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As ESTIMATES VIA EXTRAPOLATION OF CARLESON MEASURES
AND APPLICATIONS TO DIVERGENCE FORM ELLIPTIC
OPERATORS

STEVE HOFMANN AND JOSE MARIA MARTELL

ABSTRACT. We revisit the “extrapolation method” for Carleson measures, introduced in
[LM] to prove Ao estimates for certain caloric measures, and we present a purely real
variable version of the method suitable for establishing A, estimates. To illustrate the
use of this technique, we then reprove a well known result of [FKP].

1. INTRODUCTION

In this article we revisit a technique introduced in work of Lewis and Murray [LM], and
developed further in [HL], [AHLT], [AHMTT]," and which has come to be known as the
“extrapolation method” for Carleson measures. The method is a bootstrapping technique
for proving scale invariant estimates on cubes (e.g., reverse Holder estimates, Carleson mea-
sure estimates, BMO estimates), given that (very roughly speaking) the desired estimate
holds on those cubes @ for which some controlling Carleson measure p is sufficiently small
in the associated Carleson box Rg. The exact nature of this control (involving sawtooth
subdomains in Rg) will be made precise later.

In [LM], the extrapolation technique was used to prove reverse Holder estimates for
caloric measures in non-cylindrical (i.e., time-varying) domains; in this case p arose in the
quantitative description of the boundary. The results of [LM] were generalized in [HL],
where reverse Holder estimates for parabolic (and elliptic-harmonic) measures were estab-
lished for variable coefficient parabolic (and elliptic) equations, given appropriate Carleson
measure control of the coefficients. In particular, this work included an alternative proof,
via the extrapolation method, of a well known result of R. Fefferman, Kenig and Pipher
[FKP], that we shall discuss further in Section 3.

The results of [LM] and of [HL] are examples of “Carleson — A" extrapolation, in
which a given non-negative measure w is shown to belong to Ay, (or “weak A,”), using
properties of some controlling Carleson measure p. The results of [AHLT] and of [AHMTT]
involve “Carleson — Carleson” extrapolation, in which a non-negative measure in the half
space R’}fl is shown to be a Carleson measure, using properties of another controlling
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Carleson measure. In [AHLT], the technique was applied to prove the restricted version
of the Kato square root conjecture, for divergence form elliptic operators that were small
complex perturbations of real symmetric ones. An interesting feature of the “Carleson —
Carleson” extrapolation arguments in [AHLT] and [AHMTT] is that they were purely real
variable in nature —the bootstrapping procedure was separated from the applications to

PDE.

On the other hand, in [LM] and [HL], the extrapolation arguments were tied specifically
to the fact that one was working with harmonic or parabolic measures, and the main goal
of this article is to extract the real variable essence of “Carleson — A,,” extrapolation.

In this article, we shall present one new result and one new technical innovation. The
new result, Theorem 2.1 below, is a purely real variable treatment of “Carleson — A"
extrapolation. The new technical innovation of the present paper is the use of the pro-
jection operators Pr. In retrospect, these are quite natural when working with dyadic
sawtooth domains (cf. the “Main Lemma” of [DJK], where indeed a similar construction
has appeared).

In order to illustrate the method, and the use of Theorem 2.1, we then show how the
latter may be used to reprove the main theorem in [FKP]. To do that we prove some
versions of the “Main Lemma” in [DJK] adapted to discrete sawtooth domains (the precise
definitions are given below). The first result (cf. Lemma A.1) is written in terms of the
projection operators and we use it to reprove the main theorem in [FKP]. The second result
(cf. Lemma A.2) is interesting in its own right and is a dyadic analog of the main lemma
in [DJK]. The proofs of these results follow the ideas in [DJK], but are technically much
simpler, owing to the dyadic setting in which we work here.

An alternative formulation of the extrapolation result is given in [HM]. There we consider
a different characterization of A,, written in terms of the level sets of the weight, and we
discuss some of conditions that equivalently define this class of weights. That approach can
also be used to give a new proof of the main theorem in [FKP].

2. MAIN RESULT

2.1. Notation.

e We write |2 — y|oo = max{|z; — y;| : 1 < i < n}.

e Given a cube @) € R™ we denote its center by z¢ and its sidelength by ¢(Q). For any
7 > 0 we write 7 Q for the cube with center zg and sidelength 74(Q). By D(Q) we

denote the collection of dyadic subcubest of @ and D(Q)* = D(Q) \ {Q}. We also write
Q(x,1) for the cube centered at x with sidelength .

e We say that a non-negative Borel measure w is (concentrically) doubling if for every cube
(or ball) @ we have w(2Q) < C,w(Q). It is “dyadically doubling” if w(Q) < Cy, (Q'),
for every @ € D(Qy), and for every dyadic “child” Q" of Q). Here, Q) is either some fixed
cube, or R".

e Given two dyadically doubling non-negative Borel measures w and v, and a fixed cube
Qo (we allow Qg = R™), we say that w € Ag%’adw(y, Qo) if there exist constants # > 0 and
C' < oo such that for every @ € D(Qo) and for all Borel sets F' C @, we have

w(F) v(F)\’
2(Q) SC(u(@)) | 21)

#Note that the term “dyadic” here refers to the grid induced by Q; the cubes in D(Q) are dyadic cubes
of R™ if and only if @ itself is such.
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When v is Lebesgue measure we shall simply write w € A%*Y(Qq). It is known that
Agé’adic defines an equivalence relationship (cf. Lemma B.4 in Appendix B), and also that
condition (2.1) is equivalent to the following apparently weaker condition (see also (2.5) in
the case v = Lebesgue measure): there exist 0 < «, 8 < 1 such that for every @ € D(Qo)
and for every Borel set F' C @, we have that v(F)/v(Q) < « implies w(F)/w(Q) < S,
see [GR, Chapter 4] or [HM].

e Given two doubling non-negative Borel measures w and v, and a fixed cube Qo (we
allow Qo = R™), we say that w € Ay (v, Qo) if (2.1) holds for all @ C Qo and all Borel
sets F' C Q). Ay defines an equivalence relationship that can be equivalently defined
in terms of the analogous “weaker” condition described above, see [GR, Chapter 4] for
more details.

o Given a cube Q we write f, f(z)dz := |Q\ Jo () da.

e Let @ be a cube. We denote the associated Carleson box by Rg = @ x (0,4(Q)). We
will also at times work with the “short” Carleson box R%lort = Q x (0, 4(Q)/2), and

with the “Whitney box” Wg = Rq \ RE™™ = Q x [((Q)/2,((Q)).

e We write C for the set of Carleson measures in ]R?FH, i.e., the non-negative Borel measures
L on ]R’_“F'H for which the “Carleson norm”

lulle == sup Q™" u(Ro) (2.2)
QCR"

is finite; here, the supremum runs over all cubes () C R™. Analogously, given Q9 C R"
we write C(Qp) for the set of Borel measures that satisfy the previous condition restricted
to @ € D(Qo), thus

lellego) == sup Q17" u(Rg)-
Q€eD(Qo)

By slight abuse of notation', if Qo = R™ we simply write C = C(Qo).

e Given @ and a family of pairwise disjoint dyadic subcubes F = {Qr}r C D(Q) we
define the discrete sawtooth function ¢z (x) := >, {(Qk) Xq, (*). Notice that ¢ is a
step function supported in Up@r. We write Q7 = €y, for the domain above the graph
of Yz, that is, Qr := {(v,t) € R : ¢ > ¢z(x)}. Notice that Qr = R\ (UpRg,).
We allow F to be empty in which case ¢r(x) =0 and Qr = R”H See Figure 1.

e If i1 is a non-negative Borel measure on Riﬂ, then pr := p Xq, will denote its restriction
to the dyadic sawtooth Q.

e Given ) and F as before, we define the projection operator
Pr () = F(@) X oan (@) + 3 ( ]{2 Fw)dy) X, (2).
k k

One has that Pr o Pr = Pz, Pr is selfadjoint and ||Prf|rrmn) < || f]lLr@n) for every
1 < p < 00. Observe that if w is a non-negative Borel measure and F C @, then we may
naturally define the measure Pr w as follows:

ﬂQk!

tIndeed, the abuse is very slight, since one may cover an arbitrary cube @Q by a purely dimensional
number of dyadic cubes of comparable size, to show that (2.2) is controlled by the analogous supremum
taken only over dyadic cubes.
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FI1GURE 1. Discrete sawtooth Qr

In particular, Pr w(Q) = w(Q). Notice that Prw is defined in such a way that it coincides
with w in R™\ (UxQ%) and in each Q) we replace w by w(Qx)/|Qx| dx.

e Given @ and F as before, we introduce a new family F’ consisting of all the dyadic
“children” of the cubes in F. Notice that F' is a family of pairwise disjoint cubes in
D(Q), therefore we define P’ := Pz, which is the projection operator associated with
the family F’, and it satisfies the previous properties. We observe that if w is a non-
negative Borel measure and E C @, then Pzw(E) < 2" Prw(E). The converse inequality
does not hold in general, however if one assumes that w is dyadically doubling in @) then
Prw(FE) ~ Prw(E); thus it seems more natural to use Pz in place of P%.

2.2. A, estimates via extrapolation of Carleson measures.

Theorem 2.1. Let Qo be either R™ or a fized cube. Given My > 0, let pn € C(Qp) with
lellegoy < Mo

and let w be a non-negative, finite Borel measure in Qq, for which w(Q) > 0 for every
Q € D(Qo). Suppose that there exists § > 0 such that for every Q € D(Qo) and every
family of pairwise disjoint dyadic subcubes F = {Qy}r C D(Q) verifying

p(Rg N Qr)
burley = sup MEQORE) g (2.3)
Q'eD(Q) Q|
we have that Prw satisfies the following property:
|E| Prw(E) _ 1
Vee (0,1), 3C: > 1 such that |ECQ, — > — —=——=2>—]. 2.4
(01, 56 (Fee g Pra@ ) 2
Then, there exist ng € (0,1) and Cy < 0o such that, for every Q € D(Qo),
E| w(kE) 1
EFEcQ, —>1- = — > . 2.5
Q =t S(Q) = Co (25)

Furthermore, if w is dyadically doubling in Qo then w € AR*H(Qy).

Remark 2.2. The key hypothesis of the theorem, and the main point that must be verified
in applications, is that (2.3) implies (2.4), for sufficiently small 4.

Remark 2.3. We notice that if w is dyadically doubling in Qo, then Prw ~ Prw and
therefore it suffices to work with the “simpler” projection operator Pr. In that case,
we note that the implication (2.3) = (2.4) is equivalent to the apparently stronger

statement that (2.3) = Prw € AR*(Q). Indeed, for every Q' € D(Q), we have that
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lurlley < lnrlle) < 9, whence the implication (2.3) == (2.4) also holds for all such
@' in place of @. In turn, the fact that (2.4) holds for all Q" € D(Q) says precisely that
Prw e AZe(Q).

Remark 2.4. One can give an analog of Theorem 2.1 adapted to tents in place of boxes, that
is, in (2.3) one can replace Ry NQr by Ty NQr where Ty is the Carleson tent associated
to Q" and Qr is the domain above the (regular) sawtooth region which is formed by the
union of the cones with a fixed aperture and vertices in R’fﬁl \ Ug@x. The proof is almost
identical, we only need to apply the original [AHLT, Lemma 3.4] in place of our alternative
version contained in Lemma 2.7.

Remark 2.5. The extrapolation theorem is written in such a way that it contains both a
global and a local version. We also note the following observations:

e When @y = R", if w is concentrically doubling, then the conclusion of the theorem
improves immediately to w € A.

e For the local case, if w is concentrically doubling, then the conclusion w € AZ*¢(Qy)
also yields that w € A (3 Qo).

Remark 2.6. We notice that in the hypotheses of Theorem 2.1 the attention is restricted
to @ € D(Qo) and thus the conclusion (2.5) holds for all @ € D(Qq), which under dyadic
doubling implies w € A% (Q). If in our hypotheses we consider all cubes Q C Qg then
(2.5) holds for all @ C Q. This implies both w doubling and w € A (Qo) (see Section
3.1). For the proof it suffices to change the induction hypotheses (cf. “H(a)” below) and
consider all cubes Q C Q.

2.3. Proof of Theorem 2.1. As mentioned in the introduction, the proof follows the
strategy introduced in [LM], and developed further in [HL], [AHLT] and [AHMTT]. The
proof uses an induction argument with continuous parameter. The induction hypothesis is
the following: given a > 0,

There exist 1, € (0,1) and C, < oo such that for every @ € D(Qo)
satisfying u(Rg) < a|Q), it follows that
H(a)
E E 1
ECQ, u>1—na — Mz—.

QI — w(@) ~ Ca

The induction argument is split in two steps.

Step 1. Show that H(0) holds.

Step 2. Show that there exists b = b(n,d) such that for all 0 < a < My, H(a) implies
H(a+Db).

Once these steps have been carried out, the proof follows easily: pick k& > 1 such that
(k—1)b < My < kb (note that k only depends on b(n,d) and My). By Step 1 and Step

2, it follows that H(kb) holds. Observe that [|ullc(q,) < Mo < kb implies u(Rg) < kb|Q)|
for all @ C Qo, and by H(kb) we conclude (2.5). As observed before, if w is dyadically

doubling the obtained estimate implies w € A%*H¢(Qy).

Step 1. H(0) holds. If u(Rg) = 0 then we take F to be empty, so that Ry N Qr = Rg,
and Prw = w. Then (2.3) holds (since 0 < ¢) and therefore we can use (2.4) with w in
place of P w, which is the desired property.
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Step 2. H(a) implies H(a+ b). We will require the following Lemma, which was proved
in [AHLT, Lemma 3.4] in the case of regular sawtooth regions (see also [AHMTT]). We
recall that Rglort denotes the “short” Carleson box @ x (0,4(Q)/2).

Lemma 2.7. Let pu be a non-negative measure on RZLFH, and let a > 0, b > 0. Fiz a cube
Q such that p(Rg) < (a+0b)|Q|. Then there exists a family F = {Qy}r of non-overlapping
dyadic subcubes of QQ such that

n(Rg N Q)

lerle == sup —————=> <2"2p, IB| <
@ Q'eD(Q) Q|

where B is the union of those Qy verifying N(Rgf“) > a|Qpl.

a+b
a+2b

QL (26)

We postpone the proof until the end of this section. Taking Lemma 2.7 for granted
momentarily, we proceed with the proof of Step 2 of the Theorem.

Fix 0 < a < My and Q € D(Qo) such that pu(Rg) < (a + b)|Q|, where we choose b so
that 2"72p := §. We also fix E C Q with |E| > (1 —7)|Q|, where 0 < 1 < 1,5 and 74
is to be chosen. We may now apply the previous lemma to construct the non-overlapping
family of cubes F with the stated properties. Set

A=Q\ |J @ ¢= |J @ B= |J @
QrEF QrEFg00d QrEF\Fgood
where Fyood = {Qk € F : u(RSQh;’rt) < a|Qx|}. Then |B|/|Q| < (a+b)/(a+ 2b), by (2.6).

We shall also require the following “pigeonhole” lemma, which says that “most” of the
cubes @ have an ample overlap with E.

Lemma 2.8. Given 0 <1 < 1, we set

F1={Q € Fgood : |[EN Q| > (1 —1)[Qxl}, G = U Q-

QrEFL

Ifo<n<mn := ﬁ% (1 — ]\%‘L:'be), then |AU G1| > m Q.

Proof. Take 6 such that |B| = 0|Q|, and 6y = (My + b)/(Mo + 2b). By (2.6) and since
a < My we obtain that 8 < 8y:
a+b

0 0
Q=181 < 22210l < QL
We set B1 = Ug, eF,,,q\7 @k and observe that By C G C Q \ B. Hence,

EnBil= > ENQl<1-7) > |Qx

QrEFgood \F1 QrEFgood \F1
=1 =0)[B] <1 =9)|Q\B|=(1-%)(1-0)[Ql
Thus, using that 0 < 0y, we have
1-n)|Q < |E|=|ENA|+|ENB|+|ENG|+|EN B
<Al + (Bl +|Gi[+ (1 =) (1 - 6) Q]
= |A[+[G1| + [9+(1— i) (1-0)] Q]
<A+ |Gil+ [1 =7 (1—60)] |Q]

and therefore

1.
[AUGH =[A]+ 1G] = [ (1= 60) =n] |Q] = 57 (1 = 60) |Q] = m |,
where we have used that n <7 (1 —6y)/2 = n;. O
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We now return to the proof of Step 2. To this end, we apply Lemma 2.8. Given
Qr € F1 C Fgooa We have that M(RZ;;’”) < a|Q|. Moreover,

short U RQJ’ Qi} c D(Qk) with Q= U Q]’ QJ) = Z(Qk)/

7j=1
that is, the union runs over the dyadic “children” of Q. Then by pigeon-holing, there
exists at least one jy such that Q?ﬂo =: O}, satisfies

u(Rgy) < alQ} (2.7)

(there could be more than one jy with this property, but we just pick one). We define Fi
to be the collection of those selected “children” @}, with Qi € Fi. Then, for each such
@}, using the definition of F, and taking 0 < 77 = 27" n, (where 0 < 7, < 1 is provided by
H(a)), we have

Qi \ Bl < 1@k \ E| < 771Qx| = 712"|Q%] = na |Q4],
which yields |Q}, NE| > (1 —n,) |Q}|. With this estimate and (2.7) in hand, we can use the
induction hypothesis H(a) to deduce:

WQLNE) > 2 w(@),  YQ,eF. (2.8)

a
on~ the other hand, if we set G; = Ugyes, @ then |G1| = 27"|G4], by definition of Gy
and G1. Thus, by Lemma 2.8, having now fixed 77 above, we have that
[AUGH] = |A| +|Ci| = 27" m|Q| = m2 Q)
if n <y, from which it follows that

~ 1
IEN(AUGH)| > 5772|Q\ =: 10 | Q)

if n < ma/2, since |Q \ E| < n|Q].

We recall that the family F was constructed using Lemma 2.7 with 2”72 b := §. Conse-
quently, by (2.6), we may deduce that (2.3) holds, so in turn, by hypothesis, we can apply
(2.4) to the set £ N (AU G1), obtaining

Prw(EN(AUGH)) J 1
Prw(@) ~ Oy

As observed before, P w(Q) = w(Q). Thus, in order to establish the conclusion of H(a+b),
and consequently to complete the proof of Theorem 2.1, it remains only to show that

Prw(EN(AUG))) < Cw(E).
To this end, we use first the definition of P/, and then (2.8) to obtain
Prw(EN(AUG))) =Prw(ENA) + Prw(ENG))

—w(ENA) + Y WM(Q;) (2.9)
Q,EF1 k
E)+Ca Y w(@iNE)
QI.G]:l
< Cw(B).

This concludes the proof of Theorem 2.1, modulo Lemma 2.7.
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RZh/ort

v Q

FIGURE 2. “Stovepipe” S¢

Remark 2.9. As mentioned above, if w is dyadically doubling one can equivalently work
with Pr in place of P%. Indeed, the proof just presented can be easily adapted to that
projection operator: to estimate Prw(ENG1), in place of the second term in (2.9) we obtain
ZQ;eﬁl |Q). N E||Qk| ™' w(Qk), and by the doubling condition this quantity is controlled

by C., ZQ;G]—% W(Q;g)

Proof of Lemma 2.7. The proof is a “Corona” type stopping time argument, following
[AHLT, Lemma 3.4] and [AHMTT], although the essential idea appears already in [LM]
and [HL].

There are two cases. We recall that Wg = @ x [((Q)/2,¢(Q)), and that R%mrt =
Rg \ Wg.
Case 1: pu(Wg) > b|Q|. In this case ,u(Rg‘O”) < a|@], and we may set F := {Q}, so that
B =0 =Qr N Rg and the desired conclusions follow trivially.

Case 2: u(Wg) < b|Q|. In this case we perform a dyadic stopping time decomposition,
to extract a (possibly empty) family F := {Qx} of non-overlapping dyadic subcubes of @
which are maximal with respect to the property that

u(Sa.) > 26/Qul. (2.10)

where for Q' € D(Q), Sgr = Q' x[¢(Q")/2,£(Q)) denotes the “stovepipe” above Q' (see Fig-
ure 2). We note that Uy (R%:rt U SQk) = Ui (Qk x (0,£(Q))), and that by the maximality
of the cubes these unions are comprised of disjoint sets.

We define B to be the union of those Q) € F such that M(R%f“) > a|Qk|, and we may

now readily establish the second estimate in (2.6). Indeed, using (2.10) and the definition
of B we have

(a+20) Bl < Y (mES™) +n(Sa,)) < (ko) < (a+b)|Ql
k

Next, we turn to the first estimate in (2.6). We recall that Qr := R\ (UrRg, ). Fix
Q' € D(Q). If Q" C Qi for some k then trivially u(R¢g \ (UxRg,)) = 0. We may therefore
suppose that @' is not contained in any Qi € F. We write A := @Q \ (UxQx) and observe
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that

R\ (UkRe,) = (@ na) x (0.a@)) U | U (@ x [a@w.e@)) | 1)
QrCQ’

By the stopping time construction, for every Q" € D(Q) with Q" N A # @ we have
1(Sgr) < 2b1Q". (2.12)
We claim that
sup 1 ((Q'N4) x (2777(@),4Q))) < 2BIQ',
€

and given this claim, by monotone convergence we obtain

1 (@1 4) x (0,6(Q))) < 26|Q], (2.13)
which is the desired bound for the first piece on the right side of (2.11).

We establish the claim as follows. For each N € N, let Dy (Q') C D(Q') denote those
dyadic subcubes of Q" with sidelength 2=V ¢(Q"), and let Dy (Q’, A) C Dy (Q’) denote those
cubes in Dy (Q’) that meet A. Then

@ NnA)yx 27V @ u@)c  |J  Sern
QR"eDN(Q,A)
so that
p((QNA)x 2N @)u@)) < > wSe) <22 > Q1 <2,
Q"eDN(Q,A) Q"eDNn(Q,A)

where in the next-to-last inequality we have used (2.12). This proves the claim, and conse-
quently (2.13) also.

Turning to the remaining piece on the right side of (2.11), we note that
Qr X [£(Qr),4(Q") C Qf x [€(Q})/2,4(Q")) C Sq:,
where @} denotes the dyadic “parent” of Q. Therefore, by the maximality of Qj, we have
S n(@x [H@0.€@)) £ Y wSg) <20 Y Q)
Qr&Q’ QrCQ’ QrCQ’

=27 > |Qk| < 2|
QrcQ’

3. APPLICATION TO SECOND ORDER ELLIPTIC BOUNDARY VALUE PROBLEMS

3.1. Additional Notation.

e Given X € RTPI we write X = (z, 0(X)), that is, o(X) = dist(X, BR’jfl) .

e For any X, Y € R, we write | X — Yoo = max{|z — y|oo, |0(X) — 0o(Y)|}, notice that
this is the ¢*°-distance in ]R?FH. In this way, for any X € Rﬁ“ and 0 < r < 2p(X), we
write R(X,r) = {Y € R™™ : |Y — X | < 7/2} which is the cube in R’ with center X
and sidelength r (that is, radius r/2).

e If R is a cube in Rﬁ“, we denote its center by Xp and its sidelength by ¢(R) such that

R = R(Xg,{(R)). Notice that R C R'/*! yields £(R) < 2 o(Xg). Given 7 we denote by
T R the 7-dilation of R, that is, the cube with center Xp and with sidelength 7 ¢(R).

e Given a cube @ C R™ we set X = (2g,44(Q)) and Ag = (2@, 4(Q)).
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e A weight w is a non-negative locally integrable function. A weight induces a Borel
measure as follows: for any measurable set E we write w(E) := [, w(x) dz.

e Given a weight w and 1 < p < oo we say that w € RH, if there exists a constant C),

such that for every @)
1
<][ w(x)P d:c) P < C'p][ w(z) dx.
Q Q

Given a cube (g, if the previous condition holds for any cube @ C Q¢ we write w €
RHp(Qo)-

e Let Ay be the set of Muckenhoupt weights in R"”. That is, given w a non-negative Borel
measure on R™ we say that w € Ay if there exist 0 < «a, 5 < 1 such that for every cube
Q@ and for every measurable set F C Q we have

£ w(E)

Q= T w@
It is easy to see that this yields that w is doubling —one estimates w(AQ \ Q)/w(A Q)
for A sufficiently close to 1 and then iterates. This condition implies that w is absolutely
continuous with respect to the Lebesgue measure (we use the standard notation w < dx)
and that its Radon-Nikodym derivative k = dw/dx (which is a weight) satisfies k € RH,,
see [GR, Chapter 4] for details. Indeed one can alternatively define A, as the class of non-
negative Borel measures absolutely continuous with respect to the Lebesgue measure with
Radon-Nikodym derivatives in U, /RH,. Also, as mentioned above, A, can be defined in
terms of the estimates (2.1) with v being the Lebesgue measure.

e Given Q9 C R”, we have that Rg, = Ugep(qQ,)-Uq where D(Qo)* = D(Qo) \ {Qo},
and for every cube @ we write Ug = @ x [¢(Q),24(Q)). Notice that this is a Whitney
decomposition of Rg, with respect to the distance to the boundary R™. Observe that
the sets Ug are pairwise disjoint. See Figure 3. To avoid confusion, we point out that
the Whitney boxes Ug used here differ slightly from the boxes Wy used in the previous
section; this is merely a matter of technical convenience.

e Given Qo C R", we decompose R, into Whitney boxes R, = Ugep(Q,)-Uq. For every
f € LY(Qop) we define the dyadic averaging operator

PRfW = Y (] F2)dz) Xup )
QeD(@Qo)- 79
Note that in the sum there is at most one non-zero term since the sets Ug are a disjoint
partition of Rg,. We can alternatively define PSQOf(y) = fQ f(2)dz where Q = Q(y, s)
is the unique dyadic cube in D*(Qp) such that y € Q and s/2 < £(Q) < s. This definition
extends trivially to non-negative Borel measures.

3.2. Introduction. We work with real symmetric second order elliptic operators: Lf(X) =
—div(A(X) Vf(X)), X € RTM, with A(X) = (a;,(X))1<i,j<n+1 being a real, symmetric
(n+1) x (n+ 1) matrix such that a;; € L>°(R’™) for 1 <4,j <n+1, and A is uniformly
elliptic, that is, there exists 0 < A < 1 such that

AEP < AX)E-€ <A,
for all ¢ € R™"! and almost every X € R+

Some of the material below is taken from [Ken, Chapter 1], the reader might find conve-
nient to have this reference handy.
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Qo

FIGURE 3. Whitney decomposition of Rg,

The solutions of the Dirichlet problem are represented by the harmonic measure. Namely,
there exists a family of regular Borel probability measures {wf } XeRmH in R™ such that for

every f € Cp(R™), the function

uX)= [ 1) dwi (y)
is a classical solution of the Dirichlet problem
Lu=0in R}

3.1
_, (31)

“Jen

This family {wy} XernH! is called the L-harmonic measure. Sometimes, we will drop the

subindex L. For a fixed Xy € RTFI we let w = w™° and abusing of the notation w is called
the harmonic measure.

If wf <& dx, we write the Poisson kernel as kf, that is, kf = dwf /dz is the Radon-
Nikodym derivative of wi( with respect to dx. Again for a fixed Xy € ]R?f_+1 we let k = kX0
and k is called the Poisson kernel (notice that for every X € ]R’frl, wX and w are mutually
absolutely continuous).

We recall the fundamental relationship between solvability of the Dirichlet problem with
LP data, and higher integrability of the Poisson kernel, essentially as stated in [Ken, The-
orem 1.7.3].

Theorem 3.1. Given an operator L as above and 1 < p < 0o, the following statements are
equivalent:

(a) If u € Co(R™™) is a classical solution of the Dirichlet problem (3.1) with data f €
Co(R™) then

o gy < C 1Lt gy (3.2)

where u*(x) = Supyer, (z) [W(Y)] with To(z) = {Y € RT‘l s = Yleo < oY)},
a>0.
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(b) w € RHy; by this we mean that w < dx and for each cube @ C R™, we have that
the Poisson kernel satisfies kXQ € RH,(Q), uniformly in Q. % That is, there exists a
uniform constant Cy such that for all Q C R",

(][ ke (y)P dy)l/p < 00][, e (y)dy, VQ CQ. (3.3)

(¢) w < dz, and there is a uniform constant Cy such that for every @ in R™, we have
the scale invariant LP estimate

/ kX0 ()P dy < ColQI". (3.4)
Q

When (a) occurs we say that (D), is solvable for L or that L is solvable in LP. Tn such
case, for every f € L (R") there exists a unique u such that Lu = 0 in R (3.2) holds
and u converges non-tangentially to f a.e..

Given two operators Ly and L as above with associated matrices Ay and A, we define
their disagreement as

a(X):= — sup [EY)],  E(Y)=AY) - A(Y).
| X—Y]oo<0(X)/2

3.3. Main application. In this section, to illustrate the use of Theorem 2.1, we present
an alternative proof of a well known result of [FKP].

Theorem 3.2 ([FKP]). Let Ly and L be two operators as above with a being their dis-
agreement, and let wy, w denote their respective harmonic measures. Assume that
1 a(X)?
sup —-
Qer Q| Jr, o(X)
Then, we have that wy € As implies w € As,. More precisely, if Ly is solvable in some
LV, 1< p < oo, there exists 1 < ¢ < oo such that L is solvable in L7 .

dX < oo. (3.5)

We prove this result by using the extrapolation of Carleson measures Theorem 2.1. We

take du(X) = O’Q((XX); dX, that is, du(x,t) = a(x,t)? % dx and (3.5) gives p € C. Therefore,
to show that the harmonic measure w € Ay, it suffices to fix @) and a family F such that
(2.3) holds and prove that Prw satisfies the Ay condition in (2.4). We will introduce
some intermediate operators that allow us to pass from Lo to L. Since the smallness in
(2.3) is guaranteed above the discrete sawtooth region, we first introduce L; such that the
disagreement with Lo lives in that region (this is done in the first step). Once we have the
solvability of L; we will be changing this operator in subsequent steps and in the end we

will end up with L.

Let us call the reader’s attention to the fact that in any given step we work with L; and
L;11 in such a way that L; is the “knmown” and L;;; is the “unknown” in the sense that
we have some nice properties for L; and we want to infer them to L;;;. For any of these
operators L; we write w; for the harmonic measure and, when it exists, k; for the Poisson
kernel.

#Tn [Ken], condition (b) is stated in slightly different form, involving a global reverse Holder estimate for
harmonic measure with one fixed pole; it is well known that the present version of (b), as well as (c¢), are
also equivalent to condition (a).
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3.4. Auxiliary results. We summarize some well known results for divergence form ellip-
tic equations that we will use in the sequel. The reader is referred to [Ken, Chapter 1] and
the references therein for full details.

Theorem 3.3. There exists a unique function G : R x R — RU {+00}, G > 0
such that
i) G(-,Y) e W2R™I\ R(Y,r)) N Wi, (R™™Y) for each Y € R and r > 0.
(1) 1R 1,04 +
(i) LG(-,Y) = —0y for each Y € R’
(i1i) G(X,Y) = G(Y,X) for each X,Y € R+,

Remark 3.4. It is well known that the Green function enjoys several other properties, but
we shall make explicit use only of those listed above.

Lemma 3.5 (Caccioppoli). Let Q@ C R™ and let R be a cube in R such that TR C Rg
with 7 > 1. If Lu = 0 in Rq, then

][ Vu(Y)|?dY < Cypnr b(R)2 ][ u(Y)*dY. (3.6)
R TR
Lemma 3.6 (Comparison Principle). Given @ C R™, let u, v be two non-negative functions

such that u, v € W2(Raq); u, v € C(Raq); u‘2Q = ’U‘QQ =0; and Lu = Lv = 0 in Rag.
Then there is a C' = Cy, x such that for every X € R,

Lu(Ag) _ u(X) . u(Ag)
v(Ag) = v(X) = “o(dg) (3.7)

where Ag = (29, 4(Q)), and xq is the center of Q.
Lemma 3.7 (Doubling). There exists C = C(\,n) such that for every cube @ € R™
w*(2Q) < Cw¥(Q).

Lemma 3.8 (Caffarelli-Fabes-Mortola-Salsa). There exists a constant C = Cy, y < 00 such
that for every cube @, we have

w(@Q)=1/C, VX €4Q % [(Q),5UQ)]. (3.8)
Moreover, given X,Y € R such that | X —Y|s > 20(Y) we have

wX(Q(y, o(Y))
o(Y)=t

where the implicit constants depend only on dimension and ellipticity.

<

G(X,Y) ~ (3.9)

Lemma 3.9. Given Q C R", let Ly and La be elliptic operators such that L1 = Ly in Rg.
If the corresponding harmonic measures w1, wo are absolutely continuous with respect to the
Lebesgue measure (we write ki and ko for the Poisson kernels), then
X X
ky ©(y) = ky “(y), fora.e. y € %Q
Proof. The result is standard, and may be proved by a routine application of the comparison
principle (Lemma 3.6) to the respective Green functions. We leave the details to the
interested reader. O

Lemma 3.10. Let Q C Qo and set Xo = (2q,,44(Qo)), Xg = (2g,44(Q)) where xq, and
xq are respectively the centers of Qo and Q. If w < dx then

Xo
kXQ(y) ~ on ((g;), for a.e. y € Q. (3.10)
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Proof. By [Ken, Corollary 1.3.8], we have that for every cube Q C Q,

- wXoO
wa (@)~ wXo Eg§

The conclusion follows by Lebesgue’s differentiation theorem, as Ql Y. O

For an elliptic operator L, given u such that Lu = 0 in ]R’}fl, we define the square
function
1
Sau(z) = (// Vau(z, t)2 " dt) 2,
To(z)

To(z) = {(y,t) e R : |z — y| < at}

is the cone with vertex x and aperture . We then have the following:

where

Theorem 3.11 (Dahlberg-Jerison-Kenig [DJK]*). Suppose that for some p’ € (1,00), (D)
is solvable for L. Then, if u is a solution of the Dirichlet problem with data f € L' (R™),
we have, for all o > 0,

||SauHLp’(Rn) S Hf”LP’(R")7
where the implicit constant depends on dimension, ellipticity, «, and on the constants in
the LP estimates for the Poisson kernel of L.

Lemma 3.12. Let i be a Carleson measure and Qo be a cube in R™. For every 1 < p < oo
we have

/ / PO ()P duy, s) < llullecon / )P dy (3.11)
RQO QO
where ( )
n(Rq
lulleon == sup
@) epay 1@

Proof. For every A > 0, we set Ey = {z € Qo : Mgof(a:) > A}, where Méo is the dyadic
Hardy-Littlewood maximal function with respect to Qg. If A < A\g := fQo f(2) dz we have

1
#{(y,8) € Roy : P2 f(y) > A} < u(Rqo) < lulleigo) |Qol < leelle@o) /Q f(z)dz.
0

On the other hand, if A > Ay we can perform the Calderén-Zygmund decomposition
to construct a family of maximal (thus pairwise disjoint) cubes {Q;}; C D(Qo) such that
E)\ =U;Q;. Notice that ); C Qo, otherwise )y is maximal and then \g = JCQo f(z)dz > A
which is a contradiction.

Let (y,s) € Rq, satisfy PR f(y) = JCQ f(z)dz > A, where Q := Q(y,s) € D(Qo)* is
the unique cube with (y,s) € Ug. By maximality there exists j such that @ C @;. Then
y € Q C Qj and also s < 24(Q) < 2((Q;), therefore (y,s) € RQ; where Q7 is the dyadic
“parent” of Q;. As observed @; C Qo and then Q7 € D(Qop). Consequently,

i{(y.5) € Roy : P2 f(y) > A} < u(Uj Rgr) < 37 (R < lilleqan 3 193]
J J

= 2" lulleiqo) 1 EAI-

“In fact, the theorem in [DJK] is somewhat more general than the result stated here, but we do not
require the full version.
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Combining the two estimates obtained above, we conclude

J[ peswrantss = [~ o0 ) € Ray: POsw) > 5
Rq, 0

Ao dA > dA
Sl [ FG e [0 T v ey [ 1B
0

< Iulean ( [ 1M )

< Itlleq@o 18, £ g S Millece) / F( dz.

4. PROOF OF THEOREM 3.2

We want to apply Theorem 2.1 with the Carleson measure du(X) = a;(XX))Q dX. Given

d > 0 to be chosen, we fix @ and a family of pairwise disjoint subcubes F = {Q }r € D(Qo)
such that

Qep(Qo) 1@
Set Xo = (x0,44(Qo)) with = being the center of Q.

As Ly is solvable in some space LP' then wfo = wj X0 ¢ RH »(Qo) uniformly in Qg. This
means that w())( ¢ <« dx and k:gfo € RH,(Qo) uniformly in Q9. Without loss of generality we
can assume that 1 < p < 2 (as RH,, C RH,, for po < p1). As wfo is doubling, it suffices

to work with P in place of P, thus our goal is to show that Pr wi(o satisfies (2.4), with
uniform constants. Notice that for a Borel set F, from the definition we have

Pruf(E) = [ Pr(Xp)@)de(@) = u(Xo),

where v is a solution of the Dirichlet problem with data Pr(xg).

4.1. Step 0. We first make a reduction that allows us to use qualitative properties of the
unknown harmonic measure.

We define A, (z,t) = A(x,t) for t > v and A,(x,t) = Ag(z,t) for 0 < ¢t < . In the
following steps we work with L. in place of L. We note that the ellipticity constants of A,
are controlled by those of A and Ay, uniformly in . Also, [Ag(X) — A, (X)| < |Ao(X) —
A(X)| and thus the Carleson condition is controlled independently of . Notice that L. =
Ly in the strip {(z,t) : 0 <t < v} and then in every step, by the comparison principle, we
can use that all the harmonic measures are in RH,, (that is, they are absolutely continuous
with respect to dx and the Poisson kernels are in RH)). Notice that the constants will
depend on ~ but in our arguments we will only use this qualitatively and not quantitatively.
In particular in Step 1 we have a priori that wf(o < dx and that kf(o € LP(Qo) (this depends
on 7, but we only use this in a qualitative way). Therefore, we can carry out the whole
argument and in the end we shall establish the reverse Hélder inequality (4.13) below for
kr, with ¢ and Cp independent of 7. One may then pass to the limit as follows: by [Ken,
Xo

)

p. 41] for any smooth function ¢ we have (p,w;’) — <g0,wi(°> as v — 0". For any cube

Qo, and for every smooth function ¢ in L9 (Qo) Wlth ||<pHLq/(QO) = 1 we have

X — X
)] = lm [(2.3)| < sup 132 100 el (gny < Co s1p QoI wi(Qo)
Y Y
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< Cy |Q0|_1/q/-

Thus, Awfo (p) := <g0,w2(0> is a functional in (LY (Q))*, so wi(o < dz in Qy and k:i(o verifies

(3.4) with p replaced by ¢. This in turn implies as desired that L is solvable in L by
Theorem 3.1.

Taking this reduction into account we can assume without loss of generality that all the
harmonic measures below are absolutely continuous with respect to the Lebesgue measure
and also that the Poisson kernels satisfy (qualitatively) RH,.

4.2. Step 1. We introduce the operator L; defined as L1 = L in
Qo 1= Rg, NQr = R, \ (Ug,erRq,)

and L1 = Lg otherwise (see Figure 4). More precisely, L; is the divergence form elliptic
operator with associated matrix A1 = A in Qy and A; = Aj otherwise. We set £;(Y) =
A1(Y) = Ap(Y) = E(Y) Xq,(Y). In what follows we write wo = wr,, w1 = wr,, G1 = G-

Lo
Rq, Rq,
Qo Qo
L
Ly Ly
Lo
Lo 1

[ 1] ] e

Qo Qo
FI1GURE 4. Definition of L; FiGUurE 5. Whitney decomp. of {2

We recall that k3 ° € RH,(Qq), and in particular we have

/ ko (y)P dy < ColQo|' ™. (4.2)

0

Our immediate goal in Step 1 is to show that (4.2) remains true (with a different but
uniform constant, independent of (p), when k:g(“ is replaced by k:f(o, the Poisson kernel for
the operator L defined above.

To this end, let g > 0 be a smooth function supported on Qq, such that HgHLp/(QO) =1,
and let ug and u; be the corresponding solutions to the Dirichlet problems for Ly and L
with boundary data g. Then, following [FKP], we have

Fi(Xo) = Jua (Xo) ~ o(Xo)| = | /R WG (X0 Y) E(Y) Vug(Y) dY
< [ 196160, V) EY)[Tua( ) Y-
Qo

We perform a Whitney decomposition of Rg, with respect to the distance to the boundary
R™ such that Rg, = Ugep(qy)-Uq (see Figure 3). Since Qy = Rq, \ (Ug,erRq,) we have
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that Qo = Uger, Ug where Fi = D(Qo)* \ (UleFD(Qk)*)v see Figure 5. Then,

Fi(Xo) < Y [Vy G1(Xo, Y)[ [EY )| [Vuo(Y)|dY

Qer ’Ua
<Q; sup €] (/ Uy G (X0, V)Y ) (/UQ Vup(V)Pay)’.  (43)

By definition of Xy, we have that v(Y) = G1(Xo, Y) is a non-negative solution of Liv =0
in Rag, (as Xo ¢ Rag,) and 2Ug C Ryq,. Hence, we can apply Caccioppoli’s inequality
(Lemma 3.5) to obtain

Xo,Y)?
Gixov2ay s [ Gy,
20, 2, oY)
since £(Ug) = 4(Q) = o(Y') for every Y € 2Uq. By (3.9), for every Y € 2Ug we have
Gi(X0,Y) _ wi(Q)
oY) Q|

/ IVyG1(Xo,Y)?dY < Cy, Q)2
Ug

(4.4)

Thus,

w0 (Q)\2
/UQ IVy G (Xo,Y)|? dY<( 1] ) 12Uq|

~ (wf’t?(f?))2p AUQ (PSQO]C{(O (y))p dy ds,

where PSQ0 is the dyadic averaging operator defined above.

Next we see that supy, €| < a(Y) for every Y € i Uq, by a routine geometric argument
that we leave to the reader. Hence, we obtain

1
sup €] (/ |vyG1(X0,Y)y2dY)2
UQ UQ

SR, () o)
X0 2—p

(o) ([, (o) )’
17Q

We plug this estimate into (4.3):

N

~ Q)

1

Ao S S 0@ (D) ([ (pgoy)” W gya)’
QEF1 17Q
« (/UQ |vuo(1/)|2czy)é

(P ) A2l gy a4)

2 p )
(5 () [ e

QeF

IN
N
—
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We estimate each factor in turn. For I, we define

odyds
s

dﬂ(ya 5) = XQO (ya S) d:u(yv 3) = XQO (y7 S) a(ya 8)

so by the dyadic Carleson Embedding Lemma 3.12, we have

p -
e () i) S Vil | KO0
Qo

0

and therefore by (4.1) we obtain
1 p
1502 ||k'{(0|‘zp(Qo)-

We now estimate I1:

2—p
2
IT? |Q|/ ( 0l ) /UQ|Vu0(y,s)| sdyds| dx

QEF1
2—p n

S [ (0 X)) / Vao(y, o) 5! dy s da
QeF UQ

20(Q)
- > // Mk X, ) (@) /Wuo y,5)|*s' " dy ds dx
QeF

20(Q) 92—

S L (e xe)@) " [ P dyds
QG]: lz—y|<as
X, 2-p 2 1-n

(M(kmeO)(x)) Vuo(y, ) s' " dy ds dx

€f1 Uqg lz—y|<as

for a sufficiently large choice of . In turn, the last expression is bounded by

//RQ M (K X, (@ ))2,,/_ Vo (y, s)|? s' " dy ds dx

z—y|<as

2 —p n
< / (M X, ( / / [Vuo(y, o) s'~ dyds> dz
n lz—y|<as
2—p
— [ (m xQ0><m>) (Sa(u0) (2))? .
R
Since we have assumed that 1 < p < 2 we can use Holder’s inequality with exponent
p'/2 > 1 to obtain
=P
IT < ||Sauo| o [|M (k7 XQO)”LP S lallzer o) H’fXOHLp Q) = 1K IILp (Qo)’

where we have used Theorem 3.11 (and the fact that (D),s is solvable for Lg). Collecting
our estimates for I and /I we conclude

1
F1(Xo) = |u1(Xo) — uo(Xo)| S 82 [kl Lo(o)- (4.5)

Since kg(o satisfies (4.2), we may therefore obtain (4.2) for k*° by taking a supremum over
all g as above, and then hiding the error in (4.5) for ¢ small enough (here we use the
qualitative estimate Hk:f(OHLp(QO) < 00, see Step 0.)
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4.2.1. Self-improvement of Step 1. So far we have only proved that kf(o satisfies a scale
invariant L? estimate on the cube Qq (cf. (4.2)). In order to carry out Step 2, we will first
need to extend (4.2) to obtain a reverse Holder estimate on every dyadic subcube of Q.
The key fact that will allow us to do so is that, in (4.1), the sup is taken with respect to all
such cubes. The idea of the proof is to repeat the previous argument for a fixed Q € D(Qo)
to obtain the analogue of (4.2) on @, for the Poisson kernel associated to L, which is now
defined with respect to

Qg = RN Qr = R\ (UorerRqy)-
The definition of the operator L; will depend on @), but we will address this issue by use
of the comparison principle.
We now fix Q € D(Qo). Let Xg = (2g,44(Q)) where xg is the center of Q). Let us

define a new operator LY = Lin g and L9 = Ly otherwise in ]R’}fl, and let kfg denote
1

the Poisson kernel for L? with pole at Xg. We claim that
k3 (@)Pde < C1]Q|' 7, (4.6)
Q M

for some C; independent of Q). Indeed, if ) C @} for some @} € F then we obtain that
Qg =0 and LIQ = Lo in RTFI. In that case, (4.6) holds by hypothesis. Otherwise, since
trivially [[ulle) < llulleq,) for every @ € D(Qo), we have that the analogue of (4.1)
obviously holds on @, for the same family F (or to be more precise, for the family Fg
defined as the family of cubes in F that meet @). Consequently, if () is not contained in
any Qi € F, then we may simply repeat the previous argument with respect to ), and we
obtain (4.6) exactly as before. This proves the claim.
Now by (3.8), we have that fQ kfg (x)dx > 1/C, and combining this estimate with (4.6)
we obtain '
X 7 X
(][ k9 (2)P da;)” <00 ][ K9 (2) da. (4.7)
Q M Q M
Next, we want to pass from kfg to k:l)iQ. Notice that L = L? in R, therefore Lemma 3.9
yields that '
X X X
ki C(y) = kLlQ(y) = kL§3 (y), for a.e. y € %Q.

The latter fact, (4.7) and the doubling property imply that
1 1
<][ kf(@ (x)P dac) "< (][ kxg (x)P da:) i 5][ kXS (x)dx g][ k:f(Q (x) dx. (4.8)
1o Q Ly Q Ly 10
2 2

Consequently, by Lemma 3.10 we have
1

(£ wo@rde)” 4 ko@)de,  VQeDQ). (4.9)
1q 19

2 2
Then we use Lemma B.7 to obtain the following:

Conclusion (Step 1). There exists 1 < r < oo such that for every Q € D(Qo),

(]é k;f(O(gc)?“da:)i <C ]é kX0 (2) da. (4.10)

That 1is, wfco € Aggadic(Qo). Hence we deduce that the same is true for Pr wa, by the

following lemma.
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Lemma 4.1. Suppose that w € Agé’adiC(Q), for some fixed cube Q,'and suppose that F =
{Qr} € D(Q) is a non-overlapping family. Then also Prw € AggadlC(Q).

Sketch of proof. The proof is a straightforward consequence of the definition of P, plus
a simplified version of Lemma 2.8, using the apparently weaker definition of Agé’adlC(Q) in
(B.6) (for a different argument see [HM]). We omit the details. O

4.3. Step 2. We define the operator Ly such that the disagreement with L; lives inside
the Carleson boxes corresponding to the family 7. That is, set Ly = L in Rg, \ Qr =

Ug.erRqg, and Ly = Li otherwise (see Figure 6). We write w; = wﬁo and wy = wﬁo
for the corresponding harmonic measures for L; and Lo in R?fl with fixed pole at Xy =
(20,4 £(Qo)). We also let v; = v;° and v = 13° denote the harmonic measures of L; and

Lo with pole at Xy, with respect to the domain Qr = Rﬁ“ \ Ug,erRqg,. We notice that
L1 = Ly in QF and therefore 11 = vs.

Ly

Ly

O

Qo

FIGURE 6. Definition of Lo

We apply the sawtooth lemma for projections (see Lemma A.1 in Appendix A below) to
both L; and Ly and then we obtain that for all Q@ C D(Qp) and F C Q

(P}"Wi(F)>0i < Prui(F) _ Prwi(F)
Prwi(Q)) ~ Prui(Q) ™~ Prwi(Q)’
that is, Prw; € Agé’adiC(P]: Ui, Qo), for i = 1,2 —here we use that Prw; and Pry; are

dyadically doubling by Lemmas B.1 and B.2. As observed above, 11 = 12 and therefore
(A.2) implies that Priy = Prin. Since AR*(Qq) defines an equivalence relationship,

i=1,2;

and since we showed in Step 1 that Prw; € Agé’adic(Qo) (with respect to Lebesgue measure),
we also conclude that Prws € AR*HC(Qq):

Conclusion (Step 2). There exists 6, 8' > 0 such that

lﬂ>9<7wm<(m>9’
<|Q\ ~preio@) ~\IQlI) Q€ D(Q), FcCQ.

4.4. Step 3. To complete the proof it remains to change the operator outside Rg,. Thus,
we define L3 = Ly in Rg, and Lg = L otherwise (see Figure 7). Let us observe that Lz = L
in R

+
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Lo

Lo

Loy

Qo

FIGURE 7. Definition of L3

We want to show that (2.4) holds with Pz in place of Pz. We fix 0 < € < 1 and take
E C Qo with |E|/|Qo| > €. Let us observe that we can disregard the trivial case F = {Qo}
since we have

Prof®(E) _ jgn @i Q) _ |B|
wa?),(o(Qo) }80Iw3 (Qo) Qol —

We take j > 2 large enough such that 27741 < 1—(1—¢/2)V/". Weset Qo = (1-27711) Qg
and observe that Qo \ Qo = UrQ where A € D(Qp) and £(Q) = 277 £(Qy) for every Q € A.
Notice that A consists of all dyadic cubes in D(Qg) with sidelength 277 £(Qg) which are
adjacent to the boundary of Qy. We write F = E N Qo and observe that

e|Qo| < |E| < |F|+ Qo \ Qo] < |F|+ (1 — (1 —279th)n )\Q0|<|F|+ |Qol

and therefore |F'|/|Qo| > /2. Then, using the conclusion of Step 2 we obtaln

Xo(p FI\? 0
Prop () 5 o (||> o (2)".
Prws®(Qo) Qo 2
We notice that Prw;°(Qo) = wy°(Qo) > C by Lemma 3.8 and 73]:(,03 (Qo) = w3 °(Qo) <
We claim that
Prw;°(F) > C. Prwy(F). (4.11)
Assuming this for the moment and gathering the obtained estimates we conclude that
Prw;(E Prwy(F 0
L() > Prwi®(F) > C. Prwi®(F) Zcé]:w)%io() > ! (E) .
Pre;*(Qo) Pruwy " (Qo)

2
We show (4.11). Notice that Ly = L3 in Rg,, then as in Lemma 3.9 by the comparison
principle we have that k3 °(y) ~ kXO( ) for a.e. y € Qg Where the constants depend on j
and hence on e. This implies that wy®(F \ (Ug,erQk)) ~ wi®(F \ (Ug,erQk)) and then,

Pro(F) = (F\ (Uguer@i) + 3 & ,gﬁ?’“‘ WX(Qu)
QrLEF

> Cewy®(F\ (Uguer@Qr)) Z | |8C|2k| w3 (Qr)
QrEF
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and it remains to estimate the second term. Note that in the sum we can restrict ourselves
to those cubes in F that meet F', therefore we pick such a cube Q.

Case 1: Qi C Qp. As in the previous computations wg)fo (Qr) > C: wéﬁ) (Qr)-

Case 2: Q ¢ Qo. This means that Q;,\Qo # @ and then there is Q' € A with Q,.NQ’ # Q.
This yields that Q" C @y, (otherwise, Q; C Q' which implies that Qi C Qo\Qo contradicting
the fact that F'N Qg # @ since F' C QO.) Since @’ is adjacent to the boundary of Qy then
so is Q. We notice that there exists Qr € D(Qg) with £(Qx) = €(Qx)/2 (i.e., Q is a
dyadic “child” of Q) that it is not adjacent to 9Qy (we have Qr C @ since the case
F = {Qo} was disregarded). In this case we necessarily have Q) C Qo: if Qi meets Qg \ Qo
then there is Q" € A with Q; N Q" # @ and then either Q” C Q) which implies that Qj,
is adjacent to the boundary of Qg leading to a contradiction, or Q; C @Q” which implies
Qr C Q" C Qo \ Qo contradicting the fact that N Qy # @ since F C Q. Given this,

since wg(o is doubling we have
wi(Qr) > wi®(Qk) > Cewy*(Qk) > Cewy*(Qi).

Thus in both cases we can conclude as desired

|F' N Qk\wxo

B (Qr) = Ce Prwy (F).

Pruy®(F) > Cews®(F\ (Uguer@r)) +Ce Y
QrEF

Let us summarize what we have obtained so far (we recall that L3 = L):

Conclusion (Step 3). There exists 6 > 0 for which the following statement holds: given
€ (0,1), there is C. < oo such that for every Qo C R™, if F = {Qr}r C D(Qo) is a
pairwise disjoint collection of dyadic subcubes of Qo satisfying ||uxllc(gy) < 0, then

Xq
F °(F 1
F C Qo, u > = 73]:(4))%—() >
|Qol Pruw, @ (Q)  Ce

4.5. Step 4. In order to apply the extrapolation result we need to be able to fix the pole
relative to a given cube Qo, and show that the conclusion of Step 3 still applies to dyadic
subcubes of Q.

Proposition 4.2. There exists § > 0 for which the following statement holds: given € €
(0,1), there is Ce < oo such that for every Qo C R™ and for all Q € D(Qo), if F = {Qr}r C
D(Q) is a pairwise disjoint collection of dyadic subcubes of Q satisfying

n(Reg NQr)
sup ———"~

<4, (4.12)
Q'eD(Q) Q|

then
Prw, O (F) 1

F
FcCQ, Ll g = % e
Prwy, ~*(Q) c

>
[

Consequently, wXQ € Aggadic(Qo) uniformly in Qq. In particular, there exist 1 < ¢ < 0o
and a uniform constant Cy such that we have the following reverse Hélder inequalities for
all Qp C R™,

(f mowra) <af Kowa= g (413)
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Proof. Take an arbitrary € € (0,1) and let § > 0 and C, be given by the conclusion of Step
3. We fix Qo C R" and Q € D(Qo). Let F = {Qr}r C D(Q) be such that (4.12) holds.
Then, we use Lemma 3.10 and for every F' C () we obtain

Prwy@(F) = wi(F\ (Ug,erQr)) + Y |F|g ?M ?(Qw)
QrEF
P\ (UauerQ) | 5~ IFNQu 0 ()
() S A ()

_ PropO(F)  Prop ¥ (F)

- X - X :
WLQO (Q) P}'WLQO (Q)
Given F C @ with |F|/|Q| > € we apply the previous estimate and the conclusion of Step
3 with cube @ in place of )y to conclude that

Prwy, ® (F) o PSP o Prwy (F) > 1
XQ() ~ .FwL ( ) ~ XQ - C .
PfWL (Q) waL (Q) €

Next, by the extrapolation result Theorem 2.1, there exist 19 € (0,1) and Cyp < oo such
that for every @ € D(Qo),

Wy O(F) 1

F
FcCaq, | ’>1—17 = Xg z &
w, (@) M0

Q|
This fact plus the classical result in [CF] (see the proof of Lemma B.4 below) imply the
existence of ¢ = ¢qr, and a uniform constant Cl such that for all Q € D(Qo),

(f i) <af mwa

If we specify this estimate to Q = Qo we obtain as desired (4.13). We notice that the
X X
previous estimate and the fact that w; ©0 is doubling imply k I @ ¢ RH,(Qo). O

From this result, we see that (4.13) and Theorem 3.1 yield as desired that L is solvable
in L7

APPENDIX A. DISCRETE SAWTOOTH LEMMAS

We present some versions of the main lemma in [DJK] which are valid for discrete saw-
tooth regions based on dyadic cubes. The first result involves the projection operators and
was used in Step 2 above. The second result (cf. Lemma A.2) is interesting in its own right
and is a dyadic analog of the main lemma in [DJK]. For both lemmas, the proofs follow
the idea of the argument in [DJK], but are technically much simpler, owing to the dyadic
setting in which we work here.

Lemma A.1 (Discrete sawtooth lemma for projections). Let Qo be a fized cube in R,
let F = {Qr}r C D(Qo) be a family of pairwise disjoint dyadic cubes and let Pr be the
corresponding projection operator. Set Qr = Riﬂ \ (Ug,erRg,). We write w = w™° and
v =vX0 for the harmonic measures of L with fived pole at Xo = (z¢,,4¢(Qo)) with respect
to the domains R1+1 and QF. Let v = X0 be the measure defined by

#(F) = v(F\ (UguerBo) + 3 “E0) L m-nony),  Fcqe (A1)
OreF w(Qk)
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We observe that Priv depends only on v and not on w since

Pro(F) =P\ (UayerRa)) + 3 To P ufg n00s),  FoQu (42
QrEF
Then, there exists 0 > 0 such that for all Q € D(Qo) and F C Q, we have
Prw(Q) Pro(Q) ~ Prw(Q)

Proof. Set Ey = Qo \ (Ug,erQk). We first observe that (A.2) follows from the definitions
of Pr and v: given F' C Qq,

Pro(F) =v(FNE) + > M17(c,2 )=v(FNE)+ Y FOQH, v(Rg, NONF),

oo 1@kl

where we have used that the cubes in F are disjoint and therefore 7(Q) = v(Rg, NOQr).
We first show the righthand side inequality in (A.3). Let us fix Q € D(Qo), F' C Q.

Case 1: There exists Q € F such that @ C Q. Note that by (A.2) we have

Pro(F) o v(Re,n00r)  |F| YERw(@)  prw(r)

Prr(Q) 98GRy noqy) QI 908 u(@,)  Pre(@)

Case 2: (@ is not contained in any cube of F. Notice that if Qr € F with Qr N Q # O,
then Qx € Q. Using (A.2) we observe that

Pro(Q) = QN E)+ 3 'ﬂg%’ V(Rg, 1 997)
QeFQieQ ok
=v(@QNE)+ Y, v(Rg,NoVr) =v(RgN o). (A.4)
QrEF,QrCQ

Pick Ag = (2g,4(Q)) and notice that d(Ag,d0Qr) ~ d(Ag,R") ~ £(Q) (here we are
using that Q C @ for all Q) € F such that Q; N Q # ) thus Ag is a corkscrew point for
() with respect to both domains. Then, we can use [Ken, Lemma 1.3.8] (as Xo ¢ R2¢) to
obtain that for any Borel set G C Q,

(G) _ w(G)
Aoy~ WG A5
w ~ . .
O @)~ w@ o

The same occurs for v and 4@ and for any G C Rg N oQ:

A N v*(G) B v(Q)
VO N R e 095)  v(g N o) (8.6)

Using (A.4) and (A.6) we obtain

Pro(F) _ _v(F N Eo) 3 |F N Qx| v(Rg, N 09r)
Pro(Q)  v(RoNoQF) o 775 o 1@ v(RonoQr)
QFNE)+ ) £ Qs vAe(Rg, N0Qr).
acrBice 1

We claim that the following estimates hold (the proof is given below)
vAQ(F N Ey) <wiQ(F N Ey), v4Q(Rg, NdNF) < wle(Qy). (A7)
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These and (A.5) imply

Pro(F)

F 0 Q)
Pr(Q) ¥ CFNE)+ 3 2 whe

acrance |9
- w(F N Ey) n Z |F'NQk| w(Qk) _ Prw(F) _ Prw(F)
w(Q) Qkl  w(Q) w(@)  Prw(Q)’

(Qr)

QrEF,QrCQ

where in the last equality we have used that Prw(Q) = w(Q).

Once we have shown the righthand side inequality in (A.3) we apply Lemma B.4 and the
fact that Prw and Prv are dyadically doubling by Lemmas B.1 and B.2 to conclude that
for all @ € D(Qp) and F C Q

Prw(F) _ (Pﬁg(F))”?
Pru(Q) ~ \Pri(Q)

To complete the proof we need to show the estimates claimed in (A.7). We start with
the first one. We write u(Z) = w?(FNEy) and @(Z) = v#(F N Ep). We have the following:
u, @ >0, Lu = 0 in R, La = 0 in Qp, Ulpn = XPNEy ﬂ‘aﬂf = Xpnpg,- For every
7 € 9QF we notice that @(Z) < u(Z) —if Z € F N Ey, 4(Z) = u(Z) = 1; if Z ¢ F N Ey,
w(Z) =0 <wu(Z). Also, Lu = Lu = 0 in Q. Thus, the maximum principle yields that
w(Z) < u(Z) for all Z € Qr. We use that Ag € Qr since @ is not contained in any cube
of F to conclude as desired

VAQF N Ey) = a(Ag) < u(Ag) = wiQ(F N Ep).

Next we show the second estimate in (A.7). For every Qx € F, Qr S @Q we write
Ag, = (zg,,¥(Qr)) and observe that Ag, € 0Qr. Also notice that Rg, C R(Ag,,34(Qk))
which is the R"*1-cube centered at Ag, and with sidelength 3 £(Qj). Thus, by the doubling
property for v4@ we have

vAQ(Rg, NdNF) < vAQ(R(Ag,,34(Qr)) N9QF) < vi2(R(Ag,, /(Qr)/2) N ONF).

We write Sg, = R(Aqg,,{(Qr)/2) N 0Nr and observe that this set lives on the upper face

of R, . Consider u(Z) = w?(Qy), @(Z) = v#(Sg,). Notice that u, & > 0, Lu = 0 in R,

Lt =01in Qpf, U = XQpo ﬂ‘ag = Xsq, - We observe that if Z € 0Qr then u(Z) < u(Z):
F

indeed, if Z € Sg, then @(Z) = 1 ~ w?(Qx) = w(Z) and if Z ¢ Sg,, @(Z) = 0 < u(Z).

Also Lu = Lu = 0 in Qr. Therefore, the maximum principle yields that @(Z) < u(Z) for

all Z € Q. Then, proceeding as before we conclude

v2(Ro, N90F) S v12(Sq,) = u(Aq) S u(Ag) = w'?(Qx).
O

Lemma A.2 (Discrete sawtooth lemma). Let Qg be a fized cube in R™ and let F = {Qy }r C
D(Qo) be a family of pairwise disjoint dyadic cubes. Set Qr = ]Rf‘fl \ (Ug,erRq,). We
write w = w0 and v = vX° for the harmonic measures of L with pole at Xo = (z¢,,4¢(Qo))
with respect to the domains R’ffl and Qr. Let 7 = 0X0 be the measure defined by (A.1).
Then, there exists @ > 0 such that for all Q € D(Qp) and F C Q, we have

w(F)\’ o #(F) _ w(F)
<w<@>> S Q) S Q) (A.8)

N
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In particular, if F C Q \ (Ug,erRq,), we have

w(F) o v(F) w(F)
(W(Q)> s v(Rg NOQF) S w(@) (A.9)

Proof. We proceed as in the proof of Lemma A.1 and fix Q@ € D(Qp) and F' C Q. Set
Eo = Qo \ (Ug,erQr)-
Case 1: There exists @ € F such that @@ C Q. We use the definition of ¥ to conclude as
desired
w(F -
o(F) SR v(Ro,No%r)  w(F)

(@) % v(Ro, N0Qr) w(@)

NI

Case 2: (Q is not contained in any cube of F. Notice that if Q € F with Qr N Q # O,
then @ C @ and

w(Q N Q)

v(Q) =v(QN Ey) + =2 y(Rg, NONF)
le-;ngQ (@)
=v(@QNE)+ Y. v(Rg, NoVr) =v(RgNoNF). (A.10)
QrEF,QrEQ

Then we use (A.5), (A.6) and (A.7) to conclude that

N

(F) _ v(FNE) Z w(F N Q) v(Rg, NONr)
Q) v(RenoQr) g 55,00 @@ v(Rgn o)

N

Aq .
ey Y EEN a0

A
oreFaeco, @ (@r)
SwiFNE)+ Y wFENQ)
QrEF,QLCQ
w(F)

=wle(F)~ =22,

w(Q)

and this completes Case 2.

Once we have shown the righthand side inequality in (A.8) we apply Lemma B.4 and the
fact that w and 7 are dyadically doubling in Qg (see Lemma B.2 below) to conclude that
for all @ € D(Qp) and F C Q

N

w(F) _ ( <F>>“9
w@) ~A\nQ))

To show (A.9) we observe that if F' C Ey then v(F') = v(F). Also, notice that we cannot
be in Case 1 unless F' = (): we would have Q@ C Q € F which gives Q C Qo \ Ep, and
F C QN Ey. This means that we can use (A.10). Gathering the obtained estimates we
obtain (A.9):

() B _wB)
Q)  v(RgNoQr) ~ w(@Q)

N
el
SE
N———
)
N
R U
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APPENDIX B. DYADICALLY DOUBLING AND MUCKENHOUPT WEIGHTS

Fixed a cube Qp, in what follows we work with Borel measures w such that 0 < w(Q) < oo
for every @ € D(Qo). We say that w is dyadically doubling in Q) if there exists C,, such
that w(Q) < G, w(Q') < oo for every Q € D(Qp), and for every dyadic “child” Q" of Q. It
is not difficult to show that C,, > 2™ (since @ is the union of its 2" dyadic “children”).

Lemma B.1. Fiz Q. Let w be a dyadically doubling measure in Qg with constant C,,.
Then for every family F C D(Qo) of pairwise disjoint dyadic cubes, Prw is dyadically
doubling in Qq, indeed Prw(Q) < C,, Prw(Q') for every Q € D(Qy), and for every dyadic
“child” Q" of Q.

Proof. We fix Q € D(Qq) and one of its dyadic “children” @)’. We consider different cases.
Case 1: There exists Q € F with @ C Q. The estimate is trivial in this case:

Q| Q']
Prw(Q) = ——— w(Qg) = 2"
F(Q) | Qx| (Qe) | Qx|
Case 2: Q' € F. Notice that Prw(Q') = w(Q’). Let F; be the family of cubes Q € F
with Qr N Q # O and observe that if Q; € F then Qr € Q. Thus,

Pro(@) = w(@\ (Uger@) + 3 121900 = w(@\ (Ugyer@o) + 3 wl(@i)

QreF1 @l QrEF1
=w(Q) < C,w(Q) = C, Prw(Q') < .

Case 3: None of the conditions in the previous cases occur. We take the same set F; and
observe that if Qp € F; then Qr C @ (otherwise we are driven to Case 1). Let F» be the
family of cubes Qi € F with QrNQ" # @. Notice that if Qx € F» then Qi C Q': otherwise,
either Q; = Q" which leads us to Case 2, or @' C Qj which implies Q C Q. and this is
Case 1. Then proceeding as in the previous case one obtains that Prw(Q) = w(Q) and
Prw(Q') = w(Q') which in turn imply

Pro(Q) = w(Q) < Cow(@) = Cu Pru(Q)) < oc.

w(Qy) = 2" Prw(Q’) < C, Prw(Q") < oo.

g

Lemma B.2. Under the hypotheses of Lemma A.1, v and Prv are dyadically doubling in
Qo-

Proof. We first consider 7. Let us fix @ € D(Qq) and one of its dyadic “children” '.
Case 1: There exists Q. € F with Q C Q. The estimate is trivial in this case since w is
dyadically doubling;:
_ w(Q w(Q'
() @)
w(Qk) w(Qr)

Case 2: ) € F. Notice that 7(Q') = v(Rg NOQr). Let Fi be the family of cubes Qy, € F
with Qr N Q # O and observe that if Q; € F; then Qr € Q. Thus,

7(Q) = v(Q\ (Uger@i) + ) LI

QrEF1

v(Rg, NOQF) < C, v(Rg, N0Qr) = C,v(Q") < oo.

Qe n0r)

=v(Q\ (UguerQi) + Y v(Rq, N0r)

QrEF1
= V(RiQ N 89]:)
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Note that Ag = (z¢, Q")) € 9QF since Q' € F and also that Ry C R(Ag,44(Q"))
which is the R"*1-cube centered at Ag  with sidelength 44(Q’). Thus, we have

7(Q) = v(RqNoQr) < v(R(Ag,44(Q) N0QF) S Cyv(R(Ag, U(Q")/2) N 09F)
< Cyv(Rg NoQr) =v(Q"),
where we have used that v = v*° is doubling.

Case 3: None of the conditions in the previous cases occur. We take the same set F; and
observe that if Qp € F; then Qr C @ (otherwise we are driven to Case 1). Let F» be the
family of cubes Qi € F with QrNQ" # @. Notice that if Q. € F» then Qi € Q': otherwise,
either Q; = Q' which leads us to Case 2, or Q' C Qp which implies Q C Q. and this is
Case 1. Then proceeding as in the previous case one obtains that 7(Q) = v(Rg N 9SF)
and 7(Q) = v(Rg N ONF). Set Yo = (z¢,tg) such that Yo € 9Qr (notice that
0 <ty <(Q')/2) and observe that Rg C R(Yq,54(Q")) which is the R"-cube centered
at Y with sidelength 54(Q’). Then,

7(Q) = v(Ro N 0QF) < v(R(Yy,54(Q")) N0QF) < C v(R(Yy, £(Q')/2) N OQF)
< C,v(Rg N0QF) = v(Q'),

where we have used that v = v*° is doubling. This completes the proof for .

What Prv is dyadically doubling follows from Lemma B.1 in which case the constant
would depend on w and v. This is not the right approach as we have already observed that
Pr does not depend on w. Following the previous scheme we can see that the doubling
constant does not depend on w: In Cases 2, & we have that Prv(Q) = v(Q) and Pro(Q') =
7(Q") and the doubling condition follows at once from the previous computations. In Case
1 we obtain

Prr(Q) = o v(Rg, 100) =2

» Q'
Q|

v(Rg, NONF) =2"Pri(Q) < .

O

Remark B.3. Notice that the doubling constant of ¥ can be controlled by the maximum of
the following quantities:

wp 2@ o LI B(X.55) 00)
aci (5 Q) Xs PO(R(X, 5/2) N 05

where the second sup runs over X € Qr and s < £(Qp)/2. On the other hand, the doubling
constant of Px can be controlled by 2" and the second sup right above.

Next we give a version of the classical result in [CF] valid in our dyadic case. The proof
of this result follows the standard arguments in [GR] although one has to adapt the ideas
to the dyadic and local setting considered here. We give the proof for completeness.

Lemma B.4. Let Qg be a fized cube and let wi, we be two dyadically doubling measures
in Qo. Assume that there exist positive constants Cy, 0y such that for all Q € D(Qq) and

FcQ,
wy(F) (wﬂﬁj>%
< C : B.1
2@ =@ .
Then, there exist positive constants C1, 01 such that for all Q € D(Qo) and F C Q,

w1 (F) we(F)\ "
w@ =@ (m(@)) | (B-2)
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To prove this result we need a local Calderén-Zygmund decomposition for dyadically
doubling weights. The proof is standard and we leave it to the interested reader.

Lemma B.5. Given Q¢ and w a dyadically doubling measure in Qo with constant C,,, we
consider the local dyadic Hardy-Littlewood maximal function with respect to w:

1
Muf@) = sw o /Q F@) dw(y).

For any 0 < f € LY(Qo,w) and X\ > ﬁ@o) fQo |f(y)| dw(y), there exists a collection of
mazimal and therefore disjoint dyadic cubes {Q;}; C D(Qo) such that

={ze€Qo: Muf(z) > A} = UQ]’» (B.3)
flz) <A, forw-a.e x ¢ Qy (B.4)
1

Proof of Lemma B.4. Pick 0 < a<land f=1-— (10_—00‘)1/90, and notice that 0 < § < 1
since Cyp > 1. Then (B.1) applied to @ \ F' implies that for every @ € D(Qy),

wa(F) w1 (F)

<a = < B. B.6
(@) 2@ B0
We see that this (apparently) weaker condition implies the desired conclusion. Assume

momentarily that w; < wy. Then the Radon-Nikodym derivative h = dw/dws satisfies
that h € LY(Qo,ws) and 0 < h(x) < oo for we-a.e. z € Q.

Fixed Q € D(Qo) we write 7 = C,, /«,

_ 1 ) deon (2 _ wi(@)
= @) /Q”( Jdwa(2) = 2 Q)

and A\ = 7% X\g. Notice that \g < \; < A\g < --- since 7 > Cy, > 1. For every k > 0 we
apply Lemma B.5 in @ to h with dyadically doubling measure wo: let {Q?}j C D(Q) C

D(Qo) be the corresponding collection of cubes such that Qi = Q), = Uj Q?. Fix Q?O and
observe that if Q?O N Q?H # O, then Q?H - Q?O. Otherwise we would have Q% C Q?“;

jo =
by (B.5) we observe that W Jorei dws > Ak > Ag, and then Q% would not be
w2 j j

maximal. Then using (B.3) and (B.5) we obtain

FcaQ,

(@)= Y @) < [ s

k41 ok+1
rQiTCal, raicas, %
1 Ak

C
< hdw, < =278 ky — ky
= Ait1 /62§0 = Akt w2(Qg) = (@)

This estimate allows us to use (B.6) which in turn gives wl(Q;?O NQt1) < ﬁwl(Q;?O). Next
we sum on jo and conclude that wi(Qg41) < Bwi(Qy) since Qg1 C Q. By iterating this
expression we obtain wy () < A% w1 (Qp). Similarly, we () < o wi(Qp), which implies

Q) = lim ws(Q) = 0.
(%) = Jim (@) =0
Let 0 < e < —log3/logT. Then 0 < 7€ < 1, and by (B.4)

1 )1 dws (2
wz(@)/Qhu duos (1)
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o0

- w;@) /Q\QO ()€ duwo () + mz@ kZ:O/Qk\QW h(@) '€ dws(x)
<% 5 /Q ha) dua(@) + ki)ml /| i) den (@)
:%ﬁg%wimg?“W“m
<A Z;Eg; 1+7(1—718)"Y
i)

This estimate implies that for all F' C @,

Z;Eg; - wzzQ) /QXF hdws < (w;@ /Q pi+e dwg)lié <:z§g;>““

wi(Q) ., (wa(F)\ G
SW(Q)Cl(Wz(Q)) ’

which is (B.2) with ; = 1/(1 + ¢€)’. Notice that € and C; depend only on «, § and C,,.

Next we see how to proceed in the general case starting from (B.6). We define a new
measure wp = wo + dwy with § > 0. It is clear that w; < W2 and also that @, is dyadically
doubling in Qo with constant Cy, = C,, + C,,. We claim that setting § = 1 — min{1 —
B,a/2}, & = /2 we have for every Q € D(Qo),

(I)Q(F) - wl(F) ~
QQ(Q)<C¥ = W1(Q)<B' (B.8)

Assuming this (B.6) holds for wy, &9. By the previous case, since wy < @, there exist €,
C such that for every Q € D(Qo), F C Q we have

wi(F) = (Go(F)\ ey
w1(Q)§C<@2(Q)> |

As mentioned above ¢, C; depend only on &, B , C, and these are ultimately given in terms
of a, B, C,,, C,,. Next we see that w; < wa: given F' C Qo with we(F') = 0, the previous
inequality applied to @ = (g gives as desired

Wi(F)  ~ (Sc(F)\ T~ [ wi(F)\ o .
O§w1(Q) SCI((Z)Q(QQ)) SCI <5w2(Q0)> —)O, as 0 — 0.

Thus, we get back to the first case and obtain (B.7) which eventually leads to (B.2) with
(1 and 0 as stated above.

To complete the proof we obtain (B.8). Given F as there, it follows that @2(Q \
F)/@2(Q) > 1—a/2. We see that wi(Q \ F)/wi(Q) > min{l — 5, a/2}, which yields as de-
sired wy (F) /w1 (Q) < B. If this were not the case then we would have wi (Q\F) /w1 (Q) < /2
and also that wi(F)/w1(Q) > 8. By (B.6) the latter gives wa(F)/wa(Q) > a and therefore

FcQ,
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wo(Q\ F)/w2(Q) < 1— . Gathering these estimates we get a contradiction

5(Q\F)  w(Q\F) | i (Q\F) _ wr(Q\F)  wi(Q\F)
5Q) @@ e S @@ | w@

<1-—a/2

Remark B.6. Let us observe that (B.7) can be equivalently written as

<w2zQ)/Qh(x)l+€dw2(x)>ll+s <O w;@) /Qh(g;)de(x)

and this shows that h € RHfﬁdiC(Qo, ws)

Lemma B.7. Let QQ be a cube and let v be a concentrically doubling weight in @, that is,
0<v<ooae inQ, veLY(Q) and there is Cy > 1 such that v(Q') < Cov(5 Q') for all
Q' C Q. Assume that there exist C1 > 1 and 1 < p < oo such that

<][1 o v(x)P dx); < Ol][lQ, v(z) dz, VQ' € D(Q). (B.9)

Then v € RHﬁiyadiC(Q), that is, there exist 1 <r < oo and C > 1 depending on n,p, Cy, Ci
such that

(][ ) de)” s C u@)ds, VO ED(@). (B.10)

Furthermore, if v is a doubling weight in 2@, then (B.10) holds for every Q" C @ (with a
different constant), thus v € RH,(Q).

Proof. We first observe that (B.9) and Holder’s inequality imply that for all Q" € D(Q)

and F C Q'
o) o (1F B.11
v(3Q) 1<UQJ ' (B-11)

We pick 0 < o < (C’f/ 271 Let E C Q' € D(Q) be such that |E|/|Q'| > 1 — a. Set
Ey=EN3Q and Fy = %Q’ \ E. We observe that
(1-a)2"[3Q <|B| < |Eo| +]Q"\ 3 Q| = |Eo| + (2" = 1) [53Q'].
Then |Eo|/|2 Q| > 1 — 2"« and so |Fy|/|3 Q| < 2" . We apply (B.11) to conclude that
v(Fp)/v(3 Q) < Cy (27 a)i which in turn gives v(Ep)/v(3 Q') > 1 —C (2" a)i. This and
the fact that v is doubling imply
v(E) S v(Ep) v(3Q)  1-C1(2"a)r
v(Q) T w(3Q") v(@) Co
with 0 < 8 < 1. We have obtained that there exist 0 < «a, < 1 such that for every
Q' € D(Q)
E| v(E)
a = 5. B.12
@] o@) (12
Passing to the complement, this implies (B.6) with dw; = vdz and dws = dx. Then, we

can follow the proof of Lemma B.4 (notice that wi,ws are dyadically doubling in @ and
that h = v) to obtain (B.7) which by Remark B.6 is (B.10) with r = 1 + €.

What (B.10) extends to all cubes Q' C @ under doubling is standard, details are left to
the interested reader. 4

=

1
o

=1-8

Ecq,




32

[AHLT]
[AHMTT]
[Car]
[CF]
[DJK]
[DS]
[FKP]
[GR]
[HL]

[HM]

[Ken)]

[LM]

STEVE HOFMANN AND JOSE MARIA MARTELL

REFERENCES

P. Auscher, S. Hofmann, J.L. Lewis and P. Tchamitchian, Extrapolation of Carleson measures
and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161-190.

P. Auscher, S. Hofmann, C. Muscalu, T. Tao and C. Thiele, Carleson measures, trees, extrapo-
lation, and T'(b) theorems, Publ. Mat. 46 (2002), no. 2, 257-325.

L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math.
76 (1962), 547-559.

R.R. Coifman and C. Fefferman, Weighted norm inequalities for mazimal functions and singular
integrals, Studia Math. 51 (1974), 241-250.

B.E. Dahlberg, D.S. Jerison and C.E. Kenig, Area integral estimates for elliptic differential
operators with nonsmooth coefficients, Ark. Mat. 22 (1984), no. 1, 97-108.

G. David and S. Semmes, Singular integrals and rectifiable sets in R™: Beyond Lipschitz graphs,
Asterisque 193 (1991).

R.A. Fefferman, C.E. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for
elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65-124.

J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics,
North-Holland Mathematics Studies, 116. North-Holland Publishing Co., Amsterdam, 1985.

S. Hofmann and J.L. Lewis, The Dirichlet problem for parabolic operators with singular drift
terms, Mem. Amer. Math. Soc. 151 (2001), no. 719

S. Hofmann and J.M. Martell, A note on A estimates via extrapolation of Carleson measures,
The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, ANU, Canberra, 13-17
July, 2009, Proceedings of the Centre for Mathematics and its Applications 44 (2010), 143-166.
C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems,
CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence,
RI, 1994.

J. Lewis and M. Murray, The method of layer potentials for the heat equation in time-varying
domains, Mem. Amer. Math. Soc. 114 (1995), no. 545.

STEVE HOFMANN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211,

USA

E-mail address: hofmanns@missouri.edu

JosE MARfA MARTELL, INSTITUTO DE CIENCIAS MATEMATICAS CSIC-UAM-UC3M-UCM, CONSEJO
SUPERIOR DE INVESTIGACIONES CIENT{FICAS, C/ NICOLAS CABRERA, 13-15, E-28049 MADRID, SPAIN

E-mail address: chema.martell@icmat.es



