ, B(x,r)n2I, B(x,r)n2I,
~ ) s < y% Py
On the other hand, if yﬁé(x) < r we note that
Bx.nQ.c2,nQ,c | Wyn2L).
Q0'eDr o

It is clear that from construction if U*Q, N 21, # @ then £(Q") ~ {(I,) ~ 5(x). Note also that
#HleW:IN2l,+ 0 s C,hence #Q €D : Up N2y # @} < Cp k- Thus, observing
that Q" € D¢ ¢ for every Q" € Dg ¢ we obtain from (3.4)

(4.4) // VAD)Po)dy < > // VADPodY = > ag
B(x,r)NQ,

Q/G]D QIGDT,Q
U ;N2 #:@ U*Q,OZIX:#@
’ n—1 L
< mDg o) <y o(Q) sy o) syrr
Q’GDq:’Q Q,EDT,Q
U*Q,nle;tQ U*Q,mzlxqt@

Case 2. M~! Q) < r < diam(0€,) =~ €(Q). This is a trivial case since by construction and
(3.4) we obtain

4.5) // VAD)Po(¥)dy < > // IVAY)P6(Y)dY
B(x,r)NQ, 0'eD,
7.0
> ag =mDy ) < yo(Q) * yUQ)" ~ yr"!

Q'eDy o

Case 3. ¢6(x) < r < A7I‘1€(Q). Pick * € 0Q such that |[x — x| = 6(x) and note that
B(x,r) € B(%, (1 + ¢ ")r). Note also that if Q’ € Dg ¢ is so that U*Q, N B(x,r) # @ then we
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canfind I € Wy and Y € I'* N B(x, r) so that by (2.24)
n%f(Q') D) =oY) <Y —xl+6(x) <(1+ c_l)r.

and for every y € Q’

ly — %] < diam(Q") + dist(Q’, I) + diam(I) + |Y — x| + |x — %]

SKH(Q)+r+6(x) <Ky z(1+c)r

Consequently, if we write M =C K 2 n‘% (1 + ¢™!) and choose M > M’, it follows that
Q) <M r<{Q)and Q' C A, M'r) = A.

We can then find a pairwise disjoint family of dyadic cubes {Qk},;/\?: | with uniform cardi-
nality N (depending on Cag and n) so that 27V M r < 0(Q)) < M’ 1, Qx N A # @ for every
1 <k<N,and A C UkN:1 Q. Relabeling if necessary, we can assume that there exists

N’ <NsothatA’nQc U,ivzl Oy and each Oy meets A’ N Q for 1 < k < N’. We would like
to observe that necessarily N’ > 1 since we have shown that Q' c A’ for every Q' € Dg g
so that Up, N B(x,r) # D. Also O, c Qforl <k < N’ since Q) < M r< £(Q) and Qy
meets Q. Moreover, for every such a Q’ we necessarily have Q" ¢ QO for some 1 < k < N’

since Q' € A’ N Q, hence O’ meets some Q; and also £(Q’) < M r< 2£(Qy) which forces
Q' C Q. All these and (3.4) readily imply

(4.6) // VADPody < ) // VAMPo(dY = Y ag
B(x,r)NQ,

Q'eD Q'eDy o
mB(x r);t® U: o NB(x,r)#2
<Z > o= Z > o= Zm<Dm><vfo<Qk><w
k=1 QGquQ k= IQ’GDTQ

Q'cOrcQ

Combining what we have obtained in all the cases we see that (4.3), (4.4), (4.5), and (4.6)
give, since 0 < y < 1, that

// IVAY)PS(N)Y < Coyr,
B(x,r)NQ

rn—l

for some constant Cy > 1 depending on the allowable constants and where we recall that y
is at our choice. Hence we just need to pick y < (Cy Te)" to conclude as desired (4.2).

5. TRANSFERENCE OF THE Ao, PROPERTY TO SAWTOOTH DOMAINS

In this section we show that the A, property for the elliptic operator L in € can be trans-
ferred to sawtooth subdomains with constants that only depend on the allowable constants.
We first work with sawtooth subdomains which are compactly contained in Q2 and then we
consider the general case using that interior sawtooth subdomains exhaust general sawtooth
domains.
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Theorem 5.1. Let Q C R" be a uniform domain with Ahlfors regular boundary. Let ‘A be
a symmetric uniformly elliptic matrix on Q and L = — div(AV) . Assume the following two
properties:

(1) The elliptic measure wy, associated with the operator L relative to the domain Q is
of class A with respect to the surface measure.

(2) For every fundamental chord-arc subdomain P of Q, see (2.30), the elliptic measure
associated with L relative to the domain P is also of class A with respect to the
surface measure of P, with uniform A constants.

For every Q € D and every family of pairwise disjoint dyadic subcubes ¥ = {Q;} C Dy, let
Q. =Qf g (0r Q, = Q,’}:’Q ) be the associated sawtooth domain, and w, and o, = 7—[”_1|39*
be the elliptic measure for L and the surface measure of Q.. Then w. € As(0), with the
Ao constants independent of Q and F.

Note that if A is a non necessarily symmetric matrix satisfying hypotheses (H1) and
(H2) in Q, we can easily verify it also satisfies the Kenig-Pipher condition relative to every
fundamental chord-arc subdomain. Indeed, since P C Q then 6p(-) < 6(-) and (H1) in P is

automatic. On the other hand, let P = int <UT:‘1 Ij) with I; € Wand I N I; # @ and take

x € 0P and r < diamP < £(I). Note that (H1) implies [VAY)* < £(I)72 for every Y € P
since 8(Y) =~ €(I) , hence
1 +1

1 "
5.2 VAY)[*6p(Y)dY < ———— Sp(NdY < ——— < 1.
©2) -l //B(x,r)ﬂ]Pl AFoNAY r=1e(1)? //B(x,r)mp P(NY < Lo ~

That is, (H1) in P holds as well. Thus by [KP] (and the slight improvement in [HMT1]),
and the fact that chord-arc domains can be approximated by Lipschitz domains, one obtains
that the elliptic measure for L relative to P is also of class A, with respect to the surface
measure of P and (2) in the previous result holds. On the other hand, [CHMT, Theorem 1.6]
asserts that for any uniform domain €, and under the assumptions (H1) and (H2), one has
that wy € A (o) if and only if wyrsym € A (07) where L™ is the operator associated with the
symmetric matrix AY™ = (% i j=1- Note that A™™ is also a uniformly elliptic matrix in
Q with the same ellipticity constants as A and satisfies (H1) and (H2) with constants which
are controlled by those of A. With all these observations we immediately get the following

corollary:

Corollary 5.3. Let Q C R" be a uniform domain with Ahlfors regular boundary. Suppose
that A is a (non necessarily symmetric) uniformly elliptic matrix on Q satisfying the hy-
potheses (H1) and (H2), and that the elliptic measure wy associated with the operator L
relative to the domain Q is of class A with respect to the surface measure. Then the elliptic
measure associated with L relative to any sawtooth domain is of class A, with uniform
constants.

Proof of Theorem 5.1. The proof Theorem 5.1 has several steps. We work with Q.. = Qg o
as the proof with Q , is identical. We first assume that the sawtooth domain Q. = Qg ¢ is
compactly contained in Q2 and show that w. € As(0), with the A, constants independent
of Q and ¥ . Here we use w. to denote the elliptic measure associated with L relative to Q..
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Under the assumption that €2, is compactly contained in Q, for Q fixed, let N be an integer
such that dist(Q,, Q) ~ 27V ¢(Q). Then Q, if formed by a union of fattened Whitney boxes
of side length controlled from below by ¢ 2V£(Q) hence Q. clearly satisfies a qualitative
exterior corkscrew condition, that is, it satisfies the exterior corkscrew condition for surface
balls up to a scale of the order of 27V£(Q). In the case of the Kenig-Pipher operators,
this information alone does not suffice to derive the desired A, property, with constant
independent of N; however this does give us the qualitative absolute continuity wX < o
for any X € Q. (since €, is a chord-arc domain with constants depending on N). Note that
Theorem 5.1 is nonetheless written for a more general class and it is not obvious whether
we can automatically have the desired absolute continuity. This will be shown in the course
of the proof.

Our main task is to then show that w, € As(0.) with constants that depend only on
the allowable constants. If we write kK, := dw./do . for the Radon-Nikodym derivative, by
the change of pole formula Lemma 2.39, obtaining w. € Aw(0 ), it is equivalent to prove
the following: there exists an exponent p € (1, 00) and a constant C depending only on the
allowable constants such that for any surface ball A, = B, N9, centered at €., with radius
smaller than the diameter of JC,, and for X = X, € Q. N B,, a corkscrew point relative to
A, the following holds

(5.4) / (k5)’ dor. < Cou(A)'P.
A

Since diam(€2,) =~ £(Q), it is easy to see by a standard covering argument and Harnack’s
inequality that it suffices to prove (5.4) for r, < Ml‘lf(Q), where M is a suitably large
fixed constant. By hypothesis (1), wy € A« (0), hence it belongs to the reverse Holder class
with some exponent p; > 1 (see (2.12)). Also, by hypothesis (2) we know that the elliptic
measure relative to any fundamental chord-arc subdomain P satisfies an A, condition with
respect to the corresponding surface measure with uniform bounds. In turn, there exists
p2 > 1 and a uniform constant so that any of these elliptic measures belong to the reverse
Holder class with this exponent p, and with the same uniform constant (see (2.12)). We

shall henceforth set p := min{py, p»}, and it is for this p that we shall prove (5.4).

To start with the proof, recall that as observed above, since dist(Q,, Q) ~ 27V(Q), it
follows that all the dyadic cubes Q" € Dy o have length £(Q") 2 27V ¢(Q), and the cardinality
of D o is bounded by a constant C(N). Hence Q. = Qg o is formed by the finite union
of Whitney regions Uy with Q" € D¢ g satisfying £(Q’) 2 27N¢(Q). In turn each Ug is a
polyhedral domain consisting of a finite number of fattened Whitney boxes with side length
of the order of £(Q’). In particular there exists a finite index set N, so that

(5.5) oQ. c | Joa(uy)noq. = | si.

iEN, ieEN,

where S # @ for each i € N, int(I')*) € Q,, and £(I') 2 27V. For each I', with i € N, we
pick Q' € Dy ¢ such that ‘W 5 I' (there could be more than one such a Q' in which case
we just select one). Note that different /"’s may correspond to the same @', but each Q' may
only repeat up to a finitely many times, depending only on the allowable constants. Since
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S is contained in the boundary of a fattened Whitney box (I')*,
(5.6) diam(S%) < €(I') ~ €(Q"), and dist(S*, 0Q) > dist((I')*, dQ) ~ €(Q").

On the other hand, the fact that S fk c 0Q. means that I' intersects some J' € ‘W so that if J' €
Wy then Q" ¢ Dy . If we pick O € D so that £(QF) = £(J%) and dist(J’, dQ) = dist(J', 0)
then as mentioned right below (2.22) we have that J' € ’W%i C ’W@-, therefore Qi ¢ Dg o.
Recalling (2.20) and the comments after it, we know that tJ° C Q \ Q, and 4 ((I))*) N 6Q,
contains an (n — 1)-dimensional ball with radius of the order of min{é(1), £(J")} ~ €(I').
Denote that (n — 1)-dimensional ball by AL c S*. This implies, combined with (5.6), that

(5.7) r(Al) ~ diam(S’) ~ €(I') ~ €(Q") and dist(S’, Q) ~ dist(AL, 0Q) ~ €(I') ~ £(Q').

At this stage we consider several cases. In the Base case, see Lemma 5.9, we treat surface
balls A, with small radii so that A, is contained in a uniformly bounded union of Whitney
cubes of comparable sides. In the case when A, is large we decompose the intersection
of A, in small pieces to which the base case can be applied (Step 1). We then put all the
local estimates together to obtain a global one (Step 2). This requires Lemma 5.33 and to
consider several cases to account for all the small pieces.

Let A, = B* N 0Q, C Q, with B, = B(x., r«), x« € 0Q, and 0 < r, < diam(d€,). Since
Q). is a uniform domain (see Lemma 2.29), we can pick Xa, C B, N Q,, a Corkscrew point
relative to A, in ., so that 6.(X) := dist(X, 0Q.) ~ r.. Write

(5.8) A.c | Sl where Ny, :=1{i:€ Nu: AN ST+ 0}
iENA,

Lemma 5.9 (Base case). Using the notation above we have that w. << o in 0Q.. Moreover
if there exists i € N, such that r,, < %f(l’) then

P
(5.10) / (kffA*) do, < (AP
Ay

where K, := dw./do, pis as above, and the implicit constant only depends on the allowable
constants.

Proof. We first claim that

(5.11) 2A, ¢ | ST and 2B.nQ.c ] (')
i"eN. I"eN.,
I'nlizo I'nlizo

In fact, for any i’ € N,, if S f: intersects 2A.,, or if 2B, N Q. intersects (I")*, then our current
assumption gives

dist ((I')", (I")") < dist ((I')" N 2B.,(I")" N 2B,) < diam(2B.) = 4r, < %f(l"),
and thus . . . .
By the choice of 7, i.e., by (2.19), we then have I'NI” # @ and the claim is proved. Next, let
m denote the maximal number of Whitney boxes intersecting /'. Note that m; only depends
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on the constructions of the Whitney cubes, hence just on dimension. By relabeling (5.11)
we write

m

(5.12) 2A, CUS‘ and 2B, NQ, CU(I’
=1 i’=1

Moreover by (5.7), foreach i’ = 1,...,my, we have diam(S”) ~ £(I") ~ £(I'). Set then

= int (U(I"’)*) cQ
i’=1

which by construction is a fundamental chord-arc subdomain P of Q, see (2.30). Note that
since 2B, NLD, is open then (5.12) says that 2B, NQ, C P and hence 2B,.NQ, = 2B, NP. This
and the fact that Q.. and P are open readily implies that 2B, N 0Q.. = 2B, N dP. Moreover,
X, € P(since X € B, N Q,) and

(5.13) dist(Xa., IP) ~ 6.(Xp.) ~ 1o < %ml‘) < %diam(P) < diam(P).

Let Xp be a Corkscrew point for the domain P, at the scale £(I') ~ diam(P), i.e., Xp is a
Corkscrew point in P relative to the surface ball consisting of the entire boundary of P. Thus
in particular, dist(Xp, 0P) ~ diam(P) > %r*, hence dist(Xp, dP) > 2 cg r, for some uniform
0<co<1/4.

Set u;(-) := G.(Xp,-) and uy(-) := Gp(Xp,-) in 2B, N Q, = 2B, NP where G, and Gp
are the Green functions for the operator L and for the domains Q. and P respectively, and
where as observed above Xp € P C Q.. Fix y € %B* N oQ, = %B* N JP and note that
B(y, cor.) C 2B.. Note that if Z € B(y, cor.) then

2 cors < dist(Xp, dP) < | Xp — V< |Xp—Z|+1Z -y <|Xp—Z| + cors,

and | Xp — Z| > cor.. As a consequence, B(y, cor«) C 2B, \ B(Xp, cor.). Hence, Lu; = 0 and
Luy = 0 in we weak sense in B(y, cor.) N Q. = B(y, cor.) N P and both are continuous in
B(y, cor.) NQ, = B(y, cor.) NP. In particular both vanish continuously in B(y, cor,) N Q. =
B(y, cor,) N 0P. This means that we can use Lemma 2.35 in = P to obtain that for every
Z € B(y,cor./8)

P
w(2) 1 Xag00m2)

(5.14) ~
ux(2) MZ(XEP(%CO,* /2))

where XEPQ,’ cor/2) is a corkscrew relative to B(y, cor./2) N P for the fundamental chord-arc
domain P. On the other hand Lemma 2.42 applied in Q. (which is uniform with Ahlfors
regular boundary and the implicit constants are uniformly controlled, see Lemma 2.29) and
P (a fundamental chord-arc domain) gives for any 0 < s < cor./2

(5.15) U1 (Xx, (1) * W2 (A3, $) 872, 1 (Xay(y.5) ® Wp° (Ap(y, 5)) 82,
where X} ) is the corkscrew point relative to A.(y, s) = B(y, s) N 0Q, for the uniform

domain Q*, X As(r5) is the corkscrew point relative to Ap(y, s) = B(y, s) N dP for the funda-
mental chord-arc uniform domain P, and wp stands for the elliptic measure associated with
the operator L relative to P. Note that from the definition of corkscrew condition and the
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fact that B(y, s) N Q. = B(y, s) NP it follows that XZ*@,S), XZW,S) € B(y,s)NQ, = B(y,s)NP
and also

dist(X} (y.5), OQ) & dist(XR (.5, OP) ~ dist(Xy, y. 5y, OQ) ~ dist(Xa, ), OP) ~ s.

Consequently (X} ) = 1(Xx, () and u1(Xx,, c0r.2) = U1XR (ycor. ). All these,
together with (5.14), (5.15), and Lemma 2.37, give for every 0 < s < cor./8

* P P
W (A, 9) MKy ) X)X )
X ~ P ~ P ~ P
wp” (Ap(y,5))  wa(Xp ) U2(Xp () U2(Xp () 0 s2)
 mXR eons2) W (AL, cor[2))
~ P N Xavoear
W2 Xnsycon ) w0 (Ap(y, core/2))

With this in hand, we note that since y € A.(x., %r*) = %B* NoQ, = %B* NP = Ap(x,, %r*)
and 0 < s < cor./8 are arbitrary we can easily conclude, using a Vitali covering argu-

ment and the fact that both wfﬁ? and cufpfp are outer regular and doubling in A.(x., %r*) =
Ap(xs, %r*), that wX*(F) ~ wgp(F) for any Borel set F' C A,(x., %r*) = Ap(xs, %r*). Hence
W < wf;?’ < WX in A (x,, %r*) = Ap(x,, %r*). From hypothesis (2) in Theorem 5.1 we
know that wp < op := H" !|gp, hence in particular w, < 0, in A,(x,, %r*). This, (5.16),
and Lebesgue’s differentiation theorem readily imply that

(5.17) KX (y) ~ k}F(y), for H" '-almost all y € A,(x., 7.) = Ap(x., 1),

(5.16)

~ 1.

where Kp := dwp/dop and K, := dw../dop.

We next observe that Lemma 2.39 applied with D = €, (along with Harnack’s inequality
for the case r, ~ £(I')) and Lebesgue’s differentiation theorem yield

XA*

(5.18) K™ (y) ~

kX (y) for o,-almost all y € A,.

Since P is a fundamental chord-arc subdomain P of Q, see (2.30), as observed above wp
belongs to the reverse Holder class with exponent p, > 1 and so with exponent p =
min{py, p2}. We find that since o, = op in A, = Au(xs, 1) = Ap(Xs, 74)

! op(Ap(x,, 1)) P
/* ( ) g (w*XP(A*))p Ay ( ) 7 (w*XP(A*))p AP(JC*J*) ( : ) .

or(Ap () [ (Ap(ra. )\ -
~ *A* p,
<@ﬂmf<mwmmJ 78

where we have used (5.18), (5.17), that o, = op, the reverse Holder estimate with exponent
p for kp, and that both 9Q, and dP are Ahlfors regular sets with uniform bounds.

To complete our proof we need to see that w, < o, in 0€.. Let us observe that we have
already obtained that w, < o in A.(x, gr*) where x, € dQ, is arbitrary and r, < Tf(l’)

for some i € N, A, We may cover d€, by a finite union of surface balls A.(x;, 7;), w1th rj=
2N

7 ((Q), where Mis large enough to be chosen, whose cardinality may depend on N and M.

Note that for every i € N, we have, as observed before, that £(I') 2 27V¢(Q) > ; M
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if we pick M large enough. Hence, for every j, it follows that r; < gf(li) for every i € N,
and in particular for every i € Na,(x;r,)- Hence the previous argument yields that w, < o

in Au(x;j, %rj) for every j and consequently w, < o, in 0€).. O

Remark 5.19. We would like to emphasize that the fact that w, < o, in dQ, is automatic
for the Kenig-Pipher operators. In fact as observed above ). is a chord-arc domain and
hence w. € Aw(0 ) (albeit with constants which may depend on N). The previous argument
proves that the more general hypothesis (2) in Theorem 5.1 also yields w, < o in 0€..

Once the Base case has been established we can focus on proving the A, property for
the sawtooth. With this goal in mind we fix a surface ball A, = B, N 0Q, C Q, with
B, = B(x«, 1), x« € 0Q, and 0 < r, < diam(0Q.). Let X := X, C B. N Q. be a Corkscrew
point relative to A, in ., so that 6.(X) =~ r.. Our goal is to show (5.4). As explained above
we may assume that r.. < M7'€(Q), for some M, large enough to be chosen. The Base case
(Lemma 5.9) yields (5.4) when r. < %f(]i) for some i € Np,. Hence we may assume from
now on that r, > Z{(I') for every i € Nj..

Step 1. Show that
(5.20) / (k) do. s > / (k¥)" do,
A, iENA, '
where we recall that Q' € Dy ¢ is so that I' € W forevery i € N, and where k = dw; /do.
To see this, by (5.8), it suffices to obtain

(5.21) /(kf)pda*s/ (k*)" do.
S

for each i € Nj,. Fix then such an i and cover S’ by a uniformly bounded number of
surface balls centered at 0, with small radius A = B N 9Q, where S N Al # @ and
r(AX) =~ cdiam(S1) ~ ¢ £(I%), the constant ¢ is chosen sufficiently small (depending on 7),
so that r(Ab) < (7/8)¢(I"). Hence in the present scenario,

i
*

(5.22) 5.(X) ~ r, > r(AY).
We further choose ¢ small enough so that
(5.23) 20 c | J ST and 2BYnQ.c | ) dy.
i'eN, i'eN.
I nizg I nizg

Note that there are at most a uniformly bounded number of such i’, for each [. In each ALt
we can use the Base Case, Lemma 5.9, since by construction r(Aﬁ;l) < (t/8)¢(I") and hence
(5.10) implies that

X il\ P N
(5.24) /_[ (k* ) do, < oy (AP,
A

where X, is a corkscrew point relative to A in Q,. Using Lemma 2.39 applied with

. X il
D = Q, and Lebesgue’s differentiation theorem we have that k¥X(y) ~ wX(A%) k™ (y) for
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o.-ae. y € Al As aresult, using (5.24)

. X . .
(5.25) /«1 (k¥)’dor, ~ (wf(A:l))P/‘l (k*A*z)Pdm < (a)ff(AiJ))P o (AP
Al i

. a)X(Ai’l) p ) (,L)X(Ai) p
= (AL <> < ou(AL) < o > :
o (AL o (AL)

where we used the Ahlfors regularity of o, and the doubling properties of w.. We claim that
WA _ (@)

(A T o(Q)

To see this write u;(Y) = w*Y(Ai) and %Y} = w¥(Q) for every ¥ € Q. and note that
Luy =Luy =0inQ, c Q. ForY € Ai c Q. c Qwehave up(Y) > 1 by Lemma 2.37 applied
in © = Q, Harnack’s inequality, (5.7), and (2.24). Thus the maximum principle applied in
the bounded open set Q.. yields that u;(Y) < ux(Y) for every Y € Q,, hence in particular

for Y = X. This and the fact that Q2 and 0Q.. are Ahlfors regular (see Lemma 2.29) give at
desired (5.26).

Combining (5.25) and (5.26), and using Holder’s inequality and Ahlfors regularity of
0,04, We get

Y NG / Y
(5.27) /Ail (k) da'*sa'(Q)<o_(Qi)) < . (k*)" do.

We recall that S% is covered by a uniformly bounded number of surface balls A/, Thus
summing in [ we conclude (5.21) as desired. This completes Step 1.

(5.26)

Step 2. Study the interaction of the elements of the family {Q' : i € Ny }.
We first note that for every i € Ny,
(5.28) dist(A,, Q) < dist(SL N A,, Q) < 6Q) = L) < s

Pick £ € Q such that dist(&, A.) = dist(Q, A,). If £ € Q \ Q, we replace it by a point, which
we call again X, belonging to B(X,7./2) N Q, so that X € Q and dist(X, A,) < r.. We claim
that there is a large constant C > 1 such that Q' € A; where A; := B(X, Cr,) N 0Q. Indeed
if y € Q' then

ly — 2| < diam(Q") + dist(Q', I') + diam(I') + [y* = &| < .,
where we have picked y' € L N A, foreachi € Nj..

Consider next the covering A; C UkN:llPk, where N| depends on Ahlfors regularity and
dimension, and {Pk},i\/:]1 is a pairwise disjoint collection of dyadic cubes on 0€2, of the same
generation, with length £(P;) ~ r.. Since in the present scenario, £(Q') < r., we may further
suppose that £(Py) > £( Q") for every i. Moreover, since we have assumed that r,, < M 1‘1 £(0),

taking M| large enough we may assume that £(Py) < £(Q) forevery 1 < k < Nj.
Note that

N
U QO'cAlc UPk.
k=1

iENA,



UNIFORM RECTIFIABILITY AND ELLIPTIC OPERATORS. PART II. 27

By relabeling if needed, we may assume that there exists Ny, 1 < N> < Ny, such that Py
meets some Q', i € N, for each 1 < k < Np. Hence ., Q' € U2, Px and, necessarily,
Q' c Py c Q, and since Q' € Dy g, it follows that P € Dg o for 1 <k < N».

For future reference, we record the following observation. Recall that X is a Corkscrew

point relative to A, = B, N dQ, for the domain Q,; i.e., X € B, N Q,, with 6.(X) = r.. By
(5.28) and for every 1 < k < N, if we pick some i so that Q' C P; we have

re % 0,(X) < 6(X) < dist(X, Py) < dist(X, Q) < |X — x.| + 2, + dist(A,, Q) < 7. = L(Py).

Recalling that Xp, denotes a corkscrew point relative to the dyadic cube Pj we then have that
0(X) = €(Py) = 6(Xp,) and also |X — Xp | < €(Px), hence by Harnack’s inequality WX ~ W¥P
and eventually kX ~ kX7, o-a.e. in Q. On the other hand, we have already mentioned that
hypothesis (1) in Theorem 5.1 says that w € RH), (o), which clearly implies w € RH,(c)
since p < p;. Note that this reverse Holder condition is written for surface balls, but it is
straightforward to see, using Lemmas 2.13 and 2.44, that the same reverse Holder estimates
hold for any dyadic cube. All these, and the fact that both dQ and 0Q. are Ahlfors regular
(see Lemma 2.29) lead to

p Xp P 14
(5.29) / (17 ) dor < a(Pk)(w> < (PP ~ o ()P
P o (Pr)
for each k, with uniform implicit constants.

As mentioneglv above, for every i € N., there exists J' € W so tllat I'n Ji # @ and so
that if we pick Q' € D with £(Q") = £(J) and dist(J, Q) = dist(J?, Q) then Q' ¢ D# . In
particular
(5.30) (@Y~ Q) and dis(Q', Q) 5 €Q).

By the definition of D g, éi ¢ D# o means either Qi c oQ\ Q, or Qi C Qj, for some
QjeF.Given 1 < k < N, foreach i € Nj,, we say i € Ny(k), if the first case happens,
with Q' C Py; and if the second case happens with Q j € F, and with Q' c Py, we say
i € N(k). For the second case we remark that

(5.31) dist(Q;, Py) < dist(Q', Q) < £(Q') < E(Py).
Foreach k, 1 <k < N,, we set
Fi(k) :={Q; € F : i e N;(k), t(Q)) = t(Py)}
and
Fak) :={Q; € F : Ji e Nj(k), £(Q)) < {(Py)}.
With the previous notation, (5.20), and the fact that ey, Q' c U2, Py we obtain

(5.32) /(kf)pda*s Z/ (k)" dor
A i

iENA,

(Y [ WX S [ wya)

k=1 “ieNy(k) Q;eF ieN;(k)
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(T [y ¥ 5 [ w@n)a

k=1 NieNy(k) QjeF1(k) ieN(k)
F Y [ wnya).
;T2 (k) ieN;k) T &
where we have used that kX ~ k*#«, o-a.e. in OQ.

At this stage we need the following lemma. We defer its proof until later.

Lemma 5.33. Let D be an open set with Ahlfors regular boundary and write o = H" 5.
Let Q € D = D(0D) and suppose that D’ C D is such that each Q' € D’ satisfies one of the
following conditions for some C > 1:

e Q' C Qanddist(Q’,0Q\ Q) < C1€(Q).
e O'NQ =0, UQ) < Cil(Q) and disl(Q’, Q) < C1 Q).

Then there is a subcollection of distinct cubes {ém}xil, all of the same generation, with

Ny = Ny(n,Cag, Cy), satisfying €(Q) < £(Qm) < Cr6(Q) and dis(Qm. Q) < C2(Q), with
C, = Cy(n, Cag, Cy), for every m, such that for any s > 1if0 < h € L] (0D, o) then

loc

N> %
(5.34) > / hdo < C30(Q) ) <][~ hsa’o->

Qe m=1
where C3 = C3(n, Cag, C1, 5).

As a consequence, if there exists C ’1 so that for each m, 1 < m < N, there holds

(5.35) (ﬁ hsd(7>sti][~ hdo

then

N>
(5.36) > / hdo < C3 ﬁ hdo
' m=1"9m

Q/ED/
with C3 = C5(n, Cag, C1, 5, CY).
Remark 5.37. It follows from the proof of that if Q' c Qforall Q' € D (i.e.,, we only

consider the first case), then there is only one Q,,, namely the unique one containing Q
satisfying the given conditions.

Remark 5.38. Suppose that we are under the assumptions of the previous result. Assume
further that 9 is a uniform domain with Ahlfors regular boundary and that w; € RH,(o).
Then, if k; = dw; /do it follows that

(5.39) Z/ (ka>pd(7S/ (kXQ)de'-
e /¢ 0

with an implicit constant depending on the allowable constants of D, C, p, and the implicit
constant in the condition w; € RH (o).



UNIFORM RECTIFIABILITY AND ELLIPTIC OPERATORS. PART II. 29

To see this we recall that from Gehring’s Lemma it follows that there exists s > 1 such
that w;, € RH,4(o). This, combined with Harnack’s inequality, implies that (5.35) holds

with 7 = (K)2)”. As a result (5.36) readily gives (5.39):

S [ Y a3 [ () are S [ () ao
m=1"<m 1 < Om

QIGD/

Na
<Y (0w ST,

m=1
where we have used Harnack’s inequality (to change the pole of the elliptic measure from
Xoto X5 and the fact that N, is uniformly bounded).

We will use the previous remark to estimate (5.32). Fixed then 1 < k < N, and we split
the proof in three different steps.

Step 2.1. Estimate for Ny(k).
If i € No(k) we have Q' c Q \ Q € dQ \ Py and

dist(Q',8Q \ Py) < dist(Q', 0Y) < £(0)).

Since Q' c Py, we may apply Lemma 5.33 to P and the collection D’ := {Q' : i € Ny(k)}
(note that we are in the first scenario), to obtain by Remark 5.38

(5.40) 3 /Q (W)’ dor < /P (K5%)” dor < 0. (A)' 7,

ieNo(k)
where in the last inequality we have used (5.29).
Step 2.2. Estimate for Q; € ¥ (k).

By (5.31), the cardinality of (k) is uniformly bounded. Moreover, for each Q; € ¥ (k)
we necessarily have Q; N Py = @, since otherwise, the condition £(Q;) > {(Py) guarantees
that P, C Qj, and thus Q' cP.cQ ; € . This contradicts that O e D# o. On the other
hand Q; N Py = @ implies Qi C Q; C 0Q\ Py, for each i € Nj(k). Combined with (5.30),
this yields

dist(Q, 6Q \ Py) < dist(Q', Q) < £(0Y).

Applying Lemma 5.33 to Py and the collection D’ = {Q' : i e N i(k)} (note that we are in
the first scenario), we obtain from (5.39)

(5.41) 3 /v(kXPk)pdo's/ (K% do < (A7,
Nk’ ¢ Pr

where again we have used (5.29). The above estimate holds for each Q; € ¥ (k), which as
uniformly bounded cardinality, hence

(5.42) DY /Q (K57 do < (AP

QjeFi1(k) ieN (k)
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Step 2.3. Estimate for Q; € F2(k).
For each Q; € #>(k) we claim that
(5.43) > / (KXr)" dor < / (Xr)” dor.
iEN;(k) Qj
In fact, for each i € N(k), by (5.30) and Qi C Qj, we have
(5.44) €Q" ~ 6Q) < £Q)).
Since Q' € Dg# o, we either have 0'nQ; = i=0,0rQ; ¢ Q'. In the first case, note that

dist(Q', 0)) < dist(Q', 0) 5 €(Q),

hence Q' U Q i € Alxg;, C £(Q))) which xg, being the center of Q; an a uniform constant C.
By Lemma 2.39 applied with © = Q (or Harnack’s inequality if £(Q;) ~ €(Py)), Lebesgue’s
differentiation theorem, Lemma 2.44, and Harnack’s inequality one can see that

K7 (y) » 0 (Q) K (y),  for oae. y € Alxg,, C UQ))).

This, Lemma 5.33 with Q; and the collection D" := (O :ie N;(k), o'n Q; = @} (we are in
the second scenario), and Remark 5.38 lead to

545 ) / (K*7)" do ~ (™(0)" > / XQJ

ieN;(k) ieN;(k)
0'nQj=o 0'nQ;=a

< (a)XPk(Qj))p/Q. (kXQ-f)de'z/QA (kXPk)de'.

On the other hand, if Q; ¢ Q', then (5.44) gives £(Q;) ~ £(Q"), hence the cardinality of
{Q':ie Nj(k),Q; ¢ Q'}is uniformly bounded. On the other hand, by Lemma 2.39 applied
with D = Q (or Harnack’s inequality if £(Q") ~ £(P})), Lebesgue’s differentiation theorem,
Lemma 2.44, and Harnack’s inequality we readily obtain

K57 (y) ~ 07 () K (), for o-a.e. y € Q'.
Thus, using Corollary 2.46 we have

(5.46) > / (KX)” do ~ (0*7(0))" > / XQ,

ieN;(k) ieN;(k)
020, 020,
< (% (0))” Z / (kXQ/‘>pd0'
ieN; (k) Qi
0'20;

s (@*7(Q))" /Q (ko) do

J

~ / (k*7)" dor.
Q.

J
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The claim (5.43) now follows from (5.45) and (5.46).
To continue, let us recall that for each Q; € F2(k),
0Q)) <{(Py) and dist(Qj, Pr) < €(Pp),

where the second inequality is (5.31). Consequently, each Q; € F>(k), is contained in some
P e N(Py) :={P € D : &(P) = €(Py), dist(P, Pr) < {(Py)} and, clearly, the cardinality
of N(Py) is uniformly bounded. Recalling that ¥ = {Q;}; is a pairwise disjoint family of
cubes, by (5.43), Corollary 2.46, and (5.29), we arrive at

G547 > Z/ k) do s / (kX7 )

QjeF2(k) iENj(k) QjeFa(k)
=/ (k) do < > / (K¥7) d(7</ (k") do < oru(A)' P
Qj
QjELTJZ(k) g PeN(Py)

Step 2.4. Final estimate.

We finally combine (5.32) with (5.40), (5.42), and (5.47), and use the fact that N, < N; =
Ni(n, C4r) to conclude that

N>
(5.48) / (kX)" dos £~ oA S o (AP
- k=1
Hence, we have obtained the desired estimate (5.4), and therefore the proof of Theorem
5.1 is complete, provided that the sawtooth domain €. is compactly contained in Q and
modulo the proof of Lemma 5.33.

To consider the general case we need the following theorem which generalizes [KKPT,
Theorem 4.1] and [DJK] (see also [DKP, Zha]):

Theorem 5.49 ([CHMT, Theorem 1.1]). Let D be uniform domain D Ahlfors regular
boundary, and let A be a real (non necessarily symmetric) uniformly elliptic matrix on
D. The following are equivalent:

(1) The elliptic measure wy associated with the operator L = — div(AV) is of class A
with respect to the surface measure.

(2) Any bounded weak solution to Lu = 0 satisfies the Carleson measure estimate

(5.50) sup — // |Vu(Y)|2 dist(Y,0D)dY < C||u||Lw(D)
OxE()D r B(x,r)ND
<r<oo

The involved constants depend on the allowable constants and the constant appearing in the
corresponding hypothesis of the implication in question.

Consider next a general sawtooth domain Q. = Qg o which, although bounded, is not
necessarily compactly contained in Q. By (2) = (1) in Theorem 5.49 with D = Q, in
order to obtain that the elliptic measure associated with L relative to 2, belongs to A. with
respect to the surface measure, we just need to see that (2) holds with D = Q.. With this
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goal in mind we take u, a bounded weak solution to Lu = 0 in €, and let x € 9Q and
0<r<oo.

Given N > 1 we recall the definition of Fy = F (27" £(Q)) in Section 2.2 and write
QY := Qg o- Note that by construction £(Q) > 27N £(Q) for every Q' € Dy, o, hence QY
is compactly contained in Q (indeed is at distance of the order 2~V £(Q) to Q). Then we can
apply the previous case to obtain that for each N, the associated elliptic measure associated
with L relative to QY satisfies the A, property with respect to the surface measure of 6QY,
and the implicit constants depend only on the allowable constants. Hence (1) = (2) in
Theorem 5.49 with D = QF implies
s s [l SR WY < ey < Cllifea,

€00V 5" S B(z,)nQY

O<s<oo
since u is a bounded weak solution to Lu = 0 in Q, and so in each Qj}, where & =
dist(-, #QY) and where the implicit constants depend only on the allowable constants.

Let w, and wY denote the elliptic measures to L relative to Q, and Q¥ respectively, and
let oV = ﬂn_lbgi\/ denote the surface measure of 0QY. By construction {QY}ys1 is an

increasing sequence of sets with Q, = Uy>1 QY. Hence, for any Y € Q, there is Ny > 1 such
that Y € QY for all N > Ny. Clearly 6Y(Y) , 6.(Y) as N — oo and

IVu(Y)P6Y (Yxan (Y) 7 [Vu(Y)P6.(Y)xa,(Y), asN — .

On the other hand since x € €., using the Corkscrew condition we can find a sequence
{xn)n=1 With xy € QY such that xy — x. In particular, B(x, r) C B(xy,2r) for sufficiently
large N. By Fatou’s Lemma and (5.51) it then follows

(5.52) // IVu(Y)*6,(Y)dY < liminf // IVu(Y)|*sN(Y) dY
B(x,)NQ. N=eo J) BlxrnQy

< lim inf // IVul* Y () dY < 1 |lullf=q.)»
N—oco )] B(xn.2rNQY

where the implicit constant depend only on the allowable constants. Since x, r, and u are

arbitrary we have obtained as desired (2) in Theorem 5.49 for D = Q. and as a result we

conclude that w, € A (o). This completes the proof for an arbitrary sawtooth domain €.,

and therefore the proof of Theorem 5.1 modulo the proof of Lemma 5.33. O

Proof of Lemma 5.33. For fixed k € Z, write D; := {Q" € D’ : {(Q’) = 27%¢(Q)}, which is
a pairwise disjoint family. In the first case since Q" C Q, we have that k > 0; in the second
case since £(Q’) < C2£(Q), we may assume that k > —log, C,. Set then kg = 0 in the first
case and ko the integer part of log, C;. We define for k > —kg

Af = {x € Q: dist(x,0Q\ Q) S 27(Q)},  Af ={x€dQ\ Q: dist(x, Q) s 27F0(Q)),

so that for appropriate choices of the implicit constants, each Q" € Dy is contained in ei-
ther A; (the first case) or A, (the second case). Recall that by the thin boundary property
of the dyadic decomposition D (cf. (2.14)), there is y € (0, 1) such that for all k£ under
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consideration,
o(A) £ 2790(Q),  o(A) 5 2770(Q),

Set

F_:={Q cdQ\ Q: &Q) < Ci1L(Q), dis(Q’, Q) < C1(Q)}.
Observe that each Q' € ¥_ is contained in some dyadic cube é with Z(é) £(Q) and
dlst(Q 0) < £(Q) depending on C{. We may therefore define a collection of distinct cubes
F {Qm}z 1» all of the same dyadic generation, one of which (say, Ql) contains Q, with
K(Qm) ~ £(Q), and with dlSt(Qm, 0) < £(Q) for every m, such that each Q’ € ¥_ is contained
in some Qm € F., and

N
UA; cQcQ, and UA,:C Uém
k k m=2
Clearly, we have #7,. = N, = Na(n, Cag, C1). Using all the previous observations we get for
any s > 1

(5.53) Z/,hdo-— Z > / hdo

o'eDy k=—ko Q'€D),

[

< hdo
Z /A;UA;

k=—ko

<> o@guAp's (/ h d0'>
UWQU‘I

k=—ko
1

/ 3 d(f) ‘
UnOn

) (Z o da) X

<0'(Q)Z <][ h dcr).

This shows (5.34). To obtain (5.36) we comblne (5.53) together with (5.35) and the fact that
o(Q) = o(Qp) for every 1 < m < N, by the Ahlfors regular property and the construction
of the family .. O

(o8]

<Y (2 Yo)"”

k=—kg

6. OPTIMALITY

As we mentioned in the introduction, the class of elliptic operators we consider is optimal
to guarantee the A, property. In this section we illustrate the optimality from two different
points of view. See Proposition 6.2 and Theorem 6.7.

As mentioned right after Definition 2.10, one has that w; € A (o) if and only if wy €
RH (o) for some g > 1 in the following sense: w; < ¢ and the Radon-Nikodym derivative
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k. := dw; /do satisfies the reverse Holder estimate (2.12). We can then define the RH,(0)-
characteristic of w;, as folows

1 -1
(6.1) [wLlra, = sup (][ (ki(q’r))qdcr) ! <][ ké(q’r) d0'> ,

where the sup runs over all g € 9Q, 0 < r < diam(Q), and all surface balls A’ = B’ N 0Q
centered at Q2 with B’ C B(g, r).

The following example, based on the work in [MM] and communicated to us by Bruno
Guiseppe Poggi Cevallos, illustrates the relationship between the size of the constant in the
DKEP condition and the RH,(c")-characteristic of elliptic measure.

Proposition 6.2 (MM, Pog]). There exist A and a sequence {A;}; of diagonal elliptic
matrices with smooth, bounded, real Qe}ﬁciem‘s in R}, uniformly continuous on R}, such
that A converges to A uniformly on R and the following hold:

(1) sup — // ( sup IVﬂj(Y)lz(S(Y))dXz j.
gerr=! T M BGg.rnRy YeB(x,%%)

O<r<oo

(2) Foreach q > 1, one has w; € RHy (o) with lim [wjlra, = o, where w; denotes the
j—oo
elliptic measure associated with the operator L; = — div(A;(-)V).
(3) The elliptic measure associated with the operator L = — div(A(-)V) is singular with

respect to the Lebesgue measure on OR" = R"!,

On the other hand, we can immediately extend Theorem 1.6 to a larger and optimal class
of elliptic operators, pertaining to the condition on the oscillation of the coefficient matrix:

Corollary 6.3. Let Q Cc R", n > 3, be a uniform domain with Ahlfors regular boundary. Let
A be a (not necessarily symmetric) uniformly elliptic matrix on Q such that

2
(6.4) sup —— // OSAAX)” 1 < oo
qeoQ) B(q,n)NQ 6(X )

O<r<diam(Q)

where 0sc¢(A, X) := sUpyzepx sx)2) MAY) = AZ)N. Then the following are equivalent:

(a) The elliptic measure wy associated with the operator L = —div(A(-)V) is of class
A With respect to the surface measure.

(b) 0Q is uniformly rectifiable.

(c) Qs a chord-arc domain.

Proof. Let ¢ be a non-negative radial, smooth bump function supported in the unit ball, such
that fR" @wdX = 1. We define for X € Q and ¢ € (0, 6(X))

1 X-Y
P AX) = g0+ AX) = //R - (t> AY) dY,
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and write for X € Q

(65)  AX) = Puy AX) + (Id —P¥> AX) =2 AX) + (ﬂ(X) - ﬁ(X)) .

It is easy to see that Ais uniformly elliptic with the same constants as A and also that for
every X € Q

osce(A, X) and sup | A(Y) — AY)| < osc(A, X).

6.6) |[VAX)|<C
o(X) YeB(X,6(X)/4)

Note that under assumption (6.4), the second estimate in (6.6) allows us to invoke [CHMT,
Theorem 1.3] to obtain that w;, € Aw(0) if and only if wr; € Ao(0). On the other hand,

the first estirilate in (6.6) readily implies that A satisfies (H1) and (H2). Hence, Theorem 1.6
applied to A gives at once the desired equivalences. We remark that the direction (¢) =
(a) was also proved earlier in [Rio, Theorem 2.4]. O

Corollary 6.3 is sharp in terms of the class of operators satisfying (6.4). We recall the
following examples that illustrate this fact.

Theorem 6.7. [FKP, Theorem 4.11] Suppose « is a non-negative function defined on R?
satisfying the doubling condition: a(X) < Ca(Xy) for any Xy € R% and X € B(Xp, 6(Xp)/2).
Assume that o*(x, t)dxdt/t is not a Carleson measure in the unit square. Then there exists
an elliptic operator L = — div(A(-)V) on R_%, such that

(1) Foranyinterval I c R and T(I) = I x [0, £(])],

1 2 1 2
6.8) // OSCAND) o ar < € [// D 1]
| J) 7 t Ul Jron t

(2) The elliptic measure wy is not of class A (dx) on the unit interval [0, 1].

Remarks 6.9. The examples above are constructed using quasi-conformal maps in R2. In
[FKP] the authors show the estimate (6.8) holds when osc(A,(x, 1)) is replaced by the oscil-
lation of elliptic matrix A(X) minus the identity matrix, i.e., a(X) := SUPyepx.s50x)/2) MAY) -
Id|. It is easy to see that for those examples (6.8) follows. As in [CFK, Theorem 3], one can
extend the 2 dimensional examples to R’} with n > 3 by using the Laplacian operator in the
remaining tangential directions.
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