
A SUFFICIENT GEOMETRIC CRITERION FOR QUANTITATIVE
ABSOLUTE CONTINUITY OF HARMONIC MEASURE

STEVE HOFMANN AND JOSÉ MARÍA MARTELL

Abstract. Let Ω ⊂ Rn+1, n ≥ 2, be an open set, not necessarily connected,
with an n-dimensional uniformly rectifiable boundary. We show that harmonic
measure for Ω is weak-A∞ with respect to surface measure on ∂Ω, provided that
Ω satisfies a certain weak version of a local John condition.
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1. Introduction

A classical result of F. and M. Riesz [RR] states that for a simply connected
domain Ω in the complex plane, rectifiability of ∂Ω implies that harmonic measure
for Ω is absolutely continuous with respect to arclength measure on the bound-
ary. A quantitative version of this theorem was later proved by Lavrentiev [Lav].
More generally, if only a portion of the boundary is rectifiable, Bishop and Jones
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[BJ] have shown that harmonic measure is absolutely continuous with respect to
arclength on that portion. They also present a counter-example to show that the re-
sult of [RR] may fail in the absence of some connectivity hypothesis (e.g., simple
connectedness).

In dimensions greater than 2, a fundamental result of Dahlberg [Dah] estab-
lishes a quantitative version of absolute continuity, namely that harmonic measure
belongs to the class A∞ in an appropriate local sense (see Definitions 1.19 and 1.23
below), with respect to surface measure on the boundary of a Lipschitz domain.

The result of Dahlberg was extended to the class of Chord-arc domains (see Def-
inition 1.13) by David and Jerison [DJ], and independently by Semmes [Sem]. The
Chord-arc hypothesis was weakened to that of a two-sided Corkscrew condition
(Definition 1.10) by Bennewitz and Lewis [BL], who then drew the conclusion that
harmonic measure is weak-A∞ (in an appropriate local sense, see Definitions 1.19
and 1.23) with respect to surface measure on the boundary; the latter condition is
similar to the A∞ condition, but without the doubling property, and is the best con-
clusion that can be obtained under the weakened geometric conditions considered
in [BL]. We note that weak-A∞ is still a quantitative, scale invariant version of
absolute continuity.

While the present paper was in preparation, we learned of some very interesting
recent work of J. Azzam [Azz], who has given a geometric characterization of the
A∞ property of harmonic measure with respect to surface measure for domains
with Ahlfors-David regular (ADR) boundary (see Definition 1.6). This work is
related to our own, so let us describe it in a bit more detail. Specifically, Azzam
shows that for a domain Ω with ADR boundary, harmonic measure is in A∞ with
respect to surface measure, if and only if 1) ∂Ω is uniformly rectifiable (this is
a quantitative, scale-invariant version of rectifiability, see Definition 1.8 and the
ensuing comments), and 2) Ω is semi-uniform in the sense of Aikawa and Hirata
[AH]. The semi-uniform condition is a connectivity condition which states that for
some uniform constant M, every pair of points X ∈ Ω and y ∈ ∂Ω may be connected
by a rectifiable curve γ = γ(y, X), with γ \ {y} ⊂ Ω, with length `(γ) ≤ M|X − y| and
which satisfies the “cigar path” condition

(1.1) min
{
`
(
γ(y,Z)

)
, `

(
γ(Z, X)

)}
≤ M dist(Z, ∂Ω) , ∀Z ∈ γ .

Semi-uniformity is a weak version of the well known uniform condition, whose
definition is similar, except that it applies to all pairs of points X,Y ∈ Ω. For ex-
ample, the unit disk centered at the origin, with the slit −1/2 ≤ x ≤ 1/2, y = 0
removed, is semi-uniform, but not uniform. It was shown in [AH] that for a do-
main satisfying a John condition and the Capacity Density Condition (in particular,
for a domain with an ADR boundary), semi-uniformity characterizes the doubling
property of harmonic measure. The method of [Azz] is, broadly speaking, related
to that of [DJ], and of [BL]. In [DJ], the authors show that a Chord-arc domain Ω

may be approximated in a “Big Pieces” sense (see [DJ] or [BL] for a precise state-
ment) by Lipschitz subdomains Ω′ ⊂ Ω; this fact allows one to reduce matters to
the result of Dahlberg via the maximum principle (a method which, to the present
authors’ knowledge, first appears in [JK] in the context of BMO1 domains). The
same strategy, i.e., Big Piece approximation by Lipschitz subdomains, is employed
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in [BL]. Similarly, in [Azz], matters are reduced to the result of [DJ], by showing
that for a domain Ω with an ADR boundary, Ω is semi-uniform with a uniformly
rectifiable boundary if and only if it has “Big Pieces” of Chord-arc subdomains
(see [Azz] for a precise statement of the latter condition). As mentioned above, the
converse direction is also treated in [Azz]. In that case, given an interior Corkscrew
condition (which holds automatically in the presence of the doubling property of
harmonic measure), and provided that ∂Ω is ADR, the A∞ (or even weak-A∞) prop-
erty of harmonic measure was already known to imply uniform rectifiability of the
boundary [HM3] (although the published version appears in [HLMN]; see also
[MT] for an alternative proof, and a somewhat more general result); as in [AH],
semi-uniformity follows from the doubling property, although in [Azz], the author
manages to show this while dispensing with the John domain background assump-
tion (given a harmlessly strengthened version of the doubling property).

In light of the example of [BJ], it is an interesting open question to try to de-
termine the minimal connectivity assumption, which, in conjunction with uniform
rectifiability of the boundary, yields quantitative absolute continuity of harmonic
measure with respect to surface measure. In the present work, we impose a signifi-
cantly milder connectivity hypothesis than semi-uniformity, and we then show that
harmonic measure ω satisfies a weak-A∞ condition with respect to surface mea-
sure σ on the boundary, provided that ∂Ω is uniformly rectifiable. The weak-A∞
conclusion is best possible in this generality: indeed, the stronger conclusion that
ω ∈ A∞(σ), which entails doubling of ω, necessarily requires semi-uniformity, as
Azzam has shown.

Let us now describe our connectivity hypothesis, which says, roughly speaking,
that from each point X ∈ Ω, there is local non-tangential access to an ample portion
of a surface ball at a scale on the order of δ(X) := dist(X, ∂Ω). Let us make this a
bit more precise. A “carrot path” (aka non-tangential path) joining a point X ∈ Ω,
and a point y ∈ ∂Ω, is a connected rectifiable path γ = γ(y, X), with endpoints y
and X, such that for some λ ∈ (0, 1) and for all Z ∈ γ,

(1.2) λ `
(
γ(y,Z)

)
≤ δ(Z) .

For X ∈ Ω, and R ≥ 2, set

∆X = ∆R
X := B

(
X,Rδ(X)

)
∩ ∂Ω .

We assume that every point X ∈ Ω may be joined by a carrot path to each y in a “Big
Piece” of ∆X , i.e., to each y in a Borel subset F ⊂ ∆X , with σ(F) ≥ θσ(∆X), where
σ denotes surface measure on ∂Ω, and where the parameters R ≥ 2, λ ∈ (0, 1),
and θ ∈ (0, 1] are uniformly controlled. We refer to this condition as a “weak
local John condition”, although “weak local semi-uniformity” would probably be
equally appropriate. See Definitions 1.14, 1.16 and 1.18 for more details. We
remark that a strong version of the local John condition (i.e., with θ = 1) has
appeared in [HMT], in connection with boundary Poincaré inequalities for non-
smooth domains.

We observe that the weak local John condition is strictly weaker than semi-
uniformity: for example, the unit disk centered a the origin, with either the cross
{−1/2 ≤ x ≤ 1/2, y = 0} ∪ {−1/2 ≤ y ≤ 1/2, x = 0} removed, or with the slit
0 ≤ x ≤ 1, y = 0 removed, satisfies the weak local John condition.
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The main result of this paper is the following.

Theorem 1.3. Let Ω ⊂ Rn+1, n ≥ 2 be an open set, not necessarily connected, with
a uniformly rectifiable (UR) boundary. If Ω satisfies the weak local John condition,
then harmonic measure ω is locally in weak-A∞ (see Definition 1.23) with respect
to surface measure σ on ∂Ω.

We expect that the converse holds, assuming in addition that Ω satisfies an in-
terior Corkscrew condition, and we hope to treat this direction in a future paper.
Of course, as noted above, the weak-A∞ condition already yields uniform rectifi-
ability of the boundary [HM3] (also [HLMN] and [MT]), so it remains to show
that weak-A∞ implies the weak local John condition. As noted above, the stronger
assumption that ω ∈ A∞, since it entails doubling, yields the stronger conclusion
that Ω is semi-uniform, by [Azz]. We include in Section 4 of the present paper an
easy direct proof of the fact that doubling of harmonic measure implies a strong
local John condition (i.e., with θ = 1).

As is well known, quantitative absolute continuity, more precisely that ω ∈
weak-A∞(σ) in the sense of Definition 1.23, is equivalent to an Lp solvability result
for the Dirichlet problem. We therefore have the following.

Corollary 1.4. Let Ω ⊂ Rn+1, n ≥ 2 be an open set, not necessarily connected,
with a uniformly rectifiable boundary. Suppose in addition that Ω satisfies the
weak local John condition. Then the Lp Dirichlet problem for Ω is solvable in Lp,
for some p < ∞, i.e., given continuous data g defined on ∂Ω, for the harmonic
measure solution u to the Dirichlet problem with data g, we have for some p < ∞
that

(1.5) ‖N∗u‖Lp(∂Ω) ≤ C ‖g‖Lp(∂Ω) ,

where N∗u is a suitable version of the non-tangential maximal function of u.

We refer the reader to, e.g., [HLe, Section 4] for details.

1.1. Further notation and definitions.

• Unless otherwise stated, we use the letters c,C to denote harmless positive con-
stants, not necessarily the same at each occurrence, which depend only on di-
mension and the constants appearing in the hypotheses of the theorems (which
we refer to as the “allowable parameters”). We shall also sometimes write a . b
and a ≈ b to mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where
the constants c and C are as above, unless explicitly noted to the contrary. At
times, we shall designate by M a particular constant whose value will remain un-
changed throughout the proof of a given lemma or proposition, but which may
have a different value during the proof of a different lemma or proposition.

• Ω will always denote an open set in Rn+1, not necessarily connected unless oth-
erwise specified.

• We use the notation γ(X,Y) to denote a rectifiable path with endpoints X and Y ,
and its arc-length will be denoted `(γ(X,Y)). Given such a path, if Z ∈ γ(X,Y),
we use the notation γ(Z,Y) to denote the portion of the original path with end-
points Z and Y .
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• Given an open set Ω ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote
points on ∂Ω, and capital letters X,Y,Z, etc., to denote generic points in Ω (or
more generally in Rn+1 \ ∂Ω).

• We let e j, j = 1, 2, . . . , n + 1, denote the standard unit basis vectors in Rn+1.

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on ∂Ω, or B(X, r) when the center X ∈ Ω. A surface ball
is denoted ∆(x, r) := B(x, r) ∩ ∂Ω.

• Given a Euclidean ball B or surface ball ∆, its radius will be denoted rB or r∆,
respectively.

• Given a Euclidean or surface ball B = B(X, r) or ∆ = ∆(x, r), its concentric dilate
by a factor of κ > 0 will be denoted κB := B(X, κr) or κ∆ := ∆(x, κr).

• Given an open set Ω ⊂ Rn+1, for X ∈ Ω, we set δ(X) := dist(X, ∂Ω).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := Hn⌊
∂Ω denote

the surface measure on ∂Ω.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.
1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x < A.

• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A.

• Given a Borel measure µ, and a Borel set A, with positive and finite µ measure,
we set

>
A f dµ := µ(A)−1

∫
A f dµ.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let `(I)
denote the side length of I. If `(I) = 2−k, then we set kI := k. Given an ADR
set E ⊂ Rn+1, we use Q (or sometimes P) to denote a dyadic “cube” on E. The
latter exist (cf. [DS1], [Chr]), and enjoy certain properties which we enumerate
in Lemma 1.26 below.

Definition 1.6. (ADR) (aka Ahlfors-David regular). We say that a set E ⊂ Rn+1, of
Hausdorff dimension n, is ADR if it is closed, and if there is some uniform constant
C such that

(1.7)
1
C

rn ≤ σ
(
∆(x, r)

)
≤ C rn, ∀r ∈ (0, diam(E)), x ∈ E,

where diam(E) may be infinite. Here, ∆(x, r) := E ∩ B(x, r) is the surface ball of
radius r, and as above, σ := Hnb E is the “surface measure” on E.

Definition 1.8. (UR) (aka uniformly rectifiable). An n-dimensional ADR (hence
closed) set E ⊂ Rn+1 is UR if and only if it contains “Big Pieces of Lipschitz
Images” of Rn (“BPLI”). This means that there are positive constants c1 and C1,
such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping
ρ = ρx,r : Rn → Rn+1, with Lipschitz constant no larger than C1, such that

Hn
(
E ∩ B(x, r) ∩ ρ

(
{z ∈ Rn : |z| < r}

) )
≥ c1rn .
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We recall that n-dimensional rectifiable sets are characterized by the property
that they can be covered, up to a set of Hn measure 0, by a countable union of
Lipschitz images of Rn; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely
those for which all “sufficiently nice” singular integrals are L2-bounded [DS1]. In
fact, for n-dimensional ADR sets in Rn+1, the L2 boundedness of certain special
singular integral operators (the “Riesz Transforms”), suffices to characterize uni-
form rectifiability (see [MMV] for the case n = 1, and [NTV] in general). We
further remark that there exist sets that are ADR (and that even form the boundary
of a domain satisfying interior Corkscrew and Harnack Chain conditions), but that
are totally non-rectifiable (e.g., see the construction of Garnett’s “4-corners Cantor
set” in [DS2, Chapter1]). Finally, we mention that there are numerous other char-
acterizations of UR sets (many of which remain valid in higher co-dimensions); cf.
[DS1, DS2].

Definition 1.9. (“UR character”). Given a UR set E ⊂ Rn+1, its “UR character” is
just the pair of constants (c1,C1) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quantitative bounds involved in
any particular characterization of uniform rectifiability.

Definition 1.10. (Corkscrew condition). Following [JK], we say that an open set
Ω ⊂ Rn+1 satisfies the Corkscrew condition if for some uniform constant c > 0
and for every surface ball ∆ := ∆(x, r), with x ∈ ∂Ω and 0 < r < diam(∂Ω), there
is a ball B(X∆, cr) ⊂ B(x, r) ∩ Ω. The point X∆ ⊂ Ω is called a Corkscrew point
relative to ∆. We note that we may allow r < C diam(∂Ω) for any fixed C, simply
by adjusting the constant c. In order to emphasize that B(X∆, cr) ⊂ Ω, we shall
sometimes refer to this property as the interior Corkscrew condition.

Definition 1.11. (Harnack Chains, and the Harnack Chain condition [JK]).
Given two points X, X′ ∈ Ω, and a pair of numbers M,N ≥ 1, an (M,N)-Harnack
Chain connecting X to X′, is a chain of open balls B1, . . . , BN ⊂ Ω, with X ∈
B1, X′ ∈ BN , Bk ∩ Bk+1 , Ø and M−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ M diam(Bk). We
say that Ω satisfies the Harnack Chain condition if there is a uniform constant M
such that for any two points X, X′ ∈ Ω, there is an (M,N)-Harnack Chain connect-
ing them, with N depending only on the ratio |X − X′|/

(
min

(
δ(X), δ(X′)

))
.

Definition 1.12. (NTA). Again following [JK], we say that a domain Ω ⊂ Rn+1 is
NTA (Non-tangentially accessible) if it satisfies the Harnack Chain condition, and
if both Ω and Ωext := Rn+1 \Ω satisfy the Corkscrew condition.

Definition 1.13. (CAD). We say that a connected open set Ω ⊂ Rn+1 is a CAD
(Chord-arc domain), if it is NTA, and if ∂Ω is ADR.

Definition 1.14. (Carrot path). Let Ω ⊂ Rn+1 be an open set. Given a point X ∈ Ω,
and a point y ∈ ∂Ω, we say that a connected rectifiable path γ = γ(y, X), with
endpoints y and X, is a carrot path (more precisely, a λ-carrot path) connecting y
to X, if γ \ {y} ⊂ Ω, and if for some λ ∈ (0, 1) and for all Z ∈ γ,

(1.15) λ `
(
γ(y,Z)

)
≤ δ(Z) .

With a slight abuse of terminology, we shall sometimes refer to such a path as a
λ-carrot path in Ω, although of course the endpoint y lies on ∂Ω.
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A carrot path is sometimes referred to as a non-tangential path.

Definition 1.16. ((θ, λ,R)-weak local John point). Let X ∈ Ω, and for constants
θ ∈ (0, 1], λ ∈ (0, 1), and R ≥ 2, set

∆X = ∆R
X := B

(
X,Rδ(X)

)
∩ ∂Ω .

We say that a point X ∈ Ω is a (θ, λ,R)-weak local John point if there is a Borel set
F ⊂ ∆R

X , with σ(F) ≥ θσ(∆R
X), such that for every y ∈ F, there is a λ-carrot path

connecting y to X.

Thus, a weak local John point is non-tangentially connected to an ample portion
of the boundary, locally. We observe that one can always choose R smaller, for
possibly different values of θ and λ, by moving from X to a point X′ on a line
segment joining X to the boundary.

Remark 1.17. We observe that it is a slight abuse of notation to write ∆X , since the
latter is not centered on ∂Ω, and thus it is not a true surface ball; on the other hand,
there are true surface balls, ∆′X := ∆(x̂, (R − 1)δ(X)) and ∆′′X := ∆(x̂, (R + 1)δ(X)),
centered at a “touching point” x̂ ∈ ∂Ω with δ(X) = |X − x̂|, which, respectively, are
contained in, and contain, ∆X .

Definition 1.18. (Weak local John condition). We say that Ω satisfies a weak
local John condition if there are constants λ ∈ (0, 1), θ ∈ (0, 1], and R ≥ 2, such
that every X ∈ Ω is a (θ, λ,R)-weak local John point.

Definition 1.19. (A∞, weak-A∞, and weak-RHq). Given an ADR set E ⊂ Rn+1, and
a surface ball ∆0 := B0 ∩ E, we say that a Borel measure µ defined on E belongs
to A∞(∆0) if there are positive constants C and s such that for each surface ball
∆ = B ∩ E, with B ⊆ B0, we have

(1.20) µ(A) ≤ C
(
σ(A)
σ(∆)

)s

µ(∆) , for every Borel set A ⊂ ∆ .

Similarly, we say that µ ∈ weak-A∞(∆0) if for each surface ball ∆ = B ∩ E, with
2B ⊆ B0,

(1.21) µ(A) ≤ C
(
σ(A)
σ(∆)

)s

µ(2∆) , for every Borel set A ⊂ ∆ .

We recall that, as is well known, the condition µ ∈weak-A∞(∆0) is equivalent to the
property that µ � σ in ∆0, and that for some q > 1, the Radon-Nikodym derivative
k := dµ/dσ satisfies the weak reverse Hölder estimate

(1.22)
(?

∆

kqdσ
)1/q

.

?
2∆

k dσ ≈
µ(2∆)
σ(∆)

, ∀∆ = B ∩ E, with 2B ⊆ B0 .

We shall refer to the inequality in (1.22) as an “RHq” estimate, and we shall say
that k ∈ RHq(∆0) if k satisfies (1.22).

Definition 1.23. (Local A∞ and local weak-A∞). We say that harmonic measure
ω is locally in A∞ (resp., locally in weak-A∞) on ∂Ω, if there are uniform positive
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constants C and s such that for every ball B = B(x, r) centered on ∂Ω, with radius
r < diam(∂Ω)/4, and associated surface ball ∆ = B ∩ ∂Ω,

(1.24) ωX(A) ≤ C
(
σ(A)
σ(∆)

)s

ωX(∆) , ∀ X ∈ Ω \ 4B , ∀ Borel A ⊂ ∆ ,

or, respectively, that

(1.25) ωX(A) ≤ C
(
σ(A)
σ(∆)

)s

ωX(2∆) , ∀ X ∈ Ω \ 4B , ∀ Borel A ⊂ ∆ ;

equivalently, if for every ball B and surface ball ∆ = B∩ ∂Ω as above, and for each
point X ∈ Ω\4B, ωX ∈ A∞(∆) (resp., ωX ∈weak-A∞(∆)) with uniformly controlled
A∞ (resp., weak-A∞) constants.

Lemma 1.26. (Existence and properties of the “dyadic grid”) [DS1, DS2],
[Chr]. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set. Then there exist
constants a0 > 0, s > 0 and C1 < ∞, depending only on n and the ADR constant,
such that for each k ∈ Z, there is a collection of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E = ∪ jQk
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = Ø.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam
(
Qk

j
)
≤ C12−k.

(v) Each Qk
j contains some “surface ball” ∆

(
xk

j, a02−k) := B
(
xk

j, a02−k) ∩ E.

(vi) Hn({x ∈ Qk
j : dist(x, E \ Qk

j) ≤ ϑ 2−k}) ≤ C1 ϑ
s Hn(Qk

j
)
, for all k, j and for all

ϑ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [Chr], with the dyadic parameter 1/2 replaced by some con-
stant δ ∈ (0, 1). In fact, one may always take δ = 1/2 (cf. [HMMM, Proof
of Proposition 2.12]). In the presence of the Ahlfors-David property (1.7), the
result already appears in [DS1, DS2]. Some predecessors of this construction
have appeared in [D1] and [D2].

• For our purposes, we may ignore those k ∈ Z such that 2−k & diam(E), in the
case that the latter is finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j, i.e.,

D := ∪kDk,

where, if diam(E) is finite, the union runs over those k such that 2−k . diam(E).
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• Properties (iv) and (v) imply that for each cube Q ∈ Dk, there is a point xQ ∈ E,
a Euclidean ball B(xQ, rQ) and a surface ball ∆(xQ, rQ) := B(xQ, rQ) ∩ E such
that rQ ≈ 2−k ≈ diam(Q) and

(1.27) ∆(xQ, rQ) ⊂ Q ⊂ ∆(xQ,CrQ),

for some uniform constant C. We shall denote this ball and surface ball by

(1.28) BQ := B(xQ, rQ) , ∆Q := ∆(xQ, rQ),

and we shall refer to the point xQ as the “center” of Q.

• For a dyadic cube Q ∈ Dk, we shall set `(Q) = 2−k, and we shall refer to this
quantity as the “length” of Q. Evidently, `(Q) ≈ diam(Q).

• For a dyadic cube Q ∈ D, we let k(Q) denote the dyadic generation to which Q
belongs, i.e., we set k = k(Q) if Q ∈ Dk; thus, `(Q) = 2−k(Q).

• For a pair of cubes Q′,Q ∈ D, if Q′ is a dyadic child of Q, i.e., if Q′ ⊂ Q, and
`(Q) = 2`(Q′), then we write Q′ C Q.

With the dyadic cubes in hand, we may now define the notion of a Corkscrew
point relative to a cube Q.

Definition 1.29. (Corkscrew point relative to Q). Let Ω satisfy the Corkscrew
condition (Definition 1.10), suppose that ∂Ω is ADR, and let Q ∈ D(∂Ω). A
Corkscrew point relative to Q is simply a Corkscrew point relative to the surface
ball ∆Q defined (1.27)-(1.28).

Definition 1.30. (Coherency). [DS2]. Let E ⊂ Rn+1 be an ADR set. Let S ⊂ D(E).
We say that S is coherent if the following conditions hold:

(a) S contains a unique maximal element Q(S) which contains all other ele-
ments of S as subsets.

(b) If Q belongs to S, and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.
(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them

do.

We say that S is semi-coherent if conditions (a) and (b) hold.

2. Preliminaries

We begin by recalling a bilateral version of the David-Semmes “Corona decom-
position” of a UR set. We refer the reader to [HMM] for the proof.

Lemma 2.1. ([HMM, Lemma 2.2]) Let E ⊂ Rn+1 be a UR set of dimension n. Then
given any positive constants η � 1 and K � 1, there is a disjoint decomposition
D(E) = G ∪ B, satisfying the following properties.

(1) The “Good”collection G is further subdivided into disjoint stopping time
regimes, such that each such regime S is coherent (Definition 1.30).

(2) The “Bad” cubes, as well as the maximal cubes Q(S), S ⊂ G, satisfy a
Carleson packing condition:∑

Q′⊂Q,Q′∈B

σ(Q′) +
∑

S⊂G:Q(S)⊂Q

σ
(
Q(S)

)
≤ Cη,K σ(Q) , ∀Q ∈ D(E) .
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(3) For each S ⊂ G, there is a Lipschitz graph ΓS, with Lipschitz constant at
most η, such that, for every Q ∈ S,

(2.2) sup
x∈∆∗Q

dist(x,ΓS) + sup
y∈B∗Q∩ΓS

dist(y, E) < η `(Q) ,

where B∗Q := B(xQ,K`(Q)) and ∆∗Q := B∗Q ∩ E, and xQ is the “center” of
Q as in (1.27)-(1.28).

We mention that David and Semmes, in [DS1], had previously proved a unilat-
eral version of Lemma 2.1, in which the bilateral estimate (2.2) is replaced by the
unilateral bound

(2.3) sup
x∈∆∗Q

dist(x,ΓS) < η `(Q) , ∀Q ∈ S .

Next, we make a standard Whitney decomposition of ΩE := Rn+1\E, for a given
UR set E (in particular, ΩE is open, since UR sets are closed by definition). Let
W =W(ΩE) denote a collection of (closed) dyadic Whitney cubes of ΩE , so that
the cubes inW form a pairwise non-overlapping covering of ΩE , which satisfy

(2.4) 4 diam(I) ≤ dist(4I, ∂Ω) ≤ dist(I, ∂Ω) ≤ 40 diam(I) , ∀ I ∈ W

(just dyadically divide the standard Whitney cubes, as constructed in [Ste, Chapter
VI], into cubes with side length 1/8 as large) and also

(1/4) diam(I1) ≤ diam(I2) ≤ 4 diam(I1) ,

whenever I1 and I2 touch.
We fix a small parameter τ0 > 0, so that for any I ∈ W, and any τ ∈ (0, τ0], the

concentric dilate

(2.5) I∗(τ) := (1 + τ)I

still satisfies the Whitney property

(2.6) diam I ≈ diam I∗(τ) ≈ dist
(
I∗(τ), E

)
≈ dist(I, E) , 0 < τ ≤ τ0 .

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈ W, we have that I∗(τ) meets
J∗(τ) if and only if I and J have a boundary point in common, and that, if I , J,
then I∗(τ) misses (3/4)J.

Pick two parameters η � 1 and K � 1 (eventually, we shall take K = η−3/4).
For Q ∈ D(E), define

(2.7) W0
Q :=

{
I ∈ W : η1/4`(Q) ≤ `(I) ≤ K1/2`(Q), dist(I,Q) ≤ K1/2`(Q)

}
.

Remark 2.8. We note that W0
Q is non-empty, provided that we choose η small

enough, and K large enough, depending only on dimension and ADR, since the
ADR condition implies that ΩE satisfies a Corkscrew condition. In the sequel, we
shall always assume that η and K have been so chosen.

Next, we recall a construction in [HMM, Section 3], leading up to and including
in particular [HMM, Lemma 3.24]. We summarize this construction as follows.
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Lemma 2.9. Let E ⊂ Rn+1 be an n-dimensional UR set, and let ΩE := Rn+1 \

E. Given positive constants η � 1 and K � 1, as in (2.7) and Remark 2.8, let
D(E) = G ∪ B, be the corresponding bilateral Corona decomposition of Lemma
2.1. Then for each S ⊂ G, and for each Q ∈ S, the collectionW0

Q in (2.7) has an
augmentationW∗

Q ⊂ W satisfying the following properties.

(1) W0
Q ⊂ W

∗
Q = W

∗,+
Q ∪ W

∗,−
Q , where (after a suitable rotation of coor-

dinates) each I ∈ W∗,+
Q lies above the Lipschitz graph ΓS of Lemma 2.1,

each I ∈ W∗,−
Q lies below ΓS. Moreover, if Q′ is a child of Q, also be-

longing to S, thenW∗,+
Q (resp. W∗,−

Q ) belongs to the same connected com-
ponent of ΩE as does W∗,+

Q′ (resp. W∗,−
Q′ ) and W∗,+

Q′ ∩W
∗,+
Q , Ø (resp.,

W
∗,−
Q′ ∩W

∗,−
Q , Ø).

(2) There are uniform constants c and C such that

(2.10)

cη1/2`(Q) ≤ `(I) ≤ CK1/2`(Q) , ∀I ∈ W∗
Q,

dist(I,Q) ≤ CK1/2`(Q) , ∀I ∈ W∗
Q,

cη1/2`(Q) ≤ dist(I∗(τ),ΓS) , ∀I ∈ W∗
Q , ∀τ ∈ (0, τ0] .

Moreover, given τ ∈ (0, τ0], set

(2.11) U±Q = U±Q,τ :=
⋃

I∈W∗,±
Q

int
(
I∗(τ)

)
, UQ := U+

Q ∪ U−Q ,

and given S′, a semi-coherent subregime of S, define

(2.12) Ω±S′ = Ω±S′(τ) :=
⋃
Q∈S′

U±Q .

Then each of Ω±S′ is a CAD, with Chord-arc constants depending only on n, τ, η,K,
and the ADR/UR constants for ∂Ω.

Remark 2.13. In particular, for each S ⊂ G, if Q′ and Q belong to S, and if Q′ is
a dyadic child of Q, then U+

Q′ ∪ U+
Q is Harnack Chain connected, and every pair of

points X,Y ∈ U+
Q′ ∪ U+

Q may be connected by a Harnack Chain in ΩE of length at
most C = C(n, τ, η,K,ADR/UR). The same is true for U−Q′ ∪ U−Q.

Remark 2.14. Let 0 < τ ≤ τ0/2. Given any S ⊂ G, and any semi-coherent sub-
regime S′ ⊂ S, define Ω±S′ = Ω±S′(τ) as in (2.12), and similarly set Ω̂±S′ = Ω±S′(2τ).
Then by construction, for any X ∈ Ω±S′ ,

dist(X, E) ≈ dist(X, ∂Ω̂±S′) ,

where of course the implicit constants depend on τ.

As in [HMM], it will be useful for us to extend the definition of the Whitney
region UQ to the case that Q ∈ B, the “bad” collection of Lemma 2.1. LetW∗

Q be
the augmentation ofW0

Q as constructed in Lemma 2.9, and set

(2.15) WQ :=

 W
∗
Q , Q ∈ G,

W0
Q , Q ∈ B

.
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For Q ∈ G we shall henceforth simply writeW±
Q in place ofW∗,±

Q . For arbitrary
Q ∈ D(E), we may then define

(2.16) UQ = UQ,τ :=
⋃

I∈WQ

int
(
I∗(τ)

)
.

Let us note that for Q ∈ G, the latter definition agrees with that in (2.11).
For future reference, we introduce dyadic sawtooth regions as follows. Set

(2.17) DQ :=
{
Q′ ∈ D(E) : Q′ ⊂ Q

}
,

and given k ≥ 1,

(2.18) Dk
Q :=

{
Q′ ∈ D(E) : Q′ ⊂ Q, `(Q′) = 2−k `(Q)

}
,

Given a family F of disjoint cubes {Q j} ⊂ D, we define the global discretized
sawtooth relative to F by

(2.19) DF := D \
⋃

Q j∈F

DQ j ,

i.e., DF is the collection of all Q ∈ D that are not contained in any Q j ∈ F . We
may allow F to be empty, in which case DF = D. Given some fixed cube Q, the
local discretized sawtooth relative to F by

(2.20) DF ,Q := DQ \
⋃

Q j∈F

DQ j = DF ∩ DQ.

Note that with this convention, DQ = DØ,Q (i.e., if one takes F = Ø in (2.20)).
Finally, we conclude this section with a well-known consequence of the ADR

property of ∂Ω.

Lemma 2.21. Let Ω ⊂ Rn+1, n ≥ 2, be an open set with ADR boundary. Let
x ∈ ∂Ω and 0 < r < diam(∂Ω). Assume also that u is non-negative and harmonic
in B(x, 4r)∩Ω, continuous on B(x, 4r)∩Ω, and that u ≡ 0 on ∂Ω∩ B(x, 2r). Then,
there exist constants α ∈ (0, 1), and C > 0, depending only on n and the ADR
constant, such that

u(Z) ≤ C
(
δ(Z)

r

)α
max

B(x,2r)∩Ω
u.(2.22)

We omit the proof, which is a consequence of the fact that an open set with ADR
boundary satisfies the Capacity Density Condition. This is standard, but see, e.g.,
[HKM, Theorem 6.38], or [HLMN, Remark 3.26, Lemma 3.27, Lemma 3.31].

3. Proof of Theorem 1.3

In the proof of Theorem 1.3, we shall employ a two-parameter induction argu-
ment, which is a refinement of the method of “extrapolation” of Carleson measures.
The latter is a bootstrapping scheme for lifting the Carleson measure constant, de-
veloped by J. L. Lewis [LM], and based on the corona construction of Carleson
[Car] and Carleson and Garnett [CG] (see also [HLw], [AHLT], [AHMTT], [HM1],
[HM2],[HMM]).



ABSOLUTE CONTINUITY OF HARMONIC MEASURE 13

3.1. Step 1: the set-up. To set the stage for the induction procedure, let us begin
by making some preliminary reductions. First, by the method of [BL], more pre-
cisely, from the combination of [BL, Lemma 2.2] and its proof, and [BL, Lemma
3.1], it suffices to show that there are positive constants ε and c such that for each
X ∈ Ω with δ(X) . diam(∂Ω), if ∆X = ∆R

X = B(X,Rδ(X)) ∩ ∂Ω, for some fixed
R ≥ 2 as in Definition 1.16, and if A is a Borel subset of ∆X , then

(3.1) σ(A) ≥ (1 − ε)σ(∆X) =⇒ ωX(A) ≥ c .

It will be convenient to work with a certain dyadic version of (3.1). To this
end, let X ∈ Ω, and let x̂ ∈ ∂Ω be a touching point for X, i.e., |X − x̂| = δ(X).
Choose X1 on the line segment joining X to x̂, with δ(X1) = δ(X)/2. Then ∆X1 =

B(X1,Rδ(X)/2) ∩ ∂Ω. Note that B(X1,Rδ(X)/2) ⊂ B(X,Rδ(X)), and furthermore,

dist
(
B(X1,Rδ(X)/2), ∂B(X,Rδ(X)

)
>

R − 1
2

δ(X) ≥
1
2
δ(X).

We may therefore cover ∆X1 by a disjoint collection {Qi}
N
i=1 ⊂ D(∂Ω), of equal

length `(Qi) ≈ δ(X), such that each Qi ⊂ ∆X , and such that the implicit constants
depend only on n and ADR, and thus the cardinality N of the collection depends
on n, ADR, and R. With E = ∂Ω, we make the Whitney decomposition of the set
ΩE = Rn+1\E as in Section 2 (thus, Ω ⊂ ΩE). Moreover, for sufficiently small η and
sufficiently large K in (2.7), we then have that X ∈ UQi for each i = 1, 2, . . . ,N. By
hypothesis, there are constants θ0 ∈ (0, 1], λ0 ∈ (0, 1), and R ≥ 2 as above, such that
every X ∈ Ω is a (θ0, λ0,R)-weak local John point (Definition 1.16). In particular,
this is true for X1, hence there is a Borel set F ⊂ ∆X1 , with σ(F) ≥ θ0σ(∆X1),
such that every y ∈ F may be connected to X1 via a λ0-carrot path. By ADR,
σ(∆X1) ≈

∑N
i=1 σ(Qi) and thus by pigeon-holing, there is at least one Qi =: Q such

that σ(F ∩ Q) ≥ θ1σ(Q), with θ1 depending only on θ0, n and ADR. Moreover, the
λ0-carrot path connecting each y ∈ F to X1 may be extended to a λ1-carrot path
connecting y to X, where λ1 depends only on λ0.

We have thus reduced matters to the following dyadic scenario. Let Q ∈ D(∂Ω),
and let UQ = UQ,τ be the associated Whitney region as in (2.16), with τ ≤ τ0/2
fixed, and suppose that UQ meets Ω (recall that by construction UQ ⊂ ΩE , with
E = ∂Ω). For X ∈ UQ ∩Ω, and for a constant λ ∈ (0, 1), let

(3.2) Fcar(X,Q) = Fcar(X,Q, λ)

denote the set of y ∈ Q which may be joined to X by a λ-carrot path γ(y, X), and
for θ ∈ (0, 1], set

(3.3) TQ = TQ(θ, λ) :=
{
X ∈ UQ ∩Ω : σ

(
Fcar(X,Q, λ)

)
≥ θσ(Q)

}
.

Our goal is to prove that, given λ ∈ (0, 1) and θ ∈ (0, 1], there are positive constants
ε and c, depending on θ, λ, and the allowable parameters, such that for each Q ∈
D(∂Ω), if A is a Borel subset of Q, then

(3.4) σ(A) ≥ (1 − ε)σ(Q) =⇒ ωX(A) ≥ c , ∀ X ∈ TQ(θ, λ) .

Remark 3.5. For some Q ∈ D(∂Ω), it may be that TQ is empty. On the other hand,
by the preceding discussion, each X ∈ Ω belongs to TQ(θ1, λ1) for suitable Q, θ1
and λ1, so that (3.4) (with θ = θ1, λ = λ1) implies (3.1), for a slightly different
choice of sufficiently small ε; more precisely, the left hand inequality in (3.1), with
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ε replaced by ε/C, implies the left hand inequality in (3.4), with A ∩ Q in place of
A, where Q is the particular Qi selected in the previous paragraph.

The rest of this section is therefore devoted to proving (3.4) (when it is not
vacuous). To this end, we let λ ∈ (0, 1) (by Remark 3.5, any fixed λ ≤ λ1 will
suffice). We also fix positive numbers K � λ−4, and η ≤ K−4/3 � λ4, and for these
values of η and K, we make the bilateral Corona decomposition of Lemma 2.1, so
that D(∂Ω) = G ∪ B. We also construct the Whitney collectionsW0

Q in (2.7), and
W∗

Q of Lemma 2.9 for this same choice of η and K.

Given a cube Q ∈ D(∂Ω), we set

(3.6) D∗(Q) :=
{
Q′ ⊂ Q : `(Q)/4 ≤ `(Q′) ≤ `(Q), Q′

}
.

Thus, D∗(Q) consists of the cube Q itself, along with its dyadic children and grand-
children. Let

M := {Q(S)}S
denote the collection of cubes which are the maximal elements of the stopping time
regimes in G. We define

(3.7) αQ :=

σ(Q) , if (M∪B) ∩ D∗(Q) , Ø,
0 , otherwise.

Given any collection D′ ⊂ D(∂Ω), we set

(3.8) m(D′) :=
∑
Q∈D′

αQ.

Then m is a discrete Carleson measure, i.e., recalling that DQ is the discrete Car-
leson region relative to Q defined in (2.17), we claim that there is a uniform constant
C such that

(3.9) m(DQ) =
∑

Q′⊂Q

αQ′ ≤ Cσ(Q) , ∀Q ∈ D(∂Ω) .

Indeed, note that for any Q′ ∈ DQ, there are at most 3 cubes Q such that Q′ ∈ D∗(Q)
(namely, Q′ itself, its dyadic parent, and its dyadic grandparent), and that by ADR,
σ(Q) ≈ σ(Q′), if Q′ ∈ D∗(Q). Thus, given any Q0 ∈ D(∂Ω),

m(DQ0) =
∑

Q⊂Q0

αQ ≤
∑

Q′∈M∪B

∑
Q⊂Q0: Q′∈D∗(Q)

σ(Q)

.
∑

Q′∈M∪B: Q′⊂Q0

σ(Q′) ≤ Cσ(Q0) ,

by Lemma 2.1 (2). Here, and throughout the remainder of this section, a generic
constant C, and implicit constants, are allowed to depend upon the choice of the
parameters η and K that we have fixed, along with the usual allowable parameters.

With (3.9) in hand, we therefore have

(3.10) M0 := sup
Q∈D(E)

m(DQ)
σ(Q)

≤ C < ∞ .

As mentioned above, our proof will be based on a two parameter induction
scheme. Given λ ∈ (0, λ1] fixed as above, we recall that the set Fcar(X,Q, λ) is
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defined in (3.2). The induction hypothesis, which we formulate for any a ≥ 0, and
any θ ∈ (0, 1] is as follows:

H[a, θ]

There exist ca = ca(θ), εa = εa(θ) ∈ (0, 1) such that for any
given Q ∈ D(∂Ω), if

(3.11) m(DQ) ≤ aσ(Q),

if there is a subset VQ ⊂ UQ ∩Ω for which

(3.12) σ

 ⋃
X∈VQ

Fcar(X,Q, λ)

 ≥ θσ(Q) ,

and if A ⊂ Q, then

(3.13) σ(A) ≥ (1 − εa)σ(Q) =⇒
1

|ÛQ|

"
ÛQ

ωY (A) dY ≥ ca ,

In the last expression

(3.14) ÛQ = ÛQ(θ, λ,VQ) :=
⋃

i:U i
Q∩VQ,Ø

U i
Q ,

where each U i
Q is a connected component of UQ, and where

the union runs over those U i
Q that meet VQ (thus, each such

U i
Q ⊂ Ω, by construction).

Let us briefly sketch the strategy of the proof. We first fix θ = 1, and by in-
duction on a, establish H[M0, 1]. We then show that there is a fixed ζ ∈ (0, 1)
such that H[M0, θ] implies H[M0, ζθ], for every θ ∈ (0, 1]. Iterating, we then ob-
tain H[M0, θ1] for any θ1 ∈ (0, 1]. Now, by (3.10), we have (3.11) with a = M0,
for every Q ∈ D(∂Ω). Thus, H[M0, θ1] may be applied in every cube Q such that
TQ(θ1, λ) (see (3.3)) is non-empty, with VQ = {X}, for any X ∈ TQ(θ1, λ). For
λ ≤ λ1, and an appropriate choice of θ1, by Remark 3.5, we obtain (3.1), and thus
that Theorem 1.3 holds, as desired.

We begin with some preliminary observations. In what follows we have fixed
λ ∈ (0, λ1] and two positive numbers K � λ−4, and η ≤ K−4/3 � λ4, for which
the bilateral Corona decomposition of D(∂Ω) in Lemma 2.1 is applied. We now fix
k0 ∈ N, k0 ≥ 4, such that

(3.15) 2−k0 ≤
η

K
< 2−k0+1 .

Lemma 3.16. Let Q ∈ D(∂Ω), and suppose that Q′ ⊂ Q, with `(Q′) ≤ 2−k0`(Q).
Suppose that there are points X ∈ UQ ∩ Ω and y ∈ Q′, that are connected by a
λ-carrot path γ = γ(y, X) in Ω. Then γ meets UQ′ ∩Ω.

Proof. By construction (see (2.7), Lemma 2.9, (2.15) and (2.16)), X ∈ UQ implies
that

η1/2`(Q) . δ(X) . K1/2`(Q) .
Since 2−k0 � η, and `(Q′) ≤ 2−k0`(Q), we then have that X ∈ Ω \ B

(
y, 2`(Q′)

)
.

Thus, γ(y, X) meets B
(
y, 2`(Q′)

)
\ B

(
y, `(Q′)

)
, say at a point Z. Since γ(y, X) is a
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λ-carrot path, and since we have previously specified that η � λ4,

δ(Z) ≥ λ`
(
γ(y,Z)

)
≥ λ|y − Z| ≥ λ`(Q′) � η1/4`(Q′) .

On the other hand

δ(Z) ≤ dist(Z,Q′) ≤ |Z − y| ≤ 2`(Q′) � K1/2`(Q′) .

In particular then, the Whitney box I containing Z must belong toW0
Q′ (see (2.7)),

so Z ∈ UQ′ . Note that Z ∈ Ω since γ ⊂ Ω. �

We shall also require the following. We recall that by Lemma 2.9, for Q ∈ S,
the Whitney region UQ has the splitting UQ = U+

Q ∪U−Q, with U+
Q (resp. U−Q) lying

above (resp., below) the Lipschitz graph ΓS of Lemma 2.1.

Lemma 3.17. Let Q′ ⊂ Q, and suppose that Q′ and Q both belong to G, and
moreover that both Q′ and Q belong to the same stopping time regime S. Suppose
that y ∈ Q′ and X ∈ UQ ∩ Ω are connected via a λ-carrot path γ(y, X) in Ω, and
assume that there is a point Z ∈ γ(y, X) ∩ UQ′ ∩ Ω (by Lemma 3.16 we know that
such a Z exists provided `(Q′) ≤ 2−k0`(Q)). Then X ∈ U+

Q if and only if Z ∈ U+
Q′

(thus, X ∈ U−Q if and only if Z ∈ U−Q′).

Proof of Lemma 3.17. We suppose for the sake of contradiction that, e.g., X ∈ U+
Q,

and that Z ∈ U−Q′ . Thus, in traveling from y to Z and then to X along the path
γ(y, X), one must cross the Lipschitz graph ΓS at least once between Z and X. Let
Y1 be the first point on γ(y, X) ∩ ΓS that one encounters after Z, when traveling
toward X. By Lemma 2.9,

K1/2`(Q) & δ(X) ≥ λ`
(
γ(y, X)

)
� K−1/4`

(
γ(y, X)

)
,

where we recall that we have fixed K � λ−4. Consequently, `
(
γ(y, X)

)
� K3/4`(Q),

so in particular, γ(y, X) ⊂ B∗Q := B
(
xQ,K`(Q)

)
, as in Lemma 2.1. On the other

hand, Y1 < B∗Q′ . Indeed, Y1 ∈ ΓS , so if Y1 ∈ B∗Q′ , then by (2.2), δ(Y1) ≤ η`(Q′).
However,

δ(Y1) ≥ λ`
(
γ(y,Y1)

)
≥ λ`

(
γ(y,Z)

)
≥ λ|y − Z| ≥ λ dist(Z,Q′) & λη1/2`(Q′) ,

where in the last step we have used Lemma 2.9. This contradicts our choice of
η � λ4.

We now form a chain of consecutive dyadic cubes {Pi} ⊂ DQ, connecting Q′ to
Q, i.e.,

Q′ = P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PM ⊂ PM+1 = Q , `(Pi+1) = 2`(Pi) ,

and let P := Pi0 , 1 ≤ i0 ≤ M + 1, be the smallest of the cubes Pi such that Y1 ∈ B∗Pi
.

Setting P′ := Pi0−1, we then have that Y1 ∈ B∗P, and Y1 < B∗P′ . By the coherency of
S, P ∈ S, so by (2.2),

(3.18) δ(Y1) ≤ η`(P) .

On the other hand,
dist(Y1, P′) & K`(P′) ≈ K`(P) ,

and therefore, since y ∈ Q′ ⊂ P′,

(3.19) δ(Y1) ≥ λ`
(
γ(y,Y1)

)
≥ λ|y − Y1| ≥ λ dist(Y1, P′) & λK`(P) .
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Combining (3.18) and (3.19), we see that λ . η/K, which contradicts that we have
fixed η � λ4, and K � λ−4. �

Lemma 3.20. Fix λ ∈ (0, 1). Given Q ∈ D(∂Ω) and a non-empty set VQ ⊂ UQ∩Ω,
let

(3.21) FQ :=
⋃

X∈VQ

Fcar(X,Q, λ) ,

where we recall that Fcar(X,Q, λ) is the set of y ∈ Q that are connected via a
λ-carrot path to X (see (3.2)). Let Q′ ⊂ Q be such that `(Q′) ≤ 2−k0`(Q) and
FQ ∩ Q′ , Ø. Then, there exists a non-empty set VQ′ ⊂ UQ′ ∩ Ω such that if we
define FQ′ as in (3.21) with Q′ replacing Q then FQ ∩ Q′ ⊂ FQ′ . Moreover, for
every Y ∈ VQ′ , there exist X ∈ VQ, y ∈ Q′ and a λ-carrot path γ = γ(y, X) such that
Y ∈ γ.

Proof of Lemma 3.20. For every y ∈ FQ ∩ Q′, by definition of FQ, there exist
X ∈ VQ and a λ-carrot path γ = γ(y, X). By Lemma 3.16, there is Y = Y(y) ∈
γ ∩ UQ′ ∩ Ω (there can be more than one Y , but we just pick one). Note that
the sub-path γ(y,Y) ⊂ γ(y, X) is also a λ-carrot path, for the same constant λ.
All the conclusions in the lemma follow easily from the construction by letting
VQ′ =

⋃
y∈FQ∩Q′ Y(y). �

Remark 3.22. It follows easily from the previous proof that under the same as-
sumptions, if one further assumes that `(Q′) < 2−k0 `(Q), we can then repeat the
argument with both Q′ and (Q′)∗ (the dyadic parent of Q′) to obtain respectively
VQ′ and V(Q′)∗ . Moreover, this can be done in such a way that every point in VQ′

(resp. V(Q′)∗) belongs to a λ-carrot path which also meets V(Q′)∗ (resp. VQ′), con-
necting UQ and Q′.

Given a family F := {Q j} ⊂ D(∂Ω) of pairwise disjoint cubes, we recall that
the “discrete sawtooth” DF is the collection of all cubes in D(∂Ω) that are not
contained in any Q j ∈ F (see (2.19)), and we define the restriction of m to the
sawtooth DF by

(3.23) mF (D′) := m(D′ ∩ DF ) =
∑

Q∈D′\(∪F DQ j )

αQ.

We then set
‖mF ‖C(Q) := sup

Q′⊂Q

mF (DQ′)
σ(Q′)

.

Let us note that we may allow F to be empty, in which case DF = D and mF is
simply m. We note that the following claims remain true when F is empty, with
some straightforward changes that are left to the interested reader.

Claim 3.24. Given Q ∈ D(∂Ω), and a family F = FQ := {Q j} ⊂ DQ \ {Q} of
pairwise disjoint sub-cubes of Q, if ‖mF ‖C(Q) ≤ 1/2, then each Q′ ∈ DF ∩ DQ,
each Q j ∈ F , and every dyadic child Q′j of any Q j ∈ F , belong to the good
collection G, and moreover, every such cube belongs to the same stopping time
regime S. In particular, S′ := DF ∩ DQ is a semi-coherent sub-regime of S, and
so is S′′ := (DF ∪ F ∪ F ′) ∩ DQ, where F ′ denotes the collection of all dyadic
children of cubes in F .
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Indeed, if any Q′ ∈ DF ∩ DQ were inM∪ B (recall thatM := {Q(S)}S is the
collection of cubes which are the maximal elements of the stopping time regimes
in G), then by construction αQ′ = σ(Q′) for that cube (see (3.7)), so by definition
of m and mF , we would have

1 =
σ(Q′)
σ(Q′)

≤
mF (DQ′)
σ(Q′)

≤ ‖mF ‖C(Q) ≤
1
2
,

a contradiction. Similarly, if some Q j ∈ F (respectively, Q′j ∈ F
′) were inM∪

B, then its dyadic parent (respectively, dyadic grandparent) Q∗j would belong to
DF ∩ DQ, and by definition αQ∗j = σ(Q∗j), so again we reach a contradiction.
Consequently, F ∪ F ′ ∪ (DF ∩ DQ) does not meetM∪B, and the claim follows.

Lemma 3.25. Let Q ⊂ D(∂Ω), and suppose that F = {Q j} ⊂ DQ \ {Q} is a family
of pairwise disjoint sub-cubes of Q, such that S′ := DF ∩ DQ is a semi-coherent
sub-regime of some S ⊂ G, and such that also F ⊂ S. Suppose that U+

Q meets Ω

(and thus, Ω+
S′ ⊂ Ω). Then given any Q j ∈ F , there is a point Z1 ∈ ∂Ω+

S′ such that

dist(Z1,Q j) ≈ δ(Z1) ≈ `(Q j) ,

where the implicit constants may depend on η, and moreover,

(3.26) |Z1 − xQ j | ≤ `(Q j) .

Proof of Lemma 3.25. We first observe that by rotation we may assume that U+
Q

(and hence Ω+
S′) lies above the Lipschitz graph ΓS. Let Q∗j denote the dyadic

parent of Q j. Observe that by hypothesis, Q∗j ∈ S′. Let xQ j be the “center” of
Q j, as in (1.27)-(1.28), and by translation we may suppose that xQ j = 0. Let
γ0 := {ten+1 : t ≥ 0} be the upward vertical ray emanating from the origin, and set
Y1 := `(Q j)en+1, Y2 := 5η`(Q j)en+1. Let ΓS be the Lipschitz graph of Lemma 2.1,
and note that by (2.2), along with the fact that ΓS has Lipschitz constant at most η,

(3.27) dist(Y1,Q∗j) ≈ δ(Y1) ≈ `(Q∗j) ,

and therefore (2.7) yields
Y1 ∈ U+

Q∗j
⊂ Ω+

S′ .

Moreover, by (2.2), Y2 ∈ Ω, with

δ(Y2) & η`(Q j) ,

and in general

(3.28) η`(Q j) . δ(Z) ≤ dist(Z,Q j) ≤ |Z − 0| ≤ `(Q j) ,

for every point Z ∈ γ0 between Y1 and Y2. On the other hand, we claim that
Y2 < Ω+

S′ . Indeed, note that

(3.29) δ(Y2) ≤ |Y2 − 0| = 5η`(Q j) .

Suppose by way of contradiction that Y2 ∈ Ω+
S′ . Then by definition, Y2 ∈ U+

Q′ , for
some cube Q′ ∈ S′, and therefore

δ(Y2) & η1/2`(Q′) ,
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by (2.10) and the definition of U+
Q′ . Combining the last two inequalities, we find

that

(3.30) `(Q′) . η1/2`(Q j) � `(Q j).

Thus, Q′ ∩ Q j = Ø, by the semi-coherency of S′. Therefore, by (1.27)-(1.28), and
the fact that we have fixed η ≤ K−4/3,

dist(Q′, 0) & `(Q j) & η−1/2`(Q′) & K2/3`(Q′) � K1/2`(Q′) .

On the other hand, by (3.29) and (3.30),

dist(Q′, 0) ≤ dist(Q′,Y2) + diam(Q′) + |Y2 − 0|

≤ dist(Q′,Y2) + Cη1/2`(Q j) + 5η`(Q j) ≤ dist(Q′,Y2) + Cη1/2 dist(Q′, 0)

Consequently,

dist(Q′,Y2) � K1/2`(Q′)

so Y2 < U+
Q′ , by (2.10). This proves the claim.

Now travel downward along γ0 from Y1 toward Y2, and let Z1 be the first point
on ∂Ω+

S′ . By (3.28), Z1 enjoys the desired properties. �

For future reference, we now state and prove the following.

Lemma 3.31. Fix λ, ε0, ρ0, c0 ∈ (0, 1). Given Q ⊂ D(∂Ω) and a non-empty set
VQ ⊂ UQ ∩ Ω, let FQ be defined as in (3.21). Suppose that F = {Q j} ⊂ DQ \ {Q}
is a family of pairwise disjoint sub-cubes of Q, such that S′ := DF ∩ DQ is a
semi-coherent sub-regime of some S ⊂ G, and such that also F ⊂ S.

Let F ′ ⊂ F be such that

(3.32) σ
(⋃
F ′

Q j

)
≥ ρ0 σ(Q).

Assume also that for every Q j ∈ F
′ there is a set VQ j ⊂ UQ j ∩ Ω such that every

point in VQ j belongs to some λ-carrot path connecting VQ with Q j. Defining ÛQ

and ÛQ j , for Q j ∈ F
′, as in (3.14), if A ⊂ Q is a Borel set such that

(3.33)
1

|ÛQ j |

"
ÛQ j

ωY (A ∩ Q j) dY ≥ c0, ∀Q j ∈ F
′,

then

(3.34)
1

|ÛQ|

"
ÛQ

ωY (A) dY ≥ c ,

where c depends on λ, ε0, ρ0, c0 as well as n, τ, η, K and the ADR/UR constants of
Ω.

Proof. Let us consider a particular Q j ∈ F
′. Since Q j ∈ S, by (3.33) there is at

least one choice of ± (or possibly both) such that VQ j meets U+
Q j

(resp., U−Q j
), and
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such that (3.33) holds (with a slightly different constant) with ÛQ j replaced by U+
Q j

(resp., by U−Q j
). Consider the case that, for example,

(3.35)
1
|U+

Q j
|

"
U+

Q j

ωY (A ∩ Q j) dY & c0 ,

and VQ j meets U+
Q j

, say at a point Z j. By assumption and Lemma 3.17 applied with
Q′ = Q j, we find that Z j ∈ γ(y, X j), for some y ∈ Q j and X j ∈ U+

Q ∩ VQ, where
γ(y, X j) is a λ-carrot path in Ω. By Harnack’s inequality, Remark 2.13, and (3.35)

(3.36) ωY (A ∩ Q j) & c0 , ∀Y ∈ U+
Q∗j
,

where Q∗j is the dyadic parent of Q j

We now write F ′ = F + ∪ F −, where Q j ∈ F
+ if (3.35) and hence also (3.36)

hold, and Q j ∈ F
−, if the analogous estimates hold with U−Q j

,U−Q∗j
in place of

U+
Q j
,U+

Q∗j
. Of course, it is possible that these estimates may hold for both choices

of ± for some j, so that F + and F − need not be disjoint, but this is harmless for our
purposes. Setting G :=

⋃
F ′ Q j and G± :=

⋃
F ± Q j, we see that (3.32) continues

to hold, with constant c ρ0, for at least one choice of G± in place of G, say without
loss of generality that

(3.37) σ(G+) ≥ cρ0σ(Q) .

We recall that B∗Q j
:= B

(
xQ j ,K`(Q j)

)
. By a covering lemma argument, we may

extract a sub-collection of F +, call it F ∗, such that {B∗Q j
: Q j ∈ F

∗}

is pairwise disjoint, and such that G∗ :=
⋃
F ∗ Q j satisfies

(3.38)
∑
F ∗

σ(Q j) = σ(G∗) & ρ0σ(Q) .

By assumption, S′ := DF ∩ DQ is a semi-coherent sub-regime of S, so Ω+
S′ is a

chord-arc domain, by Lemma 2.9. We let Ω̂+
S′ be the analogous chord-arc domain,

constructed with dilation parameter 2τ ≤ τ0 in place of τ in (2.5) and (2.11).
Given Q j ∈ F

∗, let Z1 = Z1, j ∈ ∂Ω+
S′ be the point constructed in Lemma 3.25,

relative to Q j. Then dist(Z1, j,Q j) ≈ δ(Z1, j) ≈ `(Q j), and by Remark 2.14, we
therefore also have

dist
(
Z1, j, ∂Ω̂+

S′
)
≈ `(Q j) ,

Thus, by (3.36), and Harnack’s inequality applied within the chord arc domain Ω̂+
S′ ,

we find that

(3.39) ωY (A) ≥ ωY (A ∩ Q j) & c0 , ∀Y ∈ B
(
Z1, j, c`(Q j)

)
=: B1, j

for a sufficiently small but uniform constant c > 0.
By (3.26), B1, j ⊂ B∗Q j

. Consequently, the balls in the collection {B1, j : Q′j ∈ F
∗}

are pairwise disjoint. Therefore, by (3.38) and the fact that ∂Ω+
S′ is ADR and has

diameter of the order of `(Q) by construction, setting σ? := Hnb ∂Ω+
S′

, we find that

ρ0σ?
(
∂Ω+

S′
)
≈ ρ0σ(Q) .

∑
F ∗

σ(Q j) ≈
∑
F ∗

σ?
(
B1, j ∩ ∂Ω+

S′
)

= σ?(A?) ,
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where A? :=
⋃
F ∗

(
B1, j ∩ ∂Ω+

S′
)
. Thus, by the result of [DJ], letting ω? denote

harmonic measure for Ω+
S′ , we find that

(3.40) ωX
?(A?) ≥ c? , ∀X ∈ Ω+

S′ with dist
(
X, ∂Ω+

S′
)
≥ η`(Q) ,

where c? depends on ρ0, η and the chord-arc constants for Ω+
S′ . In particular, we

note that (3.40) holds for the center XI of every I ∈ W∗,+
Q . We now fix some

I ∈ W∗,+
Q , and observe that by the Markov property

ωXI (A) =

∫
∂Ω+

S′

ωY (A) dωXI
? (Y) ≥

∫
A?
ωY (A) dωXI

? (Y) & c0 ω
XI
? (A?) & c0c? ,

where in the last two steps we have used first the definition of A? and (3.39), and
then (3.40). By Harnack’s inequality, we find that ωX(A) ≥ c for every X ∈ U+

Q.
Moreover, U+

Q meets VQ (at X j), for each Q j ∈ F
+, and F + , Ø by (3.37), hence

U+
Q ⊂ ÛQ. We therefore obtain (3.34). This completes the proof. �

3.2. Step 2: Proof of H[M0, 1]. We shall deduce H[M0, 1] from the following pair
of claims.

Claim 3.41. H[0, θ] holds for every θ ∈ (0, 1].

Proof of Claim 3.41. If a = 0 in (3.11), then ‖m‖C(Q) = 0, whence it follows by
Claim 3.24, with F = Ø, that there is a stopping time regime S ⊂ G, with DQ ⊂ S.
Hence S′ := DQ is a coherent sub-regime of S, so by Lemma 2.9, each of Ω±S′ is a
CAD. Moreover, by [HMM, Proposition A.14]

Q ⊂ ∂Ω±S′ ∩ ∂Ω ⊂ ∆∗Q = ∂Ω ∩ B(xQ,K`(Q)) ,

and in fact Q coincides with the Lipschitz graph ΓS, by Lemma 2.1. By the chord
arc property, for λ ∈ (0, 1) chosen small enough, depending only on the NTA
constants of Ω±S′ , for any fixed X ∈ U±Q, there is a λ-carrot path joining X to every
y ∈ Q. To verify H[0, θ], we may assume that UQ meets Ω. Thus, at least one of
U±Q ∩Ω is non-empty, for the sake of specificity, say U+

Q meets Ω (hence Ω+
S′ ⊂ Ω).

We fix X0 = X+
0 ∈ U+

Q. Let ωX0
? denote harmonic measure for Ω+

S′ . By the result

of [DJ], ωX0
? ∈ A∞(∂Ω+

S′) with respect to surface measure on ∂Ω+
S′ , thus for every

ε ∈ (0, 1], there is a constant cε ∈ (0, 1) such that

σ(A) ≥ (1 − ε)σ(Q) =⇒ ωX0
? (A) ≥ cε .

Since Ω+
S′ ⊂ Ω, we have ωX0(A) ≥ cε, by the maximum principle. The conclusion

of (3.13) then follows by Harnack’s inequality. �

Claim 3.42. There is a uniform constant b > 0 such that H[a, 1] =⇒ H[a + b, 1],
for all a ∈ [0,M0).

Combining Claims 3.41 and 3.42, we find that H[M0, 1] holds.
To prove Claim 3.42, we shall require the following.

Lemma 3.43 ([HM2, Lemma 7.2]). Suppose that E is an n-dimensional ADR set,
and let m be a discrete Carleson measure, as in (3.8)-(3.10) above. Fix Q ∈ D(E).
Let a ≥ 0 and b > 0, and suppose thatm(DQ) ≤ (a+b)σ(Q). Then there is a family
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F = {Q j} ⊂ DQ of pairwise disjoint cubes, and a constant C depending only on n
and the ADR constant such that

(3.44) ‖mF ‖C(Q) ≤ Cb,

(3.45) σ
( ⋃
Fbad

Q j

)
≤

a + b
a + 2b

σ(Q) ,

where Fbad := {Q j ∈ F : m
(
DQ j \ {Q j}

)
> aσ(Q j)}.

We refer the reader to [HM2, Lemma 7.2] for the proof. We remark that the
lemma is stated in [HM2] in the case that E is the boundary of a connected domain,
but the proof actually requires only that E have a dyadic cube structure, and that
σ be a non-negative, dyadically doubling Borel measure on E. In our case, we
shall of course apply the lemma with E = ∂Ω, where Ω is open, but not necessarily
connected.

Proof of Claim 3.42. We assume that H[a, 1] holds, for some a ∈ [0,M0). Set
b = 1/(2C), where C is the constant in (3.44). Consider a cube Q ∈ D(∂Ω) with
m(DQ) ≤ (a + b)σ(Q). Suppose that there is a set VQ ⊂ UQ ∩ Ω such that (3.12)
holds with θ = 1, and let A be a Borel subset of Q, with

(3.46) σ(A) ≥ (1 − ε)σ(Q) ,

where ε > 0 is a sufficiently small number to be chosen. There are two cases.

Case 1: There exists Q′ ∈ Dk0
Q (see (2.18) and (3.15)) with m(DQ′) ≤ aσ(Q′).

In this case, choosing ε > 0 small enough, depending on n, k0, ADR, and εa, we
have that

(3.47) σ(A ∩ Q′) ≥ (1 − εa)σ(Q′) .

Moreover, in the present scenario θ = 1, that is, σ(FQ) = σ(Q) (see (3.12) and
(3.21)), which implies σ(FQ ∩ Q′) = σ(Q′). We apply Lemma 3.20 to obtain
VQ′ ⊂ UQ′ ∩ Ω and the corresponding FQ′ which satisfies σ(FQ′) = σ(Q′). That
is, (3.12) holds for Q′, with θ = 1. Consequently, we may apply the induction
hypothesis to Q′, to obtain that

(3.48) |ÛQ′ |
−1
"

ÛQ′

ωY (A ∩ Q′) dY ≥ ca ,

with ÛQ′ defined as in (3.14). Since UQ′ has at most a bounded number of con-
nected components U i

Q′ (depending on η,K and n), there is at least one particular
U i

Q′ meeting VQ′ such that

|U i
Q′ |
−1
"

U i
Q′

ωY (A ∩ Q′) dY & ca ,

and thus by Harnack’s inequality, ωZ(A ∩ Q′) & ca, where Z ∈ U i
Q′ ∩ VQ′ . By

Lemma 3.20, Z lies on a λ-carrot path γ(y, X), for some y ∈ Q′, and some X ∈
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VQ ⊂ UQ. This, the fact that `(Q′) ≈ `(Q) (depending on k0, hence on η and K),
and Harnack’s inequality yield ωX(A) ≥ ωX(A ∩ Q′) & ca, and furthermore

(3.49) |ÛQ|
−1
"

ÛQ

ωY (A) dY ≥ cca .

Taking ca+b = cca, we obtain the conclusion of H[a + b, 1] in the present case.

Case 2: m(DQ′) > aσ(Q′) for every Q′ ∈ Dk0
Q .

In this case, we apply Lemma 3.43 to obtain a pairwise disjoint family F =

{Q j} ⊂ DQ such that (3.44) and (3.45) hold. In particular, by our choice of b =

1/(2C),

(3.50) ‖mF ‖C(Q) ≤ 1/2 ,

so that the conclusions of Claim 3.24 hold.
We set

(3.51) F0 := Q \
(⋃
F

Q j

)
,

define

(3.52) Fgood := F \ Fbad =
{
Q j ∈ F : m

(
DQ j \ {Q j}

)
≤ aσ(Q j)

}
,

and let
G0 :=

⋃
Fgood

Q j .

Then by (3.45)

(3.53) σ(F0 ∪G0) ≥ ρσ(Q) ,

where ρ ∈ (0, 1) is defined by

(3.54)
a + b

a + 2b
≤

M0 + b
M0 + 2b

=: 1 − ρ ∈ (0, 1) .

We claim that

(3.55) `(Q j) ≤ 2−k0 `(Q), ∀Q j ∈ Fgood.

Indeed, if this were not true for some Q j, then by definition of Fgood and pigeon-
holing there will be Q′j ∈ DQ j with `(Q′j) = 2−k0 `(Q) such that m(DQ′j) ≤ aσ(Q′j).
This contradicts the assumptions of the current case.

Note also that Q < Fgood by (3.55) and Q < Fbad by (3.45), hence F ⊂ DQ \ {Q}.
Recall that we are given a Borel set A ⊂ Q, satisfying (3.46). Assuming that

ε < ρ/2, we then define the “extra good” collection

(3.56) Feg :=
{

Q j ∈ Fgood : σ(A ∩ Q j) ≥
(
1 −

2ε
ρ

)
σ(Q j)

}
,

and set G1 :=
⋃
Feg Q j

Claim 3.57. σ(F0 ∪G1) ≥ ρ
2 σ(Q).
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Indeed, define the “bad good” collection

Fbg :=
{

Q j ∈ Fgood : σ(A ∩ Q j) <
(
1 −

2ε
ρ

)
σ(Q j)

}
.

Then, since F is a pairwise disjoint collection,

2ε
ρ

∑
Fbg

σ(Q j) ≤
∑
Fbg

σ(Q j \ A) ≤ σ(Q \ A) ≤ εσ(Q) ,

by (3.46). Consequently,
∑
Fbg σ(Q j) ≤

ρ
2 σ(Q), and the claim holds by (3.53).

If F0 (see (3.51)) satisfies σ(F0) ≥ (ρ/4)σ(Q), then Q has an ample overlap with
the boundary of a chord-arc domain with controlled chord-arc constants; indeed,
by (3.50) and Claim 3.24, S′ = DF ∩ DQ is a semi-coherent sub-regime of some
S ⊂ G, and up to a set of σ-measure 0 (see [HMM, Proposition A.14] and [HM2,
Proposition 6.3]),

Q ∩ ∂Ω±S′ = F0 ,

where by Lemma 2.9, each of Ω±S′ is a CAD. Recall that in establishing H[a + b, 1],
we assume that there is a set VQ ⊂ UQ ∩ Ω for which (3.12) holds with θ = 1;
in particular, at least one of U±Q meets Ω, and without loss of generality we may
suppose that this is true for U+

Q; thus, Ω+
S′ ⊂ Ω. Then, if ε ≤ ρ/8, it follows

that σ(A ∩ F0) ≥ (ρ/8)σ(Q) and by [DJ], the maximum principle, and Harnack’s
inequality, ωX(A) ≥ c, for every X ∈ U+

Q. Consequently, (3.13) follows in this case,
with a + b in place of a.

We may therefore suppose that σ(F0) ≤ (ρ/4)σ(Q), so by Claim 3.57,

(3.58) σ(G1) ≥
ρ

4
σ(Q) .

In addition, by the definition of Fgood (3.52), and pigeon-holing, every Q j ∈ Feg
has a dyadic child Q′j (there could be more children satisfying this, but we just pick
one) satisfying

(3.59) m(DQ′j) ≤ aσ(Q′j) .

Moreover, by definition of Feg (see (3.56)) and the ADR property, choosing ε suf-
ficiently small, we find that for this same child Q′j ⊂ Q j ∈ Feg,

(3.60) σ(A ∩ Q′j) ≥ (1 − εa)σ(Q′j) .

We observe that under the present assumptions θ = 1, that is, σ(FQ) = σ(Q) (see
(3.12) and (3.21)), hence σ(FQ ∩ Q′j) = σ(Q′j). We apply Lemma 3.20 to obtain
VQ′j ⊂ UQ′j ∩ Ω and FQ′j which satisfies σ(FQ′j) = σ(Q′j). That is, (3.12) holds for
Q′j, with θ = 1. Consequently, by the induction hypothesis H[a, 1],

(3.61)
1

|ÛQ′j |

"
ÛQ′j

ωY (A ∩ Q′j) dY ≥ ca ,

for every Q j ∈ Feg. Let us consider a particular Q j ∈ Feg. We note that Q′j ∈ S, by
Claim 3.24 and (3.50)). Thus, there is at least one choice of ± (or possibly both)
such that VQ′j meets U+

Q′j
(resp., U−Q′j

), and such that (3.61) holds (with a slightly
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different constant) with ÛQ′j replaced by U+
Q′j

(resp., by U−Q′j
). For example, suppose

that

(3.62)
1
|U+

Q′j
|

"
U+

Q′j

ωY (A ∩ Q′j) dY & ca ,

and that VQ′j meets U+
Q′j

, say at a point Z′. By Lemmas 3.20 and Lemma 3.17

applied with Q′ = Q′j, we find that Z′ ∈ γ(y, X), for some y ∈ Q′j and X ∈ U+
Q,

where γ(y, X) is a λ-carrot path in Ω. By Remark 3.22 (with Q′ = Q′j and hence
(Q′)∗ = Q j) and Lemma 3.17 we can also construct VQ j ⊂ UQ j and find Z ∈
VQ j ∩ UQ+

j
∩ γ(y, X). By Harnack’s inequality, Remark 2.13, and (3.62) it follows

that (3.62) holds for Q j in place of Q′j with a slightly different constant and hence

(3.63)
1

|ÛQ j |

"
ÛQ j

ωY (A ∩ Q j) dY & ca .

This, (3.58), and the properties of the constructed VQ j’s allow us to apply Lemma
3.31 with F ′ = Feg to conclude (3.34) and hence that (3.13) holds with a + b in
place of a. Thus, we have proved Claim 3.42, and therefore, as noted above, it
follows that H[M0, 1] holds. �

3.3. Step 3: bootstrapping θ. In this last step, we shall prove that there is a uni-
form constant ζ ∈ (0, 1) such that for each θ ∈ (0, 1], H[M0, θ] =⇒ H[M0, ζθ].
Since we have already established H[M0, 1], we then conclude that H[M0, θ1] holds
for any given θ1 ∈ (0, 1]. As noted above, it then follows that Theorem 1.3 holds,
as desired.

In turn, it will be enough to verify the following.

Claim 3.64. There is a uniform constant β ∈ (0, 1) such that for every a ∈ [0,M0),
θ ∈ (0, 1], ϑ ∈ (0, 1), and b = 1/(2C) as in Step 2/Proof of Claim 3.42, if H[M0, θ]
holds, then

H[a, (1 − ϑ)θ] =⇒ H[a + b, (1 − ϑβ)θ] .

Let us momentarily take Claim 3.64 for granted. Recall that by Claim 3.41,
H[0, θ] holds for all θ ∈ (0, 1]. In particular, given θ ∈ (0, 1] fixed, for which
H[M0, θ] holds, we have that H[0, θ/2] holds. Combining the latter fact with Claim
3.64, and iterating, we obtain that H[kb, (1 − 2−1βk)θ] holds. We eventually reach
H[M0, (1 − 2−1βν)θ], with ν ≈ M0/b. The conclusion of Step 3 now follows, with
ζ := 1 − 2−1βν.

Proof of Claim 3.64. The proof will be a refinement of that of Claim 3.42. We are
given some θ ∈ (0, 1] such that H[M0, θ] holds, and we assume that H[a, (1 − ϑ)θ]
holds, for some a ∈ [0,M0) and ϑ ∈ (0, 1). Set b = 1/(2C), where as before C is
the constant in (3.44). Consider a cube Q ∈ D(∂Ω) with m(DQ) ≤ (a + b)σ(Q).
Suppose that there is a set VQ ⊂ UQ ∩ Ω such that (3.12) holds with θ replaced by
(1 − ϑβ)θ, for some β ∈ (0, 1) to be determined, and let A be a Borel subset of Q,
with

(3.65) σ(A) ≥ (1 − ε)σ(Q) ,
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where ε > 0 is a sufficiently small number to be chosen, eventually depending
only on a, θ, ϑ, and the various allowable parameters. Our goal is to show that for
a sufficiently small, but uniform choice of β, we may conclude that (3.13) holds,
with εa+b, ca+b in place of εa, ca. There are two principal cases.

Case 1: There exists Q′ ∈ Dk0
Q (cf. (2.18)) with m(DQ′) ≤ aσ(Q′).

In this case, choosing ε > 0 small enough, depending on n, k0, ADR, and εa, we
have that

(3.66) σ(A ∩ Q′) ≥ (1 − εa)σ(Q′) .

By assumption, and recalling the definition of FQ in (3.21), (3.12) holds with con-
stant (1 − ϑβ)θ, i.e.,

(3.67) σ(FQ) ≥ (1 − ϑβ)θσ(Q) .

We split Case 1 into two subcases.

Case 1a: σ(FQ ∩ Q′) ≥ (1 − ϑ)θσ(Q′).
In this case, we follow the Case 1 argument for θ = 1 in Subsection 3.2 mutatis

mutandi, so we merely sketch the proof. By Lemma 3.20, we may construct VQ′

and FQ′ so that FQ ∩Q′ ⊂ FQ′ and hence σ(FQ′) ≥ (1−ϑ)θσ(Q′). This and (3.66)
allow us to apply the induction hypothesis H[a, (1−ϑ)θ] in Q′ and to obtain (3.48).
We then use Harnack’s inequality and the λ-carrot property to conclude that (3.49)
holds, as desired.

Case 1b: σ(FQ ∩ Q′) < (1 − ϑ)θσ(Q′).
Set ε0 := εM0(θ), i.e., the value of εa corresponding to H[a, θ], with a = M0.

Choosing ε > 0 small enough in (3.65), depending on n, k0, ADR, and ε0, we then
have the following extension of (3.66), valid for every Q′′ ∈ Dk0

Q :

(3.68) σ(A ∩ Q′′) ≥ (1 − ε0)σ(Q′′) .

By (3.67)

(1 − ϑβ)θσ(Q) ≤ σ(FQ) = σ(FQ ∩ Q′) +
∑

Q′′∈D
k0
Q \{Q

′}

σ(FQ ∩ Q′′) .

In the scenario of Case 1b, this leads to

(1 − ϑβ)θσ(Q′) + (1 − ϑβ)θ
∑

Q′′∈D
k0
Q \{Q

′}

σ(Q′′) = (1 − ϑβ)θσ(Q)

≤ (1 − ϑ)θσ(Q′) +
∑

Q′′∈D
k0
Q \{Q

′}

σ(FQ ∩ Q′′) ,

that is,

(3.69) (1 − β)ϑθσ(Q′) + (1 − ϑβ)θ
∑

Q′′∈D
k0
Q \{Q

′}

σ(Q′′) ≤
∑

Q′′∈D
k0
Q \{Q

′}

σ(FQ ∩ Q′′) .



ABSOLUTE CONTINUITY OF HARMONIC MEASURE 27

Note that we have the dyadic doubling estimate∑
Q′′∈D

k0
Q \{Q

′}

σ(Q′′) ≤ σ(Q) ≤ M1σ(Q′) ,

where M1 = M1(k0, n, ADR). Combining this estimate with (3.69), we obtain[
(1 − β)

ϑ

M1
+ (1 − ϑβ)

]
θ

∑
Q′′∈D

k0
Q \{Q

′}

σ(Q′′) ≤
∑

Q′′∈D
k0
Q \{Q

′}

σ(FQ ∩ Q′′) .

We now choose β ≤ 1/(M1+1), so that (1−β)/M1 ≥ β, and therefore the expression
in square brackets is at least 1. Consequently, by pigeon-holing, there exists a
particular Q′′0 ∈ D

k0
Q \ {Q

′} such that

(3.70) θσ(Q′′0 ) ≤ σ(FQ ∩ Q′′0 ) .

By Lemma 3.20, we can find VQ′′0 such that FQ ∩ Q′′0 ⊂ FQ′′0 , where the latter is
defined as in (3.21), with Q′′0 in place of Q. By assumption, H[M0, θ] holds, so
combining (3.68) (which holds for Q′′0 ) and (3.70), along with the fact that (3.11)
holds with a = M0 for every Q ∈ D(∂Ω), we find that

1

|ÛQ′′0 |

"
ÛQ′′0

ωY (A ∩ Q′′0 ) dY ≥ c0 := cM0(θ) .

Using a now familiar argument, we observe that by Lemma 3.20, points in ÛQ′′0 are
connected to points in ÛQ by a Harnack chain of length at most C = C(λ, k0, η,K),
thus

|ÛQ|
−1
"

ÛQ

ωY (A) dY ≥ cc0 ,

as desired.

Case 2: m(DQ′) > aσ(Q′) for every Q′ ∈ Dk0
Q .

In this case, we apply Lemma 3.43 to obtain a pairwise disjoint family F =

{Q j} ⊂ DQ such that (3.44) and (3.45) hold. In particular, by our choice of b =

1/(2C), ‖mF ‖C(Q) ≤ 1/2.
Recall that we are given a Borel set A ⊂ Q, satisfying (3.65), for a sufficiently

small choice of ε depending only on a, θ, ϑ, β, and other allowable parameters.
Recall also that FQ is defined in (3.21), and satisfies (3.67).

We define F0 = Q \ (
⋃
F Q j) as in (3.51), and Fgood := F \ Fbad as in (3.52).

Let G0 :=
⋃
Fgood Q j. Then as above (see (3.53)),

(3.71) σ(F0 ∪G0) ≥ ρσ(Q) ,

where again ρ = ρ(M0, b) ∈ (0, 1) is defined as in (3.54). Much as in Case 2 for
θ = 1 in Subsection 3.2, one can show that

(3.72) `(Q j) ≤ 2−k0 `(Q), ∀Q j ∈ Fgood, and F ⊂ DQ \ {Q}

Hence, the conclusions of Claim 3.24 hold.
With ε > 0 as in (3.65), we observe first that if σ(F0) ≥

√
εσ(Q), then (3.49)

holds, as desired. Indeed, as in the analogous scenario in Subsection 3.2, Q has
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an ample overlap with the boundary of a chord-arc domain with controlled chord-
arc constants. More precisely, by (3.50) and Claim 3.24, S′ = DF ∩ DQ is a
semi-coherent sub-regime of some S, and up to a set of σ-measure 0 (see [HMM,
Proposition A.14] and [HM2, Proposition 6.3]),

Q ∩ ∂Ω±S′ = F0 ,

where by Lemma 2.9, each of Ω±S′ is a CAD. Recall that our goal is to establish
H[a + b, (1 − ϑβ)θ], in which case we assumed that there is a set VQ ⊂ UQ ∩Ω for
which (3.12) holds with (1 − ϑβ)θ in place of θ. In particular, at least one of U±Q
meets Ω, and without loss of generality we may suppose that this is true for U+

Q;
thus, Ω+

S′ ⊂ Ω. Then, if ε < 1/4 one has that σ(A∩F0) ≥ (
√
ε/2)σ(Q) and by [DJ],

the maximum principle, and Harnack’s inequality, ωX(A) ≥ cε, for every X ∈ U+
Q,

and (3.49) follows.
We may therefore suppose that

(3.73) σ(F0) <
√
εσ(Q) .

Next, we refine the decomposition F = Fgood ∪ Fbad. Modifying slightly our
previous construction, we define the “extra good” collection

Feg :=
{
Q j ∈ Fgood : σ(A ∩ Q j) ≥

(
1 −
√
ε
)
σ(Q j)

}
,

and let Fbg := Fgood \ Feg be the “bad good” collection. We similarly decompose
Fbad. Let

Fnsb :=
{
Q j ∈ Fbad : σ(A ∩ Q j) ≥

(
1 −
√
ε
)
σ(Q j)

}
be the “not so bad” collection, and let Feb := Fbad \ Fnsb be the “extra bad” collec-
tion. Note that by definition,

σ(Q j \ A) >
√
εσ(Q j) , ∀Q j ∈ Fbg ∪ Feb ,

and therefore

(3.74)
∑
Fbg∪Feb

σ(Q j) ≤ ε−1/2
∑
Fbg∪Feb

σ(Q j \ A) ≤ ε−1/2σ(Q \ A) ≤
√
εσ(Q) ,

by (3.65).
We now further refine Feg and Fnsb as follows. With ρ as in(3.54) and (3.71),

we choose β < ρ/4. Set

F
(1)

eg :=
{
Q j ∈ Feg : σ(FQ ∩ Q j) ≥

(
1 − 4ϑβρ−1)θσ(Q j)

}
,

and define F (2)
eg := Feg \ F

(1)
eg . Let

F
(1)

nsb :=
{
Q j ∈ Fnsb : σ(FQ ∩ Q j) ≥ θσ(Q j)

}
,

and define F (2)
nsb := Fnsb \ F

(1)
nsb.

We split Case 2 into two subcases.

Case 2a: There is Q j ∈ F
(1)

nsb such that `(Q j) > 2−k0 `(Q).

By definition of F (1)
nsb, σ(FQ ∩ Q j) ≥ θσ(Q j). By pigeon-holing, Q j has a de-

scendent Q′ with `(Q′) = 2−k0`(Q), such that σ(FQ ∩ Q′) ≥ θσ(Q′). Also, by
(3.65), for ε small enough, σ(A∩Q′) ≥

(
1− εM0(θ)

)
σ(Q′). Using Lemma 3.20 we



ABSOLUTE CONTINUITY OF HARMONIC MEASURE 29

can find VQ′ and F′Q so that σ(FQ′) ≥ σ(FQ ∩Q′) ≥ θσ(Q′). Hence, we may apply
H[M0, θ] in Q′, to obtain that

1

|ÛQ′ |

"
ÛQ′

ωY (A ∩ Q′) dY ≥ c0 := cM0(θ) .

As before, by Lemma 3.20, points in ÛQ′ are connected to points in ÛQ by a Har-
nack chain of length at most C = C(λ, k0, η,K), thus

|ÛQ|
−1
"

ÛQ

ωY (A) dY ≥ cc0 ,

as desired.

Case 2b: Every Q j ∈ F
(1)

nsb satisfies `(Q j) ≤ 2−k0 `(Q).
Observe that by definition,

(3.75) σ(FQ ∩ Q j) ≤
(
1 − 4ϑβρ−1)θσ(Q j) , ∀Q j ∈ F

(2)
eg ,

and also

(3.76) σ(FQ ∩ Q j) ≤ θσ(Q j) , ∀Q j ∈ F
(2)

nsb ,

Set F∗ := F \ F (2)
eg . For future reference, we shall derive a certain ampleness

estimate for the cubes in F∗.
By (3.67),

(3.77) (1 − ϑβ)θσ(Q) ≤ σ(FQ) ≤ σ(F0) +
∑
F∗

σ(Q j) +
∑
F

(2)
eg

σ(FQ ∩ Q j)

≤
√
εσ(Q) +

∑
F∗

σ(Q j) +
(
1 − 4ϑβρ−1

)
θσ(Q) ,

where in the last step have used (3.73) and (3.75). Observe that

(3.78) (1 − ϑβ)θ =
(
4ρ−1 − 1

)
ϑβθ +

(
1 − 4ϑβρ−1

)
θ .

Using (3.77) and (3.78), for
√
ε �

(
4ρ−1 − 1

)
ϑβθ, we obtain

2−1
(
4ρ−1 − 1

)
ϑβθσ(Q) ≤

∑
F∗

σ(Q j)

and thus

(3.79) σ(Q) ≤ C(ϑ, ρ, β, θ)
∑
F∗

σ(Q j) .

We now make the following claim.

Claim 3.80. For ε chosen sufficiently small,

max


∑
F

(1)
eg

σ(Q j) ,
∑
F

(1)
nsb

σ(Q j)

 ≥ √εσ(Q) .
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Proof of Claim 3.80. If
∑
F

(1)
eg
σ(Q j) ≥

√
εσ(Q), then we are done. Therefore, sup-

pose that

(3.81)
∑
F

(1)
eg

σ(Q j) <
√
εσ(Q) .

We have made the decomposition

(3.82) F = F
(1)

eg ∪ F
(2)

eg ∪ Fbg ∪ Fnsb ∪ Feb ,

where also Fnsb = F
(1)

nsb ∪ F
(2)

nsb.
Consequently

σ(FQ) ≤
∑
F

(2)
eg

σ(FQ ∩ Q j) +
∑
Fnsb

σ(FQ ∩ Q j) + O
(√
εσ(Q)

)
,

where we have used (3.73), (3.74), and (3.81) to estimate the contributions of F0,
Fbg and Feb, and F (1)

eg , respectively. This, (3.67), (3.75), and (3.76) yield

(1 − ϑβ)θ


∑
F

(2)
eg

σ(Q j) +
∑
F

(2)
nsb

σ(Q j)

 ≤ (1 − ϑβ)θσ(Q) ≤ σ(FQ)

≤
(
1 − 4ϑβρ−1

)
θ
∑
F

(2)
eg

σ(Q j) +
∑
F

(1)
nsb

σ(Q j) + θ
∑
F

(2)
nsb

σ(Q j) + O
(√
εσ(Q)

)
.

In turn, applying (3.78) in the latter estimate, and rearranging terms, we obtain

(3.83) (4ρ−1 − 1)ϑβθ
∑
F

(2)
eg

σ(Q j) − ϑβθ
∑
F

(2)
nsb

σ(Q j) ≤
∑
F

(1)
nsb

σ(Q j) + O
(√
εσ(Q)

)
.

Recalling that G0 = ∪Fgood Q j, and that Fgood = Fbg ∪ F
(1)

eg ∪ F
(2)

eg , we further note
that by (3.71), choosing ε � ρ2, and using (3.73), (3.74), and (3.81), we find in
particular that

(3.84)
∑
F

(2)
eg

σ(Q j) ≥
ρ

2
σ(Q).

Applying (3.84) and the trivial estimate
∑
F

(2)
nsb
σ(Q j) ≤ σ(Q) in (3.83), we then

have

ϑβθ
[
1 −

ρ

2

]
σ(Q) =

[(
4ρ−1 − 1

)
ϑβθ

ρ

2
− ϑβθ

]
σ(Q)

≤
(
4ρ−1 − 1

)
ϑβθ

∑
F

(2)
eg

σ(Q j) − ϑβθ
∑
F

(2)
nsb

σ(Q j) ≤
∑
F

(1)
nsb

σ(Q j) + O
(√
εσ(Q)

)
.

Since ρ < 1, we conclude, for
√
ε ≤ (4C)−1ϑβθ, that

1
4
ϑβθ σ(Q) ≤

∑
F

(1)
nsb

σ(Q j) ,

and Claim 3.80 follows. �
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With Claim 3.80 in hand, let us return to the proof of Case 2 of Claim 3.64.

Claim 3.85. Choosing ε small enough, every Q j ∈ F
(1)

nsb satisfies

(3.86)
1

|ÛQ j |

"
ÛQ j

ωY (A ∩ Q j) dY ≥ c0 ,

with c0 = cM0(θ). Here ÛQ j is defined as in (3.14) with VQ j being the set con-
structed in Lemma 3.20 so that FQ ∩ Q j ⊂ FQ j .

Proof of Claim 3.87. Fix Q j ∈ F
(1)

nsb. Then σ(FQ ∩ Q j) ≥ θσ(Q j), by definition of
F

(1)
nsb, and for ε small enough, σ(A∩Q j) ≥

(
1−εM0(θ)

)
σ(Q j), by definition of Fnsb.

In the scenario of Case 2b, `(Q j) ≤ 2−k0 `(Q). Thus, we can use Lemma 3.20 to
construct the corresponding VQ j so that σ(FQ j) ≥ σ(FQ ∩ Q j) ≥ θσ(Q j). We may
therefore apply H[M0, θ] to Q j, to obtain that (3.86) holds with c0 = cM0(θ). �

Claim 3.87. Choosing β and ε small enough, (3.86) holds for every Q j ∈ F
(1)

eg with
c0 being either of the order of ca

(
(1 − ϑ)θ

)
or cM0(θ). Again, ÛQ j is defined as in

(3.14) with VQ j being the set constructed in Lemma 3.20 and Remark 3.22.

Proof of Claim 3.87. Fix Q j ∈ F
(1)

eg . In particular, Q j ∈ Fgood, so by pigeon-
holing, Q j has a child Q′j satisfying (3.59). In addition, `(Q j) ≤ 2−k0`(Q) by
(3.72). Moreover, for ε chosen small enough, Q′j satisfies (3.60), by definition of
Feg.

Our immediate goal is to find a child Q′′j of Q j, which may or may not equal Q′j,
for which we have the estimate

(3.88)
1

|ÛQ′′j |

"
ÛQ′′j

ωY (A ∩ Q′′j ) dY ≥ c0 ,

with c0 = ca
(
(1 − ϑ)θ

)
. To this end, we assume first that Q′j satisfies

(3.89) σ(FQ ∩ Q′j) ≥ (1 − ϑ)θσ(Q′j) .

In this case, we set Q′′j := Q′j and use (3.89) and Lemma 3.20 to find VQ′′j such that
σ(FQ′′j ) ≥ (1 − ϑ)θσ(Q′′j ). By the induction hypothesis H[a, (1 − ϑ)θ], applied in
Q′′j = Q′j, we obtain (3.88).

Let us next consider the case

(3.90) σ(FQ ∩ Q′j) < (1 − ϑ)θσ(Q′j) .

In this case, we shall select Q′′j , Q′j. Recall that we use the notation Q′′ C Q to
mean that Q′′ is a dyadic child of Q. Set

F ′′j :=
{
Q′′j C Q j : Q′′j , Q′j

}
.

Note that we have the dyadic doubling estimate

(3.91)
∑

Q′′j ∈F
′′
j

σ(Q′′j ) ≤ σ(Q j) ≤ M1σ(Q′j) ,
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where M1 = M1(n, ADR). We also note that

(3.92)
(
1 − 4ϑβρ−1)θ =

(
1 − 4βρ−1)ϑθ + (1 − ϑ)θ .

By definition of F (1)
eg ,(

1 − 4ϑβρ−1)θσ(Q j) ≤ σ(FQ ∩ Q j) = σ(FQ ∩ Q′j) +
∑

Q′′j ∈F
′′
j

σ(FQ ∩ Q′′j ) .

By (3.90), it follows that(
1 − 4ϑβρ−1)θσ(Q′j) +

(
1 − 4ϑβρ−1)θ ∑

Q′′j ∈F
′′
j

σ(Q′′j ) =
(
1 − 4ϑβρ−1)θσ(Q j)

≤ (1 − ϑ)θσ(Q′j) +
∑

Q′′j ∈F
′′
j

σ(FQ ∩ Q′′j ) .

In turn, using (3.92), we obtain(
1 − 4βρ−1)ϑθσ(Q′j) +

(
1 − 4ϑβρ−1)θ ∑

Q′′j ∈F
′′
j

σ(Q′′j ) ≤
∑

Q′′j ∈F
′′
j

σ(FQ ∩ Q′′j ) .

By the dyadic doubling estimate (3.91), this leads to[(
1 − 4βρ−1)ϑM−1

1 +
(
1 − 4ϑβρ−1)] θ ∑

Q′′j ∈F
′′
j

σ(Q′′j ) ≤
∑

Q′′j ∈F
′′
j

σ(FQ ∩ Q′′j ) .

Choosing β ≤ ρ/(4(M1 + 1)), we find that the expression in square brackets is at
least 1, and therefore, by pigeon holing, we can pick Q′′j ∈ F

′′
j satisfying

(3.93) σ(FQ ∩ Q′′j ) ≥ θσ(Q′′j ) .

Moreover, for ε sufficiently small, by definition of Feg (recall that Q j ∈ F
(1)

eg ),

σ(A ∩ Q′′j ) ≥
(
1 − εM0(θ)

)
σ(Q′′j ) .

Hence, using (3.93) and Lemma 3.20, we see that the induction hypothesis H[M0, θ]
holds for Q′′j ∈ F

′′
j , and hence (3.88) follows with c0 = cM0(θ).

Thus, (3.88) holds in both cases, and therefore VQ′′j must meet UQ′′j , say at a
point Z′′. Let U i

Q′′j
be the component of UQ′′j containing Z′′, and note that (3.88)

still holds with U i
Q′′j

in place of ÛQ′′j , possibly with a slightly different constant. By

Harnack’s inequality it follows that

(3.94) ωZ′′(A ∩ Q′′j ) & c0.

By Lemma 3.20 we find that Z′′ ∈ γ(y, X), for some y ∈ Q′′j and X ∈ UQ, where
γ(y, X) is a λ-carrot path in Ω. By Remark 3.22 (with Q′ = Q′′j and hence (Q′)∗ =

Q j) we can also construct VQ j ⊂ UQ j and find Z ∈ VQ j ∩ UQ j ∩ γ(y, X). Since
Z and Z′′ lie in the same λ-carrot path and `(Q j) = 2`(Q′′j ) we can use Harnack’s
inequality to see that (3.94) holds for Z and hence, by Harnack’s inequality again
for the component of UQ j containing Z. This easily yields (3.86) as desired. �
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To complete the proof of Claim 3.64 we write F ′ = F
(1)

nsb ∪ F
(1)

eg ⊂ F and note
that by Claim 3.80∑

Q j∈F ′

σ(Q j) =
∑
F

(1)
nsb

σ(Q j) +
∑

Q j∈Feg

σ(Q j) ≥
√
εσ(Q) .

Also, for every Q j ∈ F
′, Claims (3.85) and (3.87) give

1

|ÛQ j |

"
ÛQ j

ωY (A ∩ Q j) dY ≥ c0 ,

where ÛQ j is defined as in (3.14) and VQ j is the set constructed in Claim (3.85)
or (3.87), which in turn comes from Lemma 3.20 and/or Remark 3.22. We now
have all the ingredients to apply Lemma 3.31 and eventually obtain (3.34). Thus,
(3.13) holds with a + b in place of a. This finishes the proof of of Claim 3.64 and
consequently that of Theorem 1.3. �

4. Doubling implies strong local John

In this section, we give a direct proof of a fact which already follows from
stronger results of [Azz], namely that doubling of harmonic measure implies that a
strong version of the local John condition holds (i.e., Definition 1.18, with θ = 1).
To this end, we recall the following fact from [AH].

Lemma 4.1. [AH, Lemma 2]. Let G(X,Y) denote the Green function for Ω ⊂ Rn+1,
n ≥ 2, a domain with ADR boundary. Suppose that δ(X) = r, and that G(X,Y) ≥
A0r1−n, for some positive constant A0. Then there is a constant A = A(A0, ADR, n)
and a rectifiable path γ ⊂ Ω joining X to Y, with `(γ) ≤ Ar, and δ(Z) ≥ r/A, for all
Z ∈ γ.

We remark that the full strength of the ADR hypothesis is not needed in Lemma
4.1: in [AH], the authors assume only the capacity density condition.

We shall define the doubling property essentially as in [Azz]: harmonic measure
is doubling if there is a constant A ≥ 2, and a function C : (0,∞) → (1,∞) such
that, for any ball B = B(xB, rB) centered on ∂Ω with radius rB < diam(∂Ω), and
corresponding surface ball ∆ = B ∩ ∂Ω, and for any α > 0,

ωX(2∆) ≤ C(α)ωX(∆) ,

for all X such that dist(X, A∆) ≥ αrB.

Let X ∈ Ω, set r := δ(X), and define

∆X := ∆10
X = B(X, 10r) ∩ ∂Ω ,

and let y ∈ ∆X . Our goal is to show that there is a λ-carrot path joining X to y, with
λ depending only on n, ADR, and the doubling constant. For a sufficiently large
number M to be chosen, and for each k = 1, 2, 3, . . . , set

Bk := B(y,M−kr) , ∆k := Bk ∩ ∂Ω .

By a result of [Bou], there is a constant c0 = c0(n, ADR) such that ωX(∆X) ≥ c0.
By doubling,

(4.2) ωX(∆2) ≥ c1c0 ,
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with c1 = c1(M). We then have a weak version of the well-known “CFMS” es-
timate, namely that for M large enough, there is a point X1 ∈ 2B2 ∩ Ω, with
δ(X1) ≥ 2M−3r, such that

(4.3) G(X, X1) ≥ cMr1−n .

The latter estimate may be proved by a modification of the proof of the classical
CFMS estimates, see, e.g., [Ken, Lemma 1.3.5], using (4.2), Lemma 2.21, and the
reverse CFMS estimate. We omit the details.

By (4.3) and Lemma 4.1, there is a path γ joining X to X1, of length at most CMr,
with δ(Z) ≥ r/CM for all Z ∈ γ. Moreover, invoking the result of [Bou] again, we
have that for M large enough, ωX1(∆1) ≥ c0, and then by doubling,

ωX1(∆3) ≥ c1c0 .

We may then construct a path to y by iterating.
We have the following immediate corollary.

Corollary 4.4. Suppose that harmonic measure is doubling, and that ∂Ω is UR.
Then ω satisfies the local A∞ condition (Definition 1.23).

Proof. We have just shown, as a consequence of the doubling property, that Ω

satisfies a strong version of the local John condition, i.e., Definition 1.18, with
θ = 1. Thus, by Theorem 1.3, harmonic measure is in local weak-A∞, and by the
doubling hypothesis, the latter condition improves to local A∞. �
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