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Abstract

Recently, F. Nazarov, S. Treil and A. Volberg (and independently
X. Tolsa) have extended the classical theory of Calderón-Zygmund op-
erators to the context of a “non-homogeneous” space (X, d, µ), where,
in particular, the measure µ may be non-doubling. In the present
work we study weighted inequalities for these operators. Specifically,
for 1 < p < ∞, we identify sufficient conditions for the weight on one
side, which guarantee the existence of another weight in the other side,
so that the weighted Lp inequality holds. We deal with this problem
by developing a vector-valued theory for Calderón-Zygmund operators
on non-homogeneous spaces which is interesting in its own right. For
the case of the Cauchy integral operator, which is the most important
example, we even prove that the conditions for the weights are also
necessary.

1 Introduction.

Let µ be a Borel measure in the complex plane. The Cauchy integral operator
is defined as

Cf(z) = Cµf(z) =

∫
C

f(ξ)

z − ξ
dµ(ξ), for µ-a.e. z ∈ C \ supp f.
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It is natural to wonder whether this operator is bounded on L2(µ), on Lp(µ)
or even between L1(µ) and L1,∞(µ). Besides, since the previous definition
makes no sense for points in the support of the function, another question is
to find conditions on µ in order to ensure the existence of the principal values
on these spaces. For example, when µ is the one-dimensional Hausdorff mea-
sure over a Lipschitz curve, the boundedness was proved in [Cal] for small
Lipschitz constant and the full result was obtained in [CMM]. Another ap-
proach to this problem is the T (b) theorem proved in [DJS], (see also [Da1]).
For measures over rectifiable sets and the relation with analytic capacity see
[Ch1], [Ch2], [Mur] and the references given there. See also the recent sur-
vey [Da2]. The answer for general measures has been obtained by Tolsa in
[To1], [To2]. In the first work, it is established the equivalence of the uniform
boundedness of the truncated Cauchy integrals in L2(µ) and some geometric
conditions on the measure µ, namely: µ has linear growth —which means
that the measure of each ball is controlled by a constat times the radius— and
it satisfies certain local curvature condition (see [To1], [Mel], [MV], [MMV]).
In the second reference, the author obtains that the boundedness in L2(µ)
implies the existence of principal values. Besides, those measures, for which
the existence of principal values holds, are completely characterized.

In [NTV1] a T (1) theorem is proved for Calderón-Zygmund operators in
C with a measure such that µ(Q) ≤ `(Q) for all squares Q ⊂ C, where `(Q)
stands for the side length of Q. They prove that T is continuous in L2(µ)
if and only if T and its adjoint are bounded over characteristic functions of
squares. (Actually, as it is pointed out in [NTV1], similar results work for
“n-dimensional” measures in Rd, d ≥ n and Calderón-Zygmund operators
with “n-dimensional” kernels K). In particular for the Cauchy integral, this
result has been also obtained by [Ver]. In [NTV2] a generalization of this
setting is given. They deal with non-homogeneous spaces which are metric
spaces endowed with a positive measure in such a way that the measure of
a ball is controlled by the radius to the power n, where n > 0 is a fixed
real number. In these spaces (where the measure is not assumed to satisfy
any doubling condition) from the L2(µ) boundedness, the authors manage
to obtain weak and strong type estimates for Calderón-Zygmund operators
and for the maximal operators associated with them. The main example is
the Cauchy integral where the metric space is C and n = 1.

A non-homogeneous space (X, d) will be a separable metric space endowed
with a non-negative “n-dimensional” Borel measure µ, that is,

µ(B(x, r)) ≤ rn, for all x ∈ X, r > 0,

where B(x, r) = {y ∈ X : d(x, y) ≤ r} and n is a fixed positive number (not
necessarily an integer).
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Definition 1.1 A bounded linear operator T on L2(µ) is said to be a Calde-
rón-Zygmund operator with “n-dimensional” kernel K if for every f ∈ L2(µ),

Tf(x) =

∫
X

K(x, y) f(y) dµ(y), for µ-almost every x ∈ X \ supp f,

where, for some A > 0, K : X× X −→ C satisfies

(i) |K(x, y)| ≤ A

d(x, y)n
, for all x 6= y;

(ii) and the following two conditions hold:∫
d(x,y)≥2 d(x,x′)

|K(x, y)−K(x′, y)| dµ(y) ≤ A,∫
d(x,y)≥2 d(x,x′)

|K(y, x)−K(y, x′)| dµ(y) ≤ A.

Note that this class of operators is slightly larger than those considered in
[NTV2] where pointwise estimates for the kernel are used rather than integral
estimates. Observe that if we take some measure µ in C such that the Cauchy
integral is bounded in L2(µ), µ will have linear growth (e. g. [To1]), that is, µ
is “1-dimensional”. In this case, the Cauchy integral is a Calderón-Zygmund
operator with “1-dimensional” kernel K(z, ξ) = 1

z−ξ
.

The aim of this paper is to obtain some weighted inequalities for these
operators. If 1 < p < ∞, consider the following two-weight inequality for T :∫

X
|Tf(x)|p u(x) dµ(x) ≤

∫
X
|f(x)|p v(x) dµ(x), (1)

for f ∈ Lp(v) = Lp(v dµ) and where u, v are µ-a.e. positive functions.

These inequalities in Rd with the same weight in both sides have been
recently studied by [OP]. They have obtained some results about Mucken-
houpt weights and weighted inequalities for Calderón-Zygmund operators.
However, we are interested in a different type of inequalities, namely, we
shall be concerned with the following problem:

Find conditions on 0 ≤ v < ∞ µ-a.e. (resp. u > 0 µ-a.e.) such
that (1) is satisfied by some u > 0 µ-a.e. (resp. 0 ≤ v < ∞
µ-a.e.).
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As we can see in Chapter VI of [GR] and in Chapters II, V of [Ste]
this question is closely related to obtaining vector-valued inequalities for T .
We shall use this connection to get an answer for this problem, that is,
we shall develop a vector-valued theory for these operators to obtain the
necessary vector-valued inequalities. Some references about classical vector-
valued theory are [BCP], [RRT] and [GR].

For these operators the relevant classes of weights will be, as usual, Dp

and Zp, 1 < p < ∞, which are defined as follows:

Dp =
{

0 ≤ w < ∞ µ-a.e. :

∫
X

w(x)1−p′ (1 + d(x, x0))
−n p′ dµ(x) < ∞

}
Zp =

{
w > 0 µ-a.e. :

∫
X

w(x) (1 + d(x, x0))
−n p dµ(x) < ∞

}
.

for some x0 ∈ X. Note that these classes of weights do not depend on
the point x0 and that this definition becomes simpler for spaces with finite
diameter (see Section 3). The concrete result is

Theorem Take p, 1 < p < ∞. If u ∈ Zp (resp. v ∈ Dp), then there exists
some weight 0 < v < ∞ µ-a.e. (resp. 0 < u < ∞ µ-a.e.) such that (1)
holds. Moreover, v (resp. u) can be found in such a way that vα ∈ Zp (resp.
uα ∈ Dp), provided that 0 < α < 1.

Once we have obtained sufficient conditions on the weights in order to
ensure that (1) holds, we shall study how sharp are these classes, that is, we
shall prove that for a particular example these conditions are also necessary.
In [GR] this problem is treated for classical Calderón-Zygmund operators in
Rn. There the Riesz transforms are used to show that those classes of weights
are necessary. In our setting this rôle will be played by the Cauchy integral.
Take a measure µ for which the Cauchy integral is bounded in L2(µ), see
[To1]. Now, the weighted inequality is∫

C
|Cf(z)|p u(z) dµ(z) ≤ C(u, v)

∫
C
|f(z)|p v(z) dµ(z), (2)

for any f ∈ Lp(v dµ). We devote Section 4 to get the following theorem,
which is, essentially, the converse of the previous one.

Theorem Take p, 1 < p < ∞. Given 0 < u < ∞ µ-a.e. (resp. 0 < v < ∞
µ-a.e.), if there exists some weight 0 < v < ∞ µ-a.e. (resp. 0 < u < ∞
µ-a.e.) such that (2) holds, then u ∈ Zp (resp. v ∈ Dp).
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The plan of the paper is the following. Section 2 contains a vector-
valued version of the main theorem in [NTV2], which shall be proved in
three steps. In Subsections 2.1 and 2.2 we shall obtain the weak type (1, 1)
estimate, whereas the strong inequalities are considered in Subsection 2.3. An
immediate consequence is given in Subsection 2.4, indeed the vector-valued
inequalities obtained there will be the main tool for solving the problem we
are concerned with. Sections 3, 4 are devoted to this problem: the first one
for general operators and the second one for the particular case of the Cauchy
integral, where the necessity is proved.

2 The vector-valued Theorem.

Throughout this section we shall consider vector-valued operators, that is,
operators which take their values in Banach spaces

Let A, B be a couple of Banach spaces. L(A, B) will denote the set of
bounded linear operators from A to B. We shall say that K : X × X −→
L(A, B) is a (vector-valued) “n-dimensional” Calderón-Zygmund kernel if,
for some A > 0, it verifies

(i) ‖K(x, y)‖L(A,B) ≤
A

d(x, y)n
, for all x 6= y;

(ii) and the following two conditions hold:∫
d(x,y)≥2 d(x,x′)

‖K(x, y)−K(x′, y)‖L(A,B) dµ(y) ≤ A,∫
d(x,y)≥2 d(x,x′)

‖K(y, x)−K(y, x′)‖L(A,B) dµ(y) ≤ A.

Definition 2.1 Let T be a linear operator mapping boundedly L2
A(µ) into

L2
B(µ), such that, for any f ∈ L2

A(µ),

Tf(x) =

∫
X

K(x, y)f(y) dµ(y), for µ-a.e. x ∈ X \ supp f,

where K is an “n-dimensional” Calderón-Zygmund kernel. Then we shall
say that T is a vector-valued Calderón-Zygmund operator.

For r > 0, the truncated operators are defined as follows

Trf(x) =

∫
X\B(x,r)

K(x, y)f(y) dµ(y),
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and we can consider the maximal operator associated with T ,

TFf(x) = sup
r>0

‖Trf(x)‖B.

For 1 ≤ p ≤ ∞, it is well known that Lp′

A∗(µ) ⊂ (Lp
A(µ))∗. If the Ba-

nach space A is reflexive equality holds, however it fails in general. When
we deal with a reflexive Banach space A, we can define T ∗, the adjoint of
T , which turns out to be a vector-valued Calderón-Zygmund operator that
maps boundedly L2

B∗(µ) into L2
A∗(µ). The kernel is K̃(x, y) = K(y, x)∗ ∈

L(B∗, A∗) (the adjoint operator of K(y, x)). Besides, ‖T ∗‖L2
B∗ (µ)→L2

A∗ (µ) ≤
‖T‖L2

A(µ)→L2
B(µ). Since ‖K(y, x)∗‖L(B∗,A∗) ≤ ‖K(y, x)‖L(A,B) and

‖K(y1, x1)
∗ −K(y2, x2)

∗‖L(B∗,A∗) ≤ ‖K(y1, x1)−K(y2, x2)‖L(A,B),

K̃ will be an “n-dimensional” Calderón-Zygmund Kernel with the same con-
stant A.

Let M(X) be the space of all complex-valued Borel measures on X. The
space A ⊗M(X) will consist of all finite linear combinations of elements of
the form a η with a ∈ A and η ∈ M(X). For one of these elements we define
by convenience

T (aη)(x) =

∫
X

K(x, y)a dη(y), x ∈ X \ supp η.

As in [NTV2], we consider the following version of the Hardy-Littlewood
maximal function:

M̃f(x) = sup
r>0

1

µ(B(x, 3 r))

∫
B(x,r)

|f | dµ.

This maximal function is bounded in Lp(µ), 1 < p ≤ ∞, and acts continu-
ously from L1(µ) to L1,∞(µ).

We shall need the following result, which is a kind of boundedness of an
“atom” away from its support.

Lemma 2.2 For η =
∑J

i=1 ai ηi ∈ A⊗M(X) with supp η ⊂ B(x, ρ) and

η(X) =

∫
X

dη =
J∑

i=1

ai

∫
X

dηi =
J∑

i=1

ai ηi(X) = 0,

we have ∫
X\B(x,2 ρ)

‖Tη(y)‖B dµ(y) ≤ A

J∑
i=1

‖ai‖A ‖ηi‖,

where A is the constant in the definition of the kernel.
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Proof. The proof is standard. By using the properties of η and condition
(ii), we can write∫

X\B(x,2 ρ)

‖Tη(y)‖B dµ(y)

=

∫
X\B(x,2 ρ)

∥∥∥ J∑
i=1

∫
B(x,ρ)

(K(y, x′)−K(y, x))ai dηi(x
′)
∥∥∥

B
dµ(y)

≤
J∑

i=1

‖ai‖A

∫
B(x,ρ)

∫
d(x,y)≥2 d(x,x′)

‖K(y, x′)−K(y, x)‖L(A,B) dµ(y) d|ηi|(x′)

≤ A
J∑

i=1

‖ai‖A ‖ηi‖.

2

Remark 2.3 Just as before, the following can be proved: if η =
∑J

i=1 ai ηi +

f dµ ∈ A⊗M(X)+L1
A(µ) with supp η ⊂ B(x, ρ) and η(X) =

∑J
i=1 ai ηi(X)+∫

X f dµ = 0, we also obtain∫
X\B(x,2 ρ)

‖Tη(y)‖B dµ(y) ≤ A
( J∑

i=1

‖ai‖A ‖ηi‖+ ‖f‖L1
A(µ)

)
.

2.1 Weak type inequality for elementary measures.

An elementary measure will be an element of A⊗M(X), where the measures
involved are unit point masses, namely

ν =
N∑

i=1

αi δxi
∈ A⊗M(X).

Theorem 2.4 For an elementary measure as above, the following inequality
holds

‖Tν‖L1,∞
B (µ) ≤ C

N∑
i=1

‖αi‖A,

where C only depends on the dimension n, the constant A in the definition
of the kernel K and the norm ‖T‖L2

A(µ)→L2
B(µ).

Observe that here, there is no problem with the definition of Tν because
the sum is finite and

Tν(x) =
N∑

i=1

T (αiδxi
)(x) =

N∑
i=1

K(x, xi)αi
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makes sense everywhere except at finitely many points.

Proof. We shall follow the proof of [NTV2, Theorem 5.1] paying special
attention to those details that differ from the scalar case. We can assume
that

∑N
i=1 ‖αi‖A = 1 and prove that ‖Tν‖L1,∞

B (µ) ≤ C. Fix some t > 0,

and suppose that µ(X) > 1
t
. Following the “scalar” case proof —with ‖αi‖A

instead of αi— we are able to find some Borel sets E1, . . . , EN such that

B′(xi, ρi) \
i−1⋃
`=1

E` ⊂ Ei ⊂ B(xi, ρi) \
i−1⋃
`=1

E` and µ(Ei) =
‖αi‖A

t
,

where B′(xi, ρi) = {y ∈ X : d(xi, y) < ρi}. It is clear that the sets Ei are
pairwise disjoint, if we put E =

⋃
i Ei,⋃

i

B′(xi, ρi) ⊂ E ⊂
⋃
i

B(xi, ρi) and µ(E) =
1

t
.

Define
σ =

∑
i

χX\B(xi,2 ρi) T
( αi

‖αi‖A
χEi

)
,

and

Tν − t σ =
∑

i

ϕi =
∑

i

(
T (αi δxi

)− t χX\B(xi,2 ρi) T
( αi

‖αi‖A
χEi

))
.

Since B′(xi, ρi) ⊂ E, we have∫
X\E

‖ϕi‖B dµ ≤
∫

X\B(xi,2 ρi)

∥∥∥T
(
αi δxi

− t
αi

‖αi‖A
χEi

dµ
)∥∥∥

B
dµ

+

∫
B(xi,2 ρi)\B′(xi,ρi)

‖T (αi δxi
)‖B dµ

≤ 2 A ‖αi‖A + 2n A ‖αi‖A.

where we have used Lemma 2.2 for the first term and condition (i) of the
kernel for the second. Thus∫

X\E
‖Tν − t σ‖B dµ ≤

N∑
i=1

∫
X\E

‖ϕi‖B dµ ≤ 2n+1 A

N∑
i=1

‖αi‖A = 2n+1 A,

and µ{x ∈ X : ‖(Tν − t σ)(x)‖B > 2n+1 A t} ≤ 2
t
, since µ(E) = 1

t
. Then, it

might be enough to find some big constant A0 such that

µ{‖σ‖B > A0} ≤
2

t
. (3)
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In this case, µ{x ∈ X : ‖Tν(x)‖B > (2n+1 A + A0) t} ≤ 4
t
. In order to finish

we only have to observe that the above inequality is obvious when µ(X) ≤ 1
t
.

Then, if we take C = 4 (2n+1 A+A0), we have just obtained ‖Tν‖L1,∞
B (µ) ≤ C.

Let us show how can we get (3) in this vector-valued framework. First,
we prove this inequality under the assumption that A is a reflexive Banach
space. For a fixed A0, to be chosen later, suppose that µ{‖σ‖B > A0} > 2

t
.

Then, there exists a Borel set F , F ⊂ {‖σ‖B > A0}, such that µ(F ) = 1
t
.

Thus σ χF ∈ L1
B(µ), because∫

X
‖σ χF‖B dµ ≤ µ(F )1/2 ‖σ‖L2

B(µ) ≤ ‖T‖L2
A(µ)→L2

B(µ)

1

t

N∑
i=1

‖αi‖1/2
A < ∞.

Since L1
B(µ) is isometrically contained in (L∞B∗(µ))∗, the Hahn-Banach theo-

rem implies the existence of some β ∈ L∞B∗(µ), ‖β‖L∞B∗ (µ) = 1, such that

〈β, σ χF 〉 = ‖σ χF‖(L∞B∗ (µ))∗ =

∫
F

‖σ(x)‖B dµ(x) > A0 µ(F ) =
A0

t
. (4)

On the other hand, β χF ∈ L2
B∗(µ) with ‖β χF‖L2

B∗ (µ) ≤ t−1/2 and we can use
the adjoint operator to obtain

〈β, σ χF 〉 =

∫
X
〈σ(x)χF (x), β(x)〉 dµ(x)

=
N∑

i=1

∫
X

〈 αi

‖αi‖A
χEi

(x), T ∗(β χF\B(xi,2 ρi))(x)
〉

dµ(x)

≤
N∑

i=1

∫
X

χEi
(x) ‖T ∗(β χF\B(xi,2 ρi))(x)‖A∗ dµ(x).

For every x ∈ Ei ⊂ B(xi, ρi), by condition (i) of the kernel,∥∥∥T ∗(β χF\B(xi,2 ρi))(x)− T ∗(β χF\B(x,ρi))(x)
∥∥∥

A∗

≤
∫

B(xi,2 ρi)\B(x,ρi)

‖K̃(x, y)‖L(B∗,A∗) ‖β(y)‖B∗ dµ(y) ≤ 2n A.

Hence, if x ∈ Ei

‖T ∗(β χF\B(xi,2 ρi))(x)‖A∗ ≤ 2n A + (T ∗)F(β χF )(x).

Then, by the pairwise disjointness of the sets Ei, we have

〈β, σ χF 〉 ≤ 2n A µ(E) +

∫
X

χE(x) (T ∗)F(β χF )(x) dµ(x).

To finish, we need the following Guy David-type lemma which shall be proved
later.
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Lemma 2.5 Let F ⊂ X be a finite measure Borel set and β ∈ L∞B∗ such that
‖β‖L∞B∗

= 1. Then for every x ∈ supp µ we have

(T ∗)F(β χF )(x) ≤ 2 · 3n M̃
(
‖T ∗(β χF )‖A∗

)
(x) + A1,

where A1 = 5 · 3n A +
√

2 · 3n ‖T‖L2
A(µ)→L2

B(µ).

According to this lemma and Hölder’s inequality, we can obtain∫
X

χE(x) (T ∗)F(β χF )(x) dµ(x)

≤ A1 µ(E) + 2 · 3n ‖χE‖L2(µ)

∥∥∥M̃(
‖T ∗(β χF )‖A∗

)∥∥∥
L2(µ)

≤ 1

t
(A1 + 2 · 3n ‖M̃‖L2(µ)→L2(µ) ‖T‖L2

A(µ)→L2
B(µ)).

In short, by choosing A0 = 2n A + A1 + 2 · 3n ‖M̃‖L2(µ)→L2(µ) ‖T‖L2
A(µ)→L2

B(µ),

we have proved that 〈β, σ χF 〉 ≤ A0

t
which contradicts (4); and therefore

µ{‖σ‖ > A0} ≤ 2
t
. When the Banach space A is not reflexive we proceed as

follows. Let A0 be the vectorial subspace of A generated by α1, . . . αN , which
is a finite-dimensional Banach space and thus reflexive. Set T0 the restriction
of T to A0-valued functions. The kernel of T0 will be K0 ∈ L(A0, B) (the
restriction of K to A0) which is clearly a Calderón-Zygmund kernel. In
fact, conditions (i) and (ii) are fulfilled by K0 with the constant A of K.
Moreover, ‖T0‖L2

A0
(µ)→L2

B(µ) ≤ ‖T‖L2
A(µ)→L2

B(µ), and thus T0 is a vector-valued

Calderón-Zygmund operator with “n-dimensional” kernel K0. On the other
hand,

σ =
∑

i

χX\B(xi,2 ρi) T
( αi

‖αi‖A
χEi

)
=

∑
i

χX\B(xi,2 ρi) T0

( αi

‖αi‖A
χEi

)
.

Lemma 2.5 provides a new constant A0
1 that verifies

A0
1 = 5 · 3n A +

√
2 · 3n ‖T0‖L2

A0
(µ)→L2

B(µ) ≤ A1,

where A1 = 5 · 3n A +
√

2 · 3n ‖T‖L2
A(µ)→L2

B(µ) does not depend of A0. Then,
as in the previous case, we obtain

〈β, σ χF 〉 ≤ 1

t
(2n A + A0

1 + 2 · 3n ‖M̃‖L2(µ)→L2(µ) ‖T0‖L2
A0

(µ)→L2
B(µ))

≤ 1

t
(2n A + A1 + 2 · 3n ‖M̃‖L2(µ)→L2(µ) ‖T‖L2

A(µ)→L2
B(µ)) =

A0

t
,
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and we get again a contradiction which finishes the non-reflexive case. 2

Let us prove Lemma 2.5.

Proof of Lemma 2.5. We follow the ideas of [NTV2, Lemma 4.1]. Let
x ∈ supp µ and r > 0. Consider the sequence of balls B(x, rj) with rj = 3j r
and set µj = µ(B(x, rj)). We can choose k ≥ 1, the smallest positive integer
such that µk ≤ 2 · 3n µk−1. Put R = rk−1 = 3k−1 r. Then

‖T ∗
r (β χF )(x)− T ∗

3 R(β χF )(x)‖A∗ ≤
∫

B(x,3 R)\B(x,r)

‖K̃(x, y)‖L(B∗,A∗) dµ(y)

≤
k∑

j=1

∫
B(x,rj)\B(x,rj−1)

‖K(y, x)‖L(A,B) dµ(y) ≤ 4 · 3n A,

just as in [NTV2]. Now we handle T ∗
3 R(β χF )(x). Note that here we have

the doubling condition µk ≤ 2 · 3n µk−1. Define

VR(x) =
1

µ(B(x, R))

∫
B(x,R)

T ∗(βχF ) dµ,

which verifies ‖VR(x)‖A∗ ≤ 2 · 3n M̃
(
‖T ∗(β χF )‖A∗

)
(x), because of this dou-

bling condition. On the other hand,

VR(x) =
1

µ(B(x, R))

∫
B(x,R)

T ∗(βχF\B(x,3 R)) dµ

+
1

µ(B(x, R))

∫
B(x,R)

T ∗(βχF∩B(x,3 R)) dµ = I + II,

and ‖T ∗
3 R(β χF )(x) − VR(x)‖A∗ ≤ ‖T ∗

3 R(β χF )(x) − I‖A∗ + ‖II‖A∗ .By using
the second condition on the kernel,

‖T ∗
3 R(β χF )(x)− I‖A∗

≤ 1

µ(B(x, R))

∫
B(x,R)

∫
d(x,y)≥2 d(x,z)

‖K(y, x)−K(y, z)‖L(A,B) dµ(y) dµ(z)

≤ 1

µ(B(x, R))

∫
B(x,R)

A dµ(z) = A.

Whereas for the second term, by Hölder’s inequality,

‖II‖A∗ ≤ 1

µ(B(x, R))1/2
‖T ∗‖L2

B∗ (µ)→L2
A∗ (µ) ‖β χF∩B(x,3 R)‖L2

B∗ (µ)

≤
(

µ(B(x, 3 R))

µ(B(x, R))

)1/2

‖T‖L2
A(µ)→L2

B(µ) ≤
√

2 · 3n ‖T‖L2
A(µ)→L2

B(µ).

11



Thus, we get ‖T ∗
r (β χF )(x)‖A∗ ≤ A1 + 2 · 3n M̃

(
‖T ∗(β χF )‖A∗

)
(x), where

A1 = 5 · 3n A +
√

2 · 3n ‖T‖L2
A(µ)→L2

B(µ). By taking the supremum on r > 0 we
have the desired estimate. 2

2.2 Weak type inequality for functions in L1
A(µ).

Theorem 2.6 Let f ∈ L1
A(µ) ∩ L2

A(µ), then

‖Tf‖L1,∞
B (µ) ≤ C ‖f‖L1

A(µ),

where C > 0 only depends on the dimension n, the constant A in the defini-
tion of the Calderón-Zygmund kernel K and the norm ‖T‖L2

A(µ)→L2
B(µ).

Proof. Let C0(X, A) be the space of A-valued functions on X, which are
bounded, continuous and with bounded support. It is clear that C0(X, A) ⊂
L1

A(µ)∩L2
A(µ) and this inclusion is dense with respect to the norm ‖·‖L1

A(µ) +

‖ · ‖L2
A(µ) —in fact, A ⊗ C0(X) is dense in A ⊗ (L1(µ) ∩ L2(µ)) which, at

the same time, is dense in L1
A(µ) ∩ L2

A(µ))—. Therefore it is enough to
prove the above inequality for functions f ∈ C0(X, A). Fix t > 0 and set
G = {x ∈ X : ‖f(x)‖A > t}. We can split the function f as follows

f = f t + ft = f χG + f χX\G,

and then Tf = Tf t + Tft. First, we observe that∫
X
‖Tft‖2

B dµ ≤ ‖T‖2
L2

A(µ)→L2
B(µ)

∫
X
‖ft‖2

A dµ ≤ ‖T‖2
L2

A(µ)→L2
B(µ) t ‖f‖L1

A(µ),

and µ{x ∈ X : ‖Tft(x)‖B > t ‖T‖L2
A(µ)→L2

B(µ)} ≤ 1
t
‖f‖L1

A(µ). On the other

hand, since G is an open set (f is continuous) and µ(G) ≤ 1
t
‖f‖L1

A(µ), Whit-
ney decomposition can be performed to find a sequence of pairwise disjoint
open sets Gi (i = 1, 2, . . .), such that,

G =
∞⋃
i=1

Gi and diam Gi ≤
1

2
d(Gi, X \G).

Put fi = f χGi
. Then the series f t =

∑∞
i=1 fi converges in L2

A(µ) (due to the
fact that the sets are pairwise disjoint and f ∈ L2

A(µ)). Set

f (N) =
N∑

i=1

fi and αi =

∫
X

fi dµ =

∫
Gi

f dµ.

12



It is clear that
∑∞

i=1 ‖αi‖A ≤ ‖f‖L1
A(µ). Choose a point xi in every set Gi and

consider the elementary measure νN =
∑N

i=1 αi δxi
. Lemma 2.2 and Remark

2.3 lead to∫
X\G

‖Tf (N) − TνN‖B dµ ≤
N∑

i=1

∫
X\B(xi,2 diam Gi)

‖T (fi dµ− αi δxi
)‖B dµ

≤
N∑

i=1

A (‖fi‖L1
A(µ) + ‖αi‖A ‖δxi

‖) ≤ 2 A ‖f‖L1
A(µ).

Thus µ{x ∈ X \ G : ‖(Tf (N) − TνN)(x)‖B > 2 A t} ≤ 1
t
‖f‖L1

A(µ). Moreover,
νN is an elementary measure and then Theorem 2.4 applies to it with some
constant C0 in such a way that we get µ{x ∈ X \ G : ‖TνN(x)‖B > C0 t} ≤
1
t
‖f‖L1

A(µ). Consequently

µ{x ∈ X : ‖Tf (N)(x)‖B > (2 A + C0) t}

≤ µ(G) + µ{x ∈ X \G : ‖Tf (N)(x)‖B > (2 A + C0) t} ≤ 3

t
‖f‖L1

A(µ).

Since f (N) −→ f t in L2
A(µ) as N → ∞, we have Tf (N) −→ Tf t in L2

B(µ) as
N →∞. Then

µ{x ∈ X : ‖Tf t(x)‖B > (2 A + C0) t} ≤ 3

t
‖f‖L1

A(µ)

and the desired inequality holds with C = 4 (‖T‖L2
A(µ)→L2

B(µ) + 2 A + C0). 2

2.3 Strong inequalities.

Theorem 2.7 The operator T is continuous from Lp
A(µ) to Lp

B(µ) for all p,
1 < p < ∞.

Proof. For 1 < p ≤ 2, it is enough to apply the Marcinkiewicz interpolation
theorem. In the other case, 2 ≤ p < ∞, assume that A is a reflexive Ba-
nach space. Then the adjoint operator T ∗ will be a vector-valued Calderón-
Zygmund operator. By using the previous case, T ∗ is bounded between
Lp′

B∗(µ) and Lp′

A∗(µ). Thus, T is continuous from Lp
A(µ) to Lp

B(µ). When A is
a non-reflexive Banach space, consider A0 any finite-dimensional subspace of
A. Let T0 be the restriction of T to A0-valued functions. As we observed in
the proof of Theorem 2.4, T0 is a vector-valued Calderón-Zygmund operator
for which all the constants involved are independent of the chosen subspace.
Since A0 is reflexive, by the reasoning above, we obtain that T0 is bounded
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from Lp
A0

(µ) to Lp
B(µ) with a constant independent of A0. On the other hand,

A ⊗ Lp(µ) is dense in Lp
A(µ), and any element f ∈ A ⊗ Lp(µ), has an ex-

pression f =
∑m

i=1 αi fi, for some α1, . . . , αm ∈ A and f1, . . . , fm ∈ Lp(µ).
By calling A0 to the finite-dimensional subspace generated by α1, . . . , αm, we
have that f ∈ Lp

A0
(µ) and

‖Tf‖Lp
B(µ) = ‖T0f‖Lp

B(µ) ≤ C ‖f‖Lp
A0

(µ) = C ‖f‖Lp
A(µ),

where C is independent of A0. 2

Remark 2.8 The previous results still hold if we replace the a priori conti-
nuity of T from L2

A(µ) to L2
B(µ) by the assumption that T is bounded between

Lp0

A (µ) and Lp0

B (µ), for some other p0, with 1 < p0 < ∞.

2.4 Self-improvement.

Theorems 2.6 and 2.7 have an immediate self-improvement in the following
sense: under the same hypotheses we can use these results to extend the
operators to sequence-valued functions.

Theorem 2.9 Let T be a vector-valued Calderón-Zygmund operator and take
q, 1 < q < ∞. Then

(i) T is bounded from L1
`q
A
(µ) to L1,∞

`q
B

(µ), that is,

µ

{
x :

{∑
j

‖Tfj(x)‖q
B

} 1
q

> λ

}
≤ C

λ

∫
X

{∑
j

‖fj(x)‖q
A

} 1
q
dµ(x).

(ii) T is bounded from Lp
`q
A
(µ) to Lp

`q
B
(µ), for 1 < p < ∞, that is,∥∥∥∥{∑

j

‖Tfj‖q
B

} 1
q

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥{∑
j

‖fj‖q
A

} 1
q

∥∥∥∥
Lp(µ)

.

Proof. For f = {fj}j ∈ Lq
`q
A
(µ) with compact support, we define

T̃ f(x) = {Tfj(x)}j =
{∫

X
K(x, y)fj(y) dµ(y)

}
j
=

∫
X

K̃(x, y)f(y) dµ(y),

for µ-a.e. x ∈ X\ supp f , where the kernel K̃ : X×X −→ L(`q
A, `q

B) is defined
by

K̃(x, y)α = {K(x, y)αj}j, for any α = {αj}j ∈ `q
A.

14



We take the Banach spaces Ã = `q
A and B̃ = `q

B. Theorem 2.7 leads to

‖T̃ f‖q
Lq

`
q
B
(µ)

=
∑

j

∫
X
‖Tfj‖q

B dµ ≤ C
∑

j

∫
X
‖fj‖q

A dµ = C ‖f‖q
Lq

`
q
A
(µ)

.

The fact that K̃ is a vector-valued “n-dimensional” kernel follows from its
expression, because ‖K̃(x, y)‖L(`q

A,`q
B) ≤ ‖K(x, y)‖L(A,B) and

‖K̃(x, y)− K̃(x′, y′)‖L(`q
A,`q

B) ≤ ‖K(x, y)−K(x′, y′)‖L(A,B).

Indeed, the constant A of K is still valid for K̃. Thus, T̃ is a vector-valued
Calderón-Zygmund operator —where the a priori estimate holds for p0 = q
instead of 2, which is all right because of Remark 2.8— and we can use
Theorems 2.6 and 2.7 in order to obtain the desired inequalities. 2

As a consequence of this result, we can extend those operators considered
in [NTV2] to sequence spaces. Namely, let T be a (“scalar”) Calderón-
Zygmund operator (see Definition 1.1). Here, “scalar” means that the Banach
spaces are A = B = C. In particular, T fits into the vector-valued theory,
and we can use the self-improvement result (Theorem 2.9) in order to obtain
this sequence-valued extension.

Corollary 2.10 Let T be an operator as above and take q, 1 < q < ∞. Then

(i) µ

{
x :

{∑
j

|Tfj(x)|q
} 1

q
> λ

}
≤ C

λ

∫
X

{∑
j

|fj(x)|q
} 1

q
dµ(x).

(ii)

∥∥∥∥{∑
j

|Tfj|q
} 1

q

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥{∑
j

|fj|q
} 1

q

∥∥∥∥
Lp(µ)

, if 1 < p < ∞.

Remark 2.11 These vector-valued results will be further used in [GM] to
obtain similar estimates for the maximal operator associated with T , which,
under the appropriate conditions, fits into this vector-valued theory. In par-
ticular, we shall prove the previous inequalities for the supremum of the trun-
cated Cauchy integrals. By means of them, weighted inequalities for this max-
imal operator will be obtained and we shall be able to study the existence of
principal values in weighted Lebesgue spaces.
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3 Vector-valued inequalities and weights.

The relation between weighted inequalities and vector-valued inequalities was
discovered by J.L. Rubio de Francia in [R] and it can be also found in Chapter
VI of [GR]. The two-weight problem for an operator T consists in finding all
pairs (u, v) of positive functions for which the inequality∫

X
|Tf(x)|p u(x) dµ(x) ≤ C(u, v)

∫
X
|f(x)|p v(x) dµ(x), (5)

(f ∈ Lp(v)) holds true. We are going to consider the following weak variant
of this general problem:

Find conditions on 0 ≤ v < ∞ µ-a.e. (resp. u > 0 µ-a.e.) such
that (5) is satisfied by some u > 0 µ-a.e. (resp. 0 ≤ v < ∞
µ-a.e.).

To start, we need the following result, proved in [FT], which establishes
the concrete relationship between vector-valued inequalities and weights.
This theorem is closely related to those contained in [GR] pp. 549–554.

Theorem 3.1 Let (Y, dν) be a measure space; F, G Banach spaces, and
{Ak}k∈Z a sequence of pairwise disjoint measurable subsets of Y such that
Y =

⋃
k Ak. Consider 0 < s < p < ∞ and T a sublinear operator which

satisfies the following vector-valued inequality∥∥∥∥{∑
j

‖Tfj‖p
G

} 1
p

∥∥∥∥
Ls(Ak,d ν)

≤ Ck

{∑
j

‖fj‖p
F

} 1
p
, k ∈ Z, (6)

where, for every k ∈ Z, Ck only depends on F, G, p and s. Then, there exists
a positive function u(x) on Y such that{∫

Y
‖Tf(x)‖p

G u(x) dν(x)
} 1

p ≤ C‖f‖F

where C depends on F, G, p and s. Moreover, given a sequence of positive
numbers {ak}k∈Z with

∑
k ap

k < ∞, and σ =
(

p
s

)′
, u(x) can be found in such

a way that ‖u−1 χAk
‖Lσ−1(Ak,dµ) ≤ (a−1

k Ck)
p.

In our context (Y, dν) = (X, dµ) which is a σ-finite measure space. Then, a
simple argument shows that the weight u can be also taken so that u < ∞
a.e..
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Given 1 < p < ∞ and some x0 ∈ X, remember the definition of the
classes of weights in X:

Dp =
{

0 ≤ w < ∞ µ-a.e. :

∫
X

w(x)1−p′ (1 + d(x, x0))
−n p′ dµ(x) < ∞

}
Zp =

{
w > 0 µ-a.e. :

∫
X

w(x) (1 + d(x, x0))
−n p dµ(x) < ∞

}
.

Note that these classes of weights do not depend on the point x0.

Remark 3.2 In the case that the diameter of the space is finite, (or equiv-
alently, the distance is bounded), there exists R large enough such that X ⊂
B(x0, R) and so µ(X) ≤ Rn < ∞. Thus, the previous classes can be given by
the equivalent definition:

Dp =
{

0 ≤ w < ∞ µ-a.e. :

∫
X

w(x)1−p′ dµ(x) < ∞
}

Zp =
{

w > 0 µ-a.e. :

∫
X

w(x) dµ(x) < ∞
}

.

If the support of the measure is a bounded set, we can restrict the whole
space to this set, and we would be in the previous case. So, when we talk
about spaces with finite diameter, we shall be concerned with both cases.

We would like to apply the last theorem to our operators. In what follows
T will be a “scalar” Calderón-Zygmund operator T , that is, an operator like
those in Definition 1.1.

Proposition 3.3 Take 0 < s < 1 < p < ∞ and v ∈ Dp. Then, if the
diameter of X is equal to infinity, we have∥∥∥∥{∑

j

|Tfj|p
} 1

p

∥∥∥∥
Ls(Sk,d µ)

≤ Cs,p 2
k n
s

{∑
j

‖fj‖p
Lp(v dµ)

} 1
p
, for k = 0, 1, . . . ,

where S0 = {x : d(x, x0) ≤ 1} and Sk = {x : 2k−1 < d(x, x0) ≤ 2k}, for
k = 1, 2, . . .. Otherwise,∥∥∥∥{∑

j

|Tfj|p
} 1

p

∥∥∥∥
Ls(µ)

≤ Cs,p

{∑
j

‖fj‖p
Lp(v dµ)

} 1
p
.

Proof. Let us see what happens in the first situation. Fix k ≥ 0 and set
Bk+1 = B(x0, 2

k+1). Every function f is split as f = f ′ + f ′′ = f χBk+1
+
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f χX\Bk+1
. Then, for x ∈ Sk and y ∈ X \ Bk+1 we observe that 2 d(x, y) >

d(y, x0) and thus

|Tf ′′(x)| ≤
∫

X\Bk+1

A

d(x, y)n
|f(y)| dµ(y)

≤ 4n A

∫
X
(1 + d(y, x0))

−n |f(y)| v(y)
1
p v(y)−

1
p dµ(y)

≤ 4n A
{∫

X
|f(y)|p v(y) dµ(y)

} 1
p
{∫

X

v(y)1−p′

(1 + d(y, x0))n p′
dµ(y)

} 1
p′

≤ C ‖f‖Lp(v dµ).

Note that the last inequality holds because v ∈ Dp. Then, since µ(Sk) ≤
µ(Bk) ≤ 2k n, we prove∥∥∥∥{∑

j

|Tf ′′j |p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ C 2
k n
s

{∑
j

‖fj‖p
Lp(v dµ)

} 1
p
.

On the other hand, due to that fact that 0 < s < 1, we can use Kolmogorov
inequality (see [GR] p. 485) and Corollary 2.10 to obtain∥∥∥∥{∑

j

|Tf ′j|p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ Cs µ(Sk)
1
s
−1

∥∥∥∥{∑
j

|Tf ′j|p
} 1

p

∥∥∥∥
L1,∞(Sk,dµ)

≤ C µ(Sk)
1
s
−1

∫
Bk+1

{∑
j

|fj(x)|p
} 1

p
v(x)

1
p v(x)−

1
p dµ(x)

≤ C µ(Sk)
1
s
−1

{∫
X

∑
j

|fj(x)|p v(x) dµ(x)
} 1

p
{∫

Bk+1

v(x)−
p′
p dµ(x)

} 1
p′

= C µ(Sk)
1
s
−1

{∑
j

‖fj‖p
Lp(v dµ)

} 1
p
{∫

Bk+1

v(x)1−p′ dµ(x)
} 1

p′
.

As 1
s
− 1 > 0, we observe µ(Sk)

1
s
−1 ≤ µ(Bk)

1
s
−1 ≤ (2k n)

1
s
−1. Furthermore,{∫

Bk+1

v(x)1−p′ dµ(x)
} 1

p′

=
{∫

Bk+1

v(x)1−p′

(1 + d(x, x0))n p′
(1 + d(x, x0))

n p′ dµ(x)
} 1

p′ ≤ C 2n 2(k+1) n,

since v ∈ Dp. Then,∥∥∥∥{∑
j

|Tf ′j|p
} 1

p

∥∥∥∥
Ls(Sk,dµ)

≤ C 2
k n
s

{∑
j

‖fj‖p
Lp(v dµ)

} 1
p
.
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Collecting these inequalities, we get the desired estimate.
When the space has finite diameter, it measure will be finite as well.

Thus, we proceed like we did with the functions f ′j. Since 0 < s < 1, we can
apply Kolmogorov inequality (see [GR] p. 485) and Corollary 2.10 to obtain∥∥∥∥{∑

j

|Tfj|p
} 1

p

∥∥∥∥
Ls(µ)

≤ Cs µ(X)
1
s
−1

∥∥∥∥{∑
j

|Tfj|p
} 1

p

∥∥∥∥
L1,∞(µ)

≤ C µ(X)
1
s
−1

∫
X

{∑
j

|fj(x)|p
} 1

p
v(x)

1
p v(x)−

1
p dµ(x)

≤ C µ(X)
1
s
−1

{∫
X

∑
j

|fj(x)|p v(x) dµ(x)
} 1

p
{∫

X
v(x)−

p′
p dµ(x)

} 1
p′

≤ C
{∑

j

‖fj‖p
Lp(v dµ)

} 1
p
,

because X has finite measure and v ∈ Dp (which, in this case, means v1−p′ ∈
L1(µ)). 2

Once we have the vector-valued inequalities we can use Theorem 3.1 to
obtain weighted inequalities.

Theorem 3.4 Take p, 1 < p < ∞. If u ∈ Zp (resp. v ∈ Dp), then there
exists some weight 0 < v < ∞ µ-a.e. (resp. 0 < u < ∞ µ-a.e.) such that
(5) holds. Moreover, v (resp. u) can be found in such a way that vα ∈ Zp

(resp. uα ∈ Dp), provided that 0 < α < 1.

Proof. Assume that the case v ∈ Dp is proved. If u ∈ Zp, then ũ = u1−p′ ∈
Dp′ . Apply this assumption to the adjoint operator T ∗ (which is an operator
with the same properties as T ) in order to obtain some weight ṽ , 0 < ṽ < ∞
µ-a.e., such that∫

X
|T ∗f(x)|p′ ṽ(x) dµ(x) ≤ C

∫
X
|f(x)|p′ ũ(x) dµ(x).

Take v so that ṽ = v1−p′ . Then, since 0 < v < ∞ µ-a.e., an standard
argument yields that the last inequality implies (5). Furthermore, we can
choose ṽ such that ṽα ∈ Dp′ , provided that 0 < α < 1. That is, we can find
v in such a way that vα ∈ Zp.

Let us prove the case v ∈ Dp. Fix 0 < α < 1 and put q = 1 + α (p′ − 1).

Then 1 < q < p′ and we can find some s, 0 < s < 1, such that σ =
(

p
s

)′
> q.
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When X has infinite diameter, we use Theorem 3.1 with (Y, dν) = (X, dµ),

F = Lp(v dµ), G = C, {Ak}k = {Sk}∞k=0 and Ck = C 2
k n
s . The vector-valued

inequality (6) is supplied by Proposition 3.3. Then, we know that there exists
a weight u such that (5) holds. Moreover, u can be taken in such a way that

‖u−1‖Lσ−1(Sk,dµ) ≤ C (a−1
k 2

k n
s )p, with ak > 0 and

∑
k ap

k < ∞. Therefore,∫
X

u(x)1−q

(1 + d(x, x0))n p′
dµ(x) =

∞∑
k=0

∫
Sk

u(x)1−q

(1 + d(x, x0))n p′
dµ(x)

≤ 2n p′
∞∑

k=0

2−k n p′
{∫

Sk

u(x)1−σ dµ(x)
} q−1

σ−1
µ(Sk)

1

(σ−1
q−1 )

′

≤ 2n p′ C
∞∑

k=0

a
−p (q−1)
k 2

k n

−p′+ p (q−1)
s

+ 1

(σ−1
q−1 )

′


,

where we have used Hölder’s inequality with exponent σ−1
q−1

> 1. Observe
that

−p′ +
p (q − 1)

s
+

1(
σ−1
q−1

)′ = q − p′ < 0,

so, we can choose ε > 0 such that q − p′ + ε < 0. Take the sequence {ak}k

verifying a
−p (q−1)
k = 2k n ε. Then

∞∑
k=0

ap
k =

∞∑
k=0

2−
k n ε
q−1 < ∞

and ∫
X

u(x)1−q

(1 + d(x, x0))n p′
dµ(x) ≤ C

∞∑
k=0

2k n (q−p′+ε) < ∞.

In order to finish it is enough to note that α = 1−q
1−p′

and thus uα ∈ Dp.
When the space has finite diameter, as well as before, we use Theorem

3.1 with (Y, dν) = (X, dµ), F = Lp(v dµ), G = C. In this case, we do not
decompose the space, that is, we just take A0 = X and Ak = ∅ if k 6= 0. The
vector-valued inequality (6) is provided by the second part of Proposition
3.3. Then, there exists a weight u such that (5) holds. Furthermore, u can
be taken in such a way that ‖u−1‖Lσ−1(X,dµ) ≤ C. Since the measure of X is
finite and σ−1

q−1
> 1, we use Hölder’s inequality for this exponent to conclude∫

X
u(x)1−q dµ(x) ≤

{∫
X

u(x)1−σ dµ(x)
} q−1

σ−1
µ(X)

1

(σ−1
q−1 )

′

< ∞.

Observe that α = 1−q
1−p′

and we have uα ∈ Dp. 2
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4 Cauchy integral operator.

For a non-negative Borel measure µ in the complex plane C, the Cauchy
integral operator of a compactly supported function f ∈ Lp(µ), 1 ≤ p ≤ ∞,
is defined as

Cf(z) = Cµf(z) =

∫
C

f(ξ)

z − ξ
dµ(ξ), for µ-a.e. z ∈ C \ supp f.

Assume that µ is such that the truncated Cauchy integrals are uniformly
bounded in L2(µ). By [To1], µ will be in particular “1-dimensional”. In
that case, we know that the existence of the principal value for compactly
supported functions holds (see [To2]). Then, a bounded extension to the
whole L2(µ) arises from these facts. Thus, we have a metric space C with
the euclidean metric and µ a “1-dimensional” measure for which the Cauchy
integral operator is bounded in L2(µ). We observe that this operator falls into
the theory developed by [NTV2]. The Cauchy integral operator is defined for
compactly supported function in L2(µ) by means of its kernel K(z, ξ) = 1

z−ξ
,

that is clearly a “1-dimensional” Calderón-Zygmund kernel. Then we can
apply the results we have obtained to get vector-valued inequalities for C.
By Corollary 2.10, the following result is established.

Theorem 4.1 Under the above assumptions and for 1 < p, q < ∞ we have

(i) µ

{
z ∈ C :

{∑
j

|Cfj(z)|q
} 1

q
> λ

}
≤ C

λ

∫
C

{∑
j

|fj(z)|q
} 1

q
dµ(z).

(ii)

∥∥∥∥{∑
j

|Cfj|q
} 1

q

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥{∑
j

|fj|q
} 1

q

∥∥∥∥
Lp(µ)

.

In this framework, for 1 < p < ∞, the classes of weights will be

Dp =
{

0 ≤ w < ∞ µ-a.e. :

∫
C

w(z)1−p′ (1 + |z|)−p′ dµ(z) < ∞
}

Zp =
{

w > 0 µ-a.e. :

∫
C

w(z) (1 + |z|)−p dµ(z) < ∞
}

.

If the measure has bounded support, these classes admit the equivalent def-
inition given in Remark 3.2. In fact, several results will be easier when it
happens. For w ≥ 0 a.e. we denote w(A) =

∫
A

w(z) dµ(z), for any measur-
able set A ⊂ C.

We would like to apply to this operator the results about weights we have
proved. The point is that here we can obtain that these classes are sharp for
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this weak variant of the two-weight problem for the Cauchy integral operator:
suppose that for some fixed 0 < u, v < ∞ µ-a.e., the following two-weight
inequality holds∫

C
|Cf(z)|p u(z) dµ(z) ≤ C(u, v)

∫
C
|f(z)|p v(z) dµ(z), (7)

for any f ∈ Lp(v dµ). We are going to prove that, in this case, the weights
belong to the given classes.

If z = z1 + i z2, ξ = ξ1 + i ξ2 and f is a real-valued function, for µ-a.e.
z ∈ C \ supp f , we observe

Cf(z) = Re (Cf(z)) + i Im (Cf(z))

=

∫
C

z1 − ξ1

|z − ξ|2
f(ξ) dµ(ξ)− i

∫
C

z2 − ξ2

|z − ξ|2
f(ξ) dµ(ξ).

Lemma 4.2 Assume that (7) holds. Then for any z ∈ supp µ there exits a
radius rz > 0, such that, u(B(z, rz)) < ∞.

Proof. Fix z0 = z0
1 + i z0

2 ∈ supp µ, then µ(B(z0, r)) > 0 for all r > 0. For
z = z1 + i z2, we write |z|∞ = max{|z1|, |z2|} and

F1 = {z ∈ C : |z − z0|∞ = z1 − z0
1}, F2 = {z ∈ C : |z − z0|∞ = z2 − z0

2},
F3 = {z ∈ C : |z − z0|∞ = z0

1 − z1}, F4 = {z ∈ C : |z − z0|∞ = z0
2 − z2}.

Set Bk = B(z0, 2
−k) and Sk = Bk \ Bk+1. Then, there is some k0 ≥ 0 such

that Sk0 has positive measure (otherwise µ(B0) = 0). Assume for instance
that µ(Sk0

⋂
F1) > 0 (in the other cases we proceed in a similar way). Thus,

there will exist A ⊂ Sk0

⋂
F1 so that µ(A) > 0 and v(A) < ∞. For z ∈ Bk0+2

and ξ ∈ A, we have |z − ξ| ≤ 5 · 2−k0−2. Since ξ ∈ A ⊂ F1,

2−k0−1 ≤ |ξ − z0| ≤
√

2 max{|ξ1 − z0
1 |, |ξ2 − z0

2 |} =
√

2 (ξ1 − z0
1).

Besides, z1 − z0
1 ≥ −|z − z0| ≥ −2−k0−2 and

ξ1 − z1 = ξ1 − z0
1 + z0

1 − z1 ≥
1√
2
|ξ − z0| − 2−k0−2 ≥ (

√
2− 1) 2−k0−2.

Therefore, for z ∈ Bk0+2, ξ ∈ A

ξ1 − z1

|z − ξ|2
≥ (

√
2− 1) 2−k0−2

(5 · 2−k0−2)2
=

√
2− 1

25
2k0+2 = Ck0 .
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Then, if z ∈ Bk0+2,

−Re (C(χA)(z)) =

∫
A

ξ1 − z1

|z − ξ|2
dµ(ξ) ≥ Ck0 µ(A) = C > 0.

So, for the left hand side of (7) we have∫
C
|C(χA)(z)|p u(z) dµ(z) ≥

∫
Bk0+2

(−Re (C(χA)(z)))p u(z) dµ(z)

≥ Cp

∫
Bk0+2

u(z) dµ(z).

Use this estimate and (7), with f = χA ∈ Lp(v), to obtain u(Bk0+2) < ∞.
Then, by taking rz0 = 2−k0−2 the proof is finished. 2

Lemma 4.3 Assume that (7) holds, then there exists R > 0 such that∫
C\B(0,R)

u(z)

(1 + |z|)p
dµ(z) < ∞.

Proof. For j = 1, . . . , 4, set Ej by putting z0 = 0 in the definition of Fj.
Then, it might be enough to find some Rj > 0, for each j, such that,∫

Ej\B(0,Rj)

u(z)

(1 + |z|)p
dµ(z) < ∞,

We shall only do it for j = 1 and the other cases can be performed in the same
manner. We can assume that µ(E1) > 0 (otherwise there is nothing to prove).
If E

⋂
supp µ is a bounded set, the estimate is trivial by choosing R1 large

enough. In the other case, there exists R1 such that µ(B(0, R1/2)
⋂

E1) > 0.
Take A ⊂ B(0, R1/2)

⋂
E1 with µ(A) > 0 and v(A) < ∞. Then, for z ∈

E1 \B(0, R1) and ξ ∈ A, |z| > 2 |ξ| and |z − ξ| ≤ |z|+ |ξ| ≤ 3
2
|z|. Moreover,

since both points belong to E1,

|z| =
√

z2
1 + z2

2 ≤
√

2 max{|z1|, |z2|} =
√

2 z1, ξ1 = |ξ1| ≤ |ξ| < 1

2
|z|,

and hence

z1 − ξ1 ≥
1√
2
|z| − 1

2
|z| =

√
2− 1

2
|z|.

Then,
z1 − ξ1

|z − ξ|2
≥ 2 (

√
2− 1)

9

1

|z|
≥ 2 (

√
2− 1)

9

1

1 + |z|
.
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and for z ∈ E1 \B(0, R1),

Re (C(χA)(z)) =

∫
A

z1 − ξ1

|z − ξ|2
dµ(ξ) ≥ 2 (

√
2− 1)

9

1

1 + |z|
µ(A) =

C

1 + |z|
> 0.

Therefore, for the left hand side of (7) we get∫
C
|C(χA)(z)|p u(z) dµ(z) ≥

∫
E1\B(0,R1)

(Re (C(χA)(z)))p u(z) dµ(z)

≥ Cp

∫
E1\B(0,R1)

u(z)

(1 + |z|)p
dµ(z).

Since v(A) < ∞, (7) can be used. Then the right hand side of this inequality
is finite and the proof is finished. 2

Now, we are able to prove the following result, which, together with
Theorem 3.4, gives us necessary and sufficient conditions on the weights in
order to solve, for the Cauchy integral operator, the weak variant of the
two-weight problem we are dealing with.

Theorem 4.4 Take p, 1 < p < ∞. Given 0 < u < ∞ µ-a.e. (resp.
0 < v < ∞ µ-a.e.), if there exists some weight 0 < v < ∞ µ-a.e. (resp.
0 < u < ∞ µ-a.e.) such that (7) holds, then u ∈ Zp (resp. v ∈ Dp).

Proof. We shall use the previous lemmas. Fix 0 < u, v < ∞ µ-a.e. such that
(7) holds. By taking the radius R > 0 supplied by Lemma 4.3, we only have
to see what happens on the ball. Lemma 4.2 and a compactness argument
lead to ∫

B(0,R)

u(z)

(1 + |z|)p
dµ(z) < ∞.

Thus u ∈ Zp. In order to show that v ∈ Dp, we shall use a duality argument.
By decomposing the space in the dyadic level sets where 2j ≤ v(z) < 2j+1

and since 0 < v < ∞ a.e., we can prove that boundedly supported functions
in Lp(µ)

⋂
Lp(v−1)

⋂
L∞(µ) are dense in Lp(µ). This fact allows us to obtain

that (7) implies∫
C
|Cf(z)|p′ v(z)1−p′ dµ(z) ≤ C(u, v)

∫
C
|f(z)|p′ u(z)1−p′ dµ(z).

By taking into account what we have just proved, we obtain v1−p′ ∈ Zp′ , that
is, v ∈ Dp. 2
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Remark 4.5 In [GR] pp. 560–562, similar results are proved for classical
Calderón-Zygmund operators in Rn. There, necessary and sufficient con-
ditions on the weights are obtained for the Riesz transforms. Those ideas
are not valid here for general measures. If we had that µ(Ei) > 0, for all
i = 1, . . . , 4, the proof of the previous theorem would be simper by follow-
ing that method. However, in general, we are not guaranteed to have this
property. That is the reason why we have used Lemmas 4.2 and 4.3.
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