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Abstract. We revisit the “extrapolation method” for Carleson measures, introduced in
[LM] to prove A∞ estimates for certain caloric measures, and we present a purely real
variable version of the method suitable for establishing A∞ estimates. To illustrate the
use of this technique, we then reprove a well known result of [FKP].
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1. Introduction

In this article we revisit a technique introduced in work of Lewis and Murray [LM], and
developed further in [HL], [AHLT], [AHMTT],† and which has come to be known as the
“extrapolation method” for Carleson measures. The method is a bootstrapping technique
for proving scale invariant estimates on cubes (e.g., reverse Hölder estimates, Carleson mea-
sure estimates, BMO estimates), given that (very roughly speaking) the desired estimate
holds on those cubes Q for which some controlling Carleson measure µ is sufficiently small
in the associated Carleson box RQ. The exact nature of this control (involving sawtooth
subdomains in RQ) will be made precise later.

In [LM], the extrapolation technique was used to prove reverse Hölder estimates for
caloric measures in non-cylindrical (i.e., time-varying) domains; in this case µ arose in the
quantitative description of the boundary. The results of [LM] were generalized in [HL],
where reverse Hölder estimates for parabolic (and elliptic-harmonic) measures were estab-
lished for variable coefficient parabolic (and elliptic) equations, given appropriate Carleson
measure control of the coefficients. In particular, this work included an alternative proof,
via the extrapolation method, of a well known result of R. Fefferman, Kenig and Pipher
[FKP], that we shall discuss further in Section 3.

The results of [LM] and of [HL] are examples of “Carleson → A∞” extrapolation, in
which a given non-negative measure ω is shown to belong to A∞ (or “weak A∞”), using
properties of some controlling Carleson measure µ. The results of [AHLT] and of [AHMTT]
involve “Carleson → Carleson” extrapolation, in which a non-negative measure in the half
space Rn+1

+ is shown to be a Carleson measure, using properties of another controlling
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Carleson measure. In [AHLT], the technique was applied to prove the restricted version
of the Kato square root conjecture, for divergence form elliptic operators that were small
complex perturbations of real symmetric ones. An interesting feature of the “Carleson →
Carleson” extrapolation arguments in [AHLT] and [AHMTT] is that they were purely real
variable in nature —the bootstrapping procedure was separated from the applications to
PDE.

On the other hand, in [LM] and [HL], the extrapolation arguments were tied specifically
to the fact that one was working with harmonic or parabolic measures, and the main goal
of this article is to extract the real variable essence of “Carleson → A∞” extrapolation.

In this article, we shall present one new result and one new technical innovation. The
new result, Theorem 2.1 below, is a purely real variable treatment of “Carleson → A∞”
extrapolation. The new technical innovation of the present paper is the use of the pro-
jection operators PF . In retrospect, these are quite natural when working with dyadic
sawtooth domains (cf. the “Main Lemma” of [DJK], where indeed a similar construction
has appeared).

In order to illustrate the method, and the use of Theorem 2.1, we then show how the
latter may be used to reprove the main theorem in [FKP]. To do that we prove some
versions of the “Main Lemma” in [DJK] adapted to discrete sawtooth domains (the precise
definitions are given below). The first result (cf. Lemma A.1) is written in terms of the
projection operators and we use it to reprove the main theorem in [FKP]. The second result
(cf. Lemma A.2) is interesting in its own right and is a dyadic analog of the main lemma
in [DJK]. The proofs of these results follow the ideas in [DJK], but are technically much
simpler, owing to the dyadic setting in which we work here.

An alternative formulation of the extrapolation result is given in [HM]. There we consider
a different characterization of A∞ written in terms of the level sets of the weight, and we
discuss some of conditions that equivalently define this class of weights. That approach can
also be used to give a new proof of the main theorem in [FKP].

2. Main result

2.1. Notation.

• We write |x− y|∞ = max{|xi − yi| : 1 ≤ i ≤ n}.
• Given a cube Q ∈ Rn we denote its center by xQ and its sidelength by `(Q). For any
τ > 0 we write τ Q for the cube with center xQ and sidelength τ `(Q). By D(Q) we

denote the collection of dyadic subcubes‡ of Q and D(Q)∗ = D(Q) \ {Q}. We also write
Q(x, l) for the cube centered at x with sidelength l.

• We say that a non-negative Borel measure ω is (concentrically) doubling if for every cube
(or ball) Q we have ω(2Q) ≤ Cω ω(Q). It is “dyadically doubling” if ω(Q) ≤ Cω (Q′),
for every Q ∈ D(Q0), and for every dyadic “child” Q′ of Q. Here, Q0 is either some fixed
cube, or Rn.

• Given two dyadically doubling non-negative Borel measures ω and ν, and a fixed cube

Q0 (we allow Q0 = Rn), we say that ω ∈ Adyadic
∞ (ν,Q0) if there exist constants θ > 0 and

C <∞ such that for every Q ∈ D(Q0) and for all Borel sets F ⊂ Q, we have

ω(F )

ω(Q)
≤ C

(
ν(F )

ν(Q)

)θ
. (2.1)

‡Note that the term “dyadic” here refers to the grid induced by Q; the cubes in D(Q) are dyadic cubes
of Rn if and only if Q itself is such.
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When ν is Lebesgue measure we shall simply write ω ∈ Adyadic
∞ (Q0). It is known that

Adyadic
∞ defines an equivalence relationship (cf. Lemma B.4 in Appendix B), and also that

condition (2.1) is equivalent to the following apparently weaker condition (see also (2.5) in
the case ν = Lebesgue measure): there exist 0 < α, β < 1 such that for every Q ∈ D(Q0)
and for every Borel set F ⊂ Q, we have that ν(F )/ν(Q) < α implies ω(F )/ω(Q) < β,
see [GR, Chapter 4] or [HM].

• Given two doubling non-negative Borel measures ω and ν, and a fixed cube Q0 (we
allow Q0 = Rn), we say that ω ∈ A∞(ν,Q0) if (2.1) holds for all Q ⊂ Q0 and all Borel
sets F ⊂ Q. A∞ defines an equivalence relationship that can be equivalently defined
in terms of the analogous “weaker” condition described above, see [GR, Chapter 4] for
more details.

• Given a cube Q we write −
∫
Q f(x) dx := 1

|Q|
∫
Q f(x) dx.

• Let Q be a cube. We denote the associated Carleson box by RQ := Q × (0, `(Q)). We

will also at times work with the “short” Carleson box Rshort
Q := Q × (0, `(Q)/2), and

with the “Whitney box” WQ := RQ \Rshort
Q = Q× [`(Q)/2, `(Q)).

• We write C for the set of Carleson measures in Rn+1
+ , i.e., the non-negative Borel measures

µ on Rn+1
+ for which the “Carleson norm”

|||µ|||C := sup
Q⊂Rn

|Q|−1 µ(RQ) (2.2)

is finite; here, the supremum runs over all cubes Q ⊂ Rn. Analogously, given Q0 ⊂ Rn
we write C(Q0) for the set of Borel measures that satisfy the previous condition restricted
to Q ∈ D(Q0), thus

|||µ|||C(Q0) := sup
Q∈D(Q0)

|Q|−1 µ(RQ).

By slight abuse of notation††, if Q0 = Rn we simply write C = C(Q0).

• Given Q and a family of pairwise disjoint dyadic subcubes F = {Qk}k ⊂ D(Q) we
define the discrete sawtooth function ψF (x) :=

∑
k `(Qk) χQk(x). Notice that ψ is a

step function supported in ∪kQk. We write ΩF = ΩψF for the domain above the graph

of ψF , that is, ΩF := {(x, t) ∈ Rn+1
+ : t ≥ ψF (x)}. Notice that ΩF = Rn+1

+ \ (∪kRQk).

We allow F to be empty in which case ψF (x) = 0 and ΩF = Rn+1
+ . See Figure 1.

• If µ is a non-negative Borel measure on Rn+1
+ , then µF := µχΩF

will denote its restriction
to the dyadic sawtooth ΩF .

• Given Q and F as before, we define the projection operator

PFf(x) := f(x)χRn\(∪kQk)(x) +
∑
k

(
−
∫
Qk

f(y) dy
)
χQk

(x).

One has that PF ◦ PF = PF , PF is selfadjoint and ‖PFf‖Lp(Rn) ≤ ‖f‖Lp(Rn) for every
1 ≤ p ≤ ∞. Observe that if ω is a non-negative Borel measure and E ⊂ Q, then we may
naturally define the measure PF ω as follows:

PF ω(E) :=

∫
PF (χE) dω = ω(E \ ∪kQk) +

∑
k

|E ∩Qk|
|Qk|

ω(Qk).

††Indeed, the abuse is very slight, since one may cover an arbitrary cube Q by a purely dimensional
number of dyadic cubes of comparable size, to show that (2.2) is controlled by the analogous supremum
taken only over dyadic cubes.
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ΩF ∩RQ
RQ

Q

RQ1

Q1

Figure 1. Discrete sawtooth ΩF

In particular, PF ω(Q) = ω(Q). Notice that PFω is defined in such a way that it coincides
with ω in Rn \ (∪kQk) and in each Qk we replace ω by ω(Qk)/|Qk| dx.

• Given Q and F as before, we introduce a new family F ′ consisting of all the dyadic
“children” of the cubes in F . Notice that F ′ is a family of pairwise disjoint cubes in
D(Q), therefore we define P ′F := PF ′ , which is the projection operator associated with
the family F ′, and it satisfies the previous properties. We observe that if ω is a non-
negative Borel measure and E ⊂ Q, then P ′Fω(E) ≤ 2n PFω(E). The converse inequality
does not hold in general, however if one assumes that ω is dyadically doubling in Q then
P ′Fω(E) ≈ PFω(E); thus it seems more natural to use PF in place of P ′F .

2.2. A∞ estimates via extrapolation of Carleson measures.

Theorem 2.1. Let Q0 be either Rn or a fixed cube. Given M0 > 0, let µ ∈ C(Q0) with

|||µ|||C(Q0) ≤M0

and let ω be a non-negative, finite Borel measure in Q0, for which ω(Q) > 0 for every
Q ∈ D(Q0). Suppose that there exists δ > 0 such that for every Q ∈ D(Q0) and every
family of pairwise disjoint dyadic subcubes F = {Qk}k ⊂ D(Q) verifying

|||µF |||C(Q) := sup
Q′∈D(Q)

µ(RQ′ ∩ ΩF )

|Q′|
≤ δ , (2.3)

we have that P ′F ω satisfies the following property:

∀ ε ∈ (0, 1), ∃Cε > 1 such that
(
E ⊂ Q, |E|

|Q|
≥ ε =⇒

P ′F ω(E)

P ′F ω(Q)
≥ 1

Cε

)
. (2.4)

Then, there exist η0 ∈ (0, 1) and C0 <∞ such that, for every Q ∈ D(Q0),

E ⊂ Q, |E|
|Q|
≥ 1− η0 =⇒ ω(E)

ω(Q)
≥ 1

C0
. (2.5)

Furthermore, if ω is dyadically doubling in Q0 then ω ∈ Adyadic
∞ (Q0).

Remark 2.2. The key hypothesis of the theorem, and the main point that must be verified
in applications, is that (2.3) implies (2.4), for sufficiently small δ.

Remark 2.3. We notice that if ω is dyadically doubling in Q0, then PFω ≈ P ′Fω and
therefore it suffices to work with the “simpler” projection operator PF . In that case,
we note that the implication (2.3) =⇒ (2.4) is equivalent to the apparently stronger

statement that (2.3) =⇒ PFω ∈ Adyadic
∞ (Q). Indeed, for every Q′ ∈ D(Q), we have that
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‖µF‖C(Q′) ≤ ‖µF‖C(Q) ≤ δ, whence the implication (2.3) =⇒ (2.4) also holds for all such
Q′ in place of Q. In turn, the fact that (2.4) holds for all Q′ ∈ D(Q) says precisely that

PFω ∈ Adyadic
∞ (Q).

Remark 2.4. One can give an analog of Theorem 2.1 adapted to tents in place of boxes, that

is, in (2.3) one can replace RQ′ ∩ΩF by TQ′ ∩ Ω̃F where TQ′ is the Carleson tent associated

to Q′ and Ω̃F is the domain above the (regular) sawtooth region which is formed by the
union of the cones with a fixed aperture and vertices in Rn+1

+ \ ∪kQk. The proof is almost
identical, we only need to apply the original [AHLT, Lemma 3.4] in place of our alternative
version contained in Lemma 2.7.

Remark 2.5. The extrapolation theorem is written in such a way that it contains both a
global and a local version. We also note the following observations:

• When Q0 = Rn, if ω is concentrically doubling, then the conclusion of the theorem
improves immediately to ω ∈ A∞.

• For the local case, if ω is concentrically doubling, then the conclusion ω ∈ Adyadic
∞ (Q0)

also yields that ω ∈ A∞(1
2 Q0).

Remark 2.6. We notice that in the hypotheses of Theorem 2.1 the attention is restricted
to Q ∈ D(Q0) and thus the conclusion (2.5) holds for all Q ∈ D(Q0), which under dyadic

doubling implies ω ∈ Adyadic
∞ (Q). If in our hypotheses we consider all cubes Q ⊂ Q0 then

(2.5) holds for all Q ⊂ Q0. This implies both ω doubling and ω ∈ A∞(Q0) (see Section
3.1). For the proof it suffices to change the induction hypotheses (cf. “H(a)” below) and
consider all cubes Q ⊂ Q0.

2.3. Proof of Theorem 2.1. As mentioned in the introduction, the proof follows the
strategy introduced in [LM], and developed further in [HL], [AHLT] and [AHMTT]. The
proof uses an induction argument with continuous parameter. The induction hypothesis is
the following: given a ≥ 0,

H(a)

There exist ηa ∈ (0, 1) and Ca < ∞ such that for every Q ∈ D(Q0)
satisfying µ(RQ) ≤ a |Q|, it follows that

E ⊂ Q, |E|
|Q|
≥ 1− ηa =⇒ ω(E)

ω(Q)
≥ 1

Ca
.

The induction argument is split in two steps.

Step 1. Show that H(0) holds.

Step 2. Show that there exists b = b(n, δ) such that for all 0 ≤ a ≤ M0, H(a) implies
H(a+ b).

Once these steps have been carried out, the proof follows easily: pick k ≥ 1 such that
(k − 1) b < M0 ≤ k b (note that k only depends on b(n, δ) and M0). By Step 1 and Step
2, it follows that H(k b) holds. Observe that ‖µ‖C(Q0) ≤ M0 ≤ k b implies µ(RQ) ≤ k b |Q|
for all Q ⊂ Q0, and by H(k b) we conclude (2.5). As observed before, if ω is dyadically

doubling the obtained estimate implies ω ∈ Adyadic
∞ (Q0).

Step 1. H(0) holds. If µ(RQ) = 0 then we take F to be empty, so that RQ ∩ ΩF = RQ,
and P ′F ω = ω. Then (2.3) holds (since 0 ≤ δ) and therefore we can use (2.4) with ω in
place of P ′F ω, which is the desired property.
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Step 2. H(a) implies H(a+ b). We will require the following Lemma, which was proved
in [AHLT, Lemma 3.4] in the case of regular sawtooth regions (see also [AHMTT]). We
recall that Rshort

Q denotes the “short” Carleson box Q× (0, `(Q)/2).

Lemma 2.7. Let µ be a non-negative measure on Rn+1
+ , and let a ≥ 0, b > 0. Fix a cube

Q such that µ(RQ) ≤ (a+ b) |Q|. Then there exists a family F = {Qk}k of non-overlapping
dyadic subcubes of Q such that

|||µF |||C(Q) := sup
Q′∈D(Q)

µ(RQ′ ∩ ΩF )

|Q′|
≤ 2n+2 b , |B| ≤ a+ b

a+ 2 b
|Q|, (2.6)

where B is the union of those Qk verifying µ(Rshort
Qk

) > a |Qk|.

We postpone the proof until the end of this section. Taking Lemma 2.7 for granted
momentarily, we proceed with the proof of Step 2 of the Theorem.

Fix 0 ≤ a ≤ M0 and Q ∈ D(Q0) such that µ(RQ) ≤ (a + b) |Q|, where we choose b so
that 2n+2 b := δ. We also fix E ⊂ Q with |E| ≥ (1 − η) |Q|, where 0 < η ≤ ηa,b and ηa,b
is to be chosen. We may now apply the previous lemma to construct the non-overlapping
family of cubes F with the stated properties. Set

A = Q \
⋃

Qk∈F
Qk, G =

⋃
Qk∈Fgood

Qk, B =
⋃

Qk∈F\Fgood

Qk,

where Fgood =
{
Qk ∈ F : µ(Rshort

Qk
) ≤ a |Qk|

}
. Then |B|/|Q| ≤ (a+ b)/(a+ 2b), by (2.6).

We shall also require the following “pigeonhole” lemma, which says that “most” of the
cubes Qk have an ample overlap with E.

Lemma 2.8. Given 0 < η̃ < 1, we set

F1 = {Qk ∈ Fgood : |E ∩Qk| ≥ (1− η̃) |Qk|}, G1 =
⋃

Qk∈F1

Qk.

If 0 < η ≤ η1 := η̃ 1
2

(
1− M0+b

M0+2 b

)
, then |A ∪G1| ≥ η1 |Q|.

Proof. Take θ such that |B| = θ |Q|, and θ0 = (M0 + b)/(M0 + 2 b). By (2.6) and since
a ≤M0 we obtain that θ ≤ θ0:

θ |Q| = |B| ≤ a+ b

a+ 2 b
|Q| ≤ θ0 |Q|.

We set B1 = ∪Qk∈Fgood\F1
Qk and observe that B1 ⊂ G ⊂ Q \B. Hence,

|E ∩B1| =
∑

Qk∈Fgood\F1

|E ∩Qk| < (1− η̃)
∑

Qk∈Fgood\F1

|Qk|

= (1− η̃) |B1| ≤ (1− η̃) |Q \B| = (1− η̃) (1− θ) |Q|.
Thus, using that θ ≤ θ0, we have

(1− η) |Q| ≤ |E| = |E ∩A|+ |E ∩B|+ |E ∩G1|+ |E ∩B1|
≤ |A|+ |B|+ |G1|+ (1− η̃) (1− θ) |Q|
= |A|+ |G1|+

[
θ + (1− η̃) (1− θ)

]
|Q|

≤ |A|+ |G1|+
[
1− η̃ (1− θ0)

]
|Q|

and therefore

|A ∪G1| = |A|+ |G1| ≥
[
η̃ (1− θ0)− η

]
|Q| ≥ 1

2
η̃ (1− θ0) |Q| = η1 |Q|,

where we have used that η ≤ η̃ (1− θ0)/2 = η1. �
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We now return to the proof of Step 2. To this end, we apply Lemma 2.8. Given
Qk ∈ F1 ⊂ Fgood we have that µ(Rshort

Qk
) ≤ a |Qk|. Moreover,

Rshort
Qk

=
2n⋃
j=1

R
Qjk
, Qjk ∈ D(Qk) with Qk =

2n⋃
j=1

Qjk, `(Qjk) = `(Qk)/2;

that is, the union runs over the dyadic “children” of Qk. Then by pigeon-holing, there

exists at least one j0 such that Qj0k =: Q′k satisfies

µ(RQ′k) ≤ a |Q′k| (2.7)

(there could be more than one j0 with this property, but we just pick one). We define F̃1

to be the collection of those selected “children” Q′k, with Qk ∈ F1. Then, for each such
Q′k, using the definition of F1, and taking 0 < η̃ = 2−n ηa (where 0 < ηa < 1 is provided by
H(a)), we have

|Q′k \ E| ≤ |Qk \ E| ≤ η̃ |Qk| = η̃ 2n|Q′k| = ηa |Q′k|,
which yields |Q′k ∩E| ≥ (1− ηa) |Q′k|. With this estimate and (2.7) in hand, we can use the
induction hypothesis H(a) to deduce:

ω(Q′k ∩ E) ≥ 1

Ca
ω(Q′k), ∀Q′k ∈ F̃1. (2.8)

On the other hand, if we set G̃1 = ∪Q′k∈F̃1
Q′k, then |G̃1| = 2−n|G1|, by definition of G1

and G̃1. Thus, by Lemma 2.8, having now fixed η̃ above, we have that

|A ∪ G̃1| = |A|+ |G̃1| ≥ 2−n η1|Q| =: η2 |Q|,

if η ≤ η1, from which it follows that

|E ∩ (A ∪ G̃1)| ≥ 1

2
η2|Q| =: ηa,b |Q|,

if η ≤ η2/2, since |Q \ E| ≤ η|Q|.
We recall that the family F was constructed using Lemma 2.7 with 2n+2 b := δ. Conse-

quently, by (2.6), we may deduce that (2.3) holds, so in turn, by hypothesis, we can apply

(2.4) to the set E ∩ (A ∪ G̃1), obtaining

P ′F ω(E ∩ (A ∪ G̃1))

P ′F ω(Q)
≥ 1

Cηa,b
.

As observed before, P ′F ω(Q) = ω(Q). Thus, in order to establish the conclusion of H(a+b),
and consequently to complete the proof of Theorem 2.1, it remains only to show that

P ′F ω(E ∩ (A ∪ G̃1)) ≤ C ω(E).

To this end, we use first the definition of P ′F , and then (2.8) to obtain

P ′F ω(E ∩ (A ∪ G̃1)) = P ′F ω(E ∩A) + P ′F ω(E ∩ G̃1)

= ω(E ∩A) +
∑

Q′k∈F̃1

|Q′k ∩ E|
|Q′k|

ω(Q′k) (2.9)

≤ ω(E) + Ca
∑

Q′k∈F̃1

ω(Q′k ∩ E)

≤ C ω(E).

This concludes the proof of Theorem 2.1, modulo Lemma 2.7.
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RQ

Q
Q′

SQ′

Rshort
Q′

Figure 2. “Stovepipe” SQ′

Remark 2.9. As mentioned above, if ω is dyadically doubling one can equivalently work
with PF in place of P ′F . Indeed, the proof just presented can be easily adapted to that

projection operator: to estimate PFw(E∩G̃1), in place of the second term in (2.9) we obtain∑
Q′k∈F̃1

|Q′k ∩ E| |Qk|−1 ω(Qk), and by the doubling condition this quantity is controlled

by Cω
∑

Q′k∈F̃1
ω(Q′k).

Proof of Lemma 2.7. The proof is a “Corona” type stopping time argument, following
[AHLT, Lemma 3.4] and [AHMTT], although the essential idea appears already in [LM]
and [HL].

There are two cases. We recall that WQ := Q × [`(Q)/2, `(Q)), and that Rshort
Q :=

RQ \WQ.

Case 1: µ(WQ) > b|Q|. In this case µ(Rshort
Q ) ≤ a|Q|, and we may set F := {Q}, so that

B = Ø = ΩF ∩RQ and the desired conclusions follow trivially.

Case 2: µ(WQ) ≤ b|Q|. In this case we perform a dyadic stopping time decomposition,
to extract a (possibly empty) family F := {Qk} of non-overlapping dyadic subcubes of Q
which are maximal with respect to the property that

µ(SQk) > 2b|Qk|, (2.10)

where for Q′ ∈ D(Q), SQ′ := Q′×[`(Q′)/2, `(Q)) denotes the “stovepipe” above Q′ (see Fig-

ure 2). We note that ∪k
(
Rshort
Qk

∪ SQk
)

= ∪k
(
Qk × (0, `(Q))

)
, and that by the maximality

of the cubes these unions are comprised of disjoint sets.

We define B to be the union of those Qk ∈ F such that µ(Rshort
Qk

) > a |Qk|, and we may

now readily establish the second estimate in (2.6). Indeed, using (2.10) and the definition
of B we have

(a+ 2 b) |B| ≤
∑
k

(
µ(Rshort

Qk
) + µ

(
SQk)

)
≤ µ(RQ) ≤ (a+ b) |Q|.

Next, we turn to the first estimate in (2.6). We recall that ΩF := Rn+1
+ \ (∪kRQk). Fix

Q′ ∈ D(Q). If Q′ ⊂ Qk for some k then trivially µ(RQ′ \ (∪kRQk)) = 0. We may therefore
suppose that Q′ is not contained in any Qk ∈ F . We write A := Q \ (∪kQk) and observe
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that

RQ′ \ (∪kRQk) =
((
Q′ ∩A

)
×
(
0, `(Q′)

))⋃ ⋃
Qk(Q′

(
Qk ×

[
`(Qk), `(Q

′)
)) . (2.11)

By the stopping time construction, for every Q′′ ∈ D(Q) with Q′′ ∩A 6= Ø we have

µ
(
SQ′′

)
≤ 2b |Q′′|. (2.12)

We claim that
sup
N∈N

µ
(
(Q′ ∩A)×

(
2−N−1`(Q′), `(Q′)

))
≤ 2b |Q′|,

and given this claim, by monotone convergence we obtain

µ
(
(Q′ ∩A)×

(
0, `(Q′)

))
≤ 2b |Q′|, (2.13)

which is the desired bound for the first piece on the right side of (2.11).

We establish the claim as follows. For each N ∈ N, let DN (Q′) ⊂ D(Q′) denote those
dyadic subcubes of Q′ with sidelength 2−N`(Q′), and let DN (Q′, A) ⊂ DN (Q′) denote those
cubes in DN (Q′) that meet A. Then

(Q′ ∩A)×
(
2−N−1`(Q′), `(Q′)

)
⊂

⋃
Q′′∈DN (Q′,A)

SQ′′ ,

so that

µ
(
(Q′ ∩A)×

(
2−N−1`(Q′), `(Q′)

))
≤

∑
Q′′∈DN (Q′,A)

µ(SQ′′) ≤ 2b
∑

Q′′∈DN (Q′,A)

|Q′′| ≤ 2b|Q′|,

where in the next-to-last inequality we have used (2.12). This proves the claim, and conse-
quently (2.13) also.

Turning to the remaining piece on the right side of (2.11), we note that

Qk ×
[
`(Qk), `(Q

′)
)
⊂ Q∗k ×

[
`(Q∗k)/2, `(Q

′)
)
⊂ SQ∗k ,

where Q∗k denotes the dyadic “parent” of Qk. Therefore, by the maximality of Qk, we have∑
Qk(Q′

µ
(
Qk ×

[
`(Qk), `(Q

′)
))
≤
∑
Qk(Q′

µ(SQ∗k) ≤ 2 b
∑
Qk(Q′

|Q∗k|

= 2n+1 b
∑
Qk(Q′

|Qk| ≤ 2n+1 b|Q′|.

�

3. Application to second order elliptic boundary value problems

3.1. Additional Notation.

• Given X ∈ Rn+1
+ we write X = (x, %(X)), that is, %(X) = dist(X, ∂Rn+1

+ ) .

• For any X, Y ∈ Rn+1
+ , we write |X − Y |∞ = max{|x− y|∞, |%(X)− %(Y )|}, notice that

this is the `∞-distance in Rn+1
+ . In this way, for any X ∈ Rn+1

+ and 0 < r ≤ 2 %(X), we

write R(X, r) = {Y ∈ Rn+1
+ : |Y −X|∞ < r/2} which is the cube in Rn+1

+ with center X
and sidelength r (that is, radius r/2).

• If R is a cube in Rn+1
+ , we denote its center by XR and its sidelength by `(R) such that

R = R(XR, `(R)). Notice that R ⊂ Rn+1
+ yields `(R) ≤ 2 %(XR). Given τ we denote by

τ R the τ -dilation of R, that is, the cube with center XR and with sidelength τ `(R).

• Given a cube Q ⊂ Rn we set XQ = (xQ, 4 `(Q)) and AQ = (xQ, `(Q)).
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• A weight w is a non-negative locally integrable function. A weight induces a Borel
measure as follows: for any measurable set E we write w(E) :=

∫
E w(x) dx.

• Given a weight w and 1 < p < ∞ we say that w ∈ RHp if there exists a constant Cp
such that for every Q (

−
∫
Q
w(x)p dx

) 1
p ≤ Cp−

∫
Q
w(x) dx.

Given a cube Q0, if the previous condition holds for any cube Q ⊂ Q0 we write w ∈
RHp(Q0).

• Let A∞ be the set of Muckenhoupt weights in Rn. That is, given ω a non-negative Borel
measure on Rn we say that ω ∈ A∞ if there exist 0 < α, β < 1 such that for every cube
Q and for every measurable set E ⊂ Q we have

|E|
|Q|

< α =⇒ ω(E)

ω(Q)
< β.

It is easy to see that this yields that ω is doubling —one estimates ω(λQ \ Q)/ω(λQ)
for λ sufficiently close to 1 and then iterates. This condition implies that ω is absolutely
continuous with respect to the Lebesgue measure (we use the standard notation ω � dx)
and that its Radon-Nikodym derivative k = dω/dx (which is a weight) satisfies k ∈ RHp,
see [GR, Chapter 4] for details. Indeed one can alternatively define A∞ as the class of non-
negative Borel measures absolutely continuous with respect to the Lebesgue measure with
Radon-Nikodym derivatives in ∪qRHq. Also, as mentioned above, A∞ can be defined in
terms of the estimates (2.1) with ν being the Lebesgue measure.

• Given Q0 ⊂ Rn, we have that RQ0 = ∪Q∈D(Q0)∗UQ where D(Q0)∗ = D(Q0) \ {Q0},
and for every cube Q we write UQ = Q × [`(Q), 2 `(Q)). Notice that this is a Whitney
decomposition of RQ0 with respect to the distance to the boundary Rn. Observe that
the sets UQ are pairwise disjoint. See Figure 3. To avoid confusion, we point out that
the Whitney boxes UQ used here differ slightly from the boxes WQ used in the previous
section; this is merely a matter of technical convenience.

• Given Q0 ⊂ Rn, we decompose RQ0 into Whitney boxes RQ0 = ∪Q∈D(Q0)∗UQ. For every

f ∈ L1(Q0) we define the dyadic averaging operator

PQ0
s f(y) :=

∑
Q∈D(Q0)∗

(
−
∫
Q
f(z) dz

)
χUQ

(y, s).

Note that in the sum there is at most one non-zero term since the sets UQ are a disjoint

partition of RQ0 . We can alternatively define PQ0
s f(y) := −

∫
Q f(z) dz where Q = Q(y, s)

is the unique dyadic cube in D∗(Q0) such that y ∈ Q and s/2 < `(Q) ≤ s. This definition
extends trivially to non-negative Borel measures.

3.2. Introduction. We work with real symmetric second order elliptic operators: Lf(X) =
−div(A(X)∇f(X)), X ∈ Rn+1

+ , with A(X) = (ai,j(X))1≤i,j≤n+1 being a real, symmetric

(n+ 1)× (n+ 1) matrix such that ai,j ∈ L∞(Rn+1
+ ) for 1 ≤ i, j ≤ n+ 1, and A is uniformly

elliptic, that is, there exists 0 < λ ≤ 1 such that

λ |ξ|2 ≤ A(X) ξ · ξ ≤ λ−1 |ξ|2,

for all ξ ∈ Rn+1 and almost every X ∈ Rn+1
+ .

Some of the material below is taken from [Ken, Chapter 1], the reader might find conve-
nient to have this reference handy.
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RQ0

Q0

Figure 3. Whitney decomposition of RQ0

The solutions of the Dirichlet problem are represented by the harmonic measure. Namely,
there exists a family of regular Borel probability measures {ωXL }X∈Rn+1

+
in Rn such that for

every f ∈ C0(Rn), the function

u(X) =

∫
Rn
f(y) dωXL (y)

is a classical solution of the Dirichlet problem Lu = 0 in Rn+1
+

u
Rn

= f
(3.1)

This family {ωXL }X∈Rn+1
+

is called the L-harmonic measure. Sometimes, we will drop the

subindex L. For a fixed X0 ∈ Rn+1
+ we let ω = ωX0 and abusing of the notation ω is called

the harmonic measure.

If ωXL � dx, we write the Poisson kernel as kXL , that is, kXL = dωXL /dx is the Radon-

Nikodym derivative of ωXL with respect to dx. Again for a fixed X0 ∈ Rn+1
+ we let k = kX0

and k is called the Poisson kernel (notice that for every X ∈ Rn+1
+ , ωX and ω are mutually

absolutely continuous).

We recall the fundamental relationship between solvability of the Dirichlet problem with
Lp data, and higher integrability of the Poisson kernel, essentially as stated in [Ken, The-
orem 1.7.3].

Theorem 3.1. Given an operator L as above and 1 < p <∞, the following statements are
equivalent:

(a) If u ∈ C0(Rn+1
+ ) is a classical solution of the Dirichlet problem (3.1) with data f ∈

C0(Rn) then

‖u∗‖Lp′ (Rn) ≤ C ‖f‖Lp′ (Rn), (3.2)

where u∗(x) = supY ∈Γα(x) |u(Y )| with Γα(x) = {Y ∈ Rn+1
+ : |x − y|∞ < α%(Y )},

α > 0.
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(b) ω ∈ RHp; by this we mean that ω � dx and for each cube Q ⊂ Rn, we have that

the Poisson kernel satisfies kXQ ∈ RHp(Q), uniformly in Q.‡‡ That is, there exists a
uniform constant C0 such that for all Q ⊂ Rn,(

−
∫
Q′
kXQ(y)p dy

)1/p
≤ C0−

∫
Q′
kXQ(y) dy, ∀Q′ ⊂ Q. (3.3)

(c) ω � dx, and there is a uniform constant C0 such that for every Q in Rn, we have
the scale invariant Lp estimate∫

Q
kXQ(y)p dy ≤ C0|Q|1−p. (3.4)

When (a) occurs we say that (D)p′ is solvable for L or that L is solvable in Lp
′
. In such

case, for every f ∈ Lp′(Rn) there exists a unique u such that Lu = 0 in Rn+1
+ , (3.2) holds

and u converges non-tangentially to f a.e..

Given two operators L0 and L as above with associated matrices A0 and A, we define
their disagreement as

a(X) := sup
|X−Y |∞<%(X)/2

|E(Y )|, E(Y ) = A(Y )−A0(Y ).

3.3. Main application. In this section, to illustrate the use of Theorem 2.1, we present
an alternative proof of a well known result of [FKP].

Theorem 3.2 ([FKP]). Let L0 and L be two operators as above with a being their dis-
agreement, and let ω0, ω denote their respective harmonic measures. Assume that

sup
Q∈Rn

1

|Q|

∫
RQ

a(X)2

%(X)
dX <∞. (3.5)

Then, we have that ω0 ∈ A∞ implies ω ∈ A∞. More precisely, if L0 is solvable in some
Lp
′
, 1 < p′ <∞, there exists 1 < q′ <∞ such that L is solvable in Lq

′
.

We prove this result by using the extrapolation of Carleson measures Theorem 2.1. We

take dµ(X) = a(X)2

%(X) dX, that is, dµ(x, t) = a(x, t)2 dt
t dx and (3.5) gives µ ∈ C. Therefore,

to show that the harmonic measure ω ∈ A∞, it suffices to fix Q and a family F such that
(2.3) holds and prove that PF ω satisfies the A∞ condition in (2.4). We will introduce
some intermediate operators that allow us to pass from L0 to L. Since the smallness in
(2.3) is guaranteed above the discrete sawtooth region, we first introduce L1 such that the
disagreement with L0 lives in that region (this is done in the first step). Once we have the
solvability of L1 we will be changing this operator in subsequent steps and in the end we
will end up with L.

Let us call the reader’s attention to the fact that in any given step we work with Li and
Li+1 in such a way that Li is the “known” and Li+1 is the “unknown” in the sense that
we have some nice properties for Li and we want to infer them to Li+1. For any of these
operators Li we write ωi for the harmonic measure and, when it exists, ki for the Poisson
kernel.

‡‡In [Ken], condition (b) is stated in slightly different form, involving a global reverse Hölder estimate for
harmonic measure with one fixed pole; it is well known that the present version of (b), as well as (c), are
also equivalent to condition (a).
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3.4. Auxiliary results. We summarize some well known results for divergence form ellip-
tic equations that we will use in the sequel. The reader is referred to [Ken, Chapter 1] and
the references therein for full details.

Theorem 3.3. There exists a unique function G : Rn+1
+ × Rn+1

+ −→ R ∪ {+∞}, G ≥ 0
such that

(i) G(·, Y ) ∈W 2
1 (Rn+1

+ \R(Y, r)) ∩ Ẇ 1
1,0(Rn+1

+ ) for each Y ∈ Rn+1
+ and r > 0.

(ii) LG(·, Y ) = −δY for each Y ∈ Rn+1
+

(iii) G(X,Y ) = G(Y,X) for each X,Y ∈ Rn+1
+ .

Remark 3.4. It is well known that the Green function enjoys several other properties, but
we shall make explicit use only of those listed above.

Lemma 3.5 (Caccioppoli). Let Q ⊂ Rn and let R be a cube in Rn+1
+ such that τ R ⊂ RQ

with τ > 1. If Lu = 0 in RQ, then

−
∫
R
|∇u(Y )|2 dY ≤ Cλ,n,τ `(R)−2−

∫
τ R

u(Y )2 dY. (3.6)

Lemma 3.6 (Comparison Principle). Given Q ⊂ Rn, let u, v be two non-negative functions
such that u, v ∈ W 2

1 (R2Q); u, v ∈ C(R2Q); u
2Q

= v
2Q

= 0; and Lu = Lv = 0 in R2Q.

Then there is a C = Cn,λ such that for every X ∈ RQ,

C−1 u(AQ)

v(AQ)
≤ u(X)

v(X)
≤ C

u(AQ)

v(AQ)
, (3.7)

where AQ = (xQ, `(Q)), and xQ is the center of Q.

Lemma 3.7 (Doubling). There exists C = C(λ, n) such that for every cube Q ∈ Rn

ωX(2Q) ≤ C ωX(Q).

Lemma 3.8 (Caffarelli-Fabes-Mortola-Salsa). There exists a constant C = Cn,λ <∞ such
that for every cube Q, we have

ωX(Q) ≥ 1/C, ∀X ∈ 4Q× [`(Q), 5 `(Q)]. (3.8)

Moreover, given X,Y ∈ Rn+1
+ such that |X − Y |∞ > 2 %(Y ) we have

G(X,Y ) ≈ ωX(Q(y, %(Y ))

%(Y )n−1
, (3.9)

where the implicit constants depend only on dimension and ellipticity.

Lemma 3.9. Given Q ⊂ Rn, let L1 and L2 be elliptic operators such that L1 ≡ L2 in RQ.
If the corresponding harmonic measures ω1, ω2 are absolutely continuous with respect to the
Lebesgue measure (we write k1 and k2 for the Poisson kernels), then

k
XQ
1 (y) ≈ kXQ2 (y), for a.e. y ∈ 1

2 Q.

Proof. The result is standard, and may be proved by a routine application of the comparison
principle (Lemma 3.6) to the respective Green functions. We leave the details to the
interested reader. �

Lemma 3.10. Let Q ⊂ Q0 and set X0 = (xQ0 , 4 `(Q0)), XQ = (xQ, 4 `(Q)) where xQ0 and
xQ are respectively the centers of Q0 and Q. If ω � dx then

kXQ(y) ≈ kX0(y)

ωX0(Q)
, for a.e. y ∈ Q. (3.10)
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Proof. By [Ken, Corollary 1.3.8], we have that for every cube Q̃ ⊂ Q,

ωXQ(Q̃) ≈ ωX0(Q̃)

ωX0(Q)
.

The conclusion follows by Lebesgue’s differentiation theorem, as Q̃ ↓ y. �

For an elliptic operator L, given u such that Lu = 0 in Rn+1
+ , we define the square

function

Sαu(x) =
(∫∫

Γα(x)
|∇u(x, t)|2 t1−n dt

) 1
2
,

where

Γα(x) := {(y, t) ∈ Rn+1
+ : |x− y| < αt}

is the cone with vertex x and aperture α. We then have the following:

Theorem 3.11 (Dahlberg-Jerison-Kenig [DJK]∗). Suppose that for some p′ ∈ (1,∞), (D)p′

is solvable for L. Then, if u is a solution of the Dirichlet problem with data f ∈ Lp′(Rn),
we have, for all α > 0,

‖Sαu‖Lp′ (Rn) . ‖f‖Lp′ (Rn),

where the implicit constant depends on dimension, ellipticity, α, and on the constants in
the Lp estimates for the Poisson kernel of L.

Lemma 3.12. Let µ be a Carleson measure and Q0 be a cube in Rn. For every 1 < p <∞
we have ∫∫

RQ0

PQ0
s f(y)p dµ(y, s) . |||µ|||C(Q0)

∫
Q0

f(y)p dy (3.11)

where

|||µ|||C(Q0) := sup
Q∈D(Q0)

µ(RQ)

|Q|
.

Proof. For every λ > 0, we set Eλ = {x ∈ Q0 : Md
Q0
f(x) > λ}, where Md

Q0
is the dyadic

Hardy-Littlewood maximal function with respect to Q0. If λ ≤ λ0 := −
∫
Q0
f(z) dz we have

µ{(y, s) ∈ RQ0 : PQ0
s f(y) > λ} ≤ µ(RQ0) ≤ |||µ|||C(Q0) |Q0| ≤ |||µ|||C(Q0)

1

λ

∫
Q0

f(z) dz.

On the other hand, if λ > λ0 we can perform the Calderón-Zygmund decomposition
to construct a family of maximal (thus pairwise disjoint) cubes {Qj}j ⊂ D(Q0) such that
Eλ = ∪jQj . Notice that Qj ( Q0, otherwise Q0 is maximal and then λ0 = −

∫
Q0
f(z) dz > λ,

which is a contradiction.

Let (y, s) ∈ RQ0 satisfy PQ0
s f(y) = −

∫
Q f(z) dz > λ, where Q := Q(y, s) ∈ D(Q0)∗ is

the unique cube with (y, s) ∈ UQ. By maximality there exists j such that Q ⊂ Qj . Then
y ∈ Q ⊂ Qj and also s < 2 `(Q) ≤ 2 `(Qj), therefore (y, s) ∈ RQ∗j where Q∗j is the dyadic

“parent” of Qj . As observed Qj ( Q0 and then Q∗j ∈ D(Q0). Consequently,

µ{(y, s) ∈ RQ0 : PQ0
s f(y) > λ} ≤ µ

(
∪j RQ∗j

)
≤
∑
j

µ(RQ∗j ) ≤ |||µ|||C(Q0)

∑
j

|Q∗j |

= 2n |||µ|||C(Q0) |Eλ|.

∗In fact, the theorem in [DJK] is somewhat more general than the result stated here, but we do not
require the full version.
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Combining the two estimates obtained above, we conclude∫∫
RQ0

PQ0
s f(y)p dµ(y, s) =

∫ ∞
0

p λp µ{(y, s) ∈ RQ0 : PQ0
s f(y) > λ} dλ

λ

. |||µ|||C(Q0)

∫
Q0

f(z) dz

∫ λ0

0
λp−1 dλ

λ
+ |||µ|||C(Q0)

∫ ∞
λ0

λp |Eλ|
dλ

λ

. |||µ|||C(Q0)

(∫
Q0

f(z) dz λp−1
0 + ‖Md

Q0
f‖pLp(Q0)

)
. |||µ|||C(Q0) ‖Md

Q0
f‖pLp(Q0) . |||µ|||C(Q0)

∫
Q0

f(z)p dz.

�

4. Proof of Theorem 3.2

We want to apply Theorem 2.1 with the Carleson measure dµ(X) = a(X)2

%(X) dX. Given

δ > 0 to be chosen, we fix Q0 and a family of pairwise disjoint subcubes F = {Qk}k ∈ D(Q0)
such that

sup
Q∈D(Q0)

µ(RQ ∩ ΩF )

|Q|
≤ δ. (4.1)

Set X0 = (x0, 4 `(Q0)) with x0 being the center of Q0.

As L0 is solvable in some space Lp
′

then ωX0
L0

= ωX0
0 ∈ RHp(Q0) uniformly in Q0. This

means that ωX0
0 � dx and kX0

0 ∈ RHp(Q0) uniformly in Q0. Without loss of generality we

can assume that 1 < p < 2 (as RHp1 ⊂ RHp2 for p2 < p1). As ωX0
L is doubling, it suffices

to work with PF in place of P ′F , thus our goal is to show that PF ωX0
L satisfies (2.4), with

uniform constants. Notice that for a Borel set E, from the definition we have

PF ωX0
L (E) =

∫
Rn
PF (χE)(x)dωX0

L (x) = u(X0),

where u is a solution of the Dirichlet problem with data PF (χE).

4.1. Step 0. We first make a reduction that allows us to use qualitative properties of the
unknown harmonic measure.

We define Aγ(x, t) = A(x, t) for t > γ and Aγ(x, t) = A0(x, t) for 0 ≤ t ≤ γ. In the
following steps we work with Lγ in place of L. We note that the ellipticity constants of Aγ
are controlled by those of A and A0, uniformly in γ. Also, |A0(X) − Aγ(X)| ≤ |A0(X) −
A(X)| and thus the Carleson condition is controlled independently of γ. Notice that Lγ =
L0 in the strip {(x, t) : 0 ≤ t < γ} and then in every step, by the comparison principle, we
can use that all the harmonic measures are in RHp (that is, they are absolutely continuous
with respect to dx and the Poisson kernels are in RHp). Notice that the constants will
depend on γ but in our arguments we will only use this qualitatively and not quantitatively.
In particular in Step 1 we have a priori that ωX0

1 � dx and that kX0
1 ∈ Lp(Q0) (this depends

on γ, but we only use this in a qualitative way). Therefore, we can carry out the whole
argument and in the end we shall establish the reverse Hölder inequality (4.13) below for
kLγ with q and C0 independent of γ. One may then pass to the limit as follows: by [Ken,

p. 41] for any smooth function ϕ we have 〈ϕ, ωX0
Lγ
〉 −→ 〈ϕ, ωX0

L 〉 as γ → 0+. For any cube

Q0, and for every smooth function ϕ in Lq
′
(Q0) with ‖ϕ‖Lq′ (Q0) = 1 we have

|〈ϕ, ωX0
L 〉| = lim

γ→0+
|〈ϕ, ωX0

Lγ
〉| ≤ sup

γ>0
‖kX0

Lγ
‖Lq(Q0) ‖ϕ‖Lq′ (Q0) ≤ C0 sup

γ
|Q0|−1/q′ ωX0

Lγ
(Q0)
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≤ C0 |Q0|−1/q′ .

Thus, Λ
ω
X0
L

(ϕ) := 〈ϕ, ωX0
L 〉 is a functional in (Lq

′
(Q))∗, so ωX0

L � dx in Q0 and kX0
L verifies

(3.4) with p replaced by q. This in turn implies as desired that L is solvable in Lq
′

by
Theorem 3.1.

Taking this reduction into account we can assume without loss of generality that all the
harmonic measures below are absolutely continuous with respect to the Lebesgue measure
and also that the Poisson kernels satisfy (qualitatively) RHp.

4.2. Step 1. We introduce the operator L1 defined as L1 = L in

Ω0 := RQ0 ∩ ΩF = RQ0 \ (∪Qk∈FRQk)

and L1 = L0 otherwise (see Figure 4). More precisely, L1 is the divergence form elliptic
operator with associated matrix A1 = A in Ω0 and A1 = A0 otherwise. We set E1(Y ) =
A1(Y )−A0(Y ) = E(Y ) χΩ0

(Y ). In what follows we write ω0 = ωL0 , ω1 = ωL1 , G1 = GL1 .

L

L0

L0

L0 L0

L0

RQ0

Q0

Ω0

RQ0

Q0

Ω0

Figure 4. Definition of L1 Figure 5. Whitney decomp. of Ω0

We recall that kX0
0 ∈ RHp(Q0), and in particular we have∫

Q0

kX0
0 (y)p dy ≤ C0|Q0|1−p. (4.2)

Our immediate goal in Step 1 is to show that (4.2) remains true (with a different but

uniform constant, independent of Q0), when kX0
0 is replaced by kX0

1 , the Poisson kernel for
the operator L1 defined above.

To this end, let g ≥ 0 be a smooth function supported on Q0, such that ‖g‖Lp′ (Q0) = 1,

and let u0 and u1 be the corresponding solutions to the Dirichlet problems for L0 and L1

with boundary data g. Then, following [FKP], we have

F1(X0) := |u1(X0)− u0(X0)| =
∣∣∣ ∫

Rn+1
+

∇YG1(X0, Y ) E1(Y )∇u0(Y ) dY
∣∣∣

≤
∫

Ω0

|∇YG1(X0, Y )| |E(Y )| |∇u0(Y )| dY.

We perform a Whitney decomposition of RQ0 with respect to the distance to the boundary
Rn such that RQ0 = ∪Q∈D(Q0)∗UQ (see Figure 3). Since Ω0 = RQ0 \ (∪Qk∈FRQk) we have
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that Ω0 = ∪Q∈F1UQ where F1 = D(Q0)∗ \
(⋃

Qk∈F D(Qk)
∗), see Figure 5. Then,

F1(X0) ≤
∑
Q∈F1

∫
UQ

|∇YG1(X0, Y )| |E(Y )| |∇u0(Y )| dY

≤
∑
Q∈F1

sup
UQ

|E|
(∫

UQ

|∇YG1(X0, Y )|2 dY
) 1

2
(∫

UQ

|∇u0(Y )|2 dY
) 1

2
. (4.3)

By definition of X0, we have that v(Y ) = G1(X0, Y ) is a non-negative solution of L1v = 0
in R2Q0 (as X0 /∈ R2Q0) and 2UQ ⊂ R2Q0 . Hence, we can apply Caccioppoli’s inequality
(Lemma 3.5) to obtain∫

UQ

|∇YG1(X0, Y )|2 dY ≤ Cλ,n `(Q)−2

∫
2UQ

G1(X0, Y )2 dY .
∫

2UQ

G1(X0, Y )2

%(Y )2
dY,

since `(UQ) = `(Q) ≈ %(Y ) for every Y ∈ 2UQ. By (3.9), for every Y ∈ 2UQ we have

G1(X0, Y )

%(Y )
≈ ωX0

1 (Q)

|Q|
. (4.4)

Thus,∫
UQ

|∇YG1(X0, Y )|2 dY .
(ωX0

1 (Q)

|Q|

)2
|2UQ|

≈
(ωX0

1 (Q)

|Q|

)2−p
∫

1
4
UQ

(
PQ0
s kX0

1 (y)
)p

dy ds,

where PQ0
s is the dyadic averaging operator defined above.

Next we see that supUQ |E| ≤ a(Y ) for every Y ∈ 1
4 UQ, by a routine geometric argument

that we leave to the reader. Hence, we obtain

sup
UQ

|E|
(∫

UQ

|∇YG1(X0, Y )|2 dY
) 1

2

.
(ωX0

1 (Q)

|Q|

) 2−p
2
(∫

1
4
UQ

(
PQ0
s kX0

1 (y)
)p

a(y, s)2 dy ds
) 1

2

≈ `(Q)
1
2

(ωX0
1 (Q)

|Q|

) 2−p
2
(∫

1
4
UQ

(
PQ0
s kX0

1 (y)
)p a(y, s)2

s
dy ds

) 1
2
.

We plug this estimate into (4.3):

F1(X0) .
∑
Q∈F1

`(Q)
1
2

(ωX0
1 (Q)

|Q|

) 2−p
2
(∫

1
4
UQ

(
PQ0
s kX0

1 (y)
)p a(y, s)2

s
dy ds

) 1
2

×
(∫

UQ

|∇u0(Y )|2 dY
) 1

2

≤
( ∑
Q∈F1

∫
1
4
UQ

(
PQ0
s kX0

1 (y)
)p a(y, s)2

s
dy ds

) 1
2

×
( ∑
Q∈F1

(
ωX0

1 (Q)

|Q|

)2−p ∫
UQ

|∇u0(y, s)|2 s dy ds
) 1

2

=: I · II.
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We estimate each factor in turn. For I, we define

dµ̃(y, s) = χΩ0
(y, s) dµ(y, s) = χΩ0

(y, s) a(y, s)2dy ds

s

so by the dyadic Carleson Embedding Lemma 3.12, we have

I2 ≤
∫
RQ0

(
PQ0
s kX0

1 (y)
)p

dµ̃(y, s) . |||µ̃|||C(Q0)

∫
Q0

kX0
1 (y)p dy,

and therefore by (4.1) we obtain

I . δ
1
2 ‖kX0

1 ‖
p
2

Lp(Q0).

We now estimate II:

II2 =
∑
Q∈F1

1

|Q|

∫
Q

(ωX0
1 (Q)

|Q|

)2−p ∫
UQ

|∇u0(y, s)|2 s dy ds

 dx
.
∑
Q∈F1

∫
Q

(
M(kX0

1 χQ0
)(x)

)2−p
∫
UQ

|∇u0(y, s)|2 s1−n dy ds dx

=
∑
Q∈F1

∫
Q

∫ 2`(Q)

`(Q)

(
M(kX0

1 χQ0
)(x)

)2−p
∫
Q
|∇u0(y, s)|2 s1−n dy ds dx

.
∑
Q∈F1

∫
Q

∫ 2`(Q)

`(Q)

(
M(kX0

1 χQ0
)(x)

)2−p
∫
|x−y|<αs

|∇u0(y, s)|2 s1−n dy ds dx,

=
∑
Q∈F1

∫∫
UQ

(
M(kX0

1 χQ0
)(x)

)2−p
∫
|x−y|<αs

|∇u0(y, s)|2 s1−n dy ds dx

for a sufficiently large choice of α. In turn, the last expression is bounded by∫∫
RQ0

(
M(kX0

1 χQ0
)(x)

)2−p
∫
|x−y|<αs

|∇u0(y, s)|2 s1−n dy ds dx

≤
∫
Rn

(
M(kX0

1 χQ0
)(x)

)2−p
(∫∫

|x−y|<αs
|∇u0(y, s)|2 s1−n dy ds

)
dx

=

∫
Rn

(
M(kX0

1 χQ0
)(x)

)2−p
(Sα(u0)(x))2 dx.

Since we have assumed that 1 < p < 2 we can use Hölder’s inequality with exponent
p′/2 > 1 to obtain

II ≤ ‖Sαu0‖Lp′ ‖M(kX0
1 χQ0

)‖
2−p
2

Lp . ‖g‖Lp′ (Q0) ‖k
X0
1 ‖

2−p
2

Lp(Q0) = ‖kX0
1 ‖

2−p
2

Lp(Q0),

where we have used Theorem 3.11 (and the fact that (D)p′ is solvable for L0). Collecting
our estimates for I and II we conclude

F1(X0) = |u1(X0)− u0(X0)| . δ
1
2 ‖kX0

1 ‖Lp(Q0). (4.5)

Since kX0
0 satisfies (4.2), we may therefore obtain (4.2) for kX0

1 by taking a supremum over
all g as above, and then hiding the error in (4.5) for δ small enough (here we use the

qualitative estimate ‖kX0
1 ‖Lp(Q0) <∞, see Step 0.)
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4.2.1. Self-improvement of Step 1. So far we have only proved that kX0
1 satisfies a scale

invariant Lp estimate on the cube Q0 (cf. (4.2)). In order to carry out Step 2, we will first
need to extend (4.2) to obtain a reverse Hölder estimate on every dyadic subcube of Q0.
The key fact that will allow us to do so is that, in (4.1), the sup is taken with respect to all
such cubes. The idea of the proof is to repeat the previous argument for a fixed Q ∈ D(Q0)
to obtain the analogue of (4.2) on Q, for the Poisson kernel associated to L1, which is now
defined with respect to

ΩQ := RQ ∩ ΩF = RQ \ (∪Qk∈FRQk).

The definition of the operator L1 will depend on Q, but we will address this issue by use
of the comparison principle.

We now fix Q ∈ D(Q0). Let XQ = (xQ, 4 `(Q)) where xQ is the center of Q. Let us

define a new operator LQ1 = L in ΩQ and LQ1 = L0 otherwise in Rn+1
+ , and let k

XQ

LQ1
denote

the Poisson kernel for LQ1 with pole at XQ. We claim that∫
Q
k
XQ

LQ1
(x)pdx ≤ C1|Q|1−p, (4.6)

for some C1 independent of Q. Indeed, if Q ⊂ Qk for some Qk ∈ F then we obtain that

ΩQ = Ø and LQ1 ≡ L0 in Rn+1
+ . In that case, (4.6) holds by hypothesis. Otherwise, since

trivially |||µ|||C(Q) ≤ |||µ|||C(Q0) for every Q ∈ D(Q0), we have that the analogue of (4.1)
obviously holds on Q, for the same family F (or to be more precise, for the family FQ
defined as the family of cubes in F that meet Q). Consequently, if Q is not contained in
any Qk ∈ F , then we may simply repeat the previous argument with respect to Q, and we
obtain (4.6) exactly as before. This proves the claim.

Now by (3.8), we have that
∫
Q k

XQ

LQ1
(x)dx ≥ 1/C, and combining this estimate with (4.6)

we obtain (
−
∫
Q
k
XQ

LQ1
(x)p dx

) 1
p ≤ CC1−

∫
Q
k
XQ

LQ1
(x) dx. (4.7)

Next, we want to pass from k
XQ

LQ1
to k

XQ
L1

. Notice that L1 ≡ LQ1 in RQ, therefore Lemma 3.9

yields that

k
XQ
1 (y) = k

XQ
L1

(y) ≈ kXQ
LQ1

(y), for a.e. y ∈ 1
2 Q.

The latter fact, (4.7) and the doubling property imply that(
−
∫

1
2
Q
k
XQ
1 (x)p dx

) 1
p
.
(
−
∫
Q
k
XQ

LQ1
(x)p dx

) 1
p
. −
∫
Q
k
XQ

LQ1
(x) dx . −

∫
1
2
Q
k
XQ
1 (x) dx. (4.8)

Consequently, by Lemma 3.10 we have(
−
∫

1
2
Q
kX0

1 (x)p dx
) 1
p
. −
∫

1
2
Q
kX0

1 (x) dx, ∀Q ∈ D(Q0). (4.9)

Then we use Lemma B.7 to obtain the following:

Conclusion (Step 1). There exists 1 < r <∞ such that for every Q ∈ D(Q0),(
−
∫
Q
kX0

1 (x)r dx
) 1
r ≤ C −

∫
Q
kX0

1 (x) dx. (4.10)

That is, ωX0
1 ∈ Adyadic

∞ (Q0). Hence we deduce that the same is true for PF ω
XQ
1 , by the

following lemma.
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Lemma 4.1. Suppose that ω ∈ Adyadic
∞ (Q), for some fixed cube Q, and suppose that F =

{Qk} ⊂ D(Q) is a non-overlapping family. Then also PF ω ∈ Adyadic
∞ (Q).

Sketch of proof. The proof is a straightforward consequence of the definition of PF , plus

a simplified version of Lemma 2.8, using the apparently weaker definition of Adyadic
∞ (Q) in

(B.6) (for a different argument see [HM]). We omit the details. �

4.3. Step 2. We define the operator L2 such that the disagreement with L1 lives inside
the Carleson boxes corresponding to the family F . That is, set L2 = L in RQ0 \ ΩF =

∪Qk∈FRQk and L2 = L1 otherwise (see Figure 6). We write ω1 = ωX0
L1

and ω2 = ωX0
L2

for the corresponding harmonic measures for L1 and L2 in Rn+1
+ with fixed pole at X0 =

(x0, 4 `(Q0)). We also let ν1 = νX0
1 and ν2 = νX0

2 denote the harmonic measures of L1 and

L2 with pole at X0, with respect to the domain ΩF = Rn+1
+ \ ∪Qk∈FRQk . We notice that

L1 = L2 in ΩF and therefore ν1 = ν2.

L1

L

L

L1 L1

L1

RQ0

Q0

Figure 6. Definition of L2

We apply the sawtooth lemma for projections (see Lemma A.1 in Appendix A below) to
both L1 and L2 and then we obtain that for all Q ⊂ D(Q0) and F ⊂ Q(

PF ωi(F )

PF ωi(Q)

)θi
.
PF ν̄i(F )

PF ν̄i(Q)
.
PF ωi(F )

PF ωi(Q)
, i = 1, 2 ;

that is, PF ωi ∈ Adyadic
∞ (PF ν̄i, Q0), for i = 1, 2 —here we use that PF ωi and PF ν̄i are

dyadically doubling by Lemmas B.1 and B.2. As observed above, ν1 = ν2 and therefore

(A.2) implies that PF ν̄1 = PF ν̄2. Since Adyadic
∞ (Q0) defines an equivalence relationship,

and since we showed in Step 1 that PF ω1 ∈ Adyadic
∞ (Q0) (with respect to Lebesgue measure),

we also conclude that PF ω2 ∈ Adyadic
∞ (Q0):

Conclusion (Step 2). There exists θ, θ′ > 0 such that(
|F |
|Q|

)θ
.
PFωX0

2 (F )

PFωX0
2 (Q)

.

(
|F |
|Q|

)θ′
, Q ∈ D(Q0), F ⊂ Q.

4.4. Step 3. To complete the proof it remains to change the operator outside RQ0 . Thus,
we define L3 = L2 in RQ0 and L3 = L otherwise (see Figure 7). Let us observe that L3 = L

in Rn+1
+ .
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L2

L2

L2

L L

L

RQ0

Q0

Figure 7. Definition of L3

We want to show that (2.4) holds with PF in place of P ′F . We fix 0 < ε < 1 and take
E ⊂ Q0 with |E|/|Q0| ≥ ε. Let us observe that we can disregard the trivial case F = {Q0}
since we have

PFωX0
3 (E)

PFωX0
3 (Q0)

=

|E|
|Q0| ω

X0
3 (Q0)

|Q0|
|Q0| ω

X0
3 (Q0)

=
|E|
|Q0|

≥ ε.

We take j ≥ 2 large enough such that 2−j+1 < 1−(1−ε/2)1/n. We set Q̃0 = (1−2−j+1)Q0

and observe that Q0 \ Q̃0 = ∪ΛQ where Λ ⊂ D(Q0) and `(Q) = 2−j `(Q0) for every Q ∈ Λ.
Notice that Λ consists of all dyadic cubes in D(Q0) with sidelength 2−j `(Q0) which are

adjacent to the boundary of Q0. We write F = E ∩ Q̃0 and observe that

ε |Q0| ≤ |E| ≤ |F |+ |Q0 \ Q̃0| ≤ |F |+ (1− (1− 2−j+1)n) |Q0| < |F |+
ε

2
|Q0|

and therefore |F |/|Q0| ≥ ε/2. Then, using the conclusion of Step 2 we obtain

PFωX0
2 (F )

PFωX0
2 (Q0)

≥ C
(
|F |
|Q0|

)θ
≥ C

(ε
2

)θ
.

We notice that PFωX0
2 (Q0) = ωX0

2 (Q0) ≥ C by Lemma 3.8 and PFωX0
3 (Q0) = ωX0

3 (Q0) ≤ 1.
We claim that

PFωX0
3 (F ) ≥ Cε PFωX0

2 (F ). (4.11)

Assuming this for the moment and gathering the obtained estimates we conclude that

PFωX0
3 (E)

PFωX0
3 (Q0)

≥ PFωX0
3 (F ) ≥ Cε PFωX0

2 (F ) ≥ C ′ε
PFωX0

2 (F )

PFωX0
2 (Q0)

≥ C ′ε
(ε

2

)θ
.

We show (4.11). Notice that L2 ≡ L3 in RQ0 , then as in Lemma 3.9 by the comparison

principle we have that kX0
2 (y) ≈ kX0

3 (y) for a.e. y ∈ Q̃0 where the constants depend on j

and hence on ε. This implies that ωX0
2 (F \ (∪Qk∈FQk)) ≈ ω

X0
3 (F \ (∪Qk∈FQk)) and then,

PFωX0
3 (F ) = ωX0

3 (F \ (∪Qk∈FQk)) +
∑
Qk∈F

|F ∩Qk|
|Qk|

ωX0
3 (Qk)

≥ Cε ωX0
2 (F \ (∪Qk∈FQk)) +

∑
Qk∈F

|F ∩Qk|
|Qk|

ωX0
3 (Qk)
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and it remains to estimate the second term. Note that in the sum we can restrict ourselves
to those cubes in F that meet F , therefore we pick such a cube Qk.

Case 1: Qk ⊂ Q̃0. As in the previous computations ωX0
3 (Qk) ≥ Cε ωX0

2 (Qk).

Case 2: Qk 6⊂ Q̃0. This means that Qk\Q̃0 6= Ø and then there is Q′ ∈ Λ with Qk∩Q′ 6= Ø.

This yields that Q′ ( Qk (otherwise, Qk ⊂ Q′ which implies that Qk ⊂ Q0\Q̃0 contradicting

the fact that F ∩Qk 6= Ø since F ⊂ Q̃0.) Since Q′ is adjacent to the boundary of Q0 then
so is Qk. We notice that there exists Q̄k ∈ D(Qk) with `(Q̄k) = `(Qk)/2 (i.e., Q̄k is a
dyadic “child” of Qk) that it is not adjacent to ∂Q0 (we have Qk ( Q0 since the case

F = {Q0} was disregarded). In this case we necessarily have Q̄k ⊂ Q̃0: if Q̄k meets Q0 \ Q̃0

then there is Q′′ ∈ Λ with Q̄k ∩ Q′′ 6= Ø and then either Q′′ ⊂ Q̄k which implies that Q̄k
is adjacent to the boundary of Q0 leading to a contradiction, or Q̄k ( Q′′ which implies
Qk ⊂ Q′′ ⊂ Q0 \ Q̃0 contradicting the fact that F ∩ Qk 6= Ø since F ⊂ Q̃0. Given this,

since ωX0
2 is doubling we have

ωX0
3 (Qk) ≥ ωX0

3 (Q̄k) ≥ Cε ωX0
2 (Q̄k) ≥ Cε ωX0

2 (Qk).

Thus in both cases we can conclude as desired

PFωX0
3 (F ) ≥ Cε ωX0

2 (F \ (∪Qk∈FQk)) + Cε
∑
Qk∈F

|F ∩Qk|
|Qk|

ωX0
2 (Qk) = Cε PFωX0

2 (F ).

Let us summarize what we have obtained so far (we recall that L3 ≡ L):

Conclusion (Step 3). There exists δ > 0 for which the following statement holds: given
ε ∈ (0, 1), there is Cε < ∞ such that for every Q0 ⊂ Rn, if F = {Qk}k ⊂ D(Q0) is a
pairwise disjoint collection of dyadic subcubes of Q0 satisfying |||µF |||C(Q0) < δ, then

F ⊂ Q0,
|F |
|Q0|

≥ ε =⇒
PFω

XQ0
L (F )

PFω
XQ0
L (Q0)

≥ 1

Cε
.

4.5. Step 4. In order to apply the extrapolation result we need to be able to fix the pole
relative to a given cube Q0, and show that the conclusion of Step 3 still applies to dyadic
subcubes of Q0.

Proposition 4.2. There exists δ > 0 for which the following statement holds: given ε ∈
(0, 1), there is Cε <∞ such that for every Q0 ⊂ Rn and for all Q ∈ D(Q0), if F = {Qk}k ⊂
D(Q) is a pairwise disjoint collection of dyadic subcubes of Q satisfying

sup
Q′∈D(Q)

µ(RQ′ ∩ ΩF )

|Q′|
≤ δ, (4.12)

then

F ⊂ Q, |F |
|Q|
≥ ε =⇒

PFω
XQ0
L (F )

PFω
XQ0
L (Q)

≥ 1

Cε
.

Consequently, ωXQ0 ∈ Adyadic
∞ (Q0) uniformly in Q0. In particular, there exist 1 < q < ∞

and a uniform constant C0 such that we have the following reverse Hölder inequalities for
all Q0 ⊂ Rn, (

−
∫
Q0

k
XQ0
L (y)q dy

) 1
q ≤ C0−

∫
Q0

k
XQ0
L (y) dy ≈ 1

|Q0|
. (4.13)
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Proof. Take an arbitrary ε ∈ (0, 1) and let δ > 0 and Cε be given by the conclusion of Step
3. We fix Q0 ⊂ Rn and Q ∈ D(Q0). Let F = {Qk}k ⊂ D(Q) be such that (4.12) holds.
Then, we use Lemma 3.10 and for every F ⊂ Q we obtain

PFω
XQ
L (F ) = ω

XQ
L (F \ (∪Qk∈FQk)) +

∑
Qk∈F

|F ∩Qk|
|Qk|

ω
XQ
L (Qk)

≈
ω
XQ0
L (F \ (∪Qk∈FQk))

ω
XQ0
L (Q)

+
∑
Qk∈F

|F ∩Qk|
|Qk|

ω
XQ0
L (Qk)

ω
XQ0
L (Q)

=
PFω

XQ0
L (F )

ω
XQ0
L (Q)

=
PFω

XQ0
L (F )

PFω
XQ0
L (Q)

.

Given F ⊂ Q with |F |/|Q| ≥ ε we apply the previous estimate and the conclusion of Step
3 with cube Q in place of Q0 to conclude that

PFω
XQ0
L (F )

PFω
XQ0
L (Q)

≈ PFω
XQ
L (F ) ≈

PFω
XQ
L (F )

PFω
XQ
L (Q)

≥ 1

Cε
.

Next, by the extrapolation result Theorem 2.1, there exist η0 ∈ (0, 1) and C0 < ∞ such
that for every Q ∈ D(Q0),

F ⊂ Q, |F |
|Q|
≥ 1− η0 =⇒

ω
XQ0
L (F )

ω
XQ0
L (Q)

≥ 1

C0
.

This fact plus the classical result in [CF] (see the proof of Lemma B.4 below) imply the
existence of q = qL and a uniform constant C1 such that for all Q ∈ D(Q0),(

−
∫
Q
k
XQ0
L (y)q dy

) 1
q ≤ C1−

∫
Q
k
XQ0
L (y) dy.

If we specify this estimate to Q = Q0 we obtain as desired (4.13). We notice that the

previous estimate and the fact that ω
XQ0
L is doubling imply k

XQ0
L ∈ RHq(Q0). �

From this result, we see that (4.13) and Theorem 3.1 yield as desired that L is solvable

in Lq
′
.

Appendix A. Discrete Sawtooth Lemmas

We present some versions of the main lemma in [DJK] which are valid for discrete saw-
tooth regions based on dyadic cubes. The first result involves the projection operators and
was used in Step 2 above. The second result (cf. Lemma A.2) is interesting in its own right
and is a dyadic analog of the main lemma in [DJK]. For both lemmas, the proofs follow
the idea of the argument in [DJK], but are technically much simpler, owing to the dyadic
setting in which we work here.

Lemma A.1 (Discrete sawtooth lemma for projections). Let Q0 be a fixed cube in Rn,
let F = {Qk}k ⊂ D(Q0) be a family of pairwise disjoint dyadic cubes and let PF be the
corresponding projection operator. Set ΩF = Rn+1

+ \ (∪Qk∈FRQk). We write ω = ωX0 and

ν = νX0 for the harmonic measures of L with fixed pole at X0 = (xQ0 , 4 `(Q0)) with respect

to the domains Rn+1
+ and ΩF . Let ν̄ = ν̄X0 be the measure defined by

ν̄(F ) = ν(F \ (∪Qk∈FRQk)) +
∑
Qk∈F

ω(F ∩Qk)
ω(Qk)

ν(RQk ∩ ∂ΩF ), F ⊂ Q0. (A.1)
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We observe that PF ν̄ depends only on ν and not on ω since

PF ν̄(F ) = ν(F \ (∪Qk∈FRQk)) +
∑
Qk∈F

|F ∩Qk|
|Qk|

ν(RQk ∩ ∂ΩF ), F ⊂ Q0. (A.2)

Then, there exists θ > 0 such that for all Q ∈ D(Q0) and F ⊂ Q, we have(
PFω(F )

PFω(Q)

)θ
.
PF ν̄(F )

PF ν̄(Q)
.
PFω(F )

PFω(Q)
. (A.3)

Proof. Set E0 = Q0 \ (∪Qk∈FQk). We first observe that (A.2) follows from the definitions
of PF and ν̄: given F ⊂ Q0,

PF ν̄(F ) = ν̄(F ∩ E0) +
∑
Qk∈F

|F ∩Qk|
|Qk|

ν̄(Qk) = ν(F ∩ E0) +
∑
Qk∈F

|F ∩Qk|
|Qk|

ν(RQk ∩ ∂ΩF ),

where we have used that the cubes in F are disjoint and therefore ν̄(Qk) = ν(RQk ∩ ∂ΩF ).

We first show the righthand side inequality in (A.3). Let us fix Q ∈ D(Q0), F ⊂ Q.

Case 1: There exists Qk ∈ F such that Q ⊂ Qk. Note that by (A.2) we have

PF ν̄(F )

PF ν̄(Q)
=

|F∩Qk|
|Qk| ν(RQk ∩ ∂ΩF )

|Q∩Qk|
|Qk| ν(RQk ∩ ∂ΩF )

=
|F |
|Q|

=

|F∩Qk|
|Qk| ω(Qk)

|Q∩Qk|
|Q′| ω(Qk)

=
PFω(F )

PFω(Q)
.

Case 2: Q is not contained in any cube of F . Notice that if Qk ∈ F with Qk ∩ Q 6= Ø,
then Qk ( Q. Using (A.2) we observe that

PF ν̄(Q) = ν(Q ∩ E0) +
∑

Qk∈F ,Qk(Q

|Q ∩Qk|
|Qk|

ν(RQk ∩ ∂ΩF )

= ν(Q ∩ E0) +
∑

Qk∈F ,Qk(Q
ν(RQk ∩ ∂ΩF ) = ν(RQ ∩ ∂ΩF ). (A.4)

Pick AQ = (xQ, `(Q)) and notice that d(AQ, ∂ΩF ) ≈ d(AQ,Rn) ≈ `(Q) (here we are
using that Qk ( Q for all Qk ∈ F such that Qk ∩Q 6= Ø) thus AQ is a corkscrew point for
Q with respect to both domains. Then, we can use [Ken, Lemma 1.3.8] (as X0 /∈ R2Q) to
obtain that for any Borel set G ⊂ Q,

ωAQ(G) ≈ ωX0(G)

ωX0(Q)
=
ω(G)

ω(Q)
. (A.5)

The same occurs for ν and νAQ and for any G ⊂ RQ ∩ ∂ΩF :

νAQ(G) ≈ νX0(G)

νX0(RQ ∩ ∂ΩF )
=

ν(G)

ν(RQ ∩ ∂ΩF )
. (A.6)

Using (A.4) and (A.6) we obtain

PF ν̄(F )

PF ν̄(Q)
=

ν(F ∩ E0)

ν(RQ ∩ ∂ΩF )
+

∑
Qk∈F ,Qk(Q

|F ∩Qk|
|Qk|

ν(RQk ∩ ∂ΩF )

ν(RQ ∩ ∂ΩF )

≈ νAQ(F ∩ E0) +
∑

Qk∈F ,Qk(Q

|F ∩Qk|
|Qk|

νAQ(RQk ∩ ∂ΩF ).

We claim that the following estimates hold (the proof is given below)

νAQ(F ∩ E0) . ωAQ(F ∩ E0), νAQ(RQk ∩ ∂ΩF ) . ωAQ(Qk). (A.7)
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These and (A.5) imply

PF ν̄(F )

PF ν̄(Q)
. ωAQ(F ∩ E0) +

∑
Qk∈F ,Qk(Q

|F ∩Qk|
|Qk|

ωAQ(Qk)

≈ ω(F ∩ E0)

ω(Q)
+

∑
Qk∈F ,Qk(Q

|F ∩Qk|
|Qk|

ω(Qk)

ω(Q)
=
PFω(F )

ω(Q)
=
PFω(F )

PFω(Q)
,

where in the last equality we have used that PFω(Q) = ω(Q).

Once we have shown the righthand side inequality in (A.3) we apply Lemma B.4 and the
fact that PFω and PF ν̄ are dyadically doubling by Lemmas B.1 and B.2 to conclude that
for all Q ∈ D(Q0) and F ⊂ Q

PFω(F )

PFω(Q)
.

(
PF ν̄(F )

PF ν̄(Q)

)1/θ

.

To complete the proof we need to show the estimates claimed in (A.7). We start with
the first one. We write u(Z) = ωZ(F ∩E0) and ũ(Z) = νZ(F ∩E0). We have the following:
u, ũ ≥ 0, Lu = 0 in Rn+1

+ , Lũ = 0 in ΩF , u
Rn

= χF∩E0
, ũ

∂ΩF
= χF∩E0

. For every

Z ∈ ∂ΩF we notice that ũ(Z) ≤ u(Z) —if Z ∈ F ∩ E0, ũ(Z) = u(Z) = 1; if Z /∈ F ∩ E0,
ũ(Z) = 0 ≤ u(Z). Also, Lũ = Lu = 0 in ΩF . Thus, the maximum principle yields that
ũ(Z) ≤ u(Z) for all Z ∈ ΩF . We use that AQ ∈ ΩF since Q is not contained in any cube
of F to conclude as desired

νAQ(F ∩ E0) = ũ(AQ) ≤ u(AQ) = ωAQ(F ∩ E0).

Next we show the second estimate in (A.7). For every Qk ∈ F , Qk ( Q we write
AQk = (xQk , `(Qk)) and observe that AQk ∈ ∂ΩF . Also notice that RQk ⊂ R(AQk , 3 `(Qk))
which is the Rn+1-cube centered at AQk and with sidelength 3 `(Qk). Thus, by the doubling

property for νAQ we have

νAQ(RQk ∩ ∂ΩF ) ≤ νAQ(R(AQk , 3 `(Qk)) ∩ ∂ΩF ) . νAQ(R(AQk , `(Qk)/2) ∩ ∂ΩF ).

We write SQk = R(AQk , `(Qk)/2) ∩ ∂ΩF and observe that this set lives on the upper face

of RQk . Consider u(Z) = ωZ(Qk), ũ(Z) = νZ(SQk). Notice that u, ũ ≥ 0, Lu = 0 in Rn+1
+ ,

Lũ = 0 in ΩF , u
Rn

= χQk , ũ
∂ΩF

= χSQk
. We observe that if Z ∈ ∂ΩF then ũ(Z) . u(Z):

indeed, if Z ∈ SQk then ũ(Z) = 1 ≈ ωZ(Qk) = u(Z) and if Z /∈ SQk , ũ(Z) = 0 ≤ u(Z).
Also Lu = Lũ = 0 in ΩF . Therefore, the maximum principle yields that ũ(Z) . u(Z) for
all Z ∈ ΩF . Then, proceeding as before we conclude

νAQ(RQk ∩ ∂ΩF ) . νAQ(SQk) = ũ(AQ) . u(AQ) = ωAQ(Qk).

�

Lemma A.2 (Discrete sawtooth lemma). Let Q0 be a fixed cube in Rn and let F = {Qk}k ⊂
D(Q0) be a family of pairwise disjoint dyadic cubes. Set ΩF = Rn+1

+ \ (∪Qk∈FRQk). We

write ω = ωX0 and ν = νX0 for the harmonic measures of L with pole at X0 = (xQ0 , 4 `(Q0))

with respect to the domains Rn+1
+ and ΩF . Let ν̄ = ν̄X0 be the measure defined by (A.1).

Then, there exists θ > 0 such that for all Q ∈ D(Q0) and F ⊂ Q, we have(
ω(F )

ω(Q)

)θ
.
ν̄(F )

ν̄(Q)
.
ω(F )

ω(Q)
. (A.8)
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In particular, if F ⊂ Q \ (∪Qk∈FRQk), we have(
ω(F )

ω(Q)

)θ
.

ν(F )

ν(RQ ∩ ∂ΩF )
.
ω(F )

ω(Q)
. (A.9)

Proof. We proceed as in the proof of Lemma A.1 and fix Q ∈ D(Q0) and F ⊂ Q. Set
E0 = Q0 \ (∪Qk∈FQk).
Case 1: There exists Qk ∈ F such that Q ⊂ Qk. We use the definition of ν̄ to conclude as
desired

ν̄(F )

ν̄(Q)
=

ω(F∩Qk)
ω(Qk) ν(RQk ∩ ∂ΩF )

ω(Q∩Qk)
ω(Qk) ν(RQk ∩ ∂ΩF )

=
ω(F )

ω(Q)
.

Case 2: Q is not contained in any cube of F . Notice that if Qk ∈ F with Qk ∩ Q 6= Ø,
then Qk ( Q and

ν̄(Q) = ν(Q ∩ E0) +
∑

Qk∈F ,Qk(Q

ω(Q ∩Qk)
ω(Qk)

ν(RQk ∩ ∂ΩF )

= ν(Q ∩ E0) +
∑

Qk∈F ,Qk(Q
ν(RQk ∩ ∂ΩF ) = ν(RQ ∩ ∂ΩF ). (A.10)

Then we use (A.5), (A.6) and (A.7) to conclude that

ν̄(F )

ν̄(Q)
=

ν(F ∩ E0)

ν(RQ ∩ ∂ΩF )
+

∑
Qk∈F ,Qk(Q

ω(F ∩Qk)
ω(Qk)

ν(RQk ∩ ∂ΩF )

ν(RQ ∩ ∂ΩF )

≈ νAQ(F ∩ E0) +
∑

Qk∈F ,Qk(Q1

ωAQ(F ∩Qk)
ωAQ(Qk)

νAQ(RQk ∩ ∂ΩF )

. ωAQ(F ∩ E0) +
∑

Qk∈F ,Qk(Q
ωAQ(F ∩Qk)

= ωAQ(F ) ≈ ω(F )

ω(Q)
,

and this completes Case 2.

Once we have shown the righthand side inequality in (A.8) we apply Lemma B.4 and the
fact that ω and ν̄ are dyadically doubling in Q0 (see Lemma B.2 below) to conclude that
for all Q ∈ D(Q0) and F ⊂ Q

ω(F )

ω(Q)
.

(
ν̄(F )

ν̄(Q)

)1/θ

.

To show (A.9) we observe that if F ⊂ E0 then ν̄(F ) = ν(F ). Also, notice that we cannot
be in Case 1 unless F = Ø: we would have Q ⊂ Qk ∈ F which gives Q ⊂ Q0 \ E0, and
F ⊂ Q ∩ E0. This means that we can use (A.10). Gathering the obtained estimates we
obtain (A.9): (

ω(F )

ω(Q)

)θ
.
ν̄(F )

ν̄(Q)
=

ν(F )

ν(RQ ∩ ∂ΩF )
.
ω(F )

ω(Q)
.

�
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Appendix B. Dyadically doubling and Muckenhoupt weights

Fixed a cube Q0, in what follows we work with Borel measures ω such that 0 < ω(Q) <∞
for every Q ∈ D(Q0). We say that ω is dyadically doubling in Q0 if there exists Cω such
that ω(Q) ≤ Cω ω(Q′) <∞ for every Q ∈ D(Q0), and for every dyadic “child” Q′ of Q. It
is not difficult to show that Cω ≥ 2n (since Q is the union of its 2n dyadic “children”).

Lemma B.1. Fix Q0. Let ω be a dyadically doubling measure in Q0 with constant Cω.
Then for every family F ⊂ D(Q0) of pairwise disjoint dyadic cubes, PFω is dyadically
doubling in Q0, indeed PFω(Q) ≤ Cω PFω(Q′) for every Q ∈ D(Q0), and for every dyadic
“child” Q′ of Q.

Proof. We fix Q ∈ D(Q0) and one of its dyadic “children” Q′. We consider different cases.

Case 1: There exists Qk ∈ F with Q ⊂ Qk. The estimate is trivial in this case:

PFω(Q) =
|Q|
|Qk|

ω(Qk) = 2n
|Q′|
|Qk|

ω(Qk) = 2n PFω(Q′) ≤ Cω PFω(Q′) <∞.

Case 2: Q′ ∈ F . Notice that PFω(Q′) = ω(Q′). Let F1 be the family of cubes Qk ∈ F
with Qk ∩Q 6= Ø and observe that if Qk ∈ F1 then Qk ( Q. Thus,

PFω(Q) = ω(Q \ (∪Qk∈FQk)) +
∑

Qk∈F1

|Qk ∩Q|
|Qk|

ω(Qk) = ω(Q \ (∪Qk∈FQk)) +
∑

Qk∈F1

ω(Qk)

= ω(Q) ≤ Cω ω(Q′) = Cω PFω(Q′) <∞.

Case 3: None of the conditions in the previous cases occur. We take the same set F1 and
observe that if Qk ∈ F1 then Qk ( Q (otherwise we are driven to Case 1). Let F2 be the
family of cubes Qk ∈ F with Qk∩Q′ 6= Ø. Notice that if Qk ∈ F2 then Qk ( Q′: otherwise,
either Qk = Q′ which leads us to Case 2, or Q′ ( Qk which implies Q ⊂ Qk and this is
Case 1. Then proceeding as in the previous case one obtains that PFω(Q) = ω(Q) and
PFω(Q′) = ω(Q′) which in turn imply

PFω(Q) = ω(Q) ≤ Cω ω(Q′) = Cω PFω(Q′) <∞.
�

Lemma B.2. Under the hypotheses of Lemma A.1, ν̄ and PF ν̄ are dyadically doubling in
Q0.

Proof. We first consider ν̄. Let us fix Q ∈ D(Q0) and one of its dyadic “children” Q′.

Case 1: There exists Qk ∈ F with Q ⊂ Qk. The estimate is trivial in this case since ω is
dyadically doubling:

ν̄(Q) =
ω(Q)

ω(Qk)
ν(RQk ∩ ∂ΩF ) ≤ Cω

ω(Q′)

ω(Qk)
ν(RQk ∩ ∂ΩF ) = Cω ν̄(Q′) <∞.

Case 2: Q′ ∈ F . Notice that ν̄(Q′) = ν(RQ′ ∩∂ΩF ). Let F1 be the family of cubes Qk ∈ F
with Qk ∩Q 6= Ø and observe that if Qk ∈ F1 then Qk ( Q. Thus,

ν̄(Q) = ν(Q \ (∪Qk∈FQk)) +
∑

Qk∈F1

ω(Qk ∩Q)

ω(Qk)
ν(RQk ∩ ∂ΩF )

= ν(Q \ (∪Qk∈FQk)) +
∑

Qk∈F1

ν(RQk ∩ ∂ΩF )

= ν(RQ ∩ ∂ΩF ).
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Note that AQ′ = (xQ′ , `(Q
′)) ∈ ∂ΩF since Q′ ∈ F and also that RQ ⊂ R(AQ′ , 4 `(Q

′))
which is the Rn+1-cube centered at AQ′ with sidelength 4 `(Q′). Thus, we have

ν̄(Q) = ν(RQ ∩ ∂ΩF ) ≤ ν(R(AQ′ , 4 `(Q
′)) ∩ ∂ΩF ) . Cν ν(R(AQ′ , `(Q

′)/2) ∩ ∂ΩF )

≤ Cν ν(RQ′ ∩ ∂ΩF ) = ν̄(Q′),

where we have used that ν = νX0 is doubling.

Case 3: None of the conditions in the previous cases occur. We take the same set F1 and
observe that if Qk ∈ F1 then Qk ( Q (otherwise we are driven to Case 1). Let F2 be the
family of cubes Qk ∈ F with Qk∩Q′ 6= Ø. Notice that if Qk ∈ F2 then Qk ( Q′: otherwise,
either Qk = Q′ which leads us to Case 2, or Q′ ( Qk which implies Q ⊂ Qk and this is
Case 1. Then proceeding as in the previous case one obtains that ν̄(Q) = ν(RQ ∩ ∂ΩF )

and ν̄(Q′) = ν(RQ′ ∩ ∂ΩF ). Set YQ′ = (xQ′ , tQ′) such that YQ′ ∈ ∂ΩF (notice that

0 ≤ tQ′ ≤ `(Q′)/2) and observe that RQ ⊂ R(YQ′ , 5 `(Q
′)) which is the Rn+1-cube centered

at YQ′ with sidelength 5 `(Q′). Then,

ν̄(Q) = ν(RQ ∩ ∂ΩF ) ≤ ν(R(YQ′ , 5 `(Q
′)) ∩ ∂ΩF ) . Cν ν(R(YQ′ , `(Q

′)/2) ∩ ∂ΩF )

≤ Cν ν(RQ′ ∩ ∂ΩF ) = ν̄(Q′),

where we have used that ν = νX0 is doubling. This completes the proof for ν̄.

What PF ν̄ is dyadically doubling follows from Lemma B.1 in which case the constant
would depend on ω and ν. This is not the right approach as we have already observed that
PF ν̄ does not depend on ω. Following the previous scheme we can see that the doubling
constant does not depend on ω: In Cases 2, 3 we have that PF ν̄(Q) = ν̄(Q) and PF ν̄(Q′) =
ν̄(Q′) and the doubling condition follows at once from the previous computations. In Case
1 we obtain

PF ν̄(Q) =
|Q|
|Qk|

ν(RQk ∩ ∂ΩF ) = 2n
|Q′|
|Qk|

ν(RQk ∩ ∂ΩF ) = 2n PF ν̄(Q′) <∞.

�

Remark B.3. Notice that the doubling constant of ν̄ can be controlled by the maximum of
the following quantities:

sup
Q⊂3Q0

ωX0(Q)

ωX0(1
3 Q)

, sup
X,s

νX0(R(X, 5 s) ∩ ΩF )

νX0(R(X, s/2) ∩ ΩF )
,

where the second sup runs over X ∈ ΩF and s ≤ `(Q0)/2. On the other hand, the doubling
constant of PF ν̄ can be controlled by 2n and the second sup right above.

Next we give a version of the classical result in [CF] valid in our dyadic case. The proof
of this result follows the standard arguments in [GR] although one has to adapt the ideas
to the dyadic and local setting considered here. We give the proof for completeness.

Lemma B.4. Let Q0 be a fixed cube and let ω1, ω2 be two dyadically doubling measures
in Q0. Assume that there exist positive constants C0, θ0 such that for all Q ∈ D(Q0) and
F ⊂ Q,

ω2(F )

ω2(Q)
≤ C0

(
ω1(F )

ω1(Q)

)θ0
. (B.1)

Then, there exist positive constants C1, θ1 such that for all Q ∈ D(Q0) and F ⊂ Q,

ω1(F )

ω1(Q)
≤ C1

(
ω2(F )

ω2(Q)

)θ1
. (B.2)
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To prove this result we need a local Calderón-Zygmund decomposition for dyadically
doubling weights. The proof is standard and we leave it to the interested reader.

Lemma B.5. Given Q0 and ω a dyadically doubling measure in Q0 with constant Cω, we
consider the local dyadic Hardy-Littlewood maximal function with respect to ω:

Mωf(x) = sup
x∈Q∈D(Q0)

1

ω(Q)

∫
Q
|f(y)| dω(y).

For any 0 ≤ f ∈ L1(Q0, ω) and λ ≥ 1
ω(Q0)

∫
Q0
|f(y)| dω(y), there exists a collection of

maximal and therefore disjoint dyadic cubes {Qj}j ⊂ D(Q0) such that

Ωλ = {x ∈ Q0 :Mωf(x) > λ} =
⋃
j

Qj , (B.3)

f(x) ≤ λ, for ω-a.e. x /∈ Ωλ (B.4)

λ <
1

ω(Qj)

∫
Qj

f(y) dω(y) ≤ Cω λ. (B.5)

Proof of Lemma B.4. Pick 0 < α < 1 and β = 1 −
(

1−α
C0

)1/θ0 , and notice that 0 < β < 1

since C0 ≥ 1. Then (B.1) applied to Q \ F implies that for every Q ∈ D(Q0),

F ⊂ Q, ω2(F )

ω2(Q)
< α =⇒ ω1(F )

ω1(Q)
< β. (B.6)

We see that this (apparently) weaker condition implies the desired conclusion. Assume
momentarily that ω1 � ω2. Then the Radon-Nikodym derivative h = dω1/dω2 satisfies
that h ∈ L1(Q0, ω2) and 0 ≤ h(x) <∞ for ω2-a.e. x ∈ Q0.

Fixed Q ∈ D(Q0) we write τ = Cω2/α,

λ0 =
1

ω2(Q)

∫
Q
h(x) dω2(x) =

ω1(Q)

ω2(Q)

and λk = τk λ0. Notice that λ0 < λ1 < λ2 < · · · since τ > Cω2 ≥ 1. For every k ≥ 0 we
apply Lemma B.5 in Q to h with dyadically doubling measure ω2: let {Qkj }j ⊂ D(Q) ⊂
D(Q0) be the corresponding collection of cubes such that Ωk = Ωλk =

⋃
j Q

k
j . Fix Qkj0 and

observe that if Qkj0 ∩Q
k+1
j 6= Ø, then Qk+1

j ⊂ Qkj0 . Otherwise we would have Qkj0 ( Qk+1
j ;

by (B.5) we observe that 1
ω2(Qk+1

j )

∫
Qk+1
j

h dω2 > λk+1 > λk, and then Qkj0 would not be

maximal. Then using (B.3) and (B.5) we obtain

ω2(Qkj0 ∩ Ωk+1) =
∑

j:Qk+1
j ⊂Qkj0

ω2(Qk+1
j ) <

1

λk+1

∑
j:Qk+1

j ⊂Qkj0

∫
Qk+1
j

h dω2

≤ 1

λk+1

∫
Qkj0

h dω2 ≤
Cω2λk
λk+1

ω2(Qkj0) = αω2(Qkj0).

This estimate allows us to use (B.6) which in turn gives ω1(Qkj0 ∩Ωk+1) < β ω1(Qkj0). Next

we sum on j0 and conclude that ω1(Ωk+1) < β ω1(Ωk) since Ωk+1 ⊂ Ωk. By iterating this
expression we obtain ω1(Ωk) < βk ω1(Ω0). Similarly, ω2(Ωk) < αk ω1(Ω0), which implies

ω2

(⋂
k

Ωk

)
= lim

k→∞
ω2(Ωk) = 0.

Let 0 < ε < − log β/ log τ . Then 0 < τ ε β < 1, and by (B.4)

1

ω2(Q)

∫
Q
h(x)1+ε dω2(x)
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=
1

ω2(Q)

∫
Q\Ω0

h(x)1+ε dω2(x) +
1

ω2(Q)

∞∑
k=0

∫
Ωk\Ωk+1

h(x)1+ε dω2(x)

≤ λε0
1

ω2(Q)

∫
Q
h(x) dω2(x) +

1

ω2(Q)

∞∑
k=0

λεk+1

∫
Ωk

h(x) dω2(x)

= λε0
ω1(Q)

ω2(Q)
+

1

ω2(Q)

∞∑
k=0

λεk+1 ω1(Ωk)

≤ λε0
ω1(Q)

ω2(Q)
+ λε0

ω1(Ω0)

ω2(Q)

∞∑
k=0

τ (k+1) ε βk

≤ λε0
ω1(Q)

ω2(Q)
(1 + τ ε (1− τ ε β)−1)

=

(
ω1(Q)

ω2(Q)

)1+ε

C1+ε
1 . (B.7)

This estimate implies that for all F ⊂ Q,

ω1(F )

ω2(Q)
=

1

ω2(Q)

∫
Q
χF h dω2 ≤

(
1

ω2(Q)

∫
Q
h1+ε dω2

) 1
1+ε
(
ω2(F )

ω2(Q)

) 1
(1+ε)′

≤ ω1(Q)

ω2(Q)
C1

(
ω2(F )

ω2(Q)

) 1
(1+ε)′

,

which is (B.2) with θ1 = 1/(1 + ε)′. Notice that ε and C1 depend only on α, β and Cω2 .

Next we see how to proceed in the general case starting from (B.6). We define a new
measure ω̃2 = ω2 + δ ω1 with δ > 0. It is clear that ω1 � ω̃2 and also that ω̃2 is dyadically
doubling in Q0 with constant Cω̃2 = Cω1 + Cω2 . We claim that setting β̃ = 1 − min{1 −
β, α/2}, α̃ = α/2 we have for every Q ∈ D(Q0),

F ⊂ Q, ω̃2(F )

ω̃2(Q)
< α̃ =⇒ ω1(F )

ω1(Q)
< β̃. (B.8)

Assuming this (B.6) holds for ω1, ω̃2. By the previous case, since ω1 � ω̃2, there exist ε̃,

C̃1 such that for every Q ∈ D(Q0), F ⊂ Q we have

ω1(F )

ω1(Q)
≤ C̃1

(
ω̃2(F )

ω̃2(Q)

) 1
(1+ε̃)′

.

As mentioned above ε̃, C̃1 depend only on α̃, β̃, Cω̃2 and these are ultimately given in terms
of α, β, Cω1 , Cω2 . Next we see that ω1 � ω2: given F ⊂ Q0 with ω2(F ) = 0, the previous
inequality applied to Q = Q0 gives as desired

0 ≤ ω1(F )

ω1(Q)
≤ C̃1

(
δ ω1(F )

ω̃2(Q0)

) 1
(1+ε̃)′

≤ C̃1

(
δ
ω1(F )

ω2(Q0)

) 1
(1+ε̃)′

−→ 0, as δ → 0+.

Thus, we get back to the first case and obtain (B.7) which eventually leads to (B.2) with
C1 and θ1 as stated above.

To complete the proof we obtain (B.8). Given F as there, it follows that ω̃2(Q \
F )/ω̃2(Q) > 1−α/2. We see that ω1(Q \F )/ω1(Q) > min{1−β, α/2}, which yields as de-

sired ω1(F )/ω1(Q) < β̃. If this were not the case then we would have ω1(Q\F )/ω1(Q) ≤ α/2
and also that ω1(F )/ω1(Q) ≥ β. By (B.6) the latter gives ω2(F )/ω2(Q) ≥ α and therefore
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ω2(Q \ F )/ω2(Q) ≤ 1− α. Gathering these estimates we get a contradiction

ω̃2(Q \ F )

ω̃2(Q)
=
ω2(Q \ F )

ω̃2(Q)
+ δ

ω1(Q \ F )

ω̃2(Q)
≤ ω2(Q \ F )

ω2(Q)
+
ω1(Q \ F )

ω1(Q)
≤ 1− α/2.

�

Remark B.6. Let us observe that (B.7) can be equivalently written as(
1

ω2(Q)

∫
Q
h(x)1+ε dω2(x)

) 1
1+ε

≤ C1
1

ω2(Q)

∫
Q
h(x) dω2(x)

and this shows that h ∈ RHdyadic
1+ε (Q0, ω2)

Lemma B.7. Let Q be a cube and let v be a concentrically doubling weight in Q, that is,
0 < v < ∞ a.e. in Q, v ∈ L1(Q) and there is C0 > 1 such that v(Q′) ≤ C0 v(1

2 Q
′) for all

Q′ ⊂ Q. Assume that there exist C1 ≥ 1 and 1 < p <∞ such that(
−
∫

1
2
Q′
v(x)p dx

) 1
p ≤ C1−

∫
1
2
Q′
v(x) dx, ∀Q′ ∈ D(Q). (B.9)

Then v ∈ RHdyadic
r (Q), that is, there exist 1 < r <∞ and C ≥ 1 depending on n, p, C0, C1

such that (
−
∫
Q′
v(x)r dx

) 1
r ≤ C −

∫
Q′
v(x) dx, ∀Q′ ∈ D(Q). (B.10)

Furthermore, if v is a doubling weight in 2Q, then (B.10) holds for every Q′ ⊂ Q (with a
different constant), thus v ∈ RHr(Q).

Proof. We first observe that (B.9) and Hölder’s inequality imply that for all Q′ ∈ D(Q)
and F ⊂ 1

2 Q
′

v(F )

v(1
2 Q
′)
≤ C1

(
|F |
|12 Q′|

) 1
p′

. (B.11)

We pick 0 < α < (Cp
′

1 2n)−1. Let E ⊂ Q′ ∈ D(Q) be such that |E|/|Q′| > 1 − α. Set
E0 = E ∩ 1

2 Q
′ and F0 = 1

2 Q
′ \ E. We observe that

(1− α) 2n |12 Q
′| < |E| ≤ |E0|+ |Q′ \ 1

2 Q
′| = |E0|+ (2n − 1) |12 Q

′|.

Then |E0|/|12 Q
′| > 1 − 2n α and so |F0|/|12 Q

′| < 2n α. We apply (B.11) to conclude that

v(F0)/v(1
2 Q
′) < C1 (2n α)

1
p′ which in turn gives v(E0)/v(1

2 Q
′) > 1−C1 (2n α)

1
p′ . This and

the fact that v is doubling imply

v(E)

v(Q′)
≥ v(E0)

v(1
2 Q
′)

v(1
2 Q
′)

v(Q′)
>

1− C1 (2n α)
1
p′

C0
= 1− β

with 0 < β < 1. We have obtained that there exist 0 < α, β < 1 such that for every
Q′ ∈ D(Q)

E ⊂ Q′, |E|
|Q′|

> 1− α =⇒ v(E)

v(Q′)
> 1− β. (B.12)

Passing to the complement, this implies (B.6) with dω1 = v dx and dω2 = dx. Then, we
can follow the proof of Lemma B.4 (notice that ω1, ω2 are dyadically doubling in Q and
that h = v) to obtain (B.7) which by Remark B.6 is (B.10) with r = 1 + ε.

What (B.10) extends to all cubes Q′ ⊂ Q under doubling is standard, details are left to
the interested reader. �
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Superior de Investigaciones Cient́ıficas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid, Spain

E-mail address: chema.martell@icmat.es


