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1. Introduction and Main results

In this article we will be concerned with estimates for maximally modu-
lated Calderén-Zygmund singular integrals on R™. A Calderén-Zygmund
operator is a linear operator T which is bounded from L?(R") into itself
such that for f € L2(R") (essentially bounded functions with compact
support), we have

Tf(z)= A K(z,y) f(y)dy,  ae ze€R"\suppf.
The kernel K : R” x R"\ {(z,z) : © € R"} — C is assumed to satisfy
the following standard conditions

co
K <%
K (2,y)] < z

_y|n7 .:U;éy,

and, if [z —y| > 2|y —¥/|,

/T
y—y
K (z,y) — K(z,y")| + |K(y,2) = K(y',2)| < co |g|5_y‘n’+7
for some ¢y, 7 > 0. Associated with T' there is a truncated operator 7
and a maximal singular operator T, defined as follows:

i@ = [ Ko S TS = s L)

Suppose that we are given a family @ = {¢4 }aeca of measurable real-
valued functions indexed by an arbitrary set A. Then we can define max-
imally modulated versions of T" and T} associated with @. First we define
the modulation operator

M fx) = 27100 f(z)

and the “Carleson”-type maximal modulated singular integral of T" with
respect to &:
T?f(z) = sup [T(M% f)()|.
acA

This definition is motivated by the Carleson operator in which T is
the Hilbert transform and the family @ is given by the linear functions
ba(y) = ay with a € R. We also define the (maximally) modulated
maximal singular integral associated with 7" and & via

T? f(x) = sup sup |T.(M? f)(z)]
e>0 acA

—supsup| [ K(ag) 70 fg)dyl.
e>0 ac Al Jijz—y|>e
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The purpose of this article is to present a framework that yields
weighted and vector-valued estimates for 7% and T from a single a
priori weak type estimate for 7. Our main approach is based on the
good-A method of Coifman and Fefferman [CF] although we discuss an
alternative approach using the sharp maximal operator. We note that in
the special case where T is the Hilbert transform and 7% is the Carleson
operator, boundedness on LP(w) for w in A, was obtained by Hunt and
Young [HY]. Below we sharpen and extend such weighted estimates to
more general maximally modulated operators.

We denote by M the Hardy-Littlewood maximal operator and by

1

M.f = M(|f|T) " where 0 < r < 00. A non-negative locally integrable
function w is said to be in A4,, 1 < p < oo, if there exists some constant
C such that for every cube @) (with sides parallel to the coordinate axes)

we have
(@ /Qw(a:) da:) (@ /Qw(a:)lpl da:)p_l <C.

Letting p — 1 we analogously define the A; class

(é' /Qw(a:)dx) Y (o < C.

The smallest constant C' for which the condition A,, 1 < p < oo, holds
is called the A, characteristic constant of w. We also recall that A, =
Up>1 Ap- These classes were introduced by Muckenhoupt in [M] to char-
acterize the boundedness of the Hardy-Littlewood maximal functions on
weighted Lebesgue spaces LP(w) = LP(wdz). The reader is referred to
[GR] for a comprehensive account of these topics.

We have the following theorem.

Theorem 1.1. Let T be a Calderon-Zygmund operator and let @ o family

of measurable real-valued functions. Assume that T? maps L"(R™) into

L"®(R") for some 1 < r < oo with norm | T?||pr_pre. Then, for any

w € As there exist positive constants Cy, €g, that depend only on w,

and o that depends on 7,co, 7, and ||T®| pr_proo, such that for all f in
U LPR"), for all 0 < v < 70, and for all X > 0 we have

1<p<oo

w{Tf >3\ M.f <yA} < Coy 0 w{T{f>\}. (1)

Using (1) and standard techniques we deduce the following weighted
estimates.
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Corollary 1.2. Let T and & be as before. Assume that T® maps L"(R™)
into L™ (R™). Then for every w € Ao and 0 < p < oo there is a constant
C that depends on p,w,n, co, T, and ||T®| L pre such that the estimates
below hold

1T fll 2o (wy < C 1My £l o) (2)
1T f| oo )y < C 1My f | 50 ) (3)
T2 FllLrwy < C 1Mo ) (4)
T2 fll Looo wy < C 1My f | o0 ) (5)

with the understanding that these estimates hold for all functions f for
which the left hand sides of the displayed inequalities are finite. Conse-
quently, it follows that T® and T map LP(w) into LP(w) for all p > r
whenever w € A,),.. Moreover, T* and T map L"(v) into L™>(v) for
all v e Ay.

There is a way to obtain Corollary 1.2 bypassing the good-\ inequality
of Theorem 1.1. Namely, using the sharp maximal function M7, one can
show that

M#(T? f)(z) < C M, f(x) (6)

which implies all the previous estimates of Corollary 1.2. For the sake of
completeness, we will discuss this alternative approach as well. The latter
idea has been utilized by [RRT] in the study of Carleson-Sj6lin operators;
the terminology refers to maximally modulated operators in which the
family @ consists of the functions ¢,(y) = a - y, where a € R™.

We would like to point out that Corollary 1.2 is weaker than the good-
A inequality contained in Theorem 1.1. Nevertheless, some recent results
obtained in [CMP], [CGMP] show that from the single estimate

HT@f”LP(w) < Cp(w) ”MTfHLP(w)7 for all 0 < p < o0, w € A, (7)

one can extrapolate and obtain all the conclusions of Corollary 1.2 in
the scale of Lorentz, Orlicz spaces, and other rearrangement invariant
function spaces. However, here we prefer to deduce these estimates as a
corollary of the powerful good-A inequality of Theorem 1.1. This inequal-
ity provides a precise pointwise estimate for the level sets of a maximally
modulated singular integrals and it therefore subsumes all possible norm
estimates; more importantly, it is of intrinsic interest and yields structural
information about such operators.

One advantage of the extrapolation results in [CMP] is that ¢?¢-valued
estimates follow from (7) without use of Banach-space theory for Calde-
rén-Zygmund operators, as in [RRT]. Thus, from (2), (4), and [CMP] we
obtain the following:
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Corollary 1.3. Let T and & be as before. Assume that T® maps L™ (R™)
into L™ (R™). Then for every w € Ay and 0 < p,q < oo there is a
constant C such that

H(?T@fm)l

1

Lr(w) s¢ H < Mrfj)q) ‘

LP(w)

and
<o|(Zonnr)

J

)

LP:2° (w)

[

for all sequences of functions f; for which the left hand sides are finite.
Consequently, for every q > r,

(S, <el(Siur)
and
(S, =el(Sisr)

for all sequences of functions f; in LP(w) (or L (w) if w € Ay ). Moreover,
all the above estimates also hold for T® in place of T?.

Lp:>e(w

A .
Lr(w)’ Jorp>r,we A,

1l A
Lrw)’ for allw e Ay

We note that the two last estimates in Corollary 1.3 could also be
obtained as a consequence of the Banach space approach developed in
[RRT] suitably adapted to our framework.

Our next goal in this article is to improve the previously known re-
sults when estimates near L' are known. Let us explain the motivation for
this problem. We have seen in Theorem 1.1 and Corollaries 1.2, 1.3 that a
maximally modulated singular integral operator 7% mapping L"(R") into
L™ (R™) is controlled by the maximal operator M,. From the proof of
the good-\ inequality, or from the approach based on the sharp maximal
function, we see that M, was chosen because T satisfies a weak type esti-
mate in L. In general, one would like to replace M, by a better maximal
operator as close as possible to the Hardy-Littlewood maximal operator
(which does not control maximally modulated singular integrals.) This
would require to study the boundedness of T® near L.

Let us consider the Carleson operator, that is the operator

27t a
pv. /R T ) dy'

r—y

Cf(x) = sup

a€R
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acting on functions on the real line. Using the notation previously intro-
duced, ¢ = H"'(Y) where H is the Hilbert transform and ¥;(1) is the
family of one-variable real polynomials of degree at most 1. It is well
known that C is bounded on LP(R) for all 1 < p < oo. Then, we know
that C can be controlled by M, where p can be taken arbitrarily close
to 1. But p cannot be taken equal to 1 as C is known not to be of weak
type (1,1). But there is big gap between M and M,, p > 1; all maxi-
mal operators associated with Orlicz spaces between L' and LP, such as
L(log L) or L(log L)(loglog...log L), could serve the purpose of control-
ling C and other maximally modulated singular integrals in the good-A
sense previously described.

For C some estimates near L', better than L?, are known. Let us write
S* for the discrete analog of C on the torus, that is, for the supremum
of the partial sums of a Fourier series in the torus. In [Sj] it was proven
that S* maps L(log L)(loglog L) into L%“*°. There is a general extrapo-
lation result (in the spirit of Yano) which says that a sublinear operator
that satisfies a restricted weak LP estimate with constant (p — 1)™™ as
p — 17 is indeed bounded from L(log L)™(loglog L) to LY* (see [Sol],
[So2]). Lately Antonov [An] sharpened the best known result known for
S* showing that C maps the Orlicz space L(log L)(logloglog L) to L
(see also [Ar]). Recently [SS] have provided a general extrapolation prin-
ciple that works for several maximal operators which, in particular, gives
another proof of the aforementioned result of Antonov concerning S* and
also yields some positive results for the Walsh-Fourier series and for the
halo conjecture.

In this work we exploit these kind of ideas to obtain a better maximal
operator controlling C. We are going to get a general result for 7% only
assuming an appropriate growth in the constant of the restricted weak L?
estimate of such an operator. We will see in particular, that the operator
M (10g L)(1oglog log ) controls C and also a similar maximally modulated
singular integral with quadratic phase (see Section 2 below). Observe
that this operator is pointwise smaller than all the M, p > 1, hence our
estimates are better than those previously known.

Next we introduce some notation about Orlicz spaces. For a complete
development of this topic the reader is referred to [RR], [BS]. Let 1 :
[0,00) — [0,00) be a Young function, that is, a continuous, convex,
increasing function with 7°(0) = 0 and such that Y'(¢) — oo as ¢t — oo.
By definition, the Orlicz space Ly consists of all measurable functions f
such that

/ T <|f(;)|> dx < o0, for some A > 0.



Weighted inequalities for maximally modulated singular integral operators 7

The space Ly is a Banach function space if it is endowed with the Lux-
emburg norm

1= 1l =int 3> 02 [ 7 (V) ar <1},

For example, if T'(t) = tP for 1 < p < oo, then Ly = LP. Another classical
example is given by 1'(t) = t (1 + log™ t), properly speaking, 7 (t) is the
convex majorant of ¢ (1 + log™ ¢). In this case Ly is the Zygmund space
Llog L. Let us define the following localized version of the Orlicz norm:
for every Q,

o =int {3 >0 5 [ 1 (L) ar <1}

Note that [|fllr.q = [/l
associated to this space as:

doy. We also define the maximal operator
el

My f(z) = sup || flrq-
Q3

For example, if 7(t) = ¥ we have My f(x) = M, f(x) since for every cube
| fllr,@ is the LP-average of f over Q.
We need to introduce a little bit more of notation: for any cube @ C R™

we consider the probability measure dug(z) = X%T) dx and we define the

localized operator
TG f(x) = T?(f Xo)(x) Xo(2)-
Let us also set ¢y, (t) =t (1 +log™ 1)™.

Now, we state the main result of this article. We only work with convo-
lution type operators but analogous results could be obtained for general
nonconvolution linear operators.

Theorem 1.4. Let T be a convolution Calderon-Zygmund operator and
D = {pataca be a family of twice differentiable real-valued functions such
that for each o € A and for each cube Q we have

[Ballzeo(@) + IVéalle(q) + 1D*dallr=@) < C(Q, ) < .

Assume that either A is countable or that there exists a countable subset
Ao C A such that for almost all x € R™ we have

T? f(x) = sup |T(M f)(x)| = sup |T(M® f)(z)].
acA acAg
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Suppose that for some C' > 0, m > 0 and for all 1 < p < 2 and measurable
sets A of finite measure, T® satisfies the following restricted weak type
estimate

B =

. 1 C \" 4]
o T > N < (S5) 0
Let T (t) = t (1+1log™ t)™ (1+1log™t log™ logt t). Then for all0 < p < oo,
w € Aso, and all functions f for which the left hand side below is finite
we have the estimate

1T fll 2oy < C M, f 1l o) 9)

Moreover, all the estimates (1), (3), (4), (5) and the vector-valued in-
equalities contained in Corollary 1.3 hold for My,, in place of M,.
Furthermore, (8) can be replaced by the weaker condition

pofz : TE(X ) (@) > A} = po{z € Q : TP(x 4)(2) > A}
< (a(4). (10)

for any cube Q@ C R™ and for all measurable sets A C Q, where Cy is
independent of Q.

The proof of this result is based on some sort of Yano’s extrapolation
procedure inspired by [SS]; see Theorem 5.3 in Section 5 (Subsection 5.2)
for more details. This result will provide the following estimate

TG f o @uue) < ClIflIrn.:

which will be used to yield the corresponding good-)\ inequality. For the
approach based on the sharp maximal function, the latter estimate will
yield a substitute for (6):

MF(T?f)(x) < Cs My, f(z),  whenever 0<d<1,
where M g(x) = M#(|g|%)(z)'/%.
Remark 1.5. Note that for ¢ > 1 we have that 1,,(¢t) < ¢" for 1 < r < o0
and therefore || f||r,,.0 < 2| fl|¢,@ which gives My,, f(z) < M, f(x). Thus,

Theorem 1.4 is an improvement of previous theorems in which only a
single L"-estimate was assumed.
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Remark 1.6. We show that (10) is weaker than (8) and thus it suffices to
work with estimate (10) in the proof of Theorem 1.4. To see this we first
notice that (8) implies

{2 TE @) > AP = [{z € Q: T (X ) (@) > A7
Co \™ |Al»
= <p—01> A

which in terms of the probability measure g can be written as

1
Co \"™ nq(A)r
p—1 A

1
(note T8Ox0@) > 0))" < (
Taking in particular p =1+ (1 — log ,uQ(A))_1 we obtain

nofr : THOX ) (@) > A} < uo{w s TE(X L) (@) > A}»

< % (p— 1) po(A)r = Tom om (HQ(4)) no(4)r ™!
< Cin € om0 (A))

since MQ(A)%f1 < e. Therefore we have shown that (8) implies (10).

We organize the paper as follows. In Section 2 we present some appli-
cations of our main results. In Section 3 we give a proof of the good-\
estimate in Theorem 1.1. Section 4 contains the alternative approach
based on the sharp maximal function. Section 5 is devoted to show The-
orem 1.4 and the general extrapolation procedure that leads to it, whose
proof is given in Section 6.

2. Applications

Before discussing the proofs of our results, we turn to some applications.
Let us denote by ¥ (k) the family of all one-variable real polynomials
of degree at most k defined on R. Using the notation introduced earlier,
the Carleson operator C is H¥*() where H is the Hilbert transform. It is
known that C is bounded on L"(R) for all 1 < r < co. Then we have

ICfllr(w) < C My fll Lo w)

forall 1 <r < oo,all 0 < p <ooand w € Ay. We also have the corre-
sponding good-A estimate in Theorem 1.1, all the estimates in Corollary
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1.2 and the vector-valued inequalities in Corollary 1.3. The same esti-
mates are valid for C, in place of C. As a consequence, for 1 < p,q < oo
and for w € Ap, by taking 1 < r < min{p, ¢} sufficiently close to 1 so

that w € 4,,, we easily obtain

1€ Nzowy < Cllf oy, | (Z )

v N (S50

The first of these estimates first appeared in [HY] and the second in
[RRT].

It is a well known fact [H] that C satisfies the following restricted weak
type (p,p) result

LP(w

1

Al

11

— (11)
for A > 0, 1 < p < 2. This means that we can apply Theorem 1.4 with

m = 1. We then obtain the following theorem that improves the results
of [HY] and [RRT].

Ha::C(XA) >)\}‘P <C’

Theorem 2.1. Let C be the Carleson operator and consider the Orlicz
function T(t) =t (1 +1log™ t) (1 +log™ logt log™t t). Then, for all 0 < p <
oo and w € Ay we have

ICfllLr(w) < C I MrfllLe(w) IC [ oo () < Cl[Mr fllpp.oo (w)

and

(e, <eN(Swrsr)
(3 iesi) .0 <0H(Z|Mrfjlﬂ

for all functions [ or sequences of functions f; for which the left hand
sides are finite. As a consequence, writing M3 =MoMoM we get

ICf | Lo (wy < C M £l 1o (w). ICF | poe () < CNIM f| oo ).

and the associated vector-valued inequalities in LP(w) and in LP*°(w).
Furthermore, all these estimates hold with Cy in place of C and the cor-
responding good-\ inequality is valid.

Lp(w)’

LP:> (w)

For the inequalities with M3 one only needs to observe that
Myf(x) < Myaogry2f(x) = M f(x),
since T'(t) < t (1 +log™t)2.
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Remark 2.2. Note that in terms of the iterations of the Hardy-Littlewood
maximal function, M? is, so far, the best known iteration that can be
written on the right hand side. As mentioned before, with M such result
is not true. Getting M? would be equivalent, somehow, to the fact that
Fourier series of functions in L(log L) converge a.e., since M? ~ M Llog L)-
This remains an open question at the moment.

Remark 2.3. We can obtain a formulation of Theorem 1.4 in terms of
iterations of the Hardy-Littlewood maximal function. Note that we have
T(t) <t(1+1logTt)™* ! and, as before,

My, f(x) < Mpgogpymi1 f(z) = M™H2 f(2),

where M™*2 is the operator M iterated m + 2-times. Hence, as a conse-
quence of Theorem 1.4, we also obtain the estimate

IT? fll 2o (wy < CINM™ 2 f |l o).
and all the associated good-A and vector-valued inequalities.

Assuming the result in [L], which states that the maximally modulated
singular integral

H"®) f(z) = sup
a,beR

p.V./ f(y) 627ri(ay+by2) dy

R r—=Yy

is bounded on LP(R) for all 1 < p < oo with the corresponding restricted
weak type inequality (11), one obtains the following result concerning the
operator HY1(2):

Theorem 2.4. Let T(t) =t (1 +log™ t) (1 +logt log™ log™ t). Then, for
all 0 < p,q < oo and all w € Ay we have

HH%(Z)JCHLP(w) <C HMTfHL”(w)’

[(Siese)],,,, < (S mrsr)’
’ J

for all functions or sequences of functions for which the left hand sides
are finite. All these inequalities hold for the maximal operator Hfl(z).
Also these estimates are valid with LP*°(w) in place of LP(w) and the
corresponding good-\ estimate (1) holds. (As before, we can replace My
by M3.)

As a consequence we obtain that for every 1 < p,q < oo and every
weight w € A, we have

IH" D £l o) < C UL 1o o)

and

LP(w)
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for all f in LP(w) and also
Sy, <ol

for all ¢1-valued sequences {f;}; in LP(w). The same estimates are valid
with H*®).

LP(w)

To prove Theorem 2.4 we just need to apply Theorem 1.4 with m = 1.
The claimed estimates can be easily obtained using the formulation in
terms of M3, noting that M3 is bounded on LP(w) for w € A, and
also satisfies the corresponding weighted vector-inequalities (applying the
known estimates for M three times).

Next we turn to higher dimensional analogues of Theorem 2.4. We
suppose that £2 is an odd integrable function on S”~! and we introduce
a singular integral operator T\, by

2(y/lyl)

—y)d
D flz—y)dy

Tof(z) =p. [

for f sufficiently smooth. We denote the family of real polynomials of n
variables and degree at most k by

U (k) = {P(y): P(y)= > o'}
IvI<k
where ¢, are real coefficients indexed by multi-indices v = (y1,...,vn)

in R™. We consider the maximally modulated operator Tg"(k) and we
seek bounds for it. To study this operator we introduce the directional
maximally modulated singular integral operator associated with ¥, (k)
along the direction of a unit vector # as follows:

dr
.

Hy"® f(z) = sup
YeW, (k)

p.v./ f(x — rg)e2 @=ro)
R

where f : R" — R and z € R™. A simple argument using a suitable
orthogonal transformation reduces the LP(R™) boundedness of H g’ n®) o

that of HZ"(k), where e; = (1,0, ...,0). For instance in the case k = 2, to

-----

a one-variable polynomial of degree at most 2 with coefficients depending
on xa,...,T,. Then we have

HHz"Q)inp S/-'-//(Hlpl@)f(-,xg,...,zn))(:cl)pdazldxg...dxn.
R

Rn—1
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Assuming the result in [L], and applying it in the first variable, the latter
is controlled by a constant multiple of || f||%,.
We now employ the method of rotations to write

1505w <5 [ 100 @) .

We can therefore obtain the boundedness of Tg"@)

that for H¥1(?). We conclude the following result:

as a consequence of

Theorem 2.5. Let 2 be an odd and integrable function on S~ '. Then
for every 1 < p,q < oo and every weight w € A, there is a constant
C = C(p,q,w) such that

W (2
ITE™ oy < C 1l o)
holds for all f in LP(w) and also

(S5, <l

holds for all sequences { f;}; in Ly, (w). Moreover, these estimates are also
satisfied by (Tg"(z))*

LP(w)

Finally we consider the operator defined by

Ty ™ @) = sup
YEW, (k)

b, f@k%w“ﬂuax—wdﬂ
R’ﬂ

= K(y). In view of the trivial estimate

T f) < 15" f(a)

we conclude that all weighted and vector-valued estimates that hold for
T gn(z) are also valid for Tg"@). At this point it is unclear to us whether
boundedness for T g"(k) holds when k£ > 3 even in the unweighted case.
However, it is worth mentioning a recent theorem of Stein and Wainger
[SWa] stating that if the family ¥, (k) is replaced by the subfamily ¥, (k)’
consisting of all polynomials in ¥, (k) with no linear term, then the cor-
responding operator T g"(k) is LP(R™) bounded for all 1 < p < oo. This
result should be compared with our observation that the operators Tvg"(z)

are LP bounded (even on weighted spaces) with no restriction on the lin-
ear terms. It is unclear at this point how to combine these two results to

obtain the boundedness of Tg”(k) for all £k > 1.
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Finally we note that Theorem 2.5 can be also extended to the case
where 2 is even and of class Llog L(S™1). To achieve this we need to

know that for such {2, TQ”(Q) is LP(R™) bounded for all 1 < p < oco. This
result requires explicit estimates from the proof of Carleson’s theorem [C]
and can be obtained by a modification of the proof given for linear phases
in Sjolin [Sj].

Naturally Theorems 2.4 and 2.5 can be extended to polynomials of
degree k provided an a priori LP estimate is known to hold for H w1 (k).
This would allow one to replace ¥, (k)" by ¥, (k) in the theorem of Stein
and Wainger [SWa]. But this seems to be a difficult task and is rather
elusive at present.

3. Proof of the good-\ inequality (1)

We fix fin |J LP(R"™) and consider the open set
1<p<oo

Q=A{Tf(x) > A} =]y,
i

where (); are the Whitney cubes. We define @7 = 10 Vv/n@Q; and Ry =
100y/n @7, where a @ denotes the cube with the same center as ) whose
sidelength is al(Q;); here [(Q;) is the sidelength of @);. These Whitney
cubes satisfy that the distance from Q; to £2¢is at least 24/nl(Q;) and
at most 4,/nl(Q;) and therefore Q; must meet £2°. We so fix a point
y; € 2°N Q5. For each j we write

_ £ o
F=Fo+ o= FXar T X@rye -
We now claim that it suffices to show that :

{r € Qi T0f(x) > 30 Mof(x) <90} < Cur7 |Q) (12)

Once the validity of (12) is established, we use standard properties of
Ay weights and there exist g9, Co > 0 (that depend on [w]a_ and the
dimension n) such that

w{z € Q;: T2 f(z) > 3\, M, f(z) < YA} < Co C2 0 w(Q;).

Then a simple summation on j gives the desired estimate.

Then we prove (12). We may assume that for each cube Q); there exists
a zj € Qj such that M, f(z;) <A, otherwise there is nothing to prove.
Then,

{z€Q;: TP f(x) >3\, Myf(z) <y A} <)+ 1
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where
I ={zeQ; :TLf(x) >\ M. f(z) <7},
Io=|{z€Q; TP fl(z) > 2)\, M, f(z) <y A}|.

To control the first term we need to observe that T also maps L"(R")
into L™*°(R™). To see that we use that T is a Calderén-Zygmund operator
and thus it satisfies the Cotlar estimate Ty g(x) < C Mg(x)+C M (Tg)(x)
and then

T, (M f)(x) < CM(M® f)(z) + C M(T(M® f))()
< CMf(z)+CM(T"f)(x)
which yields T f(x) < C M f(x) + C M(T® f)(x). Using the fact that M
maps L™ (R") into L"*°(R") and that T? is of weak type (r,r) it follows
that T’ is bounded from L"(R") to L™ (R").
Now we estimate I3 as follows:

) C ;
R <lfe R TR >N < 1 [ IR
Q1 M, f(z)"
<C -2 / f@)| de < C 222 |Q5] < CH7 Q5.

Next we are going to show that I = 0 if we take ~ sufficiently small and
consequently

{z € QTP f(z) > 3X\, M, f(z) <y A} < I+ I3 < Oy [Qy,

which yields (12).
Take € > 0 and ¢, € @. Then, for every z € Q;,

| To(M® fL) (@) = To(M® fL)(y;)| < Li + Lo + L,

where

L= / K (2,9) — Ky, )| |2 (0)| dy,
lyj—yl>e
L= / K (2, )] | £, (4)] d,
ly;—yl<e<|z—y|

L | 1 ) 12, (9) dy
lz—y|<e<|y;—y|
Since y € Q7", ,z; € Q; and y; € QF we have

3 ly—4l <5 0 _ly—zl 40
47 ly—y;| — 4 41 = Jy—=| ~ 39
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We estimate Li. Note that |y — z;| > 49n£(Q;). Besides, the smoothness
of K leads to

[z —yil™
L1§/|y y‘>600m|fgo(y)|dy
-

<cuqy | !

s W)l dy < CMf(z5),
y—z1>49n @) 1Y — 2" !
where for the last inequality one has to break up the integral into dyadic
annuli and sum up the geometric series. For Ly, note that |y — z;| < 2¢
and then

Ly < /| “ iy < S 1F)] dy
Y

— n n
i—yl<e<|z—y| [z =yl &7 Jly—zj|<2e

< C' M f(z))-

Finally, for L3 we use that |z —y| > 3¢/4 and |y — z;| < 40¢/39. Thus,

(&) : C
Li< | AWy < 5 7l dy
lz—y|<e<|y;—y| |5C - y| € |y*2j‘§%€
< CMf(z)).
Collecting the three estimates we therefore obtain
| Te(MP L) () = To(M% FL) (y))| < C M f(z)
and consequently

T fl(x) < TL £, (y;) + C M f(z;). (13)

Now we want to replace the first term in the right hand side by T2 f(y;).
We can do that but we get some extra terms M f(z;). We claim that

[T (MO F) ()| < T (y;) + C M f(2). (14)

To show this estimate we first let R% be the smallest number and R{ be
the largest number so that B(y;, R]) C Q}* C B(y;, R}). If ¢ > Ry then
Q3" C B(yj,¢) and hence T (M2 f5,)(y;) = T-(M® f)(y;). In this case
(14) is trivial. On the other hand, if & < R{, then To(M® fL)(y;) =
TRJl- (M® £,)(y;). So, it remains to consider the case R} < ¢ < R}. We
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use that Q7" C B(yj, R%) and hence T’ -(M%fgo)(yj) = TR; (M¢af)(yj).
One can easily see that |y — y;| > 5\2f R] and thus
TE(M¢afgo)(yj) +T j(/\/l%fgo)(yjﬂ

L) dy + T f(y;)

T (M ) (y;)| =

IN

IN

()l dy + T f(y;)

|
/<|y] y‘<RJ ’x_y’n

=2 R)<|y;—y|<R} ]x—y]"

o
C

: dy + T2 f(y;
< G /| o TN T2 50

< CMf(z) + T2 f(y;),

where in the penultimate estimate above we have taken into account that

3
ly — ly —y;| < 2R, Ix—y\ZZIy—yj\_iR]

10/

Then we have proved (14) which together with (13) yield T2 fZ (z) <
T2 f(y;) + Co M f(z;). Recalling that y; ¢ 2 and that M, f(z;) < Ay we
observe that

40 5
41397

TY flo(x) < A4 Co My f(2) S A+ Coy A,
for every x € Q;. If 0 < v < 79 = C; ', then T? fi.(z) < 2 and so
=|{z € Q; : TP fl(x) > 2\, M. f(x) <y A}| =0 =0,

as desired.

4. An alternative proof of Corollary 1.2.

As we mentioned earlier, Corollary 1.3 can be obtained as a consequence
of the good-\ inequality (1) using standard techniques. There is however
an alternative approach based on the sharp maximal function that leads
to similar estimates. We discuss here this approach.

Proposition 4.1. If T? maps L"(R") into L™ (R™), then for every f €
L°(R™), we have
M#(T? f)(x) < C M, f(x).
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Proof. We fix x and some cube ) > z. We write x¢ for the center of Q).
We split f as follows

Fw) = f1(@) + Fo(@) = F(@) X (@) + £(2) Xigrye ).
where Q* = 2/n Q. Set ag = T? fo(xq). Then,

ml?’ / 1T f(y) — ag| dy
| sup [T(M? f)(y)| — sup IT(M® f2)(zq)|| dy

’Q‘ Q acA
< = [ sup [T(M? f)(y) = T(M® fo)(xq)| dy

’Q‘ QacA
< S sup | T'( M fr) )(y)| dy +

’Q‘ QacA

sup [T(M? fo)(y) — T(M®* fo)(zq)| dy
|Q| QacA

=I1+11I.

For the first term we use the hypothesis on T¢:

I<7 quf 7,00 (RM r, n f a n Q
’Q| || 1||L R)HXQHL 1(Rn) ’Q‘ || 1||L (R™) | |

d f(x).
|Q| y)I" y SCMf(w)

The estimate for I1 follows from the smoothness condition assumed on
the kernel of T'. Let y € @ and « € A. Then,

[T(M 2)(5) = TM* 2)(a0)] < [ 1K(0.2) = K(og.2)] I fa(2)| 0=

ly — xq|”
< co x| f(2)|dz
/(Q*)c |z — xg|™tT
1

o aoi vt I —agrr WAl dz < OMf(@) < CM: f(),
Z—xQ|>

<CUQ)

where the penultimate estimate follows by breaking up the integral in
dyadic annuli. Therefore, I1 < C M, f(x) and

ml” /Q\Tdsf(y) —aq|dy < C M, f(x),

which leads to the desired estimate. O
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Remark 4.2. We point out that the weak type (r,r) assumption on T'® has
been only used in term I to control T?f; = T®(f Xg+) in the cube Q.

Indeed, the same estimate remains true if the assumption that 7¢ maps
L"(R™) into L™*°(R™) is replaced by a corresponding local version

TS fllzroo@) < Collfllrr o)

for all cubes Q C R™ with Cy independent of (), where T, 5 denotes the

localized operator given by Tg (x) = T?(f Xo)(T) x@(x). In this case
we have that

1 1
I = — / ]"45 S T T¢* 7,00 * r’, n
o fi(y) 0] 1T fllLreo @) | X 1 ey
C 1
< TC;I | fllzr @) 1QI7 < C M, f(z).

We now deduce Corollary 1.2 from Proposition 4.1. We show that for
all 0 < p < oo and w € Ay estimates (2) and (4) hold while we leave the
proofs of (3) and (5) to the reader. For these estimates to make sense we
should assume that the left-hand sides are finite. As we observed in the
proof of the good-A inequality we have

T? f(z) < CMf(x) + C M(T?f)(x).

Also, T®f(z) < M(T®?f)(x) for a.e x, by the Lebesgue differentiation
theorem. Therefore, it suffices to show that

M(T? f)(z)P w(z)dz < C M, f(z)P w(x) dz, (15)
R” R”

for all 0 < p < o0, w € Ay and f € L°(R™). Let us fix f € L°
with supp f C B for some ball B, 0 < p < oo and w € Ay. Without
loss of generality we may assume that w is bounded since otherwise we
may replace it by wyr = min{w, k} € A whose characteristic constant
is uniformly bounded by the A, characteristic constant of w. In this
way, wg is bounded and if we get the desired estimate for wy with no
dependence on k we can let & — oo to obtain (15). We will see that this
assumption is only used to assure that a certain quantity is finite. We can
also suppose that the right hand side of (15) is finite because otherwise
there is nothing to prove. Then, by Proposition 4.1 we have

- M(T? f)(z)P w(z)dz < C - M#(T? f)(x)P w(z) dx

<C M, f(z)P w(x) dz,
Rn
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whenever the left hand side is finite. Note that the first estimate arises
from the well-known Fefferman-Stein’s inequality

Mg(z)? w(z)de < C M7 g(x)P w(zx) da
R" R™

for all 0 < p < 00, w € A, and whenever the left hand side is finite (see
[FS]). Therefore, we only have to show that the left hand side of (15) is
finite. Recall that we have also assumed that the right hand side is finite
which implies

w(z)

00 > M, f(z)Pw(x)dz > C(f) /Rn ( dx. (16)

Rn 1+ |z

Note that if y € (2 B)¢ then T?f(y) < C(f)/(1 + |y|)* = C(f) h(y) and
then

I= - M(T®f X2 p)e) (@) w(z) de < C(f) - Mh(z)P w(z) dz
1 +logt |x|\P w(z)
<C(f) /Rn <W> w(z)dr < C(f) /Rn(1+|x|)nrpdx< 00,

by (16). On the other hand,
[l
Il = M(T®f )P wx)de <C L L))
(4B)e ( X2B)( ) ( ) (4 B)e <1+‘$|)np

< C P ) T@ proo n / &)n
<Cl Xyl (R (Al &) Jgn 1+ [z]) ¥

w(z) dx

dzr

P w\T
< C|B‘5 Hf”pr(Rn) /IRn(l—i—|(:L‘|))nrpd:E < Q.

Finally, since w is bounded, for ¢ > max{r/p, 1},
1= [ M@ X)) wlo) do
4B
1
< [wll oo gy 14 BI7 | M(T? f Xo ) p-a(eny-

Since p-q > r > 1, then M is bounded on LP9(R™). Next, Proposition
4.1 implies that

HTQSQHBMO(R") < Cllgllpoe®nys g € L2 (R"),
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which by interpolation with 7% : L"(R") — L"*°(R") gives that T? is
bounded on L*(R"™) for all r < s < co. In particular, since p-q > r, T? is
bounded on LP4(R™), which eventually yields

1
111 <C ||wHL°°(R”) ’B|q/ Hf“lzp-q(Rn) < 00.
Collecting these three estimates we conclude as desired that

M(T? f)(x)Pw(z)de < T+ 1T+ 11T < co.
]Rn

5. Proof of Theorem 1.4

As mentioned in the introduction, Theorem 1.4 will be proved by using
some Yano’s extrapolation type result inspired by [SS]. Unfortunately the
results in [SS] cannot be applied to T or its localized versions. We need
to suitably adjust the ideas from the articles [SS], [Sol] and [So2] to derive
the desired inequality. The following theorem is quite crucial in our work
and its proof is postponed until later in this section (Subsection 5.2).

Theorem 5.1. Under the hypotheses of Theorem 1.4, for every cube @)
and every function in Ly(Q) we have that

T3 Izt (@uie) < C 1 I7me:
where C' does not depend on (.

To prove Theorem 1.4, we will first focus on the approach with the
sharp maximal function. Afterwards, we will sketch the proof of the good-
A approach.

We are now going to obtain the pointwise estimate for Mf(T‘p f) when

0 <6 <1, where Mﬁg(x) = M#(|g|%)(x)'/°.
Proposition 5.2. Let f € L°(R™). Then
MF(T?f)(x) < Cs My, f(z), 0<d<1.

The proof of this result is given below in Subsection 5.1.

We now deduce Theorem 1.4. We want to obtain (9) and the analog
for T?. Since T is a Calderén-Zygmund operator we have the following
Cotlar estimate

Tig(z) < C(6) (Mg(z) + Ms(Tg)(x)), 0<é6<1.
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We apply this estimate to g = M@ f and take the supremum over a € A.
This gives

T? f(x) < C(8)(Mr,, f(x) + Ms(T? f)(x)) (17)
since t < Y'(¢t) for all t > 0 and so M f(z) < My,, f(z). In view of the
Lebesgue differentiation theorem we have T¢ f(x) < Ms(T? f)(z) a.e.. It
therefore suffices to show that Ms(T? f) is controlled by My, f (in norm).
Then, if 0 < d < 1,0 < p < 0o and w € Ay, we use Proposition 5.2 to
obtain

[ )@ @) de = [ (TP @) (o) do
<c | MH# (T £°) (2)5 w() da
=C . MF(T? ) ()P w(x) da
<C [ My f@) wia)da.

From this we eventually deduce the required estimates

1T fll o (w) < C 1M, fllzo gy 1T Fll o) < C M, fll oo )-

Then by the extrapolation results in [CMP], [CGMP] we get the analogs
in LP>°(w) as well as the vector-valued estimates. These extrapolation
results also yield estimates in Lorentz spaces, Orlicz spaces, and in other
rearrangement invariant function spaces. This completes the proof with
the approach based on the sharp maximal function.

The good-A approach relies on a slight modification of the argument
given in Section 3. We follow the same steps changing M, f by Mry, f at
any place it occurs adopting the same notation. Note that at the very
end of the estimate of I2 we used before that M f(z) < M, f(z). In this
case M f(x) < My, f(x) since t < T(t), and so I, = 0. Thus, we only
need to change the estimate of I()\ since this is the only place where the
boundedness of the operator T is used.

We fix 0 < 6 < 1 and use (17) to observe

_H:UER” Tq;fo(x >)\}‘

< [{z e R": C(6) (M f§(z) + Ms(T? f3)(2)) > M}

<H{z:C( Mfo(x)>)\/2}‘+‘{x C(6)M, (Tgpfo)(:v)>)\/2}‘
= |Ex| + [F)|.

We estimate the first term'

C C
B < 5 [ 15 @Ide < SIQIMI) < 10 M) < O 1@,
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where we have used that z; € Q; with My, f(z;) < v A. For |F)|, a little
bit more of work is required

: C .
B = [z e R": M(IT*f§°)(z) > C A} < 35 /F T 13 () dy

C : :
~ ([ mRwlas [ Rl )
Fn2Q3” F\2Q7"

C

= F (Bl + Bz)

To treat term B; we pass to the local operator Tfo*:
J

| ) -

By =C /F T W) dy < Cs [F"° || T30 F3 | 1. gy
A

= CIE"° Q51" | T s f3

< CIQiI° IFAI IS I, 2
< O1Q;° |FA|*70 My, f(2)°
< CQ; P |IFAI' ™ (v A)°,

4
-

where we have used Kolmogorov’s inequality and Theorem 5.1. As before,
it is crucial to note that the previous constant C' does not depend on the
cubes. We deal with term By as follows: for y € F) \ 2@Q;* we have

€o

P £ 1 —Z z z z z
T f0<y>§/@* Ky~ 2)|17(2)]d s/Q;* erdCIE
<y MG < OMI(5) < O M) < O

since z; € Q; C Qj". Thus By < C[F)\| (v A)%. Collecting the estimates
for By and By we eventually obtain

C _
[Fy| < X (By + B2) < C1|Q;|° |Fal' 2 4° + C2 | Fy|+°.

Take v such that Co~° < 1/2. Since |Fy| < oo (this follows by using
that M and T® are bounded in LP(R"), here we may have to consider
functions that are in some LP(R™) for p > 1), we get

|FAl <201 1Q;1° |FAl"°+°

which yields |Fy| < C'v|Q;| and therefore I < C~|Q;|. This completes
the proof of Theorem 1.4 using the good-A approach.
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5.1. Proof of Proposition 5.2

We proceed as in the proof of Proposition 4.1. We fix x and a cube @ > .
We split f = f1+ f2 as in that proof and define a¢ in the same way. Then

1 @ § 116 1 @ AT
o / I7* 0010~ laaldy < i [ [750) ~ acl” dy

|Q, /T% Wiy + 7 [ sup [T fo)) = T o)) 'y

QacA
? d
IQ! T fi(y)°dy +
(i [ sup [T(MP f)(0) — TP ) () |y
’Q‘ Qaegl 2 ? ? Y
:I(S_'_(Ij)da

For I1, as in Proposition 4.1, we observe that II < C' M f(x). Notice
that M f(z) < Mpy,, f(z) and then we get the desired estimate. Now we
have to analyze Is and this is the only part where the boundedness of the
operator is used. Note that f1 = f x- and therefore

n C
I < (2 yn) /Q TE 0 i) < e T8 o

< Gs|If 1%, g+ < Cs Mr,, f(2)’,

where we have used that 0 < § < 1, Kolmogorov’s inequality, Theorem
5.1, and also that x € @ C Q*. (Note that the constant is independent of
the cube Q ) Thus we have seen that

ol / 7% £(4)° — laol®|dy < I5 + (I1)° < C My, f(x)’,

which yields the desired estimate. ad

5.2. Proof of Theorem 5.1

Behind the main estimate claimed in Theorem 5.1 there is a general result
in the spirit of [SS]. We state it precisely:

Theorem 5.3. Let S*f(x) = sup; |S;f(x)| be a mazimal operator such
that each S; is a singular integral operator given by a kernel sj(x,y)
which is defined away from the diagonal x = y. For any cube @, we
set Séf :QS*(f XQ) Xg and in an analogous way we define Sj o whose

(

kernel is s (z,y) = sj(2,y) Xoxo(®,y). For any cube Q, we assume
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(a) s?(ac, ) € LYQ, ug) for a.e. z € Q.

(b) 3?(-, y) € LY(Q, pg) uniformly in y € Q.
(¢) Given € > 0, there exists 6 = (e, j,Q) such that

/Q |52 (z,31) — 5P (. y0) dpg(e) < e, |y1— w2l <6, y1.12 € Q.

(d) For all A C @ and XA > 0, and for some m > 1,

* ¢ C m
Hal S5 (Xa)(®) > A} < 5F m(a(4) = T pal4) <1+1og+ MQ1<A>>

where the constant Cy does not depend on the cube Q).

Then, there exists a constant C, independent of QQ, such that for all func-
tions f in Lr,, (Q) we have

HSéfHLL‘”(Q,,uQ) <C ||f||Tm7Q =C Hf”L(logL)mlogloglogL,Q'

We will give a proof of this result in the next section. In the rest of this
section, we apply Theorem 5.3 to derive the desired estimate in Theorem
5.1.

We would like to use this extrapolation result for the maximal operator
Tgf(w). Notice that the kernels are €27 %= (%) [ (2 —y) Xoxq(,y) which,
because of their singularity, may not belong to L'(Q). We avoid this
difficulty by defining

T?f(z) = sup T ((e"920) — e @) (1)) (2)],

and analogously its localized version fg . Note that we have incorporated
the factor 27 into the function ¢, to make the computations cleaner.
Using the notation of Theorem 5.3, S* = T'® and, by hypothesis, we can
assume that A is countable. Then, we have

% f(a) = T f(x)] < sup T ("% f()) ()] = ITf (=), (18)

and the same holds for the localized operators. Since T is a Calderén-
Zygmund operator, it is of weak type (1,1). Then, for any cube @ and
for every A C Q we have

no{z : [To(XA)(#)] > A} < @ [{z € R : [T(X 4)(@)| > A}
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where C' does not depend on ). This estimate, (10) and (18) yield

pale s TEOCA@) > A} < S om(a(4).

where C' is independent of the cube @). This means that property (d) in
Theorem 5.3 holds. ~
Let us fix some arbitrary cube Qg and o € A. The kernel of TbeO is

Ka(z,y) = K& (x,y) = (¢! W) — ') K(z — y) Xgyxq,(@:)-

Next, we have to check that K, (z,y) satisfies (a), (b), (¢). The first two
go as follows: if z € Qq, then

/Q [Ka(2,y)] duqo(y) < co[VéallL(qo) |Q0|_1/ | —y|' " dy
0

Qo
_ 1
< ¢0[[Voall oo (@) €n [Qol ™7 < o0,

which gives (a). In the same way, we get

_ 1
s / Ka(,9)| dpigo (2) < co |V ballz(0n) en | Qo] 4 < oo,
yeo 0

and (b) holds. The verification of (c¢) requires more work. We fix € and we
have to find 6 > 0 such that

/ |Ko(z,y1) — Ka(z,y2)| dug,(z) < ¢, ly1 — y2| <6, y1,y2 € Qo.

0

Note that it is sufficient to prove the same estimate with dz in place of
HQ,, and that § might depend on the cube Q9. We fix € > 0, set By =
B(0,/n£(Qo)) and define the function H(z) = |z| K (z) xp,(z) € L'(Bo)
because | K (z)| < ¢g |x|~". Then, there exists h € C5°(By) such that

&
8(IVoallLe=(o)

Setting Cy, = HV(ﬁaH%oo(QO) + | D?¢a| 100 (qq) We take

1H = hllz1(B,) <

€ 1
O<er < — .
16 ||h| oo (Bo) Coa [Qol

Then, for y1, y2 € Qo,

/ |Ko(z,11) — Koz, y2)| da

0

- / Ko, 1) — Ko, ya)| do + / Ko, 1) — Kale, y0)| de
QA

B

= A+ B,
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where
Qa = QoNB(y1,e1)NB(y2,1), QB = Qo\(B(y1,€1)NB(y2,€1)).
We start with A and define
ei ¢a(y) _ ei d)a(x)
O(.’E,y) - \m—y\ XQonO(x7y)'
Hence,

Kao(z,y) = O(z,y) H(z —y)
= O(z,y) (H(z —y) — h(z —y)) + O(z,y) h(z —y)
= I(z,y) + II(z,y).
Note that for any y € Qo, we have

[ e < [ Woulisqy [ 15 —y)— - )| ds

Qo Qo
€
< 90allz=ay [ 1HE) = h(:)ldz < 5
Bo 8
and therefore, for y1,y2 € Qo,
£
/ (2, 1) — (2, o) do < & (19)
Qa 4

On the other hand, for 41,72 € Qg

/ TI(2,91) — T(z, o) da
Qa

< [ 10l b =) ~ b~ )| do -+

Qo
" /Q b = )]0z, 1) ~ Otz o)
< IVoallLoe(@o) IVl Lo (By) |Qol [y1 — y2| +
IR e 0 /Q 10(a, 1) ~ O] da-. (20)

Then we have to estimate the last displayed integral. Let « ¢ {y1,y2}
such that x € Q4 = Qo N B(y1,€1) N B(y2,¢€1). Using the order 1 Taylor
expansion for the function g(y) = e’®*) centered at  we obtain
’O(‘T7 yl) - O(.’L’, y2)’
Yy1—2 Y2 — T
< ’vya(ajﬂ -
lyp— [ y2 —
< IVgallze(@o) [m(yr — ) = m(y2 — )| + [ D?gall L= (o) €1
< IVoalLee(qo) Im(yr — x) — m(y2 — )| + Cy, €1,

1
+3 1D%gallpo (o) (Iy1 — @] + |y2 — )
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where m(z) = xp,(z) - #/|z| € L'(R™). Then,
[ 10G.u) - 0w, do
Qa

< [V allze(gu) / m(ys — ) — m(ys — )| dz + Co, 21 Qol

0

<9 alli@o [ mCe 0= m) = m(E)] =+ Co, &1 Q.
We fix .
9
16 [|hll Lo (By) IV @all Lo (o) |

Since m € L'(R™) we can use the properties of the translation operator
in this space and there exists d; > 0 such that

€2

/ Im(z + Az) —m(z)|dz < e, whenever |Az| < 0.

Thus, if |y1 — y2| < 61, we have
€
0(2,11)~O(a, o) d < [Vl (o) 2+ Cor [ Qo] < g ——
Qa 8|17/ Lo (Bo)

We set

5 . {5 € 1 }
A =min< oy, -
8 [[Voall Lo Qo) IVAll Lo (By) Qo
and, for |y1 — y2| < d4, the latter estimate plugged into (20) yields

/ IT(x,51) — I(z, )| da
Qa

9

< IVéallLoo(@o) VRl Lo (Bo) [Qol 1y1 — 2| + Bl oo (g
<&
T

This and (19) provide

)SHhHLOO(BO)

15
A< / () — I(ar,yo)| d + / IT(x, 1) — Iz, yo)| d < &,
Qa Q 2

A

whenever |y; — ya| < da.
Let us get a similar estimate for B. We break up @ p as follows

Qs = Qo \ (B(y1,€1) N B(y2,21)) = (Qo \ B(y1,21)) U (Qo \ NB(y2,21))
= Qp U Q%
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and then
B< / Ka(@,y1) — Ka(e,y2)| da + / Ko, 1) — Kal,ys)| da
QL Q%
= B1 + Bs.

We we are going to get an estimate for B1, for Bs we only have to switch
y1 and y2. Let y1,y2 € Qo be such that |y; — yo| < 1/2, € QL. Then
|x—y2| > e1/2 and so x # y1, y2. We estimate the difference of the kernels:

|K0¢(x7 yl) - KO&(I7 y2)|
< [ef90) — i000)| |K(x — ) — Kz —3)| +
+\ei¢a(y2) _ ewa(yl)‘ |K (2 — 1)

<2|K(z— ) = K(z — y2)| + [[Véall Lo (qo) [y1 — 2l [K(z — 1)l
Note that |[x—y1| > €1 > 2 |y1 —y2| and therefore we can use the regularity
assumed on the Calderén-Zygmund kernel K to obtain

_ T _ T
ly1 —gol” . ly1 — y2|

Kz — — K(z — <
| (IL’ yl) ((L‘ yQ)‘ > Co ’ZL’ _ y1|n+7 = €0 6717,+T

On the other hand, by the size condition of K we have
Co Co

Kz—yn)| < ——< —
Ko=)l < 0 <

Hence,

Blg2/B|K(a:—y1)—K(a:—y2)da:+

1

V0l b el [ 1K)l
1

2¢ \Y% 0 (0g)€0 | Q0
2wl 90 oro Q

< 1 |
ertT

ly1 — v
1

whenever |y; — y2| < e1/2. If we set

5 —min{gl E 5711 [E 8711+T :|1/7'}
b 27 8 [[VoallLeo(@o)co |Qol” [8 2co|Qol

and we assume that |y; — y2| < dp, we have proved that B; < ¢/4. In a
similar way we also obtain that By < /4 which yields

B< By +By< %’ whenever |y; — yo| < dp.
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Putting all together we have shown that given € > 0 there exists § =
min{d4,0p} (that depends on «, Qo, €) such that, for yi, yo € Qo we
have

/ |Ko(z,y1) — Ko(z,y2)|de < A+ B <e, whenever |y; —y2| <.
Qo

This gives (¢) in Theorem 5.3. This concludes the proof that all conditions
of Theorem 5.3 apply to Tg . The conclusion of this theorem therefore
yields

ITG fll Lt (@uug) < C lIf I

where C' does not depend on Q. a

6. Proof of Theorem 5.3

The proof of this theorem is inspired by [SS]. The exact formulation of the
theorem in [SS] does not exactly apply to our setting and in this section
we suitably modify the arguments given in [SS| to obtain the proof of
Theorem 5.3. It is crucial for us to obtain localized estimates that do not
depend on the cube, otherwise our arguments will not work.

We fix an arbitrary cube Qg. Given N > 1 we write S} f(z) =
supi<j<n |S;f(x)| and we use the notation S¥ o, for the corresponding
localized operators.

The proof splits in the following steps:

Step 1: Given a bounded function 0 < f € Ll(QO,,uQO), the sequence

{ag}r with ap = 0 and a = 22" for k > 1, and € > 0 there exists kg > 1,
so that f(z) < ak,, and a simple function h:

k:() o
h= Zak XFk = Zak XFk
k=1 k=1

such that
(1) F, € G = {x € Qo : a1 < f(x) < ax}, k > 1 (note that
FkZGkZQfOI'k>k0).

(i) | 1(a)dugy(a) = [ hia)dgy(a) = an gy (Fr).
Gy Gy,

(i) 0 SN,Qo (f = h) () dugy(x) < e.
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Step 2: For h as above
Qo {x : SH,h(x) > A}

gf(w/%rm(f)dmo) <1+1og<1+/

where C' does not depend on @y nor on €.

Yon(f) dqu)>,

0

Step 3: (155, /111~ (@opqy < C Ifllrqs for all f € Ly, (Q.piq) and
where C' does not depend on ().

Proof of Step 3: By the monotone convergence theorem, it is enough
to fix N > 1 and obtain estimates for S]*V,QO with C independent of N.
Notice that || - ||L1,00(Q07uQ0) is a quasi-norm and || - ||r,,,q, is a norm for
the Banach space L, (Qo, 1Q,)- On the other hand, SJ*V,QO is a sublinear
operator, thus it suffices to show

158071128200 00) < €

(with C independent of Q) for any function 0 < f € Ly, (Qo, ptg,) with
| fll7rn,@ < 1. On the other hand, without lost of generality we can assume
that f is also bounded: set fM(x) = f(x) when f(x) > M with M some
fixed large number, then by (b),

/SNQO z) dug, (@ <Z/ S50/ ()] dpg, (z)

gisup(/Q 577 (2, 9) | dpgy (2 >)/Q £ () iy (v)

=1 SO

< C(Qo, N) HfMHLl(QO,MQO) — 0, as M — oo.
So, we take 0 < f € L*°(Qo) such that || f||r,, g, < 1 which implies

| Tulf)duo, <1 (21)

0
Let € > 0 to be chosen. Let A > 0 and 0 < n < X\. We apply Step 1 with
g =mne. Then Sy o, f(x) < Sy o, (f — h)(z) + S¥ g, M(z) and

1o {x : SN, f () > A}

< ,qu{x : S]*V7Q0(f — h)(z) > n} + ,LLQO{ZE : S]*V’Qoh(x) >\ — 77}

1 C

é E ||S;(V,Q()(f - h)HLl(QO’/‘LQO) + )\ _ 77

1. Cy Co Co

; i s+A_77—>7, as 1,6 = 0.

IN
I
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Note that in the second estimate we have used Chebichev’s inequality for
the first term and Step 2, with (21), for the second. The third estimate
is (4i7) in Step 1. We would like to point out that Cp is independent of
Qo- In this way, we have shown that

1500 f 1 L3120 (Qouqy) < CO0

as desired. O

Proof of Step 2: Let us recall that ¢,,(t) =t (1 + log™ %)m We are
going to use the log-convexity of the L1°° norm (see [SWe], [K]), namely,

if {g;} is a sequence of functions such that HngLl,oo(QO’ILQO) < Cy and
{Bk}k is a sequence of non-negative numbers then
<6CoN({B 22
H > 9] 1 ) S FCON BN (22)
where > 5
N{Ber) =D B (1 + log H)
. B
Note that
158, (X ) | L1ee
Sé()( XFk a ) _ Qo FJIIL F(QO:H‘QQ) S CO
P (1o (Fk)) /) | L1oo(Qo uay) Pm(1Qo (Fk))

where we have used (d) and Cp does not depend on Q. Thus, writing
b, = pg,(Fr), we can use (22) to get

* * XF
HSQOhHLl’OO(QmMQO) < H Zak @m(bk) SQO( . >
k

©m (br)
<6 C()N({(Ik; Som(bk:)}k)

We are going to modify the functional A in the following way: let {0}
be a non-identically-zero sequence of non-negative numbers. Let § =
> i Bk > 0. Then using the submultiplicativity of o1,

p 1 8
Niokh) =5 3275 (1105 5 ) = Se(%)

<B¢1 (;) Ek:%(ﬂk) = (1 + log™ %:&) N{Bitr)

Ll'OO(QOHU'Q())

where N'({Br}1) = 325 ¢1(Br). In this way,

158 1l 1.5 (@0 puq) < 6 Co (1 +1og" Y ay gom(bk)) N {ar om(bi)})-
k
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Lemma 6.1. Let m > 1, there exist C1, Co —that only depend on m—
such that for any sequence {fi} with 0 < G <1 we have

S o) < (14327 2 ),
k=1 k=1

> e1(2% em(B) < Co (143 2% 2 (1 4 log k) i ).

k=1 k=1

Lemma 6.2. Let h be the function defined in Step 1. Then,

k m
1o (Fr) 22" 28™ (1 + log k)

WE

27 /QO T (h(2)) dpg, (z) <

T

1

[ 7, (¢(@)) dugy o).

IN

We will prove these auxiliary results later. Recall that we took aj =
22" and wrote by = pgy(Fi), which satisfies 0 < b, < 1 since pg, is a
probability measure. We use the first estimate in Lemma 6.1, and Lemma
6.2 to get

Z ar om(br) < C1 (1 + i 92" gkm bk)
% k=1

<Oy (1 + i 22" 9k (1 4 log k) bk>
k=1

<1 +/Q T(f) diig )

0

On the other hand, by the second estimate in Lemma 6.1, and by Lemma
6.2,

N({awem®i)}e) = > 1(2% om(br))
k=1

< Oy (1 + i 22" 9km(1 4 log k) bk>
k=1

< Oy 4m ! (1+/ Tm(f)dqu).

0
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Thus,

1500l L1 Qo uqy) < 6Co <1 + log™* Z ay wm(bk)) N ({ak @m(br)})

k
§C<1—|—log<1+/

Yo (f) duQ0)> (1+/ Ton(f) dqu)a
as desired.

0 0

Proof (Lemma 6.1). Both estimates are proved in a similar way. Set

:{k21:6k§M}, II:{k21:5k>M}.

Then, using that 7 is an increasing function,

1
=3 2 (B <> 2% gom(ﬂ 2kmk2)

kel kel

1 = 1
_Z 22" g (1 +log” (22" 2k 2)) Cm D 75
k=1

On the other hand,

=3 2 o) = > 2% By (1+10g" ﬂl)m

kell kell

> k k m ad k
<32 B (14 logt (22 25 k)T < C Y 2% 2R

k=1 k=1

Thus,

i2zk em(Bh) = T+ T <0y (14 i?’“ 2 ),

k=1

where C] only depends on m.
We indicate how to obtain the latter estimate. Since both @1, @, are
increasing we have

2@12 Pm ﬂk Z‘P1<2 ¢m<22k21kmk2)>

kel k=1

<Z¢1<k2> . ZM

k=1
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On the other hand,

S =3 02 em(B) = D ¢ <22k e (1-+1og" glk)m>

kell kell

<> o (221“ B (14 logt (22" 2k k2))m>

kell

< Z ©1(Crm 22" gkm Br)

kell

< Cp 30 2% 25 5 (14 log*

)
2% ok
kell 22728 By

oo
< O 327 287 By (1+log™ k).
k=0
Collecting the estimates for X7 and X! we get the desired inequality. O

Proof (Lemma 6.2). The first inequality is trivial: the sets F}, are pairwise
disjoint (since the Gi’s are) and therefore

27 /QO Tin(h) dpg, =27 /QO Tm(;ak XF, > duq,

=277 V() o (Fi)
k=1

o0
=2"" Z 1o (Fr) 92" (1 + log™ 22k)m (1 + log™ log™ log™ 22k)
k=1

<37 pgy(Fi) 2% 28 (1 + log k).

Nk

el
Il

1

For the second estimate we use (i7) in Step 1:

ZMQO(Fk)QQk 2E™ (1 4 log k) :Z/ f(x) dugy () 28™ (1 4 log k).
k=1 k=1"Ck

To finish we only have to notice that G; = {z € Qo : 0 < f(x) <4} and
Gr={reQ:2" " < flx)<2¥}, k>2
Thus, for z € G}, we have

2" < 4(1+1log* f(x)), 1+logk <4 (1+log*log™log™ f(x)).
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Hence, since the sets G are pairwise disjoint

S e (F) 22 27 (1 4 log ) = Z/ F(2) 2™ (14 log ) dpgy (x)

k=1

<4t Z (1+1og™ f(x)™ (14 log* log™ log™ f(x)) duqy ()

< g+ / Tm(f(x)) dpiy ().

O

Proof of Step 1: This step is an extension of an approximation lemma in
[SS]. We will prove it for completeness. It is clear that since f is bounded,
f(z) < ag, for all x € Qo and for some kg > 1. Fix ¢ > 0. Let {Q;} be
a finite family of dyadic subcubes of @)y, which all are of the same fixed
generation (that is, they all have the same side length). The generation
that we are considering is taken in such a way that the length of the
diagonal of any of them is smaller than §, for some § > 0 to be chosen.
Let Gy ={z € Qo : ar—1 < f(z) < ai}. Note that G, = O for k > ko+1.
Since,

| @ duay(e) < wiio(Grn Q)
GrNQy
there exists F. C Int(Q;) N Gy, such that
| @ duay(a) = aw oy (F).
GrNQy

We define Fj, = UZF,i and note that F, = @ for & > kg + 1. Our simple
function is

00 ko
- Zak Xp, = Zak XF -
k=1 k=1
Conclusion (7) holds by construction. The same occurs for (i7):
[ 7@ drae) =5 [ ) dhenle) = ool
k 1

— a1y (F) = /G h(z) dpigy (@),

k
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by the disjointness of the sets {F}}; and also of {G}x. So we only have
to prove (iii). We proceed as follows

N
/ Stgn(f — W)(@) dgo(z) < 3 /Q ;.00 (f — )(@)) dugy (@)
Qo j=1 0

N
= / / sj(z,y) (f(y)—h(y))dy‘ducgo(x)
j=1 0 0
N ko
= ;;Z/QO /Gml si(2,y) (f(y) — ax XFé(y))dy‘dqu(x)
N
1F (W) = ar X et )|y [ |sj(2,) = sj(2,m)|dugy («)
; ;Gk!Ql o / |

where y; is the center of (); and we have used that

| Gw-axm) dy =12 (| £ dno,w)-anoy(FD) =0

GrNQ; GrNQy

Take,
€

2 N Qo 1111 (Qomay)
By (c), for each j =1,..., N, there exists ¢; such that

g =

/Q 152, y1) — 55(2,92)| digo (&) < €0, 1 — vl <& w1142 € Qo
0

We choose 6 = min{di,...,dx}. Since y; is the center of Q; and y € Q;
we have that |y — y;| < diag(Q;) < ¢ and so

/Q|sj<x,y>—sj<x,yl>duQ0<x><so, j=1o N,
0

Thus,

SN, (f — h)(2) dpgy(z) < eg N ZZ / Y) +ak Xpi () dy

=L g

ko
20N 35 [ < 260N Q1 lruma ==

Qo
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