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Abstract. One of the main results in modern Harmonic Analysis is the extrapolation
theorem of J.L. Rubio de Francia for Ap weights. In this paper we discuss some
recent extensions of this result. We present a new approach that, among other things,
allows us to obtain estimates in rearrangement-invariant Banach function spaces as
well as weighted modular inequalities. We also extend this extrapolation technique
to the context of A∞ weights. We apply the obtained results to the dyadic square
function. Fractional integrals, singular integral operators and their commutators with
bounded mean oscillation functions are also consider. We present an extension of the
classical results of Boyd and Lorentz-Shimogaki to a wider class of operators and also
to weighted and vector-valued estimates. Finally, the same kind of ideas leads us to
extrapolate within the context of an appropriate class of non A∞ weights and this can
be used to prove a conjecture proposed by E. Sawyer.
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1. Introduction

The purpose of this paper is to give a survey of some of the basic ideas and results
developed in recent work on extrapolation [CMP1], [CGMP], [CFMP], [CMP2], [CMP3]
(see also [Ma1], [Ma2]). We believe that this circle of ideas should be very useful in
studying some open problems in harmonic analysis.

The extrapolation we are considering concerns the theory of Ap weights. There is
another theory of extrapolation more closely related to interpolation and having as its
seminal result Yano’s theorem. We refer the reader to [MM] for a very interesting paper
relating both fields.

The pioneering result for the theory of extrapolation with Muckenhoupt weights is
the extrapolation theorem of Rubio de Francia:

Theorem 1.1 (Rubio de Francia, [Ru2]). Let T be any operator acting a priori in some
reasonable class of functions. Suppose that for some 1 ≤ p0 <∞, and every w ∈ Ap0,∫

Rn
|Tf(x)|p0 w(x) dx ≤ C

∫
Rn
|f(x)|p0 w(x) dx, (1.1)

where the constant C only depends upon the Ap0 constant of w. Then for all 1 < p <∞
and for all w ∈ Ap, ∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
|f(x)|pw(x) dx, (1.2)

where the constant C depends upon the Ap constant of w.

Rubio de Francia’s theorem is one of the most beautiful and useful results in Harmonic
Analysis. Roughly speaking the theorem says that it is enough to have a good initial
starting point from where to “extrapolate” in order to get the whole range of scales.
Observe that no assumption on the operator T is assumed, although in the original
sources [Ru2], [Gar] and [GR] it is assumed that T is sublinear. If we further impose
this condition, we can interpolate and obtain the following very useful consequence.

Corollary 1.2. Let T be a sublinear such that T is of weak type (1, 1) with respect to any
weight w ∈ A1, i.e., T : L1(w) −→ L1,∞(w) for all w ∈ A1. Then for any 1 < p < ∞,
T is bounded on Lp(w) for any w ∈ Ap, that is∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
|f(x)|pw(x) dx. (1.3)

These two extrapolation theorems are by now classical. The original proof of Rubio
de Francia [Ru1, Ru2] was based on “abstract” methods. By this we mean that the
proof was not constructive; instead it worked by first “lifting” the problem to a related
one involving vector-valued inequalities. In fact there is the anecdote that Rubio de
Francia discovered the theorem while riding the bus to his office, without making any
computations. Shortly thereafter, J. Garćıa-Cuerva [Gar] found an interesting construc-
tive proof that later appeared in the monograph [GR]. This proof was simplified more
recently by J. Duoandikoetxea in [Duo]. The same family of ideas allowed Rubio de
Francia to give a different proof of P. Jones’ factorization theorem (see also B. Jawerth
[Jaw], E. Hernández [Her] and [CJR]).

Even though the constructive proofs mentioned above are interesting, they have the
drawback that the proofs require multiple steps—for instance, the proof of Garćıa-
Cuerva has two cases, depending on whether p < p0 or p > p0. In this paper we survey
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a new approach to this theorem that has the advantage that it requires a single step and
can be extended to many different contexts, including rearrangement invariant Banach
function spaces (RIQBFS in the sequel), and modular estimates, see [CMP3]. We get
all this extrapolating from Ap weights (as in the Rubio de Francia’s theorem) and also
from the bigger class of A∞ weights (see [CMP1], [CGMP]).

This approach has two additional important features. First, vector-valued inequalities
arise very naturally and without additional work. Second, the method is flexible enough
that it allows us to consider more general bases that somehow behave, at least from the
point of view of Lp for p > 1, as the basis formed by cubes. An important special case
is the basis formed by rectangles that is associated to the strong maximal operator.

In certain cases we can push our method further to derive results for weights that are
not in A∞. In 1985, E. Sawyer, in a very interesting and frequently overlooked paper
[Saw], proved the following weighted weak-type inequality for the Hardy-Littlewood
maximal function on R: for all u, v ∈ A1,

u v
{
x ∈ R :

M(fv)(x)

v(x)
> t
}
≤ C

t

∫
R
|f(x)|u(x)v(x) dx. (1.4)

This estimate is a highly non-trivial extension of the classical weak (1, 1) inequality
for the maximal operator. One difficulty is that the product u v need not be locally
integrable: for instance, u(x) = v(x) = |x|−1/2 ∈ A1 on the real line, but u(x) v(x) =
|x|−1 /∈ L1

loc(R).
One motivation for studying inequality (1.4) stems from the fact that it yields a new

proof of the boundedness of the maximal operator on Lp(w), w ∈ Ap, assuming the
factorization theorem of Ap weights. In his paper, Sawyer conjectured that the same
inequality held for the Hilbert transform. We give a positive answer to this conjecture
in [CMP2]. We do so by showing that these inequalities extend to the Hardy-Littlewood
maximal function and Calderón-Zygmund singular integrals in Rn, and hold for a larger
class of weights. We also extend to higher dimensions some related and interesting re-
sults of Muckenhoupt and Wheeden in [MW2]. Our proof uses some of the extrapolation
ideas we are going to describe below.

In Section 5 we present the essential ideas for proving all the extrapolation results
mentioned above. The proofs all have a common scheme and are based on the use of
the so called Rubio de Francia algorithm to construct two operators:

RMh(x) =
∞∑
k=0

Mkh(x)

2k‖M‖k
, RSw

h(x) =
∞∑
k=0

Skwh(x)

2k‖Sw‖k
,

where M denotes the Hardy-Littlewood maximal operator and Sw is in some sense a
“dual” operator defined by

Swh(x) =
M(hw)(x)

w(x)
.

The relevance of this operator can already be seen from (1.4). We adapt the algorithm
to each situation by choosing the “norms” ‖M‖ and ‖S‖. See Section 5 for more details.

The remainder of this paper is organized as follows. In Section 2 we describe in
greater detail the questions we are interested in and some of the consequences of our
work. In Section 3 we give the exact statements of the main extrapolation results. Some
needed background can be found in Section 4. In Section 5 we sketch the steps common
to the proofs of the extrapolation results. Finally, in Section 6 we give a number of
applications of our extrapolation results.
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2. The Main Questions

In our work on extrapolation, we have addressed the following questions.

• Is it possible to deduce an extrapolation result if in the initial extrapolation
hypothesis (1.1) we consider A∞ weights?

This question is strongly motivated by the following inequality due to Coifman
[Coi, CoF]: for 0 < p <∞ and w ∈ A∞,∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
Mf(x)pw(x) dx, (2.1)

where T is any singular integral operator with standard kernel and M is the Hardy-
Littlewood maximal function. Throughout this paper, these inequalities and similar
ones will be understood in the sense that they hold for any “nice” function f (that
is, f ∈ L∞c , C∞

0 , . . . ) such that the lefthand side is finite and the constant C depends
on the A∞ constant of w.

We showed in [CMP1] that if (2.1) holds for one specific exponent p = p0, 0 <
p0 < ∞, and for all w ∈ A∞, then it holds for the whole range 0 < p < ∞ and all
w ∈ A∞. In other words, all the information contained in (2.1) is encoded in the
corresponding estimates where the exponent is fixed; in applications some interesting
cases are p = 1 or p = 2. In [MPT] this result is used to show that the classical
Hörmander condition for a singular integral operator is not sufficient to guarantee
Coifman’s inequality (2.1).

Another useful result obtained in [CMP1] states that it is enough to work with the
best and smallest class of weights A1, provided the initial estimates hold for an open
interval of exponents p close to 0. That is, if (2.1) holds for all w ∈ A1 and for all
0 < p < p0 for some p0, then one recovers the whole range of exponents 0 < p < ∞
and w ∈ A∞.

In [CMP1], we use this approach to give a proof of Coifman’s estimate (2.1) that
does not use good-λ inequalities. The proof is straightforward. We start with the
following inequality due to Andrei Lerner [Ler]:∫

Rn
|Tf(x)|w(x) dx ≤ C

∫
Rn
Mf(x)Mw(x) dx, ∀w ≥ 0.

The proof of this estimate is interesting because it completely avoids the use of good-λ
inequalities; instead, it involves decomposing the weight in an appropriate way. If we
look at Lerner’s proof more closely we can see immediately that for every 0 < p ≤ 1,∫

Rn
|Tf(x)|pw dx ≤ C

∫
Rn
Mf(x)pMw(x) dx, ∀w ≥ 0.

Then, for every w ∈ A1 (which means that Mw ≤ Cw a.e.) we obtain that (2.1) holds
for all 0 < p ≤ 1. As mentioned above, by extrapolation (see Theorem 3.2 below) we
derive the whole range 0 < p <∞ and all weights in A∞.

• Can we derive weak type estimates from a strong type estimate?
This is one of the main points in [CMP1]. Let T andM be two given operators (here

we do not assumed linearity, sublinearity; T and M are defined in some reasonable
class of functions). Assume that there exists 0 < p0 <∞ such that for all w ∈ A∞∫

Rn
|Tf(x)|p0 w(x) dx ≤ C

∫
Rn
|Mf(x)|p0 w(x) dx. (2.2)
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As mentioned in the previous question, this yields that the same estimate holds for
all 0 < p <∞ and all w ∈ A∞. Furthermore, the corresponding weak type estimate,

‖Tf‖
Lp,∞(w)

≤ C ‖Mf‖
Lp,∞(w)

,

holds for any 0 < p < ∞ and for any w ∈ A∞. (Again this inequality is understood
in the sense that it holds for any function such that the lefthand side is finite.)

This result should be compared with the fact that there is no analog in the context
of Rubio de Francia’s theorem. Indeed, this theorem roughly says that a strong
initial estimate yields a strong conclusion for each p > 1; if we further assume that
T is sublinear then a weak (1, 1) initial estimate yields a strong type (p, p) result
for each p > 1. However, in general

STRONG ; WEAK

That is the case forM2 = M◦M , whereM is the Hardy-Littlewood maximal function.
By Muckenhoupt’s theorem, M2 is bounded on Lp(w) for all 1 < p < ∞ and all
w ∈ Ap (since M is). However, M2 is not bounded from L1(Rn) to L1,∞(Rn) since
the following L logL type estimate∣∣{x ∈ Rn : M2f(x) > λ}

∣∣ ≤ C

∫
Rn

|f(x)|
λ

(
1 + log+

(
|f(x)|
λ

))
dx, (2.3)

holds as the right end-point estimate for M2.

• Can we derive estimates for function spaces other than the Lebesgue Lp or
Marcinkiewicz Lp,∞ spaces?

This question was addressed in [CGMP]. In that paper it is shown that if (2.2)
holds, for any rearrangement invariant Banach function space X with finite upper
Boyd index qX <∞, we have for all w ∈ A∞ that

‖Tf‖
X(w)

≤ C ‖Mf‖
X(w)

.

More generally, X can be any rearrangement invariant quasi-Banach function space
with upper Boyd index qX < ∞ such that X is p-convex for some 0 < p ≤ 1, or
equivalently, Xr is Banach for some r ≥ 1. Examples of spaces to which this result
can be applied include Lp,q, Lp (logL)α, Lp,q (logL)α; we refer to [CGMP] for further
examples, such as generalized Lorentz or Marcinkiewicz spaces, and for a variety of
applications such as those in the context of multilinear estimates.

In [CFMP] we derived estimates of this type for variable Lp(·) spaces, that is, Banach
function spaces modeled on Lebesgue space in which the exponent p(·) is a function.
This turned out to be very useful in solving and giving an unified approach to some
open problems in this theory. Note that variable Lp(·) spaces are not rearrangement
invariant and so the theory developed in [CGMP] cannot be applied to them.

• Can we derive estimates of modular type?
Our examination of this question in [CGMP] was strongly motivated by the fact

that there are operators for which the natural endpoint space is not L1,∞: for example,
the operator M2 = M ◦M mentioned above in (2.3). This operator arises naturally
in the study of commutators,

[b, T ]f(x) = b(x)Tf(x)− T (b f)(x),
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where T is a singular integral with standard kernel and b ∈ BMO. The maximal
operator associated to this operator is M2 = M ◦M ; this can be seen, for instance,
by the following estimate from [Pe4]:∫

Rn
|[b, T ]f(x)|pw dx ≤ C

∫
Rn
M2f(x)pw(x) dx, (2.4)

for all w ∈ A∞ and any function f such that the lefthand side is finite. This control
of the commutator [b, T ] by M2 suggests that [b, T ] satisfies a modular inequality like
(2.3). This was already obtained in [Pe3], where it was shown that for w ∈ A∞,

sup
λ>0

ϕ(λ)w{y ∈ Rn :
∣∣[b, T ]f(y)

∣∣ > λ} ≤ C sup
λ>0

ϕ(λ)w{y ∈ R : M2f(y) > λ}, (2.5)

where ϕ(λ) = λ/(1 + log+ 1
λ
). From that estimate one can obtain∣∣{y ∈ Rn :

∣∣[b, T ]f(y)
∣∣ > λ}

∣∣ ≤ C‖b‖BMO

∫
Rn
φ

(
|f(x)|
λ

)
dx.

In [CGMP] we showed that this kind of modular estimates can be obtained by
extrapolation: there is a general extrapolation result that allows one to pass from (2.4)
to (2.5). Given a non-negative increasing function with φ(0+) = 0 and φ(∞) = ∞
such that φ is doubling, if we assume again that (2.2) holds, then for all w ∈ A∞,∫

Rn
φ
(
Tf(x)

)
w(x) dx ≤ C

∫
Rn
φ
(
Mf(x)

)
w(x) dx, (2.6)

and similarly,

sup
λ
φ(λ)w{x : f(x) > λ} ≤ C sup

λ
φ(λ)w{x : g(x) > λ}.

• Can we extend Rubio de Francia’s theorem to function spaces or to mod-
ular type estimates?

In [CGMP], the extrapolation result for A∞ weights in [CMP1] is extended to
obtain estimates in function spaces and also of modular type. It is natural to wonder
whether starting from Ap weights as in Rubio de Francia’s theorem (see Theorem 1.1
above) one can get similar estimates. This question is considered in the forthcoming
paper [CMP3]; see Theorem 3.1 below. In this paper we also give a proof of Rubio de
Francia’s extrapolation theorem in which we do not need to distinguish between the
cases p > p0 and p < p0 (see [GR], [Gar], [Duo]). This approach allowed us to obtain
the extensions of Rubio de Francia’s theorem to the context of function spaces and
to modular type estimates.

• Can we work with non-A∞ weights?
As we mentioned above, Sawyer [Saw] proved (1.4) in R for the Hardy-Littlewood

maximal function and conjectured that the analogous estimate held for the Hilbert
transform. As the previous questions show, our extrapolation results combined with
Coifman’s inequality yield that T and M behave the same way in Lebesgue spaces,
Lorentz spaces, RIQBFS and also in the sense of modular estimates and this can be
done with respect to A∞ weights.

However, as we noted before, in (1.4) for u, v ∈ A1 it may happen that u v is not
locally integrable, and so u v is not an A∞ weight. Hence, all the previous results
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cannot be applied. We need an estimate of the form∥∥∥Tf
v

∥∥∥
L1,∞(u v)

≤ C
∥∥∥Mf

v

∥∥∥
L1,∞(u v)

(2.7)

for all u, v ∈ A1. If such result were true, then, taking T = H, by (1.4) we would
prove the conjecture for the Hilbert transform. Moreover, if we could extend Sawyer’s
estimate (1.4) to Rn (for the Hardy-Littlewood maximal function or even for its dyadic
version) then we would get, by extrapolation, that Sawyer’s estimate (1.4) holds for
any Calderón-Zygmund singular integral.

This problem was considered in [CMP2], where we showed that if T and M are
two operators satisfying (2.2), then (2.7) holds for all u ∈ A1 and v ∈ A∞. (These
hypotheses are weaker than we need, since above we only need v ∈ A1.) This yields
Sawyer’s conjecture not only for the Hilbert transform but also for Calderón-Zygmund
singular integrals in Rn (see Section 3.3).

• What about vector-valued estimates?
It is well known that vector-valued inequalities and weights are closely related.

Indeed, Rubio de Francia’s extrapolation theorem was originally proved in [Ru2] using
this connection. This connection extends to all the extrapolation results we have
mentioned. Roughly speaking, every time we can extrapolate from an estimate like
(2.2) we (automatically) obtain vector-valued inequalities. For instance, we get that∥∥∥(∑

j

|Tfj|r
) 1
r
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|Mfj|r
) 1
r
∥∥∥
Lp(w)

(2.8)

for all 0 < p, r <∞ and all w ∈ A∞. There is also a version for function spaces:∥∥∥(∑
j

(Tfj)
p
) 1
p
∥∥∥

X(w)
≤ C

∥∥∥(∑
j

|Mfj|p
) 1
p
∥∥∥

X(w)
.

We can also get vector-valued modular estimates: see Theorem 3.2. The same can
be done starting with Ap weights. To prove vector-valued inequalities, we change our
point of view and work with pairs of functions instead of operators. This leads to the
following question.

• Do we really need to work with operators?
In [CMP1] (see also [CGMP] and [CP]), we observed that in the extrapolation

results we were considering, the operators do not need to appear explicitly since they
play no role. Instead, we could work with pairs of functions. This means that we can
consider (2.2) as an inequality for pairs of functions of the form (|Tf |, |Mf |) with f
in some class of nice functions.

Let F denote a family of ordered pairs of non-negative measurable functions (f, g).
In place of (2.2) we assume that there is 0 < p0 <∞ such that for all w ∈ A∞∫

Rn
f(x)p0 w(x) dx ≤ C

∫
Rn
g(x)p0 w(x) dx, (f, g) ∈ F , (2.9)

and we always mean that (2.9) holds for any (f, g) ∈ F such that the lefthand side is
finite, and that the constant C depends only upon the A∞ constant of w.

In [CMP1] we showed that starting from (2.9) one can extrapolate, and the same
estimate holds for the full range of exponents 0 < p < ∞ and for all w ∈ A∞ with
constant C depending only upon p and the A∞ constant of w. Similarly, all of the



8 DAVID CRUZ-URIBE, JOSÉ MARÍA MARTELL, AND CARLOS PÉREZ

results mentioned above can be restated in this form; see Section 3 for the precise
statements.

This approach immediately yields vector-valued inequalities. For example, to prove
(2.8), define the new family Fq to consist of the pairs of functions (Fq, Gq), where

Fq(x) =
(∑

j

|Tfj|q
)1/q

, Gq(x) =
(∑

j

(Mfj)
q
)1/q

,

and apply extrapolation to these pairs.

• Can we go beyond the standard basis formed by cubes?
Many of the results we have mentioned can be extended to the context of more

general bases B with associated maximal functions

Mf(x) = sup
B3x

1

|B|

∫
B
|f(y)| dy, if x ∈

⋃
B∈B

B,

and Mf(x) = 0 otherwise. (Recall that a basis is a collection of open sets B ⊂ Rn,
such as the set of all cubes.) The class of weights Ap,B with respect to B is defined by
replacing the cubes by the sets of the basis in the classical Ap condition (see Section
4).

We restrict our attention to the following class of bases: B is a Muckenhoupt
basis if for each p, 1 < p < ∞, and for every w ∈ Ap,B, the maximal operator M is
bounded on Lp(w), that is,∫

Rn
Mf(x)pw(x) dx ≤ C

∫
Rn
|f(x)|pw(x) dx. (2.10)

These bases were introduced and characterized in [Pe1]. Three immediate examples
of Muckenhoupt bases are D, the set of dyadic cubes in Rn; Q, the set of all cubes
in Rn whose sides are parallel to the coordinate axes, and R, the set of all rectangles
(i.e., parallelepipeds) in Rn whose sides are parallel to the coordinate axes—see [Duo].
One advantage of these bases is that by using them we avoid any direct appeal to the
underlying geometry: the relevant properties are derived from (2.10), and we do not
use covering lemmas of any sort.

In [CMP1], [CMP3] we showed that many of our extrapolation results can be ex-
tended to Muckenhoupt bases. In some cases (namely for RIBFS and for modular
inequalities) we need to assume that the basis satisfies an openness property (that is,
w ∈ Ap,B, for 1 < p < ∞, implies w ∈ Ap−ε,B for some ε > 0). In the case of the
extrapolation in Lp with w ∈ Ap there is no need to assume that.

3. Main Results

In this section we give the precise statements of all the extrapolation results discussed
above.

Let F be a family of ordered pairs of non-negative measurable functions (f, g). Recall
that if we say that for some p0, 0 < p0 <∞, and w ∈ A∞ (or w ∈ Ap0),∫

Rn
f(x)p0 w(x) dx ≤ C

∫
Rn
g(x)p0 w(x) dx, (f, g) ∈ F ,

we always mean that this estimate holds for any (f, g) ∈ F such that the lefthand side
is finite, and that the constant C depends only upon p and the A∞ (or Ap) constant of
w. We use the same convention when instead of the Lp norm we use any other norm,
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quasi-norm or any modular inequality. Throughout this section we will state our results
for pairs of functions instead of for operators.

3.1. Extrapolation from Ap weights. We first present Rubio de Francia’s extrapo-
lation theorem an its extensions. Here in place of writing specific operators we state
our result using pairs of functions.

Theorem 3.1. Let F be a family such that for some 1 ≤ p0 < ∞, and for every
w ∈ Ap0, ∫

Rn
f(x)p0 w(x) dx ≤ C

∫
Rn
g(x)p0 w(x) dx, (f, g) ∈ F . (3.1)

Then, for all (f, g) ∈ F and all {(fj, gj)}j ⊂ F we have the following estimates :

(a) Lebesgue spaces [Ru2], [Gar]: For all 1 < p, q <∞ and for every w ∈ Ap,

‖f‖
Lp(w)

≤ C ‖g‖
Lp(w)

,
∥∥∥(∑

j

(fj)
q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

(gj)
q
) 1
q
∥∥∥
Lp(w)

.

(b) Rearrangement invariant Banach function spaces [CMP3]: Let X be a RIBFS
such that 1 < pX ≤ qX <∞. Then for all 1 < q <∞ and for every w ∈ ApX,

‖f‖
X(w)

≤ C ‖g‖
X(w)

,
∥∥∥(∑

j

(fj)
q
) 1
q
∥∥∥

X(w)
≤ C

∥∥∥(∑
j

(gj)
q
) 1
q
∥∥∥

X(w)
.

(c) Modular inequalities [CMP3]: Let φ ∈ Φ be a convex function such that 1 < iφ ≤
Iφ <∞ (i.e., φ, φ ∈ ∆2). Then for all 1 < q <∞ and for every w ∈ Aiφ,∫

Rn
φ
(
f(x)

)
w(x) dx ≤ C

∫
Rn
φ
(
g(x)

)
w(x) dx,

∫
Rn
φ

((∑
j

fj(x)
q
) 1
q

)
w(x) dx ≤ C

∫
Rn
φ

((∑
j

gj(x)
q
) 1
q

)
w(x) dx,

Furthermore, for X as before one can also get that φ(f) is controlled by φ(g) on
X(w).

3.2. Extrapolation from A∞ weights.

Theorem 3.2. Let F be a family such that for some 0 < p0 < ∞, and for every
w ∈ A∞, ∫

Rn
f(x)p0 w(x) dx ≤ C

∫
Rn
g(x)p0 w(x) dx, (f, g) ∈ F , (3.2)

or equivalently, for some 0 < p0 < ∞, and for every 0 < p < p0 the following estimate
holds for every w ∈ A1:∫

Rn
f(x)pw(x) dx ≤ C

∫
Rn
g(x)pw(x) dx, (f, g) ∈ F .

Then, for all (f, g) ∈ F and all {(fj, gj)}j ⊂ F we have the following estimates :

(a) Lebesgue spaces [CMP1]: For all 0 < p, q <∞ and for every w ∈ A∞,

‖f‖
Lp(w)

≤ C ‖g‖
Lp(w)

,
∥∥∥(∑

j

(fj)
q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

(gj)
q
) 1
q
∥∥∥
Lp(w)

.
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(b) Rearrangement invariant quasi-Banach function spaces [CGMP]: Let X be a
RIQBFS such that X is p-convex for some 0 < p ≤ 1 —equivalently Xr is a Banach
space for some r ≥ 1— and with upper Boyd index qX <∞. Then for all 0 < q <∞
and for every w ∈ A∞,

‖f‖
X(w)

≤ C ‖g‖
X(w)

,
∥∥∥(∑

j

(fj)
q
) 1
q
∥∥∥

X(w)
≤ C

∥∥∥(∑
j

(gj)
q
) 1
q
∥∥∥

X(w)
.

(c) Modular inequalities [CGMP]: Let φ ∈ Φ with φ ∈ ∆2 and suppose that there
exist exponents 0 < r, s <∞ such that φ(tr)s is quasi-convex. Then for all 0 < q <
∞ and for every w ∈ A∞,∫

Rn
φ
(
f(x)

)
w(x) dx ≤ C

∫
Rn
φ
(
g(x)

)
w(x) dx,

∫
Rn
φ

((∑
j

fj(x)
q
) 1
q

)
w(x) dx ≤ C

∫
Rn
φ

((∑
j

gj(x)
q
) 1
q

)
w(x) dx.

Furthermore, for X as before one can also get that φ(f) is controlled by φ(g) on
X(w). In particular, if X = L1,∞, then for all w ∈ A∞ the following weak-type
modular inequalities hold:

sup
λ
φ(λ)w{x : f(x) > λ} ≤ C sup

λ
φ(λ)w{x : g(x) > λ},

sup
λ
φ(λ)w

{
x :
(∑

j

fj(x)
q
) 1
q
> λ

}
≤ C sup

λ
φ(λ)w

{
x :
(∑

j

gj(x)
q
) 1
q
> λ

}
.

3.3. Extrapolation and non-A∞ weights.

Theorem 3.3 ([CMP2]). Let F be a family such that for some p0, 0 < p0 < ∞, and
every w ∈ A∞,∫

Rn
f(x)p0w(x) dx ≤ C

∫
Rn
g(x)p0w(x) dx, (f, g) ∈ F . (3.3)

Then for all weights u ∈ A1 and v ∈ A∞,∥∥∥f
v

∥∥∥
L1,∞(uv)

≤ C
∥∥∥g
v

∥∥∥
L1,∞(uv)

, (f, g) ∈ F . (3.4)

As mentioned before, the point of this result is that the product of two A1 weights
need not be locally integrable.

Theorem 3.3 allows us to prove the following result which was conjectured by E.
Sawyer [Saw].

Theorem 3.4 ([CMP2]). If u ∈ A1, and v ∈ A1 or v ∈ A∞(u), then there is a constant
C such that for all t > 0,

u v

{
x ∈ Rn :

M(f v)(x)

v(x)
> t

}
≤ C

t

∫
Rn
|f(x)|u(x) v(x) dx, (3.5)

u v

{
x ∈ Rn :

|T (f v)(x)|
v(x)

> t

}
≤ C

t

∫
Rn
|f(x)|u(x) v(x) dx, (3.6)

where M is the Hardy-Littlewood maximal operator and T is any Calderón-Zygmund
singular integral.
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Inequality (3.5) was obtained in R in [Saw] and he conjectured (3.6) for the Hilbert
transform. Here we extend (3.5) to Rn and we show (3.6) not only for the Hilbert
transform but also for any Calderón-Zygmund singular integral. As before, we can also
prove vector-valued extensions of these estimates (see [CMP2]).

We give a brief sketch of the proof of this conjecture.

Step 1: We establish (3.5) with the dyadic Hardy-Littlewood maximal function Md

in place of M . This requires two cases; if v ∈ A∞(u) we use a Calderón-Zygmund
decomposition; if v ∈ A1, we use a more subtle decomposition argument based on the
ideas in [Saw] for the case n = 1.
Step 2: We extrapolate from the classical inequality

‖Mf‖Lp(w) ≤ C ‖Mdf‖Lp(w), 0 < p <∞, w ∈ A∞.

Thus Theorem 3.3 and Step 1 yield (3.5).
Step 3: We again use Theorem 3.3 to extrapolate from Coifman’s estimate (2.1); thus
(3.5) implies (3.6).

4. Preliminaries

In this section we present some definitions and results which provide a useful prelim-
inary to the results given in the previous section.

4.1. Muckenhoupt weights. We begin with some basic facts about the Ap theory of
weights necessary for our results; for complete information we refer the reader to [Duo],
[GR]. The Hardy-Littlewood maximal function in Rn is defined by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the cubes Q ⊂ Rn have their sides parallel to the coordinate axes. This operator
is bounded on Lp for every 1 < p ≤ ∞ and it maps L1 into L1,∞. One can change
the underlying measure in the Lebesgue spaces by introducing a weight w, i.e., a non-
negative, locally integrable function. The estimates of M on weighted Lebesgue spaces
Lp(w) = Lp(w(x) dx) are governed by the Muckenhoupt weights, which are defined as
follows: we say that w ∈ Ap, 1 ≤ p <∞, if there exists a constant C such that for every
cube Q ⊂ Rn we have( 1

|Q|

∫
Q

w(x) dx
)( 1

|Q|

∫
Q

w(x)1−p′ dx
)p−1

≤ C,

when 1 < p <∞, and, for p = 1,

1

|Q|

∫
Q

w(x) dx ≤ C w(x), for a.e. x ∈ Q.

This latter condition can be rewritten in terms of the Hardy-Littlewood maximal func-
tion: w ∈ A1 if and only if Mw(x) ≤ C w(x) for a.e. x ∈ Rn. The class A∞ is defined
as A∞ =

⋃
p≥1Ap.

Muckenhoupt [Muc] proved that the weights for the weighted norm inequalities for
the Hardy-Littlewood maximal function are characterized by the Ap classes: M maps
L1(w) into L1,∞(w) if and only if w ∈ A1 and M is bounded on Lp(w), 1 < p < ∞, if
and only if w ∈ Ap.
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4.2. Basics on function spaces. We collect several basic facts about rearrangement
invariant quasi-Banach function spaces (RIQBFS). We start with Banach function spa-
ces; for a complete account we refer the reader to [BS]. Let (Ω,Σ, µ) be a σ-finite
non-atomic measure space. Let M denote the set of measurable functions. Given a
Banach function norm ρ we define the Banach function space X = X(ρ) as

X =
{
f ∈M : ‖f‖X = ρ(|f |) <∞

}
.

The associate space of X is a function space X′ such that the following generalized
Hölder’s inequality holds: ∫

Ω

|f g| dµ ≤ ‖f‖X ‖g‖X′ .

A Banach function norm ρ is rearrangement invariant if ρ(f) = ρ(g) for every pair
of functions f , g which are equimeasurable, that is, µf = µg (where µf is the distri-
bution function of f). In this case, we say that the Banach function space X = X(ρ)
is rearrangement invariant. It follows that X′ is also rearrangement invariant. The
decreasing rearrangement of f is the function f ∗ defined on [0,∞) by

f ∗(t) = inf
{
λ ≥ 0 : µf (λ) ≤ t

}
, t ≥ 0.

The main property of f ∗ is that it is equimeasurable with f , that is,

µ
{
x ∈ Ω : |f(x)| > λ

}
=
∣∣{t ∈ R+ : f ∗(t) > λ

}∣∣.
This allows one to obtain a representation of X on the measure space (R+, dt). That
is, there exists a RIBFS X over (R+, dt) such that f ∈ X if and only if f ∗ ∈ X, and
in this case ‖f‖X = ‖f ∗‖X (the Luxemburg representation theorem, see [BS, p. 62]).
Furthermore, the associate space X′ of X is represented in the same way by the associate

space X′
of X, and so ‖f‖X′ = ‖f ∗‖X′ .

From now on let X be a rearrangement invariant Banach function space (RIBFS) in
(Rn, dx) and let X be its corresponding RIBFS in (R+, t).

The Boyd indices pX, qX of X give information about the localization of X in terms of
interpolation properties. Roughly speaking, X is an interpolation space between LpX−ε

and LqX+ε. (The definition involves the norm of the dilation operator in X; see [BS, Ch.
3] for more details.) One has that 1 ≤ pX ≤ qX ≤ ∞. The relationship between the
Boyd indices of X and X′ is the following: pX′ = (qX)′ and qX′ = (pX)′, where, as usual, p
and p′ are conjugate exponents. As expected, the spaces Lp, Lp,q, Lp(logL)α have Boyd
indices pX = qX = p.

We now consider weighted versions of these spaces. Given w ∈ A∞ on Rn, we use the
standard notation w(E) =

∫
E
w(x) dx. The distribution function and the decreasing

rearrangement with respect to w are given by

wf (λ) = w
{
x ∈ Rn : |f(x)| > λ

}
; f ∗w(t) = inf

{
λ ≥ 0 : wf (λ) ≤ t

}
.

Define the weighted version of the space X by

X(w) =
{
f ∈M : ‖f ∗w‖X <∞

}
,

and the norm associated to it by ‖f‖X(w) = ‖f ∗w‖X. By construction X(w) is a Banach
function space built overM(Rn, w(x) dx). The same procedure with the associate spaces
shows that the associate space X(w)′ coincides with the weighted space X′(w).

Given a Banach function space X, for each 0 < r <∞, as in [JS], we define

Xr =
{
f ∈M : |f |r ∈ X

}
=
{
f ∈M : ‖f‖Xr =

∥∥|f |r∥∥ 1
r

X

}
.
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Note that this notation is natural for the Lebesgue spaces since Lr coincides with (L1)
r
.

If X is a RIBFS and r ≥ 1 then, Xr still is a RIBFS but, in general, for 0 < r < 1,
the space Xr is not necessarily a Banach space. Note that in the same way we can also
define powers of weighted spaces and we have (X(w))r = Xr(w).

We will work with spaces X so that X = Ys for some RIBFS Y and some 0 < s <∞.
In this case the space X is a rearrangement invariant quasi-Banach space (RIQBFS in the
sequel), see [GK] or [Mon] for more details. We note that another equivalent approach
consists in first introducing the quasi-Banach case and then restricting attention to those
RIQBFS for which a large power is a Banach space. This latter property turns out to
be equivalent to the fact that the RIQBFS X is p-convex for some 0 < p ≤ 1.

In (b) of Theorem 3.2 we restricted ourselves to the case of X p-convex with qX <∞.
As we have just mentioned, this means that Xr is a Banach space (with r = 1/p).
Thus, by the Lorentz-Shimogaki Theorem (see [Lor], [Shi] and [BS, p. 54]) qX < ∞ is
equivalent to the boundedness of the Hardy-Littlewood maximal function on (Xr)′.

Some examples of RIQBFS are Lebesgue spaces, classical Lorentz spaces, Lorentz
Λ-spaces, Orlicz spaces, and Marcinkiewicz spaces; see [CGMP] for more details. In
some of these examples, the Boyd indices can be computed very easily, for instance if
X is Lp, Lp,q, Lp(logL)α or Lp,q(logL)α (where 0 < p < ∞, 0 < q ≤ ∞, α ∈ R), then
pX = qX = p. In this cases, it is trivial to calculate the powers of X:

(Lp,q)r = Lp r,q r, (Lp,q(logL)α)r = Lp r,q r(logL)α.

The same observation applies to Lp = Lp,p and Lp(logL)α = Lp,p(logL)α.

4.3. Basics on modular inequalities. We introduce some notation and terminology
which are taken from [KK] and [RR]. Let Φ be the set of functions φ : [0,∞) −→ [0,∞)
which are nonnegative, increasing and such that φ(0+) = 0 and φ(∞) = ∞. If φ ∈ Φ is
convex we say that φ is a Young function. An N -function (from nice Young function)
φ is a Young function such that

lim
t→0+

φ(t)

t
= 0 and lim

t→∞

φ(t)

t
= ∞.

The function φ ∈ Φ is said to be quasi-convex if it is equivalent to a convex function.
We say that φ ∈ Φ satisfies the ∆2 condition, denoted by φ ∈ ∆2, if φ is doubling, that
is, if

φ(2 t) ≤ C φ(t), t ≥ 0.

Given φ ∈ Φ one can define a complementary function φ such that Young’s inequality
holds:

s t ≤ φ(s) + φ(t), s, t ≥ 0. (4.1)

If φ is an N -function, then φ is an N -function as well.
Associated with φ are the dilation indices iφ and Iφ (see [KPS] and [KK]) that satisfy

0 ≤ iφ ≤ Iφ ≤ ∞. If φ is quasi-convex, then iφ ≥ 1 and if φ is an N -function, then we
have that iφ = (Iφ)

′ and Iφ = (iφ)
′. The dilation indices provide information about the

localization of φ in the scale of powers tp. Indeed, if 0 < iφ ≤ Iφ < ∞, given ε small
enough, we have for all t ≥ 0 that

φ(λ t) ≤ Cε λ
Iφ+ε φ(t), for λ ≥ 1,

φ(λ t) ≤ Cε λ
iφ−ε φ(t), for λ ≤ 1.

It is clear then that φ ∈ ∆2 if and only if Iφ < ∞. So if φ is an N -function, then

1 < iφ ≤ Iφ <∞ if and only if φ, φ ∈ ∆2.
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Remark 4.1. We would like to stress the analogy between the hypotheses of Theorem
3.2 parts (b) and (c). That Xr is a Banach space for some r ≥ 1 and that φ(tr)s is
quasi-convex for some 0 < r, s < ∞ play the same role. Indeed, in both proofs these
properties are used to ensure the existence of a dual space and a complementary function
which allow one to make a duality argument. On the other hand, in (b) one assumes that
qX <∞ and in (c) one assumes that φ ∈ ∆2 which, as mentioned, means Iφ <∞. Thus,
in both cases we are assuming the finiteness of the upper indices. In the proofs, these
conditions are used to assure that the Hardy-Littlewood maximal function is bounded
on the dual of Xr and also that it satisfies a modular inequality with respect to the
complementary function of φ(tr)s.

Some examples to which these results can be applied are φ(t) = tp, φ(t) = tp (1 +
log+ t)α, φ(t) = tp (1 + log+ t)α (1 + log+ log+ t)β with 0 < p < ∞ and α, β ∈ R. In all
these cases iφ = Iφ = p and φ(tr) is quasi-convex for r large enough.

5. About the Proofs

The proofs of all of the extrapolation results follow a common scheme that has to
be adapted to each situation. The central idea is to use appropriate versions of the
Rubio de Francia algorithm associated to the Hardy-Littlewood maximal function and
the “dual” operator Swf = M(f w)/w.

Consider, for instance, the case of extrapolation to Lp(w) with w ∈ Ap. We have
that M is bounded on Lp(w) by Muckenhoupt’s theorem. Since w ∈ Ap if and only if
w1−p′ ∈ Ap′ , Sw is bounded on Lp

′
(w). These two facts are enough to apply the Rubio

de Francia algorithm and define the new operators

RMh(x) =
∞∑
k=0

Mkh(x)

2k‖M‖kLp(w)

, RSwh(x) =
∞∑
k=0

Skwh(x)

2k‖Sw‖kLp′ (w)

.

These have the following properties:

RM RSw

0 ≤ h(x) ≤ RMh(x) 0 ≤ h(x) ≤ RSwh(x)

‖RMh‖Lp(w) ≤ 2 ‖h‖Lp(w) ‖RSh‖Lp′ (w) ≤ 2 ‖h‖Lp′ (w)

RMh ∈ A1 RSwh · w ∈ A1

Similar constructions can also be done in RIQBFS or with modular inequalities. In
this case M is associated with X or φ and Sw is associated with X′ or φ. Given these
operators, one then uses a duality argument Lp − Lp

′
, X− X′ or φ− φ.

We emphasize that in Theorem 3.1 these ideas work without difficulty. However, in
Theorem 3.2 we are considering spaces Lp with p < 1, RIQBFS X and φ ∈ Φ, so duality
cannot be used directly. But in the case of Lp (resp. X) we have that (Lp)r (resp. Xr)
is a Banach space for some r ≥ 1 and consequently we can use this change in the scale
to apply duality arguments. Roughly the same approach is possible if φ is such that
φ(tr)s is quasi-convex for some r, s.
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6. Some Applications

We now present some applications of these extrapolation results. In our first group
of applications, we show that in some cases there is a natural choice of p0 for which it is
easier to prove (3.2). For instance, in the case of the dyadic square function we show (3.2)
with the natural exponent p0 = 2 for the family F consisting of the pairs (|f |, Sdf) with
f ∈ C∞

c (see Proposition 6.2). We also consider certain potential operators generalizing
the fractional integrals and commutators of the fractional integrals with BMO functions.
Using a technique of discretizing the operator (see [Pe2], [Pe4], [SW] and [SWZ]) we
show that these operators are controlled by a maximal function adapted to the situation.
This control is written in terms of (3.2) with p0 = 1 (see Propositions 6.5 and 6.8). The
fact that p0 = 1 is crucial in the proofs since this allows us to take advantage of the
discretized operators.

We also present an extension of the classical results by Boyd and Lorentz-Shimogaki
for Calderón-Zygmund singular integrals and the Hardy-Littlewood maximal function.
Finally, we give natural end-point estimates for the commutators of Calderón-Zygmund
singular integrals with functions in BMO.

6.1. Dyadic square function. Given the set D of dyadic cubes in Rn, for each m ∈ Z,
let Dm = {Q ∈ D : `(Q) = 2m}. For each Q ∈ D, let Q̃ denote the dyadic parent of
Q: if Q ∈ Dm, the unique cube Q̃ ∈ Dm+1 such that Q ⊂ Q̃. Given a function f , let
fQ = |Q|−1

∫
Q
f(x) dx. The dyadic square function Sd is defined by

Sdf(x) =

(∑
Q∈D

|fQ − fQ̃|
2χQ(x)

)1/2

.

In what follows let Ad∞ denote the Muckenhoupt basis given by dyadic cubes. In
[CMP1] we showed that Theorem 3.2 part (a) holds for any Muckenhoupt basis and in
particular for the one given by dyadic cubes.

The following result seems to be known (at least for p = 2, see [CWW]), but an
explicit proof does not appear in the literature.

Theorem 6.1. If w ∈ Ad∞, then for all f ∈ C∞
c and 0 < p <∞,∫

Rn
|f(x)|pw(x) dx ≤ C

∫
Rn
Sdf(x)pw(x) dx. (6.1)

We obtain this by giving an elementary proof (using ideas from [Buc]) when p = 2,
which is the natural exponent for square functions. We actually prove a more general
result, at least for the case p = 2, since in our proof we only use the fact that w is a
dyadic doubling weight: w(Q̃) ≤ cw(Q) for any dyadic cube Q.

Proposition 6.2. If w ∈ Ad∞, then for all f ∈ C∞
c∫

Rn
|f(x)|2w(x) dx ≤ C

∫
Rn
Sdf(x)2w(x) dx.

This result plus Theorem 3.2 part (a) applied to the family of pairs (|f |, Sdf) with
f ∈ C∞

c yield Theorem 6.1. We remark that our proof does not use a good-λ inequality.

Lemma 6.3. Given a sequence {λQ}Q∈D and f ∈ L1
loc(Rn), then for any m ∈ Z,∑

Q∈Dm

λQ̃(fQ − fQ̃)2 =
∑
Q∈Dm

λQ̃(f 2
Q − f 2

Q̃
).
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Proof. The desired equality follows from a straightforward computation:∑
Q∈Dm

λQ̃(fQ − fQ̃)2 =
∑

P∈Dm+1

∑
Q∈Dm
Q̃=P

λP (fQ − fP )2 =
∑

P∈Dm+1

λP
∑
Q∈Dm
Q̃=P

(f 2
Q − 2fQfP + f 2

P ).

For a fixed cube P ∈ Dm+1,∑
Q∈Dm
Q̃=P

2fQfP =
2n+1fP
|P |

∑
Q∈Dm
Q̃=P

∫
Q

f(x) dx = 2n+1f 2
P .

Therefore,∑
P∈Dm+1

λP
∑
Q∈Dm
Q̃=P

(f 2
Q − 2fQfP + f 2

P ) =
∑

P∈Dm+1

λP
∑
Q∈Dm
Q̃=P

(f 2
Q − f 2

P ) =
∑
Q∈Dm

λQ̃(f 2
Q − f 2

Q̃
).

�

Proof of Proposition 6.2. Fix f ; by a straight-forward argument we may assume it is
real-valued. Since w is a dyadic doubling weight and by Lemma 6.3 we have∫
Rn
Sdf(x)2w(x) dx =

∑
Q∈D

(fQ − fQ̃)2w(Q) ≥ c
∑
Q∈D

(fQ − fQ̃)2w(Q̃) = c
∑
Q∈D

(f 2
Q − f 2

Q̃
)w(Q̃)

= c
∑
Q∈D

(
2nw(Q)f 2

Q − w(Q̃)f 2
Q̃

)
+ c

∑
Q∈D

(
w(Q̃)− 2nw(Q)

)
f 2
Q = W1 +W2.

To complete the proof, we first claim that W2 ≥ 0, so that we may discard this term.
To see this, for each P ∈ D we gather all the terms in W2 in which w(Q̃) appears; we
then get

W2 =
∑
P∈D

((∑
Q̃=P

w(P )f 2
Q

)
− 2nw(P )f 2

P

)
=
∑
P∈D

w(P )
∑
Q̃=P

(
f 2
Q − f 2

P

)
.

Arguing exactly as we did in the proof of Lemma 6.3, we see that for each P ,

w(P )
∑
Q̃=P

(
f 2
Q − f 2

P

)
= w(P )

∑
Q̃=P

(
fQ − fP

)2 ≥ 0.

It follows immediately that W2 ≥ 0. To estimate W1, we set

fm(x) =
∑
Q∈Dm

fQχQ(x) Am =
∑
Q∈Dm

2nw(Q)f 2
Q = 2n

∫
Rn
fm(x)2w(x) dx.

Since f is bounded and has compact support, it follows immediately from the dominated
convergence theorem and the Lebesgue differentiation theorem that

W1 =
∞∑
−∞

Am − Am+1 = lim
N→−∞

AN − lim
M→+∞

AM = 2n
∫

Rn
f(x)2w(x) dx

This establishes the desired inequality. �
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6.2. Fractional integrals and potential operators. Recall that for 0 < α < n, the
fractional integral of order α (also known as the Riesz potential) is defined by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy,

and the closely related fractional maximal operator is defined by

Mαf(x) = sup
Q3x

1

|Q|1−α
n

∫
Q

|f(y)| dy,

where Q is any cube with sides parallel to the coordinate axes. It is well known that
for every x, Mαf(x) ≤ CIα

(
|f |
)
(x). The converse pointwise inequality is false, but the

following norm inequality is true.

Theorem 6.4. Given 0 < α < n, then for every 0 < p <∞ and w ∈ A∞,∫
Rn
|Iαf(x)|pw(x) dx ≤ C

∫
Rn
Mαf(x)pw(x) dx.

Theorem 6.4 is due to Muckenhoupt and Wheeden [MW1], who proved it using a
good-λ inequality relating Iα and Mα.

Here we give an alternate proof that applies to more general potential operators,

TΨf(x) =

∫
Rn

Ψ(x− y)f(y) dy,

whose kernels satisfy a very mild size condition: there exist constants δ, c > 0, and
0 ≤ ε < 1, such that for every k ∈ Z

sup
2k<|x|≤2k+1

Ψ(x) ≤ c

2kn

∫
δ(1−ε)2k<|y|≤δ(1+ε)2k+1

Ψ(y) dy. (6.2)

Examples of functions which satisfy (6.2) include functions Ψ which are radial and
monotonic; more generally we can take Ψ which are essentially constant on annuli, that
is, Ψ(y) ≤ cΨ(x) for |y|/2 ≤ |x| ≤ 2|y|.

Associated to the operator TΨ is the maximal operator MΨ̃ defined by

MΨ̃f(x) = sup
x∈Q

Ψ̃(`(Q))

|Q|

∫
Q

f(y) dy,

where Ψ̃(t) =
∫
|z|≤t Ψ(z) dz.

Note that if Ψ(x) = |x|α−n, then (6.2) holds and the operators TΨ and MΨ̃ are Iα and
Mα. The key will be the following result.

Proposition 6.5. Let Ψ be a kernel satisfying condition (6.2). Then for every weight
w ∈ A∞, ∫

Rn
|TΨf(x)|w(x) dx ≤ C

∫
Rn
MΨ̃f(x)w(x) dx. (6.3)

In the proof of this result it is crucial that p = 1, since we perform a discretization of
TΨ and then we change the order of integration. As a consequence of Theorem 3.2, by
extrapolation we get the full range of exponents.

Theorem 6.6. Let Ψ be as above. Then for every 0 < p <∞ and w ∈ A∞,∫
Rn
|TΨf(x)|pw(x) dx ≤ C

∫
Rn
MΨ̃f(x)pw(x) dx.
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Sketch of the Proof of Proposition 6.5. We follow [Pe2] using a discretization method
for TΨ developed in [Pe4]. (This in turn is based on ideas from E. Sawyer and R.
Wheeden in [SW], see also [SWZ] and [PW].) We refer the reader to [Pe2], [Pe4] for full
details.

For each t > 0, define

Ψ(t) = sup
t<|x|≤2t

Ψ(x), Ψ(t) =
1

tn

∫
δ(1−ε)t<|y|≤2δ(1−ε)t

Ψ(y) dy,

where δ, c, ε are the constants provided by condition (6.2). Without loss of generality
we may assume f ≥ 0. We discretize the operator TΨ to get

TΨf(x) =
∑
k∈Z

∫
2−k−1<|x−y|≤2−k

Ψ(x− y)f(y) dy ≤
∑
Q∈D

Ψ

(
`(Q)

2

)∫
3Q

f(y) dy χQ(x).

The next step is to replace the sum over all dyadic cubes by a sum over dyadic Calderón-
Zygmund cubes. As in [Pe4] (to be rigorous here we must restrict w to a fixed (big)
cube; we skip these technical details), we fix a > 2n and for each k ∈ Z we take the
collection {Qk,j} of disjoint maximal dyadic cubes such that

Dk = {x ∈ Rn : Mdw(x) > ak} =
⋃
j

Qj,k, ak <
1

|Qk,j|

∫
Qk,j

w(x) dx ≤ 2nak.

Further, every dyadic cube which satisfies the first inequality is contained in a unique
cube Qk,j. Finally, if we define Ek,j = Qk,j \Dk+1, then |Qk,j| ≈ |Ek,j|. For each k ∈ Z,
define

Ck =
{
Q ∈ D : ak <

1

|Q|

∫
Q

w(x) dx ≤ ak+1
}
.

Then we have that∫
Rn
TΨf(x)w(x) dx ≤ C

∑
k

∑
Q∈Ck

Ψ

(
`(Q)

2

)∫
3Q

f(y) dy

∫
Q

w(x) dx

≤ C
∑
k,j

1

|Qk,j|

∫
Qk,j

w(x) dx
∑

Q ∈ D
Q ⊂ Qk,j

|Q|Ψ
(
`(Q)

2

)∫
3Q

f(y) dy

≤ C
∑
k,j

1

|Qk,j|

∫
Qk,j

w(x) dx Ψ̃
(
δ (1 + ε) `(Qk,j)

) ∫
3Qk,j

f(y) dy,

where the last inequality will follow if we show that there is a constant CΨ such that
for any dyadic cube P ,∑

Q ∈ D
Q ⊂ P

|Q|Ψ
(
`(Q)

2

)∫
3Q

f(y) dy ≤ CΨ Ψ̃
(
δ (1 + ε) `(P )

) ∫
3P

f(y) dy. (6.4)

We show this estimate below. Since w ∈ A∞, we have that w(Qk,j) ≈ w(Ek,j). Hence,∫
Rn
TΨf(x)w(x) dx ≤ C

∑
k,j

∫
Ek,j

(
Ψ̃
(
τ `(Qk,j)

)
|τ Qk,j|

∫
τ Qk,j

f(y) dy

)
w(x) dx

≤ C
∑
k,j

∫
Ek,j

MΨ̃f(x)w(x) dx ≤ C

∫
Rn
MΨ̃f(x)w(x) dx,
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where τ = max{3, δ (1 + ε)}. Note that we have also used that Ψ̃ is nondecreasing and
that the sets Ek,j are pairwise disjoint.

We now prove (6.4): if `(P ) = 2−i0 , then∑
Q ∈ D
Q ⊂ P

|Q|Ψ
(
`(Q)

2

)∫
3Q

f(y) dy =
∞∑
i=i0

2−in Ψ(2−i−1)
∑

Q ∈ D : Q ⊂ P
`(Q) = 2−i

∫
3Q

f(y) dy

≤ C

∫
3P

f(y) dy
∞∑
i=i0

2−inΨ(2−i−1) ≤ C

∫
3P

f(y) dy
∞∑
i=i0

2−inΨ(2−i−1),

since the overlap is finite and where we have used (6.2), that is, Ψ(2−i) ≤ CΨ Ψ(2−i),
for all i ∈ Z. We get the desired estimate by observing

∞∑
i=i0

2−in Ψ(2−i−1) ≤ Cδ,ε

∫
|y|≤δ (1+ε) `(P )

Ψ(y) dy = C Ψ̃
(
δ (1 + ε) `(P )

)
.

�

6.3. Commutators of fractional integrals. The techniques used in the previous
example can be exploited again to get estimates for commutators of fractional integrals.
For 0 < α < n and b ∈ BMO, define

[b, Iα]f(x) = b(x) Iαb(x)− Iα(b f)(x) =

∫
Rn

b(x)− b(y)

|x− y|n−α
f(y) dy.

These commutators were considered by S. Chanillo [Cha], who proved that if 1/p−1/q =
α/n, then [b, Iα] is bounded from Lp(Rn) into Lq(Rn). A weighted version of this result
also holds. For such pairs (p, q) we say that w ∈ Ap,q if for all cubes Q,(

1

|Q|

∫
Q

wq dx

)1/q (
1

|Q|

∫
Q

w−p′ dx

)1/p′

≤ C <∞.

Note that if w ∈ Apq, then w ∈ A∞.

Theorem 6.7. Fix 0 < α < n. Suppose 1 < p < n/α and 1/p− 1/q = α/n. Then for
all w ∈ Apq, (∫

Rn
|[b, Iα]f |q wq dx

)1/q

≤ C

(∫
Rn
|f |pwp dx

)1/p

. (6.5)

A proof of this result was given in [CF] which depended on the good-λ inequality
relating the maximal function and the sharp maximal function.

Our proof instead relies on extrapolation and on the weighted norm inequalities for
fractional Orlicz maximal operators which were also proved in [CF]. Define the fractional
Orlicz maximal operator as follows: given a Young function ψ, let

Mψ,αf(x) = sup
Q3x

|Q|α/n ‖f‖ψ,Q.

(For notation and basic facts about Orlicz spaces see below.) Let ψ(t) = t log(e + t).
Then (6.5) is true with the commutator replaced by Mψ,α. To prove Theorem 6.7 we
apply Theorem 3.2 to the family of pairs (|[b, Iα]f |,Mψ,αf), starting from the following
result. We want to highlight that this approach yields vector-valued inequalities which
are new.
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Proposition 6.8. Given 0 < α < n, b ∈ BMO and w ∈ A∞, then∫
Rn

∣∣[b, Iα]f(x)
∣∣w(x) dx ≤ C

∫
Rn
Mψ,αf(x)w(x) dx.

The proof of Proposition 6.8 is taken from [CMP1] and we have included it below
for completeness. Again the fact that the exponent is 1 plays an important role in the
proof.

Before beginning the proof, we need to state some definitions and basic facts about
Orlicz spaces. For a complete information, see [RR, BS]. Let ψ : [0,∞) −→ [0,∞)
be a Young function, that is, a continuous, convex, increasing function with ψ(0) = 0
and such that ψ(t) −→ ∞ as t → ∞. The Orlicz space Lψ is defined to be the set of
measurable functions f such that for some λ > 0,∫

Rn
ψ

(
|f(x)|
λ

)
dx <∞.

The space Lψ is a Banach function space when endowed with the Luxemburg norm

‖f‖ψ = ‖f‖Lψ = inf
{
λ > 0 :

∫
Rn
ψ

(
|f(x)|
λ

)
dx ≤ 1

}
.

Each Young function ψ has associated to it a complementary Young function ψ. For
example, if ψ(t) = tp for 1 < p <∞, then Lψ = Lp(µ) and ψ(t) = tp

′
. Another classical

example is given by ψ(t) = t log(e + t). In this case Lψ is the Zygmund space L logL.

The complementary function, ψ(t) = t for 0 ≤ t ≤ 1 and ψ(t) = exp(t − 1) for t > 1,
gives the Zygmund space expL.

We also need a localized version of the Orlicz norm: for every Q, define

‖f‖ψ,Q = inf
{
λ > 0 :

1

|Q|

∫
Q

ψ

(
|f(x)|
λ

)
dx ≤ 1

}
.

There is a generalized Hölder’s inequality associated with these norms:

1

|Q|

∫
Q

|f(x) g(x)| dx ≤ 2 ‖f‖ψ,Q ‖g‖ψ,Q. (6.6)

Sketch of the Proof of Proposition 6.8. The proof of this proposition is similar to the
one given for potential operators and uses ideas from [Pe2] (see this reference and
[CMP1] for more details). Throughout the proof, let ψ(t) = t log(e+ t). Fix f ; without
loss of generality we may assume that f ≥ 0.

The first step of the proof is to discretize the commutator as we did before with the
potential operators:∫

Rn

∣∣[b, Iα]f(x)
∣∣w(x) dx ≤

∑
Q∈D

`(Q)α

|Q|

∫
Q

∫
3Q

|b(x)− b(y)| f(y) dy w(x) dx

≤ C
∑
Q∈D

`(Q)α

|Q|

∫
Q

|b(x)− bQ|w(x) dx

∫
3Q

f(y) dy

+ C
∑
Q∈D

`(Q)α

|Q|

∫
3Q

|b(y)− bQ| f(y) dy

∫
Q

w(x) dx

= C (A+B);
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we will estimate each term separately. To estimate A, we use that w satisfies a reverse
Hölder inequality with some exponent θ > 1 (since w ∈ A∞):

1

|Q|

∫
Q

|b(x)− bQ|w(x) dx ≤
( 1

|Q|

∫
Q

|b(x)− bQ|θ
′
dx
) 1
θ′
( 1

|Q|

∫
Q

w(x)θ dx
) 1
θ

≤ C ‖b‖BMO
1

|Q|

∫
Q

w(x) dx.

Therefore,

A ≤ C
∑
Q∈D

`(Q)α

|Q|

∫
3Q

f(y) dy

∫
Q

w(x) dx ≤ C

∫
Rn
Mαf(x)w(x) dx

≤ C

∫
Rn
Mψ,αf(x)w(x) dx,

where the last estimate was shown in [Pe2].
To estimate B, we use the John-Nirenberg inequality: for every cube Q, we have

‖b − bQ‖expL,Q ≤ C ‖b‖BMO and ‖b − bQ‖expL,3Q ≤ C ‖b‖BMO. As we noted above, the
conjugate function of et−1 is t log(1+ t). Hence, by the generalized Hölder’s inequality
for Orlicz spaces, for every cube Q,

1

|Q|

∫
3Q

|b(y)− bQ| f(y) dy ≤ 2 ‖b− bQ‖expL,3Q ‖f‖L logL,3Q ≤ C ‖b‖BMO ‖f‖L logL,3Q.

Therefore, we conclude that

B ≤ C
∑
Q∈D

`(Q)α ‖f‖L logL,Q

∫
Q

w(x) dx.

We next show that there is a constant C such that for any dyadic cube P ,∑
Q∈D:Q⊂P

`(Q)α |Q| ‖f‖L logL,3Q ≤ C `(P )α |P | ‖f‖L logL,3P . (6.7)

Using a characterization of the Orlicz norms in [RR], for any λ > 0,∑
Q∈D:Q⊂P

`(Q)α |Q| ‖f‖L logL,3Q ≤ C
∑

Q∈D:Q⊂P

`(Q)α |Q| inf
λ>0

{
λ+

λ

|3Q|

∫
3Q

ψ

(
|f(x)|
λ

)
dx
}

≤ C λ
∑

Q∈D:Q⊂P

`(Q)α
∫

3Q

(
1 + ψ

(
|f(x)|
λ

))
dx ≤ C λ `(P )α

∫
3P

(
1 + ψ

(
|f(x)|
λ

))
dx

= C `(P )α |P |
(
λ+

1

|3P |

∫
3P

ψ

(
|f(x)|
λ

)
dx
)
,

where in the last inequality we used [Pe2, Lemma 3.1]. This estimate holds for every
λ > 0 and so we can take the infimum over all λ to get (6.7).

We can now argue as we did in the proof of Proposition 6.5, replacing a sum over
all dyadic cubes with a sum over Calderón-Zygmund cubes. With the same notation as
there, we have that

B ≤ C
∑
k,j

1

|Qk,j|

∫
Qk,j

w(x) dx
∑

Q∈D:Q⊂Qk,j

`(Q)α |Q| ‖f‖L logL,3Q
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≤ C
∑
k,j

1

|Qk,j|

∫
Qk,j

w(x) dx `(Qk,j)
α |Qk,j| ‖f‖L logL,3Qk,j

≤ C
∑
k,j

∫
Ek,j

Mψ,αf(x)w(x) dx ≤ C

∫
Rn
Mψ,αf(x)w(x) dx.

Combining our estimates for A and B we get the desired result. �

6.4. Extensions of the theorems of Boyd and Lorentz-Shimogaki. We present
an extension of the classical results of Boyd and Lorentz-Shimogaki to a wider class
of operators and also to weighted and vector-valued estimates. These two theorems
are basic in the theory of rearrangement invariant Banach function spaces. They char-
acterize those RIBFS on which the Hilbert transform, in the case of Boyd, or the
Hardy-Littlewood maximal function, in the case of Lorentz-Shimogaki, are bounded
operators.

Theorem 6.9. Let X be a rearrangement invariant Banach function space associated
to (R, dx), let H be the Hilbert transform and let M be the Hardy-Littlewood maximal
function. Then,

• [Boyd, 1967] H is bounded on X if and only if 1 < pX ≤ qX <∞.

• [Lorentz, 1955; Shimogaki, 1965] M is bounded on X if and only if pX > 1.

The proofs of these results (see [Boy], [Lor], [Shi] or [BS, p. 154]) are based on the
pointwise rearrangement inequalities

(Hf)∗(t) ≤ C

(
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

f ∗(s)
ds

s

)
and

(Mf)∗(t) ≈ 1

t

∫ t

0

f ∗(s) ds,

0 < t <∞, where f ∗ is the decreasing rearrangement of f . Observe that the righthand
side of the second estimate is just the classical Hardy operator acting on f ∗ and that in
the inequality for H we have the sum of the Hardy operator and its adjoint. By using
the fact that the Hardy operator is bounded on X if and only if pX > 1, we get the
restrictions on the Boyd indices that guarantee the boundedness of H and M . Both
results were originally proved for Banach spaces, but they have been extended to the
quasi-Banach case in [Mon] with the same restriction on the Boyd indices.

In [CGMP] the following extension of these classical results is obtained.

Theorem 6.10 ([CGMP]). Let T be a Calderón-Zygmund singular integral and let M
be the Hardy-Littlewood maximal function. Let X be a RIQBFS which is p-convex for
some p > 0 (equivalently, Xr is Banach for some r ≥ 1).

(i) If 1 < pX ≤ ∞, then M is bounded on X(w) for all w ∈ ApX.

(ii) If 1 < pX ≤ qX < ∞, then for all w ∈ ApX, T satisfies the following weighted
inequality

‖Tf‖X(w)
≤ C ‖f‖X(w)

.

In particular, T is bounded on X.
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(iii) If 1 < pX ≤ qX < ∞ we have that for all 1 < q < ∞ and for all w ∈ ApX, M
satisfies ∥∥∥(∑

j

(Mfj)
q
) 1
q
∥∥∥

X(w)
≤ C

∥∥∥(∑
j

|fj|q
) 1
q
∥∥∥

X(w)
. (6.8)

In particular, taking w ≡ 1, M satisfies the corresponding vector-valued inequali-
ties on X. Similarly, T verifies the same estimates.

Part (i) extends Lorentz-Shimogaki’s result to the case of weighted RIBFS. Part (ii)
generalizes Boyd’s theorem to cover both more general operators and Muckenhoupt
weights. Part (iii) extends both Boyd’s and Lorentz-Shimogaki’s results by establishing
weighted (and unweighted) vector-valued estimates for M and T .

We also present a version of this result for modular inequalities.

Theorem 6.11 ([CGMP]). Let T be a Calderón-Zygmund singular integral and let M
be the Hardy-Littlewood maximal function. Let φ ∈ Φ be such that φ is quasi-convex.

(i) Let w ∈ Aiφ. If 1 < iφ ≤ ∞,∫
Rn
φ
(
Mf(x)

)
w(x) dx ≤ C

∫
Rn
φ
(
C |f(x)|

)
w(x) dx;

if iφ = 1,

sup
λ
φ(λ)w

{
x ∈ Rn : Mf(x) > λ

}
≤ C

∫
Rn
φ
(
C |f(x)|

)
w(x) dx.

(ii) Let φ ∈ ∆2 (i.e., Iφ <∞) and w ∈ Aiφ. If iφ > 1,∫
Rn
φ
(
|Tf(x)|

)
w(x) dx ≤ C

∫
Rn
φ
(
|f(x)|

)
w(x) dx;

if iφ = 1,

sup
λ
φ(λ)w

{
x ∈ Rn : |Tf(x)| > λ

}
≤ C

∫
Rn
φ
(
|f(x)|

)
w(x) dx.

(iii) Let φ ∈ ∆2 (i.e., Iφ <∞), w ∈ Aiφ and 1 < q <∞. If iφ > 1,∫
Rn
φ

((∑
j

Mfj(x)
q
) 1
q

)
w(x) dx ≤ C

∫
Rn
φ

((∑
j

|fj(x)|q
) 1
q

)
w(x) dx;

if iφ = 1,

sup
λ
φ(λ)w

{
x :
(∑

j

Mfj(x)
q
) 1
q
> λ

}
≤ C

∫
Rn
φ

((∑
j

|fj(x)|q
) 1
q

)
w(x) dx.

Similarly, T satisfies the same estimates.

Part (i), under slightly stronger hypotheses (i.e., φ, φ ∈ ∆2), was first proved in [KT]
(see also [KK].) Conclusions (ii) and (iii) generalize some of the estimates obtained,
by different methods, in [KK, Chapters 1, 2]. We refer the reader to this book for a
complete account of modular inequalities.

The proofs of both results follow a common path. In each, part (i) is proved directly
with no use of extrapolation. Part (ii) in each result follows by extrapolation: Coifman’s
inequality (2.1) gives the starting estimates for the family of pairs (|Tf |,Mf) with
f ∈ L∞c (Rn). Note that (3.2) holds for all 0 < p < ∞. Thus, parts (b) and (c) in
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Theorem 3.2 yield that M controls T in RIQBFS and also in the modular sense. Then,
by (i) we get the desired estimates in part (ii).

Part (iii) is again done by extrapolation: first it is shown in [CGMP] that for any
1 < q <∞, for all 0 < p <∞ and all w ∈ A∞,∥∥∥(∑

j

(Mfj)
q
) 1
q
∥∥∥
Lp(w)

≤
∥∥M(‖{fj}j‖`q)∥∥Lp(w)

.

This gives a new starting estimate in Theorem 3.2 (which holds for all 0 < p <∞) and
so the vector-valued operator associated with M is controlled by M itself. Thus part
(i) yields the desired vector-valued estimates for M . Since Theorem 3.2 yields that the
vector-valued operator associated with T is controlled by the one associated with M ,
and we have already shown the desired estimates for M , we conclude that T satisfies
the same inequalities.

6.5. Commutators of Singular Integrals. Let T be a Calderón-Zygmund singular
integral and b ∈ BMO. The first order commutator is defined as

C1
b f(x) = [b, T ]f(x) = b(x)Tf(x)− T (b f)(x),

and, for m ≥ 2, we define by induction the higher order commutators Cm
b f(x) =

[b, Cm−1
b ]f(x). In [Pe4] it is shown that∫

Rn
|Cm

b f(x)|pw(x) dx ≤ C

∫
Rn
Mm+1f(x)pw(x) dx (6.9)

for every 0 < p < ∞ and w ∈ A∞, where Mm+1 is the Hardy-Littlewood maximal
function iterated m + 1 times. Thus using Theorem 3.2, parts (b) and (c), we get that
Mm+1 controls Cm

b . Hence, we can find end-point estimates for Cm
b once we show them

for Mm+1. This was done in [CGMP] where the following result was proved.

Theorem 6.12 ([CGMP]). Let ϕm(t) =
t

(1 + log+ t)m
and ψm(t) = t (1 + log+ t)m.

Then
Cm
b : L(logL)m −→ M̃ϕm

and ∣∣{x ∈ Rn : |Cm
b f(x)| > λ

}∣∣ ≤ C

∫
Rn
ψm

(
|f(x)|
λ

)
dx.

Similarly, both estimates hold for all w ∈ A1.

In this later result, the Marcinkiewicz type space M̃ϕm is defined by the function
quasi-norm

‖f‖ eMϕm
= sup

t
ϕm(t) f ∗(t).
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[Gar] J. Garćıa-Cuerva, An extrapolation theorem in the theory of Ap-weights, Proc. Amer. Math.
Soc. 87 (1983), 422–426.
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