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1. Introduction and Main results

In this article we will be concerned with estimates for maximally modu-
lated Calderón-Zygmund singular integrals on Rn. A Calderón-Zygmund
operator is a linear operator T which is bounded from L2(Rn) into itself
such that for f ∈ L∞c (Rn) (essentially bounded functions with compact
support), we have

Tf(x) =
∫

Rn

K(x, y) f(y) dy, a.e. x ∈ Rn \ supp f .

The kernel K : Rn × Rn \ {(x, x) : x ∈ Rn} −→ C is assumed to satisfy
the following standard conditions

|K(x, y)| ≤ c0
|x− y|n

, x 6= y,

and, if |x− y| > 2 |y − y′|,

|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ c0
|y − y′|τ

|x− y|n+τ
,

for some c0, τ > 0. Associated with T there is a truncated operator Tε
and a maximal singular operator T? defined as follows:

Tεf(x) =
∫
|x−y|>ε

K(x, y) f(y) dy, T?f(x) = sup
ε>0

|Tεf(x)|.

Suppose that we are given a family Φ = {φα}α∈A of measurable real-
valued functions indexed by an arbitrary set A. Then we can define max-
imally modulated versions of T and T? associated with Φ. First we define
the modulation operator

Mφαf(x) = e2π i φα(x) f(x)

and the “Carleson”-type maximal modulated singular integral of T with
respect to Φ:

TΦf(x) = sup
α∈A

∣∣T (Mφαf)(x)
∣∣.

This definition is motivated by the Carleson operator in which T is
the Hilbert transform and the family Φ is given by the linear functions
φα(y) = α y with α ∈ R. We also define the (maximally) modulated
maximal singular integral associated with T and Φ via

TΦ? f(x) = sup
ε>0

sup
α∈A

∣∣Tε(Mφαf)(x)
∣∣

= sup
ε>0

sup
α∈A

∣∣∣ ∫
|x−y|>ε

K(x, y) e2π i φα(y) f(y) dy
∣∣∣ .



Weighted inequalities for maximally modulated singular integral operators 3

The purpose of this article is to present a framework that yields
weighted and vector-valued estimates for TΦ and TΦ? from a single a
priori weak type estimate for TΦ. Our main approach is based on the
good-λ method of Coifman and Fefferman [CF] although we discuss an
alternative approach using the sharp maximal operator. We note that in
the special case where T is the Hilbert transform and TΦ is the Carleson
operator, boundedness on Lp(w) for w in Ap was obtained by Hunt and
Young [HY]. Below we sharpen and extend such weighted estimates to
more general maximally modulated operators.

We denote by M the Hardy-Littlewood maximal operator and by
Mrf = M

(
|f |r

) 1
r where 0 < r < ∞. A non-negative locally integrable

function w is said to be in Ap, 1 < p < ∞, if there exists some constant
C such that for every cube Q (with sides parallel to the coordinate axes)
we have ( 1

|Q|

∫
Q
w(x) dx

) ( 1
|Q|

∫
Q
w(x)1−p

′
dx

)p−1
≤ C.

Letting p→ 1 we analogously define the A1 class( 1
|Q|

∫
Q
w(x) dx

)
‖w−1‖L∞(Q) ≤ C.

The smallest constant C for which the condition Ap, 1 ≤ p < ∞, holds
is called the Ap characteristic constant of w. We also recall that A∞ =⋃
p>1Ap. These classes were introduced by Muckenhoupt in [M] to char-

acterize the boundedness of the Hardy-Littlewood maximal functions on
weighted Lebesgue spaces Lp(w) = Lp(w dx). The reader is referred to
[GR] for a comprehensive account of these topics.

We have the following theorem.

Theorem 1.1. Let T be a Calderón-Zygmund operator and let Φ a family
of measurable real-valued functions. Assume that TΦ maps Lr(Rn) into
Lr,∞(Rn) for some 1 < r < ∞ with norm ‖TΦ‖Lr→Lr,∞. Then, for any
w ∈ A∞ there exist positive constants C0, ε0, that depend only on w,
and γ0 that depends on τ, c0, r, and ‖TΦ‖Lr→Lr,∞, such that for all f in⋃
1≤p<∞

Lp(Rn), for all 0 < γ < γ0, and for all λ > 0 we have

w
{
TΦ? f > 3λ, Mrf ≤ γ λ

}
≤ C0 γ

r·ε0 w
{
TΦ? f > λ

}
. (1)

Using (1) and standard techniques we deduce the following weighted
estimates.
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Corollary 1.2. Let T and Φ be as before. Assume that TΦ maps Lr(Rn)
into Lr,∞(Rn). Then for every w ∈ A∞ and 0 < p <∞ there is a constant
C that depends on p, w, n, c0, τ, and ‖TΦ‖Lr→Lr,∞ such that the estimates
below hold

‖TΦf‖Lp(w) ≤ C ‖Mrf‖Lp(w), (2)

‖TΦf‖Lp,∞(w) ≤ C ‖Mrf‖Lp,∞(w), (3)

‖TΦ? f‖Lp(w) ≤ C ‖Mrf‖Lp(w), (4)

‖TΦ? f‖Lp,∞(w) ≤ C ‖Mrf‖Lp,∞(w), (5)

with the understanding that these estimates hold for all functions f for
which the left hand sides of the displayed inequalities are finite. Conse-
quently, it follows that TΦ and TΦ? map Lp(w) into Lp(w) for all p > r
whenever w ∈ Ap/r. Moreover, TΦ and TΦ? map Lr(v) into Lr,∞(v) for
all v ∈ A1.

There is a way to obtain Corollary 1.2 bypassing the good-λ inequality
of Theorem 1.1. Namely, using the sharp maximal function M#, one can
show that

M#(TΦf)(x) ≤ CMrf(x) (6)

which implies all the previous estimates of Corollary 1.2. For the sake of
completeness, we will discuss this alternative approach as well. The latter
idea has been utilized by [RRT] in the study of Carleson-Sjölin operators;
the terminology refers to maximally modulated operators in which the
family Φ consists of the functions φa(y) = a · y, where a ∈ Rn.

We would like to point out that Corollary 1.2 is weaker than the good-
λ inequality contained in Theorem 1.1. Nevertheless, some recent results
obtained in [CMP], [CGMP] show that from the single estimate

‖TΦf‖Lp(w) ≤ Cp(w) ‖Mrf‖Lp(w), for all 0 < p <∞, w ∈ A∞, (7)

one can extrapolate and obtain all the conclusions of Corollary 1.2 in
the scale of Lorentz, Orlicz spaces, and other rearrangement invariant
function spaces. However, here we prefer to deduce these estimates as a
corollary of the powerful good-λ inequality of Theorem 1.1. This inequal-
ity provides a precise pointwise estimate for the level sets of a maximally
modulated singular integrals and it therefore subsumes all possible norm
estimates; more importantly, it is of intrinsic interest and yields structural
information about such operators.

One advantage of the extrapolation results in [CMP] is that `q-valued
estimates follow from (7) without use of Banach-space theory for Calde-
rón-Zygmund operators, as in [RRT]. Thus, from (2), (4), and [CMP] we
obtain the following:
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Corollary 1.3. Let T and Φ be as before. Assume that TΦ maps Lr(Rn)
into Lr,∞(Rn). Then for every w ∈ A∞ and 0 < p, q < ∞ there is a
constant C such that∥∥∥( ∑

j

|TΦfj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

(Mrfj)q
) 1

q
∥∥∥
Lp(w)

and ∥∥∥( ∑
j

|TΦfj |q
) 1

q
∥∥∥
Lp,∞(w)

≤ C
∥∥∥( ∑

j

(Mrfj)q
) 1

q
∥∥∥
Lp,∞(w)

,

for all sequences of functions fj for which the left hand sides are finite.
Consequently, for every q > r,∥∥∥( ∑

j

|TΦfj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj |q
) 1

q
∥∥∥
Lp(w)

, for p > r, w ∈ Ap/r;

and∥∥∥( ∑
j

|TΦfj |q
) 1

q
∥∥∥
Lr,∞(w)

≤ C
∥∥∥( ∑

j

|fj |q
) 1

q
∥∥∥
Lr(w)

, for all w ∈ A1

for all sequences of functions fj in Lp(w) (or Lr(w) if w ∈ A1). Moreover,
all the above estimates also hold for TΦ? in place of TΦ.

We note that the two last estimates in Corollary 1.3 could also be
obtained as a consequence of the Banach space approach developed in
[RRT] suitably adapted to our framework.

Our next goal in this article is to improve the previously known re-
sults when estimates near L1 are known. Let us explain the motivation for
this problem. We have seen in Theorem 1.1 and Corollaries 1.2, 1.3 that a
maximally modulated singular integral operator TΦ mapping Lr(Rn) into
Lr,∞(Rn) is controlled by the maximal operator Mr. From the proof of
the good-λ inequality, or from the approach based on the sharp maximal
function, we see that Mr was chosen because TΦ satisfies a weak type esti-
mate in Lr. In general, one would like to replace Mr by a better maximal
operator as close as possible to the Hardy-Littlewood maximal operator
(which does not control maximally modulated singular integrals.) This
would require to study the boundedness of TΦ near L1.

Let us consider the Carleson operator, that is the operator

Cf(x) = sup
a∈R

∣∣∣∣p.v.
∫

R

e2πi a y

x− y
f(y) dy

∣∣∣∣
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acting on functions on the real line. Using the notation previously intro-
duced, C = HΨ1(1) where H is the Hilbert transform and Ψ1(1) is the
family of one-variable real polynomials of degree at most 1. It is well
known that C is bounded on Lp(R) for all 1 < p < ∞. Then, we know
that C can be controlled by Mp where p can be taken arbitrarily close
to 1. But p cannot be taken equal to 1 as C is known not to be of weak
type (1, 1). But there is big gap between M and Mp, p > 1; all maxi-
mal operators associated with Orlicz spaces between L1 and Lp, such as
L(logL) or L(logL)(log log . . . logL), could serve the purpose of control-
ling C and other maximally modulated singular integrals in the good-λ
sense previously described.

For C some estimates near L1, better than Lp, are known. Let us write
S? for the discrete analog of C on the torus, that is, for the supremum
of the partial sums of a Fourier series in the torus. In [Sj] it was proven
that S? maps L(logL)(log logL) into L1,∞. There is a general extrapo-
lation result (in the spirit of Yano) which says that a sublinear operator
that satisfies a restricted weak Lp estimate with constant (p − 1)−m as
p → 1+ is indeed bounded from L(logL)m(log logL) to L1,∞ (see [So1],
[So2]). Lately Antonov [An] sharpened the best known result known for
S? showing that C maps the Orlicz space L(logL)(log log logL) to L1,∞

(see also [Ar]). Recently [SS] have provided a general extrapolation prin-
ciple that works for several maximal operators which, in particular, gives
another proof of the aforementioned result of Antonov concerning S? and
also yields some positive results for the Walsh-Fourier series and for the
halo conjecture.

In this work we exploit these kind of ideas to obtain a better maximal
operator controlling C. We are going to get a general result for TΦ only
assuming an appropriate growth in the constant of the restricted weak Lp

estimate of such an operator. We will see in particular, that the operator
ML(logL)(log log logL) controls C and also a similar maximally modulated
singular integral with quadratic phase (see Section 2 below). Observe
that this operator is pointwise smaller than all the Mp, p > 1, hence our
estimates are better than those previously known.

Next we introduce some notation about Orlicz spaces. For a complete
development of this topic the reader is referred to [RR], [BS]. Let Υ :
[0,∞) −→ [0,∞) be a Young function, that is, a continuous, convex,
increasing function with Υ (0) = 0 and such that Υ (t) −→ ∞ as t → ∞.
By definition, the Orlicz space LΥ consists of all measurable functions f
such that

∫
Rn

Υ

(
|f(x)|
λ

)
dx <∞, for some λ > 0.
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The space LΥ is a Banach function space if it is endowed with the Lux-
emburg norm

‖f‖Υ = ‖f‖LΥ
= inf

{
λ > 0 :

∫
Rn

Υ

(
|f(x)|
λ

)
dx ≤ 1

}
.

For example, if Υ (t) = tp for 1 < p <∞, then LΥ = Lp. Another classical
example is given by Υ (t) = t (1 + log+ t), properly speaking, Υ (t) is the
convex majorant of t (1 + log+ t). In this case LΥ is the Zygmund space
L logL. Let us define the following localized version of the Orlicz norm:
for every Q,

‖f‖Υ,Q = inf
{
λ > 0 :

1
|Q|

∫
Q
Υ

(
|f(x)|
λ

)
dx ≤ 1

}
.

Note that ‖f‖Υ,Q = ‖f‖LΥ (Q, dx
|Q| )

. We also define the maximal operator

associated to this space as:

MΥ f(x) = sup
Q3x

‖f‖Υ,Q.

For example, if Υ (t) = tp we have MΥ f(x) = Mpf(x) since for every cube
‖f‖Υ,Q is the Lp-average of f over Q.

We need to introduce a little bit more of notation: for any cube Q ⊂ Rn

we consider the probability measure dµQ(x) = χQ(x)
|Q| dx and we define the

localized operator

TΦQf(x) = TΦ(f χQ)(x) χQ(x).

Let us also set ϕm(t) = t
(
1 + log+ 1

t

)m.

Now, we state the main result of this article. We only work with convo-
lution type operators but analogous results could be obtained for general
nonconvolution linear operators.

Theorem 1.4. Let T be a convolution Calderón-Zygmund operator and
Φ = {φα}α∈A be a family of twice differentiable real-valued functions such
that for each α ∈ A and for each cube Q we have

‖φα‖L∞(Q) + ‖∇φα‖L∞(Q) + ‖D2φα‖L∞(Q) ≤ C(Q,α) <∞.

Assume that either A is countable or that there exists a countable subset
A0 ⊂ A such that for almost all x ∈ Rn we have

TΦf(x) = sup
α∈A

∣∣T (Mφαf)(x)
∣∣ = sup

α∈A0

∣∣T (Mφαf)(x)
∣∣.
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Suppose that for some C > 0, m ≥ 0 and for all 1 < p ≤ 2 and measurable
sets A of finite measure, TΦ satisfies the following restricted weak type
estimate ∣∣{x : TΦ(χA)(x) > λ

}∣∣ 1
p ≤

(
C

p− 1

)m |A|
1
p

λ
. (8)

Let Υm(t) = t (1+log+ t)m (1+log+ log+ log+ t). Then for all 0 < p <∞,
w ∈ A∞, and all functions f for which the left hand side below is finite
we have the estimate

‖TΦf‖Lp(w) ≤ C ‖MΥmf‖Lp(w). (9)

Moreover, all the estimates (1), (3), (4), (5) and the vector-valued in-
equalities contained in Corollary 1.3 hold for MΥm in place of Mr.

Furthermore, (8) can be replaced by the weaker condition

µQ
{
x : TΦQ(χA)(x) > λ

}
= µQ

{
x ∈ Q : TΦ(χA)(x) > λ

}
≤ C0

λ
ϕm

(
µQ(A)

)
. (10)

for any cube Q ⊂ Rn and for all measurable sets A ⊂ Q, where C0 is
independent of Q.

The proof of this result is based on some sort of Yano’s extrapolation
procedure inspired by [SS]; see Theorem 5.3 in Section 5 (Subsection 5.2)
for more details. This result will provide the following estimate

‖TΦQf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

which will be used to yield the corresponding good-λ inequality. For the
approach based on the sharp maximal function, the latter estimate will
yield a substitute for (6):

M#
δ (TΦf)(x) ≤ CδMΥmf(x), whenever 0 < δ < 1,

where M#
δ g(x) = M#

(
|g|δ)(x)1/δ.

Remark 1.5. Note that for t ≥ 1 we have that Υm(t) ≤ tr for 1 < r < ∞
and therefore ‖f‖Υm,Q ≤ 2 ‖f‖tr,Q which givesMΥmf(x) ≤Mrf(x). Thus,
Theorem 1.4 is an improvement of previous theorems in which only a
single Lr-estimate was assumed.
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Remark 1.6. We show that (10) is weaker than (8) and thus it suffices to
work with estimate (10) in the proof of Theorem 1.4. To see this we first
notice that (8) implies∣∣{x : TΦQ(χA)(x) > λ

}∣∣ 1
p =

∣∣{x ∈ Q : TΦ(χA)(x) > λ
}∣∣ 1

p

≤
(

C0

p− 1

)m |A|
1
p

λ

which in terms of the probability measure µQ can be written as

(
µQ

{
x : TΦQ(χA)(x) > λ

}) 1
p ≤

(
C0

p− 1

)m µQ(A)
1
p

λ
.

Taking in particular p = 1 +
(
1− logµQ(A)

)−1 we obtain

µQ
{
x : TΦQ(χA)(x) > λ

}
≤ µQ

{
x : TΦQ(χA)(x) > λ

} 1
p

≤ Cm0
λ

(p− 1)−m µQ(A)
1
p =

Cm0
λ

ϕm
(
µQ(A)

)
µQ(A)

1
p
−1

≤ Cm0 e

λ
ϕm

(
µQ(A)

)
since µQ(A)

1
p
−1 ≤ e. Therefore we have shown that (8) implies (10).

We organize the paper as follows. In Section 2 we present some appli-
cations of our main results. In Section 3 we give a proof of the good-λ
estimate in Theorem 1.1. Section 4 contains the alternative approach
based on the sharp maximal function. Section 5 is devoted to show The-
orem 1.4 and the general extrapolation procedure that leads to it, whose
proof is given in Section 6.

2. Applications

Before discussing the proofs of our results, we turn to some applications.
Let us denote by Ψ1(k) the family of all one-variable real polynomials
of degree at most k defined on R. Using the notation introduced earlier,
the Carleson operator C is HΨ1(1) where H is the Hilbert transform. It is
known that C is bounded on Lr(R) for all 1 < r <∞. Then we have

‖Cf‖Lp(w) ≤ C ‖Mrf‖Lp(w)

for all 1 < r < ∞, all 0 < p < ∞ and w ∈ A∞. We also have the corre-
sponding good-λ estimate in Theorem 1.1, all the estimates in Corollary
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1.2 and the vector-valued inequalities in Corollary 1.3. The same esti-
mates are valid for C? in place of C. As a consequence, for 1 < p, q < ∞
and for w ∈ Ap, by taking 1 < r < min{p, q} sufficiently close to 1 so
that w ∈ Ap/r, we easily obtain

‖Cf‖Lp(w) ≤ C ‖f‖Lp(w),
∥∥∥( ∑

j

|Cfj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj |q
) 1

q
∥∥∥
Lp(w)

.

The first of these estimates first appeared in [HY] and the second in
[RRT].

It is a well known fact [H] that C satisfies the following restricted weak
type (p, p) result

∣∣{x : C(χA)(x) > λ
}∣∣ 1

p ≤ C
p2

p− 1
|A|

1
p

λ
(11)

for λ > 0, 1 < p ≤ 2. This means that we can apply Theorem 1.4 with
m = 1. We then obtain the following theorem that improves the results
of [HY] and [RRT].

Theorem 2.1. Let C be the Carleson operator and consider the Orlicz
function Υ (t) = t (1 + log+ t) (1 + log+ log+ log+ t). Then, for all 0 < p <
∞ and w ∈ A∞ we have

‖Cf‖Lp(w) ≤ C ‖MΥ f‖Lp(w), ‖Cf‖Lp,∞(w) ≤ C ‖MΥ f‖Lp,∞(w),

and ∥∥∥( ∑
j

|Cfj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|MΥ fj |q
) 1

q
∥∥∥
Lp(w)

,

∥∥∥( ∑
j

|Cfj |q
) 1

q
∥∥∥
Lp,∞(w)

≤ C
∥∥∥( ∑

j

|MΥ fj |q
) 1

q
∥∥∥
Lp,∞(w)

for all functions f or sequences of functions fj for which the left hand
sides are finite. As a consequence, writing M3 = M ◦M ◦M we get

‖Cf‖Lp(w) ≤ C ‖M3f‖Lp(w), ‖Cf‖Lp,∞(w) ≤ C ‖M3f‖Lp,∞(w),

and the associated vector-valued inequalities in Lp(w) and in Lp,∞(w).
Furthermore, all these estimates hold with C? in place of C and the cor-
responding good-λ inequality is valid.

For the inequalities with M3 one only needs to observe that

MΥ f(x) ≤ML(logL)2f(x) ≈M3f(x),

since Υ (t) ≤ t (1 + log+ t)2.
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Remark 2.2. Note that in terms of the iterations of the Hardy-Littlewood
maximal function, M3 is, so far, the best known iteration that can be
written on the right hand side. As mentioned before, with M such result
is not true. Getting M2 would be equivalent, somehow, to the fact that
Fourier series of functions in L(logL) converge a.e., since M2 ≈ML(logL).
This remains an open question at the moment.

Remark 2.3. We can obtain a formulation of Theorem 1.4 in terms of
iterations of the Hardy-Littlewood maximal function. Note that we have
Υ (t) ≤ t (1 + log+ t)m+1 and, as before,

MΥmf(x) ≤ML(logL)m+1f(x) ≈Mm+2f(x),

where Mm+2 is the operator M iterated m+ 2-times. Hence, as a conse-
quence of Theorem 1.4, we also obtain the estimate

‖TΦf‖Lp(w) ≤ C ‖Mm+2f‖Lp(w),

and all the associated good-λ and vector-valued inequalities.

Assuming the result in [L], which states that the maximally modulated
singular integral

HΨ1(2)f(x) = sup
a,b∈R

∣∣∣∣p.v.
∫

R
f(y) e2π i (a y+b y

2) dy

x− y

∣∣∣∣
is bounded on Lp(R) for all 1 < p <∞ with the corresponding restricted
weak type inequality (11), one obtains the following result concerning the
operator HΨ1(2):

Theorem 2.4. Let Υ (t) = t (1 + log+ t) (1 + log+ log+ log+ t). Then, for
all 0 < p, q <∞ and all w ∈ A∞ we have

‖HΨ1(2)f‖Lp(w) ≤ C ‖MΥ f‖Lp(w),

and ∥∥∥( ∑
j

|HΨ1(2)fj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|MΥ fj |q
) 1

q
∥∥∥
Lp(w)

for all functions or sequences of functions for which the left hand sides
are finite. All these inequalities hold for the maximal operator HΨ1(2)

? .
Also these estimates are valid with Lp,∞(w) in place of Lp(w) and the
corresponding good-λ estimate (1) holds. (As before, we can replace MΥ

by M3.)
As a consequence we obtain that for every 1 < p, q < ∞ and every

weight w ∈ Ap we have

‖HΨ1(2)f‖Lp(w) ≤ C ‖f‖Lp(w)
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for all f in Lp(w) and also∥∥∥( ∑
j

|HΨ1(2)fj |q
) 1

q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj |q
) 1

q
∥∥∥
Lp(w)

for all `q-valued sequences {fj}j in Lp(w). The same estimates are valid
with HΨ1(2)

? .

To prove Theorem 2.4 we just need to apply Theorem 1.4 with m = 1.
The claimed estimates can be easily obtained using the formulation in
terms of M3, noting that M3 is bounded on Lp(w) for w ∈ Ap and
also satisfies the corresponding weighted vector-inequalities (applying the
known estimates for M three times).

Next we turn to higher dimensional analogues of Theorem 2.4. We
suppose that Ω is an odd integrable function on Sn−1 and we introduce
a singular integral operator TΩ by

TΩf(x) = p.v.
∫

Rn

Ω(y/|y|)
|y|n

f(x− y) dy

for f sufficiently smooth. We denote the family of real polynomials of n
variables and degree at most k by

Ψn(k) =
{
P (y) : P (y) =

∑
|γ|≤k

cγy
γ
}

where cγ are real coefficients indexed by multi-indices γ = (γ1, . . . , γn)
in Rn. We consider the maximally modulated operator TΨn(k)

Ω and we
seek bounds for it. To study this operator we introduce the directional
maximally modulated singular integral operator associated with Ψn(k)
along the direction of a unit vector θ as follows:

H
Ψn(k)
θ f(x) = sup

ψ∈Ψn(k)

∣∣∣∣p.v.
∫

R
f(x− rθ)e2πiψ(x−rθ)dr

r

∣∣∣∣
where f : Rn → R and x ∈ Rn. A simple argument using a suitable
orthogonal transformation reduces the Lp(Rn) boundedness of HΨn(k)

θ to
that of HΨn(k)

e1 , where e1 = (1, 0, . . . , 0). For instance in the case k = 2, to
obtain the boundedness ofHΨn(2)

e1 we write ψ(x−re1) = φx2,...,xn(x1−r) as
a one-variable polynomial of degree at most 2 with coefficients depending
on x2, . . . , xn. Then we have∥∥HΨn(2)

e1 f
∥∥p
Lp ≤

∫
· · ·

∫
Rn−1

∫
R

(
HΨ1(2)f( · , x2, . . . , xn)

)
(x1)pdx1dx2 . . . dxn.
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Assuming the result in [L], and applying it in the first variable, the latter
is controlled by a constant multiple of ‖f‖pLp .

We now employ the method of rotations to write

T
Ψn(2)
Ω f(x) ≤ 1

2

∫
Sn−1

|Ω(θ)|HΨn(2)
θ f(x) dθ .

We can therefore obtain the boundedness of TΨn(2)
Ω as a consequence of

that for HΨ1(2). We conclude the following result:

Theorem 2.5. Let Ω be an odd and integrable function on Sn−1. Then
for every 1 < p, q < ∞ and every weight w ∈ Ap there is a constant
C = C(p, q, w) such that

‖TΨn(2)
Ω f‖Lp(w) ≤ C ‖f‖Lp(w)

holds for all f in Lp(w) and also∥∥∥( ∑
j

|TΨn(2)
Ω fj |q

) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥( ∑

j

|fj |q
) 1

q
∥∥∥
Lp(w)

holds for all sequences {fj}j in Lp`q(w). Moreover, these estimates are also
satisfied by (TΨn(2)

Ω )?

Finally we consider the operator defined by

T̃
Ψn(k)
Ω f(x) = sup

ψ∈Ψn(k)

∣∣∣∣p.v.
∫

Rn

f(y)e2πiψ(x−y)K(x− y) dy
∣∣∣∣

where Ω(y/|y|)
|y|n = K(y). In view of the trivial estimate

T̃
Ψn(k)
Ω f(x) ≤ T

Ψn(k)
Ω f(x)

we conclude that all weighted and vector-valued estimates that hold for
T
Ψn(2)
Ω are also valid for T̃Ψn(2)

Ω . At this point it is unclear to us whether
boundedness for T̃Ψn(k)

Ω holds when k ≥ 3 even in the unweighted case.
However, it is worth mentioning a recent theorem of Stein and Wainger
[SWa] stating that if the family Ψn(k) is replaced by the subfamily Ψn(k)′

consisting of all polynomials in Ψn(k) with no linear term, then the cor-
responding operator T̃Ψn(k)′

Ω is Lp(Rn) bounded for all 1 < p < ∞. This
result should be compared with our observation that the operators T̃Ψn(2)

Ω
are Lp bounded (even on weighted spaces) with no restriction on the lin-
ear terms. It is unclear at this point how to combine these two results to
obtain the boundedness of T̃Ψn(k)

Ω for all k ≥ 1.



14 Loukas Grafakos, José Maŕıa Martell and Fernando Soria

Finally we note that Theorem 2.5 can be also extended to the case
where Ω is even and of class L logL(Sn−1). To achieve this we need to
know that for such Ω, TΨn(2)

Ω is Lp(Rn) bounded for all 1 < p <∞. This
result requires explicit estimates from the proof of Carleson’s theorem [C]
and can be obtained by a modification of the proof given for linear phases
in Sjölin [Sj].

Naturally Theorems 2.4 and 2.5 can be extended to polynomials of
degree k provided an a priori Lp estimate is known to hold for HΨ1(k).
This would allow one to replace Ψn(k)′ by Ψn(k) in the theorem of Stein
and Wainger [SWa]. But this seems to be a difficult task and is rather
elusive at present.

3. Proof of the good-λ inequality (1)

We fix f in
⋃

1≤p<∞
Lp(Rn) and consider the open set

Ω = {TΦ? f(x) > λ} =
⋃
j

Qj ,

where Qj are the Whitney cubes. We define Q∗j = 10
√
nQj and Q∗∗j =

100
√
nQ∗j , where aQ denotes the cube with the same center as Q whose

sidelength is a l(Qj); here l(Qj) is the sidelength of Qj . These Whitney
cubes satisfy that the distance from Qj to Ωc is at least 2

√
n l(Qj) and

at most 4
√
n l(Qj) and therefore Q∗j must meet Ωc. We so fix a point

yj ∈ Ωc ∩Q∗j . For each j we write

f = f j0 + f j∞ = f χQ∗∗j
+f χ(Q∗∗j )c .

We now claim that it suffices to show that :∣∣{x ∈ Qj : TΦ? f(x) > 3λ, Mrf(x) ≤ γ λ
}∣∣ ≤ Cn γ

r
∣∣Qj∣∣. (12)

Once the validity of (12) is established, we use standard properties of
A∞ weights and there exist ε0, C2 > 0 (that depend on [w]A∞ and the
dimension n) such that

w
{
x ∈ Qj : TΦ? f(x) > 3λ, Mrf(x) ≤ γ λ

}
≤ C2C

ε0
n γr·ε0 w(Qj).

Then a simple summation on j gives the desired estimate.
Then we prove (12). We may assume that for each cube Qj there exists

a zj ∈ Qj such that Mrf(zj) ≤ γ λ, otherwise there is nothing to prove.
Then, ∣∣{x ∈ Qj : TΦ? f(x) > 3λ, Mrf(x) ≤ γ λ

}∣∣ ≤ Iλ0 + Iλ∞
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where

Iλ0 =
∣∣{x ∈ Qj : TΦ? f

j
0 (x) > λ, Mrf(x) ≤ γ λ

}∣∣,
Iλ∞ =

∣∣{x ∈ Qj : TΦ? f
j
∞(x) > 2λ, Mrf(x) ≤ γ λ

}∣∣.
To control the first term we need to observe that TΦ? also maps Lr(Rn)
into Lr,∞(Rn). To see that we use that T is a Calderón-Zygmund operator
and thus it satisfies the Cotlar estimate T?g(x) ≤ CMg(x)+CM(Tg)(x)
and then

T?(Mφαf)(x) ≤ CM(Mφαf)(x) + CM(T (Mφαf))(x)
≤ CMf(x) + CM(TΦf)(x)

which yields TΦ? f(x) ≤ CMf(x) +CM(TΦf)(x). Using the fact that M
maps Lr,∞(Rn) into Lr,∞(Rn) and that TΦ is of weak type (r, r) it follows
that TΦ? is bounded from Lr(Rn) to Lr,∞(Rn).

Now we estimate Iλ0 as follows:

Iλ0 ≤
∣∣{x ∈ Rn : TΦ? f

j
0 (x) > λ}

∣∣ ≤ C

λr

∫
Rn

|f j0 (x)|r dx

≤ C
|Q∗∗j |
λr

1
|Q∗∗j |

∫
Q∗∗j

|f(x)|r dx ≤ C
Mrf(zj)r

λr
|Qj | ≤ C γr |Qj |.

Next we are going to show that Iλ∞ = 0 if we take γ sufficiently small and
consequently∣∣{x ∈ Qj : TΦ? f(x) > 3λ, Mrf(x) ≤ γ λ

}∣∣ ≤ Iλ0 + Iλ∞ ≤ C γr |Qj |,

which yields (12).
Take ε > 0 and φα ∈ Φ. Then, for every x ∈ Qj ,∣∣Tε(Mφαf j∞)(x)− Tε(Mφαf j∞)(yj)

∣∣ ≤ L1 + L2 + L3,

where
L1 =

∫
|yj−y|>ε

|K(x, y)−K(yj , y)| |f j∞(y)| dy,

L2 =
∫
|yj−y|≤ε<|x−y|

|K(x, y)| |f j∞(y)| dy,

L3 =
∫
|x−y|≤ε<|yj−y|

|K(x, y)| |f j∞(y)| dy.

Since y /∈ Q∗∗j , x, zj ∈ Qj and yj ∈ Q∗j we have

3
4
≤ |y − x|
|y − yj |

≤ 5
4
,

40
41
≤ |y − zj |
|y − x|

≤ 40
39
.
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We estimate L1. Note that |y− zj | > 49n `(Qj). Besides, the smoothness
of K leads to

L1 ≤
∫
|yj−y|>ε

c0
|x− yj |τ

|x− y|n+τ
|f j∞(y)| dy

≤ C `(Qj)τ
∫
|y−zj |>49n `(Qj)

1
|y − zj |n+τ

|f(y)| dy ≤ CMf(zj),

where for the last inequality one has to break up the integral into dyadic
annuli and sum up the geometric series. For L2, note that |y − zj | < 2 ε
and then

L2 ≤
∫
|yj−y|≤ε<|x−y|

c0
|x− y|n

|f j∞(y)| dy ≤ C

εn

∫
|y−zj |≤2 ε

|f(y)| dy

≤ CMf(zj).

Finally, for L3 we use that |x− y| > 3 ε/4 and |y − zj | ≤ 40 ε/39. Thus,

L3 ≤
∫
|x−y|≤ε<|yj−y|

c0
|x− y|n

|f j∞(y)| dy ≤ C

εn

∫
|y−zj |≤ 40

39
ε
|f(y)| dy

≤ CMf(zj).

Collecting the three estimates we therefore obtain∣∣Tε(Mφαf j∞)(x)− Tε(Mφαf j∞)(yj)
∣∣ ≤ CMf(zj)

and consequently

TΦ? f
j
∞(x) ≤ TΦ? f

j
∞(yj) + CMf(zj). (13)

Now we want to replace the first term in the right hand side by TΦ? f(yj).
We can do that but we get some extra terms Mf(zj). We claim that

|Tε(Mφαf j∞)(yj)| ≤ TΦ? f(yj) + CMf(zj). (14)

To show this estimate we first let Rj2 be the smallest number and Rj1 be
the largest number so that B(yj , R

j
1) ⊂ Q∗∗j ⊂ B(yj , R

j
2). If ε ≥ Rj2 then

Q∗∗j ⊂ B(yj , ε) and hence Tε(Mφαf j∞)(yj) = Tε(Mφαf)(yj). In this case
(14) is trivial. On the other hand, if ε ≤ Rj1, then Tε(Mφαf j∞)(yj) =
T
Rj

1
(Mφαf j∞)(yj). So, it remains to consider the case Rj1 ≤ ε < Rj2. We
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use that Q∗∗j ⊂ B(yj , R
j
2) and hence T

Rj
2
(Mφαf j∞)(yj) = T

Rj
2
(Mφαf)(yj).

One can easily see that |y − yj | ≥ 2
5
√
n
Rj2 and thus

|Tε(Mφαf j∞)(yj)| = |Tε(Mφαf j∞)(yj)± T
Rj

2
(Mφαf j∞)(yj)|

≤
∫
ε≤|yj−y|≤Rj

2

c0
|x− y|n

|f j∞(y)| dy + TΦ? f(yj)

≤
∫

2
5
√

n
Rj

2≤|yj−y|≤Rj
2

c0
|x− y|n

|f j∞(y)| dy + TΦ? f(yj)

≤ C

(Rj2)n

∫
|y−zj |≤2Rj

2

|f(y)| dy + TΦ? f(yj)

≤ CMf(zj) + TΦ? f(yj),

where in the penultimate estimate above we have taken into account that

|y − zj | ≤
40
39

5
4
|y − yj | ≤ 2Rj2, |x− y| ≥ 3

4
|y − yj | ≥

3
10
√
n
Rj2.

Then we have proved (14) which together with (13) yield TΦ? f
j
∞(x) ≤

TΦ? f(yj) + C0Mf(zj). Recalling that yj /∈ Ω and that Mrf(zj) ≤ λ γ we
observe that

TΦ? f
j
∞(x) ≤ λ+ C0Mrf(zj) ≤ λ+ C0 γ λ,

for every x ∈ Qj . If 0 < γ < γ0 = C−1
0 , then TΦ? f

j
∞(x) < 2λ and so

Iλ∞ =
∣∣{x ∈ Qj : TΦ? f

j
∞(x) > 2λ, Mrf(x) ≤ γ λ

}∣∣ = |Ø| = 0,

as desired.

4. An alternative proof of Corollary 1.2.

As we mentioned earlier, Corollary 1.3 can be obtained as a consequence
of the good-λ inequality (1) using standard techniques. There is however
an alternative approach based on the sharp maximal function that leads
to similar estimates. We discuss here this approach.

Proposition 4.1. If TΦ maps Lr(Rn) into Lr,∞(Rn), then for every f ∈
L∞c (Rn), we have

M#(TΦf)(x) ≤ CMrf(x).
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Proof. We fix x and some cube Q 3 x. We write xQ for the center of Q.
We split f as follows

f(x) = f1(x) + f2(x) = f(x) χQ∗(x) + f(x) χ(Q∗)c(x).

where Q∗ = 2
√
nQ. Set aQ = TΦf2(xQ). Then,

1
|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣ dy

=
1
|Q|

∫
Q

∣∣ sup
α∈A

|T (Mφαf)(y)| − sup
α∈A

|T (Mφαf2)(xQ)|
∣∣ dy

≤ 1
|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf)(y)− T (Mφαf2)(xQ)
∣∣ dy

≤ 1
|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf1)(y)
∣∣ dy +

+
1
|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣ dy

= I + II.

For the first term we use the hypothesis on TΦ:

I ≤ 1
|Q|

‖TΦf1‖Lr,∞(Rn) ‖χQ ‖Lr′,1(Rn) ≤
C

|Q|
‖f1‖Lr(Rn) |Q|

1
r′

= C
( 1
|Q∗|

∫
Q∗
|f(y)|r dy

) 1
r ≤ CMrf(x).

The estimate for II follows from the smoothness condition assumed on
the kernel of T . Let y ∈ Q and α ∈ A. Then,∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)

∣∣ ≤ ∫
Rn

|K(y, z)−K(xQ, z)| |f2(z)| dz

≤
∫

(Q∗)c

c0
|y − xQ|τ

|z − xQ|n+τ
|f(z)|dz

≤ C `(Q)
∫
|z−xQ|>

√
n `(Q)

1
|z − xQ|n+τ

|f(z)| dz ≤ CMf(x) ≤ CMrf(x),

where the penultimate estimate follows by breaking up the integral in
dyadic annuli. Therefore, II ≤ CMrf(x) and

1
|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣ dy ≤ CMrf(x),

which leads to the desired estimate. ut
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Remark 4.2. We point out that the weak type (r, r) assumption on TΦ has
been only used in term I to control TΦf1 = TΦ(f χQ∗) in the cube Q.
Indeed, the same estimate remains true if the assumption that TΦ maps
Lr(Rn) into Lr,∞(Rn) is replaced by a corresponding local version

‖TΦQf‖Lr,∞(Q) ≤ C0‖f‖Lr(Q)

for all cubes Q ⊂ Rn with C0 independent of Q, where TΦQ denotes the
localized operator given by TΦQf(x) = TΦ(f χQ)(x)χQ(x). In this case
we have that

I =
1
|Q|

∫
Q
TΦf1(y) ≤

1
|Q|

‖TΦQ∗f‖Lr,∞(Q∗) ‖χQ ‖Lr′,1(Rn)

≤ C0

|Q|
‖f‖Lr(Q∗) |Q|

1
r′ ≤ CMrf(x).

We now deduce Corollary 1.2 from Proposition 4.1. We show that for
all 0 < p <∞ and w ∈ A∞ estimates (2) and (4) hold while we leave the
proofs of (3) and (5) to the reader. For these estimates to make sense we
should assume that the left-hand sides are finite. As we observed in the
proof of the good-λ inequality we have

TΦ? f(x) ≤ CMf(x) + CM(TΦf)(x).

Also, TΦf(x) ≤ M(TΦf)(x) for a.e x, by the Lebesgue differentiation
theorem. Therefore, it suffices to show that∫

Rn

M(TΦf)(x)pw(x) dx ≤ C

∫
Rn

Mrf(x)pw(x) dx, (15)

for all 0 < p < ∞, w ∈ A∞ and f ∈ L∞c (Rn). Let us fix f ∈ L∞c
with supp f ⊂ B for some ball B, 0 < p < ∞ and w ∈ A∞. Without
loss of generality we may assume that w is bounded since otherwise we
may replace it by wk = min{w, k} ∈ A∞ whose characteristic constant
is uniformly bounded by the A∞ characteristic constant of w. In this
way, wk is bounded and if we get the desired estimate for wk with no
dependence on k we can let k →∞ to obtain (15). We will see that this
assumption is only used to assure that a certain quantity is finite. We can
also suppose that the right hand side of (15) is finite because otherwise
there is nothing to prove. Then, by Proposition 4.1 we have∫

Rn

M(TΦf)(x)pw(x) dx ≤ C

∫
Rn

M#(TΦf)(x)pw(x) dx

≤ C

∫
Rn

Mrf(x)pw(x) dx,
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whenever the left hand side is finite. Note that the first estimate arises
from the well-known Fefferman-Stein’s inequality∫

Rn

Mg(x)pw(x) dx ≤ C

∫
Rn

M#g(x)pw(x) dx

for all 0 < p <∞, w ∈ A∞, and whenever the left hand side is finite (see
[FS]). Therefore, we only have to show that the left hand side of (15) is
finite. Recall that we have also assumed that the right hand side is finite
which implies

∞ >

∫
Rn

Mrf(x)pw(x) dx ≥ C(f)
∫

Rn

w(x)

(1 + |x|)
n p
r

dx. (16)

Note that if y ∈ (2B)c then TΦf(y) ≤ C(f)/(1 + |y|)n = C(f)h(y) and
then

I =
∫

Rn

M(TΦf χ(2B)c)(x)pw(x) dx ≤ C(f)
∫

Rn

Mh(x)pw(x) dx

≤ C(f)
∫

Rn

(1 + log+ |x|
(1 + |x|)n

)p
w(x) dx ≤ C(f)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx <∞,

by (16). On the other hand,

II =
∫

(4B)c

M(TΦf χ2B)(x)pw(x) dx ≤ C

∫
(4B)c

‖TΦf‖p
L1(2B)

(1 + |x|)np
w(x) dx

≤ C ‖χ2B ‖
p

Lr′,1(Rn)
‖TΦf‖pLr,∞(Rn)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx

≤ C |B|
p
r′ ‖f‖pLr(Rn)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx <∞.

Finally, since w is bounded, for q > max{r/p, 1},

III =
∫

4B
M(TΦf χ2B)(x)pw(x) dx

≤ ‖w‖L∞(Rn) |4B|
1
q′ ‖M(TΦf χ2B)‖pLp·q(Rn).

Since p · q > r > 1, then M is bounded on Lp·q(Rn). Next, Proposition
4.1 implies that

‖TΦg‖BMO(Rn) ≤ C ‖g‖L∞(Rn), g ∈ L∞c (Rn),
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which by interpolation with TΦ : Lr(Rn) −→ Lr,∞(Rn) gives that TΦ is
bounded on Ls(Rn) for all r < s <∞. In particular, since p · q > r, TΦ is
bounded on Lp·q(Rn), which eventually yields

III ≤ C ‖w‖L∞(Rn) |B|
1
q′ ‖f‖pLp·q(Rn) <∞.

Collecting these three estimates we conclude as desired that∫
Rn

M(TΦf)(x)pw(x) dx ≤ I + II + III <∞.

5. Proof of Theorem 1.4

As mentioned in the introduction, Theorem 1.4 will be proved by using
some Yano’s extrapolation type result inspired by [SS]. Unfortunately the
results in [SS] cannot be applied to TΦ or its localized versions. We need
to suitably adjust the ideas from the articles [SS], [So1] and [So2] to derive
the desired inequality. The following theorem is quite crucial in our work
and its proof is postponed until later in this section (Subsection 5.2).

Theorem 5.1. Under the hypotheses of Theorem 1.4, for every cube Q
and every function in LΥ (Q) we have that

‖TΦQf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

where C does not depend on Q.

To prove Theorem 1.4, we will first focus on the approach with the
sharp maximal function. Afterwards, we will sketch the proof of the good-
λ approach.

We are now going to obtain the pointwise estimate for M#
δ (TΦf) when

0 < δ < 1, where M#
δ g(x) = M#(|g|δ)(x)1/δ.

Proposition 5.2. Let f ∈ L∞c (Rn). Then

M#
δ (TΦf)(x) ≤ CδMΥmf(x), 0 < δ < 1.

The proof of this result is given below in Subsection 5.1.

We now deduce Theorem 1.4. We want to obtain (9) and the analog
for TΦ? . Since T is a Calderón-Zygmund operator we have the following
Cotlar estimate

T?g(x) ≤ C(δ)
(
Mg(x) +Mδ(Tg)(x)

)
, 0 < δ ≤ 1.



22 Loukas Grafakos, José Maŕıa Martell and Fernando Soria

We apply this estimate to g = Mφαf and take the supremum over α ∈ A.
This gives

TΦ? f(x) ≤ C(δ)
(
MΥmf(x) +Mδ(TΦf)(x)

)
(17)

since t ≤ Υ (t) for all t ≥ 0 and so Mf(x) ≤ MΥmf(x). In view of the
Lebesgue differentiation theorem we have TΦf(x) ≤ Mδ(TΦf)(x) a.e.. It
therefore suffices to show that Mδ(TΦf) is controlled by MΥmf (in norm).
Then, if 0 < δ < 1, 0 < p < ∞ and w ∈ A∞, we use Proposition 5.2 to
obtain∫

Rn

Mδ(TΦf)(x)pw(x) dx =
∫

Rn

M
(
|TΦf |δ

)
(x)

p
δ w(x) dx

≤ C

∫
Rn

M#
(
|TΦf |δ

)
(x)

p
δ w(x) dx

= C

∫
Rn

M#
δ (TΦf)(x)pw(x) dx

≤ C

∫
Rn

MΥmf(x)pw(x) dx.

From this we eventually deduce the required estimates

‖TΦf‖Lp(w) ≤ C ‖MΥmf‖Lp(w), ‖TΦ? f‖Lp(w) ≤ C ‖MΥmf‖Lp(w).

Then by the extrapolation results in [CMP], [CGMP] we get the analogs
in Lp,∞(w) as well as the vector-valued estimates. These extrapolation
results also yield estimates in Lorentz spaces, Orlicz spaces, and in other
rearrangement invariant function spaces. This completes the proof with
the approach based on the sharp maximal function.

The good-λ approach relies on a slight modification of the argument
given in Section 3. We follow the same steps changing Mrf by MΥmf at
any place it occurs adopting the same notation. Note that at the very
end of the estimate of Iλ∞ we used before that Mf(x) ≤Mrf(x). In this
case Mf(x) ≤ MΥmf(x) since t ≤ Υ (t), and so Iλ∞ = 0. Thus, we only
need to change the estimate of Iλ0 since this is the only place where the
boundedness of the operator TΦ is used.

We fix 0 < δ < 1 and use (17) to observe

Iλ0 ≤
∣∣{x ∈ Rn : TΦ? f

j
0 (x) > λ}

∣∣
≤

∣∣{x ∈ Rn : C(δ)
(
Mf j0 (x) +Mδ(TΦf

j
0 )(x)

)
> λ}

∣∣
≤

∣∣{x : C(δ)Mf j0 (x) > λ/2}
∣∣ +

∣∣{x : C(δ)Mδ(TΦf
j
0 )(x) > λ/2}

∣∣
= |Eλ|+ |Fλ|.

We estimate the first term:

|Eλ| ≤
C

λ

∫
Rn

|f j0 (x)| dx ≤ C

λ
|Qj |Mf(zj) ≤

C

λ
|Qj |MΥmf(zj) ≤ C γ |Qj |,
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where we have used that zj ∈ Qj with MΥmf(zj) ≤ γ λ. For |Fλ|, a little
bit more of work is required

|Fλ| =
∣∣{x ∈ Rn : M

(
|TΦf j0 |

δ
)
(x) > C λδ}

∣∣ ≤ C

λδ

∫
Fλ

|TΦf j0 (y)|δ dy

=
C

λδ

( ∫
Fλ∩2Q∗∗j

|TΦf j0 (y)|δ dy +
∫
Fλ\2Q∗∗j

|TΦf j0 (y)|δ dy
)

=
C

λδ
(B1 +B2).

To treat term B1 we pass to the local operator TΦ2Q∗∗j
:

B1 = C

∫
Fλ

|TΦ2Q∗∗j
f j0 (y)|δ dy ≤ Cδ |Fλ|1−δ

∥∥TΦ2Q∗∗j
f j0

∥∥δ
L1,∞(Rn)

= C |Fλ|1−δ |2Q∗∗j |δ
∥∥TΦ2Q∗∗j

f j0
∥∥δ
L1,∞(2Q∗∗j ,µ2 Q∗∗

j
)

≤ C |Qj |δ |Fλ|1−δ ‖f‖δΥm,2Q∗∗j

≤ C |Qj |δ |Fλ|1−δMΥmf(zj)δ

≤ C |Qj |δ |Fλ|1−δ (γ λ)δ,

where we have used Kolmogorov’s inequality and Theorem 5.1. As before,
it is crucial to note that the previous constant C does not depend on the
cubes. We deal with term B2 as follows: for y ∈ Fλ \ 2Q∗∗j we have

TΦf j0 (y) ≤
∫
Q∗∗j

|Kj(y − z)| |f(z)| dz ≤
∫
Q∗∗j

c0
|y − z|n

|f(z)| dz

≤ 2n c0
`(Q∗∗j )n

∫
Q∗∗j

|f(z)| dz ≤ CMf(zj) ≤ CMΥmf(zj) ≤ C γ λ,

since zj ∈ Qj ⊂ Q∗∗j . Thus B2 ≤ C |Fλ| (γ λ)δ. Collecting the estimates
for B1 and B2 we eventually obtain

|Fλ| ≤
C

λδ
(B1 +B2) ≤ C1 |Qj |δ |Fλ|1−δ γδ + C2 |Fλ| γδ.

Take γ such that C2 γ
δ ≤ 1/2. Since |Fλ| < ∞ (this follows by using

that M and TΦ are bounded in Lp(Rn), here we may have to consider
functions that are in some Lp(Rn) for p > 1), we get

|Fλ| ≤ 2C1 |Qj |δ |Fλ|1−δ γδ

which yields |Fλ| ≤ C γ |Qj | and therefore Iλ0 ≤ C γ |Qj |. This completes
the proof of Theorem 1.4 using the good-λ approach.
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5.1. Proof of Proposition 5.2

We proceed as in the proof of Proposition 4.1. We fix x and a cube Q 3 x.
We split f = f1 +f2 as in that proof and define aQ in the same way. Then

1
|Q|

∫
Q

∣∣|TΦf(y)|δ − |aQ|δ
∣∣ dy ≤ 1

|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣δ dy

≤ 1
|Q|

∫
Q
TΦf1(y)δdy +

1
|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣δdy

≤ 1
|Q|

∫
Q
TΦf1(y)δdy +

+
( 1
|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣dy)δ

= Iδ + (II)δ,

For II, as in Proposition 4.1, we observe that II ≤ CMf(x). Notice
that Mf(x) ≤ MΥmf(x) and then we get the desired estimate. Now we
have to analyze Iδ and this is the only part where the boundedness of the
operator is used. Note that f1 = f χQ∗ and therefore

Iδ ≤ (2
√
n )n

∫
Q∗
TΦQ∗f(y)δ dµQ∗(y) ≤

C

1− δ
‖TΦQ∗f‖δL1,∞(Q∗,µQ∗ )

≤ Cδ ‖f‖δΥm,Q∗ ≤ CδMΥmf(x)δ,

where we have used that 0 < δ < 1, Kolmogorov’s inequality, Theorem
5.1, and also that x ∈ Q ⊂ Q∗. (Note that the constant is independent of
the cube Q.) Thus we have seen that

1
|Q|

∫
Q

∣∣TΦf(y)δ − |aQ|δ
∣∣ dy ≤ Iδ + (II)δ ≤ CMΥmf(x)δ,

which yields the desired estimate. ut

5.2. Proof of Theorem 5.1

Behind the main estimate claimed in Theorem 5.1 there is a general result
in the spirit of [SS]. We state it precisely:

Theorem 5.3. Let S?f(x) = supj |Sjf(x)| be a maximal operator such
that each Sj is a singular integral operator given by a kernel sj(x, y)
which is defined away from the diagonal x = y. For any cube Q, we
set S?Qf = S?(f χQ) χQ and in an analogous way we define Sj,Q whose
kernel is sQj (x, y) = sj(x, y) χQ×Q(x, y). For any cube Q, we assume
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(a) sQj (x, ·) ∈ L1(Q,µQ) for a.e. x ∈ Q.

(b) sQj (·, y) ∈ L1(Q,µQ) uniformly in y ∈ Q.

(c) Given ε > 0, there exists δ = δ(ε, j,Q) such that∫
Q
|sQj (x, y1)− sQj (x, y2)| dµQ(x) ≤ ε, |y1 − y2| < δ, y1, y2 ∈ Q.

(d) For all A ⊂ Q and λ > 0, and for some m ≥ 1,

µQ
{
S?Q(χA)(x) > λ

}
≤ C0

λ
ϕm

(
µQ(A)

)
=
C0

λ
µQ(A)

(
1+log+ 1

µQ(A)

)m

where the constant C0 does not depend on the cube Q.

Then, there exists a constant C, independent of Q, such that for all func-
tions f in LΥm(Q) we have

‖S?Qf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q = C ‖f‖L(logL)m log log logL,Q.

We will give a proof of this result in the next section. In the rest of this
section, we apply Theorem 5.3 to derive the desired estimate in Theorem
5.1.

We would like to use this extrapolation result for the maximal operator
TΦQf(x). Notice that the kernels are e2π i φα(y)K(x−y)χQ×Q(x, y) which,
because of their singularity, may not belong to L1(Q). We avoid this
difficulty by defining

T̃Φf(x) = sup
α∈A

∣∣T (
(ei φα(·) − ei φα(x)) f(·)

)
(x)

∣∣,
and analogously its localized version T̃ΦQ . Note that we have incorporated
the factor 2π into the function φα to make the computations cleaner.
Using the notation of Theorem 5.3, S? = T̃Φ and, by hypothesis, we can
assume that A is countable. Then, we have

|TΦf(x)− T̃Φf(x)| ≤ sup
α∈A

∣∣T (
ei φα(x) f(·)

)
(x)

∣∣ = |Tf(x)|, (18)

and the same holds for the localized operators. Since T is a Calderón-
Zygmund operator, it is of weak type (1, 1). Then, for any cube Q and
for every A ⊂ Q we have

µQ
{
x : |TQ(χA)(x)| > λ

}
≤ 1
|Q|

∣∣{x ∈ Rn : |T (χA)(x)| > λ
}∣∣

≤ C

λ

|A|
|Q|

≤ C

λ
ϕm

(
µQ(A)

)
,
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where C does not depend on Q. This estimate, (10) and (18) yield

µQ
{
x : T̃ΦQ(χA)(x) > λ

}
≤ C

λ
ϕm

(
µQ(A)

)
,

where C is independent of the cube Q. This means that property (d) in
Theorem 5.3 holds.

Let us fix some arbitrary cube Q0 and α ∈ A. The kernel of T̃ΦQ0
is

Kα(x, y) = KQ0
α (x, y) = (ei φα(y) − ei φα(x))K(x− y) χQ0×Q0

(x, y).

Next, we have to check that Kα(x, y) satisfies (a), (b), (c). The first two
go as follows: if x ∈ Q0, then∫

Q0

|Kα(x, y)| dµQ0(y) ≤ c0 ‖∇φα‖L∞(Q0) |Q0|−1

∫
Q0

|x− y|1−n dy

≤ c0 ‖∇φα‖L∞(Q0) cn |Q0|−1+ 1
n <∞,

which gives (a). In the same way, we get

sup
y∈Q0

∫
Q0

|Kα(x, y)| dµQ0(x) ≤ c0 ‖∇φα‖L∞(Q0) cn |Q0|−1+ 1
n <∞,

and (b) holds. The verification of (c) requires more work. We fix ε and we
have to find δ > 0 such that∫
Q0

|Kα(x, y1)−Kα(x, y2)| dµQ0(x) ≤ ε, |y1 − y2| < δ, y1, y2 ∈ Q0.

Note that it is sufficient to prove the same estimate with dx in place of
µQ0 , and that δ might depend on the cube Q0. We fix ε > 0, set B0 =
B(0,

√
n `(Q0)) and define the functionH(x) = |x|K(x) χB0

(x) ∈ L1(B0)
because |K(x)| ≤ c0 |x|−n. Then, there exists h ∈ C∞0 (B0) such that

‖H − h‖L1(B0) <
ε

8 ‖∇φα‖L∞(Q0)
.

Setting Cφα = ‖∇φα‖2
L∞(Q0) + ‖D2φα‖L∞(Q0), we take

0 < ε1 <
ε

16
1

‖h‖L∞(B0)Cφα |Q0|
.

Then, for y1, y2 ∈ Q0,∫
Q0

|Kα(x, y1)−Kα(x, y2)| dx

=
∫
QA

|Kα(x, y1)−Kα(x, y2)| dx+
∫
QB

|Kα(x, y1)−Kα(x, y2)| dx

= A+B,
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where

QA = Q0∩B(y1, ε1)∩B(y2, ε1), QB = Q0\(B(y1, ε1)∩B(y2, ε1)).

We start with A and define

O(x, y) =
ei φα(y) − ei φα(x)

|x− y|
χQ0×Q0

(x, y).

Hence,

Kα(x, y) = O(x, y)H(x− y)
= O(x, y)

(
H(x− y)− h(x− y)

)
+O(x, y)h(x− y)

= I(x, y) + II(x, y).

Note that for any y ∈ Q0, we have∫
Q0

|I(x, y)| dx ≤ ‖∇φα‖L∞(Q0)

∫
Q0

|H(x− y)− h(x− y)| dx

≤ ‖∇φα‖L∞(Q0)

∫
B0

|H(z)− h(z)| dz < ε

8
,

and therefore, for y1, y2 ∈ Q0,∫
QA

|I(x, y1)− I(x, y2)| dx <
ε

4
. (19)

On the other hand, for y1, y2 ∈ Q0∫
QA

|II(x, y1)− II(x, y2)| dx

≤
∫
Q0

|O(x, y1)| |h(x− y1)− h(x− y2)| dx+

+
∫
QA

|h(x− y2)| |O(x, y1)−O(x, y2)| dx

≤ ‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0| |y1 − y2|+

+‖h‖L∞(B0)

∫
QA

|O(x, y1)−O(x, y2)| dx. (20)

Then we have to estimate the last displayed integral. Let x /∈ {y1, y2}
such that x ∈ QA = Q0 ∩ B(y1, ε1) ∩ B(y2, ε1). Using the order 1 Taylor
expansion for the function g(y) = ei φα(y) centered at x we obtain

|O(x, y1)−O(x, y2)|

≤ |∇gα(x)|
∣∣∣∣ y1 − x

|y1 − x|
− y2 − x

|y2 − x|

∣∣∣∣ +
1
2
‖D2gα‖L∞(Q0)

(
|y1 − x|+ |y2 − x|

)
≤ ‖∇gα‖L∞(Q0) |m(y1 − x)−m(y2 − x)|+ ‖D2gα‖L∞(Q0) ε1

≤ ‖∇φα‖L∞(Q0) |m(y1 − x)−m(y2 − x)|+ Cφα ε1,
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where m(x) = χB0
(x) · x/|x| ∈ L1(Rn). Then,∫

QA

|O(x, y1)−O(x, y2)| dx

≤ ‖∇φα‖L∞(Q0)

∫
Q0

|m(y1 − x)−m(y2 − x)| dx+ Cφα ε1 |Q0|

≤ ‖∇φα‖L∞(Q0)

∫
Rn

|m(z + y2 − y1)−m(z)| dz + Cφα ε1 |Q0|.

We fix
ε2 =

ε

16
1

‖h‖L∞(B0) ‖∇φα‖L∞(Q0)
.

Since m ∈ L1(Rn) we can use the properties of the translation operator
in this space and there exists δ1 > 0 such that∫

Rn

|m(z +∆z)−m(z)| dz < ε2, whenever |∆z| < δ1.

Thus, if |y1 − y2| < δ1, we have∫
QA

|O(x, y1)−O(x, y2)| dx ≤ ‖∇φα‖L∞(Q0) ε2+Cφαε1 |Q0| <
ε

8‖h‖L∞(B0)
.

We set

δA = min
{
δ1,

ε

8
1

‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0|

}
and, for |y1 − y2| < δA, the latter estimate plugged into (20) yields∫
QA

|II(x, y1)− II(x, y2)| dx

≤ ‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0| |y1 − y2|+ ‖h‖L∞(Q0)
ε

8 ‖h‖L∞(B0)

<
ε

4
.

This and (19) provide

A ≤
∫
QA

|I(x, y1)− I(x, y2)| dx+
∫
QA

|II(x, y1)− II(x, y2)| dx <
ε

2
,

whenever |y1 − y2| < δA.
Let us get a similar estimate for B. We break up QB as follows

QB = Q0 \ (B(y1, ε1) ∩B(y2, ε1)) =
(
Q0 \B(y1, ε1)

)
∪

(
Q0 \ ∩B(y2, ε1)

)
= Q1

B ∪Q2
B.
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and then

B ≤
∫
Q1

B

|Kα(x, y1)−Kα(x, y2)| dx+
∫
Q2

B

|Kα(x, y1)−Kα(x, y2)| dx

= B1 +B2.

We we are going to get an estimate for B1, for B2 we only have to switch
y1 and y2. Let y1, y2 ∈ Q0 be such that |y1 − y2| < ε1/2, x ∈ Q1

B. Then
|x−y2| > ε1/2 and so x 6= y1, y2. We estimate the difference of the kernels:

|Kα(x, y1)−Kα(x, y2)|
≤

∣∣ei φα(x) − ei φα(y2)
∣∣ |K(x− y1)−K(x− y2)|+

+
∣∣ei φα(y2) − ei φα(y1)

∣∣ |K(x− y1)|
≤ 2 |K(x− y1)−K(x− y2)|+ ‖∇φα‖L∞(Q0) |y1 − y2| |K(x− y1)|.

Note that |x−y1| > ε1 > 2 |y1−y2| and therefore we can use the regularity
assumed on the Calderón-Zygmund kernel K to obtain

|K(x− y1)−K(x− y2)| ≤ c0
|y1 − y2|τ

|x− y1|n+τ
≤ c0

|y1 − y2|τ

εn+τ
1

.

On the other hand, by the size condition of K we have

|K(x− y1)| ≤
c0

|x− y1|n
<
c0
εn1

Hence,

B1 ≤ 2
∫
QB

1

|K(x− y1)−K(x− y2)| dx+

+‖∇φα‖L∞(Q0) |y1 − y2|
∫
QB

1

|K(x− y1)| dx

≤ 2 c0 |Q0|
εn+τ
1

|y1 − y2|τ +
‖∇φα‖L∞(Q0)c0 |Q0|

εn1
|y1 − y2|

whenever |y1 − y2| < ε1/2. If we set

δB = min
{
ε1
2
,
ε

8
εn1

‖∇φα‖L∞(Q0)c0 |Q0|
,

[
ε

8
εn+τ
1

2 c0 |Q0|

]1/τ}
and we assume that |y1 − y2| < δB, we have proved that B1 < ε/4. In a
similar way we also obtain that B2 < ε/4 which yields

B ≤ B1 +B2 <
ε

2
, whenever |y1 − y2| < δB.
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Putting all together we have shown that given ε > 0 there exists δ =
min{δA, δB} (that depends on α, Q0, ε) such that, for y1, y2 ∈ Q0 we
have∫
Q0

|Kα(x, y1)−Kα(x, y2)| dx ≤ A+B < ε, whenever |y1 − y2| < δ.

This gives (c) in Theorem 5.3. This concludes the proof that all conditions
of Theorem 5.3 apply to TΦQ . The conclusion of this theorem therefore
yields

‖TΦQf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

where C does not depend on Q. ut

6. Proof of Theorem 5.3

The proof of this theorem is inspired by [SS]. The exact formulation of the
theorem in [SS] does not exactly apply to our setting and in this section
we suitably modify the arguments given in [SS] to obtain the proof of
Theorem 5.3. It is crucial for us to obtain localized estimates that do not
depend on the cube, otherwise our arguments will not work.

We fix an arbitrary cube Q0. Given N ≥ 1 we write S?Nf(x) =
sup1≤j≤N |Sjf(x)| and we use the notation S?N,Q0

for the corresponding
localized operators.

The proof splits in the following steps:

Step 1: Given a bounded function 0 ≤ f ∈ L1(Q0, µQ0), the sequence
{ak}k with a0 = 0 and ak = 22k

for k ≥ 1, and ε > 0 there exists k0 ≥ 1,
so that f(x) ≤ ak0 , and a simple function h:

h =
k0∑
k=1

ak χFk
=

∞∑
k=1

ak χFk

such that
(i) Fk ⊂ Gk = {x ∈ Q0 : ak−1 < f(x) ≤ ak}, k ≥ 1 (note that

Fk = Gk = Ø for k > k0).

(ii)
∫
Gk

f(x) dµQ0(x) =
∫
Gk

h(x) dµQ0(x) = ak µQ0(Fk).

(iii)
∫
Q0

S?N,Q0
(f − h)(x) dµQ0(x) ≤ ε.



Weighted inequalities for maximally modulated singular integral operators 31

Step 2: For h as above

µQ0

{
x : S?Q0

h(x) > λ
}

≤ C

λ

(
1 +

∫
Q0

Υm(f) dµQ0

) (
1 + log

(
1 +

∫
Q0

Υm(f) dµQ0

))
,

where C does not depend on Q0 nor on ε.

Step 3: ‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C ‖f‖Υm,Q, for all f ∈ LΥm(Q,µQ) and
where C does not depend on Q0.

Proof of Step 3: By the monotone convergence theorem, it is enough
to fix N ≥ 1 and obtain estimates for S?N,Q0

with C independent of N .
Notice that ‖ · ‖L1,∞(Q0,µQ0

) is a quasi-norm and ‖ · ‖Υm,Q0 is a norm for
the Banach space LΥm(Q0, µQ0). On the other hand, S?N,Q0

is a sublinear
operator, thus it suffices to show

‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C

(with C independent of Q0) for any function 0 ≤ f ∈ LΥm(Q0, µQ0) with
‖f‖Υm,Q < 1. On the other hand, without lost of generality we can assume
that f is also bounded: set fM (x) = f(x) when f(x) ≥M with M some
fixed large number, then by (b),∫

Q0

S?N,Q0
fM (x) dµQ0(x) ≤

N∑
j=1

∫
Q0

|Sj,QfM (x)| dµQ0(x)

≤
N∑
j=1

sup
y∈Q0

( ∫
Q0

|sQ0
j (x, y)| dµQ0(x)

) ∫
Q0

|fM (y)| dµQ0(y)

≤ C(Q0, N) ‖fM‖L1(Q0,µQ0
) −→ 0, as M →∞.

So, we take 0 ≤ f ∈ L∞(Q0) such that ‖f‖Υm,Q0 < 1 which implies∫
Q0

Υm(f) dµQ0 ≤ 1. (21)

Let ε > 0 to be chosen. Let λ > 0 and 0 < η < λ. We apply Step 1 with
ε̃ = η ε. Then S?N,Q0

f(x) ≤ S?N,Q0
(f − h)(x) + S?N,Q0

h(x) and

µQ0

{
x : S?N,Q0

f(x) > λ
}

≤ µQ0

{
x : S?N,Q0

(f − h)(x) > η
}

+ µQ0

{
x : S?N,Q0

h(x) > λ− η
}

≤ 1
η
‖S?N,Q0

(f − h)‖L1(Q0,µQ0
) +

C

λ− η

≤ 1
η
ε̃+

C0

λ− η
= ε+

C0

λ− η
−→ C0

λ
, as η, ε→ 0.
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Note that in the second estimate we have used Chebichev’s inequality for
the first term and Step 2, with (21), for the second. The third estimate
is (iii) in Step 1. We would like to point out that C0 is independent of
Q0. In this way, we have shown that

‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C0

as desired. ut

Proof of Step 2: Let us recall that ϕm(t) = t
(
1 + log+ 1

t

)m. We are
going to use the log-convexity of the L1,∞ norm (see [SWe], [K]), namely,
if {gj} is a sequence of functions such that ‖gk‖L1,∞(Q0,µQ0

) ≤ C0 and
{βk}k is a sequence of non-negative numbers then∥∥∥∑

k

βk gk

∥∥∥
L1,∞(Q0,µQ0

)
≤ 6C0N ({βk}k) (22)

where

N ({βk}k) =
∑
k

βk

(
1 + log

∑
j βj

βk

)
.

Note that∥∥∥∥S?Q0

(
χFk

ϕm(µQ0(Fk))

)∥∥∥∥
L1,∞(Q0,µQ0

)

=
‖S?Q0

(χFk
)‖L1,∞(Q0,µQ0

)

ϕm(µQ0(Fk))
≤ C0

where we have used (d) and C0 does not depend on Q0. Thus, writing
bk = µQ0(Fk), we can use (22) to get

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤
∥∥∥∥∑

k

ak ϕm(bk)S?Q0

(
χFk

ϕm(bk)

)∥∥∥∥
L1,∞(Q0,µQ0

)

≤ 6C0N
({
ak ϕm(bk)

}
k

)
.

We are going to modify the functional N in the following way: let {βk}k
be a non-identically-zero sequence of non-negative numbers. Let β =∑

k βk > 0. Then using the submultiplicativity of ϕ1,

N ({βk}k) = β
∑
k

βk
β

(
1 + log

1
βk/β

)
= β

∑
k

ϕ1

(βk
β

)
≤ β ϕ1

( 1
β

) ∑
k

ϕ1(βk) =
(
1 + log+

∑
k

βk

)
Ñ ({βk}k)

where Ñ ({βk}k) =
∑

k ϕ1(βk). In this way,

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤ 6C0

(
1 + log+

∑
k

ak ϕm(bk)
)
Ñ ({ak ϕm(bk)}k).
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Lemma 6.1. Let m ≥ 1, there exist C1, C2 —that only depend on m—
such that for any sequence {βk} with 0 ≤ βk ≤ 1 we have

∞∑
k=1

22k
ϕm(βk) ≤ C1

(
1 +

∞∑
k=1

22k
2km βk

)
,

∞∑
k=1

ϕ1

(
22k

ϕm(βk)
)
≤ C2

(
1 +

∞∑
k=1

22k
2km(1 + log k)βk

)
.

Lemma 6.2. Let h be the function defined in Step 1. Then,

2−m
∫
Q0

Υm
(
h(x)

)
dµQ0(x) ≤

∞∑
k=1

µQ0(Fk) 22k
2km (1 + log k)

≤ 4m+1

∫
Q0

Υm
(
f(x)

)
dµQ0(x).

We will prove these auxiliary results later. Recall that we took ak =
22k

and wrote bk = µQ0(Fk), which satisfies 0 ≤ bk ≤ 1 since µQ0 is a
probability measure. We use the first estimate in Lemma 6.1, and Lemma
6.2 to get

∑
k

ak ϕm(bk) ≤ C1

(
1 +

∞∑
k=1

22k
2km bk

)
≤ C1

(
1 +

∞∑
k=1

22k
2km (1 + log k) bk

)
≤ C1 4m+1

(
1 +

∫
Q0

Υm(f) dµQ0

)
.

On the other hand, by the second estimate in Lemma 6.1, and by Lemma
6.2,

Ñ ({ak ϕm(bk)}k) =
∞∑
k=1

ϕ1

(
22k

ϕm(bk)
)

≤ C2

(
1 +

∞∑
k=1

22k
2km(1 + log k) bk

)
≤ C2 4m+1

(
1 +

∫
Q0

Υm(f) dµQ0

)
.
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Thus,

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤ 6C0

(
1 + log+

∑
k

ak ϕm(bk)
)
Ñ ({ak ϕm(bk)})

≤ C

(
1 + log

(
1 +

∫
Q0

Υm(f) dµQ0

)) (
1 +

∫
Q0

Υm(f) dµQ0

)
,

as desired.

Proof (Lemma 6.1). Both estimates are proved in a similar way. Set

I =
{
k ≥ 1 : βk ≤

1
22k 2km k2

}
, II =

{
k ≥ 1 : βk >

1
22k 2km k2

}
.

Then, using that ϕ1 is an increasing function,

ΣI =
∑
k∈I

22k
ϕm(βk) ≤

∑
k∈I

22k
ϕm

( 1
22k 2km k2

)
=

∞∑
k=1

22k 1
22k 2km k2

(
1 + log+(22k

2km k2)
)m ≤ Cm

∞∑
k=1

1
k2
.

On the other hand,

ΣII =
∑
k∈II

22k
ϕm(βk) =

∑
k∈II

22k
βk

(
1 + log+ 1

βk

)m
≤

∞∑
k=1

22k
βk

(
1 + log+(22k

2km k2)
)m

≤ Cm

∞∑
k=1

22k
2km βk.

Thus,

∞∑
k=1

22k
ϕm(βk) = ΣI +ΣII ≤ C1

(
1 +

∞∑
k=1

22k
2km βk

)
,

where C1 only depends on m.
We indicate how to obtain the latter estimate. Since both ϕ1, ϕm are

increasing we have

ΣI =
∑
k∈I

ϕ1

(
22k

ϕm(βk)
)
≤

∞∑
k=1

ϕ1

(
22k

ϕm

( 1
22k 2km k2

))

≤
∞∑
k=1

ϕ1

(Cm
k2

)
≤ Cm

∞∑
k=1

1 + log k
k2

.
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On the other hand,

ΣII =
∑
k∈II

ϕ1

(
22k

ϕm(βk)
)

=
∑
k∈II

ϕ1

(
22k

βk

(
1 + log+ 1

βk

)m)
≤

∑
k∈II

ϕ1

(
22k

βk
(
1 + log+(22k

2km k2)
)m)

≤
∑
k∈II

ϕ1

(
Cm 22k

2km βk
)

≤ Cm
∑
k∈II

22k
2km βk

(
1 + log+ 1

22k 2km βk

)
≤ Cm

∞∑
k=0

22k
2km βk (1 + log+ k).

Collecting the estimates for ΣI and ΣII we get the desired inequality. ut

Proof (Lemma 6.2). The first inequality is trivial: the sets Fk are pairwise
disjoint (since the Gk’s are) and therefore

2−m
∫
Q0

Υm(h) dµQ0 = 2−m
∫
Q0

Υm

( ∞∑
k=1

ak χFk

)
dµQ0

= 2−m
∞∑
k=1

Υm(ak)µQ0(Fk)

= 2−m
∞∑
k=1

µQ0(Fk) 22k (
1 + log+ 22k)m (

1 + log+ log+ log+ 22k)
≤

∞∑
k=1

µQ0(Fk) 22k
2km (1 + log k).

For the second estimate we use (ii) in Step 1:

∞∑
k=1

µQ0(Fk) 22k
2km (1 + log k) =

∞∑
k=1

∫
Gk

f(x) dµQ0(x) 2km (1 + log k).

To finish we only have to notice that G1 = {x ∈ Q0 : 0 < f(x) ≤ 4} and

Gk = {x ∈ Q0 : 22k−1
< f(x) ≤ 22k}, k ≥ 2.

Thus, for x ∈ Gk, we have

2k ≤ 4
(
1 + log+ f(x)

)
, 1 + log k ≤ 4

(
1 + log+ log+ log+ f(x)

)
.
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Hence, since the sets Gk are pairwise disjoint

∞∑
k=1

µQ0(Fk) 22k
2km (1 + log k) =

∞∑
k=1

∫
Gk

f(x) 2km (1 + log k) dµQ0(x)

≤ 4m+1
∞∑
k=1

∫
Gk

f(x)
(
1 + log+ f(x)

)m (
1 + log+ log+ log+ f(x)

)
dµQ0(x)

≤ 4m+1

∫
Q0

Υm
(
f(x)

)
dµQ0(x).

ut

Proof of Step 1: This step is an extension of an approximation lemma in
[SS]. We will prove it for completeness. It is clear that since f is bounded,
f(x) ≤ ak0 for all x ∈ Q0 and for some k0 ≥ 1. Fix ε > 0. Let {Ql} be
a finite family of dyadic subcubes of Q0, which all are of the same fixed
generation (that is, they all have the same side length). The generation
that we are considering is taken in such a way that the length of the
diagonal of any of them is smaller than δ, for some δ > 0 to be chosen.
Let Gk = {x ∈ Q0 : ak−1 < f(x) ≤ ak}. Note that Gk = Ø for k ≥ k0+1.
Since, ∫

Gk∩Ql

f(x) dµQ0(x) ≤ ak µQ0(Gk ∩Ql),

there exists F lk ⊂ Int(Ql) ∩Gk such that∫
Gk∩Ql

f(x) dµQ0(x) = ak µQ0(F
l
k).

We define Fk = ∪lF lk and note that Fk = Ø for k ≥ k0 + 1. Our simple
function is

h(x) =
∞∑
k=1

ak χFk
=

k0∑
k=1

ak χFk
.

Conclusion (i) holds by construction. The same occurs for (ii):∫
Gk

f(x) dµQ0(x) =
∑
l

∫
Gk∩Ql

f(x) dµQ0(x) =
∑
l

ak µQ0(F
l
k)

= ak µQ0(Fk) =
∫
Gk

h(x) dµQ0(x),
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by the disjointness of the sets {F lk}l and also of {Gk}k. So we only have
to prove (iii). We proceed as follows∫
Q0

S?N,Q0
(f − h)(x) dµQ0(x) ≤

N∑
j=1

∫
Q0

|Sj,Q0(f − h)(x)| dµQ0(x)

=
N∑
j=1

∫
Q0

∣∣∣ ∫
Q0

sj(x, y)
(
f(y)− h(y)

)
dy

∣∣∣ dµQ0(x)

≤
N∑
j=1

k0∑
k=1

∑
l

∫
Q0

∣∣∣ ∫
Gk∩Ql

sj(x, y)
(
f(y)− ak χF l

k(y)

)
dy

∣∣∣ dµQ0(x)

≤
N∑
j=1

k0∑
k=1

∑
l

∫
Gk∩Ql

∣∣f(y)− ak χF l
k
(y)

∣∣dy ∫
Q0

∣∣sj(x, y)− sj(x, yl)
∣∣dµQ0(x)

where yl is the center of Ql and we have used that∫
Gk∩Ql

(
f(y)−ak χF l

k
(y)

)
dy = |Q0|

( ∫
Gk∩Ql

f(y) dµQ0(y)−akµQ0(F
l
k)

)
= 0.

Take,
ε0 =

ε

2 N |Q0| ‖f‖L1(Q0,µQ0
)
.

By (c), for each j = 1, . . . , N , there exists δj such that∫
Q0

|sj(x, y1)− sj(x, y2)| dµQ0(x) ≤ ε0, |y1 − y2| < δj , y1, y2 ∈ Q0.

We choose δ = min{δ1, . . . , δN}. Since yl is the center of Ql and y ∈ Ql
we have that |y − yl| < diag(Ql) ≤ δ and so∫

Q0

|sj(x, y)− sj(x, yl)| dµQ0(x) ≤ ε0, j = 1, . . . , N.

Thus,∫
Q0

S?N,Q0
(f − h)(x) dµQ0(x) ≤ ε0N

k0∑
k=1

∑
l

∫
Gk∩Ql

(
f(y) + ak χF l

k
(y)

)
dy

= 2 ε0N
k0∑
k=1

∑
l

∫
Gk∩Ql

f(y) dy ≤ 2 ε0N |Q0| ‖f‖L1(Q0,µQ0
) = ε.

ut
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