EXTRAPOLATION ON FUNCTION AND MODULAR SPACES, AND
APPLICATIONS
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ABSTRACT. We generalize the extrapolation theory of Rubio de Francia to the context of
Banach function spaces and modular spaces. Our results are formulated in terms of some
natural weighted estimates for the Hardy-Littlewood maximal function and are stated in
measure spaces and for general Muckenhoupt bases. Finally, we give several applications in
analysis and partial differential equations.
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1. INTRODUCTION

The celebrated extrapolation result by Rubio de Francia shows that if an operator T satisfies

1T 1 £ro (7 wo) < Cllf | Lpo (R 20) (L1)

for some pg € [1,00) and every wy € Ay,

then
I T fll e enwy < Clfllr@e w)

for every p € (1,00) and every w € A,. (12)
Here, A, denotes the class of Muckenhoupt weights in R" with the underlying Lebesgue measure
and LP(R™, w) denotes the associated weighted Lebesgue space. The theory of Muckenhoupt
weights has been extensively studied and one of its most basic features is the fact that w € 4,
if and only if the Hardy-Littlewood maximal function M (cf. (2.1)) is bounded on LP(R™, w)
whenever p € (1,00); and for p = 1, w € Ay if and only if M (cf. (2.1)) maps continuously

LY(R™, w) into L}*°(R™, w). As a consequence, (1.2) may be recast as

1T £l Le@n ) < CllfllLe e w) for every p € (1, 00)

1.3
and every weight w such that M is bounded on LP(R", w). (1.3)

In the last forty years, Rubio de Francia’s result has been extended and complemented in
several different ways, see [21] and the references therein. In particular, one can see that
(1.1) encapsulates information about the boundedness of T' on many different function spaces,
see for instance [18, Theorem 1.3] and [21, Theorems 4.6 and 4.10]. All these results show,
in hindsight, that what is needed to extrapolate is a good behavior of the Hardy-Littlewood
maximal function. Elaborating on this there are some two other equivalent formulations of
(1.3) which will be relevant momentarily. For any weight v (i.e., v is a measurable function
such that 0 < v < oo a.e.) let us introduce the “dual” operator M h(z) = M(hv)(x)/v(z).
Fix then p € (1,00) and recall the well-known fact that w € A, if and only if w'™? ¢ Al
Hence, we can rewrite (1.3) as

1T £l 2 (rr vy < Ol fllLp(rn ) for every weight v such that

(1.4)
[MA| o0y < Cllbl|Le@n,v) and [Myb]| 1 g p) < ClBI Lo g p)-
or as .
I(Tf) ullprrn,cry < Cllf ull ogn,cny for every weight u
such that H(Mh) ’UJHLp(Rn’Ln) < C'HhuHLp(Rn,Ln) (15)

and ||(Mh) u_1||LP'(Rn7,C”) < CHhU_lHLp’(Rn,gn)-
These say, as already announced, that extrapolation is intimately related with the boundedness
of the Hardy-Littlewood maximal on the given space and its dual. To continue with our
discussion we bring two extrapolation results which resemble the previous formulations. The
first one has been recently obtained in [44, Theorem 8.2] and a particular case of it establishes
that (1.1) yields
ITfllx, < Cllfllx, whenever

[Mh||x, < C||hllx, and [[Mh|lx, < C|hlx;,
where X, is a weighted Banach function space with respect to the underlying measure space
(R™,vdL™) with v € L{ (R™, L"), v > 0 L™-a.e., and X is the associated space of X,. This
extends [15, Theorem 10.1], where the case v = 1 is considered, and also an implicit consequence
of [21, Theorem 4.10, Lemma 4.12] in the case of X, = X(v) with X being a rearrangement
invariant Banach function space. Note that (1.6) is a generalization of (1.4) to the context of

(1.6)
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weighted Banach function spaces. Examples of spaces in this class to which (1.6) applies are
Lebesgue spaces LP(v) for 1 < p < oo and v € Ap; Lorentz spaces LP9(v) with 1 < p < oo,
1 < ¢q < o0, and v € Ap; Orlicz spaces such as LP(log L)*(v) with 1 < p < oo, @ € R, and
v € Ap; or Lebesgue spaces with variable exponents LP0) where v = 1 and p(+) : R™ — (1,00) is
a measurable function such that M is bounded in LP() and Lp/('), where p/(+) is the conjugate
exponent of p(+), that is, 1/p(x) + 1/p'(z) = 1 for every z € R™.

Our second example, which generalizes (1.4), is [22, Theorem 2.6], where it is shown that
(1.1) has implications not only for weighted Lebesgue spaces but also for weighted Lebesgue
spaces with variable exponents. Specifically, they prove that (1.1) implies

ITf) ull oo @ ony < OIS wll Lo g oy for every weight
such that [[(Mh)ull o) @n gny < Cllhull poe) (ve n) (1.7)
and ||(Mh) U*IHLP'«)(Rn,m) < C\|hu*1HLp/(_)(Rn7£n).

Here, p(-) : R™ — (1, 00) is a measurable function satisfying 1 < essinfgn p(-) < esssupga p(-) <
0o, and p/(-) is the conjugate exponent of p(-), that is, 1/p(z) + 1/p/(x) = 1 for every x € R™.

The previous discussion reveals that extrapolating from (1.1) to a given weighted function
space, requires assumptions on the weight guaranteeing that the Hardy-Littlewood maximal
function M is bounded on that weighted function space. However, it is important to emphasize
that the equivalence of (1.4) and (1.5) stems from the fact that for every weight w and every
measurable function f one has || fwl|Le@n cny = ||f|lr(rr,wr). However, that equality ceases
to be valid if one replaces LP by more general spaces (say, LP? with p # ¢, LP(log L)* with
a # 0, or LP0) with p being non-constant). That is, having the weight as part of the underlying
measure (as v in (1.4) or (1.6)) is in general different from having it as a pointwise multiplier
(as uw in (1.5) or (1.7)) —think for instance in || f||rp.co(mn wr) and || fw]|zp.comn cny-

Continuing this line of research, one of the goals of this paper is to reconsider the extrap-
olation on some new weighted Banach function spaces so that the two different approaches
formulated above can be framed under the same result. More precisely, let © and v be weights
(that is, measurable functions which are strictly positive and finite almost everywhere with re-
spect to Lebesgue measure £™), and let X,, be a Banach function space with underlying measure
vdL™ (cf. Definition 2.17). Introduce the weighted norm related to X, and w as f — || f ul|x, -
Our aim is to see that the boundedness of M with respect to this new weighted space (and
an appropriate associated space) allows us to extrapolate from (1.1) to obtain estimates in the
just introduced weighted norm. More specifically, a particular case of Theorem 3.1 assures
that (1.1) implies

(T f)ullx, < C|fulx, for every Banach function space X, and every weight

1.8
u such that ||(Mh)ullx, < C||hu|x, and ||(M]h) u_lHX/v < C’||hu_1HX;J. (1.8)

In the particular case u = 1 and X, = LP(R™,vdL") with p € (1,00), one immediately sees
that (1.8) becomes (1.4). More generally, if u = 1, (1.8) agrees with (1.6). On the other hand,
if v=1and X, = LP(R", L") with p € (1,00), one can easily see that (1.8) turns to be (1.5).
Also, if v = 1 and X, = LPO)(R™, £") then (1.8) becomes (1.7). We note that Theorem 3.1 is
written in much more general terms using pairs of functions (in place of operators), the setting
is that of general measure spaces, and the Hardy-Littlewood maximal function is associated
with a general basis. We also prove other extrapolation results for Banach function spaces such
as an Ao, extrapolation result (cf. Theorem 3.34) and a limited range extrapolation result (cf.
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Theorems 3.44 and 3.67). These generalize previously known results (|20, Theorem 2.1], [4,
Theorem 4.9], and [21, Theorem 3.31], respectively).

Besides the new extrapolation results in the context of Banach function spaces we study
the extrapolation on modular spaces associated with Young functions. More specifically, let
® be a Young function so that ® € Ay and let ® be its complementary Young function. A
particular case of Theorem 4.1 establishes that (1.1) implies

/ O(|Tflu)vder < C’/ O(|f| u) vdx for any weights u and v
n RTL
such that / S(Mflu)vde <C O(|f|u)vdx (1.9)
n Rn

and/ S(M flu Hvde <C [ O(f|ut)vdz.
n RTL

In the particular case u = 1 (resp. v = 1) and ®(¢) = tP, t > 0 with p € (1,00), it is trivial
to see that (1.9) becomes (1.4) (resp. (1.5)). Let us mention that Theorem 4.1 is written in
much more general terms using pairs of functions (in place of operators), the setting is that
of general measure spaces, and the Hardy-Littlewood maximal function is associated with a
general basis. Additionally, we establish an A, extrapolation result in modular spaces (cf.
Theorem 4.36).

Finally, we give several applications of the extrapolation theory developed here. We first es-
tablish the well-posedness results for some Dirichlet problem in the upper half-space whenever
the boundary data belongs to a general weighted Banach function space or a weighted modular
space. And, secondly, we obtain weighted inequalities on Banach function and modular spaces
for the layer potential operators and the related commutators on Ahlfors regular domains sat-
isfying a two-sided local John condition. Beyond that, an application of A, extrapolation is
presented for the square function on non-homogeneous spaces. We also prove estimates for sin-
gular integral operators including the pseudo-differential operators, L'Y-Hérmander operators
and singular integrals of Calderén-type. We end up with a limited range extrapolation result
for the Schrodinger operators with potentials and for the operators associated with the Kato
conjecture.

2. PRELIMINARIES

2.1. Muckenhoupt weights. Throughout this paper, we make the assumption that (X, u) is
a non-atomic o-finite measure space with ;(X) > 0. We recall that y is said to be non-atomic if
for every p-measurable set F' with p(F) > 0, there exists F' C F such that u(F) > u(F’") > 0.
The characteristic function of a y-measurable set £ will be denoted by 1. Let B be a basis,
that is, a collection of u-measurable sets in ¥ such that 0 < p(B) < oo for every B € B.
Let us introduce the Muckenhoupt weights associated with B and some of its most relevant
properties in this section. Given a basis B, the Hardy-Littlewood maximal operator Mg on
(X, u) associated with B is defined for each p-measurable function f on ¥ by

Msf(z) = sup ]i F@)lduly), tzeSs= | B, (2.1)

reBEeB BeB

and Mpgf(x) = 0 otherwise.

A p-measurable function w on ¥ is called a B-weight on (X, ) if 0 < w(z) < oo for u-
a.e. x € ¥g. Given p € (1,00) and a basis B on (X, 1), we define the Muckenhoupt class A, 3
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as the collection of all B-weights w on (X, u) satisfying

ngy (o) (L)

where p’ is the Holder conjugate exponent of p, i.e., 1 + = = 1. As for the case p = 1, we say

that w € Ay g if

1
P’

[w]Al,B = ||(M3w) w_l 1EB||L°°(E,M) < o0.
Finally, we define
Aoo,B = U Ap,Ba
p>1

and [w]Aoo,B = infp:wEApyg[w]Ap,B’
For every p € (1,00) and every B-weight w on (X, ), we define the associated weighted
Lebesgue space LP(X,w) := LP(X, wdu) as the collection of py-measurable functions f with

Js [fPwdp < oco.

Given 1 < p < 00, 1 < ¢ < 00, and a basis B on (3, 1), we define the A, , 5 class as the
collection of all B-weights w on (X, 1) satisfying

q

[w]a,, s = sup <][ w? du) <][ w " d,u)p < 0. (2.2)
” BeB \/B B

The reverse Hélder classes are defined in the following way: we say that w € RH, s for
s € (1,00) and a basis B on (%, ), if

1 -1
[w]rH, 5 == sup (7[ w* du) <][ wdu) < 0.
BeB B B

Regarding the endpoint s = oo, w € RH, 5 means that

-1
[w]RHoo,B I= sup ||w]_B||Loo(2hu) (][ wd,u) < 0.
BeB B

Remark 2.3. Note that, by definition, the operator Mp does not take into account the values
of the functions in the set ¥\ ¥. Also the A, 3 or RH, g classes do not depend on the values
of the weights in the set ¥\ ¥p. This may create some technical issues in the arguments below
and to avoid them, we will assume from now on that (3 \ ¥g) = 0. With this assumption in
place, w is a B-weight on (X, p) if 0 < w(z) < oo for p-a.e. x € ¥. In the general situation
where £4(X \ ¥5) > 0 one can alternatively work with ¥z in place of ¥ (or, what is the same,
restrict all functions and weights to the set ).

The properties listed in the following result follow much as in the Euclidean case (see, for
instance, [26]).

Lemma 2.4. Let (X, ) be a non-atomic o-finite measure space and let B be a basis. Then
the following properties hold.

(a) A1 s C Ay C Ay C Asos and RHo g C RHy3 C RH, g for every 1 < p < g < oo.

(b) For everyp € (1,00), w € Ap g if and only if w7 e Ay B, and

w1, , = [lF (2.5)
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(c) For every p € (1,00) and wy,ws € Ay 3,

wiwy P € Ay with  [wiwy P a5 < [wia s [waly (2.6)

(d) If wi,wy € Ay and 0 < 0 < 1, then wf w%fg € A, with

0 —0 [ —0
wf wh ™01, < funh, w2l 2

(e) For allp € [1,00) and s € (1,00),

weA,pNRH;p = w’e€A;p 7T=s(p—1)+1 (2.7)
(f) Apiar.8 C Apygo3 for every 1 < pp <py < oo and 1 < ga < 1 < 0.
(g) Foralll<p<oo and1l < g < oo,

-1 _y
wE A B = w E€Ayyp = wle A1+§,B = w? e A1+%/7B. (2.8)

(h) Foralll<p<
wP € Ay == w P €Ay = wE Ay ,p <= w €Ay, (2.9)

Definition 2.10. A basis B is called a Muckenhoupt basis if for every p € (1,00) and for
every w € A 3,

M fllersw)y < Cllfllzes,w)- (2.11)

Given a basis B on (3, 1) and a B-weight w, we set My, f(x) := Mp(f w)/w(z) if » € ¥p,
and Mg, f(x) = 0 otherwise. Note that if B is a Muckenhoupt basis on (3, 1), by definition
and property (b) above, it follows that Mp is bounded on LP(w) and My, is bounded on

LP (w) for every w € App, 1 < p < oco.
Definition 2.12. A basis B is open for the Muckenhoupt classes, if for every p € (1, 00),
weA,p = we Ay,_.pforsomeee (0,p—1).

We present some examples of Muckenhoupt bases. In (R™, £™), the set of all cubes Q, the
set of all dyadic cubes D, and the set of all rectangles R, whose sides are parallel to the
coordinate axes, are all Muckenhoupt bases, see [26]. Another interesting example is the basis
Z of Zygmund rectangles in (R3, £3) whose sides are parallel to the coordinate axes and have
lengths s, ¢ and st with s,¢ > 0, see [25]. Moving on, let (X,d, ) be a doubling measure
metric space, that is, (X, d, p) is a metric space endowed with a doubling measure. The latter
condition means that

u(B(x,2r)) < Cy w(B(zx,7)), x€Xandr>0. (2.13)

If we set B to be the collection of all metric balls in (X, d), then B is a Muckenhoupt basis
since [34, Proposition 7.13] gives that Mp is bounded in LP(3,w), 1 < p < oo, if and only if
w € Ap , in which case

1

M flrsw) < C[w],fBHfHLP(E,w)- (2.14)

The five examples of Muckenhoupt bases given above all have the openness property for the
Muckenhoupt classes; in each case it is a consequence of a reverse Holder inequality. Indeed,
there holds Ao 5 C Uyoy RHs 5. In [21, p. 29] one can find an example of a Muckenhoupt
basis B (consisting on a single element) and a weight w € Ay g with w ¢ A, g for any p < 2,
that is, the basis B is not open for the Muckenhoupt classes.



EXTRAPOLATION ON FUNCTION AND MODULAR SPACES, AND APPLICATIONS 7

Lemma 2.15. Let (X, 1) be a non-atomic o-finite measure space and let B be a basis. Assume
that Ao 5 C Uy RHs 5 and fiz p,q € (1,00). Then the following hold.

(a) If w € App, then w" € Ay for some r > 1 and w € A, /55 for some 1 < s < p. In
particular, B is open for the Muckenhoupt classes.

(b) IfuPv e A, andv € Ax g then uP/mv e Aprg for everyr € [1,1o] and some 1 <1y < p

(c) Ifulv e Ay and v € Axo g then ui®v € Ays g for every s € [1,s0] and some sy > 1.

(d) Ifulve App, veApp, and 1 <p < q < oo, then uPv € App and ulv € Ayp.

Proof. We begin by showing (a). Let w € A, . Then wl? Ay g. By the assumption
Axp C Us>1 RH, 3, there exist s1,s2 > 1 such that w € RH,, 5 and wi? e RH,, 5. Pick
r:=min{sy, so} > 1. Then for every B € B, Jensen’s inequality gives

r(p—1)

a o " p) g\ 2
(fran) ()= (fman) ™ (feo)
B B
1—p/yr(p=1) ' 1—p' ey
< [wlrn, 5w p]RHSQ,B (]{BWdﬂ> (]{Bw pdu)

1—p’]r(p—1) [

RH,, 5

w]gpygﬂ

IN

[l gl

which yields that w” € A, 5. Moving on we let py := (1+ (p' —1)r)" € (1,p) so that r(1 —p') =
1 — pf. Note that for every B € B, by Jensen’s inequality

p

(o) (o)™ = () (o)™
() (f )™ <

Hence w € Ay, g with py € (1, p) and this eventually shows that B is open for the Muckenhoupt
classes.

Next, we prove (b). Fix u?v € A, and v € Ay 5. Pick g € (1,00) so that v € Ay 5. By
Lemma 2.4, (uv'/P)™7" = (uPv)'"? € Ay, 5. By the assumption Ao, 5 C U,o; RHs 5 it follows
that (u vl/p)_p/ € RHy, g for some ty > 1. Fix 1 <t <t and note that

3=

3 e

p,B’

s>1

: t' (p/r)
lim 1+ — =1 d lim ¢ /.
M 1t gy~ end lim /) =t
Therefore, we can find r9 € (1,p) such that for every 1 < r < rg one has ¢ = 1+

/) (p/r)'[(p/r) < ¢} and t(p/r) < top’. After all these considerations we observe that
Hoélder’s inequality with » > 1 yields

r r 1 _r
() = (o) = (e ()
B B B B

On the other hand, Holder’s inequality with ¢ > 1, the facts that ¢’ < ¢{, and ¢ (p/r) < top/,
Jensen’s inequality, and that (uv'/?)~?" € RHy, s lead to

1 e
(][ (up/r v)l*(?/r)/ du) w0 (][ (uvl/p)*(p/’")' ey d,u,) /)
B B
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1 1
< (Formy o) 7 (f o)
B B
o o
(frra)® (<o)
B B
i / ! #
<0 g (0 ) (f i)
to> B B

Collecting the obtained estimates we conclude that

1

(][ up/rvdu) » <][ (up/r U)l—(p/r)' du) v
B B
1 v S\
< (o) 5, (f upvdu) (][ (wPv)! P du)
' B B
- T(‘I071>
X <][ vdu)p <][ v d,u> ’
B B

r

1

< [(wo'?) ™5y

1
[P vlh, A

Consequently, u?/" v € Ap/r as desired with

- 1 1
W, < L) P lag Py R

b

P a0:8"

To proceed we next consider (c). Fix u?v € Ay p and v € Ay 3. Pick g € (1,00) so that
v € Ag5. By the assumption A5 C (U,oq RH 5 it follows that u?v € RHy, s for some
to > 1. Fix 1 < t < to, pick sp so that 1 < so < min{to/t,1+ (¢j —1)/t'}, and let 1 < s < sp.
Holder’s inequality with exponent ¢ > 1, together with our choices guarantee that ts < ry and
t'(s —1) < ¢, — 1, we arrive at

1 1
qs 1 qas
(][ uqsvdu> = <][ ul®v®v _Sdu>
B B
1 _1
tqgs ’ t'gs
< <][ (uqv)ts d,u) <][ Ut (1—s) dﬂ)
B B
(q0—1) (s—1)

1
B B
. : 0
< [ulv]dy, (f uquu> (][ v d,u> L
0B \JB B

On the other hand, Holder’s inequality with ¢'/(gs)’ > 1

1 1
' s _@o) @9 (s
<][ (ud® v)i=(a9) du) = (7[ (ulv) EREET d,u> '
B B
1
A @s) (_d_y @) (d /(a))
< (7[ (uqv) %1 dﬂ)q (][ v a8 ((qs)’) du) 1 T
B B
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- (e W (f )

Collecting the obtained estimates

1 1
as / (as)
() (o)’
1 1 3 . 0!
it (o) (<! () (50"

1 1 1
<[]y, 0ol [0]hT,

Thus, u?®v € Ay, 5 as desired with
W0, < [0, o[0T, ol
It remains to prove (d). Let ufv € A, p with v € A, 5. Since p < g we clearly have by
Lemma 2.4 that u¢v € A, C A,p. On the other hand, P v = (u?v)? v!=? with § = p/q €
[0,1], hence Lemma 2.4 readily gives that u”v € A, 5. O

Lemma 2.16. Let (X, ) be a non-atomic o-finite measure space and let B be a basis. Let
0<p_<p<qg<py <oo. Then u? € Ap/p BNRHy. s andu? € Ay sNRH ., gy 8 if
and only if WP~ € Ay (qfp Yo+ /a) B

Proof. Let us observe that it suffices to consider the case p_ = 1. Indeed, set p_ = 1 p p/p—,

qd=q/p—, and p; = p/p_sothat 1 < p < ¢ < py < oco. Then from the case p_ = 1 we
obtain

w’ €Ay sNRHy, py s and u? € Ay, s N RH(, jqy 5
— (up,)p S Aﬁlg N RH(E /p).B and (up*)q S Aq~3 N RH(§+/®/
= W €A s = VT €Ay (4 )by /a) B

Assume then that p_ = 1. We first prove the forward implication. Let u? € A, N
RHp, jpy g and u? € Ayp N RH ., /gy 5- By (2.7), the latter gives that uih+/9)" ¢ A8 C
Ag(p. fay.8> Where 74 = (p4/9) (g — 1) + 1. Now we have u? € Ay and wt®+/9" € Ay 1oy 5,
which is equivalent to u € A, ;(p. /q),5- To show the backward implication, we assume that u €

Ap o /qy,8- Observe that p(p/p)" < q(p+/q)" and q(p+/q) (1, — 1) = ¢' < p" = p(p+/p) (7, —
1). Hence, Jensen’s inequality implies

Tp—1
( ][ UP<P+/p>’du> < ][ up(p+/p)'(1f;>du> ’
B B

e 7P /p)
< [(][ uq(P+/Q)/du> wr o <][ up/du> ] " < U]I;l(PJr/p)' 7
B B p,a(p4/a) B
and
Tq—1
< ][ uqm/q)'du) < ][ (/) (1=, )du>
B B
Ty L1alp+/9)
< alp+/a) g, | " ' g,)" < [y 20 +/2)
B |:<][Bu du) Bu d,U/ - [U]Ap,q(9+/Q)/a5
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This shows uP®+/P)" ¢ A;, 5 and wiP+/9)" ¢ A, B, which by (2.7) are equivalent to u? €
Aps N RHy,, jpy s and u? € Ay N RH . /4y 5 Tespectively. O

2.2. Banach function spaces. Continue to assume that (X, 1) is a given non-atomic o-finite
measure space with (X) > 0. Let v be another non-atomic o-finite measure with v(X) > 0. A
typical example that we will consider throughout this paper is that on which v is a “weighted
measure” (with respect to p). To elaborate on this, let v be a non-negative u-measurable
function such that v < oo p-a.e. and v is strictly positive on a set of p-positive measure.
Consider dv = v du, in which case we agree to identify the weight function v with the weighted
measure dv := vdu. We claim that (3, v) is a non-atomic o-finite measure space with v(X) > 0
(we implicitly assume that the measurable sets for v are those for p). That v(X) > 0 follows
from the assumption that v is strictly positive on a set of p-positive measure. To see that v
is o-finite, we first use that p is o-finite to find a family {¥;};cn of p-measurable sets with
Y = Ujen ) and u(E;) < oo for every j. Consider next Fy := {z € ¥ : v(z) < 21k € N,
and Foo = X\ Ugey Fie so that ¥ = Fioo (J(U; gen 5 N F). Note that for every j,k € N
v(X; N Fy) = / vdp < 2Pu(%;) < co.
2N Fy

and also v(Fy) = 0 since v < oo p-a.e. To see that v is non-atomic, take an arbitrary pu-
measurable (hence v-measurable) with v(F") > 0. By definition we clearly have that pu(F) > 0.
Set Fy = Fn{v > 0} so that v(F) = v(Fp). Since u is non-atomic we can find F| C Fp
so that p(Fp) > wu(Fj) > 0. Note that v(Fj) > 0, otherwise v = 0 p-a.e. in F}, which can
only happens if u(Fj) = 0, thus we get a contradiction. Also, we should have v(Fy) > v(F}).
Otherwise, v(Fp \ Fj) = 0 which implies that v = 0 p-a.e. in Fyy \ F{j, and this can only happens
if u(Fo \ F}) = 0 which leads us again to a contradiction.

Assume in what follows that (3, i) is a given non-atomic o-finite measure space with p(%) >
0 and that v is another non-atomic o-finite measure with v(X) > 0. Define,

M, :={f:3 — C: fis v-measurable}.

Definition 2.17. We say that a mapping || - || : M, — [0, 0] is a function norm provided
following properties are satisfied for all f,g € M,:

1) [|fll = H|f|” and || f|| = 0 if and only if f =0 v-a.e.
(i) 1f + gl < [IFI1+ llgll-
(iil) [IAfIl = IMISIl for every A € R.
(iv) If | f] < |g| v-a-e., then [[f]| < ||g].
)

(v) If {fj}jen C M, is a sequence such that |f;| increases to |f| v-a.e. as j — oo, then || f;|
increases to || f|| as j — oc.

(vi) If E C ¥ is a v-measurable set with v(F) < oo, then one has ||1g|| < oo and there is a
constant Cg € (0,00) such that [, |f|ldv < Cgl|f||.

Given a function norm || - ||, the set
X=A{feM,:|[f[l <o}
is called a Banach function space over (X,r). In such a scenario, we shall write || - ||x in
place of || - || in order to emphasize the connection between the function norm || - || and its

associated function space X. Then (X, || - [x) is a Banach space.
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For a Banach function space X over (3, v), it is not difficult to see that one can define its
associate space X’ by means of the function form

Hqu/—sup{/ F@)g(@)| dvlz) : g € X, ngxsl},

and with this definition X’ is also a Banach function space. Then it follows from the definition
of X’ that the following generalized Holder’s inequality holds:

/ F@)g(@) dv(@) < [flxlgllzr, fEX and g€ X. (2.18)
It turns out that X = =: X" (cf. [8, Theorem 2.7, p. 10]). Therefore, one has
1l —sup{ / F@)g(@)| dv(@) : g € X, Igllx < 1}. (2.19)

Remark 2.20. It is useful to note that the supremum in (2.19) does not change if it is taken
only over functions g € X' with ||g|lxx < 1 which are non-negative and positive on a set of
positive u-measure (that is, non-negative g € X’ with 0 < ||g|lx» < 1). Indeed, the fact that
we can consider only non-negative functions can be directly seen from (2.19). If || f|lx > 0
then there is g € X’ with [|g||x» < 1 such that 0 < || f||x < 2 [ |f g|dv and this forces g to be
non-zero on a set of positive v-measure. Finally, the case || f||x = 0 is trivial.

Given a Banach function space X over (3, /), we define the scale of spaces X" with r € (0, 00)
by
1
X' i={feM,: |fI"€X} and |fllx = [lIfI"lI¥"- (2.21)
If » > 1, then X" is again an actual norm and X" is a Banach function space. However, if
r < 1, then X" needs not be a function space.
To define a rearrangement invariant function space, let v; denote the distribution function
of f e M,:
) =v({z e f@) > A}, Aelo,00).
A Banach function space X over (3,v) is rearrangement invariant if ||f||x = ||g||x for
every pair of functions f,g € X such that vy = v,. This means that the function norm of f
in X depends only on its distribution function. Note that if (X,v) is nonatomic, then X is
rearrangement invariant if and only if X’ is (cf. [8, Corollary 4.4, p.60]).

For each f € M,, the decreasing rearrangement of f with respect to v is defined as
fo(t) =inf{A>0:v¢(N\) <t}, tel0,v(X).

Note that the functions f and f} have the same distribution function. One remarkable conse-
quence of this is Luxemburg representation theorem: if X is rearrangement invariant Banach
function space over (X, v), then there exists a rearrangement invariant Banach function space
X over [0,v(X)) such that f € X if and only if f; € X and | f;|lx = || fllx (cf. [8, Theorem
4.10, p.62]). This allows us to define the Boyd indices by

px = lim loigt’ gx := lim loigt, (2.22)
t—oo log || Dellz_x t—0+ log || Delx_x
where D; : X — X is the dilation operator defined by
f(s/t), if s € [0, v(X)min{l,t}],
Dy f(s) = . . (2.23)
0, if se (v(X)min{l,t}, v(2)].



12 MINGMING CAO, JUAN JOSE MARIN, AND JOSE MARfA MARTELL
It is not hard to see that

1<px<gx<oo, (px) =¢gx and (¢x) =px, (2.24)

and also that pxr = r px and gxr = 7 ¢x.

Given X, a rearrangement invariant Banach function space defined over the measure space
(3, 1), we want to define a weighted version X(v). Let B be a basis and let v be a B-weight
(i.e., 0 < v(z) < oo for p-a.e. x € ¥). Then (X,v), where dv = vdy, is a non-atomic o-finite
measure space with p(X) > 0. Define the weighted space

X(v) == {f e My : || fy[lx < o0} (2.25)

This is a Banach function space over (X,v) with norm |[|f[|xw) := [[f;llx.- Then one has
X'(v) = X(v)" and

1y =sup{ [ £ @) dote) : 9 € X0 lalhe <1} (2.20

Similarly, X(v)" = X" (v) for 0 < r < 0.

Continue to assume that (X, i) is a given non-atomic o-finite measure space with (%) > 0
and let B be a basis. Let v be a non-negative u-measurable function such that v < oo
p-a.e. and v is strictly positive on a set of p-positive measure. We can then consider the
associated weighted measure v dyu, in which case we agree to identify the weight function v
with the weighted measure dv := vdu. Let X, be a Banach function space over (3, v).

Recall the definition of the Hardy-Littlewood maximal operator Mg in (2.1) (where the
underlying measure is y1) and introduce My h(z) := Mp(hv)(z)/v(z) if v(z) # 0, Mg h(z) =
0 otherwise. Observe that M /B,u = Mp if v = 1. We are interesting in deriving some properties
from the boundedness of Mg and its “dual” operator M, é,v:

|(Mgh) ullx, < Millhulx,, ¥heM,, (2.27)
|(Mp k) u g, < Nallhu sy, WA € M. (2.28)

Lemma 2.29. Fiz (X, 1), a non-atomic o-finite measure space with (X)) > 0, and a basis .
Consider v, a non-negative p-measurable function so that v(B) < oo for every B € B and, with
the notation above, v(X) > 0; and X, a Banach function space over (3,v). Let u : ¥ — [0, 00]
be so that (2.27) holds. Then, for every B € B, the following hold:

(a) If |1pulx, = oo then u = oo p-a.e. in B. Hence, either ||[1pu|x, < oo or u = oo
p-a.e. in B; and either u € L*(B,v) or u = oo p-a.e. in B.

(b) If |11pul|x, = 0 then uw = 0 v-a.e. in B. Hence, either ||1gullx, > 0 or u =0 v-a.e. in
B; and either u > 0 v-a.e. in B or u =0 v-a.e. in B.

In particular, if in addition 0 < u,v < o0 p-a.e. in Xg, then

0 < |1pullx, < oo for every B € B. (2.30)

Proof. Fix B € B. For every 0 < h € M, with 0 < 5 hdu < oo we have that (2.27) gives

(7[ hdu) 1Bullx, <1 Mp(hlp)ullx, < |[[Mp(hlp)ulx, < N|h1pulx,.
B
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In particular, for any p-measurable set S C B with u(S) > 0, taking h = 1g we obtain that

S
PS) 11 all, < A (s uly, - (2.31)

p#(B)
Assume now that ||1pu||x, = oco. Then, (2.31) implies that
[1sullyx, = oo for every measurable set S C B with u(S) > 0. (2.32)
For every r > 0, define
Sy :={x€B:0<u(x)<r}.

If u(S;) > 0, then co = ||1s,ullx, < r||1s|x, by (2.32). This contradicts item (vi) in Defini-
tion 2.17 because v(B) < oo. Hence u(S,) = 0 for every r > 0, which in turn indicates that
u = 00 p-a.e. in B. On the other hand, if v ¢ L'(B,v), that is, [ udv = oo, then, using that
v(B) < oo and item (vi) in Definition 2.17, we obtain ||1pul/x, = co. We have already shown
that the latter implies that u = oo p-a.e. in B. This finishes the proof of (a).

Next, assume that [[1pulx, = 0. Then item (i) in Definition 2.17 readily implies that u = 0
v-a.e. in B. Furthermore, if u = 0 in a measurable set S C B with v(S) > 0 (hence u(S) > 0),
then (2.31) implies that [|[1pully, = 0. Thus, u =0 v-a.e. in B. This proves (b).

Finally, (2.30) is a consequence of (a) and (b) since v = 0 v-a.e. in B is equivalent to u =0
p-a.e. in B whenever 0 < v < 0o p-a.e. U

Lemma 2.33. Fiz (3, 1), a non-atomic o-finite measure space with (1(X) > 0, and a basis B.
Let u and v be two B-weights so that v(B) < oo for every B € B.

(a) If (2.27) holds, then N7 > 1.
(b) If (2.28) holds, then Ny > 1.

Proof. Let B € B. Observe that Mp(1p)(z) = 1 for every x € B. This and (2.27), immediately
yield
Mpullx, = [1sMs(1p) ullx, < [[(Mpls)ullx, <Ml1pullx,. (2.34)
By (2.30), and the fact that u and v are B-weights, we have that 0 < |15 u||x, < co. Hence
re readily obtain that N7 > 1.
To show (b), note that (2.28) is equivalent to
[(Mgh)u ' v x, < MNollhu v x, VheEM,. (2.35)
Additionally, the fact that u and v are B-weights gives that «~'v~! are also B-weights. There-
fore, the conclusion (a) applied to (2.35) eventually yields Ny > 1. O

We now present examples of Banach function spaces.

Example 2.36. Suppose that (X, ) is a non-atomic o-finite measure space with u(3) > 0.
Let B be a Muckenhoupt basis and let u, v be two B-weights. Set X = LP(X,du), 1 < p < oo,
which is a rearrangement invariant Banach function space over (X, u). Clearly X(v) = LP(3,v),
in other words, the space X, = LP(X,v) is a Banach function space over (X, v). Note that in
this case X!, = L” (3, v). Hence (2.27) and (2.28) can be rewritten respectively as

MBIl e (sur vy < NPl Lo(s,wp vy, Y h € My, (2.37)
IMBA| 1 52,y w101y < Nollbll 1ot (5 st -0y, T E M. (2.38)
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Since B is a Muckenhoupt basis, we have that u? v € A, 5 yields (2.37), and wPol? e Ay B
implies (2.38). On the other hand, by definition u”v € A, 3 if and only if u PP e Ay B.
All these show that in this scenario, (2.27) and (2.28) (or, (2.37) and (2.38)) hold provided
uPv e A, B

As mentioned above, in (R™, £™), the set of all cubes Q, the set of all dyadic cubes D, the
set of all rectangles R whose sides are parallel to the coordinate axes, and the collection Z
of Zygmund rectangles in (R3, £3) whose sides are parallel to the coordinate axes and have
lengths s, t and st with s,t > 0, are all Muckenhoupt bases. The same occurs if we consider

the collection of all metric balls in a non-atomic doubling measure metric space (2,d, ). In
each of these cases, (2.37) and (2.38) hold provided v’ v € A, 3.

Example 2.39. Given a measurable function p(-) : R™ — (1,00), then the norm

£l ey = i {3 > 0 / n (Wf”y"% <1} (2.40)

defines a Banach function space LP()(R™, £") called a variable Lebesgue space whose as-
sociate space is LP'()(R", L"), where 1/p(z) + 1/p'(z) = 1 for every z € R". The space
Lp(')(]R", L) is not generally rearrangement invariant (typically, the norm of a ball depends
on the location). In this context, we set

p— :=essinfp(z) and p; :=esssupp(x). (2.41)
Furthermore, we say that p(-) € LH if there are constants Cp, Co € (0,00) and peo € [0,00)
such that

Co
px) —ply)| < —F——, |z—y|<1/2,
ple) ~ 2] € ot vl <1/
and o
P < ——2 R".
ip(z) —p |_log(e+]:p\)’ T €

For further details on these spaces, the reader is referred to [17].

Let B be the collection of all balls in R". The class of A,.) = Ap.) 5 weights consists of all
weights that satisfy the condition

-1 _
[wla,., = Sup LB) 7 wlpll oo @, emy 0™ 15l e oy < 00 (2.42)
Under the background hypothesis that 1 < p_ < p; < 0o and p(-) € LH, it turns out that in
[16, 19] it is proved that
w e Ap() <~ H(Mh) wHLp(.)(Rn7£n) < CthwHLp(.)(Rn7£n)7
= MR 0| ) < Collh ™ ey g oy (2.43)
In particular, by [22, Theorem 2.4] one can easily see that
w=1€A,,, Vp()eLHwithl<p <p; <oco. (2.44)
We would like to observe that in the general case, with p(+) not satisfying the LH-condition,
it is not known whether any of the equivalences in (2.43) holds for general weights. Nonetheless,

[38, Theorem 1.2] shows that if p(-) is constant outside some large ball and 1 < p_ < py < oo,
then

M is bounded on LPO)(R", £™) if and only if 1€ Ap(y- (2.45)
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Example 2.46. Suppose that (X, p) is a non-atomic o-finite measure space with p(X) > 0.
Let B be a Muckenhoupt basis so that Aw 5 C U,s; RHs 5, and let X be a rearrangement
invariant Banach function space over (X, ).

Since B is a Muckenhoupt basis and w = 1 € A, 5 for all p > 1, it follows that My is bounded
on LP(X, ) for all 1 < p < oo. This and Boyd’s interpolation theorem (cf. [8, Theorem 5.16,
p. 153] or [44, Theorem 8.44]) imply that

l<px<ggx<oc = Mpgisbounded on X and X'. (2.47)
On the other hand, we have already observed in Example 2.36 that u?v € A, implies

(2.37) and (2.38). We will use this and Boyd’s interpolation theorem to obtain (2.27). Assume
now that 1 < px < gx < oo. Let v be a B-weight so that v € A, 5. We claim that

Mph) u||xw) < Cllhul|x@), whenever uP*v e A, g and u™v € A, 3, 2.48
() () 12¢) qx,

for every h € M,. To see this, fix u so that uP*v € Ay, 5, u™ v € Ay 5. By Lemma 2.15 parts
(b) and (c), there exists r € (1, p) such that uP*/"v € Ay e and u¥ v € Ay, 5. Hence, since
B is a Muckenhoupt basis, we arrive at
I(MBh) ull o/ sy ) < Cllhull /e (s )y VR € My, (2.49)
[(Mgh) ull paxr(s,v) < Cllhullpoxr(s,v),  Vh € My, (2.50)
Equivalently, the sublinear operator h — Mpg(hu~")u is bounded both on LP*/"(%,v) and on

L% (3, v). Then, Boyd’s interpolation theorem (cf. [8, Theorem 5.16, p. 153] or [44, Theorem
8.44]) in the measure space (X, v) gives as desired (2.48).

Our next claim is that

[(Mgh)(uv) x, < Cllh(uv) x,, if uP*v e Ay, pand uv € Ay g, (2.51)
for every h € M,,. To show this we note that if we set @ = (uv)~!, then (2.48) gives that
H(MBh>ﬁHX{, < CHhﬂ”X%, if uP¥ v e APXMB and u% v € A‘IXUB' (2.52)

On the other hand, by (2.24) and Lemma 2.4 we have

Wr v e Ay, g = u @@ e s = uBue Agp
and

W v € Ay, p = w Pl e p g = wPPue Ay .

All these eventually yield (2.51). Combining (2.48) and (2.51), we conclude that if X is a
rearrangement invariant Banach function space over (X, ) with Boyd index satisfying 1 <

px < gx < 00, then
I(Msh) ulz) < Cllhullzg and (M b)u oy < Cllhu e, o)
whenever uP*v € A, 5, u¥ v € Ay 5, and v € A . '

Before considering some particular examples we note that when v = 1 one can easily see that
I(Mph) ullx < Cllhullx and ||(Mph) u™"||x < Cllhu"|x,

2.54
whenever uP* € A, 5, u¥* € Ay, g, or equivalently, u € Ay, . (cf. (2.2)). (2:54)

Consider the Lorentz spaces X = LP4(X, ), 1 < p < 00, 1 < ¢ < 0o defined by the function

norm L
Rl U dt\ e
s = ([~ G507 )"
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when 1 < g < oo, and
1
[l ppoe sy == sup tv fi(t).
o<t

<00

These are rearrangement invariant Banach function space over (X, ) and the Boyd indices are
px = qx =p € (1,00), see [8, Theorem 4.6, p.219]. Hence, (2.53) becomes

[(Mgh) ul|Lp.acs,w) < Cllhulppacs,y) and
”(Mé,vh) UilHLp',q'(z,v) < CHhuiluLP’,Q’(z,vy (2.55)
whenever uPv € App, v € A, 1 <p <o0,1<¢q< 00.

Note that when p = ¢ this agrees with Example 2.36.

The same occurs with the Orlicz space X = LP(log L)*(X, u) with 1 < p < 0o, a € R. This
is a rearrangement invariant Banach function space whose function norm is given by

1 flLe (log L)o (2,0) = Inf {)\ >0: /n Q(w/\x)'>da¢ < 1}, (2.56)

where ®(t) = tP log(e+1t)*, t > 0. In this case we also have px = gx = p € (1, 00) and therefore
(2.53) means that

|(Mgh) ull Lr(0g L)o (£0) < CllhullLrog Ly« (£,0) and
||(Mz/3,yh) u™! HLp’(logL)a 1-2")(2,v) < Clh u™! ||Lp’ (log L) (1=2") (£,v)> (2‘57)
whenever uPv € App, v € A, 1 <p < oo, x €R.

Let us point out that when a = 0 we are back to Example 2.36.

Our last examples are X = (L* + L) (2, ) or X = (L* N L%) (X, ) which are Orlicz spaces
whose function norms are given as in (2.56) with ®(t) ~ max{t* t°} and ®(¢) ~ min{t*, ¢},
t > 0, respectively. In either case, if ©(X) = oo then px = 4 and ¢x = 6, hence we can rewrite
(2.53) as

[(Mgh) ullx) < Collhullxw) and (Mg ,h) u™ xw) < Clhu™ s,

A 6 (2.58)
whenever u* v € Ay, u’v € Agp, and v € Ay 5,

with X = (L* 4 L) (X, i) or X = (L* N LY)(X, 1), where the associated spaces are respectively
X' = (L3N L8/5) (2, p) or X! = (L*3 4 LY/°)(%, ). Of course the same can be done with
X = (LP+ L9)(X,pn) or X = (LPN L9 (X, p) with 1 < p,q < oo in which case px = min{p, ¢}
and gx = max{p, ¢}. Further details are left to the interested reader.

As mentioned above, in (R™, £™), the set of all cubes Q, the set of all dyadic cubes D, the
set of all rectangles R whose sides are parallel to the coordinate axes, and the collection Z
of Zygmund rectangles in (R3, £3) whose sides are parallel to the coordinate axes and have
lengths s, t and st with s,t > 0, are all Muckenhoupt bases. The same occurs if we consider
the collection of all metric balls in a non-atomic doubling measure metric space (2,d, u). In

all the cases one has Ay 5 C |J o RHs .

We close this subsection with the following technical lemma.

Lemma 2.59. Fiz (X, 1), a non-atomic o-finite measure space with () > 0, and a basis B.
Let w and v be B-weights so that v(B) < oo for every B € B and v(X) > 0. Then for every
e > 0 and for every non-negative function h on ¥ with ||hul/x, < 1, there exists a function h.
on X such that

h<he he>0p-ae and |heulx, <1+e. (2.60)
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Proof. Since (3, p) is o-finite, there exists an increasing sequence of y-measurable sets {3;}22,
such that ¥ = [J7Z; ¥; and 0 < u(X;) < oo for each j. Set

Ey:={xeX¥:u(zr)=0or u(r) =00 or v(z) =0 or v(z) = oo},

2.61
Ei={zxe¥;:0<u(z)<j0<uv(zx)<j}, j=>1, (261)

Let us observe that ¥ = [J;2, E; and also that {E};};>1 is a non-decreasing sequence. Hence,
there exists jo > 1 such that w(Ejy) > 0 and p(E;) =0 for 1 < j < jo. Note also that since
u and v are B-weights, then u(Ep) = 0. Define then Ey =%\ UjZ;, Ej which clearly satisfies
w(E)) = 0. We claim that

0< H]‘EjuHX'u < oo, Yj > Jo. (2.62)

In fact, ||1gullx, < jll1g;llx, < oo since v(E;) < ju(¥;) < co. If ||1gullx, = 0, then item
(i) in Definition 2.17 gives that u = 0 v-a.e. in Ej. Since 0 < v < oo p-a.e. in X, it follows
that u = 0 p-a.e. in Ej, which leads to a contradlctlon since p(Ej) > 0 for every j > jo. Thus,
(2.62) holds. Now we define

he(x) := h(z) + e F(x) and Fa:::1/ + 2j x € .
Note that by (2.62), h. and F are well defined in X.

By construction h < h.. On the other hand, the fact that p(E() = 0 implies that v(E{)) = 0,
and hence [|1pg; ullx, = 0 by item (i) in Definition 2.17. This and the properties listed in
Definition 2.17 lead to ||F ul|x, < 1 and, thus,

e ullx, < llhullx, +&llFullx, <1+e.

To complete the proof of (2.60), we just need to see that F > 0 in X\ Ey, since pu(Ej) = 0.
Let z € ¥\ By = ;2 Ej. Then there exists j, > jo such that 2 € Ej,. From this and (2.62),
we conclude that
 1p. (x 9~ Ja
Fla) > 2 2@ > 0.
e, ulx, 1, ullx,
The proof is complete. g

2.3. Modular spaces. We say that ¢ : [0,00) — [0,00) is a Young function if it is continu-
ous, convex, strictly increasing, and satisfies
o(t)

d
lim 2 =0, lim — = oc. (2.63)
t—ot+ t t—oo ¢

A function ® satisfies the doubling condition, or ® € Ay, if there is a constant Cy > 0 such
that ®(2t) < Cp P(t) for every t > 0. Given a Young function ®, its complementary function
® : [0,00) — [0,00) is defined as

D(t) == ig}g{st —®d(s)},

which clearly implies that
st < ®(s) + D(¢t), s,t > 0. (2.64)

Moreover, one can check that @ is also a Young function and

<o l)d (1) <2, t>0. (2.65)
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In turn, by replacing ¢ by ®(¢) in first inequality of (2.65), we obtain

—P(t
cp(i)) <o), t>0. (2.66)
In analogy with (2.22), we define the dilation indices
i lim 28 s i 802 (2.67)
t—0+ logt t—oo  logt
where hg is defined as
D(st)
ha(t) :=su , t> 0.
R Ty
From the definitions, one can show that
1 < ’L'q> < Iq> < o0, (Lp), = ig, and (Z'cp), = Ig. (2.68)

Additionally, it turns out that ® € A, if and only if I < 0o, and hence
O, P c Ay if and only if 1<ip < Ip < 00. (2.69)

Assume that (3, 1) is a given non-atomic o-finite measure space with () > 0, for f € M,
and a weight w, we define the modular p> by

o = X wl\x ) = s wlx).
pwﬂ~LMW)D(MM)QLMWNM()

When w = 1, we write p® in place of p&. We then introduce
M = {f € My : py(f) < oo},

which is referred to as a modular space.

As we have seen in Section 3, to formulate the extrapolation results on Banach function
spaces, one requires the boundedness of maximal operator My or its dual operator Mé,v'
Likewise, to develop the extrapolation analogs on modular spaces, the assumptions in the
current setting read as follows:

/@((Mgh)u)vdu</\/'1/<b(]h\ Wudy,  VheM,, (2.70)
> >
/@((Mé’vh)u_l)vdug/\/'g /<I>(]h| uw ) vdpy, Vh e M,. (2.71)
) b

Lemma 2.72. Fiz (X, 1), a non-atomic o-finite measure space with p(X) > 0, and a basis
B. Consider v, a non-negative p-measurable function so that v(B) < oo for every B € B and
v(X) > 0; and ® a Young function. Let u : ¥ — [0,00] be such that (2.70) holds. Then for
every B € B, the following hold:

(a) If p2(1pu) = oo then u = oo p-a.e. in B. Hence, either p®(lpu) < 00 or u = oo
p-a.e. in B; and either u € L*(B,v) or u = oo p-a.e. in B.

(b) If p®(1pu) = 0 then u = 0 v-a.e. in B. Hence, either p2(1pu) > 0 or u = 0 v-a.e. in
B; and either u > 0 v-a.e. in B or u =0 v-a.e. in B.

In particular, if in addition 0 < u,v < 00 p-a.e. in Xg, then

0 < p*(1pu) < oo for every B € B. (2.73)
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Proof. Fix B € B. Then, for every h € M, with 0 < fB hdp < oo we have that

/]E;q)((]éhdu) u)vd,ug/zé(Mlg(lgh)u)vd,uS./\/l/BCD(]hu)vd,u,

where the last inequality follows from (2.70). In particular, for any measurable set S C B with
w(S) > 0, taking h = % 1g, we obtain

ot (ta) = [

@(@ 1g u) . (2.74)

O (u)dv < M / ()

B
Assume next p®(1pu) = co. Set
Sy:={zx e B:0<u(z) <r}, r > 0.
If 4(S;) > 0 then (2.74) yields

o= ph(Lpu) <Ny [

B

@(5((5)) 1g, u) dv < M @(5((5)) 7“) v(B), (2.75)

which contradicts our assumption v(B) < oo for every B € B. Hence u(S,) = 0 for every
r > 0, that is, u = oo p-a.e. in B. On the other hand, if u ¢ L' (B, v), then [, udv = co. Note
that 0 < v(B) < oo in this case. Hence, by Jensen’s inequality,

o = (éudv) < ]{B(I)(u) dv = v(B)~p® (1 5u), (2.76)

which gives at once p®(1pu) = co. By the previous argument, u = oo p-a.e. in B. The proof
of (a) is then complete.

Next, assume that p®(1pu) = 0. Then ®(u(z)) = 0 for v-a.e. x € B and since ® is strictly
increasing with ®(0) = 0, one readily gets u = 0 v-a.e. in B. On the other hand, if u =0 in a
measurable set S C B with v(S) > 0 (hence u(S) > 0), then (2.74) gives p>(1pu) = 0, and
hence, u = 0 v-a.e. in B. This proves (b).

Finally, (2.73) is a consequence of (a) and (b) since u = 0 v-a.e. in B is equivalent to u =0
p-a.e. in B whenever 0 < v < co p-a.e. g

Lemma 2.77. Fiz (X, 1), a non-atomic o-finite measure space with (%) > 0, and a basis B.
Let ® be a Young function, and let uw and v be B-weights so that v(B) < oo for every B € B.
Then

(a) If (2.70) holds, then N1 > 1.
(b) If (2.71) holds, then Ny > 1.

Proof. Let B € B. Observe that Mp(1p)(z) =1 for every € B. This and (2.70) readily give
/ B (u)v dyt / B(Mg(1p) ) v dp < / B(Mg(1p) u) v dy
B B b
<M / S(1pu)vdu = / O(u)vdu, (2.78)
b B

thus N; > 1. This shows (a). To prove (b), we observe that (2.71) can be written as

/ O((Mgh)u v Hodu < /\fg/ O(|h|ut v vdy, VheM,. (2.79)
) 2
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Besides, the fact that u and v are B-weights gives that v~! v~! are also B-weights. Therefore,

the conclusion (a) applied to (2.79) eventually yields No > 1. O

Example 2.80. Suppose that (¥, x) is a non-atomic o-finite measure space with p(X) > 0.
Let B be a Muckenhoupt basis and let u, v be two B-weights. Given 1 < p < oo, let ®(t) = tP,
t > 0, which is a Young function whose complementary function is ®(¢) = (p — 1)t*, t > 0 .
Clearly, he(t) = tP, t > 0, hence ip = I = p. Note that (2.70) and (2.71) can be rewritten

respectively as
/E(Mgh)pupvdu <M /2|h|pupvd,u, VheM,, (2.81)
/(MBh)pl uw P o dp < N / \hP w0 dp, VheM,. (2.82)
) b

Since B is a Muckenhoupt basis, we have that u? v € A, 5 yields (2.81), and w Pl P e Ay B
implies (2.82). On the other hand, by definition u”v € A, 5 if and only if w PP e Ay B.
All these show that in this scenario, (2.70) and (2.71) (or, (2.81) and (2.82)) hold provided
uPv e A, B

As mentioned above, in (R™, £™), the set of all cubes Q, the set of all dyadic cubes D, the
set of all rectangles R whose sides are parallel to the coordinate axes, and the collection Z
of Zygmund rectangles in (R3, £3) whose sides are parallel to the coordinate axes and have
lengths s, t and st with s,t > 0, are all Muckenhoupt bases. The same occurs if we consider

the collection of all metric balls in a non-atomic doubling measure metric space (2,d, ). In
each of these cases, (2.81) and (2.82) hold provided v’ v € A, .

Example 2.83. Suppose that (X, 4) is a non-atomic o-finite measure space with p(%) > 0.
Let B be a Muckenhoupt basis so that As g C ;o1 RHs 5, and let ® be a Young function.
By interpolation for modular spaces, see [52, 13],

s>1

l<ipg<Ip<oo = p*(Mgf) <N p®(|f]), p®(Msf) < Nap®(|f)) (2.84)

On the other hand, we have already observed in Example 2.80 that u?v € A, implies
(2.81) and (2.82). We will use this and interpolation for modular spaces, see [52, 13], to obtain
(2.70) . Assume now that 1 < ip < I < co. Let v be a B-weight so that v € Ay g. We claim
that

(2.70) holds whenever uy e Ai, B and uwl v e Al B- (2.85)

To see this, fix u so that u'® v € A;, g and u’® v € A, 5. By Lemma 2.15 parts (b) and (c),

there exists © € (1,p) such that u'®/"y € Ay e and u'*"™y € Ay, 5. Hence, since B is a
Muckenhoupt basis, we arrive at

M5kl o) < Cllbtl g sgs Vh € M (236)

[(Mh) ull 1a 5,0y < Cllbtdll i vz Vb € M (257)

Equivalently, the sublinear operator h — Mg(hu~')u is bounded both on L**/" (%, v) and on

L*7(¥,v). Then, interpolation for modular spaces, see [52, 13], much as in [21, Lemma 4.20],
gives as desired (2.85).

Our next claim is that

/@((Mgh) (o) vdp < C / DAl (wo) Y vdu, VheM,, (2.88)
b b
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whenever u® v € A;, g and ul® v € Ay, g. To show this we note that if we set & = (uv)~!,

then (2.85) gives that
/ ®((Mph)u)vduy < C / O(|h| W) vdu, ifuwoee Ai B RN Al (2.89)
by )

On the other hand, by (2.68) and Lemma 2.4 we have
Urve A g == u D U e A g e wtu e Apy

and
~I= —(ig) ,,1—(ia)’ ip )
uTvE Alg,B — u v € Aigy s = u'v € Ajy B

All these eventually yield (2.88). Combining (2.85) and (2.88), we conclude that if ® is a
Young function with dilation indices satisfying 1 < i¢ < Ip < oo, then

(2.70) and (2.71) hold whenever u'® v € Ay B, uwl*v e Ar, B, and v € Ay 3. (2.90)

Before considering some particular examples we note that when v =1 one can easily see that
u'® € A, 5 and ule € Ap, p if and only if w € A;, 1, (cf. (2.2)).

Consider the Young function ®(¢) = t* (log(e+t))*, 1 < p < 0o, a € R whose complimentary
function is ®(¢) ~ ¥ (log(e +t))* 1 =F). The dilation indices are ip = I = p € (1,00), Hence,
(2.90) becomes

(2.70) and (2.71) hold whenever v’ v € Ay, v € A, 1 < p < 0. (2.91)

Note that when a = 0 this agrees with Example 2.80.

Our last examples are ®(t) ~ min{t* %} or ®(t) ~ max{t* ¢t} whose complementary
functions are respectively ®(t) ~ max{t%/3 t6/5} and ®(t) ~ min{t*3 t5/5}. In either case

ip = 4 and I = 6, hence we can rewrite (2.90) as
(2.70) and (2.71) hold whenever u* v € Ay, wve A g, and v € Ay 3, (2.92)

Of course the same can be done with ®(t) ~ min{t?,t?} or ®(t) ~ max{tP,t?} with 1 < p,q <
oo in which case ig = min{p, ¢} and I = max{p,q}. Further details are left to the interested
reader.

As mentioned above, in (R™, £™), the set of all cubes Q, the set of all dyadic cubes D, the
set of all rectangles R whose sides are parallel to the coordinate axes, and the collection Z
of Zygmund rectangles in (R3, £3) whose sides are parallel to the coordinate axes and have
lengths s, t and st with s,t > 0, are all Muckenhoupt bases. The same occurs if we consider
the collection of all metric balls in a non-atomic doubling measure metric space (2,d, ). In

all the cases one has Ay 5 C J,o RH, 5.

Lemma 2.93. Fiz (X, 1), a non-atomic o-finite measure space with (%) > 0, and a basis .
Let ® be a Young function, and let uw and v be B-weights so that v(B) < oo for every B € B
and v(X) > 0. Then for every € € (0,1) and for every non-negative function h on ¥ with
0 < pX(hu) < oo, there exists a function he on Y such that

T he >0 p-a.e., and p2(h-u) < p®(hu) (2.94)

Proof. We modify the proof of Lemma 2.59 as follows. Use that (3, ) is o-finite to find an
increasing sequence of y-measurable sets {3;}22; such that ¥ = [J7Z; %) and 0 < u(%;) <
oo for each j. Consider Ey and the increasing family {F£;};>1 introduced in (2.61) so that
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¥ = ;o Ej. Recall that there exists jo > 1 such that pu(Ej) > 0 and p(Ej)) = 0 with

Ey =3\ U2, Ej- We claim that

0 < py(Lg;u) < oo, Vj=> jo. (2.95)

In fact, p (1g, u) < j ®(j) u(X;) < co and the lower bound is obvious since u, v > 0 in E; and
w(E;) > 0. Let 6 := min{1, p?(hu)} € (0,1], and for every £ > 0 set

15,

hei=(1—c)h+c0F and F:= 1E5+Z2fjm'
v J

J=Jjo
Note that by (2.95), h. and F are well defined in ¥. By construction (1 —¢)h < h.. Given

x € X\ E| = U;')ijo Ej;, there exists j, > jo such that x € Ej . From this and (2.95), we
conclude that

Fla) > 2 ME@ 2
h I+ pg)(]-ij U) 1+ pg’(lEm U)

This and the fact that u(Ej)) = 0 readily implies that h. > 6 F > 0 p-a.e. On the other hand,
since p(E()) = 0 and @ is convex, one has

pr(heu) < (1—¢)pl(hu) +e0 py (Fu)
(1 )l () + 02 (FuLy) + <0 (Fuls )

> 0.

pg)(]'Ej u)

v J

J=Jo
< (1= e)pP(hu) +e0
< py (hu).
This shows (2.94) and the proof is complete. O

3. EXTRAPOLATION ON WEIGHTED BANACH FUNCTION SPACES

This section is devoted to establishing a variety of extrapolation theorems on the general
weighted Banach function spaces introduced above. We begin with the so-called A, extrapola-
tion. Hereafter, a family of extrapolation pairs F is a collection of pairs (f,g) of nonnegative
measurable functions.

Theorem 3.1. Suppose that (X, 1) is a non-atomic o-finite measure space with p(3) > 0.
Let B be a basis and let F be a family of extrapolation pairs. Let u and v be B-weights on
(3, ) such that v(B) < oo for every B € B, and let X, be a Banach function space over
(X,v). Let Mp denote the Hardy-Littlewood maximal function on (X, 1) associated with B and

let My ,h:= Mp(hv)/v for each h € My,. Then, the following hold:

(a) Let pg € (1,00), and assume that there are N1,Nay < oo so that
|(Msh)ullx, < Nilhullz,, VheM,, (3.2)
N(Ms 1) u e, < Nallhu g, VR €M, (3.3)
If for every w € Ap, 5, one has

1fllzeo (20) < Y([w]a,, s) 191 Lr0 (2,0) (f,9) € F, (3.4)
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where U : [1,00) — [1,00) is a non-decreasing function, then

Ifullz, < Collgullx,, — (f,9) €F, (3.5)

(24 )

and

<

H > ) ”Ou (g} C F, (3.6)

where Cy = 2’ i (2P0 /\Gpo_lj\/'g).
(b) Assume that there is No < 0o so that (3.3) holds. If for every w € A; g, one has

HfHLl(E,w) < lIJ([u)]ALl’:’)”gHLl(Z,w)a (f7g> S F? (37)
where W : [1,00) — [1,00) is a non-decreasing function, then
1fullx, <8¥(2N2) lgullx,,  (f,9) €F. (3.8)

and

< 8W(2MN5)

(), (),

Moreover, in any of the two scenarios if B is additionally assumed to be a Muckenhoupt basis,
then (3.4) or (3.7) imply that for every q € (1,00),

||, =el ()],

Remark 3.11. Theorem 3.1 generalizes [21, Theorems 3.9 and 4.10], [15, Theorem 10.1], [22
Theorem 2.6], and [44, Theorem 8.2]. Indeed, if X, = LP(R",v) with 1 < p < oo, then both
(3.2) and (3.3) are equivalent to u’v € A, p. On the other hand, if X, is a rearrangement
invariant Banach function space with 1 < px < ¢gx < oo and v = 1, then v € A, 5 implies
both (3.2) and (3.3) (cf. [21, Lemma 4.12]) provided that B is open for the Muckenhoupt
classes. If u,v = 1 and X, is a Banach function space, then (3.2) and (3.3) for the basis of
balls in the Euclidean setting amount to assume that the Hardy-Littlewood maximal function
is bounded in X and X’. If we take X, = LP()(R™, £"), then (3.2) and (3.3) agree with the
condition that (p(-),u) is an M-pair (cf. [22, p. 1209]). Finally, [44, Theorem 8.2] corresponds
to the case u = 1 in the previous result.

, A5 99)k C F (3.9)

. A9 F (3.10)

Remark 3.12. As in [21, Section 3.3] one can easily rescale in the previous result. To be more
precise, suppose that for some r > 0 and pg € [r, oo] there holds

||f”Lp0(E,w) < qj([w]ApO/r,B)||g||Lp0(E,w)7 (f’g) € f? (313)

for all w € A/, g, and where W : [1,00) — [1, 00) is a non-decreasing function. Then, one can
rewrite (3.13) as

1 ooy < Cwlay, )19 Loy (fr9) € F (3.14)

Thus we can apply Theorem 3.1 to the previous expression (that is, to the family F, of pairs
(f",g") with (f,g) € F) to easily obtain, using the notation introduced in (2.21),

Ifullxy S llgullxy, — (f,9) € F. (3.15)

provided
|(Mgh)wlly, S Ihu'llx,, YheM,, (3.16)
|(Mf by u gy S bl he M (3.17)
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when r < py and assuming only (3.17) when r = py. Further details are left to the interested
reader.

The proof of the previous result will be based on the following proposition which is interesting
on its own right.

Proposition 3.18. Suppose that (X, i) is a non-atomic o-finite measure space with p(3) > 0.
Let B be a basis, w and v be B-weights on (X, u) such that v(B) < oo for every B € B, and
let X, be a Banach function space over (X,v). Let Mg denote the Hardy-Littlewood mazimal
function on (X, p) associated with B and let My ,h := Mg(hv)/v for each h € M. Then, for

every f,g € M, so that || f ul|x,, ||g ullx, < oo the following hold:

(a) Let pg € (1,00), and assume that there are N1, Na < oo so that both (3.2) and (3.3) hold.
Then, there exists a B-weight w = w(f,g) € Ap,p satisfying [w]a, 5 < 2P ./\/'fo_l./\/z
and such that

1+ 2
Ifullx, <2 % [|fllrocw)  and  lgllrrosw) < 270 [lgullx, - (3.19)
In particular, there exists a B-weight w = w(f) € Ay, s such that [w]a, , < 2P ./\/'fo_1 N
and
—1-2 2
2 ol fullx, < fllzrosw) < 270 | fullx, - (3.20)

(b) Assume that there is Na < oo so that (3.2) holds. Then, there exists a Muckenhoupt
weight w = w(f,g) € A1 satisfying [w]a, , < 2Nz and such that

po,B —
Ifullx, <20flliw  and  llgllzysw < 4llgullx, - (3.21)
In particular, there exists a B-weight w = w(f) € Ayp satisfying [w]a, x < 2Na and
such that
27| fullx, < If s < 4117 ullx,- (3.22)

Assuming this result momentarily we can easily prove Theorem 3.1:

Proof of Theorem 3.1. Fix (f,g) € F, and without loss of generality, we may assume that
llgullx, < oo, otherwise there is nothing to prove. We claim that f < oo p-a.e. Otherwise,
there exists a measurable set £ C ¥ with pu(E) > 0 such that f = oo on E. In view of (3.4)
and the fact that B-weights are p-a.e positive on ., it follows that

9]l Lro(n) = 00 for every w € Ay 5, (3.23)
and this clearly contradicts (3.20) in Proposition 3.18 applied to g.

To proceed we recall that (3, 1) is o-finite, hence there exists an increasing sequence of y-
measurable sets {3;}22; such that ¥ = J;Z, ¥ and p(¥;) < oo for each j. For every N > 1,
we define

SN = f1ls = f Laesy: f(2) <Nu(@)<Nu@)<N}-
Note that v(X) < Nu(Xn) < co. Since X, is a Banach function space over (X, v), thanks to
the property (vi) in Definition 2.17, one has

Consider first the case pg > 1. Then applying Proposition 3.18 part (a), we can find a weight
w=w(fy,g) € Apy with [w]a, 5 < 2PNT°"'Aj such that

1+ 2
[fvullx, <2 P lifnllcrow)  and  lgllzro () < 270 [lgullx, . (3.24)
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This, together with (3.4), yields

144 S
[fnvullx, <2 "ol fnllro(saw) < Z 1 £l zro (5)

4 2
7

1+ 3t
<2 0U([wla, s)lglirow <20 0T(2PNPNL) g ullx, . (3.25)

Recalling that f < oo p-a.e. and that u,v are B-weights we have fyu ~ fu as N — oo
p-a.e., hence also v-a.e., since v is a B-weight. Therefore, (3.25) and property (v) in Definition
2.17 immediately give (3.5), as desired. The case py = 1 follows using the same argument but
invoking Proposition 3.18 part (b), details are left to the interested reader.

To complete the proof we need to justify the vector-valued inequalities (3.6), (3.9), and
(3.10). For any ¢ € (1,00), introduce the new family Fyq of extrapolation pairs (F,G), where

Fon :={<F,G>=((Zf;1) (Zgj)) (fis9)}s € F . (3.26)

Note that for every (F,G) € Fywo and for every w € Ay, g, one easily gets from (3.4) if pg > 1
or (3.7)ifpo =1

I 0 (55,00 = Z/fpowdu«y Ay )" Z/gjwdu W([w] a8 G100 (55

Thus, (3.6) follows from (3.5) when py > 1 and (3.9) follows from (3.8) when py = 1, either of
them applied to Fyo: for every (F,G) € Fyro,

oo 3+2 _
H(fo(’)m“H = [Fullz, <27 W@ NPIN) |G ulx,
; X
] v

3

+ -
=27 W (2P NPT ING)

1
(Xgr)™
J

We are left with showing (3.10) under the additional assumption that B is a Muckenhoupt
basis. The main point is that such a condition allows us to apply Rubio de Francia extrapolation
theorem in the present context of Muckenhoupt basis (cf. [21, Theorem 3.9]) to replace pg in
(3.4) by any ¢ € (1,00). More specifically, fix ¢ € (1,00) and note that (3.2) and (3.3) hold
with u = 1, v € Ay, X, = LI(3,v), precisely because B is a Muckenhoupt basis and hence
Mg is bounded in X, = LI(X,v) and in X, = L7 (Z,v'~7) for every v € A, 5. As such (3.5)
in this particular case implies a version of (3.4) with ¢ in place of py. This becomes our new
initial assumption and we readily obtain (3.6) with ¢ in place of py, and this is eventually
(3.10), completing the proof. O

Proof of Proposition 3.18. We fist observe that (3.19) (resp. (3.21)) with g := f readily implies
(3.20) (resp. (3.21)). We then focus on obtaining (3.19) and (3.21). With this goal in mind,
we generalize some of the ideas of [21, Theorem 4.10]. Fix f,g € M, with || fulx, < oo
and |lgu|x, < co. We start with (a), that is, we fix pp > 1 and assume (3.2) and (3.3) for
some finite constants N7 and N5. For any hy, hy € M, with hq,ho > 0 p-a.e., hyu € X, and
hou~! € X!, we define the Rubio de Francia iteration algorithms as:

= (M) ho

> MEhy
Rhy =Y B d  Rhy:=) —>2¥ =
PV P v
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where Mg and (Mz/’s,v)o denote the identity operator, while for every k > 1, we write ME =
Mpo---oMpg for the k-th iteration of Mg and (Ml’gm)k = Mlls,v 0-- 'oMég?v for the k-th iteration
of My . We claim that the following hold:

h1 < Rhy ha < R'ha, (3.27)
[(Rhy) ully, <2 b ull, IRyl <2 [houy,  (3.28)
[Rhl]Al,B S 2N1, [(R/hQ) U]AI,B S 2N2. (329)
Indeed, (3.27) and (3.28) are immediate consequences of the definitions, (3.2) and (3.3)

the other hand, using that hi, he are positive almost everywhere, we can obtain from (3.27)
Rhi(z) > hi(z) >0, prae xe€X, and R'ho(z) > ho(z) >0, p-ae xel.

Besides, since by assumption v(B) < oo for every B € B and X, is a Banach function space
over (X,vdp), by the property (vi) in Definition 2.17, and (3.28), one has for every B € B

/ (Rhl) ZL’Ud/L = / (Rhl)udv < CBH(Rhl) UHX’U < QCBthuHXU < Q.
B B

This in turn implies that (Rhi)uv < oo p-a.e. in ¥p. This eventually shows that Rh; is a
B-weight. Likewise, R'hg is also a B-weight and so is (R'hg) v. Moreover,

k+1 [es] (M' )k+1

5(Rhy) <Z ST L <2 Rhy  and  Mp,(R'hy) <Z 2 < 2Ny R'hy.

ka
These readily 1mply (3.29).

To proceed, we claim that it suffices to consider the case || ful|x, > 0 and ||gu|x, > 0.
Indeed, if || ful/x, = 0, or ||gul/x, = 0, or both, we just use the claim with f, or g, or both,
replaced by 1p for some fixed B € B. Note that ||1pullx, > 0 by (2.30) in Lemma 2.29.
Assume then that 0 < ||fullx,,|lgulx, < co. Set hy = m so that hy > 0 p-a.e. and

|hiullx, = 1. In view of (2.19), there exists a non-negative function h € X, with [|h[|x; < 1
such that

1 ullx, SQ/thudUZ/thgvdu (3.30)

where hy := hu satisfies hou™" € X with ||hgu™!(|x, < 1. Note that since || fulx, > 0 it
follows that p({h > 0}) > 0, hence hs is not zero p-a.e. in ¥. Applying Lemma 2.59 with e = 1
to h1 and hg, we can find two functions hi, ho > 0 p-a.e. such that

hi < 71/1, hy < EQ, ||711 UHXU <2 and ||712 uilegj < 2. (331)

Set B _
= (Rhl)l—po (thg) V.
From (3.29) and (2.6), we deduce that w € Ay, g and

[w]Apo < [Rﬁl]i}l’;l[(R’lNzg) U]Al,B < QPONIPO*U\/'Q.
Also, using (2.18) and (3.28) we obtain
/ Rhi R hovdp = / (Rh1) w (R hg)u" dv
by by

< [|(Rhn) ulls, | (R'h2) u™ s, < 4 [1hnullx, [heu™ Iz, < 16 (3.32)
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and

/Q(R/%Q)vdu—/gu(R’lNLQ)ul dv
s s

< llgullx, (R'h2)u™ s, < 2llgullx, [hau x, < 4llgulx,. (3.33)
Then, by (3.30), (3.31), (3.27), Holder’s inequality, and (3.32),

- - 1 PO —
21|l f ullx, < /E fhavdu < /E f (Rhn) 7 (Rhn)# (R'og) v dp

1
A

< ( [ ®i o (R vdu) " ( [ (Rin) (R vdu) " < 167 |l rogse)-
> >

This shows the first inequality in (3.19). On the other hand, g/ [lgullx, = h1 < h1 < Rhy by
(3.31), (3.27). Thus, (3.33) yields

1

PO

191l 70 (500 = ( /E g7 (R (R'Ey) vdu)

1 1
v ~ PO 2
< lgul?? ( / g(R’h2)vdu> < 2% ||gully.

This shows the second estimate in (3.19) and completes the proof of the case py > 1.

Let us next deal with (b), that is, we consider the case pp = 1 and only assume that there
exists My < 0o so that (3.3) holds. We follow the proof of the previous case and this time we
do not use R, that is, (3.2) needs not to be assumed (hence N; could be infinity). With the

notation above, let us set w := R/(hg)v. The second estimate in (3.29) implies w € Ay s and
[w]a, 5 < 2N2. Additionally, (3.30) and the second estimate in (3.31) give

27| fullx, < /E fhovdp < i fF(R'h2)vdp = || fll 11 (s )-

On the other hand, (2.18), the second estimate in (3.28), and the last in (3.31) readily imply

gl ) = /E 9 (R'o) v dpt = /E g (R) " do

< llgullx, |(R'h2) %, < 2lgullx, lhe v |x, < 4 lgullx, -
These prove (3.21). O

The next goal is to prove an extrapolation theorem for A, g weights.

Theorem 3.34. Suppose that (X, ) is a non-atomic o-finite measure space with () > 0.
Let B be a Muckenhoupt basis and let F be a family of extrapolation pairs. Let u and v be
B-weights on (X, 1) such that v(B) < oo for every B € B, and let X,, be a Banach function
space over (X,v). Let Mg denote the Hardy-Littlewood mazimal function on (X, pn) associated
with B and let My b := Mg(hv)/v for each h € M. Assume that there exists N' < oo such
that

(Mg ,h) v x, < Nhutx,, Vh €M, (3.35)
If for some py € (0,00) and for every w € A B,
[fllzro 20y < W([w]ag s)9llLro sy (Fr9) € F, (3.36)
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where U : [1,00) — [1,00) is a non-decreasing function, then for every p € (0,00),

[fPullx, < Cllg"ulx,,  (f,9) €F, (3.37)
and for every q € (0,00),

(i, <elsay],

Proof. The first thing that we are going to show is that (3.36) holds for all p € (0,00) and
w € Asp. This is an extension of [20], [21, Corollary 3.15] to our current setting. For
completeness we include the argument which follows easily from Theorem 3.1. To see this
take an arbitrary p € (0,00) and w € A . The definition of Ay p and the fact that the
A, are nested imply that we can pick s > max{p/pg,1} so that w € Ag;p. Select then
r=pos/p € (1,00) and note that (3.36) implies in particular that

177 o (2 0) < O[], )97 N 2wy, (f19) € F, (3.39)

for every wg € A, 5. With this in hand we are going to invoke Rubio de Francia extrapolation
theorem in this context. More precisely, we first observe that (3.2) and (3.3) hold with u =1,
v e A, X, = L"(X,v), because B is a Muckenhoupt basis and hence Mp is bounded in
X, = L"(%,v) and in X, = L (Z,v'~"") for every v € A, 5. Hence, Theorem 3.1 part (a)
applied in this scenario with (3.39) playing the role of (3.4) (and where it may be convenient
to think of the pairs (pr/T, gpo/’") as the elements of a new family 7, /) yields

) S ”gp()/rHLq(E,wo)v (fa g) €F, (340)

for every wyg € Ay, since ¢ > 1. Taking in particular ¢ = s > 1, and wy = w € A, 5, our
choice of r readily implies

, {(fj 95)}; C F. (3.38)

v

177 || a3 a0

1 fllersw) S N9llrzw)y,  (f,9) € F, (3.41)

where we recall that p € (0,00) and w € A, g are arbitrary.

We are now ready to establish the desired estimates. Fixed p € (0,00), we have by (3.41)
that

1P sw) SOl sw), (fi9) €F, (3.42)
for every w € A g, hence in particular for every w € A; 3. We are now ready to invoke

Theorem 4.1 part (b) (the reader may find convenient to introduce the family F,, consisting of
the pairs (fP, g?) with (f,g) € F) to conclude that (3.8) yields (3.37) as desired:

1P ullx, S lg"ullx,, — (f,9) € F.

To obtain (3.38) we observe that, with the notation introduced in (3.26), one has that (3.41)
implies for any 0 < ¢ < 0o

1F sy = S /E flodi Sy /E Glwdp =Gl (F.G)€Fu,  (343)
J J

for every w € Ay g. The same argument we have used to show that (3.42) yields (3.37) can
be then repeated to see that (3.43) implies (3.38). This completes the proof. O

We formulate the limited range extrapolation on rearrangement invariant Banach function
spaces as follows.
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Theorem 3.44. Suppose that (X, ) is a non-atomic o-finite measure space with (%) > 0.
Let B be a Muckenhoupt basis so that As 5 C o RHs 5, let F be a family of extrapolation
pairs, and let 1 < p_ < py < oo. Assume that for some po € [p—,p+]| and for every wy €
Aposp_ 8NV RH 150y, there holds

111l o (2w0) < Cllgll Lro (5,w0)> (f,9) € F. (3.45)

If X is a rearrangement invariant Banach function space over (X, u) such that X+ is a Banach
function space for some r > p_ and p_ < px < gx < p4, then

[fullx < Cllgulx,  (f.9) € F, (3.46)

for every
ut € Apfp s VRH ., jpyy s and u™ € Ay py s N RHp g,y - (3.47)

Remark 3.48. The classical limited range extrapolation [4, Theorem 4.9] and [21, Theorem 3.31]
is a particular case of Theorem 3.44 by simply taking X = LP(3, u) with p_ < p < p4. Note
that with » = p > p_ we have Xr = LY(%, ) is a Banach function space. Note that (3.46)
and (3.47) can be rewritten as

HquLP(Z,p,) <C ||guHLP(Z‘,/.L)7 (fa g) €F,
for all wP € Ay s N RHy, jpy 5

Proof. We first observe that it suffices to consider the case p_ = 1. The general case follows
by rescaling. Indeed, we just need to set p_ = 1, p. = p+/p_, po = po/p— and consider the
new family F consisting of the pairs (f,g) = (f*~, ¢"~) with (f,g) € F.

Assume from now on that p_ = 1. We may also assume that p, < oo, otherwise the desired
conclusion follows from Theorem 3.1. We claim that under the hypothesis (3.45), by the same
techniques as in [21, Theorem 3.31], and using (2.7) and that B is Muckenhoupt basis, one has
for every po € (1,p4) and for every wo € Apy 5N RH(y, /poy 55

£l ro (2 00) < Cllgllzeo(mw0)> (5 9) € F. (3.49)

Fix X as in the statement and let u satisfy (3.47). Set p := px and ¢ := ¢x. By Lemma 2.16
we have

U € Apgp fa) - (3.50)
Let t = pp+/q and note that p <t < py. Pick p, with 1 < p, < min{¢,1 + %} Write
Tp, 1= (’;—I)/(p* — 1)+ 1 and define

(p« =1 (p-—1) t/ t—p
=1 == 3.51
SET T T My = (3:51)
/
B = L, = (ﬁ) . Poi=sag — Bi(mp, — 1). (3.52)
t—1 Dx
Observe that one has 1 < s < min{ps,p,r}, hence Y := X+ is a rearrangement invariant

Banach function space. Easy computations yield

a1+61:<§>’:<pi>’ and  (on + B) (£>, t (p(t—l))/:p,.

a1 p q o/ t—1\ (t—p)




30 MINGMING CAO, JUAN JOSE MARIN, AND JOSE MARIA MARTELL

1
Hence, (3.50) is equivalent to u®1*#1 € A» 4 ;. This, the fact that X1 is a Banach function

ay oy’
space since a; < 1 (this happens because p > 1), and (2.54) readily give that there exists
M € [1,00) such that

| (Mgh) uaﬁﬁluxl g/\fluhuaﬁﬁluxa%, Vh € M,,. (3.53)

a1

On the other hand, we also have
1 S 1 p«—1 1 t—ps

- 12 ==_ ==
(p/s) p p (t-1p pt-1

and 3 ) _
2 Tpe — b« — — D«
— =5- =s5— f—1)=1-— = .
(%) 5 51 (65) 5 /81 (p ) t—1 t—1
Thus,
!/
] (]3) =y (3.54)
g \§

To continue, we observe that

_ p—1\ _(—D(—p) (=1 (p+—q)p
p*_s_(p*_1)<1_t—1>_ t—1 q(t—+1) ’

which implies

spy—peg _ (pe—s)a_ o (e—Up_ pe—l _t—p. B
Pr—q pr—q t—1 t—1 t—1
Consequently,
,:az{_ /}:w(s_p):azsm Ped . (355)
ﬂ2<(q/8)’) Bo Laz  (q/s) B2 \q  py B2 apy q(p+/q)
a2

Collecting (3.54) and (3.55) we see that (3.50) is equivalent to u™"2 € Aps q7,8 Where Y =
1
(Y’) 2, which is a quasi-Banach function space whose Boyd indices satisfy

py _ (av)" _ (a/s) av _ (py) _ (p/s)

p~:7:7:7 q~:7 .
Y ag o ay Y ag o o

Thus, (2.54) readily yields that there exists N3 € [1,00) such that

M —B2 < —B2 M., )
Mahya™ |, 0 < Nallhu™] 4, Vi e, (3.56)

1,

ag

We would like to note that strictly speaking one cannot invoke (2.54) right away since we
a1

do not know whether (Y’)ez is a Banach function space because ag > 1. Nonetheless, we

1
can overcome this difficulty by working with the sublinear operator Mg q,h := Mp(|h|*?)2
which is bounded in L7(X,v) whenever v > ag and v € A, /,, g. This and the ideas used in

8 8
Example 2.46 (sce (2.48)—(2.50)) show that [|(Mp.agh) u” 2 [y < |hu” 3 ||y for every h € M.
This immediately implies (3.56).
Once we have obtained (3.53) and (3.56), for any hi,hs € M, with hy,hy > 0 p-a.e.,

1 1
hyu®tPt € Xat and hgu™?2 € (Y')2, we define the Rubio de Francia iteration algorithms as:

> MEhy >\ MEhs
Rihy = ZW and  Rohy = ZW'
k=0 k=0
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We claim that
hy < Rihy,  |[(Rih1) aﬁﬁlu i <2 |h1 uo‘1+’BlH [Riha]a, x < 201, (3.57)

ha < Rohg,  [[(Rahs)u 52|| L <Collhpu” 52|| 1, [Rohala, y < 20N, (3.58)

1
with Cp = (1 —2 =2)72, The first and last conditions in both (3.57) and (3.58) are obtained
as before and we omit the details. The second condition in (3.57) can be proved as before upon

observing that a1 < 1 (since p > 1) and hence Xe1 is a Banach function space. The second

a1
condition in (3.58) needs some extra work since (Y')*2 may not a Banach function spaces as
a9 > 1. In any case, the fact that as > 1 implies

1
= 2 (MFhy)e2 _82
IRata) 1% = oty o < | S UER W
()7 = (25 NF)ae v
1
0 -] oo ||(MFEhg) u=Pz2 |2
Z Mkhg)az u o2 ‘ v Z I( 2) H(Y’)OTI2
- 1
k=0 2’“/\/‘]“)072 k=0 (2]“./\/%)072

Kk 1
< [lhau~ 521“2 Z? a2 = (1—2" %) |hpu” ﬂzu%
ner g Y!)®

We would like to observe that in the present scenario Xa is a Banach function space, but
if this were not the case one could still prove the second condition in (3.57) with a different
constant, much as we have done with the second condition in (3.58). This is not relevant in
this proof but may be needed in the proof of Theorem 3.67.

We are now ready to turn to the proof of (3.46). We first observe that 1 < p, <t < p,
since 1 < p < ¢. Hence (3.49) holds. Considering then the approach used in Theorem 3.1, we
only need to prove that for every f,g € M, with 0 < || fu|lx < oo and 0 < [|gul|x < oo, there
exist a constant C' > 0 and a B-weight w = w(f,g) € Ay, 5N RH(y, jp,) 5 such that

[fullx <CIfllzeswy and  |[|gllrezw) < C llgullx. (3.59)
To show (3.59), fix f,g € M, with 0 < ||fu|lx < oo and 0 < ||gul|x < co. Set
g9(z)
hi(z) := , T €. (3.60)
g ullx
Recall the definition of s in (3.51) and let 7, := p,/s, which satisfies r, > 1 as s < p,. Using

the fact that as observed above Y = X5 is a Banach function space, by (2.19), there exists a
non-negative function hy € Y’ with |[he|y» < 1 such that

I ull = 17wl <2 [ £ ul had (3.61)

Applying Lemma 2.59 with € = 1 to h; and ho, we can find two functions El,ﬁg > (0 p-a.e. such
that

hl S 77,1, hg S 77,2, HTZI UHX S 2, and ||77,2HY/ S 2. (362)
Now we define
~ T L _ B2
Hy =Ry (h¢*w ") et and  Hy := Ry(hS2u?)o2u” oz, (3.63)
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It follows from (3.57), (3.58), and (3.62) that
~ 1
hi < Hy,  |Hjulx <27, [HMu P, <20, (3.64)

and
1

hy < Hy,  |Hsllw <2Cg%,  [Hs?u™]a, < 2N, (3.65)
Then invoking (2.18), (3.62), (3.64) and (3.65), we obtain

1
1 = o
:/ H3 Hyw® dp < ||Hf w®|ly [|Ho v = || Hiul§]| Hally < 277730 g2, (3.66)
>

Set w := H;S(T*_l) Hsu®. Due to (3.51) and (3.52) one has
s(re—1) pi—s (1 p—l) _t—p

—1  p.—1 t—1) -1 ™
and
wP+/Pe) — (HO u=P0) = 7ee (HS2 4f2).
This together with (2.6), (3.64) and (3.65) implies that
WO, < (0O 0, < 2 AT A

Hence, this and (2.7) give w € Ay, s N RHy, /p, v 8
On the other hand, (3.61), (3.62), (3.64), (3.65), Holder’s inequality, and (3.66) imply

||fu||§§g2/fSH2uSdM:2/fSHl_TiH{nguSd#
b b

1

1 T
<oTH ( / o H D B du) < MO e e

Furthermore, by (3.60), (3.62), (3.64) there holds ¢ < Hi||g u||x. This and (3.66) yield

1
—s(r«—1 * I+s+2= ~ag *
91y = Lo B o d < gl [ Hou dp < 217005 G5 gl
We have therefore established (3.59) and the proof is complete. 0

Using the ideas in the proof of Theorem 3.44, we conclude the following general limited
range extrapolation on Banach function spaces. The detailed proof is left to the interested
reader.

Theorem 3.67. Suppose that (X, i) is a non-atomic o-finite measure space with u(3) > 0. Let
B be a Muckenhoupt basis and F be a family of extrapolation pairs. Fiz 1 <p_ < py < oo and
p_ <po <ps. Let u and v be B-weights on (X, 1) such that v(B) < oo for every B € B, and
let X, be a Banach function space over (X,v). Let Mg denote the Hardy-Littlewood mazimal
function on (¥, ) associated with B and let My h := Mp(hv)/v for each h € M. Assume

1
that there exist p. € (p—,p+), s € (0,ps) and N1, No < oo such that Y, := X3 is a Banach
function space, and

|(Mph) w5 e < Ni||hutthr| e Vh € M,,, (3.68)

H(Mg’vh)u_ﬁzﬂ( e <N2||hu—ﬂ2\| L. VheM,, (3.69)

’u ’U)
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where
!
a1:p<p*_s>, 0422<p+> , P11 ER, (3.70)
P — P P«
_ _ P+ ' Px
B2 = sag — [i(1p, — 1), Tp, = o o 1)+1. (3.71)
If for every wg € Apo/p773 NRHy, /poy B
11l o (2 0) < Cllgll Lro (5,w0)> (f,9) € F, (3.72)
then
[fullx, < Cllgulx,, (f.9) € F. (3.73)

Remark 3.74. Theorem 3.67 refines the limited range extrapolation on the variable Lebesgue
space LPU)(R™, £™) established in [22, Proposition 5.8]. Indeed, let p(-) be a measurable func-
tion with p_ <p_ <pi <py. Let X = Lp(')(]R”, L") and let B be the collection of all balls in
R™. Then

1 p() 2()
Xer =L (R, L"), Y=L

L (m)/g
(R™, L"), (Y')e2 =L\ = ) «2(R", L").
Note that Y is a Banach function space if p_ > s. Thus, in this setting, our assumption
becomes that there exist p, € (p_,p1), 0 < s < min{ps, p_} and N7, Ny < oo such that
both (3.68) and (3.69) hold. (3.75)

If we assume in addition that p(-) € LH, then (3.75) holds provided that u®*+#1 ¢ Ap()/ar B
u P2 ¢ Ap()/s) Jas,B> aNS s satisfies

max {p_ — Dy (17; - 1), p*p+} < s < min{ps, p_},
b- b+

see [22, p.1230] for details. Consequently, we obtain the limited range extrapolation on the
variable Lebesgue spaces.

4. EXTRAPOLATION ON MODULAR SPACES

In this section we establish a variety of extrapolation theorems on modular spaces. We
begin with the so-called A, extrapolation. As before, a family of extrapolation pairs F is a
collection of pairs (f,g) of nonnegative measurable functions. Our main result generalizes [21,
Theorems 4.15]:

Theorem 4.1. Suppose that (X, 1) is a non-atomic o-finite measure space with p(X) > 0.
Let B be a basis and let F be a family of extrapolation pairs. Let u and v be B-weights on
(X, u) such that v(B) < oo for every B € B, and let ® be a Young function such that ® € Ay
(equivalently, Ip < oo) with a doubling constant Cg. Let Mp denote the Hardy-Littlewood
mazimal function on (X, u) associated with B and let My h := Mp(hv)/v for each h € M.
Then, the following hold:

(a) Let pg € (1,00), and assume that there are N1, No < 0o so that
/@((Mgh) u)vdp §N1/ O(|h|u)vdy, VheM,, (4.2)
b b

/@((Mé’vh)u_l)vdug./\fg/<I>(|h|u_1)vdu, Vh e M,. (4.3)
b %
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If for every w € Ay, 5, one has

£l oo 2wy < W([w]a,, )ll9llzro 2wy (f29) € F, (4.4)
where W : [1,00) — [1,00) is a non-decreasing function, then
[oGwrdizar [ oguvde,  (fg)e 7, (4.5)
b b

and

[e((Sa) u)vnzc [ o ((Zg) Wodn, ()T (@)

where Cy = Cp max{Cy, C2'*} and Cy = 2 3 TERNPTIAG).
(b) Assume that there is No < 0o so that (4.3) holds. If for every w € A; g, one has

1l s < Y(wlay, gl e, (F9) €F, (4.7)
where ¥ : [1,00) — [1,00) is a non-decreasing function, then
[oGwvdizcr [ dguyvde,  (f) <7, (48)
b by

and
A@((;fj) W) vdn < 01/2q>((;gj) W)odi {fahcF @9

where Cy = Cp max{Cy, C’gl‘b} and Cy =8V (2 N>).

Moreover, in any of the two scenarios if B is additionally assumed to be a Muckenhoupt basis,
then (4.2) or (4.3) imply that for every q € (1,00),

Lo((a) w)vause [o (Zg] Wode (G F. @)

Remark 4.11. As in Remark 3.12 one can easily rescale in the previous result. To be more
precise, suppose that for some r > 0 and pg € [r, oo] there holds

||f”Lp0(Z,w) < \Il([w]ApO/r,B)||g||Lp0(E,w)a (f)g) SN (412)

for all w € A/, 5, and where ¥ : [1,00) — [1,00) is a non-decreasing function. Then, much
as we did there we may apply Theorem 4.1 with the family of pairs (f",¢") with (f,g) € F)
to easily obtain, with ®,.(t) := ®(t"), t > 0,

[ottuvins [ @guvde  (LoerF (4.13)
b )
provided
/@((Mgh)ur)vd,u,g./\/l/@(\h\u’")vdu, Vh e M,, (4.14)
s b
/<I>((Mg7vh)u_r)vd,u§/\/’2/<I>(\h| u vdp, YheM,. (4.15)
2 2

when r < py and assuming only (4.15) when r = py. Further details are left to the interested
reader.
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The proof of the previous result will be based on the following proposition which is interesting
on its own right.

Proposition 4.16. Suppose that (X, 1) is a non-atomic o-finite measure space with p(3) > 0.
Let B be a basis, w and v be B-weights on (X, n) such that v(B) < oo for every B € B, and
let ® be a Young function. Let Mg denote the Hardy-Littlewood maximal function on (X, )
associated with B and let My b := Mp(hv)/v for each h € M,. Then, for every f,g € M, so

that 0 < p2(fu), p®(gu) < oo the following hold:

(a) Let pg € (1,00), and assume that there are N1, No < oo so that both (4.2) and (4.3) hold.
Then, there exists a B-weight w = w(f,g) € Ap,p satisfying [w]a, 5 < 27° Nfo_l No
and such that for any 6 € (0,1]

I+ o _ .

Py (fu) <270 0% (py (07" gu) + oy (f w) 70 || Fll oo (5, (4.17)

and
2o (P (p—1 o o

g1l zro () < 2070 (0 (07 gu) + oy (fu)) 7o (4.18)

In particular, there exists a B-weight w = w(f) € Ay, B such that [w]a, , < 2P Nfo_l N
and

-1-% o YN
2 70 p, (fu)” < flleroswy 27770 py (Fu) (4.19)

(b) Assume that there is Ny < oo so that (4.3) holds. Then, there exists a B-weight w =
w(f,g) € A1g satisfying [w]a, , < 2 N5 and such that

Py (fu) <20 flpiw  and gl < 26005 (07" gu) + o3 (f ). (4.20)
In particular, there exists a B-weight w = w(f) € Ay satisfying [w]a, 5 < 2Ny and
such that

27 0y (fu) < [ F sy < 400 (fu). (4.21)

Assuming this result momentarily we can easily prove Theorem 4.1:

Proof of Theorem 4.1. Fix (f,g) € F. We may assume that p®(fu) > 0 and p®(gu) < oo,
otherwise there is nothing to prove. We claim that p®(gu) > 0. Otherwise g = 0 p-a.e. (since
u,v are B-weights) and by (4.4) we have that || f|pro(xw) = 0 for every w € Ay, 5. In turn,

f = 0 p-a.e., which violates our assumption p®(fu) > 0. We also claim that f < oo u-a.e.
Otherwise, there exists a measurable set F C 3 with u(E) > 0 such that f = co on E. By (4.4)
and the fact that B-weights are y-a.e. positive, it follows that ||g||Lro () = 00 for every w €

Ap, 5. This clearly contradicts Proposition 4.16 applied to g since 0 < pg’ (gu) < oo.

To continue we recall that since (¥, u) is o-finite, there exists an increasing sequence of
p-measurable sets {3;}22; such that ¥ = [J7Z; 3; and p(¥;) < oo for all j. For every N > 1,
we define

IN = Faesy:f(2)<Nu@) <Nw(@)<N}
and one clearly has
o2 (v u) < NO(N?)u(Sy) < . (4.22)

Recalling that f < oo p-a.e. and that u, v are B-weights we have fyu 7 fu as N — oo p-a.e.,
hence also v-a.e., since v is a B-weight. These and the monotone convergence theorem imply
that p®(fyu) 7 p®(fu) as N — oo, hence the assumption p®(fu) > 0 readily yields that
p®(fxu) >0 for N > Ny.
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Consider first the case pg > 1. Fixed N > Ny, apply Proposition 4.16 part (a) to fy and
g (which satisfy 0 < p®(fn u), p®(gu) < c0) so that there exists w = w(fy,g) € Ap, 5 with
[w]a,, s < 2NT°T'N; such that for any 6 € (0,1] there hold

I s _ 7
pu (Fvu) <270 076 (o7 (07" gu) + 3 (fv w) "0 [1f |l 2ro(.0) (4.23)
and
Loa -1 o L
g1l zro () < 2070 (0 (07 gu) + oy (fu)) 7o (4.24)
We can then invoke (4.4) to deduce that

o8 () < 277 075 (5267 gu) + 2w 1) 7 [ ooz
< 9" W(luw] ) 6% (520" gu) + o2 (fv ) oo
< 2" VERNPTING) O (o (07 gu) + o3 (fn )
=Gy (o0 gu) + 2 (). (4.25)

Setting 0 := min{1,Cy '}, we can use (4.22) to hide the last term on the right-hand side and
conclude that

Py (fvu) < Cobpy (0" gu).
As mentioned above p®(fyu) / p®(fu) as N — oo and therefore
PE(fu) < Cobpf (0" gu). (4.26)
Moreover, using that I < 0o, then it follows from (2.67) that there is a constant Cg > 0 such
that
d(\t) < Cy N2 ®(t),  for every t > 0 and X > 1.

Hence,
pL(fu) < CobCoy 02" p2(gu) = Cp max{Co, Cg'*} p¥ (gu),

3+2 _ .
where Cyp = 2 70 U(2NP° 'N3). The case py = 1 follows using the same argument but
invoking Proposition 4.16 part (b), details are left to the interested reader.

To complete the proof we need to justify the vector-valued inequalities (4.6), (4.9), and
(4.10). The first two ones are obtained much as in the proof of Theorem 3.1, details are left
the reader. Regarding (4.10), as shown at the end of Theorem 3.1 from either (4.4) or (4.7)
one can obtain a version of (4.4) valid for any 1 < ¢ < oo in place of py. This becomes our
new initial assumption and we readily obtain (4.6) with ¢ in place of pg, and this is eventually
(4.10), completing the proof. O

Remark 4.27. 1t follows from the proof that one can remove the assumption I < oo at the
cost of obtaining estimates of the form (4.26). That is, in place of (4.5) we would get

/ O(fu)vdp <min{l,Cy} / ®((max{1,Co} gu)vdpu, (f,9) € F,
2 b

3+2 _
with Cp = 27 *0 W(2NP7'A3). One can also formulate analogous versions of (4.6), (4.8),
(4.9), and (4.10). Details are left to the reader.
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Proof of Proposition 4.16. Note that (4.17), (4.18) (resp. (4.20)) with g := f and § = 1 im-
mediately imply (4.19) (resp. (4.20)). Thus, we just need to obtain (4.17), (4.18), and (4.20).
To do that, we generalize some of the ideas of [21, Theorem 4.15]. Fix f,g € M, with
p2(fu),p®(gu) < oo. We start with (a), that is, we fix po > 1 and assume (4.2) and
(4.3) for some finite constants N7 and N2. For any hi,he € M, with hi,hy > 0 p-a.e.,

p2(hyu), p2(hau™t) < oo, we define the Rubio de Francia iteration algorithms as:

>\ MEhy > (Mf )Fho
Rhy =) =B and  Rhy:=) —2o—,

where M, g and (Mgﬂ))o denote the identity operator, while for every k > 1, we write ME =
Mpgo---oMpg for the k-th iteration of Mg and (Ml/s;u)k = Mlg’,l) o-- ~oMl’3,v for the k-th iteration
of My,. We claim that the following hold:

hi < Rhy he < R'hy, (4.28)
[Rhaly, , < 20, [(R'ha)v]a, 5 < 2Na. (4.29)

Indeed, (4.28) is an immediate consequence of the definitions, (4.2), and (4.3). To show (4.29),
using that h, hy are positive almost everywhere, we can obtain from (4.28)

Rhi(x) > hi(z) >0, p-ae. z€X, and R'hy(x) > hao(z) >0, p-ae ze€l.

Besides, (2.64), (4.2), Lemma 2.77, and the fact that v(B) < oo for every B € B yield that for
every B € B

k=0
Ski)?ki\ff (/E@((M’ghl)u) dv+/B<I>(1)dv>

and

k=0 2
< i@( [ do+ [ aan)

<3 (N pE(hau ) + B(1) u(B))

k
=2p%(hau™!) +2®(1)v(B) < oo.
These and the fact that u and v are B-weights readily imply that Rhy, R'he < oo p-a.e. in Xg.
Hence, Rhy and R’hy are B-weights. Moreover,

00 Mk.|_1h < (M! ) k+1h2
Mp(Rhy) <> ;ka <2MiRhi, and Mg, (R'hy) <> (’;k)j\/k < 2Ny R hy.
1 k=0 2

k=0
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These readily imply (4.29).
On the other hand we claim that for any 0 < 6 <1

/ Rhi R'hadv < 40 (p2 (0~ hyw) + p2 (hau™ ) (4.30)
P
and
/ hi R'hadv <26 (pF (07" hau) + pi (hau™)). (4.31)
by

To see these we use Young'’s inequality (2.64), the sublinearity of Mp and My, (4.2), (4.3),
and Lemma 2.77 to obtain

Rhi R hadv =0 ./0—1 Mh My Veho)utd
/E Rihado =033 o ser |07 () () ha) ™ de

§=0 k=0
<40 Z::Z . /1\/] ijl\/k </ O (07 (Mhhy) w) dv—i—/E@(((Ml’g,v)khg)ul)dv)
o o0 1
<0 ZZ N Qk/\ﬂf (NJ / (07" hyu) dv + NF A@(hQ ul)dv>

7=0 k=
<40 (p2(07 hyw) + p2 (hau™))

and

/thhzdv_Gzszk/Q Uiy w (Mg ) *he) uw™" dv

[e’¢) 1 - ) B
<9§W<L¢(9 1h1u)dv+/2(1>(((MB,U)kh2)u 1)dv>

o0 1 3 B
9;0W</2¢(0 1h1u)dv+/\/2k/zcl>(h2u 1)dv>
<260 (pf(&fl h1 u) + p?(hg ufl)).

Once we have obtained (4.28), (4.29), (4.30), and (4.31) we proceed to show (4.17) and
(4.18). Set h; := g and hg = (f ) 1¢4~0y and note that hy, ha > 0 p-a.e. verify

IN

pf<h1u>=pv<gu><oo and  p(hyu) < p¥(fu) < ox, (4.32)

where we have used that ® and ® are Young functions and (2.66). Since pJ (f u), p (gu) >0
then p® (h1 u), p¥(hau™') > 0 and we can then apply Lemma 2.93 with e = § and both ® and
® to find hy, hy > 0 p-a.e. such that

h<2h,  pP(hiu) < pf(hiu) = py(gu) (4.33)
and
ha <2ha,  pY(haut) < pY(hau) < oY (f ). (4.34)
With these in mind we note that

pf(fu):/Etl)(fu)dv:/thgudUSQ/Efﬁgudv. (4.35)
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Set B B
w = (Rh1)' 77 (R hs) v.
From (4.29) and (2.6), we deduce that w € A, g with
[w]Apo < [Rﬁl]QOL_Bl[(R,}VL?) U]Al,B < QPON{)O_INQ'
Thus, for any 6 € (0, 1], by (4.35), Holder’s’ inequality, (4.30), (4.33), and (4.34)

~ _1 ~ L ~
p2(fu) <2 [ f(Rh1) * (Rhy)?o R'hydv
Rn

1 1
<2 < / fP0 (Rhy) =P R by dv> " < / Rh1 R by dv> "o
by =

45 o 17 I 1o
<2 7 0% (pF (07 hyu) + py (haw ™)) 70 || £l Lro (500)
45 _ -
<2 70 0% (py (07" gu) + oy (f ) "0 [1f | oo ()-
This shows (4.17). On the other hand, g = hy < 2h; < 2Rhy by (4.34) and (4.28). Thus,
(4.31), (4.33), and (4.34) yield
1

1
_ ~ e - m
g1l Lro (5,w0) = </ g (Rhy)t 70 (R/h2)vdu> < 2% </ Q(R/hz)vdu> ’
> 5

1 1

1 ~ = o~ 1
<2070 (py (0" haw) + py (hau™))20 <207 (7 (07 gu) + p3 (fu)) ™.
This shows (4.18) and completes the proof of the case pg > 1.

Let us next deal with (b), that is, we consider the case po = 1 and only assume that there
exists Ny < oo so that (4.3) holds. We follow the proof of the previous case and this time we
do not use R, that is, (4.2) needs not to be assumed (hence N; could be infinity). With the

notation above, let us set w := R/(hg)v. The second estimate in (4.29) implies w € Ay 5 and
[w]a, 5 < 2N>. Additionally, (4.35) and the first estimate in (4.28) give

pf(fﬂ)§2/2f7bzudv=2||fllu(z,w)-

On the other hand, for any 6 € (0, 1], by (4.31) and (4.34)

9l (50 = /E g (R) v <20 (520~ gu) + o2 (hyu™))

<20 (py (07" gu) + py(fuh)).
These prove (4.20) and the proof is then complete. O

The next goal is to prove an extrapolation theorem for A, 5 weights.

Theorem 4.36. Suppose that (X, p) is a non-atomic o-finite measure space with pu(%) > 0.
Let B be a Muckenhoupt basis and let F be a family of extrapolation pairs. Let u and v be
B-weights on (3, 1) such that v(B) < oo for every B € B, and let ® be a Young function such
that ® € Ay (equivalently, Ip < o0o) . Let Mp denote the Hardy-Littlewood mazximal function
on (X, p) associated with B and let My h := Mp(hv)/v for each h € M. Assume that there
exists N' < oo such that

/@((Ml/gyvf)u_l)vd,ug./\/'/q)(fu_l)vdu, Vf e M,. (4.37)
x b))
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If for some pg € (0,00) and for every w € Ax B,

[l zro 2wy < W([wlag s)lgllLro sy, (fr9) € F, (4.38)
where U : [1,00) — [1,00) is a non-decreasing function, then for every p € (0,00),
[ourweduzcveny [ e uedn (g€ (4.39)
b b

and for every q € (0,00),
/;b((fo) >vdu<0/ ( Zg] )Udﬂa (Upg)t CF. (440)

Proof. We recall that in the proof of Theorem 3.34 we have already obtained that (4.38) implies
(3.41) and hence for every p € (0,00) and for every w € A; g one has

1Pz w) S C Py, (fr9) € F. (4.41)

We are now ready to invoke Theorem 4.1 part (a) (again the reader may find convenient to
introduce the family F,, consisting of the pairs (f?, gP) with (f, g) € F) to conclude that (4.8)
yields (4.39) as desired. To obtain (4.40) we observe that as in the proof of Theorem 3.34 we
have shown that (3.43) holds for every 0 < ¢ < co and every w € Ay . The same argument
we have used to show that (4.41) yields (4.39) can be then repeated to see that (3.43) implies
(4.40). This completes the proof. O

5. APPLICATIONS

The goal of this section is to present some applications of the extrapolation results obtained
above. We will see that those can be applied to not only study the well-posedness of the
Dirichlet problem for elliptic systems, but also to establish some weighted inequalities for some
significant operators and the associated commutators in various situations, some explored and
some unexplored before.

5.1. The Dirichlet problem for elliptic systems in the upper half-space. We fix d, M €

N with d > 2 and we consider a homogeneous, constant (complex) coefficient, M x M second-

order system L in R%. Specifically, for every vector-valued function v = (ug)1<p<m, we write
. B

Lu = (a?k ajakug) <ot (5.1)

where a e C for every j,k € {1,...,d} and o, 8 € {1,...,M}. Here and elsewhere in this

section, We use the convention of summation over repeated indices. We also assume that L is

elliptic, in the sense that there exists a constant kg > 0 such that the following Legendre-
Hadamard condition holds:

Re [aﬁ,fgjgk@gﬂ} > ko €7 |C)* for every

§= (5j)1§j§d €R? and ¢= (Ca)lgagM ecM.

(5.2)

d
In the scalar case (i.e. M = 1), elliptic operators include the Laplacian A = ) 6? or, more
j=1
generally, operators of the form div(AV), where A = (aji)1<jkr<a € C¥*? satisfies the scalar
version of (5.2), that is, infecga—1 Re [arsgrgs} > 0,, where S%~! stands for the unit sphere in
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R?. Regarding the case M > 1, an example of an elliptic system is the complex version of the
Lamé system of elasticity in R, given by

L := pA+ (A + p)Vdiv,
where the constants \,u € C (called Lamé moduli in the literature) satisfy Repy > 0 and
Re(2p + A) > 0, conditions which are indeed equivalent to (5.2).

We are interested in showing well-posedness for boundary value problems in the upper half-
space. With this purpose in mind, we fix d € N with d > 2 and denote the upper half-space in
R? as

R = {(2/,t) eR?: 2’ € R ¢ > 0}.
We also identify the boundary OR? with R%~! via ORY > (2/,0) = 2’ € R*"!. The cone with
vertex at 2’ € R%! and aperture x > 0 is given by

Tu(2) = {(y,t) € RL : |2' — o] < rit}.

Given a vector-valued function wu : R‘fr — CM | we define its nontangential boundary trace
(whenever it is meaningful) as

K—n.t.
u )= lim  u(y), 2’ eR"
( ‘aRi ) (@) R4 5y—(2/,0) g
yEFn(xl)

and the nontangential maximal function of u as
Nou(z') := esssup{|u(y)| : y € Tu(z)}, 2’ € RTL

In order to frame this setting in our general discussion, we let ¥ = R4 and let p = £4~!
be the Lebesgue measure in R?~!. In what follows we will implicitly assume that £¢1 is the
underlying measure and write M (in place of M ;4-1) to denote the set of Lebesgue measurable
functions in R4~!. Analogously, when we write that some condition occurs a.e. we mean that
it does £% 1-a.e. We let B denote the collection of all euclidean balls R4~!, in which case Mz
is the classical Hardy-Littlewood maximal function (with respect to uncentered balls) and we
will simply write M. Of course, one can equivalently work with cubes in place of balls as the
corresponding maximal function is pointwise equivalent to M. In this context w is a B-weight
(we will simply say that w is a weight) if w € M with 0 < w < oo a.e. In this fashion, A,z
or RH, i are the classical Muckenhoupt and reverse Holder classes and will be denoted by A4,
and RHg, respectively.

For every elliptic system as above there exists an associated Agmon-Douglis-Nirenberg Pois-
son kernel in RY [1, 2], see also [39, 57]. This, [45, Theorems 2.4 and 3.1], and [43, Theorem
1.1] (see also [45, Theorem 3.2]) allow us to formulate the following result:

Theorem 5.3. Let L be a homogeneous, second-order, constant complex coefficient, elliptic
M x M system in R? as in (5.1)-(5.2). Then the following statements hold:

(a) There exists a matriz-valued function PY = (Pofg)lga,,BSM s RITL 5 CMXM - cqlled
the Poisson kernel for L in Ri, such that P* € €>°(R%Y), and for some constant
C € (0,00)
|PL(z)] < ¢ and PL(a!y da’ = Ingsr, (5.4)
(1 + [a/[2)4/2 Rd-1

where Iy« p denotes the M x M identity matriz.
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(b) The function K*(2',t) := PF(a') = t'=9PL(a'/t) satisfies K¥ € € (@\ {0}). Fur-

thermore, if we set K1 := (Kéﬁ)lsa,BSM then
LK,Lﬂ =0 in RL for every B€{l,...,M}, (5.5)

where KLB = (KL is the B-th column in K*.

aﬁ)lgagM
(c) Assume that f = (fz)1<p<m : R4 — CM is a Lebesgue measurable function such that

HICOI
/Rd1 Tt ’x/|ddac < 00, (5.6)

and define u(z',t) := (PF * f)(2) with P* as in (a). Then u is meaningfully defined via

an absolutely convergent integral, and for every aperture k > 0, it satisfies

ue¢*RL,CM), Lu=0 in RE,

Kk—n.t.

= f a.e. on R! 5.7
u‘BRi f a.e. on , (5.7)

and there is a constant C' € (0,00) such that
If(2")] < Nu(2') < CMf(2)), for a.e. 2’ € R&L, (5.8)
d) Assume that u € [€>(RIM satisfies Lu = 0 in RL and
+ +

New)(&)
——d .
/Rd11+|:c’|d1 T < 00

Then,

Kk—n.t.

d
oRY

K—n.t. d(L’/
I (qu )
u‘aRi < T 2]/

.
u‘ exists a.e. on R1,

u(z’,t) = ( PF * (u‘n_n't‘) (z') for each (z',t) € R4
’ t ORY ’ +-
In particular, if u‘g]};'t' =0 a.e. on R, then u=0.
+

With Theorem 5.3 in hand, we are now ready to prove well-posedness for boundary value
problems.

Theorem 5.9. Let L be an elliptic constant complex coefficient second-order M x M system
as in (5.1)-(5.2). Let v and w be weights on (R, £4=1) such that v € Li _(R41 L1, Fig

loc
an aperture parameter k > 0 and a Banach function space X,, over (Rdil,v), where as usual

dv = vdL3'. Let M denote the Hardy-Littlewood mazimal function on (R~1, L¥1) and let
M/h := M(hv)/v for each h € M. Assume that there is Cy < oo so that

J(MR)wlly, < Collhwllz,, ¥h e M, (5.10)
I(Mh) w™ s, < Collhw™|x,,  Vh e M. (5.11)
Then, the Dirichlet Problem
u € CKOO(RSlF,(C]VI),
Lu=0 in Ri,
(Neu) w € Xy,

K—n.t.

u|8]Ri =f on R fweX,.

(5.12)
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1s well-posed. More specifically, there is a unique solution and it is given by
u(@ t) = (B« f)(«),  (2/,1) R, (5.13)

where PY denotes the Poisson kernel for L in ]Rff_ from Theorem 5.3. Furthermore, there is a
constant C € [1,00) such that

Ifwlx, < [WNew)wlix, < Cllfwlx,. (5.14)
Proof. Let p € (1,00) and v € A,. For every h € M write

- LGOI B
= (/Rdl T Jarja1 @ )13(0,,1) and G :=|hl, (5.15)

where (' denotes the origin of R¥~1. It is not difficult to see that M1y 1))(a") =~ (1 +
|2/|9" 1)~ for every 2’ € RI~! (see for instance [45, Lemma 2.1]). Using Holder’s inequality
and (2.14), we obtain that

HFHLP(Rd—l,V) = (/R M da;’) V(B(O, 1))%

i-1 1+ |x’|d—1
(/Rd_l ’h(x/)‘M(lB(o/’l))(a:/) dm') y(B(()’7 1))%

1
< o1 ) 1M (L0l o gt iy V(B0 1))
1

< CWla, |llpoa-t o) v(BO, 1)7 1177 (B0, 1))

1+
< C[V]App G e (a1 0)- (5.16)

Q

This together with Theorem 3.1 gives

( de/> g0 wlx, = |Fwlx, < ClGuwlx, = Clhwlx
Rd_l 1 + “,L./|d—]. ( N ) v v — v v

which, by (2.30), immediately implies that

h /
/ 1_’H(§/|)d‘_1 da’ < oo, for every h € M with ||hw]x, < oco. (5.17)
Ra-1

Given f € M with || f w||x, < 00, (5.17) applied to f immediately implies (5.6). Hence, (5.7)

in Theorem 5.3 says that u defined in (5.13) satisfies the first, second, and fourth condition in
(5.12). Also, (5.8) and (5.10) yield

If wllx, < |New)wlx, < CIHMfwllx, <C|f wllx,-

Thus, the third condition in (5.12), and (5.14), hold. Finally, (5.17) applied to Nyu and
Theorem 5.3 item (d) readily imply that u, the solution of (5.12), is unique, hence it must be
the one given in (5.13). O

Example 5.18. Recalling the definition of the variable Lebesgue space LPC)(R41, £4-1) in
Example 2.39 and for L as above we obtain the following consequence. Assume that 1 <
p- < py < oo, p() € LH, and w € Ay (cf. (2.41)-(2.42)). Then (2.43) allows us to apply
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Theorem 5.9 with v = 1 and X, = LP0)(R%1, £971) to obtain that the Dirichlet Problem
u € ¢ RL,CM),
Lu=0 in R%,
(Nyu) w € LPO(RI-L £4-1),

Kk—n.t.

= d—1 p(-) (d—1 pd—1
u\aRi f on R* ' fwe LPY(RI L),

(5.19)

is well-posed. More specifically, there is a unique solution, given by u(z’,t) = (PF * f)(2'),
(z/,t) € RY, and satisfying

NN) 0]l oo s ity < C 1wl oo paory (5.20)
The case w = 1 was obtained in [45, Example 3].

Example 5.21. Let X be a rearrangement invariant Banach function space over (Rd_l, ﬁd_l)
such that 1 < px < ¢gx < co. Assume that uP*v € A, , u™ v € Ay, and v € Ay. Then for
L as above, (2.53) allows us to apply Theorem 5.9 with X, = X(v) (cf. (2.25)) to obtain that
the Dirichlet Problem

u € € (RL,CM),
Lu=0 in Ri,
(Npu) w € X(v), (5.22)
u|gﬂ_§2t' =f on R fweX(@).
is well-posed. More specifically, there is a unique solution, given by u(z’,t) = (PF * f)(2'),
(2',t) € RL, and satisfying
|(New) wllx ) < C|If wllx(v)- (5.23)
The case w = 1 was obtained in [45, Theorem 1.5].
This covers the cases X = LP, LP4 or LP(log L)* with 1 < p < 00, 1 < ¢ < o0, and « € R,
in which case we have px = ¢x = p, and the weights satisfy v’ v € A,, v € A,. Analogously,

we can consider the spaces X = (LP + L?) or X = (LP N LY), with 1 < p,q < oo, in which case
px = min{p, ¢} and gx = max{p, ¢} and the weights satisfy uP v € A,, u?v € Ay, and v € A.

Theorem 5.24. Let L be an elliptic constant complex coefficient second-order M x M system
as in (5.1)-(5.2). Let v and w be weights on (R4~1, £371) such that v € LL (R~ £41Y). Fix
an aperture parameter k > 0 and a Young function ® € Ag (equivalently, I < o00). Let M
denote the Hardy-Littlewood mazimal function on (R £371) and let M!h := M(hv)/v for
each h € M. Assume that there is Cy < 0o so that

/ ®((Mgh)w)vdLd! < 00/ O(|h|w)vdLt, VheM, (5.25)
Rd-1 Rd-1
/ (Mg h)w ) vdlLi™! < Cy S(|h|w Hvdcdt, VheM. (5.26)
Rd—1 Rd—1
Then, the Dirichlet Problem
u € €°(RL,CM),
Lu=0 n Ri,
B((Nyu)w) € LLREL, v), (5.27)

k—n.t.

_ d—1 1 d—1
u|8Ri =f on R, &(f|lw) e LN(R ", v).
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1s well-posed. More specifically, there is a unique solution and it is given by

u(z',t) = (PE « f)(z)), («',t) e R, (5.28)
where P denotes the Poisson kernel for L in Ri from Theorem 5.5. Furthermore, there is a
constant C € [1,00) such that

/ (| f|w)vdLd! g/ @((Nmu)w)vdﬁd_lgC/ O(|flw)vdLd=t.  (5.29)
Ra-1 Rd—1 Rd-1

d

Proof. Proceeding as in the proof of Theorem 5.9, and with the notation introduced in (5.15)
we see that (5.16) and Theorem 4.1 imply for every h € M

|h(2")] ' d—1 / d—1
) —————d aLe— = o(F e
/B(O’,l) <(/Rd—1 1+ \az’ld—l v ) w) v Rd—1 (Fw)v

<C d(Guw)vdLt =C ®(|h|w)vdL®t. (5.30)
Ra-1 Rd-1

Since 0 < w,v < oo L% 1-a.e., it then follows that

h /
/Rd1 1_’i_|<§/‘)d’_1 dx’ < oo, for every h € M with ®(|h|w) € LY(RYL, v). (5.31)

Given f € M with ®(|f|w) € LY(R%! v), (5.31) applied to f immediately implies (5.6).
Hence, (5.7) in Theorem 5.3 says that u defined in (5.28) satisfies the first, second, and fourth
condition in (5.27). Also, (5.8), the fact that ® € Ay, and (5.25) yield

/ O(|flw)vdLdt g/ @((Nﬁu)w)vdﬁdlg/ O(C (M f)w)dLtt
Rd-1 Rd—1

Rd-1
< C’/ S((Mfw)dLd1 < C/ O(|f|w)vdLr .
Rd—l Rd—l

Thus, the third condition in (5.27), and (5.29), hold. Finally, (5.31) applied to N,u and
Theorem 5.3 item (d) readily imply that u, the solution of (5.27), is unique, hence it must be

the one given in (5.28). O

Example 5.32. As discussed in Example 2.83, if ® is a Young function such that 1 < igp <
Ip < oo, and we assume that u'*v € A;,, u'®v € Af,, and v € Ay, then (2.90) allows
us to invoke Theorem 5.24. This can be applied to the cases ®(t) = t? (log(e + t))®, or
®(t) = P (log(e + 1))* (loglog(e® + 1))?, with 1 < p < 00, a, B € R, in which case ig = Ip = p,
and the weights satisfy u” v € A, and v € Ay. Also, if ®(¢) ~ min{t?,t?} or ®(t) ~ max{tP,t9}
with 1 < p,q < oo we have ig = min{p,q} and I = max{p,q} and our weights satisfy
uPve Ay ulve Ay, and v e Ax.

5.2. Layer potential operators on uniformly rectifiable domains. We say that a Lebes-
gue measurable set  C R? has locally finite perimeter if its measure theoretic boundary
L£4B N £4B Q
0.0 = {:17 € 0N : limsup ( (x’;) ) > 0, lim sup M > 0}
r r

r—0+ r—0t

satisfies

HIL0,QN K) < 0o, for each compact set K C RY,

where H?~! denotes the (d — 1)-dimensional Hausdorff measure.
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Alternatively, a Lebesgue measurable set Q C R? has locally finite perimeter if pg := V1g (in
the sense of distributions) is an R%valued Borel measure in R? of locally finite total variation.
Then the work of De Giorgi-Federer (cf., e.g., [23]) gives that

po =Vig = —vH* sa,

where v € [L=(0,9, H4™1)]¢ is an R%valued function satisfying |v(z)| = 1 at H? l-ae. 2 €
04). We shall refer to v above as the geometric measure theoretic outward unit normal

to €.

Definition 5.33. A closed set £ C R? is called an Ahlfors regular set if there exists a
constant C' > 1 such that

C L <HIYB(z,r)NE) < Cr?t, V& e E and r € (0,2diam(E)).

An open, nonempty, proper subset € of R? is called an Ahlfors regular domain provided
0% is an Ahlfors regular set and H4~1(9Q\0.) = 0.

Definition 5.34. A closed set E C R?is said to be a uniformly rectifiable set (or simply
a UR set) if E is an Ahlfors regular set and there exist 6§, M € (0, c0) such that for every z € E
and r € (0,2 diam(FE)) it is possible to find a Lipschitz map ¢ : Bg_1(0,r) — R? with Lipschitz
constant at most M and such that

HITYE N B(z,r) N ¢(By_1(0,7))) > Ord=L.

An open, nonempty, proper subset Q of R? is called a uniformly rectifiable domain (or

simply UR domain) provided 99 is a UR set and H?~1(9Q\9,0Q) = 0.

Definition 5.35. An open, nonempty, proper subset € of R is said to satisfy a local John
condition if there exist § € (0,1) and 79 > 0 (with the requirement that ro = oo if 9 is
unbounded) such that for every z € 9 and r € (0,79) one may find z, € B(x,r) N such that
B(z,,0r) C Q and with the property that for each y € B(z,r) N 0 there exists a rectifiable
path 7, : [0,1] — ©Q whose length is no more than ~!7 and such that

WO0) =y, w(1) =, dist(y(t),09) > 0y, (t) —yl, vt € (0,1].

Finally, a nonempty open set Q C R which is not dense in R? is said to satisfy a two-sided
local John condition if both € and R%\(Q satisfy a local John condition.

Lemma 5.36 ([30, Corollary 3.14]). Let Q C R? be a domain satisfying a two-sided local John
condition and whose boundary is Ahlfors regular. Then Q is a UR domain of locally finite
perimeter.

Throughout this subsection, abbreviate o = H%~ 1|5 and denote by v the geometric measure
theoretic outward unit normal to 2. Define the maximal operators T} and Tf by

T.f(z) :=sup|T.f(z)| and TF f(x) = sup |TZ f ()], (5.37)
e>0 e>0
where

T.f(z) = /yeaﬂ (x =y, v(y) K(x —y)fy)do(y),

|lx—y|>e

T#1(w) = [ e (0 202D K@~ 1)1 )do(w),

|lx—y|>e
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where K € €~ (R?\{0}) is a complex-valued function which is even and positive homogeneous
of degree —d, and N = N(d) € N is large enough. We also consider the principal-value singular
integral operators T' and T# (whenever they exist):
Tf(x):= lim T.f(x) and T7f(z):= lim TF f(x). (5.38)
e—0t e—=0t
Let wg_1 denote the area of the unit sphere in RY. If we take K (x) = wcﬁl ||~ above, then

K € €N (R%\{0}) is even and homogeneous of degree —d for any N € N. It is easy to see that
the first operator in (5.38) coincides in this case with the harmonic double layer potential:

/ yean wf (y)do(y). (5.39)

|z — yld

Kaf(z) == lim
e—0t Wy—1 oy loe

One can also introduce the Riesz transform:
1 P .
R;f(z) == lim / T Y5 rydo(y), j=1,....d. (5.40)

em0T Wy_1 J Y€ ]a: — y’d
|lz—y|>e

The layer potential operators have some applications in geometric measure theory and PDE.
Indeed, Hofmann, Mitrea and Taylor [30, Section 4] characterized bounded regular SKT do-
mains by means of the compactness or close to compactness of the harmonic double layer Ca
along with the boundedness of the commutators of the Riesz transform and the components of
the outer unit normal. The case of unbounded SKT domains is considered in the recent work
[44] (see also [42]) and the compactness or close to compactness is replaced by the smallness
of the boundedness constants of such operators. Also, the Riesz transform was used by Mitrea
et al. to investigate the regularity of various domains including Lyapunov domains of order
a, UR domains, regular SKT domains, and Reifenberg flat domains, see [51, Theorems 1.1-
1.4, 7.7]. On the other hand, the layer potential operators can be also used in the study of
boundary value problems. For any bounded Ahlfors regular domain satisfying a two-sided
John condition, using the method of layer potentials, Hofmann, Mitrea and Taylor [30, Sec-
tion 7] established the well-posedness of elliptic boundary value problems such as the Dirichlet,
Neumann and transmission problems for the Laplace operator, the Stokes system, the Lamé
system, and Maxwell’s equations. For bounded Lip N"vmo; domains, the same method was also
utilized in [31, Section 4] to study the Dirichlet, regularity and oblique derivative problems, as
well as the Poisson problem with a Dirichlet boundary condition. In the unbounded case the
reader is referred to [44, 42]. More general results about layer potentials and applications can
be found in [28] and [29].

To state our results, we need to introduce the John-Nirenberg space of functions of bounded
mean oscillations on Ahlfors regular sets. Given a domain  C R?, for each z € 9 and r > 0
define the surface ball A := A(z,r) := B(z,r) N I and denote rp := r. For any constant
A > 0, we also define AA := A(z, Ar). We shall then denote by BMO(92, o) the space of all
functions f € L{ (09, 0) with the property

loc
I fllBMO(902,0) := SUp ][ |f — faldo,
AconJa

where the supremum is taken over all surface balls A C 992 and ha = J[A hdo for any locally
integrable function.

Given a linear operator T, we define (whenever it makes sense) the first order commutator
of T and the operator M, of pointwise multiplication by a measurable function b by

Cy(T) f(z) = My, T)f () = b(z) Tf () — T(b f)(z) = T((b(z) - b(-)) () (z).
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One can also define the higher order commutators of T with a measurable function b by the
recursive formula C¥(T)f = CL(T) o C’gil(']I')f for every k > 2. One can then see that

Cy(T)f() = T((b(z) = b(-)*F())(x), k=0,
where it is understood that C)(T)f = Tf. The previous definition can be extended to lineariz-

able operators, that is, to operators T so that Tf = HT f|lg for some B-valued linear operator
T and some Banach space B. In this way we set, for all k > 0,

CH(T) f(2) == ICE(T) (@) lls = | T((b(x) = b)) F()|Iz = T((b(x) = b(-)*F()) (=)-
All these motivate the following general definition. Given some operator T, m € Ni, a =

(a1y...,am) € N and b = (by,...,by) a vector of measurable functions, we define the a-th
order commutator of T with My, as

CE(T) () = T(H(bxx) - m(-))aif(')) (x).

i=1
In the case where T is linear C§(T) is then the composition of the commutators Cy' (T)f, ...
G (D) f.
The following theorem extends the results in [44, Chapters 4 & 8] and [42, Chapter 5].

Theorem 5.41. Let Q C R% be an Ahlfors reqular domain satisfying a two-sided local John
condition. Let B the collection of all surface balls on Q2 and write Mgh for the associated
Hardy-Littlewood maximal function. Let u and v be two measurable functions on (02, o) such
that 0 < u,v < 0o o-a.e. and v € LL (0Q,0). Let N = N(d) € N be a sufficiently large integer
and K € CKN (RN{0}) be a complex-valued function which is even and positive homogeneous of
degree —d. Let m € Ni, b € [BMO(0,0)]™ and v € [BMO(0,0)]¢. Then for each operator
T € {T, T#,T*,Tfﬁ} as in (5.37)—(5.38), the following statements hold:

(a) If Xy is a Banach function space over (092, vdo) such that
[(Mgh)ullx, < Collhulx,, YheM,,
H(Mé,vh) u_1||X; < Co|h U_IHXL, Vh €M,

for some Cy < oo, then

Tl ully, <

and  |||CH(T) /|

< (TT10o)
=1

and, for every q € (1 oo)

1

<c||( S5
< (T 1n00) H (T I50)"
Ko i=1 j

(b) If ® is a Young function such that ® € Ay (equivalently, Iy < o0) and

/ B((Mgh) u) v do < 00/ O(|h|u)vdo, VheM,,
o0 o0

)

()
Xou

H (T \)qu

/ O((Mp,h) uvdo < C'O/ O(|h|uNYvdo, YheM,,
o o0
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for some Cy < o0, then

/<I>(|Tf|u)vda§0/ O(|f|uw)vdo,
o0 o0N

[, #esmsnvas <o (T 1nliio) [, 201w ede

and, for every q € (1,00),

/69@<(Z|Tqu)‘llu>udagc/mq><(z|fj|q)éu>vda’
/89<I><(ZIC%(T)qu>éu> vdo < C(}L:[l||bi||%ho) /[99<I><(Z|fj|q)éu>vd0.

Proof. In view of Theorems 3.1 and 4.1, we are reduced to proving that for every (or some)
p € (1,00) and every w € A, 5,

ITflro0,w) < Cllfllr00,0), (5.42)

1CH (T) fll e (902,w) < CH 16l B0 (902.0) 1/ | 22 (902,0) (5.43)
=1

where the constant C' depends only on d, p, a, [w]a, 5, [|V[l[BMO(90,0))s the local John constants
of Q and the Ahlfors-David regular constant of 9. The inequality (5.42) can be found in [44,
Chapter 4] or [42, Chapter 5. Note that T and T# are linear, and T, and T} are linearizable.
Thus, the estimate (5.43) follows at once from (5.42) and [9, Theorem 3.22]. O

In the previous result we can take v = 1 and X, = LP(')(Rdfl, £971) as in Example 2.39,
and assume that 1 < p_ < py < oo, p(-) € LH, u € Ay (cf. (2.41)-(2.42)). In the case
of rearrangement Banach function spaces we can consider X = LP, LP4 or LP(log L)* with
l1<p<oo, 1<qg< o0, and a € R, in which case we have px = ¢gx = p and weights u, v
satisfying w?v € A,, v € Ax. Analogously, we can consider the spaces X = (LP 4+ L9) or
X = (LPN L7, with 1 < p,q < oo, in which case px = min{p, ¢} and ¢gx = max{p, ¢} if 9Q is
unbounded and the weights satisfy u? v € Ay, u?v € A,, and v € A.

Regarding the modular inequalities, we can consider a Young function ® such that 1 < ig <
Ip < oo, and assume that u'* v € A;,, ule v € Ar,, and v € As. This can be applied to
the cases ®(t) = t? (log(e + t))%, or ®(t) = t? (log(e + t))* (loglog(e® + t))?, with 1 < p < oo,
o, € R, in which case i = Is = p, and the weights satisfy uP?v € A, and v € A,. Also,
if ®(t) = min{t?,t?} or ®(¢t) ~ max{tP,t} with 1 < p,q < oo we have ig = min{p,q} and
Is = max{p, q} and our weights satisfy u’ v € A,, ulv € Ay, and v € Aw.

5.3. Non-homogeneous square functions. In this section we work with B being the col-
lection of all cubes in R™ with sides parallel to the coordinate axes and with a Borel measure
won R™ of order m € Ry, that is,

p(B(x,r)) < Cur™, zeR" r>0.

One can equivalently write this condition (with a different constant) using cubes in place of
balls. As in [55] after a possible rotation we may assume that p(0Q) = 0 for every cube @ C R™
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with sides parallel to the coordinate axes. Let M), be the centered maximal function

Muf(a) =swpf |fldn (5.44)
r>0JQ(z,r)

with Q(x,r) denoting the cube centered at = with sidelength r. This should be compared with
Mp which is the Hardy-Littlewood maximal function associated with B, and therefore the sup
is taken over all cubes containing the point in question. Thus, M, f(x) < Mgf(x) for every
x € R™ and every p-measurable function, but since g may not be doubling these two maximal
functions are not comparable. It was obtained in [55, Theorem 3.1] that M, is bounded on
LP(w) for any 1 < p < oo and w € A, 3. However, in general Mp is not expected to satisfy
weighted norm inequalities. In the language introduced earlier, B is a basis, but may not be a
Muckenhoupt basis. Nonetheless, we are going to be able to extrapolate as Theorems 3.1 and
4.1 do not require such a condition.

We introduce the vertical square function

a@) = [Tors@p) s whee 670 = [ st

The kernel s; : R™ x R™ — C satisfies, for some « > 0, the size condition
tO{
t+ o —y[)mte

[se(z, )| S ( (5.45)

and the smoothness condition
| — a'|*
t+ | —yl)mte’

"St(may) - St(xlvy)’ + |St(y7x) - St(yvxl)’ S ( (546)

whenever |z — /| < t/2.

Theorem 5.47. Let i be a Borel measure of order m on R™ and B be the collection of all
cubes in R™ with sides parallel to the coordinate azes. Let u and v be weights on (R™,du) such
that v € Li (R™,dp). Assume that for every cube Q@ C R™ there is a measurable function bg

such that suppbg C @, HbQHLOO(M) S

‘fb d’>1 d ! /Z(Q)/Hb()|2d()dt<1 (5.48)
ul =1,  an sup x)|*du(z)— < 1. )
QQ Q H(3Q) Jo Q e t

(a) If X, is a Banach function space on (R™,vdu) such that
[(Mgh) ullx, < Collhullx,, YheM,,
1(Mh) u™ I, < Collhu™ s, Vh € My,
for some Cy < oo, then

19, (f) ullx, < Cllfullx,- (5.49)
(b) If ® is a Young function such that ® € Ay (equivalently, Iy < o0) and

n

/ B((Migh) u) v dpt < co/ S(h|w)vdu, VheM,,

/ O((Mp,,h) u Nvdp < C’O/ O(|hlu Y vdy, YheM,,

n
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for some Cy < o0, then
| eanwvdi<c [ o(flwode (5.50)

Proof. In order to obtain (5.49) and (5.50), we will prove the weighted inequality:
9u(F ey < Cllfllrw), VP € (1,00) and Vw e A,p. (5.51)

Thus, (5.49) and (5.50) respectively follow from Theorems 3.1 and 4.1.

To show (5.51), we borrow some idea from [61, Theorem 2.22] and [49, Theorem 5.3],
and establish a good-\ inequality. We would like to mention that the estimate (5.51) in the
unweighted case was studied in [48]. For any 0 < tg < 1, we define the to-truncated version of

9u by

to dt\ 2
/ |eff(:c)|2t>, s €R™ (5.52)

o) = (
to
Fix to € (0,1) and set
Q= {x e R": gy (f)(x) > A}, A>0.

We may assume that f is compactly supported and bounded with supp f C By for some ball
By € R™. We would like to apply Whitney decomposition, and to do that we first show that
) is an open proper subset of R". Indeed, by the smoothness condition (5.46), we have for
all |z — /| < to/2 and t > to,

|z — 2’|

0@ =01 S [ s W)y

S

—a o du(y a o
< 17|z — | ||f||Lp<u>< / : ) ) < Ct™ 2 — 2| fll o

o (o + & — yl)mra—0p
where aq is an auxiliary parameter such that 0 < ag < «. This implies that
|9t f (@) = Gt f ()] < Ciolz = 2| Fll 1o )

and hence, the mapping = — g, 4, f(x) is continuous. Thus, €2 is an open set. On the other
hand, by (5.45) it is not hard to see that

o o' 2d %
o8 @) < Wi ([ ([ ) )

1
<l | [ DA
= IR S (to + dist(x, By))2m=a0) ¢

1(Bo)
< Clf o) (to + dist(z, By))(m—0)

where 0 < af, < m is some fixed parameter. This readily implies that 2y C R". Keeping these
facts in mind and applying Whitney decomposition [59, Charper VI], one can find a collection
{Q;}: of closed dyadic cubes with disjoint interiors such that

Q) = UQ“ kQi N QS and Z 1100, (z) < Kola(x), (5.54)

—0, as |z|— oo, (5.53)

for some x > 20 and Where ko depends just on n.
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For later use we observe that from (5.45) one can easily see that for any measurable function
h we have

o
e )

_ = h(y)|
St(m+"‘)/ h(y)|du(y) + / L)
g M0+ 3 [ )

z,20t1¢)\ B(z,29¢

S Muh(o) S (27 4)7 ) u(Q(, 2720)) S+ Myh(x), (5.55)
j=—1
where M), is the centered Hardy-Littlewood maximal function, see (5.44).

To proceed we observe that under the hypotheses of Theorem 5.47, using non-homogeneous
analysis and probabilistic methods, it was obtained in [48, Theorem 1.4] that g, is bounded on
L?(u), and that only uses the smoothness condition with respect to the second variable (5.46).
Subsequently, by means of the non-homogeneous Calderén-Zygmund decomposition of Tolsa
[60, Lemma 2.4] or [61, Lemma 2.14], the same authors proved that the L?(1) boundedness of
g implies that

gy L' (p) — LY®(u)  boundedly, (5.56)
and, by interpolation,

gu : LP(p) — LP(p) boundedly for all 1 < p < 2. (5.57)

We are going to apply (5.56) to derive the following localized good-A inequality: for any
given £ > 0 and 7 € (0, 1), there exists § = d(g,7) > 0 such that for any given a Whitney cube

Qi
1w(EQ,) == pn({r € Qi: guto(f)(x) > (1 + )X\, My f(x) < 0A}) < yu(4Q:). (5.58)

Let us then show (5.58). Fix a Whitney cube Q; and we may assume that E¢, # ), otherwise
the estimate is trivial. This and the fact that k@Q; N QS # 0 allow us to pick x; € Eg, and
z; € KQ; NQS. We claim that

Guto (f L20:)e) (@) < guao (F)(2]) + Co My f(x), Yz e Qs (5.59)
To see this, fix x € (); and split

Zediom(Q) Lt 2
o)) < ([ 0 10y )P )

to" dt\ 2
</ 010 100 ) )P

max{to,2r diam(Q;)}

N N
F(L B 0@ (a0 P )
2

k diam(Q);)
=N+ T+ T3, (5.60)

where it is understood that Jo = 0 when 2k diam(Q;) > tal. To bound Ji, we note that
Q(z,0(Q;)/2) C 2Q;. Then, using the size condition (5.45), we have for any ¢ > 0,

0 0 )@ S [ Gy W)
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to

o)
= / m+to
= Q. 276QIN\Q.2-16Q0) 1T — Y]

t*u(Q(z, 270(Qy)))
< d
S ; . QJ g Jymta ]é i) £ (y)ldp(y)

S (20(Q0) T Muf () SUU(Qi) My f(x).
7=0

|f(y)ldp(y)

As a result,
2k diam(Q;) ) dt %
as(f ) HQ) ML @) S Myf (o) (5.61)

Let us estimate J>. Using that 2Q; C Q(z,3¢(Q;)) and the size condition (5.45) again, we
arrive at

to
08 (f 100,) (@ </
’ t(f QQz)(xz)’ ~ 20, (t+|x;—y

BT | f(W)ldp(y)

1 / V) |dp(y) S ¢0Q0) ™ My f ().
Q(z,34(Q;))

This immediately yields

o' ) pdt)? o ) pdt\?
as ([ orary) ([ wre)Es)
to QHE(Q,')

<o @)+ Q" ( [T ) N @) < g ) + CMLF@). (562

kdiam(Q;)

In order to control J3, we observe that |x — z}| < xkdiam(Q;). Hence if ¢ > 2x diam(Q;), the
smoothness condition (5.46) and (5.55) give

10 (f 1200)e) (@) = 0 (f Lagoye) (@) S / [se(x,y) — se(@i, )| | (W)l du(y)

(2Qi)°
’33 — ‘T/|a —a RY
S | e )ity S Q) M),
As a consequence,
o d
mu@r( [ e f) My f(x) S My f(s). (5.63)

Accordingly, (5.59) follows from (5.60), (5.61), (5.62) and (5.63).
Now let € Eg,. Invoking (5.59) and the fact that 2} & Q, we get

(1 +8) A < gutof () < Gputo (f 12Q:) (%) + Guoto (f L(2g)e) (%)
< Guto (f 12Qi)( ) + glhtof( ) + CoM, f($) < Guto (f 12Qi)(x) + A+ CooA
Choosing ¢ small enough so that 0 < § < 55, we obtain gy, (f 12¢,)(z) > €A/2, that is,
Eg, C {{L‘ € Q;: 9y, to(f ngi)( ) > 5)\/2}. (5.64)
Using this, that z; € Eg,, that 2Q; C Q(z4,30(Q;)) C 4Q;, (5.64), and (5.56) we arrive at
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W(EQ) < M{r € Qi gl 1a0) (@) > 2N2) S 3 [ 151

A
2 &)

A Jowsuan)
provided 0 < § < 54-. It is worth mentlomng that both Cy and C; are independent of t5. We
have then shown that if 0 <6 < min {52 300 } then (5.58) holds.

Next, let us establish (5.51). Let 1 < p S 2 and w € A, 3. By [55, Lemma 2.3], there are
positive constants C,, and 6,, such that w(E)/w(Q) < Cu(u(E)/m(Q))% for any cube Q and
any subset £ C @, This and (5.58) give w(Eq,) < Cywy?*w(4Q;). We then sum over i and use
(5.54) to conclude that

w({z € R™ : guzy(f)(2) > (1 + )X, My f(z) < A})

:w({er:gH,tO(f)(w) (I+e)A\ M, f(x <5)\})

<Y w(Bg,) < Cuy™ > w(4Qs) < Cu? row ().

i

Pl < ZEE M, fron(4Qs) < 20005 0(4Q) < yu(4Q0),

As a consequence,

90t iy = L+ | TN (g (£)(@) > (14 2)AHA

0

< (@ +2pCu k0 [ w({a: g @) > NN
0

+(1+ E)pp/oo N ({x s My, f(x) > 6A})dA

0
= (14 )P Cun™ ol guto (N oy + (L + VPO PIMuf 17,

< (14 0P Cur" ko gputo (N ) + C (1 +€)P5" pufumw (5.65)

where in the last inequality we have used that M, is bounded on LP(w) for any 1 < p < oo
and w € A, g (see [55, Theorem 3.1]). On the other hand, (5.45) and (5.55) imply

oD@ S ([7F) Maf@) = 2 oult5 ) M f 0

and

Gt (L2 (w) < Cto IMpfll o) < Cto 1| Lo (w) < 00,

since f is a bounded compactly supported function. Thus, taking v > 0 small enough so that
(14 €)Pcorko < 1/2 we obtain from (5.65)

N9uto (L) S NN Lr ),

with an implicit constant that does not depend on 3. This and the monotone convergence
theorem easily completes the proof of (5.51). O

5.4. Singular integral operators. Throughout this subsection, we let > = R™ and let u =
L™ be the Lebesgue measure in R”. In what follows we will implicitly assume that £" is the
underlying measure and write M (in place of Mzn) to denote the set of Lebesgue measurable
functions in R™. Analogously, when we write that some condition occurs a.e. we mean that
it does L™-a.e. We let B be the collection of all euclidean balls R™, in which case Mg is the
classical Hardy-Littlewood maximal function (with respect to uncentered balls) and we will
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simply write M. Of course, one can equivalently work with cubes in place of balls as the
corresponding maximal function is pointwise equivalent to M. In this context w is a B-weight
(we will simply say that w is a weight) if w € M with 0 < w < oo a.e. In this fashion, A, 3
or RH, s are the classical Muckenhoupt and reverse Holder classes and will be denoted by A4,
and RHg, respectively.

Given a symbol a € €°(R" x R"™), we define the pseudo-differential operator T}, by
T.1w) = [ eale, OF©)d

where f € § and fdenotes the Fourier transform of f. We say that the symbol a belongs to
the Hérmander class S5 introduced in [32] if it satisfies ]80‘36 (2,8)] < (1 + |gym—rlBl+dlal
for all multi-indices «, [3 6 N" where m € R and 0 < p,d < 1.

Recently, Beltran [7] proved that if a € Sy withm e R, 0<6 <p<1andd <1, then

/ T f () Pwdr < / |f ()P M2 My MPw(z)d, (5.66)
RTL n
for any weight w, where
. w(B(y,r))
M mw(@) T e 1By, T

and Ay(z) == {(y,7) € R" x (0,1) : |y —z| < rp}.
Observe that B(y,r) C B(x,2r?) for any (y,r) € Ay(x). Thus, if we pick m € R and
p € 10,1] such that p = 1+ 2m/n, then
[B(z,2r")|  w(B(z,2r7))
M, nw < sup
pm (y,r)eNy(x) ‘B(y’r)|l+2m/n |B(aj‘,27“p)|

Moreover, w € A; implies that Mw(z) < Cw(z), a.e. x € R". Combining (5.66) and (5.67)
yields

< CMw(x). (5.67)

| mt@Pu@de < ¢ [ (f@PM @i <0 [ 11@)Puis
Rn

R”
This, Theorem 3.1, Theorem 4.1, and Remarks 3.12 and 4.11 (applied with py = r = 2) readily
imply the following result:

Theorem 5.68. Let a € S withm = —n(1—-p)/2,0<6<p<1andd <1. Letu andv be
weights on R™ such that v E LIOC(R"). If X, is a Banach function space on (R™ v) such that

[(MJh)u?|x; < Collhu™?||x,, VhEM, (5.69)

for some Cy < oo, then
[(Taf) ullxz < C[If ullxe. (5.70)
On the other hand, if ® is a Young function such that ® € Ag (equivalently, Ip < 00) and

/ (M. h)u=Hvdr < co/ O(|h|u?)vdr, YheM, (5.71)

n

for some Cy < oo, then

/ ([T f|u) v da < c/ Bo(|f|u) v da, (5.72)
n Rn

where ®5(t) := ®(t?), t > 0.
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Remark 5.73. Let 2 < p < 0o and X, = LP/?(v). Then (5.69) becomes
IMR) w0 oz ) < ClBu™20 | o2y 4

which holds if and only if (u=20~1)®/2)y € Ap2)- The later is also equivalent to uPv € A, /.
On the other hand, (5.70) can be rewritten as

HTaf”LP(qu) < CHfHLP(qu)'
Therefore, taking u = 1, we will recover the end-point weighted estimate for the pseudo-
differential operator T, established in [14, Theorem 1.3] and [50, Theorem 3.10] respectively.

Next, we will use Ay, extrapolation to establish the Coifman-Fefferman inequalities on
Banach function spaces.

Given a Young function ¢ and a ball B we define the normalized Luxemburg norm as

flles = inf {3 >0 o (L)ar <1},

B
It is not difficult to see if ®; and P9 are Young functions such that ®;(t) ~ ®o(¢) for all t > tg
for some ty > 1 then || f||o,.B =~ || f|lo,5. This means that in this context cases we will not be
concerned about the value of the Young functions for ¢ small.

Denoting by ® the complementary function associated to ® one has the generalized Holder’s
inequality

]i Folde <2 fllenllols 5 (5.74)

Taking in particular g = 1 one has
£ 114 <2 fll5.

There is a further generalization that turns out to be useful for our purposes, see [54]: If
$y, By, B3 are Young functions such that &7 (t) @51 () d5'(t) <t, for all > 1, then

118 b do < Cllflov5 gl [l (5.75)
Note that this implies
11 9ll5, 5 < Clifllesslgle,s  and  [[fllg, 5 < Clfle.s, (5.76)
The first estimate is obtained by duality and for the second one, we take g = 1.

Remark 5.77. Let us observe that ®(t) = ¢, for t € (0, 00), is not a Young function. Nonetheless,
one can extend the previous definitions with the understanding that ®(¢) = 0 if ¢ < 1 and

®(t) = oo otherwise, whose (generalized) inverse is ® (t) = 1. In such scenario, one can
easily see that

Iflas = flde and [ lg5 = | Flieo)
and (5.74) holds. Note also that (5.75) and (5.76) remain true if one of the ®;’s is ®.

To continue, if ¥ is a Young function and k& > 0, we say that the kernel K satisfies the
LY*-Hérmander condition, denoted by K € Hy i, if it satisfies

oo
sup sup » (2rp)"" [[(K(x —-) = K(z = ) laipai-1sly 0 < 00
BCR"? 1’726%3‘]‘:1 )
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where the first supremum is taken over all balls in R". When k = 0, we simply write Hy. An
operator T is said to be a singular integral operator if ||T||;2_72 < oo and it admits the
following representation

Tf(z)= . K(z —y)f(y)dy, = ¢ supp(f)
for all f € S(R™). As in Section 5.2, given a measurable function b and k > 0, the k-th order
commutator of 7' is then

CHD) @) = [ (bla) = b)) K w0 fw)dy, k=0,

with the understanding that CY(T) f(z) = T f(x).

Theorem 5.78. Let T be a singular integral operator with the kernel K, and let k > 0.
Let ® and ¥ be two Young functions such that 5_1(15)@_1@)?,;1(75) <t fort > 1, where
Ep(t) = e 1 fort e (0,00) if k > 1 and Eg =1 if k = 0. Let u and v be weights on R"
such that v € L. _(R™). Assume that X, is a Banach function space on (R™ v) such that

loc

(M) u|x, < Collhu™|x,, VheM. (5.79)
for some Cy < co. If b € BMO(R", L") and K € Hy , then
I(CE(T) ) ullx, < ClblEmomn cm (Mg f) ullx, - (5.80)

On the other hand, assume that © is a Young function such that © € Agy (equivalently, I < 00)
and

/ (M) uYvdr < Co | B(h|luYvde, VheM, (5.81)
n Rn
for some Cy < co. If b € BMO(R"™, L") and K € Hy k, then
/ O(CE(T) | u) v da < c/ O((My f) u) v da. (5.82)
n Rn

Note that for £ = 0, then one can take ¥ = ® and the previous result gives that if K € Hy
then

I(Tf)ullx, < Cl(Mgf)ulx, and - o(Tflu)vdr <C - O((Mzf)u)vda.

Under the hypotheses of the previous result it was proved in [41, Theorem A] and [40,
Theorem 3.3] that for every p € (0,00) and for every w € A,

ITE £l Lo () < C||b\|]f3M0(Rn,cn)||M5f\|Lp(w)-
As a consequence of this, Theorem 3.34 and Theorem 4.36 readily imply (5.80) and (5.82) as
desired.

If U(t) =¢" with 1 < r < oo, then K € Hy coincides with the so-called L"-Hérmander
condition in [46]. Under this condition, the third author et al. showed in [46] that for every
p € (0,00) and for every w € A,

1Tl ey < CllMpr £l o () - (5.83)

It is remarkable that such result is sharp in the sense that the inequality (5.83) does not hold
if M, is replaced by My, 1 < s < r’. Evidently, Theorem 5.78 recovers (5.83) and extends it
to Banach function spaces and modular inequalities.

Let us end this subsection by studying singular integrals of Calderén-type.
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Theorem 5.84. Fiz n,m,d € N, let N = N(n,m) € N be a sufficiently large integer, and let
¢ : R" — R? be such that

C7la —y < o(z) — o(y)| < Clz —yl, Va,yeR"
for some C > 1. Let F € WX (R") be a complez-valued function, Gj € WELR™) be a

loc loc
real-valued function with VF,VG; € [BMOR", L")]" for each j =1,...,m, and write G =
(G1,...,Gm). Suppose thatn € €NT2(R™) is a complea-valued even function with the property
that 0°n € LY(R™, L™) for every multi-index || < N + 2, and supgegm (1 + [£])|n(£)] < oo.

Define the maximal singular integral

15O @) msw| [ Kraa(e)f0)d], (5.85)
=0 o) -l >
where
F(z) - F(y) = (VF(y), = —y) (G(w) - G(y)>
Kran(z,y) = . 5.86
e oy ERTT (5:56)
Let u and v be weights on R™ such that v € Li. (R").
(a) If X, is a Banach function space over (R™, v) such that
[(MR) ull, < Collhullx,, VheM,
I(Mh)u iz, < Collhu™ |k, VheM,
for some Cy < o0, then
1T " ullx, < Clf ulx,. (5.87)
(b) If ® is a Young function such that ® € Ay (equivalently, Iy < 0o) and
/ B((Mh) ) vdz < co/ S(|h|w)vde, VheM,
/ (MR u Yo de < 00/ T(|h|uYvde, VheM,
for some Cy < o0, then
/ S(TIC fyuyvdz < C [ (f|u)vde, (5.88)
n ) Rn

Under the hypotheses of Theorem 5.84, [42, 44] showed that the operator Tj;G’H in (5.85)
is well-defined and bounded on LP(R"™,w) for all 1 < p < co and w € A,(R",L"). Thus,
Theorem 5.84 is a consequence of this, Theorem 3.1, and Theorem 4.1.

Let us illustrate that Theorem 5.84 contains many applications.

e First order commutator [H, FD]. Let H be the Hilbert transform on the real line,

and D be the one-dimensional derivative operator. Assume that F' € W’lf)cl (R) with
F’ € BMO(R, £) and f € ¢§°(R). For any differentiability point z € R of F' (hence
L-a.e.) one can see [42, 44] that

[H, MpD|f(x) = H(Ff')(x) - F(z)(Hf) ()
1/ F(r) = F(y) = F'(y)(z — y)
yeR

= lim —
e—0t T
|lz—y|>e
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Therefore, Theorem 5.84 can be applied with n =1, m =1, G =0, ¢(x) = z, and any
even function n € €5°(R) such that n(0) = 1.

Calderén commutator. On the other hand, recall that the first Calderén commutator
is defined by

Then it follows from (5.89) that
Chf = [H,MpD|f + H(F'). (5.90)

Hunt, Muckenhoupt and Wheeden [33, Theorem 9] proved that H is bounded on
LP(R,w) for all weights w € A, and 1 < p < oo. Hence, if F' € L>°(R), by Theorem
3.1, one concludes that (5.87) and (5.88) hold for the Hilbert transform H. Hence,
from (5.90), CL enjoys the same property. This covers the unweighted inequality given
in [53, Theorem 1.1], which was reproved by time-frequency analysis and originated in
[12].

Cauchy integrals. Let x € (0,00) and X be a k-chord-arc curve passing through infinity
in C (cf. [42, 44]). The Cauchy integral operator on ¥ is defined by

f(Q)

CEf(Z) = Pp.V. % ces C .

g, zeX. (5.91)

As in [42, 44] Cx, can be rewritten as

Caf(t) = p.v. i . Z(;f‘“’i(s) f(s)ds, teR. (5.92)

where R 5 s+ z(s) € C is the arc-length parametrization of ¥. Then we have

K2 2(t) — 2(s) — 2'(s)(t — s)
21 Joer  (2(t) = 2(s))(t — )
If one chooses the appropriate functions as in [42, 44], then the hypotheses of Theorem
5.84 are verified. Thus, the conclusions (5.87) and (5.88) hold for (Cr — (i/2)H) and
1 F’G)T]
hence for Cg replacing T ™"
Double layer potential for Laplace’s equation:

=0+ ) VERY (Jo —y[2 + (F(z) — F(y))?) D/
|z—y|>e
If we take d =n, m = 1, F = G, ¢(z) = z and n(t) = (1 + t2)~"*D/2 then Krc,
in (5.86) agrees with the kernel in (5.94). Also, the principle-value singular integrals is
pointwise controlled by the corresponding maximal singular integrals. Then Theorem
5.84 can be applied to get weighted norm inequalities for I in (5.94).

We would like to observe that by means of the operator I, Fabes et al. [24] studied
the Dirichlet and Neumann problems for Laplace’s equation on a bounded €' domain
Q C R™ (n > 3). More precisely, when the datum f (resp. its derivative) belongs to
LP(0), the solution of the Dirichlet problem (resp. Neumann problem) was formulated
in the form of the classical double (resp. single) layer potential. In addition, T(;: ;G’"

and K were used to prove the compactness of boundary layer potentials on LP(92) and
on the Sobolev space L7 (9€) [24]; and on LP(T'), where I is the boundary of a bounded

(Cr — (i/2)H)f(t) = p.v. £(s)ds. (5.93)

2/ (W)dy. (5.94)



60 MINGMING CAO, JUAN JOSE MARIN, AND JOSE MARIA MARTELL

VMO; domain (that is, a domain whose boundary is given in local coordinates by the
graph of a function whose gradient belongs to VMO), see in [27, Theorem 1.17].

In Theorem 5.84 we can take v = 1 and X, = LPO(R""1, £ 1) as in Example 2.39, and
assume that 1 < p_ < py < oo, p(-) € LH, u € Ay (cf. (2.41)-(2.42)). In the case of
rearrangement Banach function spaces we can consider X = LP, LP? or LP(log L)* with
l1<p<oo,1<qg< o0, and a € R, in which case we have px = ¢gx = p and weights u, v
satisfying w?v € A,, v € Ax. Analogously, we can consider the spaces X = (L” 4+ L9) or
X = (LPN L7, with 1 < p,q < 00, in which case px = min{p, ¢} and ¢gx = max{p, ¢} and the
weights satisfy u? v € Ay, ulv € Ay, and v € A

Regarding the modular inequalities, we can consider a Young function ® such that 1 < ip <
Ip < 0o, and assume that u'* v € A;,, ule v € Ay, and v € As. This can be applied to
the cases ®(t) = t? (log(e + t))*, or ®(t) = t? (log(e + t))* (loglog(e® +t))5, with 1 < p < oo,
o, € R, in which case i = Is = p, and the weights satisfy u’v € A, and v € A,. Also,
if ®(t) ~ min{t?,t?} or ®(t) ~ max{tP,t?} with 1 < p,q < oo we have ig = min{p,q} and
Is = max{p, ¢} and our weights satisfy v’ v € A,, u?v € Ay, and v € Aw.

5.5. Schrodinger operators with potentials. Let us consider the following Schrodinger
operator with inverse-square potentials on R™ (n > 3),

_9\2
fa:—A—i—i with a > — n .
|z|? 2

The Schrodinger operator %, is understood as the Friedrichs extension of —A + # defined

initially on €*°(R™ \ {0}). The condition a > — ("7_2)2 guarantees that ., is nonnegative.
This operator has a wide range of applications in physics and mathematics including the
Dirac equation with Coulomb potential, and the study of perturbations of classic space-time
metrics, see [11, 62, 63]. Recently, harmonic analysis tools have been developed to investigate
some problems related to the Schrodinger operator .Z,. The paper [35] studied the global
well-posedness and scattering for both the defocusing and focusing energy-critical NLS with
inverse-square potential. Additionally, [37] obtained the sharp thresholds of well-posedness

and scattering for the focusing cubic NLS with inverse-square potential.

In order to state our result we need to introduce some notation. Much as in the previous
section X = R™, u = L" is the Lebesgue measure in R™, B is collection of all euclidean balls
R™, in which case Mpg is the classical Hardy-Littlewood maximal function (with respect to
uncentered balls) and we will simply write M. Of course, one can equivalently work with
cubes in place of balls as the corresponding maximal function is pointwise equivalent to M. In
this context w is a B-weight (we will simply say that w is a weight) if w € M with 0 < w < co
a.e. In this fashion, A, 5 or RH, 5 are the classical Muckenhoupt and reverse Holder classes
and will be denoted by A, and RH,, respectively. Write

p—:—max{l, " }; T N a——En B

n—o max{r + o,0}’ " ~ max{r, a};

and o := (n — 2 — \/(n—2)2+4a)/2. Recently, in [10, 36] it was proved that if n > 3,
az—(%)Q and 0 < r < 2, then

I(=A)2 fl orn oy S VL2 fllio@n )y, Yw € Apjy NRHg, fpys p— < p <P,
and

H"g;/QfHLP(R",w) 5 ||(7A)T/2f||LP(R",w)v Vw € Ap/pf N RH(E+/p)I’ p-<p< EJr'
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Also, in [58], it was shown that for every p € (1,2) and for every w € A, N RH 3y,
IVZ7 2 Pl on ) < CElloen ) (5.95)

where 4y = —A+V and V € L{ (R") is a non-negative function. Here we mention that the

loc

inequality (5.95) fails for general potentials V € L (R") when p > 2, see [56]. By Theorem

loc
3.44, we can extend these results to Banach function spaces.

Theorem 5.96. Letn > 3, a > — (”7_2)2 and 0 < r < 2. Let X and Y be rearrangement

invariant Banach function spaces over (R™, L™) such that X+ is a Banach function space for
somer >p_ and p— < px < gx < P4, and 1 <py < qy <2

H((=2)72) ully, < Ol (L7 F) ully,
for every weight u verifying uP* € A, ;. OV RH .y and u® € Ag o WRH(y, gy

(a2 F) ully < CI((=2)721) s
) and u?™ € A

for every weight u verifying uP* € A, ,_ N RH NRHg, /g5 and

(p+/px qx/p-

—1/2
(V2 ) ully < Cllfully,
for every weight u verifying uP¥ € A,, N RH 3,y and u? € Ay, N RHy)qy -

In the previous result for the first estimate we can consider X = LP, LP4 or LP(log L) with
po < p<py, p- <qg < o0, and a € R, in which case we have px = gx = p and weights u
satisfying u? € A, ), N RH(,, /). Analogously, we can consider the spaces X = (L + L9) or
X = (LPNL?), with p_ < p,q < p4, in which case px = min{p, ¢} and gx = max{p, ¢} and the
weights satisfy the corresponding conditions. For the second and third estimates we need to
write p in place of p, .

5.6. Operators associated with the Kato conjecture. Let A be an n X n matrix of
complex and L*°-valued coefficients defined on R™. We assume that A satisfies the following
ellipticity condition: there exist 0 < A < A < oo such that

MNEP <ReA(w)¢-€ and  |A(2)€ - 7] < Alé]ln],

for all £,n € C™ and almost every x € R". We have used the notation & - n = Z?:1 &jnj, and
therefore £-7] is the usual inner product in C". Note that then A(z)&-1 = >~ aj k()& Asso-
ciated with this matrix we define the second order divergence form operator Lu = — div(AVu),
which is understood in the standard weak sense as a maximal-accretive operator on the space
L?(R™, dz) with domain D(L) by means of a sesquilinear form.

Associated to this operator we can consider the functional calculus ¢(L) where ¢ is holo-
morphic and bounded in an appropriate sector, the Riesz transform VL2, and some square
functions. The LP theory for these operators was developed in the monograph [3]. The weighted
norm inequalities were obtained in [6] using a generalized Calderén-Zygmund theory from [4].
As in [3] and [5], we denote by (p—(L),p+(L)), respectively (¢—(L),q+(L)), the maximal open
interval on which the Heat semigroup {e~'*};~0, respectively its gradient {v/tVe~**};~¢, is uni-
formly bounded on LP(R™). It is obtained in [3] that p_(L) = ¢_(L) and 2 < ¢+ (L) < p4+(L).

Recall the weighted norm inequalities from [6]:

(L) fll oy S N@lloollfllzp@w)y,  Yp € (P (L), p+(L));, we Apsp_ )y NV RHep, (1) /p);

IVLY2 oy S I lvawy, Vo € (a-(L), a1 (L)), w € Apsq_(zy N RHg, (1w
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and
IZY2 fliowy S IV o) VP € (0—(L), (L)), w € Ay 1y NRH (1) /0y
By Theorem 3.44, these estimates give the following:

Theorem 5.97. Let L be an elliptic operator as above and let X be a rearrangement invariant
1

Banach function space over (R™,L™) such that p_(L) < px < gx < oo and X+ is a Banach

function space for some r > p_(L).

(a) If gx < p+(L), then for every weight u such that uP* € Ay, (1)
ut € Agysp_ (1) NV RH(p (1) /g5y

(L)) ullx S lllloollf ulls — and (L) ullx S (VF) ullx,

where ¢ s holomorphic and bounded in an appropriate sector.

N RH(p+(L) ) and

/px

(b) If gx < q+(L), then for every weight uw such that uP* € A
ut € Agysp_ (1) N RH (g (1) /g2y

(VL2 f) ullx S I1F ullx,

and, consequently the following Kato type estimate holds
12 ) ullse 2 (1 f) ullx.

For (a) we can consider X = LP, LP? or LP(log L)* with p_(L) < p < p+(L), p—(L) <
g < oo, and o € R, in which case we have px = ¢gx = p and weights u satisfying u? €
Apjp_(yNRH(p,, (1) /py- Analogously, we can consider the spaces X = (LP+L7) or X = (LPNLY),
with p_(L) < p,q < p+(L), in which case px = min{p, ¢} and ¢gx = max{p, ¢} and the weights
satisfy the corresponding conditions. The same can be done for (b) with ¢4 (L) in place of
p+(L).

Let us next study several conical square functions. Introduce the conical square functions
written in terms of the Heat semigroup {e~*};~¢ (hence the subscript H): for every m € Ny :=

Nu {0},
) dydt\ 2

) dydt\ 2
Gt (@ (// 1V, (L (y >|2tf+f),

2 dydt 2
Gans@)= ([ Wouteny e L)

where I'(z) = {(z,t) € R" x (0,00) : |z — y| < t}.
In the same manner, let us consider conical square functions associated with the Poisson
semigroup {e *};~o (hence the subscript P): for every k € Ny := NU {0},

Skpf(z <// (V)20 eV p(y )lszff>2,

p/p— (L) VRH (g, (1) /pyy and
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and
1
Guet(o) o= ([ 1wuVIe R )
1
Grpf(x) = ( //F . |tV (VL) e VT (y)lgffff > R
For every k € Ny let us set pi (L)F* = %, if pr(L) < 55, pr(L)P* == oo

otherwise. With these notation in hand, we present the weighted estimates for conical square
functions defined above. Indeed, the third author and Prisuelos-Arribas [47] obtained that for
every m, k € Ny

Sm.u, Gz, Gmu are bounded on LP(R™, w),w € Ay, (1),p € (p-(L), 00),
and

Sk.p, G, Gk,p are bounded on LP(R™, w),w € Ay, (1) N RH(p,, 1)k /pys

for every p € (p—(L), p+(L)"*).
Based on these facts and Theorem 3.44, we conclude the weighted inequalities for conical
square functions on rearrangement invariant Banach function spaces as follows.

Theorem 5.98. Let L be an elliptic operator as above and let X be a rearrangement invariant

Banach function space over (R™, L™) such that p—(L) < px < gx < 0o and X+ is a Banach
function space for some r > p_(L).

(a) For every weight w such that wP* € A, ,, () and w¥™ € Ay, (1),
||(T1f)wHX /S ||fw||X7 VTl € {Sm,H7Gm,Hagm,H}7 m e NO-

(b) If gx < py(L)%*, then for every weight w such that wP* € Apy L) N RHp, (Dykn /)y
and w¥ € Aqx/p,(L) N RH(p+(L)kv*/qX)’7

I(Tof)wlx SN fwlx, VT2 € {Skp,Grr,Gkpr}, k€ No.

For (a) we can consider X = LP, LP4 or LP(log L)* with p_(L) < p < o0, p—(L) < g < o0,
and o € R, in which case we have px = gx = p and weights u satisfying v € A/, (1)
Analogously, we can consider the spaces X = (LP+L9) or X = (LPNLY), withp_(L) < p,q < o0,
in which case px = min{p, ¢} and gx = max{p, ¢} and the weights satisfy the corresponding
conditions. The same can be done for (b) with the corresponding changes.
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