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Abstract

We consider the Riesz transforms ∇L−1/2, where L ≡ −div A(x)∇, and A
is an accretive, n× n matrix with bounded measurable complex entries, defined
on Rn. We establish boundedness of these operators on Lp(Rn), for the range
pn < p ≤ 2, where pn = 2n/(n + 2), n ≥ 2, and we obtain a weak-type estimate
at the endpoint pn. The case p = 2 was already known: it is equivalent to the
solution of the square root problem of T. Kato.

1 Introduction

Let A = A(x) =
(
aj,k(x)

)
j,k

be an n×n matrix where the coefficients aj,k are complex-

valued L∞(Rn) functions. We assume that this matrix satisfies the following ellipticity
(or “accretivity”) condition: there exist 0 < λ ≤ Λ < ∞ such that

λ |ξ|2 ≤ Re A ξ · ξ̄ and |A ξ · ζ̄| ≤ Λ |ξ| |ζ|,

for all ξ, ζ ∈ Cn. We have used the notation ξ · ζ = ξ1 ζ1 + · · ·+ ξn ζn and therefore ξ · ζ̄
is the usual inner product in Cn. Note that then A ξ · ζ̄ =

∑
j,k aj,k(x) ξk ζ̄j. Associated

with this matrix we define the second order divergence form operator

Lf = − div(A∇f),

which is understood in the standard weak sense by means of a sesquilinear form.
The accretivity condition stated before allows one to define the square root L

1
2 =√

L. Recently P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and P. Tchamitchian
have obtained an affirmative answer to the so-called Kato square root problem for
elliptic differential operators (see [AHLMT]). Namely, they have shown the following:
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Theorem 1.1 ([AHLMT, Theorem 1.4]) For any operator as before the domain
of
√

L coincides with the Sobolev space H1(Rn) and ‖
√

Lf‖2 ∼ ‖∇f‖2.

In [AT], assuming the result of Theorem 1.1, the authors obtain optimal Lp bounds
for

√
L and for the associated Riesz transforms ∇L−1/2, under the extra hypothesis

that one has a Gaussian upper bound for the heat kernel (along with “Nash-type” local
Hölder continuity). In this paper, we consider the same problem without this extra
hypothesis, i.e., we study the Lp boundedness of ∇L−1/2 and

√
L for general second

order elliptic operators L as above. Our results are new only in the case n ≥ 3. Indeed,
Gaussian bounds (and Nash’s estimates) always hold for the kernel of the semigroup
e−tL in dimensions 1 and 2 [AMT], in which case the result of [AT] (or also that of
[DM]) applies. In fact, the argument of [DM] requires only the Gaussian upper bounds,
and not the Hölder continuity. We remark that in the presence of Gaussian bounds,
the boundedness on Lq for q ≤ 2 of the Riesz transforms associated to other operators
(for example, the Laplace-Beltrami operator on a manifold) have been treated (see
[CD]). For the operators under consideration in the present paper, it is known that
the Gaussian bounds may fail in dimensions n ≥ 5 [AT], pp. 32-33 (also [MNP], where
the example originates). Our main result says:

Theorem 1.2 Let pn = 2 n
n+2

. Then the Riesz transform ∇L− 1
2 is of weak type (pn, pn)

and thus bounded on Lq(Rn) for pn < q ≤ 2.

Remarks We learned during the preparation of this manuscript that the Lq bound-
edness of the Riesz transforms ∇L− 1

2 on the same range of q has also been obtained
independently by S. Blunck and P. C. Kuntsmann [BK1], by essentially the same
method as ours. Moreover, they have applied this technique to related matters, in-
cluding Lp estimates for Riesz transforms associated to higher order elliptic operators
[BK1], as well as to the existence of an H∞ functional calculus [BK2] in Lp spaces.
We are grateful to Pascal Auscher and Alan McIntosh for bringing their work to our
attention.

We should point out that p′n = 2? where 2? = 2 n
n−2

is the Sobolev exponent of 2.
On the other hand, we recall that, by a standard duality argument, the L2 estimate of
the Riesz transform is equivalent to

‖
√

L∗f‖2 ≤ C ‖∇f‖2.

where L∗ is the adjoint operator of L that satisfies its same properties. In view of this
fact, the L2 estimate for the Riesz transform follows from Theorem 1.1 obtained in
[AHLMT]. Let us also note that the problem is invariant with respect to the taking
of adjoints, i.e., L and L∗ are operators of the same nature and if one of them satisfies
the required hypotheses then the other one also does.

By using a standard duality argument, one has that from the boundedness of ∇L− 1
2

on some Lq(Rn) it follows an Lq′(Rn) domination of the square roots by the gradient.
Then, as a consequence of our main result we get the following.
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Corollary 1.3 Let 2 ≤ q < 2 n
n−2

. Then,

‖
√

Lf‖q ≤ C ‖∇f‖q.

The paper is organized as follows. In the next section we prove some technical
estimates that will be used in the sequel. In Section 3 we prove our main theorem.

2 L2 off-diagonal estimates

Given E, F two subsets of Rn, we will denote by dist(E, F ) the distance between

them. We will use the notation ~f for n-tuples of functions. The identity operator
will be written as I. We begin by stating the fundamental average decay estimates
satisfied by the heat kernels associated to our operator L.

Lemma 2.1 Let E and F be two closed sets of Rn. Then, for all t > 0,∥∥e−t Lf
∥∥

L2(F )
≤ C e−

dist(E,F )2

c t ‖f‖L2(E), supp f ⊂ E∥∥t L e−t Lf
∥∥

L2(F )
≤ C e−

dist(E,F )2

c t ‖f‖L2(E), supp f ⊂ E∥∥t
1
2 ∇e−t Lf

∥∥
L2(F )

≤ C e−
dist(E,F )2

c t ‖f‖L2(E), supp f ⊂ E∥∥t
1
2 e−t L div ~f

∥∥
L2(F )

≤ C e−
dist(E,F )2

c t ‖~f ‖L2(E), supp ~f ⊂ E

where c > 0 depends only on λ and Λ, and C > 0 on n, λ and Λ.

An analogous result for resolvent kernels (I+t2L)−1 is proved in [AHLMT], Lemma
2.1, via an integration by parts argument similar to the proof of Cacciopoli’s inequality.
The present lemma follows from the one for resolvent kernels by functional calculus.
Alternatively, one can simply modify the integration by parts argument of [AHLMT],
to obtain a direct proof of the present lemma, as in the proof of the parabolic Cacciopoli
inequality. We omit the details.

Lemma 2.2 Let m ≥ 1 be an integer (eventually, we shall choose m depending only
upon n). Let E and F be two closed sets of Rn. Then,∥∥∥t

1
2 ∇L− 1

2

(
I − e−t L

)m
div ~f

∥∥∥
L2(F )

≤ C

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E), supp ~f ⊂ E

and∥∥∥t
1
2 ∇

(
∇L− 1

2

(
I−e−t L

)m
)∗

~f
∥∥∥

L2(F )
≤ C

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E), supp ~f ⊂ E

where C > 0 depends only on n, m, λ,Λ, and(
∇L− 1

2

(
I − e−t L

)m
)∗

~f = −
(
L− 1

2

(
I − e−t L

)m
)∗

div ~f. (1)
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To prove this result we need to establish an auxiliary lemma that says that the
composition of two operators that satisfy two L2 off-diagonal estimates as in Lemma
2.1 verifies a similar inequality.

Lemma 2.3 Let {At}t>0 and {Bt}t>0 two families of linear operators. Assume that
for all closed sets E, F , for all f such that supp f ⊂ E and for all t > 0 we have the
following estimates

‖Atf‖L2(F ) ≤ C e−
dist(E,F )2

c t ‖f‖L2(E) and ‖Btf‖L2(F ) ≤ C e−
dist(E,F )2

c t ‖f‖L2(E).

Then, for all t, s > 0 we have

‖AtBsf‖L2(F ) ≤ C e
−dist(E,F )2

c max{t,s} ‖f‖L2(E).

Proof. Set ρ = dist(E, F ) and G = {x : dist(x, F ) < ρ/2}. Then, it is clear that
dist(E, G) ≥ ρ/2 where we have written G for the topological closure of the set G.
Besides, by definition dist(Rn \G, F ) ≥ ρ/2. Then,∥∥At

(
Bsf ·χG

)∥∥
L2(F )

≤
∥∥At

(
Bsf ·χG

)∥∥
L2(Rn)

≤ C
∥∥Bsf

∥∥
L2(G)

≤ C e−
dist(G,E)2

c s ‖f‖L2(E) ≤ C e−
ρ2

c s ‖f‖L2(E).

Note that in the second inequality we have used that At is uniformly bounded on
L2(Rn), fact that follows from the hypotheses on At by taking E = F = Rn. The third
inequality is just the L2 off-diagonal estimate assumed on Bs. On the other hand,

∥∥At

(
Bsf ·χRn\G

)∥∥
L2(F )

≤ C e−
dist(Rn\G,F )2

c t ‖Bsf‖L2(Rn\G) ≤ C e−
ρ2

c t ‖Bsf‖L2(Rn)

≤ C e−
ρ2

c t ‖f‖L2(E),

where the first inequality is a consequence of the L2 off-diagonal estimate for At and the
last one holds because, as before, Bs is uniformly bounded on L2(Rn). If we combine
the two estimates we get:

‖AtBsf‖L2(F ) ≤
∥∥At

(
Bsf ·χG

)∥∥
L2(F )

+
∥∥At

(
Bsf ·χRn\G

)∥∥
L2(F )

≤ C
(
e−

ρ2

c t + e−
ρ2

c s

)
‖f‖L2(E)

≤ C e
−dist(E,F )2

c max{t,s} ‖f‖L2(E).

2

Now we can give a proof of Lemma 2.2.
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Proof of Lemma 2.2. We prove the first estimate since the other one follows by
duality. We use the following representation of the Riesz transform:

∇L− 1
2 h =

1

2
√

π

∫ ∞

0

∇e−s Lh
ds√

s
=

√
m + 2

2
√

π

∫ ∞

0

∇e−(m+2) s Lh
√

s
ds

s

which leads to

∇L− 1
2

(
I − e−t L

)m
div ~f = C

∫ ∞

0

∇e−s Le−m s L
(
I − e−t L

)m
e−s L div ~f

√
s

ds

s

= C
( ∫ t

0

. . . +

∫ ∞

t

. . .
)

= C (It + IIt).

Notice that we have used the commutation property of the semigroup. Now we study
each operator separately. For the first one we have(

I − e−t L
)m

=
m∑

k=0

(
m
j

)
(−1)k e−k t L = I +

m∑
k=1

ck e−k t L

and then

It =

∫ t

0

∇e−s Le−m s Le−s L div ~f
√

s
ds

s

+
m∑

k=1

ck

∫ t

0

∇e−
k t
2

Le−(m+2) s Le−
k t
2

L div ~f
√

s
ds

s

= It,0 +
m∑

k=1

ck It,k.

Then,

‖It,0‖L2(F ) ≤
∫ t

0

∥∥∇e−s Le−m s Le−s L div ~f
∥∥

L2(F )

√
s

ds

s

=

∫ t

0

∥∥(
s

1
2 ∇e−s L

)
◦

(
e−m s L

)
◦

(
s

1
2 e−s L div)~f

∥∥
L2(F )

s−
1
2

ds

s

≤ C ‖~f ‖L2(E)

∫ t

0

e−
dist(E,F )2

c m s s−
1
2

ds

s

= C ‖~f ‖L2(E) t−
1
2

∫ ∞

1

e−
dist(E,F )2

c t
s s

1
2

ds

s
,

where we have used Lemma 2.3 and noted that every operator satisfies the correspond-
ing L2 off-diagonal inequality due to Lemma 2.1. Now we bound the integral:∫ ∞

1

e−
dist(E,F )2

c t
s s

1
2

ds

s
≤ C

∫ ∞

1

(
dist(E, F )2

c t
s

)−(m+ 1
2
)

s
1
2

ds

s

= C

(
dist(E, F )2

t

)−(m+ 1
2
)
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since m ≥ 1. Then we have obtained

‖It,0‖L2(F ) ≤ C t−
1
2

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E).

Now, fix 1 ≤ k ≤ m, then

‖It,k‖L2(F ) ≤
∫ t

0

∥∥∇e−
k t
2

Le−(m+2) s Le−
k t
2

L div ~f
∥∥

L2(F )

√
s

ds

s

=

∫ t

0

∥∥∥(√
k t

2
∇e−

k t
2

L
)
◦

(
e−(m+2) s L

)
◦

(√
k t

2
e−

k t
2

L div
)

~f
∥∥∥

L2(F )

2

k t

√
s

ds

s

≤ C ‖~f ‖L2(E) t−1

∫ t

0

e
− dist(E,F )2

c max{k t/2,(m+2) s}
√

s
ds

s

≤ C ‖~f ‖L2(E) t−1 e−
dist(E,F )2

c t

∫ t

0

√
s

ds

s

≤ C t−
1
2 e−

dist(E,F )2

c t ‖~f ‖L2(E)

≤ C t−
1
2

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E).

Let us observe that because of Lemma 2.1 in the composition of the operators above
each of them verifies an L2 off-diagonal estimate. This fact allowed us to employ
Lemma 2.3. We also used that 1 ≤ k ≤ m. Collecting this estimate and the one
proved for It,0 we get

‖It‖L2(F ) ≤ ‖It,0‖L2(F ) +
m∑

k=1

|ck| ‖It,k‖L2(F ) ≤ C t−
1
2

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E).

Next, we proceed with the estimate of IIt.

‖IIt‖L2(F )

≤ C

∫ ∞

t

∥∥(√
s∇e−s L

)
◦

(
e−s L − e−(s+t) L

)m ◦
(√

s e−s L div
)
~f
∥∥

L2(F )
s−

1
2

ds

s
.

We know that the first and the last operators satisfy an L2 off-diagonal estimate. We
are going to show not only that the one in the middle verifies a similar estimate but
also that we gain some extra decay (t/s)m. Namely, let E, F be two closed sets and g
such that supp g ⊂ E, then

∥∥(
e−s L − e−(s+t) L

)
g
∥∥

L2(F )
=

∥∥∥− ∫ t

0

d

dr
e−(s+r) Lg dr

∥∥∥
L2(F )

≤
∫ t

0

∥∥(s + r) L e−(s+r) Lg
∥∥

L2(F )

dr

s + r
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≤ C ‖g‖L2(E)

∫ t

0

e
−dist(E,F )2

c (s+r)
dr

s + r

≤ C
t

s
e−

dist(E,F )2

c s ‖g‖L2(E),

where in the last step we used that t ≤ s ≤ s + r ≤ s + t ≤ 2 s, and Lemma 2.1. Then
we have proved that∥∥∥s

t

(
e−s L − e−(s+t) L

)
g
∥∥

L2(F )
≤ C e−

dist(E,F )2

c s ‖g‖L2(E)

uniformly on t. Then this operator composed with itself m times will satisfy the same
inequality in view of Lemma 2.3. We can use this estimate to bound ‖IIt‖L2(F ) as
follows:

‖IIt‖L2(F ) ≤ C ‖~f ‖L2(E)

∫ ∞

t

e−
dist(E,F )2

c s

(
t

s

)m

s−
1
2

ds

s

= C ‖~f ‖L2(E) t−
1
2

∫ 1

0

e−
dist(E,F )2

c t
s sm+ 1

2
ds

s

≤ C ‖~f ‖L2(E) t−
1
2

∫ ∞

0

e−
dist(E,F )2

c t
s sm+ 1

2
ds

s

= C ‖~f ‖L2(E) t−
1
2

(
dist(E, F )2

t

)−(m+ 1
2
) ∫ ∞

0

e−s sm+ 1
2

ds

s

≤ C t−
1
2

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E).

Collecting the estimates for It and IIt we get∥∥t
1
2 ∇L− 1

2

(
I − e−t L

)m
div ~f

∥∥
L2(F )

≤ C t
1
2

(
‖It‖L2(F ) + ‖IIt‖L2(F )

)
≤ C

(
dist(E, F )2

t

)−(m+ 1
2
)

‖~f ‖L2(E).

2

3 Proof of Theorem 1.2

The proof of this result is inspired by [DM] where a general setting is developed to prove
estimates without assuming explicit regularity on the space variables of the kernel.
That method can be applied to derive the boundedness of the Riesz transforms if
one additionally assumes some pointwise decay on the heat kernel. Besides, this decay
allows one to get some weighted norm inequalities for weights in the Muckenhoupt
classes. This has been achieved in [Ma1], [Ma2] by means of a good-λ inequality for
some new sharp maximal function.
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In [CD], the condition about the pointwise decay for the heat kernel is weakened
and it is observed that weighted L2 estimates for it are enough. Here, a further step
is taken: we derive the bounds for the Riesz transforms from integrated off-diagonal
estimates on the heat semigroup that hold for the considered operators L, contrary to
pointwise decay.

We set T = ∇L− 1
2 and, for simplicity of notation, we set

p ≡ pn = 2n/(n + 2),

and we use this convention through the rest of the paper. We want to prove∣∣{x ∈ Rn : |Tf(x)| > α}
∣∣ ≤ C

αp

∫
Rn

|f(x)|p dx.

Let us fix α > 0 and without loss of generality we can assume that f ∈ Lp(Rn) is
nonnegative. Let us write M for the Hardy-Littlewood maximal function. We use the
Calderón-Zygmund decomposition for f(x)p at height αp. Then there exists a collection
of pairwise disjoint cubes {Qj}j such that

{x ∈ Rn : M(fp)(x)
1
p > α} =

⋃
j

Qj,

and they satisfy the following property

α ≤
( 1

|Qj|

∫
Qj

f(x)p dx
) 1

p ≤ C α. (2)

Then, we write f = g + b = g +
∑

j bj where

g(x) = f(x) χRn\∪jQj
+

∑
j

( 1

|Qj|

∫
Qj

f(y) dy
)
χQj

(x),

bj(x) =
(
f(x)− 1

|Qj|

∫
Qj

f(y) dy
)
χQj

(x).

Estimate (2), the fact that p > 1 and standard arguments yield that 0 ≤ g(x) ≤ C α
for almost every x ∈ Rn. Besides,∫

Qj

bj(x) dx = 0 and
( 1

|Qj|

∫
Qj

|bj(x)|p dx
) 1

p ≤ C α. (3)

Then,∣∣{x : |Tf(x)| > 3 α}
∣∣ ≤ ∣∣{x : |Tg(x)| > α}

∣∣ +
∣∣{x : |Tb(x)| > 2 α}

∣∣ = I + II.
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We analyze every term separately. For I we use that T is bounded on L2(Rn) (that is
a consequence of [AHLMT, Theorem 1.4]) and the properties of g to get

I ≤ 1

α2

∫
Rn

|Tg(x)|2 dx ≤ C

α2

∫
Rn

g(x)2 dx ≤ C

α2
α2−p

∫
Rn

g(x)p dx

=
C

αp

[ ∫
Rn\∪jQj

f(x)p dx +
∑

j

|Qj|
( 1

|Qj|

∫
Qj

f(x) dx
)p

]
.

The second term in the previous inequality can be estimated as follows∑
j

|Qj|
( 1

|Qj|

∫
Qj

f(x) dx
)p

=
∑

j

∫
Qj

( 1

|Qj|

∫
Qj

f(x) dx
)p

dy ≤
∑

j

∫
Qj

Mf(y)p dy

≤
∫

Rn

Mf(y)p dy ≤ C

∫
Rn

f(x)p dx

This inequality allows us to conclude that

I ≤ C

αp

∫
Rn

f(x)p dx.

Now we proceed with II. Let us fix an integer m > n−2
4

. We write tj = `(Qj)
2, where

`(Qj) stands for the side length of the cube Qj. We will use the notation Q∗
j = 2 Qj,

where in general we write ρ Q for the ρ-dilated Q, that is, for the cube with same
center as Q and with side length ρ `(Q). Let E∗ = Rn \ ∪jQ

∗
j . Then,

Tb =
∑

j

Tbj =
∑

j

T
(
I − e−tj L

)m
bj +

∑
j

(
T − T

(
I − e−tj L

)m)
bj

=
∑

j

Djbj +
∑

j

(T −Dj)bj

where we write Dj = T
(
I − e−tj L

)m
. Thus,

II ≤
∣∣∣{x :

∣∣∣ ∑
j

Djbj(x)
∣∣∣ > α

}∣∣∣ +
∣∣∣{x :

∣∣∣ ∑
j

(T −Dj)bj(x)
∣∣∣ > α

}∣∣∣
≤

∣∣∣ ⋃
j

Q∗
j

∣∣∣ +
∣∣∣{x ∈ E∗ :

∣∣∣ ∑
j

Djbj(x)
∣∣∣ > α

}∣∣∣ +
∣∣∣{x :

∣∣∣ ∑
j

(T −Dj)bj(x)
∣∣∣ > α

}∣∣∣
= II1 + II2 + II3.

The first term can be estimated as follows

II1 ≤
∑

j

|Q∗
j | ≤ 2n

∑
j

|Qj| = 2n
∣∣{x : M(fp)(x) > αp}

∣∣ ≤ C

αp

∫
Rn

f(x)p dx.

Let us study II3. We first use that T is bounded on L2(Rn) to get

II3 =
∣∣∣{x :

∣∣∣T( ∑
j

(
I−

(
I−e−tj L

)m)
bj

)
(x)

∣∣∣ > α
}∣∣∣ ≤ C

α2

∥∥∥∑
j

(
I−

(
I−e−tj L

)m)
bj

∥∥∥2

2
.
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Besides,

I −
(
I − e−tj L

)m
= I −

m∑
k=0

(
m
k

)
e−k tj L = −

m∑
k=1

(
m
k

)
e−k tj L

and hence

II3 ≤
C

α2

m∑
k=1

∥∥∥∑
j

e−k tj Lbj

∥∥∥2

2
. (4)

We fix 1 ≤ k ≤ m. Then,∥∥∥∑
j

e−k tj Lbj

∥∥∥
2

= sup
h

∣∣∣ ∫
Rn

∑
j

e−k tj Lbj(x) h(x) dx
∣∣∣ (5)

where the supremum is taken over all functions h ∈ L2(Rn) with ‖h‖2 = 1. Take such
a function h. We set

S(0, j) = 2 Qj; S(l, j) = 2l+1 Qj \ 2l Qj, l = 1, 2, . . . ,

and h(l,j)(x) = h(x) χS(l,j)(x). In this way, we obtain∣∣∣∣ ∫
Rn

∑
j

e−k tj Lbj(x) h(x) dx

∣∣∣∣ =

∣∣∣∣ ∑
j

∞∑
l=0

∫
Rn

e−k tj Lbj(x) h(l,j)(x) dx

∣∣∣∣
=

∣∣∣∣ ∑
j

∞∑
l=0

∫
Qj

bj(x)
(
e−k tj L

)∗
h(l,j)(x) dx

∣∣∣∣
=

∣∣∣∣ ∑
j

∞∑
l=0

∫
Qj

bj(x)
((

e−k tj L
)∗

h(l,j)(x)−
((

e−k tj L
)∗

h(l,j)

)
Qj

)
dx

∣∣∣∣
≤

∑
j

∞∑
l=0

‖bj‖Lp(Qj)

∥∥∥(
e−k tj L

)∗
h(l,j) −

((
e−k tj L

)∗
h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

≤ C α
∑

j

∞∑
l=0

|Qj|
1
p

∥∥∥(
e−k tj L

)∗
h(l,j) −

((
e−k tj L

)∗
h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

, (6)

where
(
e−k tj L

)∗
is the adjoint operator of e−k tj L. In the third equality we have

used that bj has vanishing integral and
((

e−k tj L
)∗

h(l,j)

)
Qj

denotes the average of(
e−k tj L

)∗
h(l,j) over the cube Qj. The last step above is just the second property in

(3). Now we are going to apply Poincaré-Sobolev inequality. Note that p′ = 2 n
n−2

= 2?

which denotes the Sobolev exponent of 2. Then,∥∥∥(
e−k tj L

)∗
h(l,j) −

((
e−k tj L

)∗
h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

≤ C
∥∥∥∇(

e−k tj L
)∗

h(l,j)

∥∥∥
L2(Qj)

≤ C t
− 1

2
j e

−dist(S(l,j),Qj)
2

c k tj ‖h(l,j)‖L2(S(l,j)).

10



where the last estimate follows from the fourth conclusion in Lemma 2.1 by duality,
and we have used that k ≥ 1. If l = 0 we have that dist(S(l, j), Qj) = 0. For l ≥ 1, we
get dist(S(l, j), Qj) ≥ 2l−2 `(Qj). Thus,

e
−dist(S(l,j),Qj)

2

c k tj ≤ e
−4l−2 `(Qj)

2

c k tj ≤ e−c 4l

since tj = `(Qj)
2 and 1 ≤ k ≤ m. We have eventually proved that∥∥∥(

e−k tj L
)∗

h(l,j) −
((

e−k tj L
)∗

h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

≤ C t
− 1

2
j e−c 4l ‖h‖L2(S(l,j)).

Plugging this estimate into (6) and using again that tj = `(Qj)
2 we get∣∣∣∣ ∫

Rn

∑
j

e−k tj Lbj(x) h(x) dx

∣∣∣∣ ≤ C α
∑

j

∞∑
l=0

|Qj|
1
p t

− 1
2

j e−c 4l ‖h‖L2(S(l,j))

≤ C α
∑

j

∞∑
l=0

|Qj|
1
2 e−c 4l |2l+1 Qj|

1
2

( 1

|2l+1 Qj|

∫
2l+1 Qj

|h(y)|2 dy
) 1

2

≤ C α
∑

j

|Qj| ess inf
y∈Qj

M
(
|h|2

)
(y)

1
2

∞∑
l=0

e−c 4l

2
l n
2

≤ C α
∑

j

∫
Qj

ess inf
y∈Qj

M
(
|h|2

)
(y)

1
2 dx

≤ C α

∫
∪jQj

M
(
|h|2

)
(x)

1
2 dx

≤ C α
∣∣∣ ⋃

j

Qj

∣∣∣ 1
2 ∥∥|h|2∥∥ 1

2

1

= C α
∣∣{x ∈ Rn : M(fp)(x)

1
p > α}

∣∣ 1
2 . (7)

Notice that in the last inequality we have used that ‖h‖2 = 1 and the previous one
follows from Kolmogorov’s lemma since the Hardy-Littlewood maximal function is of
weak type (1, 1) (see, for example, [Du, p. 102]). Collect this estimate, (4) and (5) to
conclude that

II3 ≤ C
∣∣{x ∈ Rn : M(fp)(x)

1
p > α}

∣∣ ≤ C

αp

∫
Rn

f(x)p dx

and we get the desired estimate for II3. Now we are concerned with II2. By Cheby-
chev’s inequality we get

(II2)
1
2 =

∣∣∣{x ∈ E∗ :
∣∣∣ ∑

j

Djbj(x)
∣∣∣ > α

}∣∣∣ 1
2 ≤ 1

α

∥∥∥∑
j

Djbj

∥∥∥
L2(E∗)

=
1

α
sup

~h

∣∣∣ ∫
Rn

〈 ∑
j

Djbj(x),~h(x)
〉

dx
∣∣∣, (8)
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where 〈·, ·〉 denotes the inner product in Rn and the supremum is taken over all Rn-

valued functions ~h ∈ L2(E∗) with ‖~h‖L2(E∗) = 1. Let us fix such a function ~h. For every

j, we define as before ~h(l,j)(x) = ~h(x) χS(l,j)(x). Let us recall that E∗ = Rn \ ∪jQ
∗
j . In

this way, and since supp~h ⊂ E∗ ⊂ (2 Qj)
c we have∣∣∣ ∫

Rn

〈 ∑
j

Djbj(x),~h(x)
〉

dx
∣∣∣ =

∣∣∣ ∑
j

∞∑
l=1

∫
Rn

〈
Djbj(x),~h(l,j)(x)

〉
dx

∣∣∣
=

∣∣∣ ∑
j

∞∑
l=1

∫
Qj

bj(x) D∗
j
~h(l,j)(x) dx

∣∣∣
=

∣∣∣ ∑
j

∞∑
l=1

∫
Rn

bj(x)
(
D∗

j
~h(l,j)(x)−

(
D∗

j
~h(l,j)

)
Qj

)
dx

∣∣∣
≤

∑
j

∞∑
l=1

‖bj‖Lp(Qj)

∥∥∥D∗
j
~h(l,j) −

(
D∗

j
~h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

≤ C α
∑

j

∞∑
l=1

|Qj|
1
p

∥∥∥D∗
j
~h(l,j) −

(
D∗

j
~h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

, (9)

where D∗
j is the operator given in (1) with t = tj, and we have used both properties in

(3). We apply Poincaré-Sobolev inequality and Lemma 2.2 to get∥∥∥D∗
j
~h(l,j) −

(
D∗

j
~h(l,j)

)
Qj

∥∥∥
Lp′ (Qj)

≤ C
∥∥∥∇D∗

j
~h(l,j)

∥∥∥
L2(Qj)

= C
∥∥∥∇(

T
(
I − e−tj L

)m)∗~h(l,j)

∥∥∥
L2(Qj)

≤ C t
− 1

2
j

(
dist(S(l, j), Qj)

2

tj

)−(m+ 1
2
)

‖~h(l,j)‖L2(S(l,j))

≤ C `(Qj)
−1 2−2 (m+ 1

2
) l ‖~h‖L2(S(l,j)),

since tj = `(Qj)
2 and for l ≥ 1 we have dist(S(l, j), Qj) ≥ 2l−2 `(Qj). We now plug

this estimate into (9) and it follows that∣∣∣ ∫
Rn

∑
j

〈
Djbj(x),~h(x)

〉
dx

∣∣∣ ≤ C α
∑

j

∞∑
l=1

|Qj|
1
p `(Qj)

−1 2−2 (m+ 1
2
) l ‖~h‖L2(S(l,j))

≤ C α
∑

j

∞∑
l=1

|Qj|
1
2 2−2 (m+ 1

2
) l |2l+1Qj|

1
2

( 1

|2l+1Qj|

∫
2l+1Qj

|~h(y)|2 dy
) 1

2

≤ C α
∑

j

|Qj| ess inf
y∈Qj

M
(
|~h|2

)
(y)

1
2

∞∑
l=1

2−l
(
2 (m+ 1

2
)−n

2

)
≤ C α

∣∣{x ∈ Rn : M(fp)(x)
1
p > α}

∣∣ 1
2 ,

12



where in the last step we used that m > n−2
4

and so 2 (m + 1
2
) − n

2
> 0, and we have

proceeded as in (7). Then we can use this estimate, (8) and that M is of weak type
(1, 1) to get

II2 ≤ C
∣∣{x ∈ Rn : M(fp)(x)

1
p > α}

∣∣ ≤ C

αp

∫
Rn

f(x)p dx.

The proof of the fact that T is of weak type (p, p) is now completed by collecting the
estimates that we have obtained for I, II1, II2 and II3.
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