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Abstract. We give a new proof of the sharp weighted Lp inequal-
ity

‖T‖Lp(w) ≤ Cn,T [w]
max(1, 1

p−1 )
Ap

,

where T is the Hilbert transform, a Riesz transform, the Beurling-
Ahlfors operator or any operator that can be approximated by
Haar shift operators. Our proof avoids the Bellman function tech-
nique and two weight norm inequalities. We use instead a recent
result due to A. Lerner [14] to estimate the oscillation of dyadic
operators.

The method we use is flexible enough to obtain the sharp one-
weight result for other important operators as well as a very sharp
two-weight bump type result for T as can be found in [5].
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1. Introduction

One weight norm inequalities for singular integrals of the form

‖Tf‖Lp(w) ≤ C‖f‖Lp(w) w ∈ Ap,

have a long history, beginning with the work of Hunt, Muckenhoupt
and Wheeden [11] for the Hilbert transform. (See Duoandikoetxea [7]
for a concise history.) The constant C depends on the Ap constant of
the weight w:

[w]Ap = sup
Q
−
∫
Q

w(x) dx

(
−
∫
Q

w(x)1−p′ dx

)p−1

.
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An interesting question is the exact dependence on the Ap constant.
This was first investigated by Buckley [2]. More recently, this prob-
lem has attracted renewed attention because of the work of Astala,
Iwaniec and Saksman [1]. They proved sharp regularity results for so-
lutions to the Beltrami equation, assuming that the operator norm of
the Beurling-Ahlfors transform growths linearly in terms of the A2 con-
stant. This was proved by S. Petermichl and A. Volberg [19] and by
Petermichl [17, 18] for the Hilbert transform and the Riesz Transforms.
In these papers it has been shown that if T is any of these operators,
then

(1) ‖T‖Lp(w) ≤ cp,n [w]
max(1, 1

p−1)
Ap

1 < p <∞,

and the exponent max
(

1, 1
p−1

)
is best possible. It has been conjectured

that the same estimate holds for any Calderón-Zygmund operator T .
By the sharp version of the Rubio de Francia extrapolation theorem
due to Dragičević et al. [6], it suffices to prove this inequality for p = 2,
namely

(2) ‖T‖L2(w) ≤ cn [w]A2 .

In each of the known cases, the proof used a technique developed by Pe-
termichl [16] to reduce the problem to proving the analogous inequality
for a corresponding Haar shift operator. The norm inequalities for these
dyadic operators were then proved using Bellman function techniques.

Recently, Lacey, Petermichl and Reguera-Rodriguez [13] gave a proof
of the sharp A2 constant for a large family of Haar shift operators that
includes all of the dyadic operators needed for the above results. Their
proof avoids the use of Bellman functions, and instead uses a deep, two-
weight “Tb theorem” for Haar shift operators due to Nazarov, Treil and
Volberg [15].

We give a different proof that avoids both Bellman functions and
two-weight norm inequalities such as the Tb theorem. Instead, we use
a very interesting decomposition argument using local mean oscillation
recently developed by Lerner [14].

An important advantage of our approach is that it also yields the
optimal sharp one weight norm inequalities for other operators such as
dyadic square functions and paraproducts, maximal singular integrals
and the vector-valued maximal function of C. Fefferman-Stein. More-
over it also gives very sharp two weight “Ap bump” type conditions
that improve results gotten by the authors in [4]. All these results can
be found in [5]. Key to our approach is that the operators are either
dyadic or can be approximated by dyadic operators (e.g., by the Haar
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shift operators defined below). Thus all these results will extend to any
operator that can be approximated in this way.

To state our result we first give some definitions following [13] and
consider simultaneously a family of dyadic operators—the Haar shift
operators—that contains all the operators we are interested in.

Let ∆ be the set of dyadic cubes in Rn. For our arguments we
properly need to consider the sets ∆s,t, s ∈ Rn, t > 0, of translations
and dilations of dyadic cubes. However, it will be immediate that all of
our arguments for dyadic cubes extend to these more general families,
so without loss of generality we will restrict ourselves to dyadic cubes.

We define a Haar function on a cube Q ∈ ∆ to be a function hQ such
that

(a) supp(hQ) ⊂ Q;
(b) if Q′ ∈ ∆ and Q′ ( Q, then hQ is constant on Q′;
(c) ‖hQ‖∞ ≤ |Q|−1/2;
(d)

∫
Q
hQ(x) dx = 0.

Given an integer τ ≥ 0, a Haar shift operator of index τ is an operator
of the form

Hτf(x) =
∑
Q∈∆

∑
Q′,Q′′∈∆(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈f, hQ′〉hQ′′(x),

where aQ′,Q′′ is a constant such that

|aQ′,Q′′ | ≤ C

(
|Q′|
|Q|
|Q′′|
|Q|

)1/2

.

We say that Hτ is a CZ Haar shift operator if it is bounded on L2.
An important example of a Haar shift operator when n = 1 is the

Haar shift (also known as the dyadic Hilbert transform) Hd, defined
by

Hdf(x) =
∑
I∈∆

〈f, hI〉
(
hI−(x)− hI+(x)

)
,

where, as before, given a dyadic interval I, I+ and I− are its right and
left halves, and

hI(x) = |I|−1/2
(
χI−(x)− χI+(x)

)
.

Clearly hI is a Haar function on I and one can write Hd as a Haar
shift operator of index τ = 1 with aI′,I′′ = ±1 for I ′ = I, I ′′ = I±
and aI′,I′′ = 0 otherwise. These are the operators used by Peter-
michl [16, 17] to approximate the Hilbert transform. More precisely,
she used the family of operators Hd

s,t, s ∈ R, t > 0, which are defined
as above but with the dyadic grid replaced by its translation by s and
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dilation by t. The Hilbert transform is then the limit of integral aver-
ages of these operators, so norm inequalities for H follow from norm
inequalities for Hd

s,t by Fatou’s lemma and Minkowski’s inequality. Sim-
ilar approximations hold for the Riesz transforms and Beurling-Ahlfors
operator, and we refer the reader to [18, 19] for more details.

We can now state our main result.

Theorem 1. Let Hτ be a CZ Haar shift operator where τ ≥ 0 is an
integer. Then for every w ∈ A2,

‖Hτ‖L2(w) ≤ C(τ, n)[w]A2 .

As a consequence, the same norm inequality holds for the Hilbert trans-
form, the Riesz transforms, and the Beurling-Ahlfors operator.

If we apply the sharp version of the Rubio de Francia extrapolation
theorem [6] mentioned above, we get sharp Lp estimates.

Corollary 2. Let Hτ as above and let 1 < p < ∞. Then for every
w ∈ Ap,

‖Hτ‖Lp(w) ≤ C(τ, n, p) [w]
max(1, 1

p−1)
Ap

.

As a consequence, the same norm inequality holds for the Hilbert trans-
form, the Riesz transforms, and the Beurling-Ahlfors operator.

The remainder of this paper is organized as follows. In Section 2
we give some preliminary definitions and state Lerner’s decomposition
theorem. In Section 3 we prove an estimate which allows us to apply
this decomposition to the CZ Haar shift operators. In Section 4 we
prove Theorem 1.

2. Local mean oscillation

We begin with some basic definitions. We follow the terminology
and notation of Lerner [14], which in turn is based on Fujii [8, 9] and
Jawerth and Torchinsky [12]. We note in passing that many of the
underlying ideas originated in the work of Carleson [3] and Garnett
and Jones [10].

Hereafter we assume that all functions f are measurable and finite-
valued almost everywhere. Given a cube Q and λ, 0 < λ < 1, define
the local mean oscillation of f on Q by

ωλ(f,Q) = inf
c∈R

(
(f − c)χQ

)∗
(λ|Q|),
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where f ∗ is the non-increasing rearrangement of f . The local sharp
maximal function of f relative to Q is then defined by

M#
λ,Qf(x) = sup

Q′3x
Q′⊂Q

ωλ(f,Q).

A median value of f on Q is a (possibly not unique) number mf (Q)
such that both

|{x ∈ Q : f(x) > mf (Q)}| ≤ |Q|
2
,

|{x ∈ Q : f(x) < mf (Q)}| ≤ |Q|
2
.

The median plays the same role for the local sharp maximal function
as the mean does for the C. Fefferman-Stein sharp maximal function.
More precisely, for each λ, 0 < λ ≤ 1/2,

ωλ(f,Q) ≤
(
(f −mf (Q))χQ

)∗
(λ|Q|) ≤ 2ωλ(f,Q).

To estimate the median and the local mean oscillation we need the
following properties that follow from the definition of rearrangements.
For any function f , λ, 0 < λ < 1, p, 0 < p <∞, and cube Q,

(fχQ)∗(λ|Q|) ≤ λ−1/p ‖f‖Lp,∞(Q,|Q|−1dx),(3)

(fχQ)∗(λ|Q|) ≤
(

1

λ|Q|

∫
Q

|f |p dx
)1/p

.(4)

Inequality (3) is central to our proofs as it allows us to use weak (1, 1)
inequalities directly in our estimates. By way of comparison, in [4]
a key technical difficulty resulted from having to use Kolmogorov’s
inequality rather than the weak (1, 1) inequality for a singular integral.
Overcoming this is the reason the results there were limited to log
bumps.

Finally, from the definition of rearrangements we have that

(5) |mf (Q)| ≤ (fχQ)∗(|Q|/2),

and so by (4), if f ∈ Lp for any p > 0, then mf (Q)→ 0 as |Q| → ∞.

Finally, to state Lerner’s decomposition theorem, we use the follow-
ing notation. Given a cube Q0, let ∆(Q0) be the collection of dyadic

cubes relative to Q0. And given Q ∈ ∆(Q0), Q 6= Q0, let Q̂ be its
dyadic parent: the unique dyadic cube containing Q whose side-length
is twice that of Q.
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Theorem 3. ([14]) Given a measurable function f and a cube Q0, for
each k ≥ 1 there exists a (possibly empty) collection of pairwise disjoint
cubes {Qk

j} ⊂ ∆(Q0) such that if Ωk =
⋃
j Q

k
j , then Ωk+1 ⊂ Ωk and

|Ωk+1 ∩Qk
j | ≤ 1

2
|Qk

j |. Furthermore, for almost every x ∈ Q0,

|f(x)−mf (Q0)| ≤ 4M#
1
4
,Q0
f(x) + 4

∑
k,j

ω 1
2n+2

(f, Q̂k
j )χQkj (x).

Remark 4. If for all j and k we define Ek
j = Qk

j \ Ωk+1, then the sets

Ek
j are pairwise disjoint and |Ek

j | ≥ 1
2
|Qk

j |.
Remark 5. Though it is not explicit in [14], it follows at once from the

proof that we can replace M#
1
4
,Q0

by the corresponding dyadic operator

M#,d
1
4
,Q0

, where

M#,d
λ,Qf(x) = sup

x∈Q′∈∆(Q)

ωλ(f,Q
′).

Intuitively, one may think of the cubes {Qk
j} as being the analog of

the Calderón-Zygmund cubes for the function f −mf (Q0) but defined
with respect to the median instead of the mean.

3. Local mean oscillation of the Haar shift operators

To apply Theorem 3 to the Haar shift operators we need two lemmas.
The first is simply that CZ Haar shift operators satisfy a weak (1, 1)
inequality. The proof of this is known but we could not find it in
the literature and it is explicit in [5]. Here and below we will use the
following notation: given an integer τ ≥ 0 and a dyadic cube Q, let Qτ

denote its τ -th generation “ancestor”: that is, the unique dyadic cube
Qτ containing Q such that |Qτ | = 2τn|Q|.
Lemma 6. Given an integer τ ≥ 0, there exists a constant Cτ,n such
that for every t > 0,

‖Hτf‖L1,∞(Rn) ≤ Cτ,n

∫
Rn
|f(x)| dx.

Our second lemma is a key estimate that is sharper variant of a result
known for Calderón-Zygmund singular integrals (see [12]) and whose
proof is similar. For completeness we include the details.

Lemma 7. Given τ ≥ 0, let Hτ be a CZ Haar shift operator. Fix λ,
0 < λ ≤ 1/2. Then for any function f , every dyadic cube Q0, and
every x ∈ Q0,

ωλ(Hτf,Q0) ≤ Cτ,n,λ−
∫
Qτ0

|f(x)| dx,
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M#,d
λ,Q0

(Hτf)(x) ≤ Cτ,n,λM
df(x).

Proof. It suffices to prove the first inequality; the second follows imme-
diately from definition of M#,d

λ,Q0
. Fix Q0 and write Hτ as the sum of

two operators:

Hτf(x) = Hτ (fχQτ0 )(x) +Hτ (fχRn\Qτ0 )(x).

We claim the second term is constant for all x ∈ Q0. Let Q be
any dyadic cube. Then the corresponding term in the sum defining
Hτ (fχRn\Qτ0 )(x) is

(6)
∑

Q′,Q′′∈∆(Q)
2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈fχRn\Qτ0 , hQ′〉hQ′′(x).

We may assume that Q′′ ∩ Q0 6= Ø (otherwise we get a zero term);
since Q′′ ⊂ Q, this implies that Q ∩ Qτ

0 6= Ø. Similarly, we have
Q ∩ (Rn \ Qτ

0) 6= Ø. Therefore, Qτ
0 ( Q, so |Q0| < 2−τn|Q| ≤ |Q′′|.

Hence, Q0 ( Q′′ and hQ′′ is constant on Q0. Thus, (6) does not depend
on x and so is constant on Q0.

Denote this constant by Hτf(Q0); then

|{x ∈ Q0 : |Hτf(x)−Hτf(Q0)| > t}| = |{x ∈ Q0 : |Hτ (fχQτ0 )(x)| > t}|.

Since Hτ is a CZ Haar shift operator it is weak (1, 1). Therefore, by
inequality (3),

ωλ(Hτf,Q0) ≤
(
(Hτf −Hτf(Q0))χQ0

)∗
(λ|Q0|)

≤ λ−1‖Hτ (fχQτ0 )‖L1,∞(Q0,|Q0|−1dx) ≤
Cτ,n
λ
−
∫
Qτ0

|f(x)| dx.

�

4. The proof of Theorem 1

Proof of Theorem 1. Fix w ∈ A2 and fix f . By a standard approxi-
mation argument we may assume without loss of generality that f is
bounded and has compact support. Let Rn

j , 1 ≤ j ≤ 2n, denote the
n-dimensional quadrants in Rn: that is, the sets I± × I± × · · · × I±

where I+ = [0,∞) and I− = (−∞, 0).
For each j, 1 ≤ j ≤ 2n, and for each N > 0 let QN,j be the dyadic

cube adjacent to the origin of side length 2N that is contained in Rn
j .

Since QN,j ∈ ∆, ∆(QN) ⊂ ∆. Since Hτ is a CZ shift operator its
adjoint is as well; thus, Hτ is bounded on Lp, 1 < p <∞. In particular,
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by (5) and (4), mHτf (QN,j) → 0 as N → ∞. Therefore, by Fatou’s
lemma and Minkowski’s inequality,

‖Hτf‖L2(w) ≤ lim inf
N→∞

2n∑
j=1

(∫
QN,j

|Hτf(x)−mHτf (QN,j)|2w(x) dx

)1/2

.

Hence, it will suffice to prove that each term in the sum on the right
is bounded by Cτ,n[w]A2‖f‖L2(w).

Fix j and let QN = QN,j. By Theorem 3 and Lemma 7, for every
x ∈ QN we have that

|Hτf(x)−mHτf (QN)|(7)

≤ 4M#,d
1
4
,QN

(Hτf)(x) + 4
∑
j,k

ω 1
2n+2

(Hτf, Q̂
k
j )χQkj (x)

≤ Cτ,nMf(x) + Cτ,n
∑
j,k

(
−
∫
Pkj

|f(x)| dx

)
χQkj (x)

= Cτ,nMf(x) + Cτ,n F (x),

where P k
j = (Q̂k

j )
τ . We get the desired estimate for the first term from

Buckley’s theorem [2] with p = 2:

‖Mf‖L2(QN ,w) ≤ ‖Mf‖L2(w) ≤ Cn [w]A2‖f‖L2(w).

To estimate F we use duality. Fix a non-negative function h ∈ L2(w)
with ‖h‖L2(w) = 1. We use the weighted dyadic maximal operator
defined by

Md
σg(x) = sup

x∈Q∈∆

1

σ(Q)

∫
Q

|f(x)|σ(x) dx.

where σ is a weight (i.e., locally integrable and positive a.e.). In par-
ticular we use that Md

σ is bounded on L2(σ) with constant bounded by
2 (see [?, Chapter 1, Exercise 1.3.3]). Therefore, by Remark 4 we have
that∫
QN

F (x)h(x)w(x) dx = Cτ,n
∑
j,k

−
∫
Pkj

|f(x)| dx
∫
Qkj

w(x)h(x) dx

≤ 2 · 2(τ+1)n
∑
j,k

w(P k
j )

|P k
j |

w−1(P k
j )

|P k
j |

|Ek
j |

× 1

w−1(P k
j )

∫
Pkj

|f(x)|w(x)w(x)−1 dx
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× 1

w(Qk
j )

∫
Qkj

h(x)w(x) dx

≤ Cτ,n [w]A2

∑
j,k

∫
Ekj

Md
w−1(fw)(x)Md

w(h)(x) dx

≤ Cτ,n [w]A2

∫
Rn
Md

w−1(fw)(x)Md
w(h)(x) dx

≤ Cτ,n [w]A2

(∫
Rn
Md

w−1(fw)(x)2w(x)−1 dx

)1/2

×
(∫

Rn
Md

w(h)(x)2w(x) dx

)1/2

≤ Cτ,n [w]A2

(∫
Rn
|f(x)w(x)|2w(x)−1 dx

)1/2

×
(∫

Rn
h(x)2w(x) dx

)1/2

= Cτ,n [w]A2

(∫
Rn
|f(x)|2w(x) dx

)1/2

.

If we take the supremum over all such functions h, we conclude that

‖F‖L2(QN ,w) ≤ Cτ,n [w]A2 ‖f‖L2(w).

Combining our estimates we have that(∫
QN

|Hτf(x)−mHτf (QN)|2w(x) dx

)1/2

≤ Cτ,n [w]A2‖f‖L2(w),

and this completes the proof.
�
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José Maŕıa Martell, Instituto de Ciencias Matemáticas CSIC-UAM-
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