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Abstract. We study the Kato problem for divergence form operators whose ellipticity
may be degenerate. The study of the Kato conjecture for degenerate elliptic equations
was begun in [16, 17, 19]. In these papers the authors proved that given an operator
Lw = −w−1 div(A∇), where w is in the Muckenhoupt class A2 and A is a w-degenerate
elliptic measure (that is, A = wB with B(x) an n×n bounded, complex-valued, uniformly
elliptic matrix), then Lw satisfies the weighted estimate ‖

√
Lwf‖L2(w) ≈ ‖∇f‖L2(w). In the

present paper we solve the L2-Kato problem for a family of degenerate elliptic operators.
We prove that under some additional conditions on the weight w, the following unweighted
L2-Kato estimates hold:

‖L1/2
w f‖L2(Rn) ≈ ‖∇f‖L2(Rn).

This extends the celebrated solution to the Kato conjecture by Auscher, Hofmann,
Lacey, McIntosh, and Tchamitchian, allowing the differential operator to have some de-
gree of degeneracy in its ellipticity. For example, we consider the family of operators
Lγ = −|x|γ div(|x|−γB(x)∇), where B is any bounded, complex-valued, uniformly elliptic
matrix. We prove that there exists ε > 0, depending only on dimension and the ellipticity
constants, such that

‖L1/2
γ f‖L2(Rn) ≈ ‖∇f‖L2(Rn), −ε < γ <

2n

n+ 2
.

The case γ = 0 corresponds to the case of uniformly elliptic matrices. Hence, our result
gives a range of γ’s for which the classical Kato square root proved in [4] is an interior point.

Our main results are obtained as a consequence of a rich Calderón-Zygmund theory
developed for certain operators naturally associated with Lw. These results, which are of
independent interest, establish estimates on Lp(w), and also on Lp(v dw) with v ∈ A∞(w),
for the associated semigroup, its gradient, the functional calculus, the Riesz transform,
and vertical square functions. As an application, we solve some unweighted L2-Dirichlet,
Regularity and Neumann boundary value problems for degenerate elliptic operators.
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1. Introduction

We study the degenerate elliptic operators Lw = −w−1 divA∇, where w is in the Muck-
enhoupt class A2 and A(x) is an n× n complex-valued matrix that satisfies the degenerate
ellipticity condition

λw(x)|ξ|2 ≤ Re 〈A(x)ξ, ξ〉, |〈A(x)ξ, η〉| ≤ Λw(x)|ξ||η|, ξ, η ∈ Cn, a.e. x ∈ Rn.

Equivalently, A(x) = w(x)B(x), where B is an n × n complex-valued matrix that satisfies
the uniform ellipticity conditions

λ|ξ|2 ≤ Re 〈B(x)ξ, ξ〉, |〈B(x)ξ, η〉| ≤ Λ|ξ||η|, ξ, η ∈ Cn, a.e. x ∈ Rn.

Such operators were first studied (with A a real symmetric matrix) by Fabes, Kenig and
Serapioni [21]. When A is complex-valued and uniformly elliptic (i.e. w ≡ 1), a landmark
result was the proof of the Kato conjecture by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [4]: that for all f ∈ H1,

‖L1/2f‖2 ≈ ‖∇f‖2.

The proof of this long-standing conjecture led naturally to the study of the operators associ-
ated with L: the semigroup e−tL, its gradient

√
t∇e−tL, the Riesz transform ∇L−1/2, the H∞

functional calculus and square functions: for details and complete references, see Auscher [2].
These estimates are interesting in themselves; moreover, it is well known that Lp estimates
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for these operators yield regularity results for boundary value problems for L: for details,
see the introduction to [10].

In [19] (see also [16, 17, 9]) the first and third authors solved the Kato problem for
degenerate elliptic operators: they showed that if w ∈ A2 and A satisfies the degenerate
ellipticity conditions, then for all f ∈ H1(w),

‖L1/2
w f‖L2(w) ≈ ‖∇f‖L2(w). (1.1)

In this paper we consider the problem of determining those A2 weights such that the
classical Kato problem can be solved for Lw: that is, finding weights such that Lw satisfies
the unweighted estimate

‖L1/2
w f‖L2(Rn) ≈ ‖∇f‖L2(Rn),

for f in a class of nice functions (a posteriori, by standard density arguments, the estimate
can be extended to all f ∈ H1(Rn)). We solve this problem in two steps. The first is to prove
weighted Lp estimates for some operators associated with Lw (the semigroup, its gradient,
the Riesz transform, the functional calculus, and square functions.) These results, which
are of interest in their own right, are analogous to those obtained in the uniformly elliptic
case. However, a significant technical obstruction is that given a weight w ∈ A2, while it is
the case that there exists ε > 0 such that w ∈ A2−ε, it is easy to construct examples to show
that ε may be arbitrarily small. Therefore, our bounds in the range 1 < p < 2 need to take
this into account.

The second step is to find conditions on the weight w so that these operators satisfy
unweighted L2 estimates. Both steps are carried out simultaneously, and the proofs are
intertwined. Our approach is to apply the theory of off-diagonal estimates on balls developed
by Auscher and the second author [5, 6, 7, 8]. We will in fact prove weighted estimates on
Lp(v dw), where v satisfies Muckenhoupt and reverse Hölder conditions with respect to the
measure dw = w dx: Lp(w) estimates are then obtained by taking v = 1, and unweighted
estimates by taking v = w−1.

The unweighted L2 estimates are delicate, since they require a careful estimate of the
constants that appear. Nevertheless, we are able to give useful sufficient conditions: e.g.,
w ∈ A1 ∩ RHn

2
+1. (For definitions of these classes, see Section 2 below.) For example, we

have the following result that is a special case of one of our main results (cf. Theorem 11.11).

Theorem 1.2. Let Lw = −w−1 divA∇ be a degenerate elliptic operator as above. If w ∈
A1 ∩RHn

2
+1, then the Kato problem can be solved for Lw: for every f ∈ H1(Rn),

‖L1/2
w f‖L2(Rn) ≈ ‖∇f‖L2(Rn).

The implicit constants depend only on the dimension, the ellipticity constants, and the A1

and RHn
2

+1 constants of w.

Furthermore, if we define Lγ = −|x|γ div(|x|−γB(x)∇), where B is an n × n complex-
valued matrix that satisfies the uniform ellipticity condition, then there exists 0 < ε < 1

2

small enough (depending only on the dimension and the ratio Λ/λ) such that

‖L1/2
γ f‖L2(Rn) ≈ ‖∇f‖L2(Rn), −ε < γ <

2n

n+ 2
.

Remark 1.3. In Theorem 1.2 the operator L
1/2
w is a priori only defined on H1(w); however

this means that it is defined on C∞0 (Rn) and so by a standard density argument we can
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extend our results to all f ∈ H1(Rn). Hereafter we will make this extension without further
comment.

We emphasize that in Theorem 1.2, when γ = 0 we are back at the uniformly elliptic case,
which is the celebrated solution to the Kato square root problem by Auscher, Hofmann,
Lacey, McIntosh, and Tchamitchian in [4]. Here we are able to find a range of γ’s for which
the same estimates hold and the classical Kato square root problem (i.e., γ = 0) is an interior
point in that range.

These unweighted L2 estimates have important applications to boundary value problems
for degenerate elliptic operators. Consider, for example, the following Dirichlet problem on
Rn+1

+ = Rn × [0,∞): {
∂2
t u− Lwu = 0, on Rn+1

+

u = f on ∂Rn+1
+ = Rn.

If f ∈ L2(Rn), then u(x, t) = e−tL
1/2
w f(x) is a solution, and if Lw has a bounded H∞ func-

tional calculus on L2, then supt>0 ‖u(·, t)‖2 . ‖f‖2. Similar results hold for the corresponding
Neumann and Regularity problems.

Our proofs are unavoidably technical, and the results for each operator considered build
upon what was proved previously for other operators. We have organized the material
as follows. In Section 2 we gather some essential definitions and results about weights,
degenerate elliptic operators, and off-diagonal estimates. Central to all of our subsequent
work are Theorems 2.35 and 2.39 (which were proved in [5]).

In Sections 3, 4, and 5 we prove estimates for the semigroup e−tLw , t > 0, the H∞

functional calculus (i.e., operators ϕ(Lw) where ϕ ∈ H∞), the vertical square function
associated to the semigroup,

gLwf(x) =

(∫ ∞
0

∣∣∣(tLw)1/2 e−tLwf(x)
∣∣∣2 dt
t

)1/2

,

and its discrete analog. Here and in subsequent sections we prove both Lp(w) estimates and
weighted Lp(v dw) estimates. In many cases these results are proved simultaneously, with
the unweighted results (i.e., in Lp(w)) following from the weighted results (i.e., in Lp(v dw))
by taking v = 1.

In Section 6 we prove the so-called reverse inequality, ‖L1/2
w ‖Lp(w) . ‖∇f‖Lp(w), that

generalizes the L2(w) estimate in (1.1). We note that while the equivalence in (1.1) follows
at once from the reverse inequality for p = 2 by duality, the two inequalities behave differently
when p 6= 2.

In Sections 7 and 8 we prove estimates for the gradient of the semigroup,
√
t∇e−tLw .

The proof that there exists q+ > 2 such that this operator satisfies Lp(w) estimates for
2 < p < q+ is quite involved as it requires preliminary estimates for the Riesz transform and
the Hodge projection. We note that, as opposed to the non-degenerate case, here we cannot
use “global” embeddings, nor can we rescale. Also we cannot expect to obtain that the
gradient of the semigroup maps globally L2(w) into Lp(w) for p 6= 2. All these difficulties
arise naturally from the lack of isotropy of the natural underlying measure w(x) dx and
make the typical arguments used in the uniformly elliptic case (cf. [2, Chapter 4]) unusable.
We also note that in some sense our result is the best possible: even in the non-degenerate
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case it is known [2] that given any p > 2 there exists a matrix A and operator L such that
gradient of the semigroup is not bounded on Lp.

In Section 9 we prove Lp(w) estimates for the Riesz transform ∇L−1/2, and in Section 10
we prove Lp(w) estimates for the square function associated to the gradient of the semigroup,

GLwf(x) =

(∫ ∞
0

|t1/2∇e−tLwf(x)|2dt
t

)1/2

.

In Section 11 we prove unweighted L2 inequalities for the operators we have considered
in previous sections. These are a consequence of the weighted estimates and are obtained
by taking v = w−1. The main problem is determining conditions on w for these to hold.
We essentially have two different kinds of estimates: one for operators that do not involve
the gradient, and one for those that do. The latter are more delicate as they involve careful
bounds for the parameter q+ from Section 8 in terms of the weight w. We also show that
we get unweighted Lp estimates for p very close to 2.

Finally, in Section 12 we describe in more detail the application of our results to L2

boundary value problems for degenerate elliptic operators. The results in this section our
the culmination of our work as they depend on all the estimates derived in previous sections.

As we were completing this project, we learned that related results had been obtained
independently by other authors. In [26] Le studied (among other things) the Lp(w) theory
for some of the operators considered here and proved estimates for values of p in the range
(2 − ε, 2 + ε). His proofs differ from ours in a number of details. In [24] Hofmann, Le and
Morris established some Carleson measure estimates and considered the Dirichlet problem
for degenerate elliptic operators. Also, very recently we learned that Yang and Zhang [30]
proved Kato type estimates in Lp(w) for p in the range (p0, 2]. Finally, we note that the
paper [13] complements our work here as it considers the conical square functions associated
to the operator Lw.

2. Preliminaries

Throughout n will denote the dimension of the underlying space Rn and we will always
assume n ≥ 2. If we write A . B we mean that there exists a constant C such that A ≤ CB.
We write A ≈ B if A . B and B . A. The constant C in these estimates may depend on
the dimension n and other (fixed) parameters that should be clear from the context. All
constants, explicit or implicit, may change at each appearance.

Given a ball B, let r(B) denote the radius of B. Let λB denote the concentric ball with
radius r(λB) = λr(B).

Weights. By a weight w we mean a non-negative, locally integrable function. For brevity,
we will often write dw for w dx. We will use the following notation for averages: given a set
E such that 0 < w(E) <∞,

−
∫
E

f dw =
1

w(E)

∫
E

f dw,

or, if 0 < |E| <∞,

−
∫
E

f dx =
1

|E|

∫
E

f dx.
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We state some definitions and basic properties of Muckenhoupt weights. For further
details, see [20, 22]. We say that w ∈ Ap, 1 < p <∞, if

[w]Ap = sup
Q
−
∫
Q

w(x) dx

(
−
∫
Q

w(x)1−p′ dx

)p−1

<∞.

When p = 1, we say that w ∈ A1 if

[w]A1 = sup
Q
−
∫
Q

w(x) dx ess sup
x∈Q

w(x)−1 <∞.

We say that w ∈ RHs, 1 < s <∞, if

[w]RHs = sup
Q

(
−
∫
Q

w(x) dx

)−1(
−
∫
Q

w(x)s dx

)1/s

<∞,

and we say that w ∈ RH∞ if

[w]RH∞ = sup
Q

(
−
∫
Q

w(x) dx

)−1

ess sup
x∈Q

w(x) <∞.

Let
A∞ =

⋃
1≤p<∞

Ap =
⋃

1<s≤∞

RHs.

Weights in the Ap and RHs classes have a self-improving property: if w ∈ Ap, there exists
ε > 0 such that w ∈ Ap−ε, and similarly if w ∈ RHs, then w ∈ RHs+δ for some δ > 0.
Hereafter, given w ∈ Ap, let

rw = inf{p : w ∈ Ap}, sw = sup{q : w ∈ RHq}.
An important property of Ap weights is that they are doubling: given w ∈ Ap, for all

τ ≥ 1 and any ball B,
w(τB) ≤ [w]Apτ

pnw(B).

In particular, hereafter let D ≤ pn be the doubling order of w: that is the smallest exponent
such that this inequality holds.

As a consequence of this doubling property, we have that with the ordinary Euclidean
distance | · |, (Rn, dw, | · |) is a space of homogeneous type. In this setting we can define
the new weight classes Ap(w) and RHs(w) by replacing Lebesgue measure in the definitions
above with dw: e.g., v ∈ Ap(w) if

[v]Ap(w) = sup
Q
−
∫
Q

v(x) dw

(
−
∫
Q

v(x)1−p′ dw

)p−1

<∞.

It follows at once from these definitions that there is a “duality” relationship between the
weighted and unweighted Ap and RHs conditions: v = w−1 ∈ Ap(w) if and only if w ∈ RHp′

and v = w−1 ∈ RHs(w) if and only if w ∈ As′ .
Weighted Poincaré-Sobolev inequalities were proved in [21].

Theorem 2.1. Given w ∈ Ap, p ≥ 1, let p∗w = p n rw
n rw−p if p < n rw and p∗w = ∞ otherwise.

Then for every p ≤ q < p∗w, ball B and f ∈ C∞0 (B),(
−
∫
B

|f(x)|q dw(x)

)1/q

≤ Cr(B)

(
−
∫
B

|∇f(x)|p dw
)1/p

. (2.2)
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Moreover, if f ∈ C∞(B), then(
−
∫
B

|f(x)− fB,w|q dw(x)

)1/q

≤ C r(B)

(
−
∫
B

|∇f(x)|p dw
)1/p

, (2.3)

where fB,w = −
∫
B
f dw.

Remark 2.4. In the special case when w ∈ A1 and 1 < p < n we can also take q = p∗w = p∗,
i.e., the regular Sobolev exponent. See Pérez [29, Theorem 2.5.2].

Remark 2.5. If we let q = np
n−1

< p∗w, then we can get a sharp estimate for the constant

C in (2.2) and (2.3): it is of the form C(p, n)[w]κAp where κ = n p−1
n p (p−1)

. This follows from

the sharp weighted estimates for the fractional integral operator due to Alberico, Cianchi
and Sbordone [1] and the standard pointwise estimates used to prove Poincaré-Sobolev
inequalities; see [21] for details.

Remark 2.6. By a standard density argument, once we know that (2.3) holds for smooth
functions in B we can easily extend that estimate to any function f ∈ Lq(w) with ∇f ∈
Lp(w). Details are left to the reader.

Degenerate elliptic operators. Given w ∈ A2 and constants 0 < λ ≤ Λ < ∞, let
En(w, λ,Λ) denote the class of n×nmatrices A = (Aij(x))ni,j=1 of complex-valued, measurable
functions satisfying the degenerate ellipticity condition

λw(x)|ξ|2 ≤ Re 〈Aξ, ξ〉, |〈Aξ, η〉| ≤ Λw(x)|ξ||η|, ξ, η ∈ Cn. (2.7)

Given A ∈ En(w, λ,Λ), we define the degenerate elliptic operator in divergence form

Lw = −w−1divA∇.

These operators were developed in [16] and we refer the reader there for complete details.
Here we sketch the key ideas.

Given a weight w ∈ A2, the space H1(w) is the weighted Sobolev space that is the
completion of C∞c with respect to the norm

‖f‖H1(w) =

(∫
Rn

(
|f(x)|2 + |∇f(x)|2

)
dw

)1/2

.

Note that the space defined above would usually be denoted by H1
0 (w). The space H1(w)

is defined as the set of distributions for which both f and |∇f | belong to L2(w). However,
since the underlying domain is Rn this definition implies that the “boundary” values vanish
in the L2(w)-sense, and both definitions agree [28].

Given a matrix A ∈ En(w, λ,Λ), define a(f, g) to be the sesquilinear form

a(f, g) =

∫
Rn
A(x)∇f(x) · ∇g(x) dx. (2.8)

Since w ∈ A2 and A satisfies (2.7), a is a closed, maximally accretive, continuous sesquilinear
form. Therefore, there exists an operator Lw whose domain D(Lw) ⊂ H1(w) is dense in
L2(w) and such that for every f ∈ D(Lw) and every g ∈ H1(w),

a(f, g) = 〈Lwf, g〉w =

∫
Rn
Lwf(x)g(x) dw. (2.9)
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We note that the operator Lw is one to one. Indeed, if u, v ∈ D(Lw) are such that Lwu = Lwv,
then for all g ∈ H1(w)

0 =

∫
Rn
A(x)∇(u(x)− v(x)) · ∇g(x) dx.

Taking g = u− v implies ∇u(x) = ∇v(x) and so u = v.
The properties of the sesquilinear form guarantee that on L2(w) there exists a bounded,

strongly continuous semigroup e−tLw . Further, it has a holomorphic extension. Let

Σω = {z ∈ C : z 6= 0, | arg(z)| < ω}
and define ϑ, ϑ∗ ∈ [0, π/2) by

ϑ = sup{| arg〈Lf, f〉w| : f ∈ D(Lw)}, ϑ∗ = arctan

√
Λ2

λ2
− 1.

Then there exists a complex semigroup e−zLw on Σπ/2−ϑ of bounded operators on L2(w). By
the weighted ellipticity condition (2.7), we have that 0 ≤ ϑ ≤ ϑ∗ < π/2.

Holomorphic functional calculus. Our operator Lw is “an operator of type ω” with
ω = ϑ , as defined in [27]. Indeed, the ellipticity conditions imply that Lw is closed and
densely defined, its spectrum is contained in Σϑ, and its resolvent satisfies standard decay
estimates [16]. Therefore, we can define an L2(w) functional calculus as in [27].

Given µ ∈ (ϑ, π), let H∞(Σµ) be the collection of bounded holomorphic functions on Σµ.
To define ϕ(Lw) for ϕ ∈ H∞(Σµ) we first consider a smaller class: we say that ϕ ∈ H∞0 (Σµ)
if for some c, s > 0 it satisfies

|ϕ(z)| ≤ c|z|s(1 + |z|)−2s, z ∈ Σµ.

We then have an integral representation of ϕ(Lw). Let Γθ be the boundary of Σθ with
positive orientation, and let ϑ < θ < ν < min(µ, π/2); then

ϕ(Lw) =

∫
Γπ/2−θ

e−zLwη(z) dz, (2.10)

where

η(z) =
1

2πi

∫
γν(z)

eζzϕ(ζ) dζ (2.11)

and γν(z) = R+eisign(Im(z))ν . Note that

|η(z)| . min(1, |z|−s−1), z ∈ Γπ/2−θ,

so the representation (2.10) converges in L2(w), and we have the bound

‖ϕ(Lw)f‖L2(w) ≤ C‖ϕ‖∞‖f‖L2(w), f ∈ H∞0 (Σµ). (2.12)

Now, since Lw is a one-to-one operator of type ω, it has dense range [14, Theorem 2.3],
and so the results in [27] (see also [14, Corollary 2.2]) imply that Lw has an H∞ functional
calculus and (2.12) extends to all of H∞(Σµ). Moreover, in [27, Section 8] the equivalence
between the existence of this H∞ functional calculus and square function estimates for Lw
and L∗w is established:{∫ ∞

0

‖ϕ(tLw)‖2
L2(w)

dt

t

} 1
2

≤ C‖ϕ‖∞‖f‖L2(w), ϕ ∈ H∞0 (Σµ), (2.13)
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with similar estimates for L∗w.
The operators ϕ(Lw) also have the following properties:

• If ϕ and ψ are bounded holomorphic functions, then we have the operator identity
ϕ(L)ψ(L) = (ϕψ)(L).
• Given any sequence {ϕk} of bounded holomorphic functions converging uniformly on

compact subsets of Σµ to ϕ, we have that ϕk(Lw) converges to ϕ(Lw) in the strong
operator topology (of operators on L2(w)).

Remark 2.14. The H∞ functional calculus can be extended to more general holomorphic
functions, such as powers, for which the operators ϕ(Lw) can be defined as unbounded
operators: see [23, 27].

Gaffney-type estimates. The semigroup and its gradient satisfy Gaffney-type estimates
on L2(w). Below, we will see that these are a particular case of what we will call full
off-diagonal estimates: see Definition 2.33.

Theorem 2.15. Given w ∈ A2 and A ∈ En(w, λ,Λ), for any closed sets E and F , for
f ∈ L2(w) and for all z ∈ Σν, where 0 < ν < π

2
− ϑ,

(1) ‖e−z Lw(f χE)χF ‖L2(w) ≤ C e−
c d(E,F )2

|z| ‖f χE ‖L2(w),

(2) ‖
√
z∇e−z Lw(f χE)χF ‖L2(w) ≤ C e−

c d(E,F )2

|z| ‖f χE ‖L2(w),

(3) ‖z Lwe−z Lw(f χE)χF ‖L2(w) ≤ C e−
c d(E,F )2

|z| ‖f χE ‖L2(w).

Proof. The semigroup estimate (1) was proved in [16, Theorem 1.6] for real z, but the same
proof can be readily modified to prove the analytic version. Alternatively, estimates (1) and
(2) follow from the resolvent bounds

‖(1 + z2Lw)−1(f χE)χF ‖L2(w) ≤ Ce−
cd(E,F )
|z| ‖f χE ‖L2(w), (2.16)

and

‖z∇(1 + z2Lw)−1(f χE)χF ‖L2(w) ≤ Ce−
cd(E,F )
|z| ‖f χE ‖L2(w), (2.17)

obtained in [19, Lemma 2.10] for z ∈ Σπ
2

+ν , together with the integral representation of the
semigroup

e−zLwf =
1

2π

∫
Γ

ezζ (ζ + Lw)−1 f dζ,

where Γ is the boundary of Σθ with positive orientation and π
2
< θ < π

2
+ ν − arg(z).

Finally, from (2.16) and (2.17) we obtain the estimate

‖z2Lw(1 + z2Lw)−1(f χE)χF ‖L2(w) ≤ Ce−
cd(E,F )
|z| ‖f χE ‖L2(w),

and then by the same kind of argument we get (3). �
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The Kato estimate. The starting point for all of our estimates is the L2(w) Kato estimates

for the square root operator L
1/2
w proved in [19] (see also [9] for a different proof). This

operator is the unique, maximal accretive operator such that L
1/2
w L

1/2
w = Lw. It has the

integral representation

L1/2
w =

1√
π

∫ ∞
0

√
tLwe

−tLw dt

t
.

(For further details, see [10, 27].)

Theorem 2.18. [19, Theorem 1.1] Given w ∈ A2 and A ∈ En(w, λ,Λ), the domain of Lw
is H1(w) and there exist constants c and C, depending on n, Λ/λ and [w]A2, such that for
all f ∈ H1(w),

c‖∇f‖L2(w) ≤ ‖L1/2
w f‖L2(w) ≤ C‖∇f‖L2(w). (2.19)

The Riesz transform associated to Lw is the operator ∇L−1/2
w . Formally, by (2.19) we

have that the Riesz transform is a bounded operator on L2(w,Cn). To legitimize this, we
define

∇L−1/2
w =

1√
π

∫ ∞
0

√
t∇e−tLw dt

t
. (2.20)

However, it is not immediate that this integral converges at 0 or ∞. To rectify this, for
ε > 0 define

Sε = Sε(Lw) =
1√
π

∫ 1/ε

ε

√
te−tLw

dt

t
. (2.21)

Since Sε(z) is a uniformly bounded holomorphic function on the right half plane for all
0 < ε < 1, by the L2(w) functional calculus described above, Sε(Lw) is uniformly bounded

on L2(w) for that range of ε. Further, for f ∈ L∞c , Sεf ∈ D(Lw) ⊂ D(L
1/2
w ), and so by

inequality (2.19) and the functional calculus,

‖∇Sεf‖L2(w) . ‖L1/2Sεf‖L2(w) = ‖ϕε(Lw)f‖L2(w), (2.22)

where

ϕε(z) =
1√
π

∫ 1/ε

ε

√
t
√
ze−tz

dt

t
.

The sequence {ϕε} is uniformly bounded and converges uniformly to 1 on compact subsets of
the sector Σµ, 0 < µ < π/2. Therefore, L1/2Sεf → f strongly in L2(w). If we combine this
fact with (2.22) we see that {∇Sεf} is Cauchy and so it converges in L2(w). We therefore
define

∇L−1/2f = lim
ε→0
∇Sεf,

where the limit is in L2(w).
Given this definition, hereafter, when we are proving L2(w) estimates for the Riesz trans-

form, we should actually prove estimates for∇Sε that are independent of ε. These arguments
will remain implicit unless there are details we need to emphasize.
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Off-diagonal estimates. Off-diagonal estimates as we define them were introduced in [7]
and we will refer repeatedly to this paper for further information and results. Throughout
this section we will assume that given a weight w, w ∈ A2.

Given a ball B, for j ≥ 2 we define the annuli Cj(B) = 2j+1B \2j B. We let C1(B) = 4B.
By a slight abuse of notation, we will define

−
∫
Cj(B)

h dw =
1

w(2j+1B)

∫
Cj(B)

h dw.

If w ∈ A2 (as it will be hereafter), then w(2j+1B) ≈ w(Cj(B)), so this definition is equivalent
to the one given above up to a constant. Finally, for s > 0 we set Υ(s) = max{s, s−1}.

Definition 2.23. Given 1 ≤ p ≤ q ≤ ∞, a family {Tt}t>0 of sublinear operators satisfies
Lp(w)− Lq(w) off-diagonal estimates on balls, denoted by

Tt ∈ O
(
Lp(w)→ Lq(w)

)
,

if there exist constants θ1, θ2 > 0 and c > 0 such that for every t > 0 and for any ball B,
setting r = r(B), (

−
∫
B

|Tt(χB f)|q dw
) 1

q

. Υ

(
r√
t

)θ2 (
−
∫
B

|f |p dw
) 1

p

; (2.24)

and for all j ≥ 2,(
−
∫
B

|Tt(χCj(B) f)|q dw
) 1

q

. 2j θ1Υ

(
2j r√
t

)θ2
e−

c 4j r2

t

(
−
∫
Cj(B)

|f |p dw

) 1
p

(2.25)

and (
−
∫
Cj(B)

|Tt(χB f)|q dw
) 1

q

. 2j θ1Υ

(
2j r√
t

)θ2
e−

c 4j r2

t

(
−
∫
B

|f |p dw
) 1

p

. (2.26)

If the family of sublinear operators {Tz}z∈Σµ
is defined on a complex sector Σµ, we say

that it satisfies Lp(w) − Lq(w) off-diagonal estimates on balls in Σµ if (2.24), (2.25) and
(2.26) hold for z ∈ Σµ with t replaced by |z| in the righthand terms. We denote this by
Tz ∈ O

(
Lp(w)→ Lq(w),Σµ

)
.

We give some basic properties of off-diagonal estimates on balls as a series of lemmas
taken from [7, Section 2.2]. The first follows immediately by real interpolation, the second
by Hölder’s inequality, and the third by duality.

Lemma 2.27. Given 1 ≤ pi ≤ qi ≤ ∞, i = 1, 2, if Tt ∈ O
(
Lp1(w) → Lq1(w)

)
, and

Tt : Lp2(w) → Lq2(w) is uniformly bounded, then Tt ∈ O
(
Lpθ(w) → Lqθ(w)

)
, 0 < θ < 1,

where
1

pθ
=

θ

p1

+
1− θ
p2

,
1

qθ
=

θ

q1

+
1− θ
q2

.

Lemma 2.28. If 1 ≤ p ≤ p1 ≤ q1 ≤ q ≤ ∞, then

O
(
Lp(w)→ Lq(w)

)
⊂ O

(
Lp1(w)→ Lq1(w)

)
.

Lemma 2.29. If for some 1 ≤ p ≤ q ≤ ∞, Tt ∈ O
(
Lp(w) → Lq(w)

)
, and the operators

Tt are linear, then T ∗t ∈ O
(
Lq
′
(w) → Lp

′
(w)
)
. (Here T ∗t is the dual operator for the inner

product
∫
Rn f g dw.)
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Lemma 2.30 ([7, Theorem 2.3]).

(1) If Tt ∈ O
(
Lp(w) → Lp(w)

)
, 1 ≤ p ≤ ∞, then Tt : Lp(w) → Lp(w) is uniformly

bounded.
(2) If 1 ≤ p ≤ q ≤ r ≤ ∞, Tt ∈ O

(
Lq(w)→ Lr(w)

)
, and St ∈ O

(
Lp(w)→ Lq(w)

)
, then

Tt ◦ St ∈ O
(
Lp(w)→ Lr(w)

)
.

Remark 2.31. If p < q, then Tt ∈ O
(
Lp(w)→ Lq(w)

)
does not guarantee that Tt is bounded

from Lp(w) to Lq(w).

Remark 2.32. Since complex sectors Σµ, 0 ≤ µ < π, are closed under addition, the proof
of Lemma 2.30 extends to give off-diagonal estimates on complex sectors O

(
Lp(w) →

Lq(w),Σµ

)
.

Definition 2.33. Given 1 ≤ p ≤ q ≤ ∞, a family of operators {Tt} satisfies full off-diagonal
estimates from Lp(w) to Lq(w), denoted by

Tt ∈ F
(
Lp(w)→ Lq(w)

)
,

if there exist constants C, c, θ > 0 such that given any closed sets E, F ,

‖Tt(f χE)χF ‖Lq(w) ≤ Ct−θe−
cd2(E,F )

t ‖fχE‖Lp(w).

The connection between full off-diagonal estimates and off-diagonal estimates on balls is
given in the following lemma from [7, Section 3.1].

Lemma 2.34. Given 1 ≤ p ≤ q ≤ ∞:

(1) if Tt ∈ F
(
Lp(w)→ Lq(w)

)
, then Tt : Lp(w)→ Lq(w) is uniformly bounded;

(2) Tt ∈ F
(
Lp(w)→ Lp(w)

)
if and only if Tt ∈ O

(
Lp(w)→ Lp(w)

)
.

The importance of off-diagonal estimates is that they will let us prove weighted norm
inequalities for the operators we are interested in. To do so we will make repeated use of
two results first proved in [6]; however, we will use special cases of these results as given
in [5, Theorems 2.2 and 2.4].

Theorem 2.35. Given w ∈ A2 and 1 ≤ p0 < q0 ≤ ∞, let T be a sublinear operator acting
on Lp0(w), {Ar}r>0 a family of operators acting from a subspace D of Lp0(w) into Lp0(w),
and S an operator from D into the space of measurable functions on Rn. Suppose that for
every f ∈ D and ball B with radius r,(

−
∫
B

|T (I −Ar)f |p0 dw
)1/p0

≤
∑
j≥1

g(j)

(
−
∫

2j+1B

|Sf |p0 dw
)1/p0

(2.36)

and (
−
∫
B

|TArf |q0 dw
)1/q0

≤
∑
j≥1

g(j)

(
−
∫

2j+1B

|Tf |p0 dw
)1/p0

, (2.37)

where
∑
g(j) <∞. Then for every p, p0 < p < q0, and weights

v ∈ Ap/p0(w) ∩RH(q0/p)′(w),

there is a constant C such that for all f ∈ D,

‖Tf‖Lp(v dw) ≤ C‖Sf‖Lp(v dw).
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Remark 2.38. In Theorem 2.35 and Theorem 2.39 below, the case q0 = ∞ is understood
in the sense that the Lq0(w)-average is replaced by the essential supremum. Also in Theo-
rem 2.35, if q0 =∞, then the condition on v becomes v ∈ Ap/p0 .

Theorem 2.39. Given w ∈ A2 with doubling order D, and 1 ≤ p0 < q0 ≤ ∞, let T :
Lq0(w) → Lq0(w) be a sublinear operator, and {Ar}r>0 a family of linear operators acting
from L∞c into Lq0(w). Suppose that for every ball B with radius r, f ∈ L∞c with supp(f) ⊂ B
and j ≥ 2, (

−
∫
Cj(B)

|T (I −Ar)f |p0 dw
)1/p0

≤ g(j)

(
−
∫
B

|f |p0 dw
)1/p0

. (2.40)

Suppose further that for every j ≥ 1,(
−
∫
Cj(B)

|Arf |q0 dw
)1/q0

≤ g(j)

(
−
∫
B

|f |p0 dw
)1/p0

, (2.41)

where
∑
g(j)2Dj <∞. Then for all p, p0 < p < q0, there exists a constant C such that for

all f ∈ L∞c ,

‖Tf‖Lp(w) ≤ C‖f‖Lp(w).

3. Off-diagonal estimates for the semigroup e−tLw

In this section we consider off-diagonal estimates for the semigroup associated to Lw.
Throughout this and subsequent sections, let w ∈ A2 and A ∈ En(w,Λ, λ) be fixed. Our goal
is to characterize the set of pairs (p, q), p ≤ q such that these operators are in O

(
Lp(w)→

Lq(w)
)
. By Theorem 2.15 we have that

e−tLw ∈ F
(
L2(w)→ L2(w)

)
⊂ O

(
L2(w)→ L2(w)

)
.

We will show that in the (p, q)-plane this set contains a right triangle: see Figure 1.

Figure 1. (p, q) such that e−tLw ∈ O
(
Lp(w)→ Lq(w)

)

(p, q)

p

q

Let J̃ (Lw) ⊂ [1,∞] be the set of all exponents p such that e−t Lw : Lp(w) → Lp(w) is

uniformly bounded for all t > 0. By Theorem 2.15 and Lemma 2.34, 2 ∈ J̃ (Lw), and if it
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contains more than one point, then by interpolation J̃ (Lw) is an interval. The set of pairs
(p, q) such that e−t Lw ∈ O

(
Lp(w)→ Lp(w)

)
is completely characterized by the next result.

Proposition 3.1. There exists an interval J (Lw) ⊂ [1,∞] such that p, q ∈ J (Lw) if and
only if e−t Lw ∈ O

(
Lp(w)→ Lq(w)

)
. Furthermore, J (Lw) has the following properties:

(1) J (Lw) ⊂ J̃ (Lw);

(2) IntJ (Lw) = Int J̃ (Lw);
(3) if p−(Lw) and p+(Lw) are respectively the left and right endpoints of J (Lw), then

p−(Lw) ≤ (2∗w)′ and p+(Lw) ≥ 2∗w, where 2∗w is as in Theorem 2.1. In particular,
2 ∈ Int(J (Lw)).

Remark 3.2. The smaller the value of rw, the better our bounds on the size of the set J (Lw).
In the limiting case when w ∈ A1, we have that p−(Lw) ≤ 2n

n+2
and p+(Lw) ≥ 2n

n−2
. These

values should be compared to the estimates in [2, Corollary 4.6] for the non-degenerate case
that corresponds to the case w = 1.

We get two corollaries to Proposition 3.1. The first gives us weighted off-diagonal esti-
mates.

Corollary 3.3. Let p−(Lw) < p ≤ q < p+(Lw). If v ∈ Ap/p−(Lw)(w)∩RH(p+(Lw)/q)′(w), then

e−tLw ∈ O
(
Lp(v dw)→ Lq(v dw)

)
.

Proof. By Proposition 3.1, if p−(Lw) < p ≤ q < p+(Lw), then e−tLw ∈ O
(
Lp(w) → Lq(w)

)
.

Therefore, by [7, Proposition 2.6], if v ∈ Ap/p−(Lw)(w)∩RH(p+(Lw)/q)′(w), then we have that

e−tLw ∈ O
(
Lp(v dw)→ Lq(v dw)

)
. �

As our second corollary we get off-diagonal estimates for the holomorphic extension of the
semigroup.

Corollary 3.4. For any ν, 0 < ν < π
2
−ϑ, and for any p ≤ q such that e−tLw ∈ O

(
Lp(w)→

Lq(w)
)
, then for all m ∈ N ∪ {0}, (zLw)me−zLw ∈ O

(
Lp(w)→ Lq(w),Σν

)
.

Proof. This follows from [7, Theorem 4.3] and the fact that, by Theorem 2.15, for these
values of z, e−zLw ∈ F

(
L2(w)→ L2(w)

)
. �

Proof of Proposition 3.1. Fix 2 < q < 2∗w (If w ∈ A1 we let q = 2∗w = 2∗.) We will show
that e−t Lw ∈ O

(
L2(w)→ Lq(w)

)
. Given this, then we also have that e−t Lw ∈ O

(
Lq
′
(w)→

L2(w)
)
. For if L∗w is the adjoint of Lw (with respect to L2(w)), then L∗w = −w−1 div(A∗∇f)

and the same estimates hold for L∗w. Hence, e−t L
∗
w ∈ O

(
L2(w) → Lq(w)

)
, and so by

Lemma 2.29, e−t Lw ∈ O
(
Lq
′
(w)→ L2(w)

)
. Since e−tLw is a semigroup, by Lemma 2.30 we

have that e−t Lw ∈ O
(
Lq
′
(w) → Lq(w)

)
. Therefore, by [7, Proposition 4.1], we have that

there exists an interval J (Lw) and Properties (1) and (2) hold. Moreover, we have that
[q′, q] ⊂ J (Lw), so if we let q → 2∗w, then we immediately get Property (3).

It therefore remains to prove that e−t Lw ∈ O
(
L2(w)→ Lq(w)

)
. We first show (2.24). Fix

B and for brevity write r = r(B) and Cj = Cj(B). By our choice of q the Poincaré inequal-

ity (2.3) holds. Moreover, as we noted above e−t Lw ,
√
t∇e−t Lw ∈ O

(
L2(w) → L2(w)

)
; we
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may assume that the same exponents θ1, θ2 hold for both operators. We thus get that(
−
∫
B

|e−t Lw(χB f)|q dw
) 1

q

≤
∣∣(e−t Lw(χB f)

)
B,w

∣∣+

(
−
∫
B

∣∣e−t Lw(χB f)(x)−
(
e−t Lw(χB f)

)
B,w

∣∣q dw(x)

) 1
q

.

(
−
∫
B

|e−t Lw(χB f)|2 dw
) 1

2

+ r

(
−
∫
B

|∇ e−t Lw(χB f)|2 dw
) 1

2

.

(
1 +

r√
t

)
Υ

(
r√
t

)θ2 (
−
∫
B

|f |2 dw
) 1

2

. Υ

(
r√
t

)1+θ2 (
−
∫
B

|f |2 dw
) 1

2

.

The proof that (2.25) holds is gotten by nearly the same argument:(
−
∫
B

|e−t Lw(χCj f)|q dw
) 1

q

≤
∣∣(e−t Lw(χCj f)

)
B,w

∣∣+

(
−
∫
B

∣∣e−t Lw(χCj f)(x)−
(
e−t Lw(χCj f)

)
B,w

∣∣q dw(x)

) 1
q

.

(
−
∫
B

|e−t Lw(χCj f)|2 dw
) 1

2

+ r

(
−
∫
B

|∇ e−t Lw(χCj f)|2 dw
) 1

2

. 2j θ1
(

1 +
r√
t

)
Υ

(
2j r√
t

)θ2
e−

c 4j r2

t

(
−
∫
Cj

|f |2 dw
) 1

2

. 2j θ1 Υ

(
2j r√
t

)1+θ2

e−
c 4j r2

t

(
−
∫
Cj

|f |2 dw

) 1
2

.

Finally, to prove that (2.26) holds we use a covering argument. Fix j ≥ 2; then we can
cover the annulus Cj by a collection of balls {Bk}Nk=1, r(Bk) = 2j−2 r, with centers xBk ∈ Cj.
The number of balls required, N , depends only on the dimension. For any such ball, since
dw is a doubling measure we have that(

−
∫
Bk

|e−t Lw(χB f)|q dw
) 1

q

≤
∣∣(e−t Lw(χB f)

)
Bk,w

∣∣+

(
−
∫
Bk

∣∣e−t Lw(χB f)(x)−
(
e−t Lw(χB f)

)
Bk,w

∣∣q dw(x)

) 1
q

.

(
−
∫
Bk

|e−t Lw(χB f)|2 dw
) 1

2

+ r(Bk)

(
−
∫
Bk

|∇ e−t Lw(χB f)|2 dw
) 1

2

.

(
−
∫

2j+2B\2j−1B

|e−t Lw(χB f)|2 dw
) 1

2
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+ 2j r

(
−
∫

2j+2B\2j−1B

|∇ e−t Lw(χB f)|2 dw
) 1

2

.

If j ≥ 3, then 2j+2B \ 2j−1B = Cj+1 ∪Cj ∪Cj−1; then to estimate the last two terms we

use the fact that e−t Lw ,
√
t∇e−t Lw ∈ O

(
L2(w)→ L2(w)

)
and apply (2.26) with p = q = 2

in each annulus Ci, j − 1 ≤ i ≤ j + 1. (These annuli have comparable measure since dw
is a doubling measure so we can divide the average up into three averages). If j = 2, then
24B \2B = C3∪C2∪ (4B \2B). On C3 and C2 we argue as before using (2.26). On 4B \B
we apply [7, Lemma 6.1]. (We note that in the notation there Ĉ1(B) = 4B \ 2B.)

If we combine all of these estimates, we get that for every j ≥ 2,(
−
∫
Bk

|e−t Lw(χB f)|q dw
) 1

q

. 2j θ1
(

1 +
2j r√
t

)
Υ

(
2j r√
t

)θ2 (
−
∫
B

|f |2 dw
) 1

2

. 2j θ1 Υ

(
2j r√
t

)1+θ2

e−
c 4j r2

t

(
−
∫
B

|f |2 dw
) 1

2

.

Since Cj ⊂
⋃
k Bk, we can sum in k to get(

−
∫
Cj(B)

|e−t Lw(χB f)|q dw

) 1
q

.
N∑
k=1

(
−
∫
Bk

|e−t Lw(χB f)|q dw
) 1

q

. 2j θ1 Υ

(
2j r√
t

)1+θ2

e−
c 4j r2

t

(
−
∫
B

|f |2 dw
) 1

2

.

This completes the proof that e−tLw ∈ O
(
L2(w)→ Lq(w)

)
. �

4. The functional calculus

In this section we show that the operator Lw has an Lp(w) holomorphic functional calculus.
As we discussed in Section 2 above, we know already that if ϕ is a bounded holomorphic
function on Σµ, µ ∈ (ϑ, π), then ϕ(Lw) is a bounded operator on L2(w). Recall that for any
µ ∈ (ϑ, π), we say that ϕ ∈ H∞0 (Σµ) if for some c, s > 0

|ϕ(z)| ≤ c|z|s(1 + |z|)−2s, z ∈ Σµ. (4.1)

We say that Lw has a bounded holomorphic functional calculus on Lp(w) if for any such ϕ,

‖ϕ(Lw)f‖Lp(w) ≤ C ‖ϕ‖∞ ‖f‖Lp(w), f ∈ Lp(w) ∩ L2(w), (4.2)

where C depends only on p, w, ϑ and µ (but not on the decay of ϕ). By a standard
density argument, (4.2) implies that ϕ(Lw) extends to a bounded operator on all of Lp(w).
Furthermore, we then have that this inequality holds if ϕ is any bounded holomorphic
function. For the details of this extension, see [23, 27].

Proposition 4.3. Let p−(Lw) < p < p+(Lw) and µ ∈ (ϑ, π). Then for any ϕ ∈ H∞0 (Σµ),

‖ϕ(Lw)f‖Lp(w) ≤ C ‖ϕ‖∞ ‖f‖Lp(w), (4.4)

with C independent of ϕ and f . Hence, Lw has a bounded holomorphic functional calculus
on Lp(w). Moreover, if v ∈ Ap/p−(Lw)(w) ∩ RH(p+(Lw)/p)′(w) then Lw also has a bounded
holomorphic functional calculus on Lp(v dw):

‖ϕ(Lw)f‖Lp(v dw) ≤ C ‖ϕ‖∞ ‖f‖Lp(v dw), (4.5)
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with C independent of ϕ and f .

Proof. For brevity, let p− = p−(Lw) and p+ = p+(Lw). By density it will suffice to assume
that f ∈ L∞c . Fix ϕ ∈ H∞0 (Σµ); by linearity we may assume that ‖ϕ‖∞ = 1.

We divide the proof into two steps. We first obtain (4.4) for p− < p < 2 by applying
Theorem 2.39 and following the ideas in [2]. To do so, we will pick q0 = 2 and p0 > p−
arbitrarily close to p−. In the second step, using some ideas from [5], we will use Theorem 2.35
to get (4.5); in particular this yields (4.4) for every 2 < p < p+ by taking v ≡ 1. To apply
Theorem 2.35 we will choose p0 > p− arbitrarily close to p− and q0 < p+ arbitrarily close to
p+. We will also use the fact that ϕ(Lw) is bounded on Lp0(w); this follows from the first
step choosing p− < p0 < 2.

To apply Theorem 2.39, fix p− < p0 < p < 2 and let q0 = 2, T = ϕ(Lw), and

Arf(x) =
(
I − (I − e−r2Lw)m

)
f(x), (4.6)

where m is a positive integer that will be chosen below. We first show that inequality (2.41)
holds. By Proposition 3.1 we have that e−tLw ∈ O

(
Lp0(w)→ L2(w)

)
. Using

Ar =
m∑
k=1

(
m

k

)
(−1)k+1e−kr

2Lw , (4.7)

and that for each fixed m and 1 ≤ k ≤ m

Υ

(
r√
kt

)
≤
√
mΥ

(r
t

)
and exp

(
− c
k

4jr2

t2

)
≤ exp

(
− c

m

4jr2

t2

)
,

Proposition 3.1 implies

Ar ∈ O
(
Lp(w)→ Lq(w)

)
, for all p−(Lw) < p ≤ q < p+(Lw). (4.8)

In particular, we have that Ar ∈ O
(
Lp0(w) → L2(w)

)
. Thus, given any ball B with radius

r, if supp(f) ⊂ B, then for all j ≥ 1,(
−
∫
Cj(B)

|Arf |2 dw
)1/2

. 2jθ1Υ
(
2j
)θ2 e−c4j (−∫

B

|f |p0 dw
)1/p0

. (4.9)

This establishes (2.41) with g (j) = C 2j(θ1+θ2)e−c4
j
, for in this case we have that∑

j≥1

2j(θ1+θ2+D)e−c4
j

<∞,

where D is the doubling constant of w.

We next prove that (2.40) holds. Since ϕ(z)(1 − e−r
2z)m ∈ H∞0 (Σ{min{µ,π/2}}), by the

functional calculus representation (2.10) we have that

ϕ (Lw) (I −Ar) f =

∫
Γ

e−z Lwf η(z) dz,

where Γ = ∂Σπ
2
−θ, with 0 < ϑ < θ < ν < min{µ, π/2}, and we choose θ so that the

hypotheses of Corollary 3.4 are satisfied for z ∈ Γ. Moreover, we have the estimate

|η (z)| . r2m

|z|m+1 ;

see [2, Section 5.1] for details.
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We can now argue as follows: given a ball B with radius r, for each j ≥ 2, by Minkowski’s
inequality and Corollary 3.4 (since p0 ∈ IntJ (Lw)),(

−
∫
Cj(B)

∣∣ϕ (Lw)
(
I −Ar(B)

)
f
∣∣p0 dw)1/p0

=

(
−
∫
Cj(B)

∣∣∣∣∫
Γ

e−z Lwf η(z) dz

∣∣∣∣p0 dw)1/p0

.
∫

Γ

(
−
∫
Cj(B)

∣∣e−z Lwf ∣∣p0 dw)1/p0 r2m

|z|m+1 |dz|

.

(
−
∫
B

|f |p0 dw
)1/p0 ∫

Γ

r2m

|z|m+1 2jθ1Υ

(
2jr√
|z|

)θ2

e−c
r2

|z|4
j

|dz|

=

(
−
∫
B

|f |p0 dw
)1/p0

2j(θ1−2m)

∫ ∞
0

σ2mΥ (σ)θ2 e−cσ
2 dσ

σ

. 2j(θ1−2m)

(
−
∫
B

|f |p0 dw
)1/p0

; (4.10)

the final inequality holds (i.e., the integral in σ converges) provided 2m > θ2. Moreover, if
we choose 2m > θ1 +D, we have that (2.40) holds with g (j) = C 2(j−1)(θ1−2m) and∑

j≥2

g (j) 2jD .
∑
j≥2

2j(θ1+D−2m) <∞.

We have shown that inequalities (2.40) and (2.41) hold, and so by Theorem 2.39 inequal-
ity (4.4) holds for all p such that p− < p ≤ 2.

We will now apply Theorem 2.35 to show that (4.5) holds for p− < p < p+. (In-
equality (4.4) then follows for 2 < p < p+ if we take v ≡ 1.) Fix p, p− < p < p+ and
v ∈ Ap/p−(w) ∩ RH(p+/p)′(w). By the openness properties of the Aq and RHs classes there
exist p0, q0 such that

p− < p0 < min{p, 2} ≤ p < q0 < p+, v ∈ Ap/p0(w) ∩RH(q0/p)′(w).

Let T = ϕ (Lw), Ar = I − (I − e−r2Lw)m, S = I, and fix the above values of p0 and q0. By
the previous argument we have that ϕ (Lw) is bounded on Lp0 (w).

We first show that (2.36) holds. Fix a ball B and decompose f as

f =
∑
j≥1

fχCj(B) :=
∑
j≥1

fj. (4.11)

Then, by the same functional calculus argument as given above, we have that for each j,(
−
∫
B

|ϕ(Lw)(I −Ar)fj|p0 dw
) 1

p0

=

(
−
∫
B

∣∣∣∣∫
Γ

e−z Lwfj η(z) dz

∣∣∣∣p0 dw) 1
p0

.
∫

Γ

(
−
∫
B

∣∣e−z Lwfj ∣∣p0 dw) 1
p0 r2m

|z|m+1 |dz|
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.

(
−
∫
Cj(B)

|f |p0 dw
) 1

p0

2j(θ1−2m)

∫
Γ

(
2jr√
|z|

)2m

Υ

(
2jr√
|z|

)θ2
e−

c4jr2

|z|
|dz|
|z|

. 2j(θ1−2m)

(
−
∫
Cj(B)

|f |p0 dw
) 1

p0

;

the last inequality holds provided 2m > θ2. Hence, since 2j+1B ⊃ Cj, by Minkowski’s
inequality we have (since the sum

∑
fj is finite for f ∈ L∞c )(

−
∫
B

|ϕ(Lw)(I −Ar)f |p0 dw
) 1

p0

≤
∑
j≥1

(
−
∫
B

|ϕ(Lw)(I −Ar)fj|p0 dw
) 1

p0

.
∑
j≥1

2j(θ1−2m)

(
−
∫

2j+1B

|f |p0 dw
) 1

p0

.

This establishes (2.36) with g(j) = C 2j(θ1−2m). If we take 2m > max {θ1, θ2}, then
∑
g(j) <

∞.
We now show that (2.37) holds. Fix a ball B and j ≥ 1. Since Ar ∈ O

(
Lp0(w)→ Lq0(w)

)
(see (4.8)),(

−
∫
B

∣∣Ar(χCj(B)ϕ(Lw)f
)∣∣q0dw) 1

q0

. 2jθ1Υ
(
2j
)θ2 e−c4j(−∫

Cj(B)

|ϕ (Lw) f |p0 dµ
) 1

p0

.

Therefore, since ϕ (Lw) and Ar commute, by Minkowski’s inequality we obtain(
−
∫
B

|ϕ (Lw)Arf |q0 dw
) 1

q0

.
∑
j≥1

2j(θ1+θ2)e−c4
j

(
−
∫
Cj(B)

|ϕ (Lw) f |p0 dµ
) 1

p0

.

This establishes (2.37) with g(j) = C 2j(θ1+θ2)e−c4
j
; again,

∑
g(j) < ∞. Therefore, our

proof is complete. �

5. Square function estimates for the semigroup

In this section we prove Lp(w) norm inequalities for the vertical square function associated
to the semigroup e−tLw :

gLwf(x) =

(∫ ∞
0

∣∣∣(tLw)1/2 e−tLwf(x)
∣∣∣2 dt
t

)1/2

.

Proposition 5.1. Let p−(Lw) < p < p+(Lw). Then

‖gLwf‖Lp(w) ≈ ‖f‖Lp(w) . (5.2)

Conversely if for some p the equivalence (5.2) holds, then p ∈ J̃ (Lw)—i.e., the interior of
the interval on which (5.2) holds is (p−(Lw), p+(Lw)).

Moreover, if v ∈ Ap/p−(Lw)(w) ∩RH(p+(Lw)/p)′(w), then

‖gLwf‖Lp(v dw) ≈ ‖f‖Lp(v dw) . (5.3)
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We note that the upper bounds in the previous result could be obtained by combining
Proposition 4.3 with the operator theory methods developed in [14]. To reach a wider
audience we present a self-contained harmonic analysis proof. We will use an auxiliary
Hilbert space related to square functions, following the approach in [5]. Let H denote the
Hilbert space L2

(
(0,∞) , dt

t

)
with norm

|||h||| =
(∫ ∞

0

|h (t)|2 dt
t

) 1
2

.

In particular, we have that

gLwf(x) = |||ϕ(L, ·)f(x)|||
where ϕ (z, t) = (tz)1/2 e−tz. Furthermore, we define LpH(w) to be the space of H-valued
functions with the norm

‖h‖LpH(w) =

(∫
Rn
|||h(x, ·)|||p dw(x)

) 1
p

.

The following lemma lets us extend scalar valued inequalities to H-valued inequalities. For
a proof, see [5, Lemma 7.4] and the references given there.

Lemma 5.4. Given a Borel measure µ on Rn, let D be a subspace of M, the space of
measurable functions in Rn, and let S, T be linear operators from D into M. Fix 1 ≤ p ≤
q <∞ and suppose there exists C0 > 0 such that for all f ∈ D,

‖Tf‖Lq(µ) ≤ C0

∑
j≥1

αj ‖Sf‖Lp(Fj ,µ) ,

where the Fj are measurable subsets of Rn and αj ≥ 0. Then there is a H-valued inequality
with the same constant: for all f : Rn × (0,∞) −→ C such that for almost all t > 0,
f (·, t) ∈ D,

‖Tf‖LqH(µ) ≤ C0

∑
j≥1

αj ‖Sf‖LpH(Fj ,µ) .

The extension of a linear operator T on C-valued functions to H-valued functions is
defined for x ∈ Rn and t > 0 by (Th)(x, t) = T

(
h(·, t)

)
(x), that is, t can be considered as a

parameter and T acts only on the variable in Rn.

Proof of Proposition 5.1. We shall first prove the upper bound inequalities. We first claim
that the upper bound inequality in (5.2) holds for p = 2. Indeed, since ϕ(z) = z1/2e−z ∈
H∞0 (Σµ), it follows from (2.13) that we have the bound

‖gLwf‖L2(w) . ‖f‖L2(w) .

For brevity, let p− = p−(Lw) and p+ = p+(Lw). As in previous proofs, we divide our proof
into two steps. We will first prove the upper bound in (5.2) for p− < p < 2 by applying

Theorem 2.39. Fix p− < p < q0 = 2, and let Ar = I− (I−e−r2Lw)m, where m will be chosen
below. Notice that, by (4.8), Ar is bounded on Lq0(w) for each m. Fix f ∈ L∞c ; the result
for general f ∈ Lp(w) then follows by a density argument.

We have that (tLw)1/2e−tLw(I −Ar)f = ϕ(Lw, t)f , where

ϕ(z, t)=(tz)1/2e−tz(1− e−r2z)m.
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Moreover, since ϕ(·, t) ∈ H∞0 (Σ{min{µ,π/2}}), by the functional calculus representation (2.10)
we have that

(tLw)1/2 e−tLw (I −Ar) f =

∫
Γ

η (z, t) e−zLwf dz,

where Γ = ∂Σπ
2
−θ, with 0 < ϑ < θ < ν < min{µ, π/2}, and we choose θ so that the

hypotheses of Corollary 3.4 are satisfied for z ∈ Γ. Moreover, we have the estimate (see
[2, 5])

|η (z, t)| . t
1
2 r2m

(|z|+ t)m+ 3
2

, z ∈ Γ;

therefore,

|||η(z, ·)||| =
(∫ ∞

0

|η (z, t)|2 dt

t

)1/2

.
r2m

|z|m+1 . (5.5)

Now let f ∈ L∞c with supp (f) ⊂ B. For j ≥ 2, we have(
−
∫
Cj(B)

|gLw (I−Ar) f |p dw
)1/p

=

(
−
∫
Cj(B)

∣∣∣∣( ∫ ∞
0

∣∣∣∣ ∫
Γπ

2−θ

η(z, t)e−zLwf dz

∣∣∣∣2dtt
)1/2∣∣∣∣pdw)1/p

≤
(
−
∫
Cj(B)

∣∣∣∣ ∫
Γπ

2−θ

|e−zLwf ||||η(z, ·)|||d|z|
∣∣∣∣pdw)1/p

.
∫

Γπ
2−θ

(
−
∫
Cj(B)

|e−zLwf |pdw
)1/p

r2m

|z|m+1
d|z|

. 2jθ1
(
−
∫
B

|f |p dw
)1/p ∫

Γπ
2−θ

Υ

(
2jr√
|z|

)θ2
e−

c4jr2

|z|
r2m

|z|m
d|z|
|z|

. 2jθ14−mj
(
−
∫
B

|f |p dw
)1/p

; (5.6)

in the second inequality we applied (5.5) and the off-diagonal estimates for e−zLw from
Corollary 3.4, and the last inequality holds provided 2m > θ2. Thus, if we take m > θ1 +D,
where D is the doubling order of w, the operator gLw satisfies (2.40) in Theorem 2.39 with
g (j) = C 2j(θ1−2m). Since we already established (2.41) in (4.9) with g (j) = C 2j(θ1+θ2)4−mj,
the hypotheses of Theorem 2.39 are satisfied if m > θ1 + θ2 + D. Therefore, for each
p− < p < 2 there exists a constant C such that

‖gLwf‖Lp(w) ≤ C ‖f‖Lp(w) . (5.7)

In the second part of the proof we will show that if p− < p < p+ and v ∈ Ap/p−(w) ∩
RH(p+/p)′(w), then the upper bound inequality in (5.3) holds. If we take v ≡ 1, then we
immediately get (5.2). To do so, first note that if we fix p and v, then by the openness
properties of weights there exist p0, q0 such that

p− < p0 < min{p, 2} ≤ max{p, 2} < q0 < p+

and v ∈ Ap0/p−(w) ∩RH(q0/p)′(w).
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We will apply Theorem 2.35 with T = gLw , S = I and D = Lp0(w) (again, note that by
(4.8), Ar is bounded on Lp0(w)). We first prove that inequality (2.36) holds. For each j ≥ 1,
let fj = fχCj(B); then we can argue exactly as we did in the proof of (5.6), exchanging the
roles of B and Cj(B), to get(

−
∫
B

|gLw(I −Ar)fj|p dw
) 1

p

. 2jθ14−mj
(
−
∫

2j+1B

|f |p dw
) 1

p

.

Inequality (2.36) follows if we sum over all j and take g(j) = 2jθ14−mj.
We will now show that inequality (2.37) holds. To do so, we need to prove a vector-valued

version of a key inequality. By Proposition 3.1, given a ball B with radius r, then for all
j ≥ 1, g with supp(g) ⊂ Cj(B), and 1 ≤ k ≤ m,(

−
∫
B

|e−kr2Lwg|q0 dw
) 1

q0

≤ C02j(θ1+θ2)e−α4j
(
−
∫
Cj(B)

|g|p0 dw
) 1

p0

. (5.8)

We now apply Lemma 5.4 with S = I and T : Lp0(w)→ Lq0(w) given by

Tg = (C02j(θ1+θ2)e−α4j)−1w(2j+1B)
1
p0

w(B)
1
q0

χBe
−kr2Lw(gχCj(B)).

This yields the H-valued extension of (5.8): for all g ∈ Lp0H (w) with supp(g(·, t)) ⊂ Cj(B),
t > 0, we have that(

−
∫
B

|||e−kr2Lwg(x, ·)|||q0 dw
) 1

q0

≤ C02j(θ1+θ2)e−α4j
(
−
∫
Cj(B)

|||g(x, ·)|||p0 dw
) 1

p0

. (5.9)

Given an arbitrary g ∈ Lp0H (w), decompose it as

g(x, t) =
∑
j≥1

g(x, t)χCj(B)(x) =
∑
j≥1

gj(x, t).

Then inequality (5.9) yields(
−
∫
B

|||e−kr2Lwg(x, ·)|||q0 dw
) 1

q0

≤
∑
j≥1

(
−
∫
B

|||e−kr2Lwgj(x, ·)|||q0 dw
) 1

q0

.
∑
j≥1

2j(θ1+θ2)e−α4j
(
−
∫

2j+1B

|||g(x, ·)|||p0 dw
) 1

p0

. (5.10)

Define g(x, t) = (tLw)1/2e−tLwf(x). Then gLwf(x) = |||g(x, ·)|||; by our choice of p0 and the
first step of the proof we have that g ∈ Lp0H (w). Moreover, since for each t > 0, (tLw)1/2e−tLw

and e−kr
2Lw commute,

gLw(e−kr
2Lwf)(x) = |||e−kr2Lwg(x, ·)|||.

We can now use (4.7) and (5.10) to get that(
−
∫
B

|gLwArf |q0dw
) 1

q0

.
m∑
k=1

(
−
∫
B

|||e−kr2Lwg(x, ·)|||q0 dw
) 1

q0
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.
∑
j≥1

2j(θ1+θ2)e−α4j
(
−
∫

2j+1B

|gLwf |
p dw

)1/p0

.

This proves (2.37) with g (j) = C 2j(θ1+θ2)e−c4
j
. Therefore, by Theorem 2.35 we get that

‖gLwf‖Lp(v dw) . ‖f‖Lp(v dw).

It remains to show the reverse inequalities. We will prove the lower bound in (5.3); then
the lower bound in (5.2) holds if we take v ≡ 1. Fix p− < p < p+ and v ∈ Ap/p−(Lw)(w) ∩
RH(p+(Lw)/p)′(w). By the duality properties of weights [6, Lemma 4.4] and since p±(Lw)′ =
p∓(L∗w), where L∗w is the adjoint (on L2(w)) of Lw,

v1−p′ ∈ Ap′/p−(L∗)(w) ∩RH(p+(L∗)/p′)′(w). (5.11)

We now proceed as in the proof of [5, Theorem 7.3]. Given F ∈ LpH(v dw) ∩ L2
H(w), and

x ∈ Rn we set

TLwF (x) =

∫ ∞
0

(t Lw)1/2 e−t LwF (x, t)
dt

t
. (5.12)

Recall that (t Lw)1/2 e−t LwF (x, t) = (t Lw)1/2 e−t Lw(F (·, t))(x). Hence, TLw maps H-valued
functions to C-valued functions. For h ∈ Lp′(v1−p′ dw) ∩ L2(w) with ‖h‖Lp′ (v1−p′ dw) = 1, we
have that ∣∣∣ ∫

Rn
TLwF h dw

∣∣∣ =
∣∣∣ ∫

Rn

∫ ∞
0

F (x, t) (t L∗w)1/2 e−t L∗wh(x)
dt

t
dw(x)

∣∣∣
≤
∫
Rn
|||F (x, ·)||| gL∗wh(x) dw(x)

. ‖F‖LpH(v dw)‖gL∗wh‖Lp′ (v1−p′ dw)

. ‖F‖LpH(v dw),

where the last estimate uses the fact that gL∗w is bounded on Lp
′
(v1−p′ dw). This follows

from the upper bound in (5.3) (with L∗w in place of Lw), which we proved above, and (5.11).
Taking the supremum over all such functions h and using an standard density argument we
have obtained that TLw is bounded from LpH(v dw) to Lp(v dw).

Next, given f ∈ Lp(v dw) ∩ L2(dw), if we define F (x, t) = (tLw)1/2e−tLwf(x), then F ∈
LpH(v dw) ∩ L2

H(w) since ‖F‖LpH(v dw) = ‖gLwf‖Lp(v dw) and analogously for L2(w). Also, by

the L2(w) functional calculus we have that

f(x) = 2

∫ ∞
0

(tLw)1/2 e−tLwF (x, t)
dt

t
= 2TLwF (x). (5.13)

Therefore,
‖f‖Lp(v dw) = 2‖TLwF‖Lp(v dw) . ‖F‖LpH(v dw) = ‖gLwf‖Lp(v dw),

and this completes the proof of (5.3).

To finish the proof of Proposition 5.1 we need to show that the equivalence of norms in (5.2)
implies that the semigroup is uniformly bounded. However, this follows immediately from
the definition of gLw and the semigroup property: for any s > 0,

gLw(e−sLwf)(x) =

(∫ ∞
0

|L1/2
w e−(s+t)Lwf(x)|2 dt

)1/2

≤ gLwf(x).
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This completes the proof. �

We conclude this section by proving a version of Proposition 5.1 for the “adjoint” of a
discrete square function. We will need this estimate in the proof of Proposition 6.1 below.

Proposition 5.14. Define the holomorphic function ψ on the sector Σπ/2 by

ψ(z) =
1√
π

∫ ∞
1

z e−tz
dt√
t
. (5.15)

If p−(Lw) < p < p+(Lw), then for any sequence of functions {βk}k∈Z,∥∥∥∑
k∈Z

ψ(4kLw) βk

∥∥∥
Lp(w)

.

∥∥∥∥(∑
k∈Z

|βk|2
) 1

2

∥∥∥∥
Lp(w)

. (5.16)

Proof. By duality and since p±(Lw)′ = p∓(L∗w) , it will suffice to show that for every p−(L∗w) <
p < p+(L∗w), ∥∥∥∥(∑

k∈Z

|ψ(4kL∗w)h|2
) 1

2

∥∥∥∥
Lp(w)

. ‖h‖Lp(w), (5.17)

The function ψ satisfies |ψ(z)| ≤ C|z|1/2e−c|z| uniformly on subsectors Σµ, 0 ≤ µ < π
2
.

Thus the operator on the lefthand side of (5.17) is a discrete analog of the square function
gL∗w changing continuous times t to discrete times 4k and z1/2e−z to ψ(z). Since ψ(z) has

the same quantitative properties as z1/2e−z (decay at 0 and at infinity), we can repeat the
previous argument and obtain the desired estimates as in the proof of Proposition 5.1. �

Remark 5.18. In Proposition 5.14 we can also get Lp(v dw) estimates, but in the proof of
Proposition 6.1 below we will only need the unweighted estimates. Further details and the
precise statements are left to the interested reader.

6. Reverse inequalities

In this section we will prove Lp(w) estimates of the form ‖L1/2
w f‖Lp(w) ≤ C‖∇f‖Lp(w),

which generalize the L2(w) Kato estimates in Theorem 2.18. These are referred to as reverse

inequalities since if we replace f by L
−1/2
w f , then formally we get a reverse-type inequality

for the Riesz transform: ‖f‖Lp(w) ≤ C‖∇L−1/2
w f‖Lp(w).

Since these estimates involve the gradient, in proving them we will rely (implicitly and
explicitly) on the weighted Poincaré inequality (2.3). This will require an additional as-
sumption on p when p < 2. To state it simply, define

(p−(Lw))w,∗ =
n rw p−(Lw)

n rw + p−(Lw)
< p−(Lw).

Proposition 6.1. Let max{rw, (p−(Lw))w,∗} < p < p+(Lw). Then for all f ∈ S,

‖L1/2
w f‖Lp(w) ≤ C ‖∇f‖Lp(w). (6.2)

with C independent of f . Furthermore, if max{rw, p−(Lw)} < p < p+(Lw) and v ∈
Ap/max{rw,p−(Lw)}(w) ∩RH(p+(Lw)/p)′(w), then for all f ∈ S,

‖L1/2
w f‖Lp(v dw) ≤ C ‖∇f‖Lp(v dw). (6.3)
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Remark 6.4. The quantity max{rw, (p−(Lw))w,∗} can be equal to either term. For instance,
it equals rw if p−(Lw) ≤ n′rw. From Proposition 3.1 we know that p−(Lw) < (2∗w)′ = 2n rw

n rw+2
,

but this only implies the previous inequality for some values of n and rw.

Proof. As before, let p− = p−(Lw) and p+ = p+(Lw). Fix p, max
{
rw, (p−)w,∗

}
< p < 2, and

f ∈ S. We will first show that

‖L1/2
w f‖Lp,∞(w) . ‖∇f‖Lp(w). (6.5)

First note that since p > rw, w ∈ Ap. Therefore, given α > 0 we can form the Calderón-
Zygmund decomposition given in [5, Lemma 6.6]: there exist a collection of balls {Bi}i,
smooth functions {bi}i and a function g ∈ L1

loc(w) such that

f = g +
∑
i

bi (6.6)

and the following properties hold:

|∇g(x)| ≤ Cα for w-a.e. x, (6.7)

supp(bi) ⊂ Bi and

∫
Bi

|∇bi|p dw ≤ Cαpw(Bi), (6.8)∑
i

w(Bi) ≤
C

αp

∫
Rn
|∇f |p dw, (6.9)∑

i

χBi ≤ N, (6.10)

(
−
∫
Bi

|bi|q dw
) 1
q
. C α r(Bi) for 1 ≤ q ≤ p∗w, (6.11)

where C and N depend only on n, p, q and the doubling constant of w.
To prove (6.5) we will prove the corresponding weak-type estimates with f replaced by g

and bi. For g, we use the L2(w) Kato estimate (2.19), (6.7), and the fact that p < 2 to get

w({|L1/2
w g| > α/3}) . 1

α2

∫
Rn
|L1/2

w g|2 dw . 1

α2

∫
Rn
|∇g|2 dw . 1

αp

∫
Rn
|∇g|p dw

.
1

αp

∫
Rn
|∇f |p dw +

1

αp

∫
Rn

∣∣∣∑
i

∇bi
∣∣∣p dw . 1

αp

∫
Rn
|∇f |p dw,

where the last estimate follows from (6.10), (6.8), and (6.9).

To prove a weak-type estimate for L
1/2
w (
∑

i bi), let ri = 2k if 2k ≤ r(Bi) < 2k+1. Then for
all i, ri ∼ r(Bi). Write

L1/2
w =

1√
π

∫ r2i

0

Lwe
−t Lw dt√

t
+

1√
π

∫ ∞
r2i

Lwe
−t Lw dt√

t
= Ti + Ui;

then we have that

w
({∣∣∣∑

i

L1/2
w bi

∣∣∣ > 2α

3

})
≤ w

(⋃
i

4Bi

)
+ w

({∣∣∣∑
i

Uibi

∣∣∣ > α

3

})
+ w

((
Rn \

⋃
i

4Bi

)⋂{∣∣∣∑
i

Tibi

∣∣∣ > α

3

})
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.
1

αp

∫
Rn
|∇f |p dw + I1 + I2,

where the last inequality follows from (6.9).
We first estimate I2. Since p > (p−)w,∗ then p∗w > ((p−)w,∗)

∗
w = p−, and we can choose

q ∈ J (Lw) such that (6.11) is satisfied. By Corollary 3.4, t Lw e
−t Lw ∈ O

(
Lq(w)→ Lq(w)

)
,

and so

I2 .
1

α

∑
i

∑
j≥2

∫
Cj(Bi)

|Tibi| dw

.
1

α

∑
i

∑
j≥2

w(2j Bi)

∫ r2i

0

−
∫
Cj(Bi)

|t Lw e−t Lwbi| dw
dt

t3/2

.
1

α

∑
i

∑
j≥2

2j D w(Bi)

∫ r2i

0

2j θ1 Υ

(
2j ri√
t

)θ2
e−

c 4j r2i
t

dt

t3/2

(
−
∫
Bi

|bi|q dw
) 1

q

.
∑
i

∑
j≥2

2j D e−c 4j w(Bi)

.
∑
i

w(Bi)

.
1

αp

∫
Rn
|∇f |p dw,

where we have used (6.11) and (6.9), and D is the doubling order of dw.
We will now estimate I1. For q as above, by Proposition 4.3 we have an Lq(w) functional

calculus for Lw. Therefore, we can write Ui as r−1
i ψ(r2

iLw) with ψ defined by (5.15). Let
βk =

∑
i : ri=2k

bi
ri

; then,∑
i

Ui bi =
∑
k∈Z

ψ(4k Lw)

( ∑
i : ri=2k

bi
ri

)
=
∑
k∈Z

ψ(4k Lw)βk.

Therefore, by Proposition 5.14, (6.10), (6.11), the fact that ri ∼ r(Bi) and (6.9), we have
that

I1 .
1

αq

∥∥∥∑
i

Uibi

∥∥∥q
Lq(w)

.
1

αq

∥∥∥∥(∑
k∈Z

|βk|2
) 1

2

∥∥∥∥q
Lq(w)

.
1

αq

∫
Rn

∑
i

|bi|q

rqi
dw .

∑
i

w(Bi) .
1

αp

∫
Rn
|∇f |p dw.

If we combine all of the estimates we have obtained, we get (6.5) as desired.

To prove (6.2) from the weak-type estimate (6.5) we will use an interpolation argument
from [5]. Fix p and r such that max

{
rw, (p−)w,∗

}
< r < p < 2. Then by (6.5) and (2.19)

we have that for every f ∈ S,

‖L1/2
w f‖Lr,∞(w) . ‖∇f‖Lr(w), ‖L1/2

w f‖L2(w) . ‖∇f‖L2(w). (6.12)

Formally, to apply Marcinkiewicz interpolation, we let g = ∇f to get a weak (r, r) and
strong (2, 2) inequality; this would immediately yield a strong (p, p) inequality. To formalize
this we must justify this substitution.



ON THE KATO PROBLEM AND EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS 27

For every q > rw by [5, Lemma 6.7] we have that

E =
{

(−∆)1/2f : f ∈ S, supp f̂ ⊂ Rn \ {0}
}

is dense in Lq(w), where f̂ denotes the Fourier transform of f . Moreover, since r > rw,
w ∈ Ar and the Riesz transforms, Rj = ∂j(−∆)−1/2, are bounded on Lr(w) [22]. It follows
from this and the identity −I = R2

1 + · · ·+R2
n that for g ∈ Lr(w),

‖g‖Lr(w) ∼ ‖∇(−∆)−1/2g‖Lr(w).

Thus, for g ∈ E , L
1/2
w (−∆)−1/2g = L

1/2
w f if f = (−∆)−1/2g and ‖∇f‖Lr(w) ∼ ‖g‖Lr(w)

for r > rw. Thus (6.12) becomes weighted weak (r, r) and strong (2, 2) inequalities for

T = L
1/2
w (−∆)−1/2, and this operator is defined a priori on E . Since E is dense in each

Lq(w), we can extend T by density in both cases and their restrictions to the space of simple
functions agree. Hence, we can apply Marcinkiewicz interpolation and conclude, again by
density, that (6.2) holds for all p with r < p < 2. Since r is arbitrary, we get (6.2) in the
range max

{
rw, (p−)w,∗

}
< p < 2.

For the second step of the proof we will prove (6.3) using Theorem 2.35. Inequality (6.2)
for its full range of exponents then follows by letting v = 1. Define p̃− = max{rw, p−} < 2,
and fix p̃− < p < p+ and v ∈ Ap/p̃−(w) ∩ RH(p+/p)′(w). By the openness properties of Aq
and RHs weights, there exist p0, q0 such that

p̃− < p0 < min{p, 2} ≤ p < q0 < p+, v ∈ Ap/p0(w) ∩RH(q0/p)′(w).

To apply Theorem 2.35, let T = L
1/2
w , S = ∇, and Ar = I − (I − e−r

2Lw)m where the
value of m will be fixed below. We will first show that (2.37) holds. By (4.8) we have that

Ar ∈ O
(
Lp0(w) → Lq0(w)

)
since p0, q0 ∈ J (Lw). Let h = L

1/2
w f and decompose h as we

decomposed f in (4.11). Then, since L
1/2
w and Ar commute, it follows that(

−
∫
B

∣∣L1/2
w Arf

∣∣q0 dw) 1
q0

.
∑
j≥1

(
−
∫
B

|Arhj|q0 dw
) 1

q0

.
∑
j≥1

2jθ1Υ
(
2j
)θ2 e−c4j(−∫

Cj

|h|p0 dw
) 1

p0

≤
∑
j≥1

2j(θ1+θ2)e−c4
j

(
−
∫

2j+1B

∣∣L1/2
w f

∣∣p0 dw) 1
p0

.

This gives us (2.37) with g(j) = C 2j(θ1+θ2)e−c4
j
; clearly,

∑
g(j) <∞.

We now prove that (2.36) holds. Fix f ∈ S and let ϕ(z) = z1/2(1 − e−r
2 z)m so that

ϕ(Lw)f = L
1/2
w (I − e−r2 Lw)mf . By the conservation property (see [19] or [2, Section 2.5]),

ϕ(Lw) f = ϕ(Lw) (f − f4B,w) =
∑
j≥1

ϕ(Lw)hj, (6.13)

where hj = (f − f4B,w)φj, φj = χCj(B) for j ≥ 3, φ1 is a smooth function with support in

4B, 0 ≤ φ1 ≤ 1, φ1 = 1 in 2B and ‖∇φ1‖∞ ≤ C/r, and φ2 is chosen so that
∑

j≥1 φj = 1.
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We estimate each term in the righthand side of (6.13) separately. When j = 1, since
p− < p0 < p+, by the bounded holomorphic functional calculus on Lp0(w) (Proposition 4.3)

and the fact that ϕ(Lw)h1 = (I − e−r2 Lw)m L
1/2
w h1, we have that

‖ϕ(Lw)h1‖Lp0 (w) . ‖L
1/2
w h1‖Lp0 (w)

uniformly in r. By the above argument we have that (6.2) holds for p = p0 since p̃− < p0 < 2.
Further, since f ∈ S, h1 ∈ S by our choice of φ1. This, together with the Lp0(w)-Poincaré
inequality (2.3) (since p0 > rw, w ∈ Ap0) and the definition of h1 yield

‖L1/2
w h1‖Lp0 (w) . ‖∇h1‖Lp0 (w)

. ‖(∇f)χ4B ‖Lp0 (w) + r−1 ‖(f − f4B,w)χ4B ‖Lp0 (w) . ‖(∇f)χ4B ‖Lp0 (w).

Therefore, (
−
∫
B

|ϕ(Lw)h1|p0 dw
) 1

p0

.

(
−
∫

4B

|∇f |p0 dw
) 1

p0

.

When j ≥ 3, the functions η associated with ϕ by (2.11) satisfy

|η(z)| . r2m

|z|m+3/2
, z ∈ Γπ/2−θ.

Since p0 ∈ J (Lw), by Corollary 3.4, e−z Lw ∈ O
(
Lp0(w)→ Lp0(w),Σµ

)
. This, together with

the representation (2.10), gives us that(
−
∫
B

|ϕ(Lw)hj|p0dw
) 1

p0

≤
∫

Γπ/2−θ

(
−
∫
B

|e−z Lhj|p0 dw
) 1

p0

|η(z)| |dz|

. 2j θ1
∫

Γπ/2−θ

Υ

(
2j r√
|z|

)θ2

e
−α 4j r2

|z| r2m

|z|m+3/2
|dz|

(
−
∫
Cj(B)

|hj|p0 dw
) 1

p0

. 2j (θ1−2m−1) r−1

(
−
∫

2j+1B

|f − f4B,w|p0 dw
) 1

p0

. 2j (θ1−2m−1)

j∑
l=1

2l
(
−
∫

2l+1B

|∇f |p0 dx
) 1

p0

,

provided 2m+1 > θ2. The last estimate follows from Lp0(w)-Poincaré inequality (2.3) (here
we again use that p0 > rw and so w ∈ Ap0):(

−
∫

2j+1B

|f − f4B,w|p0 dw
) 1

p0

≤
(
−
∫

2j+1B

|f − f2j+1B,w|p0 dw
) 1

p0

+

j∑
l=2

|f2lB,w − f2l+1B,w|

.
j∑
l=1

(
−
∫

2l+1B

|f − f2l+1B|p0 dx
) 1

p0
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. r

j∑
l=1

2l
(
−
∫

2l+1B

|∇f |p0 dx
) 1

p0

. (6.14)

When j = 2 we can argue similarly, using the fact that

|h2| ≤ |f − f4B,w| χ8B\2B ≤ |f − f2B,w| χ8B\2B +|f4B,w − f2B,w| χ8B\2B .

If we combine these estimates, then by (6.13) and Minkowski’s inequality we get(
−
∫
B

|ϕ(Lw)h|p0dw
) 1

p0

.
∑
j≥1

(
−
∫
B

|ϕ(Lw)hj|p0dw
) 1

p0

≤
∑
j≥1

g(j)

(
−
∫
B

|∇f |p0dw
) 1

p0

with g(j) = Cm 2j (θ1−2m) provided 2m + 1 > θ2. If we further assume that 2m > θ1, then∑
j g(j) < ∞. This proves that (2.36) holds. Therefore, by Theorem 2.35 we get (6.3) as

desired. �

7. The gradient of the semigroup
√
t∇e−tLw

Let K̃(Lw) ⊂ [1,∞] be the set of all exponents p such that
√
t∇e−t Lw : Lp(w) → Lp(w)

is uniformly bounded for all t > 0. By Theorem 2.15 and Lemma 2.34, 2 ∈ K̃(Lw) and if

it contains more than one point, then by interpolation K̃(Lw) is an interval. In this section
we give a partial description of the set of (p, q) such that

√
t∇e−t Lw ∈ O

(
Lp(w)→ Lq(w)

)
.

Proposition 7.1. There exists an interval K(Lw) such that if p, q ∈ K(Lw), p ≤ q, then√
t∇e−t Lw ∈ O

(
Lp(w)→ Lq(w)

)
. Moreover, K(Lw) has the following properties:

(1) K(Lw) ⊂ K̃(Lw);
(2) if q−(Lw) and q+(Lw) are the left and right endpoints of K(Lw), then q−(Lw) =

p−(Lw), 2 ≤ q+(Lw) ≤ (q+(Lw))∗w ≤ p+(Lw). In particular, 2 ∈ K(Lw) and K(Lw) ⊂
J (Lw);

(3) If q ≥ 2 and p < q, and if
√
t∇e−t Lw ∈ O

(
Lp(w)→ Lq(w)

)
, then p, q ∈ K(Lw);

(4) sup K̃(Lw) = q+(Lw).

Remark 7.2. Unlike in the unweighted case (see [7]) we are unable to give a complete char-
acterization of K(Lw). More precisely, if we have an off-diagonal estimate and p < q < 2,
then we cannot prove that p, q ∈ K(Lw).

Remark 7.3. In Section 8 below we will show that q+(Lw) > 2; in particular, this gives that
2 ∈ IntK(Lw).

As an immediate consequence of Proposition 7.1 we get weighted inequalities for the
gradient of the semigroup. The proof is identical to the proof of Corollaries 3.3 and 3.4.

Corollary 7.4. Let q−(Lw) < p ≤ q < q+(Lw). If v ∈ Ap/q−(Lw)(w)∩RH(q+(Lw)/q)′(w), then√
t∇e−tLw ∈ O

(
Lp(v dw) → Lq(v dw)

)
and
√
z∇e−zLw ∈ O

(
Lp(v dw) → Lq(v dw),Σν

)
for

all ν, 0 < ν < π
2
− ϑ.

The proof of Proposition 7.1 requires two lemmas.
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Lemma 7.5. Given w ∈ A∞ and a family of sublinear operators {Tt}t>0 such that Tt ∈
O
(
Lp(w)→ Lq(w)

)
, with 1 ≤ p < q ≤ ∞, there exist α, β > 0 such that for any ball B with

radius r and for any t > 0,(
−
∫
B

|Tt(χB f)|q dw
) 1

q

. max

{(
r√
t

)α
,

(
r√
t

)β } (
−
∫
B

|f |p dw
) 1

p

. (7.6)

Proof. This result is implicit in [7, Proof of Proposition 2.4, p. 306]; here we reprove it
with a small improvement in the constant. There it was shown that in Definition 2.23 it
is sufficient to consider the case where r ≈

√
t. But in this case we get that Υ(r/

√
t) ≈ 1

and for all j ≥ 2, Υ(2j r/
√
t) ≈ 2j. The argument in [7, p. 306] shows that if we assume

that (2.24), (2.25), (2.26) hold when r ≈
√
t, then (2.24) holds in general with constant

max{1, (r/
√
t)α} for some α > 0 depending on p, q and w. In this maximum the 1 occurs

when r ≤
√
t; therefore, to prove (7.6) we need to show that if r ≤

√
t, then we can replace

1 by the better constant (r/
√
t)β for some β > 0.

Fix r ≤
√
t. If B = B(x, r), then B ⊂ Bt = B(x,

√
t). As in [7, p. 306] we apply (2.24)

to Tt and Bt; this yields(
−
∫
B

|Tt(χB f)|q dw
) 1

q

≤
(
w(Bt)

w(B)

) 1
q
(
−
∫
Bt

|Tt(χB f)|q dw
) 1

q

.

(
w(Bt)

w(B)

) 1
q
(
−
∫
Bt

|χB f |
p dw

) 1
p

≤
(
w(B)

w(Bt)

) 1
p
− 1
q
(
−
∫
B

|f |p dw
) 1

p

.

Since w ∈ A∞, we have that for some θ > 0,

w(B)

w(Bt)
.

(
|B|
|Bt|

)θ
=

(
r√
t

)θ n
.

Since p < q we have that(
−
∫
B

|Tt(χB f)|q dw
) 1

q

.

(
r√
t

)( 1
p
− 1
q

) θ n(
−
∫
B

|f |p dw
) 1

p

.

Therefore, if we combine this with the argument from [7, p. 306] described above, we get
that (7.6) holds with β = (1/p− 1/q) θ n. �

The second lemma gives the close connection between off-diagonal estimates for e−tLw and√
t∇e−tLw for p < 2.

Lemma 7.7. Given 1 ≤ p < 2 the following are equivalent:

(1) e−t Lw ∈ O
(
Lp(w)→ L2(w)

)
.

(2)
√
t∇e−t Lw ∈ O

(
Lp(w)→ L2(w)

)
.

(3) t Lw e
−t Lw ∈ O

(
Lp(w)→ L2(w)

)
.

Proof. We follow the proof of [7, Lemma 5.3]. To prove that (1) implies (2), note that
by Theorem 2.15,

√
t∇e−t Lw ∈ O

(
L2(w) → L2(w)

)
. If we compose this with (1), by

Lemma 2.30 and the semigroup property, we get (2).

To prove that (2) implies (3), define St ~f =
√
t e−t Lw(w−1 div(A~f)). By duality, we have

that
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〈St ~f, g〉L2(w) = 〈w−1 div(A~f)),
√
te−t L

∗
wg〉L2(w) = 〈div(A~f)),

√
te−t L

∗
wg〉L2

= −〈~f,A∗
√
t∇e−t L∗wg〉L2 = 〈~f, w−1A∗

√
t∇e−t L∗wg〉L2(w).

The matrix w−1A∗ is uniformly elliptic, and so multiplication by it is bounded on L2(w).
Furthermore,

√
t∇e−t L∗w ∈ O

(
L2(w)→ L2(w)

)
. Therefore, it follows that St ∈ O

(
L2(w)→

L2(w)
)
. If we combine this with (2), we get that −t Lw e−2 t Lw = St ◦

√
t∇e−t Lw ∈

O
(
Lp(w)→ L2(w)

)
. This proves (3).

Finally we show that (3) implies (1). We first prove (2.24). Fix B and f, g such that(
−
∫
B
|f |p dw

) 1
p =

(
−
∫
B
|g|2 dw

) 1
2 = 1, and assume also that f ∈ L2(B, dw). Define

h(t) = −
∫
B

e−t Lw(χB f)(x) g(x) dw(x).

By duality it will suffice to show that |h(t)| . Υ(r/
√
t)θ. (Note that our assumption implies

that t h′(t) satisfies such a bound.) First, we claim that

lim
t→∞

h(t) = 0.

To see this we use the fact (discussed in Section 2) that Lw has a bounded holomorphic
functional calculus on L2(w). Given this, since z 7→ e−tz converges to 0 uniformly on
compact subsets of Re z > 0, we get the desired limit.

Hence, we can write h(t) = −
∫∞
t
h′(s) ds. Notice that |t h′(t)| . Υ(r/

√
t)θ2 but this does

not give a convergent integral. However, if we apply Lemma 7.5 to t Lw e
−t Lw ∈ O

(
Lp(w)→

L2(w)
)
, we get that |t h′(t)| . Υ̃(r/

√
t) with Υ̃(s) = max{sα, sβ}. It follows from this

estimate that

|h(t)| ≤
∫ ∞
t

|h′(s)| ds .
∫ ∞
t

Υ̃

(
r√
s

)
ds

s
≈
∫ r√

t

0

Υ̃(s)
ds

s
. Υ̃

(
r√
t

)
. Υ

(
r√
t

)α+β

.

To prove (2.25) we argue as before, but with
(
−
∫
Cj(B)

|f |p dw
) 1
p =

(
−
∫
B
|g|2 dw

) 1
2 = 1 and

h(t) = −
∫
B

e−t Lw(χCj(B) f)(x) g(x) dw(x).

Since d(B,Cj(B)) > 0, by Theorem 2.15 and Hölder’s inequality, h(t) → 0 as t → 0.

Therefore, h(t) =
∫ t

0
h′(s) ds. Since t Lw e

−t Lw ∈ O
(
Lp(w)→ L2(w)

)
, we have that

h(t) ≤
∫ t

0

|h′(s)| ds . 2j θ1
∫ t

0

Υ

(
2j r√
s

)θ2
e−

c 4j r2

s
ds

s

≈ 2j θ1
∫ ∞

2j r√
t

Υ(s)θ2 e−c s
2 ds

s
. 2j θ1Υ

(
2j r√
t

)θ2
e−

c 4j r2

t .

This is (2.25).
Finally, the proof of (2.26) is essentially the same and we omit the details. This completes

the proof that (3) implies (1). �

Proof of Proposition 7.1. Define the sets K−(Lw) and K+(Lw) to be

K−(Lw) = {p ∈ [1, 2] :
√
t∇e−t Lw ∈ O

(
Lp(w)→ L2(w)

)
}
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K+(Lw) = {p ∈ [2,∞] :
√
t∇e−t Lw ∈ O

(
L2(w)→ Lp(w)

)
},

and let K(Lw) = K−(Lw)∪K+(Lw). The set is non-empty, since 2 ∈ K(Lw). By Lemma 2.28
it is an interval. Now fix p, q ∈ K(Lw) with p < q. If p < q ≤ 2 or 2 ≤ p < q, then by
Lemma 2.28,

√
t∇e−t L ∈ O

(
Lp(w)→ Lq(w)

)
since p, q ∈ K−(Lw) or p, q ∈ K+(Lw). If p ≤

2 < q, then
√
t∇e−t L ∈ O

(
L2(w)→ Lq(w)

)
and by Lemma 7.7, e−t L ∈ O

(
Lp(w)→ L2(w)

)
.

Hence, by Lemma 2.30 and the semigroup property,
√
t∇e−t L ∈ O

(
Lp(w)→ Lq(w)

)
. Thus,

in every case we get the desired off-diagonal estimate.
We now prove (1)-(4). By Lemma 2.30, off-diagonal estimates on balls imply uniform

boundedness, and so K(Lw) ⊂ K̃(Lw). This proves (1).
To prove (2), we first note that if p < 2, then by Lemma 7.7, p ∈ J (Lw) if and only if p ∈
K−(Lw). Thus J (Lw)∩[1, 2] = K−(Lw) and so q−(Lw) = p−(Lw). To show that (q+(Lw))∗w ≤
p+(Lw), first note that if q+(Lw) = 2, then by Proposition 3.1 we have that (q+(Lw))∗w =
2∗w ≤ p+(Lw). If q+(Lw) > 2, then we proceed as in the proof of this proposition. Let
2 < p < q+(Lw) and p < q < p∗w. Then by (2.3), e−t Lw ∈ O

(
L2(w) → L2(w)

)
, and√

t∇e−t Lw ∈ O
(
L2(w)→ Lp(w)

)
, we get that(

−
∫
B

|e−t Lw(χB f)|q dw
) 1

q

.

(
−
∫
B

|e−t Lw(χB f)|2 dw
) 1

2

+ r

(
−
∫
B

|∇ e−t Lw(χB f)|p dw
) 1

p

. Υ

(
r√
t

)1+θ2 (
−
∫
B

|f |2 dw
) 1

2

.

This gives us inequality (2.24). The other two inequalities in Definition 2.23 can be proved
in exactly the same way. Thus e−t Lw ∈ O

(
L2(w) → Lq(w)

)
which implies q ≤ p+(Lw).

Letting p↗ q+(Lw) and q ↗ p∗w we conclude that (q+(Lw))∗w ≤ p+(Lw).
The last estimate implies in particular that q+(Lw) ≤ p+(Lw). If q+(Lw) <∞ we clearly

have that q+(Lw) < p+(Lw) and so K+(Lw) ⊂ J (Lw). Otherwise, p+(L) =∞ and again we
have that K+(Lw) ⊂ J (Lw). This completes the proof of (2).

To prove (3), suppose first that 2 ≤ p < q and
√
t∇e−t L ∈ O

(
Lp(w) → Lq(w)

)
. We

will show that p, q ∈ K(Lw). Since we also have that
√
t∇e−t L ∈ O

(
L2(w) → L2(w)

)
, by

interpolation (Lemma 2.27),
√
t∇e−t L ∈ O

(
Lpθ(w)→ Lqθ(w)

)
where 1/pθ = (1−θ)/p+θ/2,

1/qθ = (1 − θ)/q + θ/2 and θ ∈ (0, 1). If p /∈ K+(Lw), then q > supK+(Lw). We can
choose θ such that pθ < supK+(Lw) < qθ. Since K+(Lw) ⊂ J (Lw), pθ ∈ J (Lw): i.e.,
e−t L ∈ O

(
L2(w) → Lpθ(w)

)
. By composition and the semigroup property,

√
t∇e−t Lw ∈

O
(
L2(w) → Lqθ(w)

)
; hence, qθ ∈ K+(Lw), a contradiction. Therefore, p ∈ K+(Lw). As we

have
√
t∇e−t Lw ∈ O

(
Lp(w)→ Lq(w)

)
by assumption and e−t Lw ∈ O

(
L2(w)→ Lp(w)

)
since

p ∈ J (Lw), by composition and the semigroup property,
√
t∇e−t Lw ∈ O

(
L2(w)→ Lq(w)

)
.

Hence, q ∈ K+(Lw).
The case p < 2 ≤ q is straightforward. Since

√
t∇e−t Lw ∈ O

(
Lp(w) → Lq(w)

)
, by

Lemma 2.28 we have that
√
t∇e−t Lw ∈ O

(
L2(w) → Lq(w)

)
and
√
t∇e−t Lw ∈ O

(
Lp(w) →

L2(w)
)
. Hence, p ∈ K−(Lw) and q ∈ K+(Lw).
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Finally, we prove (4). Suppose to the contrary that sup K̃(Lw) > q+(Lw). Then there exist

p, q such that q+(Lw) < p < q < sup K̃(Lw). Fix r such that p−(Lw) = q−(Lw) < r < 2.
Then we have that

√
t∇e−t Lw is uniformly bounded on Lq(w) and inO

(
Lr(w)→ L2(w)

)
. By

Lemma 2.27 we can interpolate between these to get that
√
t∇e−t Lw ∈ O

(
Ls(w)→ Lp(w)

)
for some s < p. But then by the above converse, we have that p ∈ K(Lw) which is a
contradiction. �

8. An upper bound for K(Lw)

In this section we will prove that q+(Lw) > 2: that is, the set K(Lw) contains 2 in its
interior. In general, all we can say is that q+(Lw) > 2: as noted in [2, Section 4.5], even in
the unweighted case this is the best possible bound, since given any ε > 0 it is possible to
find an operator L such that q+(L) < 2 + ε. In Section 11 below we will give some estimates
for q+(Lw) in terms of [w]A2 .

We have broken the proof that q+(Lw) > 2 into a series of discrete steps where we borrow
some ideas from [3]. We first prove a reverse Hölder inequality and use Gehring’s inequality
to get a higher integrability estimate. We then prove that the Hodge projection is bounded
on Lq(w) for a range of q > 2 and use this to prove the Riesz transform is also bounded
for exponents greater than 2. (In Section 9 we give a more complete discussion of the Riesz
transform.) From this we deduce that q+(Lw) > 2.

A reverse Hölder inequality. Fix a ball B0 and let u ∈ H1(w) be any weak solution
of Lwu = 0 in 4B0. Then for any ball B such that 3B ⊂ 4B0, we can again prove via a
standard argument a Caccioppoli inequality:(

−
∫
B

|∇u|2dw
)1/2

≤ C1

r

(
−
∫

2B

|u− u2B,w|2 dw
)1/2

,

where C1 = C(n,Λ/λ)[w]
1/2
A2
≥ 1. Fix q such that

max
{2 (n− 1)

n
, rw,

2n rw
2 + n rw

}
< q < 2; (8.1)

such a q exists since rw < 2. Our choice of q guarantees that 2 < q∗w and also that 2 <
n q/(q − 1). Then, by the weighted Poincaré inequality, Theorem 2.1,

1

r

(
−
∫

2B

|u− u2B,w|2 dw
)1/2

≤ C2

(
−
∫

2B

|∇u|q dw
)1/q

, (8.2)

where C2 = C(n)[w]κA2
≥ 1 and κ = n q−1

n q (q−1)
. (By our choice of q we can get this sharp

estimate: see Remark 2.5. Since q < 2 we could write [w]Aq , but we use that [w]Aq ≤ [w]A2 .)
If we combine these inequalities, we get a reverse Hölder inequality:(

−
∫
B

|∇u|2 dw
)1/2

≤ C1C2

(
−
∫

2B

|∇u|q dw
)1/q

.

We now apply Gehring’s lemma in the setting of spaces of homogeneous type (see Björn
and Björn [12, Theorem 3.22]) to get that there exists p0 > 2 such that for every such B,(

−
∫
B

|∇u|p0 dw
)1/p0

≤ C0

(
−
∫

2B

|∇u|2 dw
)1/2

. (8.3)
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Moreover, we can take the following values: C0 = 8C2
1C

2
2 [w]31

A2
and

p0 = 2 +
2− q

24/q+1C2
1C

2
2 [w]

6/q+17
A2

. (8.4)

In Section 11 below we will need these precise values. Here, it suffices to note that in
inequality (8.3) we have p0 > 2.

The Hodge projection. Define the Hodge projection operator by

T = ∇L−1/2
w (∇(L∗w)−1/2)∗,

where the adjoint operators are defined with respect to the inner product in L2(w). As we
noted in Section 2, the Riesz transform is bounded on L2(w); hence, the Hodge projection

is also bounded. By duality, (∇(L∗w)−1/2)∗ ~f = −L−1/2
w (w−1 div(w~f)), and so

T ~f = −∇L−1/2
w L−1/2

w (w−1 div(w~f) = −∇L−1
w (w−1 div(w~f)).

Now fix ~f ∈ L2(w,Cn) ∩ Lp0(w,Cn) such that supp(~f) ⊂ Rn \ 4B0. Let u ∈ H1(w) be a
solution to the equation

Lwu = w−1 div(w~f);

by a standard Lax-Milgram argument because A satisfies (2.7) (cf. [21, Theorem 2.2]), we
know u exists. Then

T ~f = −∇L−1
w Lwu = −∇u,

where equality is in the sense of distributions. In particular, since f = 0 on 4B0, Lwu = 0
on 4B0. Therefore, we can apply (8.3) to u: on any ball B such that 3B ⊂ 4B0,(
−
∫
B

|T ~f |p0 dw
)1/p0

=

(
−
∫
B

|∇u|p0 dw
)1/p0

≤ C0

(
−
∫

2B

|∇u|2 dw
)1/2

=

(
−
∫

2B

|T ~f |2 dw
)1/2

.

As a consequence of this inequality, we have by [6, Theorem 3.14] (see also Section 5 of the
same paper) that for all q, 2 ≤ q < p0, T : Lq(w,Cn)→ Lq(w,Cn).

Boundedness of the Riesz transform. To show that the Riesz transform ∇L−1/2
w is

bounded, fix q such that

max (p−(L∗w), rw, p
′
0) = max

(
p−(L∗w), rw, p

′
0,

nrwp−(L∗w)

nrw + p−(L∗w)

)
< q′ < 2.

(The reason for including p−(L∗w) will be made clear below.) By the above argument we

have that T ∗ is bounded on Lq
′
(w), where T ∗ ~f = −∇(L∗w)−1(w−1 div(w~f)). Furthermore,

by Proposition 6.1, we have that

‖(L∗w)1/2f‖Lq′ (w) ≤ C‖∇f‖Lq′ (w).

Therefore,

‖(∇L−1/2
w )∗ ~f‖Lq′ (w) = ‖(L∗w)−1/2(w−1 div(w~f))‖Lq′ (w)

= ‖(L∗w)1/2(L∗w)−1(w−1 div(w~f))‖Lq′ (w)

. ‖∇(L∗w)−1(w−1 div(w~f))‖Lq′ (w)

= ‖T ∗ ~f‖Lq′ (w)
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. ‖~f‖Lq′ (w).

Hence, by duality we have that ∇L−1/2
w : Lq(w)→ Lq(w) for all q such that

2 < q < min
(
p+(Lw), r′w, p0

)
= qw;

here we have used the fact that by duality, p−(L∗w)′ = p+(Lw).

Boundedness of the gradient of the semigroup. Finally, we show that if 2 < q < qw,
then

√
t∇e−tLw : Lq(w) → Lq(w). The desired estimate for q+(Lw) follows from this: by

Proposition 7.1, part (4),

q+(Lw) = sup K̃(Lw) ≥ qw > 2.

Fix such a q; then by the above estimate for the Riesz transform,

‖
√
t∇e−tLwf‖Lq(w) = ‖∇L−1/2

w (tLw)1/2e−tLwf‖Lq(w)

. ‖(tLw)1/2e−tLwf‖Lq(w) = ‖ϕt(Lw)f‖Lq(w),

where ϕt(z) = (tz)1/2e−tz. For all t > 0 this is a uniformly bounded holomorphic function
in the right half plane. Therefore, since 2 < q < p+(Lw), by Proposition 4.3 we have that

‖
√
t∇e−tLwf‖Lq(w) . ‖ϕt‖∞‖f‖Lq(w) . ‖f‖Lq(w)

and the bound is independent of t. This completes the proof that q+(Lw) > 2.

9. Riesz transform estimates

In this section we prove Lp(w) norm inequalities for the Riesz transform ∇L−1/2
w . We

have already proved such inequalities for a small range of values q > 2 in Section 8. Here
we prove the following result.

Proposition 9.1. Let q−(Lw) < p < q+(Lw). Then there exists a constant C such that

‖∇L−1/2
w f‖Lp(w) ≤ C‖f‖Lp(w). (9.2)

Furthermore, if v ∈ Ap/q−(Lw)(w) ∩RH(q+(Lw)/p)′(w), then

‖∇L−1/2
w f‖Lp(v dw) ≤ C‖f‖Lp(v dw). (9.3)

To prove Proposition 9.1 we would like to follow the same outline as the proof of Propo-
sition 4.3. The first step—i.e., proving (9.2) holds when q−(Lw) < p < 2— does work with
the appropriate changes. However, the second step (i.e., the proof that (9.3) holds) runs

into difficulties since ∇L−1/2
w and the auxiliary operators Ar do not commute. One approach

to overcoming this obstacle would be to adapt the proof in [5] (see also [2]). In this case
we would need to use an Lp0(w)-Poincaré inequality which may not hold unless we assume
w ∈ Ap0 . This would yield estimates in the range max{rw, q−(Lw)} < p < q+(Lw), analogous
to those in Proposition 6.1.

There is, however, an alternative approach. In [8] the authors considered Riesz transforms
associated with the Laplace-Beltrami operator of a complete, non-compact Riemannian man-
ifold. Their proof avoids Poincaré inequalities for p close to 1 as these may not hold. Instead,
they use a duality argument based on ideas in [11]; this requires that they first prove that
the Riesz transform is bounded for p > 2 in the appropriate range of values. This reverses
the order used in the proof of Proposition 4.3.
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Proof of Proposition 9.1. For brevity, let q− = q−(Lw) and q+ = q+(Lw). To implement the
approach sketched above, we divide the proof in two steps. First we will prove that (9.2)
holds when 2 < p < q+. We do so using Theorem 2.35 and some ideas from [2, 5]. We
note that since the Riesz transform and Ar do not commute, we will use an L2(w)-Poincaré
inequality. This holds since w ∈ A2: the problem with using the Poincaré inequality only
occurs with exponents less than 2. The second step is to prove that (9.3) holds by adapting
the proof in [8]. Here we will use duality and a result from [6] that is based on good-λ
inequalities. Inequality (9.2) then holds when q− < p < 2 by taking v ≡ 1.

To apply Theorem 2.35, fix 2 < p < q+ and let T = ∇L−1/2
w , S = I and D = L∞c . Let

p0 = 2 and fix q0 such that 2 < p < q0 < q+. As before we take Ar = I − (I − e−r2Lw)m,
where m will be chosen below. We first show that (2.36) holds. Let f ∈ L∞c and decompose
it as in (4.11); then we have(

−
∫
B

|∇L−1/2
w (I − e−r2 Lw)mf |2 dw

) 1
2

≤
∑
j≥1

(
−
∫
B

|∇L−1/2
w (I − e−r2 Lw)mfj|2 dw

) 1
2

.

To estimate the first term, note that ∇L−1/2
w and e−r

2 Lw are bounded on L2(w) by Theo-
rems 2.15 and 2.18. Hence,(

−
∫
B

|∇L−1/2
w (I − e−r2 Lw)mf1|2 dw

) 1
2
.
(
−
∫

4B

|f |2 dw
) 1

2
. (9.4)

Fix j ≥ 2; to get the desired L2 estimates we will use the L2 bounds for the gradient of
the square function.. If h ∈ L2(w), by (2.20)

∇L−1/2
w (I − e−r2 Lw)mh =

1√
π

∫ ∞
0

√
t∇ϕ(Lw, t)h

dt

t
, (9.5)

where ϕ(z, t) = e−t z (1−e−r2 z)m ∈ H∞0 (Σµ). We can therefore use the integral representation
(2.10) for ϕ(·, t). The function η(·, t) in this representation satisfies

|η(z, t)| . r2m

(|z|+ t)m+1
, z ∈ Γ, t > 0.

By Theorem 2.15,
√
z∇e−z Lw ∈ O

(
L2(w)→ L2(w)

)
; hence,(

−
∫
B

∣∣∣∣ ∫
Γ

η(z)
√
t∇e−z Lwfj dz

∣∣∣∣2 dw) 1
2

≤
∫

Γ

(
−
∫
B

|
√
z∇e−z Lwfj|2 dw

) 1
2
√
t√
|z|
|η(z)| |dz|

. 2j θ1
∫

Γ

Υ

(
2j r√
|z|

)θ2

e
−α 4j r2

|z|

√
t√
|z|
|η(z)| |dz|

(
−
∫
Cj(B)

|f |2 dw
) 1

2

. 2j θ1
∫ ∞

0

Υ

(
2j r√
s

)θ2
e−

α 4j r2

s

√
t√
s

r2m

(s+ t)m+1
ds

(
−
∫
Cj(B)

|f |2 dw
) 1

2

. (9.6)
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When 2m > θ2,∫ ∞
0

∫ ∞
0

Υ

(
2j r√
s

)θ2
e−

α 4j r2

s

√
t√
s

r2m

(s+ t)m+1
ds
dt

t
= C 4−j m. (9.7)

If we insert this into the representation (2.10) we get(
−
∫
B

|∇e−t Lw(I − e−r2 Lw)mfj|2 dw
) 1

2

.
∫ ∞

0

(
−
∫
B

|
√
t∇ϕ(Lw, t)fj|2 dw

) 1
2 dt

t

. 2j (θ1−2m)
(
−
∫
Cj(B)

|f |2 dw
) 1

2
. (9.8)

If we now combine (9.4) and (9.8) we get (2.36) with g(j) = Cm 2j (θ1−2m); if we also fix
2m > θ1, we get that

∑
g(j) <∞.

We now show that (2.37) holds. As we remarked above, the Riesz transform does not
commute with Ar. To overcome this obstacle, we will prove an off-diagonal estimate for the
gradient of the semigroup (using the L2(w)-Poincaré inequality), and then use an approxi-
mation argument to get the desired estimate for the Riesz transform.

More precisely, we claim that for every f ∈ H1(w) and 1 ≤ k ≤ m,(
−
∫
B

|∇e−k r2 Lwf |q0 dw
) 1

q0

≤
∑
j≥1

g(j)

(
−
∫

2j+1B

|∇f |2 dw
) 1

2

, (9.9)

where g(j) = Cm 2j
∑

l≥j 2l θ e−α 4l . Assume for the moment that (9.9) holds. Then for every

ε > 0 we can apply this estimate to Sεf (defined by (2.21)) since Sεf ∈ H1(w). Moreover,

we have that Ar and Sε commute, and so if we expand Ar = I−(I−e−r2 L)m and apply (9.9),
we get (

−
∫
B

|∇SεArf |q0 dw
) 1

q0

≤ Cm
∑
j≥1

g(j)

(
−
∫

2j+1B

|∇Sεf |2 dw
) 1

2

.

If we let ε go to 0, we obtain (2.37). (The justification of this uses the observations made
in Section 2 after (2.21) and is left to the reader.) Moreover, we have that

∑
j≥1 g(j) <∞,

and so by Theorem 2.35 with v ≡ 1 (which trivially satisfies v ∈ Ap/2(w)∩RH(q0/p)′(w)) we
have that (9.2) holds for f ∈ L∞c and for every 2 < p < q+.

To complete this step we need to prove (9.9). Fix 1 ≤ k ≤ m and f ∈ H1(w). Let
h = f − f4B,w, where f4B,w = −

∫
4B
f dw. Then by the conservation property (see [19], or the

proof in [2, Section 2.5]), e−t Lw1 = 1 for all t > 0, and so

∇e−k r2 Lwf = ∇e−k r2 Lw(f − f4B,w) = ∇e−k r2 Lwh =
∑
j≥1

∇e−k r2 Lwhj,

where hj = h χCj(B). Hence,(
−
∫
B

|∇e−k r2 Lwf |q0 dw
) 1

q0

≤
∑
j≥1

(
−
∫
B

|∇e−k r2 Lwhj|q0 dw
) 1

q0

.

Since 2 < q0 < q+, by Proposition 7.1,
√
t∇e−t Lw ∈ O

(
L2(w) → Lq0(w)

)
. If we apply this

and the L2(w)-Poincaré inequality (see Remark 2.6 with p = q = 2), then for each j ≥ 1 we
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get (
−
∫
B

|∇e−k r2 Lwhj|q0 dw
) 1

q0

.
2j (θ1+θ2) e−α 4j

r

(
−
∫
Cj(B)

|hj|2 dw
) 1

2

≤ 2j (θ1+θ2) e−α 4j

r

(
−
∫

2j+1B

|f − f4B,w|2 dw
) 1

2

≤ 2j (θ1+θ2) e−α 4j

r

((
−
∫

2j+1B

|f − f2j+1B,w|2 dw
) 1

2

+

j∑
l=2

|f2lB,w − f2l+1B,w|
)

.
2j (θ1+θ2) e−α 4j

r

j∑
l=1

(
−
∫

2l+1B

|f − f2l+1B,w|2 dw
) 1

2

. 2j (θ1+θ2) e−α 4j
j∑
l=1

2l
(
−
∫

2l+1B

|∇f |2 dw
) 1

2

.

If we combine these two estimates and exchange the order of summation we get (9.9) with
θ = θ1 + θ2. This completes the proof that (9.2) holds when 2 < p < q+.

For the second step of our proof we show that (9.3) holds for all p, q− < p < q+ and
v ∈ Ap/q−(w)∩RH(q+/p)′(w). Fix such a p and v; then by the openness properties of Aq and
RHs weights, there exist p0, q0 such that

q− < p0 < min{p, 2} ≤ max{p, 2} < q0 < q+ and v ∈ Ap/p0(w) ∩RH(q0/p)′(w).

By the duality properties of weights [6, Lemma 4.4],

u = v1−p′ ∈ Ap′/q′0(w) ∩RH(p′0/p
′)′(w).

Let T = ∇L−1/2
w ; then T is bounded from Lp(Rn, v dw) to Lp(Rn;Cn, v dw) if and only if

T ∗ is bounded from Lp
′
(Rn;Cn, u dw) to Lp

′
(Rn;u dw). (Note that T takes scalar valued

functions to vector functions valued and T ∗ the opposite.)
Therefore, it will suffice to prove the boundedness of T ∗. We will do so using a particular

case of [6, Theorem 3.1]. This result is stated there in the Euclidean setting but it extends
to spaces of homogeneous type. Here we give the weighted version we need: see [6, Section
5].

Theorem 9.10. Fix 1 < q < ∞, a ≥ 1 and u ∈ RHs′(w), 1 < s < ∞. Then there
exists C > 1 with the following property: suppose F ∈ L1(w) and G are non-negative
measurable functions such that for any ball B there exist non-negative functions GB and HB

with F (x) ≤ GB(x) +HB(x) for a.e. x ∈ B and, for all x ∈ B,(
−
∫
B

Hq
B dw

) 1
q ≤ aMwF (x), −

∫
B

GB dw ≤ G(x), (9.11)

where Mw is the Hardy-Littlewood maximal function with respect to dw. Then for 1 < t <
q/s,

‖MwF‖Lt(u dw) ≤ C ‖G‖Lt(u dw). (9.12)
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To apply Theorem 9.10, fix ~f ∈ L∞c (Rn;Cn), and let h = T ∗ ~f and F = |h|q′0 . Then
F ∈ L1(w): by the argument above, since 2 < q0 < q+, T is bounded from Lq0(Rn, w) to
Lq0(Rn;Cn, w), thus T ∗ is bounded from Lq

′
0(Rn;Cn, w) to Lq

′
0(Rn, w).

Now let Ar = I − (I − e−r2 Lw)m, where m > 0 will be fixed below. Given a ball B with
radius r, we define

F ≤ 2q
′
0−1 |(I −Ar)∗h|q

′
0 + 2q

′
0−1 |A∗rh|q

′
0 ≡ GB +HB,

where, as before, the adjoint is with respect to L2(w). To complete the proof, suppose

for the moment that we could prove (9.11) with q = p′0/q
′
0 and G = Mw(|~f |q′0). Since

u ∈ RH(p′0/p
′)′(w), by the openness property of reverse Hölder weights, u ∈ RHs′(w) for

some s < p′0/p
′. Then if we let t = p′/q′0 = (p′0/q

′
0)/(p′0/p

′) < q/s, we have u ∈ At(w), and
so Mw is bounded on Lt(u dw). Therefore, by (9.12),

‖T ∗ ~f‖q
′
0

Lp′ (u dw)
≤ ‖MwF‖Lt(u dw) ≤ C ‖G‖Lt(u dw) = C ‖Mw(|~f |q′0)‖Lt(u dw) .

∥∥~f∥∥q′0
Lp
′ (u dw)

.

To complete the proof we need to show that (9.11) holds. We first estimate HB. By
duality there exists g ∈ Lp0(B, dw/w(B)) with norm 1 such that for all x ∈ B,(

−
∫
B

Hq
B dw

) 1
q q′

0
. w(B)−1

∫
Rn
|h| |Arg| dw

.
∞∑
j=1

2j D
(
−
∫
Cj(B)

|h|q′0 dw
) 1

q′
0

(
−
∫
Cj(B)

|Arg|q0 dw
) 1

q0

.MwF (x)
1
q′
0

∞∑
j=1

2j (D+θ1+θ2)e−α 4j
(
−
∫
B

|g|p0 dw
) 1

p0

.MwF (x)
1
q′
0 ,

where in the second to last inequality we used the fact that by our choice of p0, q0, e−t Lw ∈
O
(
Lp0(w)→ Lq0(w)

)
, and so Ar is as well.

We now estimate GB. Again by duality there exists g ∈ Lq0(B, dw/w(B)) with norm 1
such that for all x ∈ B,(

−
∫
B

GB dw

) 1
q′
0
. w(B)−1

∫
Rn
|~f | |T (I −Ar)g| dw

.
∞∑
j=1

2j D
(
−
∫
Cj(B)

|~f |q′0 dw
) 1

q′
0

(
−
∫
Cj(B)

|T (I −Ar)g|q0 dw
) 1

q0

≤Mw(|~f |q′0)(x)
1
q′
0

∞∑
j=1

2j D
(
−
∫
Cj(B)

|T (I −Ar)g|q0 dµ
) 1

q0

. (9.13)

To estimate each term in the sum we argue as in the first half of the proof. When j = 1,

∇L−1/2
w and e−r

2 Lw are bounded on Lq0(w) by the first part of the proof and Theorem 2.15.
Hence, (

−
∫

4B

|∇L−1/2
w (I − e−r2 Lw)mg|q0 dw

) 1
q0

.

(
−
∫
B

|g|q0 dw
) 1

q0

= 1. (9.14)
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For j ≥ 2 we use the integral representation (9.5). If we estimate as in (9.6), with the
roles of B and Cj(B) switched and using the fact that

√
z∇e−z Lw ∈ O

(
Lq0(w) → Lq0(w)

)
since 2 < q0 < q+, we see that(

−
∫
Cj(B)

∣∣∣∣ ∫
Γ

η(z)
√
t∇e−z Lwg dz

∣∣∣∣q0 dw) 1
q0

≤
∫

Γ

(
−
∫
Cj(B)

|
√
z∇e−z Lwg|q0 dw

) 1
q0

√
t√
|z|
|η(z)| |dz|

. 2j θ1
∫

Γ

Υ

(
2j r√
|z|

)θ2

e
−α 4j r2

|z|

√
t√
|z|
|η(z)| |dz|

(
−
∫
B

|g|q0 dw
) 1

2

. 2j θ1
∫ ∞

0

Υ

(
2j r√
s

)θ2
e−

α 4j r2

s

√
t√
s

r2m

(s+ t)m+1
ds.

If we take 2m > θ2, we can combine this with (9.7). We can then insert this estimate into
the representation (2.10) to get that for every j ≥ 2,(
−
∫
Cj(B)

|∇e−t Lw(I − e−r2 Lw)mg|q0 dw
) 1

q0

.
∫ ∞

0

(
−
∫
Cj(B)

|
√
t∇ϕ(Lw, t)g|q0 dw

) 1
q0 dt

t
. 2j (θ1−2m). (9.15)

Taken together, (9.13), (9.14) and (9.15) yield(
−
∫
B

GB dw

) 1
q′
0
.Mw(|~f |q′0)(x)

1
q′
0

∞∑
j=1

2j (D+θ1−2m) .Mw(|~f |q′0)(x)
1
q′
0 = G(x)

1
q′
0 ,

provided we take m large enough so that D + θ1 − 2m < 0. This completes the estimate of
HB and GB and so completes our proof. �

10. Square function estimates for the gradient of the semigroup

In this section we prove Lp(w) estimates for the vertical square function

GLwf(x) =

(∫ ∞
0

|t1/2∇e−tLwf(x)|2dt
t

)1/2

.

Proposition 10.1. Let q−(Lw) < p < q+(Lw). Then

‖GLwf‖Lp(w) . ‖f‖Lp(w) . (10.2)

Furthermore, if v ∈ Ap/q−(Lw)(w) ∩RH(q+(Lw)/p)′(w), then

‖GLwf‖Lp(v dw) . ‖f‖Lp(v dw) . (10.3)

We can also prove a reverse inequality for GLw . To do so we need to introduce an auxiliary
operator. Define the weighted Laplacian by ∆w = −w−1 divw∇: i.e., ∆w is the operator
Lw if we take the matrix A to be wI, where I is the identity matrix.
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Proposition 10.4. Let q+(∆w)′ < p <∞. Then

‖f‖Lp(w) . ‖GLwf‖Lp(w). (10.5)

Furthermore, if v ∈ Ap/q+(∆w)′(w), then

‖f‖Lp(v dw) . ‖GLwf‖Lp(v dw). (10.6)

Proof of Proposition 10.1. The proof could be done in a way similar to those for the square
function gLw in Section 5. However, we will give a shorter proof that uses the Riesz transform
estimates from Section 9.

Let q− = q−(Lw) and q+ = q+(Lw). Fix p,

q− = p−(Lw) < p < q+ ≤ p+(Lw),

and v ∈ Ap/q−(w) ∩RH(q+/p)
′(w). Then by Proposition 9.1, the Riesz transform is bounded

on Lp(v dw), and so by Lemma 5.4 it has a bounded extension to LpH(v dw): i.e., if g (x, t) ∈
LpH(v dw), then ‖∇L−1/2

w g‖LpH(v dw) . ‖g‖LpH(v w), where the extension of ∇L−1/2
w to H-valued

functions is defined for x ∈ Rn and t > 0 by (∇L−1/2
w g)(x, t) = ∇L−1/2

w

(
g(·, t)

)
(x).

Define gf (x, t) = (tLw)1/2 e−tLwf(x) and Gf (x, t) = t1/2∇e−tLwf(x); then we clearly have
‖gLwf‖Lp(v dw) = ‖gf‖LpH(v dw) and ‖GLwf‖Lp(v dw) = ‖Gf‖LpH(v dw). Furthermore, Gf (x, t) =

∇L−1/2
w (gf (·, t))(x) = (∇L−1/2

w gf )(x, t). Hence,

‖GLwf‖Lp(v dw) = ‖Gf‖LpH(v dw) =
∥∥∇L−1/2

w gf
∥∥
LpH(v dw)

. ‖gf‖LpH(v dw) = ‖gLwf‖Lp(v dw) . ‖f‖Lp(v dw) .

To prove the last inequality we used Proposition 5.1; we also used the fact that q− =
p−(Lw) < p < q+ ≤ p+(Lw) and v ∈ Ap/q−(w) ∩ RH(q+/p)

′(w), which together imply that
v ∈ Ap/p−(Lw)(w)∩RH(p+(Lw)/p)′(w). This proves (10.3). To prove inequality (10.2), we take
v ≡ 1. �

To prove Proposition 10.4 we need the following identity relating GLw and ∆w. It is
a straightforward extension of a similar unweighted result given in [2, Section 7.1]. For
completeness we include the proof.

Lemma 10.7. If f, g ∈ L∞c (w) then∣∣∣∣∫
Rn
f(x)g(x) dw

∣∣∣∣ ≤ (Λ + 1)

∫
Rn
GLwf(x) G∆wg(x) dw.

Proof. By the definition and properties of the operators Lw and ∆w we have that∫
Rn
f(x)g(x) dw

= lim
ε↓0

∫
Rn
e−εLwf(x)e−ε∆wg(x) dw − lim

R↑∞

∫
Rn
e−RLwf(x)e−R∆wg(x) dw

= −
∫ ∞

0

d

dt

∫
Rn
e−tLwf(x)e−t∆wg(x) dw dt

=

∫ ∞
0

∫
Rn

(
Lwe

−tLwf(x)e−t∆wg(x) + e−tLwf(x)∆we−t∆wg(x)
)
dw dt
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=

∫ ∞
0

∫
Rn

(
A(x)w(x)−1 + I

) (
∇e−tLwf(x) ∇e−t∆wg(x)

)
dw dt.

Since ‖Aw−1‖∞ ≤ Λ, if we apply Hölder’s inequality in the t variable we get the desired
result. �

Proof of Proposition 10.4. As a consequence of the Gaussian estimate for weighted operators
with real symmetric coefficients that were proved in [16, 18], we have that ∆w ∈ O

(
L1(w)→

L∞(w)
)
. In particular, q−(∆w) = p−(L∆w) = 1. Further, by the results in Section 8 we have

that q+(∆w) > 2.
Therefore, by Proposition 10.1, if 1 < p′ < q+(∆w), and

u ∈ Ap′(w) ∩RH(q+(∆w)/p′)′(w), (10.8)

then

‖G∆wf‖Lp′ (u dw) . ‖f‖Lp′ (u dw). (10.9)

We want to apply inequality (10.9) with u = v1−p′ . By [6, Lemma 4.4], the condition (10.8)
is equivalent to v ∈ Ap/q+(w)′(w).

Now fix f, g ∈ L∞c , and a weight v ∈ Ap/q+(w)′(w). Then by Lemma 10.7, for q+(∆w)′ <
p <∞, ∣∣∣∣∫

Rn
f(x)g(x) dw

∣∣∣∣ ≤ (Λ + 1)

∫
Rn
GLwf(x) G∆wg(x) dw

= (Λ + 1)

∫
Rn
GLwf(x) G∆wg(x) v1/p v−1/p dw

≤ (Λ + 1) ‖GLwf‖Lp(v dw) ‖G∆wg‖Lp′ (v1−p′ dw)

. ‖GLwf‖Lp(v dw) ‖g‖Lp′ (v1−p′ dw) ;

the last inequality follows from (10.9). If we take g = sign (f) |f |p−1 v, we get

‖f‖pLp(v dw) . ‖GLwf‖Lp(v w)

∥∥|f |p−1 v
∥∥
Lp′ (v1−p′ dw)

= ‖GLwf‖Lp(v dw) ‖f‖
p/p′

Lp(v dw) .

This immediately gives us the desired inequality. �

11. Unweighted L2 Kato estimates

In this section we prove unweighted L2 estimates for the operators we have considered in
the previous sections. These will all be consequences of the weighted Lp(v dw) estimates we
have already proved: it will only be necessary to find further conditions on w ∈ A2 so that
the weight v = w−1 satisfies the requisite conditions.

We are particularly interested in power weights and we recall some well-known facts
about them. Define wα(x) = |x|α, α > −n; this restriction guarantees that wα is locally
integrable. We can exactly determine the Muckenhoupt Ap and reverse Hölder RHs classes
of these weights in terms of α: if −n < α ≤ 0, then w ∈ A1; for 1 < p < ∞, w ∈ Ap if
−n < α < n (p − 1). Furthermore, if 0 ≤ α < ∞, w ∈ RH∞; for 1 < q < ∞, w ∈ RHq. if
−n/q < α <∞. Hence, we easily see that

rwα = max{1, 1 + α/n}, swα =
(

max{1, (1 + α/n)−1}
)′
. (11.1)
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We first consider the semigroup e−tLw , the functional calculus, and the square function
gLw , since these estimates will depend on p−(Lw) and p+(Lw) and we have good estimates
for these quantities.

Theorem 11.2. Given a weight w ∈ A2, suppose 1 ≤ rw < 1 + 2
n

and sw >
n
2
rw + 1. Then

e−tLw : L2 → L2 is uniformly bounded for all t > 0. Similarly, ϕ(Lw) : L2 → L2, where ϕ is
any bounded holomorphic function on Σµ, µ ∈ (ϑ, π), and gLw : L2 → L2.

In particular, these L2 estimates hold if we assume that w ∈ A1∩RH1+n
2
, or more generally

if w ∈ Ar ∩RHn
2
r+1 for 1 < r ≤ 1 + 2

n
, or if we take the power weights

wα(x) = |x|α, − 2n

n+ 2
< α < 2.

Proof. Let p = q = 2, p0 = (2∗w)′, q0 = 2∗w, and let v = w−1. Then by Proposition 3.1,
Corollary 3.3 and the nesting properties of weights, e−tLw ∈ O

(
L2 → L2

)
if w−1 ∈ A2/p0(w)∩

RH(q0/2)′(w); in particular, by Lemma 2.30, e−tLw : L2 → L2 is uniformly bounded. However,
this weight condition is equivalent to

w ∈ RH(2/p0)′ ∩ Aq0/2.
A straightforward computation shows that

q0

2
=

nrw
nrw − 2

,

(
2

p0

)′
=
n

2
rw + 1.

Since rw < 1 + 2
n
, we have that rw < nrw

nrw−2
, so we automatically have that w ∈ Aq0/2.

Therefore, the desired bounds hold if we have sw > n
2
rw + 1. If w ∈ Ar ∩ RHn

2
r+1 with

1 ≤ r ≤ 1 + 2
n
, then rw ≤ r and sw >

n
2
r + 1 ≥ n

2
rw + 1. The desired conclusion for power

weights follows at once from (11.1).

The same argument holds for ϕ(Lw) and gLw , using Proposition 4.3 or Proposition 5.1,
respectively. �

It is straightforward to construct weights more general than power weights that satisfy
the conditions on rw and sw in the above theorems. For instance, w ∈ A1+ 2

n
∩RH2+n

2
(which

corresponds to the choice r = 1 + 2
n
) if and only if there exist u1, u2 ∈ A1 such that

w = u
2

n+4

1 u
− 2
n

2 .

This follows from the Jones factorization theorem and the properties of A1 weights: cf. [15].

Remark 11.3. We can modify the proof of Theorem 11.2 to get unweighted Lp estimates for
values of p close to 2. We leave the details to the interested reader.

For the reverse inequalities we need to take into account the slightly stronger hypotheses
in Proposition 6.1; otherwise, the proof of the following result follows exactly as in the proof
of Theorem 11.2.

Theorem 11.4. Given a weight w ∈ A2, suppose that

1 ≤ rw < 1 +
2

n
and sw > max

{( 2

rw

)′
,
n

2
rw + 1

}
.

Then
‖L1/2

w f‖L2 ≤ C ‖∇f‖L2 , f ∈ S. (11.5)
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In particular, this is the case if we either assume that w ∈ A1 ∩ RH1+n
2
, or more generally

that w ∈ Ar ∩RHmax{( 2
r

)′,n
2
r+1}, with 1 < r ≤ 1 + 2

n
, or for power weights if we take

wα(x) = |x|α, − 2n

n+ 2
= −min

{n
2
,

2n

n+ 2

}
< α < 2.

Remark 11.6. Note that max{(2
r
)′, n

2
r+1} = n

2
r+1 provided r ≤ 2− 2

n
and this always holds

if n ≥ 4 as 1 + 2
n
≤ 2 − 2

n
. In this case, the conditions in the second part of Theorem 11.4

simplify to the same conditions as in Theorem 11.2.

Remark 11.7. We note that in Theorems 11.2 and 11.4 we can replace 1 ≤ rw < 1 + 2
n

with the possibly weaker condition 1 ≤ rw < p+(Lw)
2

. The proof only requires us to take
q0 = p+(Lw).

For the gradient of the semigroup
√
t∇e−tLw , the Riesz transform ∇L−1/2

w , and the square
function GLw , our estimates depend on q+(Lw).

Theorem 11.8. Given a weight w ∈ A2, suppose 1 ≤ rw < q+(Lw)
2

and sw > n
2
rw + 1.

Then
√
t∇e−tLw : L2 → L2 is uniformly bounded for all t > 0. Similarly, we have that

∇L−1/2
w : L2 → L2 and GLw : L2 → L2.

In particular, this is the case if we assume that w ∈ A1 ∩ RHn
2

+1. Furthermore, these

L2 estimates hold if the following is true: given Θ ≥ 1 there exists ε0 = ε0(Θ, n,Λ/λ),
0 < ε0 ≤ 1

2n
, such that w ∈ A1+ε ∩RHn

2
(1+ε)+1, 0 ≤ ε < ε0, and [w]A2 ≤ Θ.

For power weights, there exists ε1 = ε1(n,Λ/λ), 0 < ε1 ≤ 1
2
, such that these estimate holds

for

wα(x) = |x|α, − 2n

n+ 2
< α < ε1.

Proof. We will prove this result for
√
t∇e−tLw using Proposition 7.1. The proof for ∇L−1/2

w

or GLw is exactly the same, using Proposition 9.1 or Proposition 10.1.
By Proposition 7.1,

√
t∇e−tLw : L2 → L2 if w−1 = v ∈ A2/q−(Lw)(w) ∩ RHq+(Lw)/2)′(w),

which is equivalent to
w ∈ RH(2/q−(Lw))′ ∩ Aq+(Lw)/2.

Therefore, we need rw < q+(Lw)/2. Furthermore, since we have that q−(Lw) = p−(Lw) ≤
(2∗w)′, we can take

sw >

(
2

(2∗w)′

)′
=
n

2
rw + 1.

To get the particular examples stated in the theorem, note first that if we let rw = 1, then
it clearly suffices to assume w ∈ A1 ∩RHn

2
+1, since we showed in Section 8 that q+(Lw) > 2

for every w ∈ A2.

We now prove the condition for weights w ∈ A1+ε. In this case it is more difficult to satisfy
the condition rw < q+(Lw)/2 since the righthand side can be very close to 1 depending on
w. Assume then that w ∈ A1+ε ∩ RHn

2
(1+ε)+1, with 0 ≤ ε < ε0 ≤ 1

2n
, [w]A2 ≤ Θ, and with

ε0 > 0 to be fixed below. Then we have that

sw >
n

2
(1 + ε) + 1 ≥ n

2
rw + 1.
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Therefore, in order to apply the first half of the theorem we need to show that we can
choose ε0 sufficiently small so that rw < q+(Lw)/2. To do so we will use the notation and
computations from Section 8. There we showed that q+(Lw) ≥ qw, and so it will suffice to
show that

2rw < qw = min(r′w, p+(Lw), p0). (11.9)

We will compare rw to each term in the minimum in turn.
The first two terms are straightforward. First, we have that rw < 1 + ε < 1 + 1

2n
< 3

2
and

so 2rw < r′w. Second, rw < 1 + 1
2n

< 1 + 2
n
, and it follows at once from this that 2 rw < 2∗w.

By Proposition 3.1, 2∗w ≤ p+(Lw) and so 2 rw < p+(Lw).
Finally, we estimate p0, the exponent from the higher integrability condition (8.3). We will

use the formula (8.4). First, we need to fix the exponent q from the Poincaré inequality (8.2).
Let q = 2− 1/n; this value satisfies (8.1) since rw < 1 + 1

2n
< 1 + 1

n
. With this choice of q

(that only depends on n), we have that

p0 = 2 +
2− q

24/q+1C2
1C

2
2 [w]

6/q+17
A2

= 2 +
1

nC(n,Λ/λ) [w]θnA2

where C(n,Λ/λ) ≥ 1 depends only on n and the ratio Λ/λ of the ellipticity constants of
the matrix A used to define Lw, and where θn ≥ 1 depends only on n. Then, since we also
assumed that [w]A2 ≤ Θ, we get that

p0 = 2 +
1

nC(n,Λ/λ) [w]θnA2

≥ 2 +
1

nC(n,Λ/λ) Θθn
= 2 + 2 ε0,

and ε0 = (2nC(n,Λ/λ) Θθn)−1 is such that 0 < ε0 ≤ 1
2n

. Thus 2 rw < 2 (1+ε) < 2 (1+ε0) ≤
p0 and so 2 rw < p0. This completes the proof that (11.9) is satisfied, and so the L2 estimates
hold for weights that satisfy w ∈ A1+ε ∩RHn

2
(1+ε)+1.

Finally, we consider power weights. First, it is easy to see that

wα(x) = |x|α, −2n

n+ 2
< α ≤ 0

yields the desired estimates, since in this case rw = 1 and sw >
n
2

+ 1 = n
2
rw + 1.

Now consider the case α > 0. If we assume that α < 1
2
, then w ∈ A1+ 1

2n
∩RH∞. Moreover,

it is straightforward to show that for all such α, there exists Θ, depending only on n, such
that [wα]A2 ≤ Θ. Now apply the above argument to find ε0 ∈ (0, 1

2n
]; this value will only

depend on n and the ratio Λ/λ. If we let ε1 = n ε0 and assume that 0 < α < ε1, then α < 1
2

and wα ∈ A1+ε for some ε < ε0 as desired. �

To find examples of weights other than power weights to which Theorem 11.8 apply, we
argue as before. If u1 ∈ A1, then

w = u
2

n+2

1 ∈ A1 ∩RHn
2

+1.

To get weights that are not in A1, take u ∈ A2 and let w = uθ. If θ is sufficiently small
(depending on n, the ratio Λ/λ and [u]A2) we can show that w satisfies the final conditions
given in Theorem 11.8. Details are left to the interested reader.
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Remark 11.10. To get the unweighted lower estimate

‖f‖L2 ≤ C‖GLwf‖L2 ,

we note that by (10.6) we need w−1 ∈ A2/q+(∆w)′(w), or equivalently, w ∈ RH(2/q+(∆w)′)′ .
Hence, it suffices to assume

sw > 1 +
q+(∆w)

q+(∆w)− 2
.

Arguing as above we can construct weights that satisfy this condition; details are left to the
interested reader.

If we combine Theorems 11.4, 11.8, and Remark 11.7 we solve the Kato square root
problem for degenerate elliptic operators.

Theorem 11.11. Let Lw = −w−1 divA∇ be a degenerate elliptic operator with w ∈ A2. If

1 ≤ rw <
q+(Lw)

2
and sw > max

{( 2

rw

)′
,
n

2
rw + 1

}
.

then the Kato problem can be solved for Lw: that is, for every f ∈ H1(Rn).

‖L1/2
w f‖L2(Rn) ≈ ‖∇f‖L2(Rn), (11.12)

where the implicit constants depend only on the dimension, the ellipticity constants λ, Λ,
and w.

In particular, (11.12) holds if w ∈ A1 ∩ RHn
2

+1. Further, (11.12) holds if the following

is true: given Θ ≥ 1 there exists ε0 = ε0(Θ, n,Λ/λ), 0 < ε0 ≤ 1
2n

, such that w ∈ A1+ε ∩
RHmax{( 2

1+ε
)′,n

2
(1+ε)+1}, 0 ≤ ε < ε0, and [w]A2 ≤ Θ.

For power weights, there exists ε1 = ε1(n,Λ/λ), 0 < ε1 ≤ 1
2
, such that inequality (11.12)

holds (with wα in place of w) if

wα(x) = |x|α, − 2n

n+ 2
< α < ε1.

We can restate the final part of Theorem 11.11 as follows: consider the family of operators
Lγ = −|x|γ div(|x|−γB(x)∇), where B is an n× n complex-valued matrix that satisfies the
uniform ellipticity condition

λ|ξ|2 ≤ Re 〈B(x)ξ, ξ〉, |〈B(x)ξ, η〉| ≤ Λ|ξ||η|, ξ, η ∈ Cn, a.e. x ∈ Rn.

Then,

‖L1/2
γ f‖L2(Rn) ≈ ‖∇f‖L2(Rn), −ε1 < γ <

2n

n+ 2
. (11.13)

When γ = 0 we get the classical Kato square root problem solved by Auscher, Hofmann,
Lacey, McIntosh, and Tchamitchian [4]. Inequality (11.13) shows that we can find an open
interval containing 0 such that if γ is in this interval, the same estimate holds.
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12. Applications to L2 boundary value problems

In this section we apply the results from the previous section to some L2 boundary value
problems involving the degenerate elliptic operator Lw. We follow the ideas in [10] and
consider semigroup solutions: for the Dirichlet or Regularity problems we let u(x, t) =

e−tL
1/2
w f(x); for the Neumann problem we let u(x, t) = −L−1/2

w e−tL
1/2
w f(x). In each case, for

t > 0 fixed Lwu(·, t) makes sense in a weak sense since u(·, t) is in the domain of Lw. Further,
derivatives in t are well defined because of the semigroup properties. Finally, note that by
the strong continuity of the semigroup and the off-diagonal estimates, in the context of the

following results we have that e−tL
1/2
w f → f as t → 0+ in L2; see [7, Section 4.2]. Further

details are left to the interested reader.

We first consider the Dirichlet problem on Rn+1
+ = Rn × [0,∞):{

∂2
t u− Lwu = 0, on Rn

u
∣∣
∂Rn+1

+
= f on ∂Rn+1

+ = Rn.
(12.1)

Theorem 12.2. Given a weight w ∈ A2, suppose 1 ≤ rw < 1 + 2
n

and sw >
n
2
rw + 1. Then

for any f ∈ L2(Rn), u(x, t) = e−tL
1/2
w f(x) is a solution of (12.1) with convergence to the

boundary data as t→ 0+ in the L2-sense. Furthermore, we have that

sup
t>0
‖u(·, t)‖L2 ≤ C‖f‖L2 . (12.3)

In particular, this is the case if we assume that w ∈ A1 ∩RH1+n
2
, or w ∈ Ar ∩RHn

2
r+1 with

1 < r ≤ 1 + 2
n

, or if we take the power weights

wα(x) = |x|α, − 2n

n+ 2
< α < 2.

Proof. Formally, it is clear that u is a solution to (12.1), and this formalism can be justified
by appealing to the theory of maximal accretive operators: see Kato [25]. Alternatively, the

weighted estimates for the functional calculus in Proposition 4.3 show that both ∂2

∂t2
u(·, t)

and Lwu(·, t) belong to L2 for each t > 0 and that they are equal in the L2-sense. To see that
inequality (12.3) holds, it suffices to let ϕt(z) = e−t

√
z. Then ϕt is a bounded holomorphic

function on Σµ, and so by Theorem 11.2 we get the desired bound. �

Remark 12.4. Note that as observed in Remark 11.7, in the previous result we can replace

1 ≤ rw < 1+ 2
n

with the possibly weaker condition 1 ≤ rw <
p+(Lw)

2
. Also, by Proposition 4.3

we also have that for u as in Theorem 12.2 and all k ≥ 1

sup
t>0

∥∥∥∥tk ∂k∂tku(·, t)
∥∥∥∥
L2

= sup
t>0

∥∥∥(tk L1/2
w )ke−tL

1/2
w f(·)

∥∥∥
L2
≤ C‖f‖L2 . (12.5)

For the regularity problem we have the following.

Theorem 12.6. Given a weight w ∈ A2, suppose

1 ≤ rw <
q+(Lw)

2
and sw > max

{( 2

rw

)′
,
n

2
rw + 1

}
.
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Then for any f ∈ H1(Rn), u(x, t) = e−tL
1/2
w f(x) is a solution of (12.1) with convergence to

the boundary data as t→ 0+ in the L2-sense. Furthermore, we have that

sup
t>0
‖∇x,tu(·, t)‖L2 ≤ C‖∇f‖L2 . (12.7)

In particular, (12.7) holds if we assume that w ∈ A1 ∩ RH1+n
2
. Furthermore, it holds if

the following is true: given Θ ≥ 1 there exists ε0 = ε0(Θ, n,Λ/λ), 0 < ε0 ≤ 1
2n

, such that
w ∈ A1+ε ∩RHmax{( 2

1+ε
)′,n

2
(1+ε)+1}, 0 ≤ ε < ε0, and [w]A2 ≤ Θ.

For power weights, there exists ε1 = ε1(n,Λ/λ), 0 < ε1 ≤ 1
2
, such that (12.7) holds if

wα(x) = |x|α, −n
2
< α < ε1.

Proof. Arguing as before, it suffices to prove that (12.7) holds. For any t > 0 we have, by
Theorem 11.11

‖∇x,tu(·, t)‖L2 ≤ ‖∇L−1/2
w L1/2

w e−tL
1/2
w f‖L2 + ‖L1/2

w e−tL
1/2
w f‖L2

. ‖L1/2
w e−tL

1/2
w f‖L2 = ‖e−tL

1/2
w L1/2

w f‖L2 . ‖L1/2
w f‖L2 . ‖∇f‖L2 .

�

Note that under the hypothesis of Theorem 12.6, and as observed in Remark 12.4, we have

that u(·, t) = e−tL
1/2
w f satisfies (12.3) and (12.5). Additionally, from the functional calculus

estimates on L2 it follows that

sup
t>0
‖t∇x,tu(·, t)‖L2 . ‖tL1/2

w e−tL
1/2
w f‖L2 . ‖f‖L2 . (12.8)

Finally, we consider the Neumann problem{
∂2
t u− Lwu = 0, on Rn

∂tu
∣∣
∂Rn+1

+
= f on ∂Rn+1

+ = Rn.
(12.9)

Theorem 12.10. Given a weight w ∈ A2, suppose 1 ≤ rw <
q+(Lw)

2
and sw >

n
2
rw+1. Then

for any f ∈ L2(Rn), u(x, t) = −L−1/2
w e−tL

1/2
w f(x) is a solution of (12.9) with convergence of

∂tu(·, t)→ f as t→ 0+ in the L2-sense. Furthermore, we have that

sup
t>0
‖∇x,tu(·, t)‖L2 ≤ C‖f‖L2 . (12.11)

In particular, (12.11) holds if we assume that w ∈ A1 ∩ RH1+n
2
. Furthermore, it holds if

the following is true: given Θ ≥ 1 there exists ε0 = ε0(Θ, n,Λ/λ), 0 < ε0 ≤ 1
2n

, such that
w ∈ A1+ε ∩RHn

2
(1+ε)+1, 0 ≤ ε < ε0, and [w]A2 ≤ Θ.

For power weights, there exists ε1 = ε1(n,Λ/λ), 0 < ε1 ≤ 1
2
, such that (12.11) holds if

wα(x) = |x|α, − 2n

n+ 2
< α < ε1.

Proof. Again, u is clearly a formal solution of (12.9); see [25]. The proof that (12.11) holds
is similar to the proof of (12.7):

‖∇x,tu(·, t)‖L2 ≤ ‖∇L−1/2
w e−tL

1/2
w f‖L2 + ‖e−tL

1/2
w f‖L2 . ‖e−tL

1/2
w f‖L2 . ‖f‖L2 ,

where we have used Theorem 11.8 (for the Riesz transform) and Theorem 11.2 (for the
functional calculus with ϕ(z) = e−t

√
z). �
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Remark 12.12. As we noted in Remark 11.3, we can also get unweighted Lp bounds for these
operators for values of p close to 2. As a consequence we can also get estimates Lp boundary
value problems for the same values of p. Details are left to the reader.
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