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Abstract

Let µ be a non-negative Borel measure on Rd. Fix a real number n, 0 < n ≤ d,
and assume that µ is “n-dimensional” in the following sense: the measure of a cube
is smaller than the length of its side raised to the n-th power. Calderón-Zygmund
operators, Hardy and BMO spaces, and some other topics in Harmonic Analysis
have been successfully handled in this setting recently, although the measure may
be non-doubling. The aim of this paper is to study two-weight norm inequalities for
radial fractional maximal functions associated to such µ. Namely, we characterize
those pairs of weights for which these maximal operators satisfy strong and weak
type inequalities. Sawyer and radial Muckenhoupt type conditions are respectively
the solutions for these problems. Furthermore, if we strengthen Muckenhoupt
conditions by adding a “power-bump” to the right-hand side weight or even by
introducing certain Orlicz norm, strong type inequalities can be achieved. As a
consequence, two-weight norm inequalities for fractional integrals associated to
µ are obtained. Finally, for the particular case of the Hardy-Littlewood radial
maximal function, we show how, in contrast with the classical situation, radial
Muckenhoupt weights may fail to satisfy a reverse Hölder’s inequality and also
strong type inequalities do not necessarily hold for them.

1 Introduction.

Let µ be a non-negative “n-dimensional” Borel measure on Rd, that is, a measure
satisfying

µ(Q) ≤ `(Q)n

for any cube Q ⊂ Rd with sides parallel to the coordinate axes, where `(Q) stands for
the side length of Q and n is a fixed real number such that 0 < n ≤ d. Throughout this
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paper, the only cubes we shall consider will be those with sides parallel to the coordinate
axes and we shall always denote the side length as above. Besides, for r > 0, r Q will
mean the cube with the same centre as Q and with `(r Q) = r `(Q). Moreover, Q(x, r)
will be the cube centered at x with side length r.

In the case of the Lebesgue measure, the translation invariance and the good be-
haviour with respect to dilations are strong tools for the development of Harmonic
Analysis. A natural extension is obtained with the concept of space of homogeneous
type, which is a quasi-metric space endowed with a doubling measure. The doubling
condition says that for every ball B, the measure of the 2-dilated ball, 2 B having the
same center and double radius, is controlled by the measure of B. In other words, the
measure behaves well under dilations. Nowadays, it seems that this doubling condition
can be removed and many results of Harmonic Analysis are still true without it. X.
Tolsa in [To1], [To2] managed to handle the Cauchy integral operator associated to a
“1-dimensional” measure in C which might be non-doubling. He characterized those
measures for which this operator is bounded in L2 and he also treated the existence of
principal values. On the other hand, F. Nazarov, S. Treil and A. Volberg in [NTV1],
[NTV2], introduce the non-homogeneous spaces which are metric spaces with an “n-
dimensional” measure. They deal with Calderón-Zygmund operators obtaining a T (1)
theorem and the expected weak and strong type inequalities. Again, there is no need of
any doubling condition. After these works, the new field of non-homogeneous Harmonic
Analysis has experienced a great development. For questions about H1 and BMO, the
reader is referred to [MMNO], [To3], [To4]. Vector-valued inequalities, their relation
with weights and the existence of principal values in weighted spaces are treated in
[GM1], [GM2]. Finally, in [OP], the authors study weighted norm inequalities for the
centered Hardy-Littlewood maximal function and Muckenhoupt weights.

In this line, the aim of the present work is to consider two-weight norm inequalities
for the following maximal operators: given 0 ≤ α < n, define the radial fractional
maximal functions

Mαf(x) = sup
Q3x

1

`(Q)n−α

∫
Q

|f(y)| dµ(y).

When α = 0, we are considering the Hardy-Littlewood radial maximal function M0 =
M. We shall investigate for which pairs of weights Mα satisfies a strong or a weak type
inequality. A weight w will be a locally integrable function which is positive almost
everywhere (with respect to the measure µ). For any measurable set E we shall write
w(E) =

∫
E

w dµ and Lp(w) = Lp(w dµ) for 0 < p < ∞. If 1 ≤ p ≤ ∞, then, as usual, p′

will be the exponent conjugate to p, that is, the one satisfying 1
p

+ 1
p′

= 1.
The plan of the paper is the following: Section 2 contains some immediate estimates

for Mα. In Section 3, we characterize those pairs of weights for which this maximal
operator satisfies a strong type inequality (see Theorem 3.1). Sawyer type conditions
are obtained by means of a discretization method based on ideas of [Saw] and the
recent work [Cru]. Let us mention that variants of this basic technique will be used all
throughout the paper. We devote Section 4 to show that radial Muckenhoupt classesAα

p,q

(see Definition 4.1) are the precise classes giving the two-weight weak type inequalities.
The main drawback of Sawyer type conditions is that they involve the operator itself.
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It would be better if one could prove strong estimates by using some modification of
the Muckenhoupt classes. We are interested in strengthening Aα

p,q to obtain sufficient
conditions for the strong type inequalities. In Theorem 5.1, we prove that this can
be done by introducing a “power-bump” on the right-hand side weight. Namely, if
1 < p < q < ∞, 0 ≤ α < n and the pair of weights (u, v) satisfies

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
) 1

q
( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) 1

r p′ ≤ C, (1)

for some r > 1 and for every cube Q, then Mα is bounded from Lp(v) to Lq(u). The
proof of this result relies on the ideas we use to prove Theorem 3.1. In fact, we can go
further because these techniques allow us even to relax condition (1) and still obtain
the same estimate for Mα. This can be achieved by replacing the term in v by certain
Orlicz norm localized in the cube Q (see Subsection 5.2 for the details). In Section 6,
we study some estimates for fractional integrals. For 0 < α < n and f ∈ L∞(µ) a
boundedly supported function, we define the fractional integral of order α as

Iαf(x) =

∫
Rd

f(y)

|x− y|n−α
dµ(y).

If we introduce in (1) another “power-bump” on the left-hand term, that is, if

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x)r dµ(x)
) 1

r q
( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) 1

r p′ ≤ C, (2)

holds for some r > 1 and for every Q, then Iα is bounded from Lp(v) to Lq(u) for
1 < p < q < ∞. The proof is a consequence of the corresponding result forMα and some
version of the inequality proved in [Wel] in the doubling case which relates fractional
integrals and radial fractional maximal functions (see Theorems 6.4 and 6.5). Finally,
Section 7 pays special attention to the Hardy-Littlewood radial maximal function M.
We are only interested in the case p = q. Proposition 7.1 collects some easy properties of
Muckenhoupt and Sawyer classes. We also study what happens when the weight is the
same in both sides of the inequalities, that is, when u = v. It is well known that in the
classical setting —Rd, with the Lebesgue measure— the Muckenhoupt condition admits
certain self-improvement. For 1 ≤ p < ∞, denote by Ap the classical Muckenhoupt
weight class and denote the classical Hardy-Littlewood maximal function by M . Observe
that the radial classes Ap (see Section 7) become Ap when µ is the Lebesgue measure
(in that case M = M). As we can see in [GR, Chapter IV], some of the most relevant
properties of Ap-weights are the following:

(a) If w ∈ Ap, 1 < p < ∞, then w satisfies a reverse Hölder’s inequality.

(b) If w ∈ Ap, 1 < p < ∞, then w1+ε ∈ Ap for some ε > 0.

(c) If w ∈ Ap, 1 < p < ∞, then w ∈ Ap−ε for some ε > 0.

(d) If w ∈ Ap, 1 < p < ∞, then M is bounded in Lp(w dx).
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So, it is natural to wonder whether these properties hold in this new context. As we
shall see in Theorem 7.2, Ap-weights may fail to satisfy (a), (b), (c) or (d).

To finish this section, let us say something about the development of these topics in
the classical setting. The classes of weights for which the Hardy-Littlewood maximal
function is bounded on Lp(w dx) were found by Muckenhoupt in [Muc] and further sys-
tematized in the paper [CF]. For a complete account of this topic see [GR, Chapter IV].
E.T. Sawyer in [Saw] characterizes those pairs of weights for which the Hardy-Littlewood
or the fractional maximal functions satisfy a two-weight strong type inequality. A new
proof of this result is given in [Cru], where one can find many references about the
evolution of this subject. On the other hand, sharp two-weight estimates for the Hardy-
Littlewood operator are obtained in [Pe1]. Concerning the classical version of condition
(1) and the analogues for the scale of Orlicz spaces (Theorem 5.3), it is worth mentioning
that in [Pe2] their sufficiency is proved for the boundedness of the fractional maximal
function and fractional integrals. In [SW], it is shown how the doubling version of
(2) implies two-weight inequalities for fractional integrals. For spaces of homogeneous
type see [PW] and for some recent unweighted estimates for fractional integrals on this
non-homogeneous setting see [GG].

2 Basic facts.

Let us define the centered maximal functions:

Mc
αf(x) = sup

r>0

1

rn−α

∫
Q(x,r)

|f(y)| dµ(y).

Then, it is easy to see that

Mc
αf(x) ≤Mαf(x) ≤ 2n−αMc

αf(x). (3)

We can obtain some inequalities for Mα acting on Lebesgue spaces. The proofs are
classical and we include them for the reader’s convenience.

Proposition 2.1 For 0 ≤ α < n, the maximal operator Mα satisfies:

µ{x ∈ Rd : Mαf(x) > λ} ≤ C
(1

λ

∫
Rd

|f(x)| dµ(x)
) n

n−α
,

‖Mαf‖L∞(µ) ≤ ‖f‖
L

n
α (µ)

,

where, in the case α = 0, we have to write ∞ instead of n
α
. Consequently, if 0 < α < n,

Mα : Lp(µ) −→ Lq(µ) for 1 < p < n
α

and 1
q

= 1
p
− α

n
. For α = 0, M is of strong type

(p, p), 1 < p ≤ ∞.

Proof. Take f ∈ L1(µ) and define Eλ = {x ∈ Rd : Mαf(x) > λ}. If x ∈ Eλ, by (3)
there exists rx > 0 such that

1

rn−α
x

∫
Q(x,rx)

|f(y)| dµ(y) > 2α−n λ.
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In particular, rx ≤ (2n−α λ−1 ‖f‖L1(µ))
1

n−α . So, Vitali covering lemma provides a pairwise
disjoint collection of cubes {Q(xj, rj)}j, with xj ∈ Eλ and rj = rxj

, for which

Eλ ⊂
⋃

x∈Eλ

Q(x, rx) ⊂
⋃
j

Q(xj, 3 rj).

Thus,

µ(Eλ) ≤
∑

j

µ(Q(xj, 3 rj)) ≤ 3n
∑

j

rn
j ≤ 3n

∑
j

( 1

2α−n λ

∫
Q(xj ,rj)

|f(y)| dµ(y)
) n

n−α

≤ 6n
(∑

j

1

λ

∫
Q(xj ,rj)

|f(y)| dµ(y)
) n

n−α ≤ 6n
(1

λ

∫
Rd

|f(y)| dµ(y)
) n

n−α
,

where we have used that n
n−α

≥ 1 and that the cubes Q(xj, rj) are pairwise disjoint.
This ends the proof of part (i). For (ii), when α = 0 the inequality is trivial since
Mf(x) ≤ ‖f‖L∞(µ). In the other case, 0 < α < n, consider Q 3 x. By using Hölder’s
inequality with exponent n

α
> 1, it follows that

1

`(Q)n−α

∫
Q

|f(y)| dµ(y) ≤ 1

`(Q)n−α
‖f‖

L
n
α (µ)

µ(Q)1/(n
α)

′

≤ ‖f‖
L

n
α (µ)

.

Taking the supremum over all cubes Q which contain x, Mαf(x) ≤ ‖f‖
L

n
α (µ)

. The

other estimates are obtained by means of Marcinkiewicz interpolation theorem between
(i) and (ii). 2

3 Strong type inequalities.

Sawyer [Saw] obtained necessary and sufficient conditions on a pair of weights in order
to have two-weight strong inequalities for the Hardy-Littlewood and the corresponding
fractional maximal functions. In the recent work [Cru], a new proof of this result is
given. We generalize this characterization for the radial operators we are concerned
with. We prove that Sawyer type conditions are the suitable ones for this problem.

Theorem 3.1 Consider p, q with 1 < p ≤ q < ∞; α, 0 ≤ α < n, and a pair of weights
(u, v). Then, the following statements are equivalent:

(i) For every cube Q,(∫
Q

(Mα(v1−p′ χQ)(x))q u(x) dµ(x)
) 1

q ≤ C
(∫

Q

v(x)1−p′ dµ(x)
) 1

p
< ∞.

(ii) For every f ∈ Lp(v),(∫
Rd

(Mαf(x))q u(x) dµ(x)
) 1

q ≤ C
(∫

Rd

|f(x)|p v(x) dµ(x)
) 1

p
.
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In order to prove this result, we need the following lemma.

Lemma 3.2 Consider 0 ≤ α < n and f ≥ 0 a locally integrable function. If for some
cube Q and for some t > 0 we have

1

`(Q)n−α

∫
Q

f(y) dµ(y) > t,

then there exists a dyadic cube P such that Q ⊂ 3 P and

1

`(P )n−α

∫
P

f(y) dµ(y) > 2α−n−d t.

Proof. Take k ∈ Z such that 2k−1 ≤ `(Q) < 2k. Then, there exist P1, . . . , PN , 1 ≤ N ≤
2d, dyadic cubes of the generation 2k which intersect Q. Since `(Pj) = 2k > `(Q), then
Q ⊂ 3 Pj, for every j. Besides, for at least one of them, say P , the following condition
holds ∫

P

f(y) dµ(y) >
t `(Q)n−α

2d
.

Indeed, if it were not true,∫
Q

f(y) dµ(y) ≤
N∑

j=1

∫
Pj

f(y) dµ(y) ≤
N∑

j=1

t `(Q)n−α

2d
≤ t `(Q)n−α,

contradicting our hypothesis. Then, it is clear that

1

`(P )n−α

∫
P

f(y) dµ(y) >
t `(Q)n−α

2d `(P )n−α
≥ 2α−n−d t.

2

Proof of Theorem 3.1. Write σ(x) = v(x)1−p′ . The fact that (ii) implies (i) is ob-
tained by taking f = σ χQ in (ii). The other implication is proved as follows. First,
without loss of generality, we can assume that f ∈ Lp(v) is a non-negative bounded func-
tion with compact support. This guarantees that Mαf is finite µ-almost everywhere.
Decompose Rd in the following way

Rd =
⋃
k∈Z

Ωk, with Ωk = {x ∈ Rd : 2k < Mαf(x) ≤ 2k+1}.

Then, for every k and every x ∈ Ωk there is a cube Qk
x containing x, such that

1

`(Qk
x)

n−α

∫
Qk

x

f(y) dµ(y) > 2k.

Thus, Lemma 3.2 provides a dyadic cube P k
x with Qk

x ⊂ 3 P k
x and

1

`(P k
x )n−α

∫
P k

x

f(y) dµ(y) > 2α−n−d 2k. (4)
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This estimate says that for every fixed k, the dyadic cubes P k
x have bounded size. Then,

there is a subcollection of maximal dyadic cubes (and so disjoint) {P k
j }j in such a way

that every Qk
x is contained in 3 P k

j for some j. As a consequence, Ωk ⊂
⋃

j 3 P k
j . Next,

decompose Ωk by using the sets:

Ek
1 = 3 P k

1

⋂
Ωk, E

k
2 =

(
3 P k

2 \ 3 P k
1

)⋂
Ωk, . . . , E

k
j =

(
3 P k

j \
j−1⋃
r=1

3 P k
r

)⋂
Ωk, . . . .

Then, we can write

Rd =
⋃
k∈Z

Ωk =
⋃
j,k

Ek
j

and these sets are pairwise disjoint. Fix a large integer K > 0, which will go to infinity
later, and let ΛK = {(j, k) ∈ N × Z : |k| ≤ K}. By using that Ek

j ⊂ Ωk and that the
cubes P k

j verify (4), we obtain

IK =

∫
⋃K

k=−K Ωk

(Mαf(x))q u(x) dµ(x) =
∑

(j,k)∈ΛK

∫
Ek

j

(Mαf(x))q u(x) dµ(x)

≤
∑

(j,k)∈ΛK

u(Ek
j ) (2k+1)

q ≤ C
∑

(j,k)∈ΛK

u(Ek
j )

(
1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y)

)q

= C
∑

(j,k)∈ΛK

u(Ek
j )

(
1

`(3 P k
j )n−α

∫
3 P k

j

σ(y) dµ(y)

)q(∫
P k

j
(f σ−1)(y) σ(y) dµ(y)∫

3 P k
j

σ(y) dµ(y)

)q

= C

∫
Y

TK(f σ−1)q dν,

where Y = N× Z, ν is the measure in Y given by

ν(j, k) = u(Ek
j )

(
1

`(3 P k
j )n−α

∫
3 P k

j

σ(y) dµ(y)

)q

,

and, for every measurable function h, the operator TK is defined by the expression

TKh(j, k) =

∫
P k

j
h(y) σ(y) dµ(y)∫

3 P k
j

σ(y) dµ(y)
χΛK

(j, k).

In this way, if we prove that TK : Lp(Rd, σ) −→ Lq(Y , ν) is bounded independently of
K, we shall obtain

IK ≤ C

∫
Y

TK(f σ−1)q dν ≤ C
(∫

Rd

(f σ−1)p σ dµ
) q

p
= C

(∫
Rd

fp v dµ
) q

p
.

The uniformity in K of this estimate and the monotone convergence theorem will lead
to the desired inequality. So, it remains to see that TK is uniformly bounded from
Lp(Rd, σ) to Lq(Y , ν). It is clear, that TK : L∞(Rd, σ) −→ L∞(Y , ν) with constant less
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or equal than 1. Marcinkiewicz interpolation theorem says that it is enough to prove
the uniform boundedness of the operators TK from L1(Rd, σ) to L

q
p
,∞(Y , ν) or, what is

the same,

ν{(j, k) ∈ Y : TKh(j, k) > λ} ≤ C
(1

λ

∫
Rd

|h(x)|σ(x) dµ(x)
) q

p
, for every λ > 0.

For this, let us fix h ≥ 0 bounded with compact support and put

Fλ = {(j, k) ∈ Y : TKh(j, k) > λ} = {(j, k) ∈ ΛK : TKh(j, k) > λ}.

Since Ek
j ⊂ 3 P k

j , we observe

ν(Fλ) =
∑

(j,k)∈Fλ

u(Ek
j )

(
1

`(3 P k
j )n−α

∫
3 P k

j

σ(y) dµ(y)

)q

=
∑

(j,k)∈Fλ

∫
Ek

j

(
1

`(3 P k
j )n−α

∫
3 P k

j

σ(y) dµ(y)

)q

u(x) dµ(x)

≤
∑

(j,k)∈Fλ

∫
Ek

j

(Mα(σ χ3 P k
j
)(x))q u(x) dµ(x).

The dyadic cubes of the collection {P k
j : (j, k) ∈ Fλ} have bounded size, just because

if (j, k) ∈ Fλ, then |k| ≤ K and for every k the cubes {P k
j }j do have bounded size.

This allows us to extract a maximal subcollection {Pi}i, in such a way that for every
(j, k) ∈ Fλ, P k

j ⊂ Pi for some i. The pairwise disjointness of the sets Ek
j and the fact

that Ek
j ⊂ 3 P k

j , lead to

ν(Fλ) ≤
∑

i

∑
P k

j ⊂Pi

∫
Ek

j

(Mα(σ χ3 P k
j
)(x))q u(x) dµ(x)

≤
∑

i

∫
3 Pi

(Mα(σ χ3 Pi
)(x))q u(x) dµ(x)

≤ C
∑

i

(∫
3 Pi

σ(x) dµ(x)
) q

p
.

Note that it has been precisely in the last inequality, where we have used the condition
(i) assumed on the weights. Since the cubes Pi were extracted from the collection
{P k

j : (j, k) ∈ Fλ}, for every i, there exists an index (j, k) ∈ Fλ with Pi = P k
j . In this

case, TKh(j, k) > λ, because (j, k) ∈ Fλ, and we have∫
3 Pi

σ(x) dµ(x) =

∫
3 P k

j

σ(x) dµ(x) <
1

λ

∫
P k

j

h(x) σ(x) dµ(x) =
1

λ

∫
Pi

h(x) σ(x) dµ(x).

By using that q
p
≥ 1 and that the cubes Pi are maximal and so pairwise disjoint, we

obtain

ν(Fλ) ≤ C
∑

i

(1

λ

∫
Pi

h(x) σ(x) dµ(x)
) q

p ≤ C
(∑

i

1

λ

∫
Pi

h(x) σ(x) dµ(x)
) q

p

≤ C
(1

λ

∫
Rd

h(x) σ(x) dµ(x)
) q

p
,
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where the constant C does not depend on K as we wanted. 2

4 Weak type inequalities.

Throughout this section we are concerned with the problem of finding for which pairs
of weights (u, v) does the maximal operator Mα satisfy a weak type inequality.

Definition 4.1 Let 1 ≤ p ≤ q < ∞ and 0 ≤ α < n. We shall say that the pair of
weights (u, v) ∈ Aα

p,q, if for every cube Q

(i)
1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q
(∫

Q

v(x)1−p′ dµ(x)
) 1

p′ ≤ C, when 1 < p < ∞.

(ii)
1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q ≤ C v(x) for µ-almost every x ∈ Q, when p = 1.

Observe that we are implicitly assuming that u, v1−p′ ∈ L1
loc(µ) and so u < ∞, v > 0

µ-a.e.. The next result provides an equivalent definition for the class of weights Aα
1,q.

Lemma 4.2 Take 1 ≤ q ≤ n
n−α

. Then, the pair of weights (u, v) ∈ Aα
1,q, if and only if,

for µ-almost every x ∈ Rd, (Mβu(x))
1
q ≤ C v(x) with β = n − (n − α) q. Indeed, both

conditions hold with the same constant.

In order to prove this lemma, we shall need the following remark: let Q be the countable
set consisting of those cubes with center in Qd and radius a positive rational number.
An easy continuity argument shows that in the definition of Mα it is enough to consider
just the cubes in Q.

Proof. Let (u, v) ∈ Aα
1,q with constant C0. Define

N(Q) =
{

x ∈ Q :
1

`(Q)n−α

(∫
Q

u(y) dµ(y)
) 1

q
> C0 v(x)

}
and N =

⋃
Q∈Q

N(Q).

Then, by definition µ(N(Q)) = 0 and, since Q is countable, µ(N) = 0. Let us set

F = {y ∈ Rd : (Mβu(y))
1
q > C0 v(y)}.

Use that n−β
q

= n−α and the remark above to prove that F ⊂ N . In this way, µ(F ) = 0,
or equivalently,

(Mβu(x))
1
q ≤ C0 v(x), for µ-almost every x ∈ Rd.

Finally, the other implication is trivial. 2

Now, we can prove a result characterizing those pairs of weights for which Mα

satisfies weak type inequalities.
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Theorem 4.3 Given p, q with 1 ≤ p ≤ q < ∞; α, 0 ≤ α < n, and a pair of weights
(u, v), the following statements are equivalent:

(i) (u, v) ∈ Aα
p,q.

(ii) Mα : Lp(v) −→ Lq,∞(u), that is, for every λ > 0

u{x ∈ Rd : Mαf(x) > λ} ≤ C

λq

(∫
Rd

|f(x)|p v(x) dµ(x)
) q

p
.

(iii) For every f ≥ 0 and every cube Q,( 1

`(Q)n−α

∫
Q

f(x) dµ(x)
)q

u(Q) ≤ C
(∫

Q

f(x)p v(x) dµ(x)
) q

p
.

Proof. The proof follows the ideas that, for the classical setting, can be found in [GR,
Chapter IV]. We shall follow the scheme:

(ii) =⇒ (iii) =⇒ (i) =⇒ (iii) =⇒ (ii).

(ii) =⇒ (iii) Take f ≥ 0 and a cube Q such that

f̃α,Q =
1

`(Q)n−α

∫
Q

f(x) dµ(x) > 0.

If 0 < λ < f̃α,Q and x ∈ Q, we have

λ < f̃α,Q =
1

`(Q)n−α

∫
Q

f(x) χQ(x) dµ(x) ≤Mα(f χQ)(x)

and so Q ⊂ {y ∈ Rd : Mα(f χQ)(y) > λ}. By using (ii),

u(Q) ≤ u{y ∈ Rd : Mα(f χQ)(y) > λ} ≤ C

λq

(∫
Q

f(x)p v(x) dµ(x)
) q

p
,

that is,

λq u(Q) ≤ C
(∫

Q

f(x)p v(x) dµ(x)
) q

p
, for 0 < λ < f̃α,Q.

Then,

(f̃α,Q)q u(Q) ≤ C
(∫

Q

f(x)p v(x) dµ(x)
) q

p
,

which is exactly (iii).
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(iii) =⇒ (i) Let f ≥ 0. For any S ⊂ Q, apply (iii) to f χS to obtain

( 1

`(Q)n−α

∫
S

f(x) dµ(x)
)q

u(Q) ≤ C
(∫

S

f(x)p v(x) dµ(x)
) q

p
. (5)

If we take f ≡ 1, this turns out to be( µ(S)

`(Q)n−α

)q

u(Q) ≤ C v(S)
q
p . (6)

As in [GR, pag. 388], from this inequality it follows that v > 0 µ-almost everywhere,
unless u = 0 µ-almost everywhere; and that u ∈ L1

loc(µ), unless v = ∞ µ-almost
everywhere. Once we have observed these properties about u and v, which allow us to
discard the trivial cases, we are going to show that (u, v) ∈ Aα

p,q. First, we do it for

1 < p < ∞. Take f such that f(x) = f(x)p v(x), that is, f(x) = v(x)1−p′ . Since a priori
we do not know f to be locally integrable, we fix Q and define

Sj =
{

x ∈ Q : v(x) >
1

j

}
, for j = 1, 2, . . . .

Then f is bounded in every Sj and
∫

Sj
v1−p′ dµ < ∞. Use (5) with S = Sj and the

function f chosen before to get( 1

`(Q)n−α

∫
Sj

v(x)1−p′ dµ(x)
)q

u(Q) ≤ C
(∫

Sj

v(x)1−p′ dµ(x)
) q

p
.

Each integral is finite and consequently:

1

`(Q)(n−α) q

(∫
Sj

v(x)1−p′ dµ(x)
)q− q

p
u(Q) ≤ C,

which can be rewritten as

1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q
(∫

Sj

v(x)1−p′ dµ(x)
) 1

p′ ≤ C.

Moreover, we have S1 ⊂ S2 ⊂ . . . and
⋃

j Sj = {x ∈ Q : v(x) > 0}. Taking limits as
j →∞ we get

1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q
(∫

{x∈Q:v(x)>0}
v(x)1−p′ dµ(x)

) 1
p′ ≤ C

and since v > 0 µ-almost everywhere, (u, v) ∈ Aα
p,q.

For the case p = 1, note that (6) can be written in the following manner:

1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q ≤ C
v(S)

µ(S)
, for every Q and every S ⊂ Q with µ(S) > 0.
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Fix Q and consider

a > ess inf
Q

v = inf
{
t > 0 : µ{x ∈ Q : v(x) < t} > 0

}
.

Take Sa = {x ∈ Q : v(x) < a} ⊂ Q. Then, µ(Sa) > 0 and

1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q ≤ C

µ(Sa)

∫
Sa

v(x) dµ(x) ≤ C

µ(Sa)
a µ(Sa) = C a.

Since this happens for every a > ess infQ v, we get

1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q ≤ C ess inf
Q

v ≤ C v(x) for µ-almost every x ∈ Q

and (u, v) ∈ Aα
1,q.

(i) =⇒ (iii) First, we do the case p = 1. For f ≥ 0 and for every Q we observe

( 1

`(Q)n−α

∫
Q

f(x) dµ(x)
)q

u(Q) =
(∫

Q

f(x)
1

`(Q)n−α

(∫
Q

u(y) dµ(y)
) 1

q
dµ(x)

)q

≤ C
(∫

Q

f(x) v(x) dµ(x)
)q

,

where in the last inequality we have used that (u, v) ∈ Aα
1,q. On the other hand, when

1 < p < ∞, by means of Hölder’s inequality we obtain( 1

`(Q)n−α

∫
Q

f(x) dµ(x)
)q

=
1

`(Q)(n−α) q

(∫
Q

f(x) v(x)
1
p v(x)−

1
p dµ(x)

)q

≤ 1

`(Q)(n−α) q

(∫
Q

f(x)p v(x) dµ(x)
) q

p
(∫

Q

v(x)1−p′ dµ(x)
) q

p′
.

Thus, since (u, v) ∈ Aα
p,q,( 1

`(Q)n−α

∫
Q

f(x) dµ(x)
)q

u(Q)

≤ 1

`(Q)(n−α) q

(∫
Q

f(x)p v(x) dµ(x)
) q

p
(∫

Q

v(x)1−p′ dµ(x)
) q

p′
∫

Q

u(x) dµ(x)

=
(∫

Q

f(x)p v(x) dµ(x)
) q

p

{
1

`(Q)n−α

(∫
Q

u(x) dµ(x)
) 1

q
(∫

Q

v(x)1−p′ dµ(x)
) 1

p′
}q

≤ C
(∫

Q

f(x)p v(x) dµ(x)
) q

p
,

and we have proved (iii).
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(iii) =⇒ (ii) Observe that it is enough to obtain the desired inequality for f ∈ Lp(v)

with f ≥ 0. On the other hand, if f ∈ Lp
loc(v) and u(Q) > 0,( 1

`(Q)n−α

∫
Q

f(x) dµ(x)
)q

u(Q) ≤ C
(∫

Q

f(x)p v(x) dµ(x)
) q

p
< ∞,

and thereby f ∈ L1
loc(µ). As a consequence, we can assume that f ∈ L1(µ), since by

defining fk = f χQ(0,k) then fk ↗ f as k → ∞ and if we get (ii) for each fk with
a constant independent of k, taking limits in k yields (ii) for f . Taking into account
all these remarks, we shall prove the desired inequality for f ≥ 0, f ∈ Lp(v)

⋂
L1(µ).

Define
Eλ = {x ∈ Rd : Mαf(x) > λ}.

If x ∈ Eλ, by (3), there will exist rx > 0 with

1

rn−α
x

∫
Q(x,rx)

f(y) dµ(y) > 2α−n λ.

In particular, rx ≤ (2n−α λ−1 ‖f‖L1(µ))
1

n−α . By Vitali covering lemma, there exists a
subcollection of pairwise disjoint cubes {Q(xj, rj)}j, with xj ∈ Eλ and rj = rxj

, for
which

Eλ ⊂
⋃

x∈Eλ

Q(x, rx) ⊂
⋃
j

Q(xj, 3 rj).

Recall that (iii) led to (5). By this estimate with Q = Q(xj, 3 rj) and S = Q(xj, rj) ⊂ Q
it is proved that

u(Eλ) ≤
∑

j

u(Q(xj, 3 rj))

≤ C
∑

j

( 1

`(Q(xj, 3 rj))n−α

∫
Q(xj ,rj)

f(x) dµ(x)
)−q (∫

Q(xj ,rj)

f(x)p v(x) dµ(x)
) q

p

= 3(n−α) q C
∑

j

( 1

rn−α
j

∫
Q(xj ,rj)

f(x) dµ(x)
)−q (∫

Q(xj ,rj)

f(x)p v(x) dµ(x)
) q

p

≤ 6(n−α) q C

λq

∑
j

(∫
Q(xj ,rj)

f(x)p v(x) dµ(x)
) q

p

≤ C

λq

(∑
j

∫
Q(xj ,rj)

f(x)p v(x) dµ(x)
) q

p ≤ C

λq

(∫
Rd

f(x)p v(x) dµ(x)
) q

p
,

where we have taken into account that q
p
≥ 1 and the fact that the cubes Q(xj, rj) are

pairwise disjoint. 2

5 Sufficient conditions for strong type inequalities.

In this section, we would like to impose certain conditions on the weights which pro-
vide strong type inequalities for Mα. We would like to replace (i) in Theorem 3.1 by
conditions which do not involve the operator but geometrical properties on the weights.
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5.1 Adding a “power-bump” to v.

In order to establish strong type inequalities, first we shall add a power r greater than
1 to the weight v in the following way: write condition Aα

p,q as

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
) 1

q
( 1

`(Q)n

∫
Q

v(x)1−p′ dµ(x)
) 1

p′ ≤ C.

Replacing the term in v by( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) 1

r p′
, r > 1,

we obtain a stronger condition —called “power-bump” condition— which will allows us
to get strong type inequalities. In the classical setting this was done by C. Pérez (see
[Pe2]).

Theorem 5.1 Let p, q with 1 < p < q < ∞ and α with 0 ≤ α < n. Let (u, v) be a pair
of weights for which there exists r > 1 such that, for every cube Q,

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
) 1

q
( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) 1

r p′ ≤ C. (7)

Then, for every f ∈ Lp(v) it follows that(∫
Rd

(Mαf(x))q u(x) dµ(x)
) 1

q ≤ C
(∫

Rd

|f(x)|p v(x) dµ(x)
) 1

p
.

Note that by putting r = 1 in (7), we have Aα
p,q. In addition, if a pair of weights

(u, v) satisfies this condition with r > 1, then (u, v) ∈ Aα
p,q, or what is equivalent,

Mα : Lp(v) −→ Lq,∞(u). This result says that, by assuming (7), which is stronger than
Aα

p,q, the operator Mα turns out to be of strong type.

Proof. Initially, we are going to follow, with a slight modification, the steps of the
proof of Theorem 3.1. Assume that 0 ≤ f ∈ Lp(v) is bounded with compact support.
Put σ(x) = v(x)1−p′ . Take a > 2n and consider the disjoint partition of Rd given by the
sets

Rd =
⋃
k∈Z

Ωk, with Ωk = {x ∈ Rd : ak < Mαf(x) ≤ ak+1}.

Just like we did before, for every k there exists a collection of pairwise disjoint dyadic
cubes {P k

j }j∈N such that, Ωk ⊂
⋃

j 3 P k
j and

1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y) > 2α−n−d ak. (8)

These P k
j are indeed the maximal cubes for which (8) holds. Thus, writing P̃ k

j for the

dyadic cube with `(P̃ k
j ) = 2 `(P k

j ) and P k
j ⊂ P̃ k

j (the so-called “father” of P k
j ),

1

`(P̃ k
j )n−α

∫
P̃ k

j

f(y) dµ(y) ≤ 2α−n−d ak.
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and hence,

1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y) ≤ 2n 1

`(P̃ k
j )n−α

∫
P̃ k

j

f(y) dµ(y) ≤ 2α−d ak. (9)

Use that a > 1, (8) and the maximality of the cubes {P k
j }j to obtain that for every i

there exists j = j(i, k) in such a way that P k+1
i ⊂ P k

j . If these cubes were equal, by (9)

2α−n−d ak+1 <
1

`(P k+1
i )n−α

∫
P k+1

i

f(y) dµ(y) =
1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y) ≤ 2α−d ak,

and we would have a < 2n, contradicting the previous assumption. This proves that
P k+1

i ( P k
j . Thereby, there are no repeated cubes in the collection {P k

j : j ∈ N, k ∈ Z},
since for a fixed k the cubes {P k

j }j∈N are pairwise disjoint and they are strictly nested
if we let k change. Once we have done this observation, we follow again the scheme of
the proof of Theorem 3.1. In the same way, we define the pairwise disjoint sets Ek

j . Let
K > 0 be a large integer and ΛK = {(j, k) ∈ N× Z : |k| ≤ K}. Then,

IK ≤ C
∑

(j,k)∈ΛK

u(Ek
j )

(
1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y)

)q

= C

∫
Y

TK(f σ−1)q dν, (10)

where in this case Y = N× Z, ν is a measure in Y given by

ν(j, k) = `(P k
j )q α u(Ek

j )

(
1

`(3 P k
j )n

∫
3 P k

j

σ(y)r dµ(y)

) q
r

,

and the operator TK is defined as

TKh(j, k) =

1
`(P k

j )n

∫
P k

j
h(y) σ(y) dµ(y)(

1
`(3 P k

j )n

∫
3 P k

j
σ(y)r dµ(y)

) 1
r

χΛK
(j, k)

for any measurable function h. We want to show that TK : Lp(Rd, σ) −→ Lq(Y , ν)
independently of K. Note that

|TKh(j, k)| ≤

(
1

`(P k
j )n

∫
P k

j
σ(y)r dµ(y)

) 1
r

(
1

`(3 P k
j )n

∫
3 P k

j
σ(y)r dµ(y)

) 1
r

‖h‖L∞(σ) = 3
n
r ‖h‖L∞(σ).

and therefore TK : L∞(Rd, σ) −→ L∞(Y , ν) uniformly on K. Then, by Marcinkiewicz

interpolation theorem, it is enough to prove that TK : L1(Rd, σ) −→ L
q
p
,∞(Y , ν). Let us

fix h ≥ 0 a bounded function with compact support and define

Fλ = {(j, k) ∈ Y : TKh(j, k) > λ} = {(j, k) ∈ ΛK : TKh(j, k) > λ}.
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We know that Ek
j ⊂ 3 P k

j and so

ν(Fλ) ≤
1

3q α

∑
(j,k)∈Fλ

`(3 P k
j )q α u(3 P k

j )

(
1

`(3 P k
j )n

∫
3 P k

j

σ(y)r dµ(y)

) q
r p

+ q
r p′

Raising (7) to the q-th power, for every cube Q,

`(Q)q α− q n
p u(Q)

( 1

`(Q)n

∫
Q

σ(x)r dµ(x)
) q

r p′ ≤ Cq,

which together with the previous estimate gives

ν(Fλ) ≤ C
∑

(j,k)∈Fλ

`(3 P k
j )

q n
p

(
1

`(3 P k
j )n

∫
3 P k

j

σr dµ

) q
r p

≤ C
∑

(j,k)∈Fλ

`(3 P k
j )

q n
p

(
1

`(3 P k
j )n

∫
3 P k

j

σr dµ

) 1
r

( q
p
−1)(

1

λ `(P k
j )n

∫
P k

j

hσ dµ

)
.

In the last inequality we have used that(
1

`(3 P k
j )n

∫
3 P k

j

σ(y)r dµ(y)

) 1
r

<
1

λ

1

`(P k
j )n

∫
P k

j

h(y) σ(y) dµ(y),

for (j, k) ∈ Fλ. We saw in the proof of Theorem 3.1 that the dyadic cubes {P k
j : (j, k) ∈

Fλ} have bounded size and consequently, we can extract a maximal subcollection {Pi}i.
Thus,

ν(Fλ) ≤ C
∑

i

∑
P k

j ⊂Pi

`(3 P k
j )

n
r′ ( q

p
−1)

(∫
3 P k

j

σr dµ

) 1
r

( q
p
−1)(

1

λ

∫
P k

j

hσ dµ

)

≤ C
∑

i

(∫
3 Pi

σr dµ

) 1
r

( q
p
−1) ∞∑

m=0

∑
P k

j ⊂ Pi

`(P k
j ) = 2−m `(Pi)

`(3 P k
j )

n
r′ ( q

p
−1)

(
1

λ

∫
P k

j

hσ dµ

)
.

Taking into account that there are no repeated cubes in the collection {P k
j : j ∈ N, k ∈

Z}, we obtain
∞∑

m=0

∑
P k

j ⊂ Pi

`(P k
j ) = 2−m `(Pi)

`(3 P k
j )

n
r′ ( q

p
−1)

(
1

λ

∫
P k

j

hσ dµ

)

= C `(Pi)
n
r′ ( q

p
−1)

∞∑
m=0

2−m n
r′ ( q

p
−1)

∑
P k

j ⊂ Pi

`(P k
j ) = 2−m `(Pi)

(
1

λ

∫
P k

j

hσ dµ

)

≤ C `(Pi)
n
r′ ( q

p
−1)

(
1

λ

∫
Pi

hσ dµ

) ∞∑
m=0

2−m n
r′ ( q

p
−1)

≤ C `(Pi)
n
r′ ( q

p
−1)

(
1

λ

∫
Pi

hσ dµ

)
,
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since 1 < p < q < ∞. Collecting all these estimates,

ν(Fλ) ≤ C
∑

i

(∫
3 Pi

σr dµ

) 1
r

( q
p
−1)

`(Pi)
n
r′ ( q

p
−1)

(
1

λ

∫
Pi

hσ dµ

)

= C
∑

i

`(Pi)
n ( q

p
−1)

(
1

`(3 Pi)n

∫
3 Pi

σr dµ

) 1
r

( q
p
−1)(

1

λ

∫
Pi

hσ dµ

)
.

The cubes {Pi}i are a subcollection of {P k
j : (j, k) ∈ Fλ}, so for every i, there exists

some (j, k) ∈ Fλ such that Pi = P k
j and thus,(

1

`(3 Pi)n

∫
3 Pi

σr dµ

) 1
r

=

(
1

`(3 P k
j )n

∫
3 P k

j

σr dµ

) 1
r

<
1

λ

1

`(P k
j )n

∫
P k

j

hσ dµ

=
1

λ

1

`(Pi)n

∫
Pi

hσ dµ.

Since 1 < p < q < ∞ and the cubes {Pi}i are pairwise disjoint because of their
maximality, we conclude that

ν(Fλ) ≤ C
∑

i

`(Pi)
n ( q

p
−1)

(
1

λ

1

`(Pi)n

∫
Pi

hσ dµ

) q
p
−1(

1

λ

∫
Pi

hσ dµ

)

= C
∑

i

(
1

λ

∫
Pi

hσ dµ

) q
p

≤ C

(∑
i

1

λ

∫
Pi

hσ dµ

) q
p

≤ C

(
1

λ

∫
Rd

hσ dµ

) q
p

,

where the constant C does not depend on K. 2

5.2 Orlicz spaces.

As we have shown in Theorem 4.3, the necessary and sufficient condition for the maximal
operator Mα to be bounded between Lp(v) and Lq,∞(u), with 1 ≤ p ≤ q < ∞ and
0 ≤ α < n, is that the pair of weights (u, v) belongs to the class Aα

p,q. By adding
a “power-bump” to v, in Theorem 5.1 we have proved that (7) is sufficient for the
corresponding strong inequality. By writing this last condition in the following way

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
) 1

q
( 1

`(Q)n

∫
Q

(
v(x)−

1
p
)r p′

dµ(x)
) 1

r p′ ≤ C,

we are going to see later that the term in v can be read as
∥∥v− 1

p

∥∥
Φ,Q

, where ‖ · ‖Φ,Q

stands for certain norm localized in Q in the Orlicz space given by the Young function
Φ(t) = tr p′ . Our aim is to obtain a similar result for more general Orlicz spaces.

We next recall some definitions and basic facts related with Orlicz spaces. For
a complete development of this topic the reader is referred to [RR], [BS]. Let Φ :
[0,∞) −→ [0,∞) be a Young function, that is a continuous, convex, increasing function
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with Φ(0) = 0 and such that Φ(t) −→ ∞ as t → ∞. By definition, the Orlicz space
LΦ = LΦ(Rd, µ) consists of all measurable functions f such that∫

Rd

Φ

(
|f(x)|

λ

)
dµ(x) < ∞, for some λ > 0.

The space LΦ is a Banach function space if it is endowed with the Luxemburg norm

‖f‖Φ = ‖f‖LΦ
= inf

{
λ > 0 :

∫
Rd

Φ

(
|f(x)|

λ

)
dµ(x) ≤ 1

}
.

Each Young function Φ has associated to it a complementary Young function Φ̄ which
satisfies

t ≤ Φ−1(t) Φ̄−1(t) ≤ 2 t, for all t > 0.

For example, if Φ(t) = tp for 1 < p < ∞, then LΦ = Lp(µ) and Φ̄(t) = tp
′
. Another

classical example is given by Φ(t) = t log+ t. In this case LΦ is the Zygmund space
L log L. The complementary function Φ̄(t) = t for 0 ≤ t ≤ 1 and Φ̄(t) = exp(t − 1)
otherwise gives the Zygmund space Lexp.

Let us define the following localized version of the Orlicz norm: for every Q,

‖f‖Φ,Q = inf
{

λ > 0 :
1

`(Q)n

∫
Q

Φ

(
|f(x)|

λ

)
dµ(x) ≤ 1

}
.

It is an easy exercise, which follows the ideas of [RR, Th. 3, pp. 54–55], to check that
‖ · ‖Φ,Q provides a norm over LΦ(Q): the space of all measurable functions on Q such
that there exists λ > 0 for which

1

`(Q)n

∫
Q

Φ

(
|f(x)|

λ

)
dµ(x) < ∞.

Furthermore, just as in [RR, Prop. 1, p. 58], the following generalized Hölder’s inequal-
ity associated with these norms can be proved:

1

`(Q)n

∫
Q

|f(x) g(x)| dµ(x) ≤ 2 ‖f‖Φ,Q ‖g‖Φ̄,Q. (11)

Next we define a class of Young functions which will be used in the main theorem of
this section.

Definition 5.2 For 1 < p < ∞, a Young function Φ ∈ Bp, if∫ ∞

c

Φ(t)

tp
dt

t
< ∞, for some c > 0.

It is easy to see that this condition can be also expressed in terms of Φ̄. Namely, if Φ
satisfies the doubling property Φ(2 t) ≤ C Φ(t) —this condition can be also found in the
literature as the ∆2 condition, see [BS], [RR]—, then∫ ∞

c

Φ(t)

tp
dt

t
≈
∫ ∞

c

(
tp
′

Φ̄(t)

)p−1
dt

t
,

for c > 0. Once we have introduced some properties of Orlicz spaces we can prove strong
inequalities for Mα. For the classical setting the reader is referred to [Pe2].
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Theorem 5.3 Let p, q with 1 < p < q < ∞ and α with 0 ≤ α < n. Let (u, v) be a pair
of weights such that for every cube Q

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
) 1

q ∥∥v− 1
p

∥∥
Φ,Q

≤ C, (12)

where Φ is a Young function whose complementary function Φ̄ ∈ Bp. Then, if f ∈ Lp(v)(∫
Rd

(Mαf(x))q u(x) dµ(x)
) 1

q ≤ C
(∫

Rd

|f(x)|p v(x) dµ(x)
) 1

p
.

Remark 5.4 Theorem 5.1 is a consequence of this last result. Indeed, if we take Φ(t) =
tr p′ with r > 1, then

∥∥v− 1
p

∥∥
Φ,Q

= inf
{

λ > 0 :
1

`(Q)n

∫
Q

(
v−

1
p

λ

)r p′

dµ ≤ 1
}

=
( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′
,

and (12) becomes (7). Furthermore, since r > 1, and Φ̄ = t(r p′)′ satisfies the doubling
property, we obtain that Φ̄ ∈ Bp:∫ ∞

1

(
tp
′

Φ(t)

)p−1
dt

t
=

∫ ∞

1

(
tp
′

tr p′

)p−1
dt

t
=

∫ ∞

1

1

t(r−1) p

dt

t
< ∞.

We have given the proof of the “power-bump” Theorem first because it makes clear how
to proceed in the case of Orlicz spaces and it is easier than the one for Orlicz spaces
which we are going to give below.

Some other examples which actually relax condition (7) are: Φ(t) = tp
′
(log(1 +

t))p′−1+β or Φ(t) = tp
′
(log(1 + t))p′−1 (log log(e + t))p′−1+β, for 1 < p < ∞, β > 0. It

can be proved that their complementary functions belong to Bp and so we can apply
the previous Theorem. Note that condition (12) with any of these functions is strictly
weaker than (7).

Proof of Theorem 5.3. We proceed like in the proof of Theorem 5.1 just up to (10)
and after this point we continue as follows:

IK ≤ C
∑

(j,k)∈ΛK

u(Ek
j )

(
1

`(P k
j )n−α

∫
P k

j

f(y) dµ(y)

)q

≤ C
∑

(j,k)∈ΛK

`(P k
j )q α u(3 P k

j )

(
1

`(P k
j )n

∫
P k

j

f(y) v(y)
1
p v(y)−

1
p dµ(y)

)q

≤ C
∑

(j,k)∈ΛK

`(P k
j )q α u(3 P k

j )
∥∥v− 1

p

∥∥q

Φ,P k
j

∥∥f v
1
p

∥∥q

Φ̄,P k
j
,

where we have used (11) and the fact that Ek
j ⊂ 3 P k

j . Let us see that for any function
h ∈ LΦ(3 Q), ‖h‖Φ,Q ≤ 3n ‖h‖Φ,3 Q. For this, take λ > ‖h‖Φ,3 Q. By the properties of Φ,

1

`(Q)n

∫
Q

Φ

(
|h|
3n λ

)
dµ ≤ 1

`(3 Q)n

∫
3 Q

Φ

(
|h|
λ

)
dµ ≤ 1
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and therefore, ‖h‖Φ,Q ≤ 3n λ. Since this happens for every λ > ‖h‖Φ,3 Q, then ‖h‖Φ,Q ≤
3n ‖h‖Φ,3 Q. By using this inequality, we obtain

IK ≤ C
∑

(j,k)∈ΛK

`(3 P k
j )q α u(3 P k

j )
∥∥v− 1

p

∥∥q

Φ,3 P k
j

∥∥f v
1
p

∥∥q

Φ̄,P k
j
.

Raising (12) to the q-th power, we get

`(Q)α q−n q
p u(Q)

∥∥v− 1
p

∥∥q

Φ,Q
≤ Cq, for every cube Q.

Thus, we can write

IK ≤ C
∑

(j,k)∈ΛK

`(3 P k
j )

n q
p

∥∥f v
1
p

∥∥q

Φ̄,P k
j

= C

∫
Y

TK

(
f v

1
p
)q

dν,

where we have put Y = N× Z, ν is a measure in Y defined by ν(j, k) = `(3 P k
j )

n q
p and

TK is an operator given by the expression

TKh(j, k) = ‖h‖Φ̄,P k
j

χΛK
(j, k).

If we prove that TK is uniformly bounded from Lp(Rd, µ) to Lq(Y , ν), we get the desired
inequality by doing K → ∞. Let us see how to prove that TK is a bounded operator.
Fix h a bounded function with compact support and define

Fλ = {(j, k) ∈ Y : TKh(j, k) > λ} = {(j, k) ∈ ΛK : ‖h‖Φ̄,P k
j

> λ}.

Without loss of generality we can suppose that Φ̄ is normalized so that Φ̄(1) = 1. We
split h as follows

h(x) = h(x) χ{x:|h(x)|> λ
2
}(x) + h(x) χ{x:|h(x)|≤λ

2
}(x) = h1(x) + h2(x).

Then,

1

`(Q)n

∫
Q

Φ̄

(
|h2(x)|

λ
2

)
dµ(x) ≤ 1

`(Q)n

∫
Q

Φ̄(1) dµ(x) =
µ(Q)

`(Q)n
≤ 1

and for every Q, ‖h2‖Φ̄,Q ≤ λ
2
. If Q is such that ‖h‖Φ̄,Q > λ, by using that ‖ · ‖Φ̄,Q

defines a norm, we observe

λ < ‖h‖Φ̄,Q = ‖h1 + h2‖Φ̄,Q ≤ ‖h1‖Φ̄,Q + ‖h2‖Φ̄,Q ≤ ‖h1‖Φ̄,Q +
λ

2

and ‖h1‖Φ̄,Q > λ
2
. Thus,

Fλ = {(j, k) ∈ ΛK : ‖h‖Φ̄,P k
j

> λ} ⊂
{

(j, k) ∈ ΛK : ‖h1‖Φ̄,P k
j

>
λ

2

}
= F̃λ.
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If (j, k) ∈ F̃λ, then

1

`(P k
j )n

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ > 1, and so `(P k

j )n <

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ.

In this way,

ν(Fλ) ≤ ν(F̃λ) =
∑

(j,k)∈F̃λ

`(3 P k
j )

n q
p ≤ 3

n q
p

∑
(j,k)∈F̃λ

`(P k
j )n ( q

p
−1)

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ.

The dyadic cubes {P k
j : (j, k) ∈ F̃λ} have bounded size (because |k| ≤ K) and we can

extract a subcollection {Pi} which is maximal with respect to the inclusion. Then,

ν(Fλ) ≤ C
∑

i

∑
P k

j ⊂Pi

`(P k
j )n ( q

p
−1)

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ

= C
∑

i

∞∑
m=0

∑
P k

j ⊂ Pi

`(P k
j ) = 2−m `(Pi)

`(P k
j )n ( q

p
−1)

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ

= C
∑

i

`(Pi)
n ( q

p
−1)

∞∑
m=0

2−m n ( q
p
−1)

∑
P k

j ⊂ Pi

`(P k
j ) = 2−m `(Pi)

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ

≤ C
∑

i

`(Pi)
n ( q

p
−1)
(∫

Pi

Φ̄

(
2 |h1|

λ

)
dµ
) ∞∑

m=0

2−m n ( q
p
−1)

≤ C
∑

i

`(Pi)
n ( q

p
−1)

∫
Pi

Φ̄

(
2 |h1|

λ

)
dµ,

where in the next to last inequality we have taken into account that there are no repeated
cubes in {P k

j : (j, k) ∈ N×Z} (see the proof of Theorem 5.1), whereas the last one holds

because 1 < p < q < ∞. Besides, for every i, there exists (j, k) ∈ F̃λ such that Pi = P k
j

and consequently

`(Pi)
n = `(P k

j )n <

∫
P k

j

Φ̄

(
2 |h1|

λ

)
dµ =

∫
Pi

Φ̄

(
2 |h1|

λ

)
dµ.

By this, it follows that

ν(Fλ) ≤ C
∑

i

(∫
Pi

Φ̄

(
2 |h1|

λ

)
dµ
) q

p
−1
∫

Pi

Φ̄

(
2 |h1|

λ

)
dµ

= C
∑

i

(∫
Pi

Φ̄

(
2 |h1|

λ

)
dµ
) q

p ≤ C
(∑

i

∫
Pi

Φ̄

(
2 |h1|

λ

)
dµ
) q

p

≤ C
(∫

Rd

Φ̄

(
2 |h1|

λ

)
dµ
) q

p
= C

(∫
{x∈Rd:|h(x)|> λ

2
}
Φ̄

(
2 |h|
λ

)
dµ
) q

p
.
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Use again that q
p

> 1 to obtain∫
Y

TKhq dν = q

∫ ∞

0

λq ν{(j, k) ∈ Y : TKh(j, k) > λ} dλ

λ
= q

∫ ∞

0

λq ν(Fλ)
dλ

λ

≤ C
∑
k∈Z

∫ 2k+1

2k

(
λp

∫
{x∈Rd:|h(x)|> λ

2
}
Φ̄

(
2 |h|
λ

)
dµ
) q

p dλ

λ

≤ C
∑
k∈Z

(
(2k+1)p

∫
{x∈Rd:|h(x)|> 2k

2
}
Φ̄

(
2 |h|
2k

)
dµ
) q

p

≤ C
(∑

k∈Z

(2k+1)p

∫
{x∈Rd:|h(x)|> 2k

2
}
Φ̄

(
2 |h|
2k

)
dµ
) q

p
.

Inside the parenthesis we can recover the integral in the following way∑
k∈Z

(2k+1)p

∫
{x∈Rd:|h(x)|> 2k

2
}
Φ̄

(
2 |h(x)|

2k

)
dµ(x)

=
∑
k∈Z

∫ 2k+1

2k

(2k+1)p

∫
{x∈Rd:|h(x)|> 2k

2
}
Φ̄

(
2 |h(x)|

2k

)
dµ(x)

dλ

2k

≤
∫ ∞

0

(2 λ)p

∫
{x∈Rd:|h(x)|> λ

4
}
Φ̄

(
4 |h(x)|

λ

)
dµ(x)

2 dλ

λ

= 2p+1

∫
Rd

∫ 4 |h(x)|

0

λp Φ̄

(
4 |h(x)|

λ

)
dλ

λ
dµ(x)

= 2p+1

∫
Rd

∫ ∞

1

(
4 |h(x)|

s

)p

Φ̄(s)
ds

s
dµ(x)

= 23 p+1
(∫

Rd

|h(x)|p dµ(x)
)(∫ ∞

1

Φ̄(s)

sp

ds

s

)
≤ C

∫
Rd

|h(x)|p dµ(x).

Note that in the last inequality we have used that Φ̄ ∈ Bp. In short we have just proved
that ∫

Y
TKhq dν ≤

(∫
Rd

|h(x)|p dµ(x)
) q

p
.

2

6 Fractional integrals.

Let 0 < α < n. For f ∈ L∞(µ) a boundedly supported function we define the fractional
integral of order α as

Iαf(x) =

∫
Rd

f(y)

|x− y|n−α
dµ(y).
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To see that this operator is well defined, we need to study the convergence of the
integral. Since the support of f is bounded, there is no problem of integrability at
infinity. Although the kernel of the operator is singular at the diagonal x = y, we have
the following∫

|x−y|≤1

|f(y)|
|x− y|n−α

dµ(y) ≤ ‖f‖L∞(µ)

∞∑
k=0

∫
2−k−1≤|x−y|<2−k

1

|x− y|n−α
dµ(y)

≤ ‖f‖L∞(µ)

∞∑
k=0

µ(Q(x, 2−k+1))

2(−k−1) (n−α)

≤ 22 n−α ‖f‖L∞(µ)

∞∑
k=0

2−k α < ∞,

and hence the integral which defines Iα is absolutely convergent.

Theorem 6.1 (Hedberg’s inequality) Let 0 < α < n and f be a bounded function
with compact support. Then, for 1 ≤ p < n

α
, the following inequality holds

|Iαf(x)| ≤ C ‖f‖
p α
n

Lp(µ)Mf(x)1− p α
n .

This result was proved by Hedberg in the classical setting (see [Hed]).

Proof. Let s > 0. Then,

|Iαf(x)| ≤
∫
|x−y|<s

|f(y)|
|x− y|n−α

dµ(y) +

∫
|x−y|≥s

|f(y)|
|x− y|n−α

dµ(y) = I + II.

For the first term we have

I =
∞∑

k=0

∫
2−k−1 s≤|x−y|<2−k s

|f(y)|
|x− y|n−α

dµ(y)

≤ 22 n−α sα

∞∑
k=0

2−k α 1

(2−k+1 s)n

∫
Q(x,2−k+1 s)

|f(y)| dµ(y)

= C sαMf(x).

On the other hand, if p = 1, then

II =

∫
|x−y|≥s

|f(y)|
|x− y|n−α

dµ(y) ≤ 1

sn−α

∫
|x−y|≥s

|f(y)| dµ(y) ≤ s−(n−α) ‖f‖L1(µ).

For 1 < p < n
α
, put β = p′ (n− α)− n. Then, β > 0 and we can conclude

II =

∫
|x−y|≥s

|f(y)|
|x− y|n−α

dµ(y) ≤ ‖f‖Lp(µ)

(∫
|x−y|≥s

dµ(y)

|x− y|p′ (n−α)

) 1
p′

.
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Besides,∫
|x−y|≥s

dµ(y)

|x− y|p′ (n−α)
=

∞∑
k=0

∫
2k s≤|x−y|<2k+1 s

dµ(y)

|x− y|n+β
≤

∞∑
k=0

µ(Q(x, 2k+2 s))

(2k s)n+β

≤ C s−β,

and therefore
II ≤ C s

− β
p′ ‖f‖Lp(µ) = C s−(n

p
−α) ‖f‖Lp(µ).

Observe that by putting p = 1 and C = 1, this inequality becomes the one obtained for
the case p = 1. Thus, for 1 ≤ p < n

α
, all these estimates provide

|Iαf(x)| ≤ I + II ≤ C
(
sαMf(x) + s−(n

p
−α) ‖f‖Lp(µ)

)
, for any s > 0.

Minimizing this expression in the variable s we get the desired inequality. 2

With the previous estimate we can obtain some inequalities for Iα.

Proposition 6.2 Let 0 < α < n.

(i) If 1 < p < n
α

and 1
q

= 1
p
− α

n
, then Iα : Lp(µ) −→ Lq(µ).

(ii) If 1
q

= 1− α
n
, then Iα : L1(µ) −→ Lq,∞(µ).

Remark 6.3 Let 0 < α < n, x ∈ Rd and Q 3 x. Then, for every y ∈ Q we have
|x− y| ≤

√
d `(Q) and so

1

`(Q)n−α

∫
Q

|f(y)| dµ(y) ≤ d
n−α

2

∫
Q

1

|x− y|n−α
|f(y)| dµ(y) ≤ d

n−α
2 Iα(|f |)(x).

By taking the supremum over all cubes Q containing x, we obtain that

Mαf(x) ≤ d
n−α

2 Iα(|f |)(x).

From this inequality and the previous result, some of the estimates in Proposition 2.1
can be obtained in a different way.

In [Mat] there is another estimate involving Iα and Mα. Namely, the author obtains a
good-λ inequality in terms of Hausdorff measure, which states that Iα can be controlled
by Mα. Estimates between Lipschitz and BMO spaces and further results for Iα can
also be found in [GG].

Proof of Proposition 6.2. For (i), observe that Hedberg’s inequality implies that(∫
Rd

|Iαf(x)|q dµ(x)
) 1

q ≤ C ‖f‖
p α
n

Lp(µ)

(∫
Rd

Mf(x)q (1− p α
n

) dµ(x)
) 1

q

= C ‖f‖
p α
n

Lp(µ)

(∫
Rd

Mf(x)p dµ(x)
) 1

q

≤ C ‖f‖Lp(µ).
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Let us see what happens in the case p = 1. In this case, Hedberg’s inequality becomes

|Iαf(x)| ≤ C ‖f‖
α
n

L1(µ)Mf(x)1−α
n = C ‖f‖

α
n

L1(µ)Mf(x)
1
q .

Use that M is of weak type (1, 1), to conclude

µ{x ∈ Rd : |Iαf(x)| > λ} ≤ µ

{
x ∈ Rd : Mf(x) >

(
λ

C ‖f‖
α
n

L1(µ)

)q}

≤

(
C ‖f‖

α
n

L1(µ)

λ

)q

‖f‖L1(µ) =

(
C ‖f‖L1(µ)

λ

)q

2

The following result extends an inequality, proved in the classical setting in [Wel],
to our case. This inequality will be the key to obtain two-weight norm inequalities for
fractional integrals.

Theorem 6.4 (Welland’s inequality) Let 0 < α < n and 0 < ε < min{α, n − α}.
Then for any bounded function with bounded support f we have

|Iαf(x)| ≤ C
(
Mα+εf(x)Mα−εf(x)

) 1
2 ,

where C only depends on n, α and ε.

Proof. We take s > 0 and split Iα like in the proof Theorem 6.1. For I we have

I =
∞∑

k=0

∫
2−k−1 s≤|x−y|<2−k s

|f(y)|
|x− y|n−α

dµ(y)

≤ 22 (n−α)

∞∑
k=0

1

(2−k+1 s)−ε

1

(2−k+1 s)n−(α−ε)

∫
Q(x,2−k+1 s)

|f(y)| dµ(y)

≤ C sεMα−εf(x)
∞∑

k=0

2−k ε = C sεMα−εf(x).

For II we obtain

II =
∞∑

k=0

∫
2k s≤|x−y|<2k+1 s

|f(y)|
|x− y|n−α

dµ(y)

≤
∞∑

k=0

1

(2k s)n−α

∫
|x−y|<2k+1 s

|f(y)| dµ(y)

≤ C s−εMα+εf(x)
∞∑

k=0

2−k ε = C s−εMα+εf(x).
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Note that this choice of ε assures that 0 < α − ε < α < α + ε < n. Collecting both
estimates,

|Iαf(x)| ≤ C
(
sεMα−εf(x) + s−εMα+εf(x)

)
, for any s > 0.

To complete the proof we just have to minimize this expression in the variable s. 2

This inequality combined with the results we have already obtained for Mα will
allow us to get two-weight inequalities for fractional integrals. In the homogeneous case,
similar results were obtained by different methods in [SW] and also, with Orlicz norms,
in [Pe2].

Theorem 6.5 Let p, q with 1 < p < q < ∞ and α with 0 < α < n. Let (u, v) be a pair
of weights for which there exists r > 1 such that for every cube Q,

`(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u(x)r dµ(x)
) 1

r q
( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) 1

r p′ ≤ C. (13)

Then for every f ∈ Lp(v),(∫
Rd

|Iαf(x)|q u(x) dµ(x)
) 1

q ≤ C
(∫

Rd

|f(x)|p v(x) dµ(x)
) 1

p
.

Proof. Let 0 ≤ f ∈ L∞(µ) a boundedly supported function. Choose ε such that

0 < ε < min
{

α, n− α,
n

q
, n
(1

p
− 1

q

)
,

n

q r′

}
.

By Theorem 6.4, we observe that(∫
Rd

|Iαf |q u dµ
) 1

q ≤ C
(∫

Rd

(
Mα+εf · Mα−εf

) q
2 u dµ

) 1
q

= C
(∫

Rd

F ·G dµ
) 1

q
,

where

F (x) =
(
Mα+εf(x) u(x)

1
q
) q

2 and G(x) =
(
Mα−εf(x) u(x)

1
q
) q

2 .

Let
1

q+
ε

=
1

q
− ε

n
,

1

q−ε
=

1

q
+

ε

n
, q+ = 2

q+
ε

q
and q− = 2

q−ε
q

.

Due to the way we choose ε, we have

1 < p < q−ε < q < q+
ε < ∞, 1 < q− < q+ < ∞ and

1

q+
+

1

q−
= 1.

We use Hölder’s inequality to get,(∫
Rd

F ·G dµ
) 1

q ≤ ‖F‖
1
q

Lq+
(µ)
‖G‖

1
q

Lq− (µ)
=
∥∥Mα+εf

∥∥ 1
2

Lq+
ε (u+)

∥∥Mα−εf
∥∥ 1

2

Lq−ε (u−)
,
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where u+ = u
q+
ε
q and u− = u

q−ε
q . For the first term, since 1 < q+

ε

q
< r,

`(Q)
n ( 1

q+
ε

+α+ε
n
− 1

p
)
( 1

`(Q)n

∫
Q

u+ dµ
) 1

q+
ε

( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′

= `(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u
q+
ε
q dµ

) 1

q+
ε

( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′

≤ `(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

ur dµ
) 1

r q
( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′ ≤ C,

and so, the pair of weights (u+, v) satisfies (7) with 1 < p < q+
ε < ∞ and α + ε. Then,

Theorem 5.1 says that Mα+ε is bounded from Lp(v) to Lq+
ε (u+). Now, for the second

term it is easier to prove the estimate for the weights, since q−ε
q

< 1 < r, and

`(Q)
n ( 1

q−ε
+α−ε

n
− 1

p
)
( 1

`(Q)n

∫
Q

u− dµ
) 1

q−ε
( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′

= `(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

u
q−ε
q dµ

) 1

q−ε
( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′

≤ `(Q)n ( 1
q
+α

n
− 1

p
)
( 1

`(Q)n

∫
Q

ur dµ
) 1

r q
( 1

`(Q)n

∫
Q

vr (1−p′) dµ
) 1

r p′ ≤ C.

In this way, the pair of weights (u−, v) verifies (7) with 1 < p < q−ε < ∞ and α − ε.

By Theorem 5.1, Mα−ε is a bounded operator from Lp(v) to Lq−ε (u−). Pasting these
estimates together, we get

‖Iαf‖Lq(u) ≤ C
∥∥Mα+εf

∥∥ 1
2

Lq+
ε (u+)

∥∥Mα−εf
∥∥ 1

2

Lq−ε (u−)
≤ C ‖f‖

1
2

Lp(v) ‖f‖
1
2

Lp(v) = C ‖f‖Lp(v).

2

7 The case α = 0. The Hardy-Littlewood radial

maximal function.

In this section, we shall pay special attention to the Hardy-Littlewood radial maximal
function, which corresponds to the case α = 0. For simplicity, we shall write

Mf(x) = sup
Q3x

1

`(Q)n

∫
Q

|f(y)| dµ(y).

Proposition 2.1 states that this operator is of weak type (1, 1) and of strong type (p, p),
1 < p ≤ ∞. Actually, these inequalities can be also obtained by using that M is
controlled by the centered Hardy-Littlewood maximal function. Since the underlying
space is Rd, the Besicovitch covering lemma provides the weak type (1, 1), and hence
the strong type (p, p) for 1 < p ≤ ∞.
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For 1 < p < ∞, we shall say that the pair of weights (u, v) ∈ Sp, if the following
Sawyer type condition holds:

(Sp)

∫
Q

(M(v1−p′ χQ)(x))p u(x) dµ(x) ≤ C

∫
Q

v(x)1−p′ dµ(x)

for every cube Q ⊂ Rd. Theorem 3.1 assures that this condition is equivalent to the
boundedness of M between Lp(v) and Lp(u). When u = v = w, we shall simply write
w ∈ Sp. On the other hand, if 1 ≤ p < ∞, the radial Muckenhoupt classes are given by
Definition 4.1. In particular, the pair of weights (u, v) ∈ Ap if for every cube Q,

(Ap)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
)( 1

`(Q)n

∫
Q

v(x)1−p′ dµ(x)
)p−1

≤ C,

when 1 < p < ∞. For p = 1 we shall write

(A1)
( 1

`(Q)n

∫
Q

u(x) dµ(x)
)
≤ C v(x), for µ-almost every x ∈ Q,

or equivalently, Mu(x) ≤ C v(x) for µ-almost every x ∈ Rd (see Lemma 4.2). Observe
that these classes of weights correspond to those defined previously in the following way:
Ap = A0

p,p for 1 ≤ p < ∞. Thus, Theorem 4.3 says in particular that for 1 ≤ p < ∞, M
is bounded from Lp(v) to Lp,∞(u), if and only if, (u, v) ∈ Ap. Again, when we deal with
the same problem but only with one weigh, that is, u = v = w, we shall put w ∈ Ap.

It is clear that these classes of weights verify that for 1 < p < ∞, Sp ⊂ Ap. The
next result contains another properties about them.

Proposition 7.1

(i) If 1 < p < q < ∞, then A1 ⊂ Sp ⊂ Ap ⊂ Sq ⊂ Aq. Thus, for (u, v) ∈ Ap, with
1 ≤ p < ∞, and for p < q < ∞, we have M : Lq(v) −→ Lq(u).

(ii) Consider 1 < p < ∞ and (u, v) a pair of weights for which there exists r > 1 such
that, for every cube Q,( 1

`(Q)n

∫
Q

u(x) dµ(x)
)( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) p−1

r ≤ C.

Then, there exists some q, 1 < q < p, such that (u, v) ∈ Aq. Consequently,
(u, v) ∈ Sp, that is, for every f ∈ Lp(v),∫

Rd

(Mf(x))p u(x) dµ(x) ≤ C

∫
Rd

|f(x)|p v(x) dµ(x).

(iii) If 0 < ε < 1 and (u, v) ∈ Ap with 1 < p < ∞, then (uε, vε) ∈ Aε p+1−ε.

(iv) Let 1 < p < ∞. Then, (u, v) ∈ Ap, if and only if, (v1−p′ , u1−p′) ∈ Ap′.
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(v) Let w(x) ≥ 0, w ∈ L1
loc(µ), then for 1 < p < ∞:

w{x ∈ Rd : Mf(x) > λ} ≤ C

λ

∫
Rd

|f(x)|Mw(x) dµ(x),∫
Rd

(Mf(x))p w(x) dµ(x) ≤ C

∫
Rd

|f(x)|pMw(x) dµ(x),

or what is the same, the pair of weights (w,Mw) belongs to A1 and so to Sp.

Proof. The proof uses standard arguments, explained in detail in [GR, Chapter IV].
For the first part, note that if u(E) > 0 then µ(E) > 0 and if µ(E) > 0 then v(E) > 0
(because v1−p′ ∈ L1

loc(µ) and thereby v > 0 µ-almost everywhere). Thus,

‖Mf‖L∞(u) ≤ ‖Mf‖L∞(µ) ≤ ‖f‖L∞(µ) ≤ ‖f‖L∞(v),

that is, M : L∞(v) −→ L∞(u). Marcinkiewicz interpolation theorem and Theorems
3.1, 4.3 bring these inclusions. For (ii), by taking q = 1 + p−1

r
, we have 1 < q < p < ∞.

Furthermore,( 1

`(Q)n

∫
Q

u(x) dµ(x)
)( 1

`(Q)n

∫
Q

v(x)1−q′ dµ(x)
)q−1

=
( 1

`(Q)n

∫
Q

u(x) dµ(x)
)( 1

`(Q)n

∫
Q

v(x)r (1−p′) dµ(x)
) p−1

r ≤ C,

and so (u, v) ∈ Aq ⊂ Sp by (i). Let us see what happens with (iii). Let (u, v) ∈ Ap and
r = ε p+1− ε. We want to show that (uε, vε) ∈ Ar. Use Hölder’s inequality with 1

ε
> 1

and the fact that (u, v) ∈ Ap to obtain( 1

`(Q)n

∫
Q

u(x)ε dµ(x)
)( 1

`(Q)n

∫
Q

v(x)ε (1−r′) dµ(x)
)r−1

≤
{( 1

`(Q)n

∫
Q

u(x) dµ(x)
)( 1

`(Q)n

∫
Q

v(x)1−p′ dµ(x)
)p−1

}ε

≤ C,

that is, (uε, vε) ∈ Ar. Part (iv) is trivial. Finally, observe that (u, v) = (w,Mw) is
a pair of weights in A1. This is obtained by means of the second characterization of
this class, which trivially holds with constant 1. In this way, the first inequality follows,
whereas the second one arises as a consequence of (i). 2

One can not expect that Ap = Sp, or in other words, two-weight weak type inequa-
lities do not imply in general strong inequalities. A counterexample comes from the
classical setting. Take µ the Lebesgue measure in Rd, which is “d-dimensional”. Then
M is the (classical) Hardy-Littlewood maximal function which will be denoted by M .
Like we can find in [GR, p. 395], the fact that (u, v) ∈ Ap, 1 < p < ∞, is not sufficient
for M to be bounded between Lp(v) and Lp(u). However, in this classical setting when
one is dealing with the same problem but only with one weight —that is, u = v = w—
the weights have better properties and Ap = Sp. We would like to consider the one-
weight problem for M; in particular, we shall see that some properties of the classical
setting may fail in this new context.
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Theorem 7.2 The following statements are false in general:

(a) If w ∈ Ap, 1 < p < ∞, then w satisfies a reverse Hölder’s inequality (RHI ), that
is, there exists ε > 0 such that( 1

`(Q)n

∫
Q

w(x)1+ε dµ(x)
) 1

1+ε ≤ C

`(Q)n

∫
Q

w(x) dµ(x)

holds for every cube Q.

(b) If w ∈ Ap, 1 < p < ∞, then there exits ε > 0 such that w1+ε ∈ Ap.

(c) If w ∈ Ap, 1 < p < ∞, then there exists ε > 0 in such a way that w ∈ Ap−ε.

(d) If w ∈ Ap, 1 < p < ∞, then M is bounded on Lp(w).

Before proving this result, we are going to see the connections of these properties.
Actually, we can obtain that

(a) =⇒ (b) =⇒ (c) =⇒ (d).

Fix w ∈ Ap, 1 < p < ∞. For the first implication, by Proposition 7.1, part (iv),
w1−p′ ∈ Ap′ . By applying (a) to w and w1−p′ , we get ε1, ε2 > 0 such that the RHI
with ε1 and ε2 holds respectively for w and w1−p′ . Then, if ε = min{ε1, ε2}, by Hölder’s
inequality and (a) we have( 1

`(Q)n

∫
Q

w(x)1+ε dµ(x)
)( 1

`(Q)n

∫
Q

w(x)(1+ε) (1−p′) dµ(x)
)p−1

≤
{( 1

`(Q)n

∫
Q

w(x)1+ε1 dµ(x)
) 1

1+ε1

( 1

`(Q)n

∫
Q

w(x)(1+ε2) (1−p′) dµ(x)
) p−1

1+ε2

}1+ε

≤
{( 1

`(Q)n

∫
Q

w(x) dµ(x)
)( 1

`(Q)n

∫
Q

w(x)1−p′ dµ(x)
)p−1

}1+ε

≤ C.

Now, we check that (c) follows from (b). Note that Hölder’s inequality and (b) imply
that the pair of weights (w, w) satisfy (ii) of Proposition 7.1 with r = 1 + ε. Thus,
(w, w) ∈ Aq for some 1 < q < p. Finally, (c) =⇒ (d) arises as a consequence of
Proposition 7.1, part (i).

Proof of Theorem 7.2. In view of the facts above, we only have to find an example
for which (d) fails. However, we shall give two examples: in the first one, it is easy to
check that (a), (b) and (c) do not hold. Whereas the second one, which is less natural,
will be used to get that (d) fails. In R, consider dµ(x) = γ(x) dx with γ(x) = e−x2

. Since
0 < γ(x) ≤ 1, this measure is “1-dimensional”. The Muckenhoupt condition becomes:

(Ap)
( 1

|I|

∫
I

w(t) γ(t) dt
)( 1

|I|

∫
I

w(t)1−p′ γ(t) dt
)p−1

≤ C,
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for every bounded interval I and for 1 < p < ∞. Take w(t) = γ(t)p−1. Then,( 1

|I|

∫
I

w(t) γ(t) dt
)( 1

|I|

∫
I

w(t)1−p′ γ(t) dt
)p−1

=
( 1

|I|

∫
I

e−p t2 dt
)( 1

|I|

∫
I

1 dt
)p−1

≤ 1,

and hence w ∈ Ap. We show that w /∈ Aq for every q < p. Take 1 < q < p and put
θ = (q′ − 1) (p− 1) > 1. Then,( 1

|I|

∫
I

w(t) γ(t) dt
)( 1

|I|

∫
I

w(t)1−q′ γ(t) dt
)q−1

=
( 1

|I|

∫
I

e−p t2 dt
)( 1

|I|

∫
I

e(θ−1) t2 dt
)q−1

.

In particular, for I = [−r, r] with r > 1, this amount is bigger than( 1

2 r

∫ 1

−1

e−p t2 dt
)( 1

2 r

∫ r

−r

e(θ−1) t2 dt
)q−1

= C
( 1

rq′

∫ r

0

e(θ−1) t2 dt
)q−1

−→∞

as r →∞, since θ > 1. Therefore, w /∈ Aq. Then, (a) and (b) fail. In fact, one can see
that w1−p′ ∈ Ap′ does not satisfy (a) and that w neither verifies (b).

For the other example, we shall work again in R. Take g a continuous function which
is positive everywhere and integrable with respect to Lebesgue measure. Let us recall
that M denotes the (classical) Hardy-Littlewood maximal function in R. Consider

γ(x) =

(
g(x)

Mg(x)

) p−1
p

> 0.

Note that this function is well defined, since Mg never vanishes. Besides, γ(x) ≤ 1
almost everywhere (with respect to dx) and so dµ(x) = γ(x) dx is an “1-dimensional”
measure. Consider the weight

w(x) =
(
g(x)

1
p Mg(x)

1
p′
)−(p−1)

.

First of all, we see that w ∈ Ap:( 1

|I|

∫
I

w(t) γ(t) dt
)( 1

|I|

∫
I

w(t)1−p′ γ(t) dt
)p−1

=
( 1

|I|

∫
I

Mg(t)1−p dt
)( 1

|I|

∫
I

g(t) dt
)p−1

=

{( 1

|I|

∫
I

g(t) dt
)( 1

|I|

∫
I

Mg(t)1−p dt
)p′−1

}p−1

.

This amount is bounded if the pair of weights (g,Mg) ∈ Ap′ . We know that (g,Mg) ∈
A1 ⊂ Ap′ . Thus, we have obtained that w ∈ Ap. Assume that M is bounded on
Lp(w dµ). Since Mf(x) = M(f γ)(x), this inequality can be seen in this fashion∫

R
(Mf(x))p w(x) γ(x)dx ≤ C

∫
R
|f(x)|p w(x) γ(x)1−p dx,
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that is, ∫
R
(Mf(x))p (Mg(x))1−p dx ≤ C

∫
R
|f(x)|p g(x)1−p dx.

By setting f = g, it follows∫
R
(Mg(x))p (Mg(x))1−p dx ≤ C

∫
R

g(x)p g(x)1−p dx = C

∫
R

g(x) dµ(x) < ∞

and consequently, Mg ∈ L1(dx), something that only happens if g ≡ 0. So, M is not
bounded in Lp(w dµ). 2

Note that in the previous examples the underlying measure is non-doubling —as a
matter of fact, if it were doubling Muckenhoupt weights would verify a RHI (see [ST])—.
Actually, if some weight satisfies a RHI, then the measure must be doubling.

Proposition 7.3 If there exists w > 0 µ-almost everywhere, w ∈ L1
loc(µ), which satis-

fies a RHI, that is,( 1

`(Q)n

∫
Q

w(x)1+ε dµ(x)
) 1

1+ε ≤ C

`(Q)n

∫
Q

w(x) dµ(x),

for every Q and for some ε > 0, then µ(Q) ≥ C `(Q)n for every cube with µ(Q) > 0
and thus µ is doubling.

Proof. It is enough to apply Hölder’s inequality with exponent 1 + ε:

w(Q) =

∫
Q

w(x) dµ(x) ≤
(∫

Q

w(x)1+ε dµ(x)
) 1

1+ε
µ(Q)

1
(1+ε)′

≤ C `(Q)
n

1+ε

( 1

`(Q)n

∫
Q

w(x) dµ(x)
)

µ(Q)
1

(1+ε)′

= C

(
µ(Q)

`(Q)n

) 1
(1+ε)′

w(Q).

Then for every Q with µ(Q) > 0, we have w(Q) > 0 and thus µ(Q) ≥ C `(Q)n. 2
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