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Abstract. We prove a limited range, off-diagonal extrapolation theorem that gen-
eralizes a number of results in the theory of Rubio de Francia extrapolation, and
use this to prove a limited range, multilinear extrapolation theorem. We give two
applications of this result to the bilinear Hilbert transform. First, we give sufficient
conditions on a pair of weights w1, w2 for the bilinear Hilbert transform to satisfy
weighted norm inequalities of the form

BH : Lp1(wp1

1 )× Lp2(wp2

2 ) −→ Lp(wp),

where w = w1w2 and 1
p = 1

p1
+ 1

p2
< 3

2 . This improves the recent results of Culiuc et

al. by increasing the families of weights for which this inequality holds and by push-
ing the lower bound on p from 1 down to 2

3 , the critical index from the unweighted
theory of the bilinear Hilbert transform. Second, as an easy consequence of our
method we obtain that the bilinear Hilbert transform satisfies some vector-valued
inequalities with Muckenhoupt weights. This reproves and generalizes some of the
vector-valued estimates obtained by Benea and Muscalu in the unweighted case.
We also generalize recent results of Carando, et al. on Marcinkiewicz-Zygmund
estimates for multilinear Calderón-Zygmund operators.
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1. Introduction

The Rubio de Francia theory of extrapolation is a powerful tool in harmonic anal-
ysis. In its most basic form, it shows that if, for a fixed value p0, 1 < p0 < ∞, an
operator T satisfies a weighted norm inequality of the form

(1.1) ‖Tf‖Lp0 (w) ≤ C‖f‖Lp0 (w)

for every weight w in the Muckenhoupt class Ap0 , then for every p, 1 < p <∞,

(1.2) ‖Tf‖Lp(w) ≤ C‖f‖Lp(w)

whenever w ∈ Ap. Since its discovery in the early 1980s, extrapolation has been
generalized in a variety of ways, yielding weak-type inequalities, vector-valued in-
equalities, and inequalities in other scales of Banach function spaces. We refer the
reader to [10] for the development of extrapolation; for more recent results we refer
the reader to [8, 13, 18].

Extrapolation has been also extended to the multilinear setting. In [20] it was
shown that if a given operator T satisfies

‖T (f1, . . . , fm)‖Lp((w1···wm)p) ≤ C
m∏
j=1

‖fj‖Lpj (wpjj )

for fixed exponents 1 < p1, . . . , pm <∞,
1

p
=

m∑
j=1

1

pj
, and all weights wpj ∈ Apj , then

the same estimate holds for all possible values of pj. An extension to the scale of
variable Lebesgue spaces was given in [11].

In this paper we develop a theory of limited range, multilinear extrapolation. In
the linear case, limited range extrapolation was developed in [2] by Auscher and the
second author. They proved that if inequality (1.1) holds for a given 0 < p− <
p0 < p+ < ∞ and for all w ∈ A p0

p−
∩ RH( p+

p0

)′ , then for all p− < p < p+ and

w ∈ A p
p−
∩RH( p+

p

)′ , (1.2) holds. Conditions like this arise naturally in the study of

the Riesz transforms and other operators associated to elliptic differential operators.
Our first theorem extends limited range extrapolation to the multilinear setting.

To state our results we use the abstract formalism of extrapolation families. Given
m ≥ 1, hereafter F will denote a family of (m + 1)-tuples (f, f1, . . . , fm) of non-
negative measurable functions. This approach to extrapolation has the advantage
that, for instance, vector-valued inequalities are an immediate consequence of our
extrapolation results. We will discuss applying this formalism to prove norm in-
equalities for specific operators below. For complete discussion of this approach to
extrapolation in the linear setting, see [10].
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Theorem 1.3. Given m ≥ 1, let F be a family of extrapolation (m + 1)-tuples.
For each j, 1 ≤ j ≤ m, suppose we have parameters r−j and r+j , and an exponent

pj ∈ (0,∞), 0 ≤ r−j ≤ pj ≤ r+j ≤ ∞, such that given any collection of weights

w1, . . . , wm with w
pj
j ∈ A pj

r−
j

∩RH( r+
j
pj

)′ and w = w1 · · ·wm, we have the inequality

(1.4) ‖f‖Lp(wp) ≤ C

m∏
j=1

‖fj‖Lpj (wpjj )

for all (f, f1, . . . , fm) ∈ F such that ‖f‖Lp(wp) <∞, where
1

p
=

m∑
j=1

1

pj
and C depends

on n, pj, [wj]A pj

r−
j

, [wj]RH(
r+
j
pj

)′ . Then for all exponents qj, r
−
j < qj < r+j , all weights

w
qj
j ∈ A qj

r−
j

∩RH( r+
j
qj

)′ and w = w1 · · ·wm,

(1.5) ‖f‖Lq(wq) ≤ C
m∏
j=1

‖fj‖Lqj (wqjj )
,

for all (f, f1, . . . , fm) ∈ F such that ‖f‖Lq(wq) <∞, where
1

q
=

m∑
j=1

1

qj
and C depends

on n, pj, qj, [wj]A qj

r−
j

, [wj]RH(
r+
j
qj

)′ . Moreover, for the same family of exponents and

weights, and for all exponents sj, r
−
j < sj < r+j ,

(1.6)

∥∥∥∥∥
(∑

k

(fk)s
) 1

s

∥∥∥∥∥
Lq(wq)

≤ C
m∏
j=1

∥∥∥∥∥
(∑

k

(fkj )sj
) 1

sj

∥∥∥∥∥
Lqj (w

qj
j )

,

for all
{

(fk, fk1 , . . . , f
k
m)}k ⊂ F such that the left-hand side is finite and where

1

s
=

m∑
j=1

1

sj
and C depends on n, pj, qj, sj, [wj]A qj

r−
j

, [wj]RH(
r+
j
qj

)′ .
Remark 1.7. When r−j = 1 and r+j = ∞ in Theorem 1.3 we get a version of the
multilinear extrapolation theorem from [20] for extrapolation families. The original
result was given in terms of operators.

Theorem 1.3 is a consequence of a linear, restricted range, off-diagonal extrap-
olation theorem, which we believe is of interest in its own right. It generalizes the
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classical Rubio de Francia extrapolation, the off-diagonal extrapolation theory of Har-
boure, Maćıas and Segovia [21], and the limited range extrapolation theorem proved
by Auscher and the second author [2].

Theorem 1.8. Given 0 ≤ p− < p+ ≤ ∞ and a family of extrapolation pairs F ,
suppose that for some p0, q0 ∈ (0,∞) such that p− ≤ p0 ≤ p+, 1

q0
− 1

p0
+ 1

p+
≥ 0, and

all weights w such that wp0 ∈ A p0
p−
∩RH( p+

p0

)′,
(1.9)

(∫
Rn
f q0wq0 dx

) 1
q0

≤ C

(∫
Rn
gp0wp0 dx

) 1
p0

for all (f, g) ∈ F such that ‖f‖Lq0 (wq0 ) < ∞, and the constant C depends on
n, p0, q0, [wp0 ]A p0

p−
, [wp0 ]RH(

p+
p0

)′ . Then for every p, q such that p− < p < p+,

0 < q <∞ and 1
p
− 1

q
= 1

p0
− 1

q0
, and every weight w such that wp ∈ A p

p−
∩RH( p+

p

)′,
(1.10)

(∫
Rn
f qwq dx

) 1
q

≤ C

(∫
Rn
gpwp dx

) 1
p

for all (f, g) ∈ F such that ‖f‖Lq(wq) < ∞, and C depends on n, p, q, [wp]A p
p−

,

[wp]RH(
p+
p

)′ .
In Theorems 1.3 and 1.8 we make the a priori assumption that the left-hand sides

of both our hypothesis and conclusion are finite, and this plays a role in the proof.
In certain applications this assumption is reasonable: for instance, when proving
Coifman-Fefferman type inequalities (cf. [10]). However, when using extrapolation to
prove norm inequalities for operators we would like to remove this assumption, as the
point is to conclude that the left-hand side is finite. But in fact, we can do this by
an easy approximation argument. This immediately yields the following corollaries.

Corollary 1.11. Under the same hypotheses as Theorem 1.3, if we assume that (1.4)
holds for all (f, f1, . . . , fm) ∈ F (whether or not the left-hand side is finite) then
the conclusion (1.5) holds for all (f, f1, . . . , fm) ∈ F (whether or not the left-hand
side is finite). Analogously, the vector-valued inequality (1.6) holds for all families{

(fk, fk1 , . . . , f
k
m)
}
k
⊂ F (whether or not the left-hand side is finite).

Corollary 1.12. Under the same hypotheses as Theorem 1.8, if we assume that (1.9)
holds for all (f, g) ∈ F (whether or not the left-hand side is finite) then the conclusion
(1.10) holds for all (f, g) ∈ F (whether or not the left-hand side is finite).

In the statement of Theorem 1.8 there are some restrictions on the allowable ex-
ponents p and q. We make these explicit here; these restrictions will play a role in
the proof below.
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Remark 1.13. Define q± by

(1.14)
1

q±
− 1

p±
=

1

q0
− 1

p0
.

Because of our assumptions that 1
q0
− 1

p0
+ 1

p+
≥ 0 and 0 ≤ p− ≤ p0 ≤ p+ ≤ ∞ it

follows that 0 ≤ q− ≤ q0 ≤ q+ ≤ ∞. Moreover, the fact that p− < p < p+ yields that
q− < q < q+. Note that if we were to allow that 1

q0
− 1

p0
+ 1

p+
< 0, we could choose

p very close to p+ and the associated q would be negative, which would not make
sense.

Moreover, we have that the following hold:

(i) If q0 = p0, then q± = p± and q = p.
(ii) If p0 > q0, then 0 ≤ q− < p−, q+ < p+ ≤ ∞ and q < p.
(iii) If p0 < q0, then 0 ≤ p− < q−, p+ < q+ ≤ ∞ and p < q.

Remark 1.15. When p0 ≥ q0 we automatically have that 1
q0
− 1
p0

+ 1
p+
≥ 0. Further, this

implies that all of the weights which appear in both our hypothesis and conclusion
(i.e, wp0 , wq0 , wp, wq) are in A∞. Consequently, they are locally integrable, and so all
the Lebesgue spaces that appear in the statement contain the characteristic functions
of compact sets. In fact, since wp0 ∈ A∞, wq0 ∈ A∞ (see Lemma 2.1 below). The
same is true for wp and wq, since by Remark 1.13, p ≥ q.

When p0 < q0, the condition 1
q0
− 1

p0
+ 1

p+
≥ 0 imposes an upper bound for q0:

q0 ≤ p0(p+/p0)
′. A similar bound holds for q. Thus (by Lemma 2.1) wq0 , wq ∈ A∞

and so again all the weights involved are in A∞ and thus locally integrable.

Theorem 1.8 and Corollary 1.12 generalize several known extrapolation results.

(i) The classical Rubio de Francia extrapolation theorem (see e.g. [10, Theorems 1.4
and 3.9] for the precise formulation) corresponds to the case p− = 1, p+ = ∞,
q0 = p0.

(ii) The A∞ extrapolation theorem in [9] (see also [10, Corollary 3.15]) corresponds
to the case p− = 0, p+ =∞, and q0 = p0.

(iii) The extrapolation theorem for weights in the reverse Hölder classes [28, Lemma
3.3, (b)] corresponds to the case p− = 0, p+ = 1, and q0 = p0.

(iv) The limited range extrapolation theorem in [2, Theorem 4.9] (see also [10, The-
orems 3.31]), corresponds to the case 0 < p− < p+ ≤ ∞, q0 = p0.

(v) The off-diagonal extrapolation theorem in [21] (see also [10, Theorem 3.23])

corresponds to the case p− = 1, p0 < q0, p+ =
(

1
p0
− 1

q0

)−1
. To see this, we recall
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the well-known fact that w ∈ Ap0,q0 , that is,

sup
Q

(
−
∫
Q

wq0 dx

) 1
q0

(
−
∫
Q

w−p
′
0 dx

) 1
p′
0
<∞,

if and only if wp0 ∈ Ap0 ∩ RH q0
p0

= A p0
p−
∩ RH( p+

p0

)′ . Note that in this case

1
q0
− 1

p0
+ 1

p+
= 0.

Our generalization of off-diagonal extrapolation involves weighted norm inequali-
ties that have already appeared in the literature in the context of fractional powers
of second divergence form elliptic operators with complex bounded measurable coef-
ficients. More precisely, in [3] it was shown that for a certain operator Tα, there exist
1 ≤ r− < 2 < r+ ≤ ∞ such that Tα : Lr(wr) → Ls(ws) for every r− < r < s < r+
and for every w ∈ A1+ 1

r−
− 1
r
∩RH

s
(
r+
s

)′ . By applying Theorem 1.8 we could prove the

same result via extrapolation if we could show that there exists r− < r0 < s0 < r+
such that Tα : Lr0(wr0) → Ls0(ws0) for every w ∈ A1+ 1

r−
− 1
r0

∩ RHs0(
r+
s0

)′ . Note

that the latter condition can be written as wr0 ∈ A r0
p−
∩ RH(

p+
r0

)′ with p− = r− and
1
p+

= 1
r0
− 1

s0
+ 1

r+
, and in this case 1

s0
− 1

r0
+ 1

p+
= 1

r+
≥ 0, so the hypotheses of

Theorem 1.8 hold.

A restricted range, off-diagonal extrapolation theorem has previously appeared in
the literature. Duoandikoetxea [18, Theorem 5.1] proved that if for some 1 ≤ p0 <∞
and 0 < q0, r0 < ∞, and all weights w ∈ Ap0,r0 (note that unlike in the classical
definition of this class he does not require p0 ≤ q0), if (1.9) holds, then for all
1 < p < ∞ and 0 < q, r < ∞ such that 1

p0
− 1

p
= 1

q0
− 1

q
= 1

r0
− 1

r
, and all weights

w ∈ Ap,r, (1.10) holds.
This result is contained in Theorem 1.8 in the particular case when r0 ≥ max{p0, q0}

if we take p− = 1 and p+ =
(

1
p0
− 1

r0

)−1
. In this case, (because r0 ≥ p0) w ∈ Ap0,r0

if and only if wp0 ∈ Ap0 ∩ RH r0
p0

= A p0
p−
∩ RH( p+

p0

)′ . Moreover, in this scenario

1
q0
− 1

p0
+ 1

p+
≥ 0 since r0 ≥ q0.

Despite this overlap, our results are different. We eliminate the restriction p0, p > 1
as we can take 0 ≤ p− < 1. Moreover, for a value of p− 6= 1, it is not clear whether our
result can be gotten from his by rescaling. On the other hand, we cannot recapture
his result for values of r0 < max{p0, q0}.

Finally, in light of Remark 1.15, we note that [18, Theorem 5.1] allows for weights
wq0 or wp0 that may not be locally integrable unless one assumes r0 ≥ max{p0, q0}.
For example, if we fix 0 < r0 < max{p0, q0} and let w(x) = |x|−

n
max{p0,q0} , then it

is easy to see that wr0 ∈ A1 and so w ∈ Ap0,r0 , but either wp0 or wq0 is not locally
integrable (and so the characteristic function of the unit ball centered at 0 does
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not belong to Lp0(wp0) or to Lq0(wq0)). In light of this, we believe the condition
r0 ≥ min{p0, q0} is not unduly restrictive.

Applications. To demonstrate the power of our multilinear extrapolation theorem,
we use Theorem 1.3 to prove results for the bilinear Hilbert transform and for multi-
linear Calderón-Zygmund operators. We first consider the bilinear Hilbert transform,
which is defined by

BH(f1, f2)(x) = p.v.

∫
R
f1(x− t)g(x+ t)

dt

t
.

The problem of finding bilinear Lp estimates for this operator was first raised by
Calderón in connection with the Cauchy integral problem (though it was apparently
not published until [23]). Lacey and Thiele [25, 26] showed that for 1 < p1, p2 ≤ ∞,
1
p

= 1
p1

+ 1
p2
< 3

2
,

‖BH(f1, f2)‖Lp ≤ C‖f1‖Lp1‖f2‖Lp2 .

The problem of weighted norm inequalities for the bilinear Hilbert transform has
been raised by a number of authors: see [15, 16, 20, 29]. The first such results were
recently obtained by Culiuc, di Plinio and Ou [14].

Theorem 1.16. Given 1 < p1, p2 < ∞, define p by 1
p

= 1
p1

+ 1
p2

and assume that

p > 1. For i = 1, 2, let wi be such that w2pi
i ∈ Api, and define w = w1w2. Then

(1.17) ‖BH(f1, f2)‖Lp(wp) ≤ C‖f1‖Lp1 (wp11 )‖f2‖Lp2 (wp22 ),

where C = C(pi, [w
2pi
i ]Api ).

If we apply Theorem 1.3, we can extend Theorem 1.16 to a larger collection of
weights and exponents. In particular, we can remove the restriction that p > 1,
replacing it with p > 2

3
, the same threshold that appears in the unweighted theory.

Theorem 1.18. Given arbitrary 1 < p1, p2 < ∞, define 1
p

= 1
p1

+ 1
p2

and assume

that p > 1. For every i = 1, 2, let r−i = 2pi
1+pi

< qi < 2pi = r+i . Then, for all

wqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ —or, equivalently, w2ri
i ∈ Ari for ri =

(
2
qi
− 1

pi

)−1
— if we write

w = w1w2 and 1
q

= 1
q1

+ 1
q2

, we have that

(1.19) ‖BH(f1, f2)‖Lq(wq) ≤ C‖f1‖Lq1 (wq11 )‖f2‖Lq2 (wq22 ).

In particular, given arbitrary 1 < q1, q2 < ∞ so that q > 2
3

where 1
q

= 1
q1

+ 1
q2

,

there exist values 1 < p1, p2 < ∞ such that 1
p

= 1
p1

+ 1
p2
< 1, in such a way that
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if we set r−i = 2pi
1+pi

, r+i = 2pi then r−i < qi < r+i , and for all weights wi with

wqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ (or, equivalently, w2ri
i ∈ Ari for ri =

(
2
qi
− 1
pi

)−1
) and w = w1w2,

(1.20) ‖BH(f1, f2)‖Lq(wq) ≤ C‖f1‖Lq1 (wq11 )‖f2‖Lq2 (wq22 ).

Remark 1.21. We can state Theorem 1.18 in a different but equivalent form. For
instance, in the second part of that result, if we let vi = wqii , then our hypothesis
becomes vi ∈ A qi

r−
i

∩RH( r+
i
qi

)′ , and the conclusion is that

BH : Lq1(v1)× Lq2(v2) −→ Lq(v
q
q1
1 v

q
q2
w ).

In [14], for instance, Theorem 1.16 is stated in this form. We chose the form that we
did because it seems more natural when working with off-diagonal inequalities.

Remark 1.22. In [14] the authors actually proved Theorem 1.16 for a more general
family of bilinear multiplier operators introduced by Muscalu, Tao and Thiele [30].
Theorem 1.18 immediately extends to these operators. We refer the interested reader
to these papers for precise definitions. This extension actually shows that that the
bound p > 1 in Theorem 1.16 and the bound p > 2

3
in Theorem 1.18 are natural and

in some sense the best possible. In [24, Theorem 2.14], Lacey gave an example of an
operator which does not satisfy a bilinear estimate when p < 2/3; in [14, Remark 1.2]
the authors show that Theorem 1.16 applies to this operator. Hence, if Theorem 1.16
could be extended to include the case p < 1, we would get weighted estimates for this
operator. But by extrapolation, these would yield inequalities below the threshold
q = 2

3
. Indeed, we could apply the first part of Theorem 1.18 with those fixed

exponents 1
p

= 1
p1

+ 1
p2
> 1 and w1 = w2 ≡ 1 to obtain that this operator maps

Lq1 × Lq2 into Lq for every r−i = 2pi
1+pi

< qi < 2pi = r+i and 1
q

= 1
q1

+ 1
q2

. If we fix

0 < ε < min{1
2
(1
p
−1), 1

p′i
} and let 1

qi
:= 1

2
( 1
pi

+1−ε), we would have that r−i < qi < r+i
and

1

q
=

1

q1
+

1

q2
=

1

2p
+ 1− ε > 3

2
.

Given q1, q2, as part of the proof of Theorem 1.18 we construct the parameters
r−i , r

+
i needed to define the weight classes. Thus, while we show that such weights

exist, it is not clear from the statement of the theorem what weights are possible. To
illustrate the different kinds of weight conditions we get, we give some special classes
of weights, and in particular we give a family of power weights.

Corollary 1.23. Given 1 < q1, q2 <∞, define q by 1
q

= 1
q1

+ 1
q2

, and assume further

that q > 2
3
. Then,

(1.24) ‖BH(f1, f2)‖Lq(wq) ≤ C‖f1‖Lq1 (wq11 )‖f2‖Lq2 (wq22 )
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holds for all wqii ∈ Amax{1, qi
2
} ∩RHmax{1, 2

qi
} and w = w1w2. In particular,

(1.25) BH : Lq1(|x|−a)× Lq2(|x|−a) −→ Lq(|x|−a),

if a = 0 or if

(1.26) 1−min
{

max
{

1,
q1
2

}
,max

{
1,
q2
2

}}
< a < min

{
1,
q1
2
,
q2
2

}
.

As a result, (1.25) holds for all 0 ≤ a < 1
2
.

Remark 1.27. By Corollary 1.23 we get weighted estimates for the bilinear Hilbert
transform in exactly the same range where the unweighted estimates are known to
hold. (Note that when a = 0 we recover the unweighted case.) Rather than taking
equal weights in (1.25), we can also give this inequality for more general power weights
of the form wi = |x|−ai/qi ; details are left to the interested reader.

Remark 1.28. As a consequence of Corollary 1.23 we see that even in the range of
exponents covered by Theorem 1.16 from [14], we get a larger class of weights. Fix
1 < q1, q2 < ∞ and assume that 1

q
= 1

q1
+ 1

q2
< 1 . First, it is easy to show (see

Lemma 2.1 below) that w2qi
i ∈ Aqi if an only if wqii ∈ A 1+qi

2
∩RH2. Hence, if we further

assume that wqii ∈ A1 this condition becomes wqii ∈ A1 ∩ RH2 or, equivalently, (see
Lemma 2.1 below) w2qi

i ∈ A1. Hence, as a corollary of Theorem 1.16 we get that
BH : Lq1(wq21 ) × Lq2(wq22 ) −→ Lq(wq) for all w2qi

i ∈ A1. But by Corollary 1.23,
again assuming that wqii ∈ A1, we can allow wqi ∈ A1 ∩ RHmax{1, 2

qi
}, or equivalently,

w
max{2,qi}
i ∈ A1 which is weaker than w2qi

i ∈ A1 since max{2, qi} < 2qi.
Further, when 1 < qi ≤ 2, Corollary 1.23 gives the class of weights wqii ∈ A1∩RH 2

qi

.

To compare this with Theorem 1.16 from [14] note that their condition is, as explained
above, wqii ∈ A 1+qi

2
∩ RH2 and hence we can weaken wqi ∈ RH2 to wqi ∈ RH 2

qi

at

the cost of assuming that wqi ∈ A1 . Alternatively, if qi ≥ 2, our condition becomes
wqi ∈ A qi

2
, which removes any reverse Hölder condition for wqi at the cost of assuming

that wqi ∈ A qi
2
⊂ A 1+qi

2
.

We can also prove vector-valued inequalities for the bilinear Hilbert transform for
the same weighted Lebesgue spaces as in the scalar inequality. Even in the unweighted
case, vector-valued inequalities were an open question until recently. Benea and
Muscalu [4, 5] (see also [22, 31] for earlier results) proved that given 1 < s1, s2 ≤ ∞
and s such that 1

s
= 1

s1
+ 1

s2
and s > 2

3
, then there exist q1, q2, q such that∥∥∥∥(∑

k

|BH(fk, gk)|s
) 1

s
∥∥∥∥
q

≤ C

∥∥∥∥(∑
k

|fk|s1
) 1

s1

∥∥∥∥
q1

∥∥∥∥(∑
k

|gk|s2
) 1

s2

∥∥∥∥
q2
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where 1 < q1, q2 ≤ ∞, 1
q

= 1
q1

+ 1
q2

, and, depending on the values of the si, there

are additional restrictions on the possible values of the qi. (See [5, Theorem 5] for a
precise statement or (5.4) below.) An alternative proof of these estimates when s > 1
is given in [14].

By using the formalism of extrapolation pairs, vector-valued inequalities are an
immediate consequence of extrapolation. Hence, as a consequence of Theorem 1.18
we get the following generalization of the results in [4, 5, 14]. We note that for some
triples s1, s2, s our method does not let us recover the full range of spaces gotten
in [4, 5] but we do get weighted estimates in our range.

Theorem 1.29. Given arbitrary 1 < p1, p2 < ∞, define 1
p

= 1
p1

+ 1
p2

and assume

that p > 1. For every i = 1, 2, let r−i = 2pi
1+pi

< qi, si < 2pi = r+i . Then, for all

wqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ —or, equivalently, w2ri
i ∈ Ari for ri =

(
2
qi
− 1

pi

)−1
— if we write

w = w1w2, 1
q

= 1
q1

+ 1
q2

and 1
s

= 1
s1

+ 1
s2

, there holds

(1.30)

∥∥∥∥(∑
k

|BH(fk, gk)|s
) 1

s
∥∥∥∥
Lq(wq)

≤ C

∥∥∥∥(∑
k

|fk|s1
) 1

s1

∥∥∥∥
Lq1 (w

q1
1 )

∥∥∥∥(∑
k

|gk|s2
) 1

s2

∥∥∥∥
Lq2 (w

q2
2 )

.

In particular, for every 1 < s1, s2 < ∞ such that 1
s

= 1
s1

+ 1
s2
< 3

2
, and for every

1 < q1, q2 <∞ such that 1
q

= 1
q1

+ 1
q2
< 3

2
, if

(1.31)

∣∣∣∣ 1

s1
− 1

q1

∣∣∣∣ < 1

2
,

∣∣∣∣ 1

s2
− 1

q2

∣∣∣∣ < 1

2
, and

2∑
i=1

max

{
1

qi
,

1

si

}
<

3

2
,

there are values 1 < p1, p2 <∞ such that 1
p

= 1
p1

+ 1
p2
< 1, in such a way that if we

set r−i = 2pi
1+pi

, r+i = 2pi then r−i < qi, si < r+i , and hence (1.30) holds for all weights

wi with wqii ∈ A qi

r−
i

∩ RH( r+
i
qi

)′ (or, equivalently, w2ri
i ∈ Ari for ri =

(
2
qi
− 1

pi

)−1
) and

w = w1w2.

Remark 1.32. Theorem 1.29 contains the vector-valued inequalities that follow im-
mediately from our extrapolation result applied to the weighted norm inequalities
obtained in [14] (cf. Therorem 1.16). However, more general weighted estimates for
the bilinear Hilbert transform are implicit in the arguments of [14]. These in turn
produce vector-valued inequalities in a wider range of exponents. We shall elaborate
on this in Section 5 below.
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Remark 1.33. In [4, Proposition 10] the authors also prove iterated vector-valued
inequalities of the form∥∥∥∥(∑

j

(∑
k

|BH(fjk, gjk)|s
) t

s
) 1

t
∥∥∥∥
p

≤
∥∥∥∥(∑

j

(∑
k

|fjk|s1
) t1

s1

) 1
t1

∥∥∥∥
p1

∥∥∥∥(∑
j

(∑
k

|gjk|s2
) t2

s2

) 1
t2

∥∥∥∥
p2

,

again with restrictions on the possible values of the pi depending on the si and ti.
We can easily prove some of these inequalities by extrapolation; moreover, we can
also prove prove weighted versions. After the proof of Theorem 1.29 we sketch how
this is done. Here we note in passing that iterated vector-valued inequalities have
recently appeared in another setting: see [1].

As we did with the scalar inequalities we give some specific examples of classes
of weights for which the bilinear Hilbert transform satisfies weighted vector-valued
inequalities.

Corollary 1.34. Given 1 < s1, s2 <∞ such that 1
s

= 1
s1

+ 1
s2
< 3

2
, and 1 < q1, q2 <∞

such that 1
q

= 1
q1

+ 1
q2
< 3

2
, if

(1.35)

∣∣∣∣ 1

s1
− 1

q1

∣∣∣∣ < 1

2
,

∣∣∣∣ 1

s2
− 1

q2

∣∣∣∣ < 1

2
, and

2∑
i=1

max

{
1

qi
,

1

si

}
<

3

2
,

then (1.30) holds for all wqii ∈ Amax{1, qi
2
,
qi
si
} ∩RHmax{1, 2

qi
,[1−qi( 1

si
− 1

2
)]−1}. In particular,

(1.36)

∥∥∥∥(∑
k

|BH(fk, gk)|s
) 1

s
∥∥∥∥
Lq(|x|−a)

≤ C

∥∥∥∥(∑
k

|fk|s1
) 1

s1

∥∥∥∥
Lq1 (|x|−a)

∥∥∥∥(∑
k

|gk|s2
) 1

s2

∥∥∥∥
Lq2 (|x|−a)

.

holds if a ∈ {0} ∪ (a−, a+) where

a− = 1−min

{
max

{
1,
q1
2
,
q1
s1

}
,max

{
1,
q2
2
,
q2
s2

}}
(1.37)

a+ = min

{
1,
q1
2
,
q2
2
, 1− q1

(
1

s1
− 1

2

)
, 1− q2

(
1

s2
− 1

2

)}



12 DAVID CRUZ-URIBE, OFS AND JOSÉ MARÍA MARTELL

Remark 1.38. The conditions in (1.35) guarantee that a− ≤ 0 < a+, hence the
set {0} ∪ (a−, a+) defines a non-empty interval. On the other hand, this interval
can be arbitrarily small. For instance, take q1 = s1 = 2, q2 = 2, s2 = t with
1 < t < 2. Then (1.35) is satisfied and we have that a− = 0 and a+ = 2(1 − 1

t
).

Thus, {0} ∪ (a−, a+) = [0, a+) and a+ → 0 as t → 1+: that is, in the limit we just
get the Lebesgue measure. Notice, however, that in the context of the first part
of Corollary 1.34, as t → 1+, the conditions on the weights become w2

1 ∈ A1 and

w2
2 ∈ A2 ∩RH∞. Hence, we can take w1(x) = |x|−

a1
q1 and w2(x) = |x|−

a2
q2 with a1 ≥ 0

and −1 < a2 ≤ 0. (Of course if a1 = a2 = a, then a = 0 as observed above.)

As a final application we use extrapolation to prove Marcinkiewicz-Zygmund in-
equalities for multilinear Calderón-Zygmund operators. Weighted norm inequalities
for these operators have been considered by several authors: we refer the reader
to [20, 27] for precise definitions of these operators and weighted norm inequalities
for them. Very recently, Carando, Mazzitelli and Ombrosi [6] proved the following
weighted Marcinkiewicz-Zygmund inequalities.

Theorem 1.39. For m ≥ 1, let T be an m-linear Calderón-Zygmund operator. Given
1 < q1, . . . , qm <∞, q such that 1

q
=
∑

1
qi

, and weights wi such that wqii ∈ Aqi,

(1.40)

∥∥∥∥( ∑
k1,...,km

|T (f 1
k1
, . . . , fmkm)|2

) 1
2
∥∥∥∥
Lq(wq)

≤ C
m∏
i=1

∥∥∥∥(∑
ki

|f iki |
2

) 1
2∥∥

Lqi (w
qi
i )
,

where w = w1w2. If 1 < r < 2 and if we further assume 1 < qi < r, then again for
all weights wi such that wqii ∈ Aqi,

(1.41)

∥∥∥∥( ∑
k1,...,km

|T (f 1
k1
, . . . , fmkm)|r

) 1
r
∥∥∥∥
Lq(wq)

≤ C
m∏
i=1

∥∥∥∥(∑
ki

|f iki |
r

) 1
r∥∥

Lqi (w
qi
i )
,

where w = w1w2.

By using extrapolation we can prove that inequality (1.41) holds for 1 < r < 2
with the same family of exponents as in (1.40) for r = 2.

Theorem 1.42. For m ≥ 1, let T be an m-linear Calderón-Zygmund operator. Given
1 < r < 2, 1 < q1, . . . , qm < ∞, q such that 1

q
=
∑

1
qi

, and weights wi such that

wqii ∈ Aqi, then inequality (1.41) holds.

Remark 1.43. In [6] the authors actually prove that Theorem 1.39 holds for weights in
the larger class A~p introduced in [27]. However, it is not known whether multilinear
extrapolation holds for these weights. We also do not know if Theorem 1.42 can be
extended to this larger family of weights.



LIMITED RANGE MULTILINEAR EXTRAPOLATION 13

The remainder of this paper is organized as follows. In Section 2 we gather some
definitions and basic results about weights. In Section 3 we prove all of our extrap-
olation results. In Section 4 we give the proofs of all of the applications. Finally, in
Section 5 we discuss some results that are implicit in [14] and that can be used to
get more general vector-valued inequalities for the bilinear Hilbert transform.

Throughout this paper n will denote the dimension of the underlying space, Rn. A
constant C may depend on the dimension n, the underlying parameters p−, p+, p, . . .,
and the Ap and RHs constants of the associated weights. It will not depend on the
specific weight. The value of a constant C may change from line to line. Throughout
we will use the conventions that 1

∞ = 0, 1
0

=∞, and 1′ =∞ and ∞′ = 1.

2. Preliminaries

In this section we give the basic properties of weights that we will need below. For
proofs and further information, see [17, 19]. By a weight we mean a non-negative
function v such that 0 < v(x) <∞ a.e. For 1 < p <∞, we say v ∈ Ap if

[v]Ap = sup
Q
−
∫
Q

v dx

(
−
∫
Q

v1−p
′
dx

)p−1
<∞,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the
coordinate axes and −

∫
Q
v dx = |Q|−1

∫
Q
v dx. The quantity [v]Ap is called the Ap

constant of v. Note that it follows at once from this definition that if v ∈ Ap, then
v1−p

′ ∈ Ap′ . When p = 1 we say v ∈ A1 if

[v]A1 = sup
Q
−
∫
Q

w(y) dy ess sup
x∈Q

w(x)−1 <∞.

The Ap classes are properly nested: for 1 < p < q, A1 ( Ap ( Aq. We denote the
union of all the Ap classes, 1 ≤ p <∞, by A∞.

Given 1 < s < ∞, we say that a weight v satisfies the reverse Hölder inequality
with exponent s, denoted w ∈ RHs if

[v]RHs = sup
Q

(
−
∫
Q

vs dx

) 1
s
(
−
∫
Q

v dx

)−1
<∞.

When s =∞ we say v ∈ RH∞ if

[v]RH∞ = sup
Q

ess sup
x∈Q

w(x)

(
−
∫
Q

v dx

)−1
<∞.

The reverse Hölder classes are also properly nested: if s < t < ∞, then RH∞ (
RHt ( RHs. Define RH1 to be the union of all the RHs classes, 1 < s ≤ ∞. We
have that RH1 = A∞. A given v is in RHs for some s > 1 if and only if there exists
p > 1 such that v ∈ Ap. Equivalently, if v ∈ A∞, there exists 1 ≤ p < ∞ and
1 < s ≤ ∞ such that v ∈ Ap ∩RHs.
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The Ap and RHs classes satisfy openness properties: given v ∈ Ap, 1 < p < ∞,
then there exists ε > 0 depending only on [v]Ap , p and n, such that v ∈ Ap−ε; also
given v ∈ RHs, 1 < s <∞, then there exists ε > 0 depending only on [v]RHs , s, and
n, such that v ∈ RHs+ε.

The condition v ∈ Ap ∩ RHs can be restated using the following result. The first
part is from [12, Theorem 2.2]; the second is just gotten by the duality of Ap weights.

Lemma 2.1. Given 1 ≤ p <∞, 1 ≤ s <∞, the weight v ∈ Ap ∩RHs if and only if
vs ∈ Aq, where q = s(p− 1) + 1, that is,

(2.2) sup
Q

(
−
∫
Q

vs dx

) 1
s
(
−
∫
Q

v1−p
′
dx

)p−1
<∞.

In this case also have that v1−p
′ ∈ Aq′.

We can also easily construct weights v ∈ Ap ∩RHs. The next result can be proved
directly from the definitions of the weight classes; essentially the same argument is
used to prove the easier half of the Jones factorization theorem. See [12, Theorem 5.1]
or [7, Theorem 4.4].

Lemma 2.3. Given weights v1, v2 ∈ A1, then for all 1 ≤ p <∞, 1 < s ≤ ∞,

v = v
1
s
1 v

1−p
2 ∈ Ap ∩RHs.

3. Proofs of extrapolation results

Our proof is similar in spirit to the proofs of off-diagonal and limited range extrap-
olation in [10, Theorems 3.23 and 3.31]. To better understand the heuristic argument
that underlies our proof, we refer the reader to the discussion in [13, Section 4]. We
have split the proof split into four cases.

Proof of Theorem 1.8. Case I: p− > 0 and p− < p0 < p+. Fix p− < p < p+
and w such that wp ∈ A p

p−
∩RH( p+

p

)′ . Fix an extrapolation pair (f, g) ∈ F ; we may

assume that 0 < ‖f‖Lq(wq), ‖g‖Lp(wp) <∞. For if ‖f‖Lq(wq) = 0 or if ‖g‖Lp(wp) =∞,
then (1.10) is trivially true. And if ‖g‖Lp(wp) = 0, then (1.9) implies that ‖f‖Lq0 (wq0 ) =
0, and so f = 0 a.e. and thus ‖f‖Lq(wq) = 0, which again gives us (1.10).

We now fix some exponents based on our weight w. By Lemma 2.1 we have that

wp
(
p+
p

)′
∈ Aτ , where

(3.1) τ =

(
p+
p

)′(
p

p−
− 1

)
+ 1 =

1
p−
− 1

p

1
p
− 1

p+

+ 1 =

1
p−
− 1

p+
1
p
− 1

p+

.
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For future reference we note that

(3.2) τ ′ =

1
p−
− 1

p+
1
p−
− 1

p

.

From Remark 1.13 we have that

(3.3)
1

q+
− 1

p+
=

1

q0
− 1

p0
=

1

q
− 1

p
.

Define the number s by

(3.4) s = q0 −
q0
p0

q

τ

(
p0
p−
− 1

)
= q0q

(
1

q
− 1

τ

(
1

p−
− 1

p0

))
;

we will explain our choice of s below. For later use, we prove that 0 < s < min(q, q0).
First, we have that s > 0: by (3.1), the fact that p0 < p+ and (3.3) we obtain

1

q
− 1

τ

(
1

p−
− 1

p0

)
=

1

q
−

1
p
− 1

p+
1
p−
− 1

p+

(
1

p−
− 1

p0

)
>

1

q
− 1

p
+

1

p+
=

1

q+
≥ 0.

To show that s < min(q, q0), we claim

(3.5) s = q − qq0
p0

1

τ ′
1(
p+
p0

)′ = q0q

(
1

q0
−
(

1− 1

τ

)(
1

p0
− 1

p+

))
.

To see that this holds, we use the fact that 1
q
− 1

p
= 1

q0
− 1

p0
:

1

q
− 1

τ

(
1

p−
− 1

p0

)
=

1

q
− 1

τ

(
1

p−
− 1

p+

)
− 1

τ

(
1

p+
− 1

p0

)
=

1

q
− 1

p
+

1

p+
− 1

τ

(
1

p+
− 1

p0

)
=

1

q0
− 1

p0
+

1

p+
− 1

τ

(
1

p+
− 1

p0

)
=

1

q0
−
(

1− 1

τ

)(
1

p0
− 1

p+

)
.

It follows at once from (3.4) and (3.5) that s < min(q, q0).

We now prove our main estimate. By rescaling and duality, we have that

‖f‖sLq(wq) = ‖f s‖
L
q
s (wq)

=

∫
Rn
f sh2w

q dx,

where h2 is a non-negative function in L( q
s
)′(wq) with ‖h2‖L(

q
s )
′
(wq)

= 1. Now let H1

and H2 be non-negative functions such that 0 < H1 <∞ a.e., and h2 ≤ H2; we will
determine their exact values below. Fix α = s(

q0
s

)′ . Then by Hölder’s inequality,
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(3.6)

∫
Rn
f sh2w

q dx ≤
∫
Rn
f sH−α1 Hα

1H2w
q dx

≤
(∫

Rn
f q0H

−α q0
s

1 H2w
q dx

) s
q 0
(∫

Rn
H
α( q0s )

′

1 H2w
q dx

)1/
(
q0
s

)′
= I

s
q 0
1 × I

1/
(
q0
s

)′
2 .

We first estimate I2. Assume that H1 ∈ Lq(wq) with ‖H1‖Lq(wq) ≤ C1 < ∞,

and that H2 ∈ L

(
q
s

)′
(wq) with ‖H2‖

L

(
q
s

)′
(wq)

≤ C2 < ∞. Then again by Hölder’s

inequality,

I2 ≤
(∫

Rn
H
α( q0s )

′ q
s

1 wq dx

) s
q

(∫
Rn
H

(
q
s

)′
2 wq dx

)1/
(
q
s

)′

≤ C2

(∫
Rn
Hq

1w
q dx

) s
q

≤ Cs
1C2.

To estimate I1 we want to apply (1.9); to do so we need to show that I1 < ∞.
Assume that f ≤ H1‖f‖Lq(wq); then we have that

I1 ≤ ‖f‖q0Lq(wq)
∫
Rn
Hq0

1 H
−α q0

s
1 H2w

q dx

= ‖f‖q0Lq(wq)
∫
Rn
Hs

1H2w
q dx = ‖f‖q0Lq(wq) × I2 <∞.

Define ϕ =
(
q
s

)′ q0
p0

. Then ϕ > 1: by (3.5) we have that

s

q

p0
q0

=
p0
q0
− 1

τ ′
1(
p+
p0

)′ ,
and so

1

ϕ
=
p0
q0

1(
q
s

)′ =
p0
q0

(
1− s

q

)
=

1

τ ′
1(
p+
p0

)′ < 1.

Now let W q0 = H
−α q0

s
1 H2w

q and assume that W p0 ∈ A p0
p−
∩ RH( p+

p0

)′ . Since I1 is

finite, f ∈ Lq0(W q0). Thus, by (1.9) and Hölder’s inequality,

I1 =

∫
Rn
f q0W q0 dx

≤ C

(∫
Rn
gp0W p0 dx

) q0
p0
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= C

(∫
Rn
gp0H

−α p0
s

1 H
p0
q0
2 w

q
p0
q0w−qwq dx

) q0
p0

≤
(∫

Rn
gp0ϕ

′
H
−α p0

s
ϕ′

1 w
q(
p0
q0
−1)ϕ′

wq dx

) q0
ϕ′p0

(∫
Rn
H

(
q
s

)′
2 wq dx

) q0
ϕp0

.

The second integral on the last line is bounded by C
q0
ϕp0

(
q
s

)′
2 = C2, so it remains to

show that the first integral is bounded by ‖g‖q0Lp(wp). If we have that

gp0ϕ
′
H
−α p0

s
ϕ′

1 w
q(
p0
q0
−1)ϕ′ ≤ Hq

1‖g‖
p0ϕ′

Lp(wp),

then the first integral would be bounded by ‖H1‖
q0q

ϕ′p0
Lq(wq)‖g‖

q0
Lp(wp) ≤ C

q0q

ϕ′p0
1 ‖g‖q0Lp(wp).

This, combined with inequality (3.6) would yield inequality (1.10) and the proof
would be complete.

Therefore, to complete the proof we need to show that we can construct non-
negative functions H1 and H2 such that

‖H1‖Lq(wq) ≤ C1,(3.7)

gp0ϕ
′
H
−α p0

s
ϕ′

1 w
q(
p0
q0
−1)ϕ′ ≤ Hq

1‖g‖
p0ϕ′

Lp(wp),(3.8)

0 < H1 <∞, f ≤ H1‖f‖Lq(wq),(3.9)

‖H2‖L(
q
s )
′
(wq)
≤ C2,(3.10)

h2 ≤ H2;(3.11)

and such that the weight W = H
−α
s

1 H
1
q0
2 w

q
q0 satisfies

(3.12) W p0 = H
−αp0

s
1 H

p0
q0
2 w

qp0
q0 ∈ A p0

p−
∩RH( p+

p0

)′ .
We will first prove that (3.7), (3.8) and (3.9) hold. Since αp0

s
= p0

q0
(q0− s), (3.8) is

equivalent to

(3.13) gp0w
q(
p0
q0
−1) ≤ H

q
ϕ′+

p0
q0

(q0−s)
1 ‖g‖p0Lp(wp).

Using the fact that 1
p
− 1

q
= 1

p0
− 1

q0
, we have that

q

ϕ′
+
p0
q0

(q0 − s) = q − p0
q0

q(
q
s

)′ +
p0
q0

(q0 − s) = q − p0
q0

(q − s) +
p0
q0

(q0 − s)

= q − p0
q0

(q − q0) = q

(
1− p0

(
1

q0
− 1

q

))
= q

(
1− p0

(
1

p0
− 1

p

))
= q

p0
p
.
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Similarly, we have that

q

(
p0
q0
− 1

)
= qp0

(
1

q0
− 1

p0

)
= qp0

(
1

q
− 1

p

)
= p0 − q

p0
p

= p0

(
1− q

p

)
.

Therefore, (3.13) (and hence (3.8)) is equivalent to

(3.14) g
p
qw

p
q
−1 ≤ H1‖g‖

p
q

Lp(wp).

To construct a function H1 that satisfies (3.7), (3.9), and(3.14), we use the Rubio

de Francia iteration algorithm. As we noted above, wp
(
p+
p

)′
∈ Aτ , so the maximal

operator is bounded on Lτ (wp
(
p+
p

)′
). Hence, for non-negative G ∈ Lτ (wp(

p+
p

)′) we
can define the iteration algorithm

R1G =
∞∑
k=0

MkG

2k‖M‖k
Lτ (w

p(
p+
p )′

)

.

Then we have that thatG ≤ R1G,R1G ∈ A1, and ‖R1G‖
Lτ (w

p(
p+
p )′

)
≤ 2‖G‖

Lτ (w
p(
p+
p )′

)

(cf. [10, Proof of Theorem 3.9]). Now define δ and ε by

δτ = q, ετ = q − p
(
p+
p

)′
,

and let

H1 = R1(h
δ
1w

ε)
1
δw−

ε
δ , h1 =

f

‖f‖Lq(wq)
+

g
p
qw

p
q
−1

‖g‖
p
q

Lp(wp)

.

Then

max

 f

‖f‖Lq(wq)
,
g
p
qw

p
q
−1

‖g‖
p
q

Lp(wp)

 ≤ h1 ≤ H1,

and so both (3.9) and (3.14) hold. Moreover,

‖h1‖Lq(wq) ≤ 21− 1
q

(∫
Rn

f qwq

‖f‖qLq(wq)
+

gpwp

‖g‖pLp(wp)
dx

) 1
q

= 2,

and so

‖H1‖Lq(wq) = ‖R1(h
δ
1w

ε)‖
1
δ

Lτ (w
p(
p+
p )′

)

≤ 2
1
δ ‖hδ1wε‖

1
δ

Lτ (w
p(
p+
p )′

)
= 2

1
δ ‖h1‖Lq(wq) ≤ 21+ 1

δ = C1.

This gives us (3.7).
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The construction of H2 and the proof of (3.10) and (3.11) are similar to the argu-
ment for H1. By Lemma 2.1, if we set

σ = p

((
p

p−

)′
− 1

)
,

then w−σ ∈ Aτ ′ and so the maximal operator is bounded on Lτ
′
(w−σ). Hence, if we

define the Rubio de Francia iteration algorithm for non-negative F ∈ Lτ ′(w−σ) by

R2F =
∞∑
k=0

MkF

2k‖M‖k
Lτ ′ (w−σ)

,

then we have that F ≤ R2F , R2F ∈ A1, and ‖R2F‖Lτ ′ (w−σ) ≤ 2‖F‖Lτ ′ (w−σ). Define
β and γ by

βτ ′ =

(
q

s

)′
, γτ ′ = σ + q.

If we now let
H2 = R2(h

β
2w

γ)
1
βw−

γ
β ,

then we immediately get (3.11). Moreover, we have that

‖H2‖L(
q
s )
′
(wq)

= ‖R2(h
β
2w

γ)‖
1
β

Lτ ′ (w−σ)

≤ 2
1
β ‖hβ2wγ‖

1
β

Lτ ′ (w−σ)
= 2

1
β ‖h2‖L(

q
s )
′
(wq)

= 2
1
β = C2.

This gives us (3.10).

Finally, we will show that (3.12) holds. By Lemma 2.3, (3.12) holds if there exist
µ1, µ2 ∈ A1 such that

H
−αp0

s
1 H

p0
q0
2 w

qp0
q0 ∈ A p0

p−
∩RH( p+

p0

)′ = W p0 = µ

1

(
p+
p0

)′

2 µ
1− p0

p−
1 .

By the A1 property of the Rubio de Francia iteration algorithms, we have that

µ1 = H
q
τ
1 w

q
τ
− p
τ

(
p+
p

)′
= R1(h

δ
1w

ε) ∈ A1,

µ2 = H
1
τ ′

(
q
s

)′
2 w

σ
τ ′+

q
τ ′ = R2(h

βwγ) ∈ A1.

If we substitute these expressions into the above formula and equate exponents, we
see that equality holds if

αp0
s

=
q

τ

(
p0
p−
− 1

)
,(3.15)

p0
q0

=
1

τ ′

(
q

s

)′
1(
p+
p0

)′ ,(3.16)
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qp0
q0

=

(
σ

τ ′
+
q

τ ′

)
1(
p+
p0

)′ +

(
q

τ
− p

τ

(
p+
p

)′)(
1− p0

p−

)
.(3.17)

If we use our choice of α on the left-hand side of (3.15) and (3.4) on the right-hand
side, it is straightforward to see that (3.15) holds. Additionally, if we use (3.5) on
the right-hand side of (3.16), we see that the latter also holds. (It was the necessity
of these two identities for the proof that is the reason for our original choice of s.)
To show that (3.17) holds, note that by (3.2) and our choice of σ we have that

σ

τ ′
=

p
p
p−
− 1

1
p−
− 1

p

1
p−
− 1

p+

=
1

1
p−
− 1

p+

.

Given this we can expand the right-hand side of (3.17):(
σ

τ ′
+
q

τ ′

)
1(
p+
p0

)′ +

(
q

τ
− p

τ

(
p+
p

)′)(
1− p0

p−

)

=

(
1

1
p−
− 1

p+

+ q

1
p−
− 1

p

1
p−
− 1

p+

)
p0

(
1

p0
− 1

p+

)

+

(
q

1
p
− 1

p+
1
p−
− 1

p+

− 1
1
p−
− 1

p+

)
p0

(
1

p0
− 1

p−

)
=

p0
1
p−
− 1

p+

[
1

p−
− 1

p+
+
q

p

(
1

p+
− 1

p−

)
+

q

p0

(
1

p−
− 1

p+

)]
= qp0

[
1

q
− 1

p
+

1

p0

]
=
qp0
q0
.

This completes the proof of Case I. �

Proof of Theorem 1.8. Case II: p0 = p−. Fix p− < p < p+ and w such that
wp ∈ A p

p−
∩ RH( p+

p

)′ and note that in this case p− = p0 > 0 and q− = q0 by (1.14).

The proof is similar to the proof of Case I and we indicate the main changes. First,
in this case (3.4) gives s = q0 > 0. Thus, s = q0 = q− < q by (1.14) and the fact that
p− < p. Furthermore (3.5) holds in this case.

We now argue as before, but in this case we do not need to introduce H1. Since
s < q, by rescaling and duality we have that

‖f‖sLq(wq) = ‖f s‖
L
q
s (wq)

=

∫
Rn
f sh2w

q dx ≤
∫
Rn
f sH2w

q dx,
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where h2 is a non-negative function in L( q
s
)′(wq) with ‖h2‖L(

q
s )
′
(wq)

= 1 and H2 is such

that h2 ≤ H2; we will determine the exact value below. If we assume further that
‖H2‖

L

(
q
s

)′
(wq)

≤ C2 <∞, it follows by assumption that∫
Rn
f sH2w

q dx ≤ ‖f s‖
L
q
s (wq)
‖H2‖

L

(
q
s

)′
(wq)

≤ C2‖f‖sLq(wq) <∞.

Define ϕ =
(
q
s

)′ q0
p0

=
(
q
q0

)′ q0
p0

; then we have that

1

ϕ
=
p0
q0

1(
q0
s

)′ =
p0
q0

(
1− q0

q

)
= p0

(
1

q0
− 1

q

)
= p0

(
1

p0
− 1

p

)
= 1− p0

p
< 1,

which implies that ϕ′ = p
p0

. Now let W q0 = H2w
q and assume that W p0 ∈ A p0

p−
∩

RH( p+
p0

)′ = A1 ∩ RH( p+
p−

)′ , or equivalently (by Lemma 2.1), W
p0

(
p+
p−

)′
∈ A1. Then

by our hypothesis (1.9) we get

‖f‖sLq(wq) =

∫
Rn
f q0W q0 dx

≤ C

(∫
Rn
gp0W p0 dx

) q0
p0

= C

(∫
Rn
gp0H

p0
q0
2 w

q
p0
q0w−qwq dx

) q0
p0

≤
(∫

Rn
gp0ϕ

′
w
q(
p0
q0
−1)ϕ′

wq dx

) q0
ϕ′p0

(∫
Rn
H

(
q
s

)′
2 wq dx

) q0
ϕp0

.

≤ C2

(∫
Rn
gp0ϕ

′
w
q(
p0
q0
−1)ϕ′

wq dx

) q0
ϕ′p0

= C2

(∫
Rn
gpwp dx

) q0
p0

,

where in the last equality we have used that

q
(p0
q0
− 1
)
ϕ′ + q = q

(p0
q0
− 1
) p
p0

+ q = qp
( 1

q0
− 1

p0

)
+ q = qp

(1

q
− 1

p

)
+ q = p.

Therefore, to complete the proof we need to show that we can construct a non-
negative function H2 such that

‖H2‖L(
q
s )
′
(wq)
≤ C2,(3.18)

h2 ≤ H2;(3.19)
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and such that the weight W = H
1
q0
2 w

q
q0 satisfies

(3.20) W
p0

(
p+
p−

)′
= H

p0
q0

(
p+
p−

)′
2 w

qp0
q0

(
p+
p−

)′
∈ A1.

We construct H2 exactly as in the proof of Case I, and as before we have (3.18)
and (3.19). It remains to show (3.20). By (3.5),

1

β

p0
q0

(p+
p−

)′
=

τ ′(
q
s

)′ p0q0
(p+
p0

)′
=

1(
q
s

)′ q − ss = 1.

On the other hand, recalling that p0 = p− and s = q0 we obtain

q − γ

β
= q − σ + q(

q
s

)′ = q0 −
p(

q
s

)′( p
p−
− 1
) = q0 − q0

1
q0
− 1

q

1
p0
− 1

p

= 0.

Thus,

W
p0

(
p+
p−

)′
= H

p0
q0

(
p+
p−

)′
2 w

qp0
q0

(
p+
p−

)′
= R2(h

β
2w

γ)
1
β
p0
q0

(
p+
p−

)′
w

p0
q0

(
p+
p−

)′(
q− γ

β

)
= R2(h

β
2w

γ) ∈ A1,

which concludes the proof of Case II. �

Proof of Theorem 1.8. Case III: p0 = p+ and p− > 0. Fix p− < p < p+ and
w such that wp ∈ A p

p−
∩ RH( p+

p

)′ and note that in this case p+ = p0 < ∞ and

q+ = q0 by (1.14). We again follow the proof of Case I and we indicate the main
changes. First, if we define s as in (3.4) and since (3.5) is also valid in this context,
then 0 < s = q < q+ = q0 by (1.14) and the fact that p < p+.

We now argue as before, but in this case we do not need to use duality or introduce
H2. Since s = q, if we fix α = s(

q0
s

)′ , then by Hölder’s inequality,

‖f‖q0Lq(wq) =

(∫
Rn
f sH−α1 Hα

1 w
q dx

) q0
q

≤
(∫

Rn
f q0H

−α q0
s

1 wq dx

)(∫
Rn
H
α( q0s )

′

1 wq dx

) q0

q

(
q0
s

)′
≤ C

q0/
(
q0
s

)′
1

∫
Rn
f q0H

−α q0
s

1 wq dx,

where 0 < H1 < ∞ is in Lq(wq) with ‖H1‖Lq(wq) ≤ C1 < ∞. We will determine the
exact value below. If we also assume that f ≤ H1‖f‖Lq(wq), then
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Rn
f q0H

−α q0
s

1 wq dx ≤ ‖f‖q0Lq(wq)
∫
Rn
Hq0

1 H
−α q0

s
1 wq dx

= ‖f‖q0Lq(wq)
∫
Rn
Hs

1w
q dx ≤ Cq

1‖f‖
q0
Lq(wq) <∞.

Thus, we can apply (1.9) if we let W q0 = H
−α q0

s
1 wq and assume that W p0 ∈ A p0

p−
∩

RH( p+
p0

)′ = A p+
p−
∩RH∞:

‖f‖q0Lq(wq) ≤ C
q0/
(
q0
s

)′
1

∫
Rn
f q0W q0 dx

≤ C

(∫
Rn
gp0W p0 dx

) q0
p0

= C

(∫
Rn
gp0H

−α p0
s

1 w
q
p0
q0w−qwq dx

) q0
p0

≤ C‖g‖q0Lp(wp)

(∫
Rn
Hq

1w
q dx

) q0
p0

≤ CC
q0q
p0
1 ‖g‖

q0
Lp(wp),

provided H1 satisfies

gp0H
−α p0

s
1 w

q(
p0
q0
−1) ≤ Hq

1‖g‖
p0
Lp(wp).

To complete the proof we need to show that we can construct H1 such that

‖H1‖Lq(wq) ≤ C1,(3.21)

gp0H
−α p0

s
1 w

q(
p0
q0
−1) ≤ Hq

1‖g‖
p0
Lp(wp),(3.22)

0 < H1 <∞, f ≤ H1‖f‖Lq(wq),(3.23)

and such that the weight W = H
−α
s

1 w
q
q0 satisfies

(3.24) W p0 = H
−αp0

s
1 w

qp0
q0 ∈ A p0

p−
∩RH∞.

Since αp0
s

= p0
q0

(q0 − s), (3.22) is equivalent to

(3.25) gp0w
q(
p0
q0
−1) ≤ H

q+
p0
q0

(q0−s)
1 ‖g‖p0Lp(wp).

Using the fact that 1
p
− 1

q
= 1

p0
− 1

q0
, and that s = q we have that

q +
p0
q0

(q0 − s) = q + p0q

(
1

q
− 1

q0

)
= q + p0q

(
1

p
− 1

p0

)
= q

p0
p
.
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Similarly, we have that

q

(
p0
q0
− 1

)
= qp0

(
1

q0
− 1

p0

)
= qp0

(
1

q
− 1

p

)
= p0

(
1− q

p

)
.

Therefore, (3.25) (and hence (3.22)) is equivalent to

(3.26) g
p
qw

p
q
−1 ≤ H1‖g‖

p
q

Lp(wp).

We now construct H1 exactly as in the proof of Case I, and we obtain as before (3.23),
(3.26), and (3.21). It remains to show (3.24). By (3.4)

αp0
δs

=
τp0

q
(
q0
s

)′ =
1(
q0
s

)′ p0p− − 1
q0−s
q0

=
p0
p−
− 1,

and also, since p0 = p+,

εαp0
δs

=
( p0
p−
− 1
)
ε =

( p0
p−
− 1
)
q

(
1

τ
−
p
(
p+
p

)′

τ

)
= p0

( 1

p−
− 1

p0

)(
q

1
p
− 1

p+
1
p−
− 1

p+

− 1
1
p−
− 1

p+

)
= qp0

(1

p
− 1

p0
− 1

q

)
= −qp0

q0
.

Together, these imply that

W p0 = H
−αp0

s
1 w

qp0
q0 = R1(h

δ
1w

ε)
1− p0

p− ∈ A p0
p−
∩RH∞;

the inclusion follows from Lemma 2.3 and the fact that R1(h
δ
1w

ε) ∈ A1. This com-
pletes the proof of Case III. �

Proof of Theorem 1.8. Case IV: p− = 0 and p− < p0 ≤ p+. In this case we
adapt ideas from [28, Section 3.1]. Fix p, q such that 0 = p− < p < p+, 0 < q < ∞
and 1

p
− 1

q
= 1

p0
− 1

q0
, and let v be such that vp ∈ A p

p−
∩ RH( p+

p

)′ = RH( p+
p

)′ . Since

RH1 = A∞, there exists 0 < ε < min{p0, p} such that vp ∈ A p
ε
. Set p̃− = ε > 0;

then p̃− < p0 ≤ p+ and (1.9) holds for all wp0 ∈ A p0
p̃−
∩ RH( p+

p0

)′ ⊂ RH( p+
p0

)′ =

A p0
p−
∩ RH( p+

p0

)′ . Thus, we can use Cases I and III with p̃− > 0 in place of p− to

conclude that (1.10) holds for every p̃, q̃ such that p̃− < p̃ < p+, 0 < q̃ < ∞ and
1
p̃
− 1

q̃
= 1

p0
− 1

q0
, and every weight w such that wp̃ ∈ A p̃

p̃−
∩ RH( p+

p̃

)′ . If we take

p̃ = p, q̃ = q and w = v, our choice of ε guarantees that p̃− = ε < p < p+, 0 < q <∞
and 1

p
− 1

q
= 1

p0
− 1

q0
. Moreover, vp ∈ A p

ε
∩RH( p+

p

)′ = A p̃
p̃−
∩RH( p+

p̃

)′ . Thus, (1.10)

holds and the proof of Case IV is complete. �
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Proof of Theorem 1.3. Our proof of Theorem 1.3 is a modification of the proof
of multilinear extrapolation in [18, Theorem 6.1]. We include the details so that we
can explain the use of families of extrapolation pairs. The essential idea is to reduce
the problem to a linear one by acting on one function at a time.

For 2 ≤ j ≤ m, fix weights wj such that w
pj
j ∈ A pj

r−
j

∩ RH( r+
j
pj

)′ . Fix functions

fj, 2 ≤ j ≤ m, such that there exists functions f and g with (f, g, f2, . . . , fm) ∈ F .
Assume that for each j, 0 < ‖fj‖Lpj (wpjj )

< ∞. (We will remove this restriction

below.) Define the new family of extrapolation pairs

F1 = {(F, g) = (f
m∏
j=2

wj‖fj‖−1
Lpj (w

pj
j )
, g) : (f, g, f2, . . . , fm) ∈ F}.

If f ∈ Lp(wp), then F ∈ Lp(wp1), so by our hypothesis (1.4),

(3.27) ‖F‖Lp(wp1) ≤ C‖g‖Lp1 (wp11 )

for all wp11 ∈ A p1

r−
1

∩RH( r+
1
p1

)′ . Note that p < p1 and so 1
p
− 1

p1
+ 1

r+1
> 0. Therefore, by

Theorem 1.8, for all pairs (F, g) ∈ F1 with ‖F‖Lq(wq1) <∞, and for all r−1 < q1 < r+1
and all wq11 ∈ A q1

r−
1

∩RH( r+
1
q1

)′ ,
‖F‖Lq(wq1) ≤ C‖g‖Lq1 (wq11 ),

where 1
q
− 1

q1
= 1

p
− 1

p1
and so 1

q
= 1

q1
+
∑m

j=2
1
pj

. Therefore, by our definition of F ,

‖f‖Lq(wq) <∞ we can rewrite this as

‖f‖Lq(wq) ≤ C‖g‖Lq1 (wq11 )

m∏
j=2

‖fj‖Lpj (wpj1 )
.

This inequality still holds even if we remove the restriction 0 < ‖fj‖Lpj (wpjj )
< ∞.

If for some j, ‖fj‖Lpj (wpjj )
= ∞, this inequality clearly holds; if ‖fj‖Lpj (wpjj )

= 0,

then (1.4) implies that f = F = 0, and this inequality again holds.
We can repeat this argument for any such collection of fj, 2 ≤ j ≤ m. Therefore,

we have shown that for all (f1, . . . , fm) ∈ F with f ∈ Lq(wq),

‖f‖Lq(wq) ≤ C‖f1‖Lq1 (wq11 )

m∏
j=2

‖fj‖Lpj (wpj1 )
.

To complete the proof, fix f1, f3, . . . fm, and repeat the above argument in the
second coordinate, etc. Then by induction we get the desired conclusion.

We now prove the vector-valued inequalities (1.6). The extension of scalar inequal-
ities to vector-valued inequalities via extrapolation is well-known in the linear case:
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see [10, Corollary 3.12]. The argument is nearly the same in the multilinear setting.

Fix sj, r
−
j < sj < r+j , for 1 ≤ j ≤ m and set

1

s
=

m∑
j=1

1

sj
. Define a new family

F̃ =

{
(F, F1, . . . , Fm) =

((∑
k

(fk)s
) 1

s

,

(∑
k

(fk1 )s1
) 1

s1

, . . . ,

(∑
k

(fkm)sm
) 1

sm
)

:

{
(fk, fk1 , . . . , f

k
m)}k ⊂ F

}
.

Without loss of generality we may assume that all of the sums in the definition of

F̃ are finite; the conclusion for infinite sums follows by the monotone convergence
theorem. Then, given any collection of weights w1, . . . , wm with w

sj
j ∈ A sj

r−
j

∩RH( r+
j
sj

)′
and w = w1 · · ·wm, if ‖F‖Ls(ws) <∞, then by (1.5) we have that

(3.28) ‖F‖Ls(ws) =

(∑
k

‖fk‖sLs(ws)
) 1

s

≤ C

(∑
k

m∏
j=1

‖fkj ‖sLsj (wsjj )

) 1
s

≤ C
m∏
j=1

(∑
k

‖fkj ‖
sj

Lsj (w
sj
j )

) 1
sj

= C
m∏
j=1

‖Fj‖Lsj (wsjj )
,

where in the second estimate we used Hölder’s inequality with respect to sums. We

can now apply the first part of Theorem 1.3 to F̃ , where we use (3.28) for the initial
estimate in place of (1.4). We thus get

(3.29) ‖F‖Lq(wq) ≤ C
m∏
j=1

‖Fj‖Lqj (wqjj )
.

for all exponents qj, r
−
j < qj < r+j , all weights w

qj
j ∈ A qj

r−
j

∩RH( r+
j
qj

)′ , w = w1 · · ·wm,

and
1

q
=

m∑
j=1

1

qj
. Inequality (3.29) holds for all (F, F1, . . . , Fm) ∈ F̃ for which

‖F‖Lq(wq) <∞. But this is exactly (1.6) and the proof is complete. �

Proof of Corollaries 1.11 and 1.12. We will prove Corollary 1.12; the proof of
Corollary 1.11 is identical. The proof follows as in [28, Section 3.1]. Given a family
of extrapolation pairs F as in the statement and any N > 0, define the new family

FN :=
{

(fN , g) : (f, g) ∈ F , fN := fχ{x∈B(0,N):f(x)≤N}
}
.
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Note that for all 0 < r <∞ and wr ∈ A∞,

(3.30) ‖fN‖rLr(wr) ≤ N rwr(B(0, N)) <∞.

Since fN ≤ f , by our hypothesis we get that (1.9) holds for every pair in FN (with a
constant independent of N) with a left-hand side that is always finite by (3.30) and
Remark 1.15. Therefore, we can apply Theorem 1.8 to FN to conclude that (1.10)
holds for every pair (fN , g) ∈ FN (with a constant that is again independent of N),
since again the left-hand side is always finite. The desired inequality follows at once
if we let N →∞ and apply the monotone convergence theorem. �

4. Proofs of the applications

We now prove Theorems 1.18, 1.29, and 1.39, and Corollary 1.23. We also sketch
the ideas needed to prove the result in Remark 1.33.

Proof of Theorem 1.18. We start with the first part of the theorem. Let p1, p2 ∈
(1,∞) be such that 1

p
= 1

p1
+ 1

p2
< 1, fix w2p1

1 ∈ Ap1 , w
2p2
2 ∈ Ap2 , and let w = w1w2.

Then by Theorem 1.16, BH : Lp1(wp11 ) × Lp2(wp22 ) → Lp(wp). By Lemma 2.1,
w2pi
i ∈ Api if and only if wpi ∈ A pi+1

2
∩RH2. Thus, if we set r−i = 2pi

pi+1
and r+i = 2pi,

then 1 < r−i < pi < r+i < ∞ and wpii ∈ A pi

r−
i

∩ RH( r+
i
pi

)′ . We can then apply

Corollary 1.11 to the family

F = {(|B(f, g)|, |f |, |g|) : f, g ∈ L∞c }

to conclude that for all r−i < qi < r+i and wqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ , the bilinear Hilbert

transform BH is bounded from Lq1(wq11 )×Lq2(wq22 ) into Lq(wq) where 1
q

= 1
q1

+ 1
q2

and

w = w1w2. (Here we use the fact that L∞c is dense any space Lr(wr) if wr is locally
integrable, and the fact that BH is bilinear to extend the inequality on triples in F
that we get from Theorem 1.3 to all of Lq1(wq11 ) × Lq2(wq22 ).) Again by Lemma 2.1,

the conditions on the weights are equivalent to w2ri
i ∈ Ari , where ri =

(
2
qi
− 1

pi

)−1
.

Note that 1 < ri <∞ since r−i < qi < r+i . This completes the proof of the first part
of Theorem 1.18.

To prove the second part of the theorem, fix 1 < q1, q2 <∞ such that 1
q

= 1
q1

+ 1
q2
<

3
2
. We want to use the previous argument: therefore, we need to find p1, p2 ∈ (1,∞)

such that 1
p

= 1
p1

+ 1
p2
< 1 and r−i < qi < r+i , where

(4.1)
1

r+i
=

1

2pi
<

1

qi
<

1

r−i
=

1

2pi
+

1

2
.
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Since 1 < p1, p2 <∞, this can be rewritten as

(4.2) 0 ≤ 2

(
max

{
1

2
,

1

qi

}
− 1

2

)
<

1

pi
< 2 min

{
1

2
,

1

qi

}
≤ 1.

Before choosing p1, p2 we claim that

(4.3)
2∑
i=1

max

{
1

2
,

1

qi

}
<

3

2
.

To see that this holds, note that

2∑
i=1

max

{
1

2
,

1

qi

}
=


1 if max{ 1

q1
, 1
q2
} ≤ 1

2
,

1
2

+ max{ 1
q1
, 1
q2
} if min{ 1

q1
, 1
q 2
} ≤ 1

2
≤ max{ 1

q1
, 1
q2
},

1
q1

+ 1
q2

if min{ 1
q1
, 1
q2
} > 1

2
.

and in every case this is strictly smaller than 3
2

since q1, q2 > 1 and 1
q

= 1
q1

+ 1
q2
< 3

2
.

Now define

(4.4)
1

pi
:= 2

(
max

{
1

2
,

1

qi

}
− 1

2
+ ηi

)
, i = 1, 2,

where we fix η1, η2 > 0 so that

(4.5) η1 + η2 <
3

2
−

2∑
i=1

max

{
1

2
,

1

qi

}
and 0 < ηi < min

{
1

qi
,

1

q′i

}
, i = 1, 2.

That we can find such η1, η2 follows from (4.3). (As will be clear from the proof,
we can choose ηi as close to 0 as we want; we will use this fact in the proof of
Corollary 1.23 below.)

With this choice we claim that (4.2) holds and also that 1
p

= 1
p1

+ 1
p2
< 1. We first

prove the latter inequality: by the first condition in (4.5),

1

p
=

1

p1
+

1

p2
= −2 + 2

2∑
i=1

max

{
1

2
,

1

qi

}
+ 2

2∑
i=1

ηi < 1.

To prove (4.2) we first observe that since ηi > 0,

2

(
max

{
1

2
,

1

qi

}
− 1

2

)
< 2

(
max

{
1

2
,

1

qi

}
− 1

2
+ ηi

)
=

1

pi
.

To obtain the other half of (4.2) we consider two cases. If max{1
2
, 1
qi
} = 1

2
, then

1

pi
= 2ηi <

2

qi
= 2 min

{
1

2
,

1

qi

}
.
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On the other hand, if max{1
2
, 1
qi
} = 1

qi
, then

1

pi
=

2

qi
− 1 + 2ηi <

2

qi
− 1 +

2

q′i
= 1 = 2 min

{
1

2
,

1

qi

}
.

This completes the proof of (4.2) and hence the proof of Theorem 1.18. �

Proof of Corollary 1.23. This result follows by considering more carefully the
proof of Theorem 1.18. Fix 1 < q1, q2 < ∞ such that 1

q
= 1

q1
+ 1

q2
< 3

2
and wqii ∈

Amax{1, qi
2
} ∩ RHmax{1, 2

qi
}. We now choose pi as in (4.4) and (4.5), though below we

will take ηi much smaller. As we showed above, 1 < p1, p2 < ∞, 1
p

= 1
p1

+ 1
p2
< 1,

and (4.2) holds. Hence, (4.1) holds and so by the first part of Theorem 1.18, we get
that the bilinear Hilbert transform is bounded from Lq1(uq11 ) × Lq2(uq22 ) into Lq(uq)
where 1

q
= 1

q1
+ 1

q2
and u = u1u2, for all uqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ with

qi
r−i

= qi

(
1

2pi
+

1

2

)
= qi

(
max

{
1

2
,

1

qi

}
+ ηi

)
= max

{
1,
qi
2

}
+ qiηi,

and

1( r+i
qi

)′ = 1− qi
r+i

= 1− qi
2pi

= 1− qi
(

max

{
1

2
,

1

qi

}
− 1

2
+ ηi

)
= min

{
1,
qi
2

}
− qiηi.

Note that wqii ∈ Amax{1, qi
2
} immediately implies that wqii ∈ A qi

r−
i

. On the other hand,

since wqii ∈ RHmax{1, 2
qi
}, by the openness of the reverse Hölder classes we can find

0 < θ < 1 close to 1 such that wqii ∈ RH 1
θ
max{1, 2

qi
}. Therefore, in choosing the ηi we

assume that (4.5) holds and that 0 < ηi < (1− θ) min
{

1, qi
2

}
. But then

1( r+i
qi

)′ = min
{

1,
qi
2

}
− qiηi > min

{
1,
qi
2

}
− qi(1− θ) min

{
1

2
,

1

qi

}
= θmin

{
1,
qi
2

}
.

Hence
( r+i
qi

)′
< 1

θ
max{1, 2

qi
} which gives that wqii ∈ RH( r+i

qi

)′ . We have thus shown

that wqi ∈ A qi

r−
i

∩ RH( r+
i
qi

)′ which implies that the bilinear Hilbert transform is

bounded from Lq1(wq11 )× Lq2(wq22 ) into Lq(wq). This completes the proof of (1.24).

Finally, let wi(x) = |x|−
a
qi so that w(x) = w1(x)w2(x) = |x|−

a
q . Then, using the

well known properties of power weights, we have that wqii ∈ Amax{1, qi
2
} ∩ RHmax{1, 2

qi
}

if and only if

1−max
{

1,
qi
2

}
< a < 1 and −∞ < a <

1

max{1, 2
qi
}

= min
{

1,
qi
2

}
,
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and when max{1, qi
2
} = 1 we can also allow a = 0 in the first condition. From all

these we easily see that (1.25) holds provided either a = 0 or a satisfies (1.26). This
completes the proof. �

Proof of Theorem 1.29. The proof of the first part of Theorem 1.29 is now straight-
forward given Theorem 1.3 and Corollary 1.11. Indeed, Theorem 1.18 provides the
initial weighted norm inequalities for the family

F = {(|B(f, g)|, |f |, |g|) : f, g ∈ L∞c .}
(see the proof of Theorem 1.18). Thus, Corollary 1.11 applies and (1.6) yields (1.30)
for functions fk, gk ∈ L∞c . By a standard approximation argument we get the desired
inequality for fk ∈ Lq1(wq11 ) and gk ∈ Lq2(wq22 ).

To prove the second part of Theorem 1.29 we modify the argument in the second
part of the proof of Theorem 1.18. Fix qi, si as in the statement; then by the first
part of Theorem 1.29 we need to find 1 < p1, p2 <∞ such that 1

p
= 1

p1
+ 1

p2
< 1 and

r−i < qi < r+i with

(4.6)
1

r+i
=

1

2pi
<

1

qi
,

1

si
<

1

r−i
=

1

2pi
+

1

2
.

Since 1 < p1, p2 <∞, (4.6) can be rewritten as

(4.7) 0 ≤ 2

(
max

{
1

2
,

1

qi
,

1

si

}
− 1

2

)
<

1

pi
< 2 min

{
1

2
,

1

qi
,

1

si

}
≤ 1.

Before choosing p1, p2, we first claim that

(4.8)
2∑
i=1

max

{
1

2
,

1

qi
,

1

si

}
<

3

2
.

To show this we argue as we did to prove (4.3): if at least one of the maxima is 1
2
,

then since the other maxima is strictly smaller than 1 we get the desired estimate. If
none of the maxima is 1

2
, then by the last condition in (1.31),

2∑
i=1

max

{
1

2
,

1

qi
,

1

si

}
=

2∑
i=1

max

{
1

qi
,

1

si

}
<

3

2
.

We now choose pi: fix ηi > 0 and let

(4.9)
1

pi
:= 2

(
max

{
1

2
,

1

qi
,

1

si

}
− 1

2
+ ηi

)
, i = 1, 2,

where we choose the ηi sufficiently small so that

(4.10) η1 + η2 <
3

2
−

2∑
i=1

max

{
1

2
,

1

qi
,

1

si

}
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and

(4.11) 0 < ηi < min

{
1

qi
,

1

q′i
,

1

si
,

1

s′i
,
1

2
−
∣∣∣∣ 1

si
− 1

qi

∣∣∣∣} .
Such a choice of η1, η2 is possible by (4.8) and (1.31). By (4.10) we have that

1

p
=

1

p1
+

1

p2
= −2 + 2

2∑
i=1

max

{
1

2
,

1

qi
,

1

si

}
+ 2

2∑
i=1

ηi < 1.

To prove (4.7) we first observe that since ηi > 0,

2

(
max

{
1

2
,

1

qi
,

1

si

}
− 1

2

)
< 2

(
max

{
1

2
,

1

qi
,

1

si

}
− 1

2
+ ηi

)
=

1

pi
.

To get the second estimate in (4.7) we consider two cases. If max{1
2
, 1
qi
, 1
si
} = 1

2
, then

1

pi
= 2ηi < 2 min

{
1

qi
,

1

si

}
= 2 min

{
1

2
,

1

qi
,

1

si

}
.

On the other hand, if max{1
2
, 1
qi
, 1
si
} = max{ 1

qi
, 1
si
} and we write 1

αi
= max{ 1

qi
, 1
si
}

and 1
βi

= max{ 1
qi
, 1
si
}, we obtain

1

pi
= 2 max

{
1

qi
,

1

si

}
− 1 + 2ηi

< 2 max

{
1

qi
,

1

si

}
− 1 + 2 min

{
1

q′i
,

1

s′i
,
1

2
−
∣∣∣∣ 1

si
− 1

qi

∣∣∣∣}
=

2

αi
− 1 + 2 min

{
1

α′i
,
1

2
−
(

1

αi
− 1

βi

)}
= 2 min

{
1

2
,

1

βi

}
= 2 min

{
1

2
,

1

qi
,

1

si

}
.

This completes the proof of (4.7) and hence that of Theorem 1.29. �

Proof of Remark 1.33. To prove the iterated vector-valued inequality in Re-
mark 1.33, we simply repeat the argument used to prove the first part of Theo-
rem 1.29. For our starting estimate we form the new family

F ′ =
{

(h, f, g)

=

((∑
k

|BH(fk, gk)|s
) 1

s

,

(∑
k

|fk|s1
) 1

s1

,

(∑
k

|gk|s2
) 1

s2

)
: fk, gk ∈ L∞c

}
;
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then (1.30) gives us the starting estimate

‖h‖Lq(wq) ≤ C‖f‖Lq1 (wq11 )‖g‖Lq2 (wq22 ).

We then again apply vector-valued extrapolation using the family

F ′′ =

{
(H,F,G) =

((∑
j

htj

) 1
t

,

(∑
j

f t1j

) 1
t1

,

(∑
j

gt2j

) 1
t2

)
: (hj, fj, gj) ∈ F ′

}
to get iterated vector-valued inequalities. Details are left to the interested reader. �

Proof of Corollary 1.34. Similar to our approach in the proof of Corollary 1.23,
here we take a closer look at the proof of Theorem 1.29. Fix 1 < q1, q2, s1, s2 <∞ and
wqii as in the statement. We choose pi as in (4.9), (4.10) and (4.11), but again we will
choose ηi much smaller. Then as we proved above, 1 < p1, p2 <∞, 1

p
= 1

p1
+ 1

p2
< 1,

and (4.7) holds. Note that the latter implies (4.6) and hence, by the first part of
Theorem 1.29, we obtain that the bilinear Hilbert transform satisfies (1.30), provided
we show that wqii ∈ A qi

r−
i

∩RH( r+
i
qi

)′ , where

qi
r−i

= qi

(
1

2pi
+

1

2

)
= qi

(
max

{
1

2
,

1

qi
,

1

si

}
+ ηi

)
= max

{
1,
qi
2
,
qi
si

}
+ qiηi

and

1( r+i
qi

)′ = 1− qi
r+i

= 1− qi
2pi

= 1− qi
(

max

{
1

2
,

1

qi
,

1

si
,

}
− 1

2
+ ηi

)

= min

{
1,
qi
2
, 1− qi

(
1

s1
− 1

2

)}
− qiηi.

Note that wqii ∈ Amax{1, qi
2
,
qi
si
} immediately gives us that wqii ∈ A qi

r−
i

. On the other

hand, since wqii ∈ RHmax{1, 2
qi
,[1−qi( 1

si
− 1

2
)]−1}, by the openness of the reverse Hölder

classes we can find 0 < θ < 1 close to 1 such that wqii ∈ RH 1
θ
max{1, 2

qi
,[1−qi( 1

si
− 1

2
)]−1}.

We therefore assume, in addition to (4.10), (4.11), that 0 < ηi < (1−θ) min
{

1
2
, 1
qi
, 1
qi
−

1
si

+ 1
2

}
; this choice is possible because of the first two conditions in (1.35). But then

1( r+i
qi

)′ = min

{
1,
qi
2
, 1− qi

(
1

s1
− 1

2

)}
− qiηi

> min

{
1,
qi
2
, 1− qi

(
1

s1
− 1

2

)}
− qi(1− θ) min

{
1

2
,

1

qi
,

1

qi
− 1

si
+

1

2

}
= θmin

{
1,
qi
2
, 1− qi

(
1

si
− 1

2

)}
.
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Hence
( r+i
qi

)′
< 1

θ
max{1, 2

qi
, [1−qi( 1

si
− 1

2
)]−1}, so wqii ∈ RH( r+i

qi

)′ . We have thus shown

that wqi ∈ A qi

r−
i

∩RH( r+
i
qi

)′ which yields (1.30).

To complete our proof we need to establish (1.36). Let wi(x) = |x|−
a
qi so that

w(x) = w1(x)w2(x) = |x|−
a
q . Then, using the well known properties of power weights,

we have that wqii ∈ Amax{1, qi
2
,
qi
si
} ∩RHmax{1, 2

qi
,[1−qi( 1

si
− 1

2
)]−1} if and only if

1−max

{
1,
qi
2
,
qi
si

}
< a < 1;

when max{1, qi
2
} = 1 we can also allow a = 0, and

−∞ < a <
1

max{1, 2
qi
, [1− qi( 1

si
− 1

2
)]−1}

= min

{
1,
qi
2
, 1− qi

(
1

si
− 1

2

)}
.

From all these estimates we see that (1.36) holds provided a ∈ {0} ∪ (a−, a+) with
a± defined in (1.37). This completes the proof. �

Proof of Theorem 1.42. The desired result follows directly from extrapolation.
Fix 1 < r < 2 and define the family of (m+ 1)-tuples

F =

{
(F, F1, . . . , Fm)

=

(( ∑
k1,...,km

|T (f 1
k1
, . . . , fmkm)|r

) 1
r

,

(∑
k1

|f 1
k1
|r
) 1

r

, . . . ,

(∑
km

|fmkm|
r

) 1
r
)

: f jkj ∈ L
∞
c

}
.

Now fix 1 < q1, . . . , qm < r < 2 and let 1
q

=
∑

1
qj

. Then by Theorem 1.39, for all

weights wj such that weights wqij ∈ Aqj , and (F, F1, . . . , Fm) ∈ F ,

(4.12) ‖F‖Lq(wq) ≤ C

m∏
j=1

‖Fj‖Lqj (wqjj )
.

Therefore, by Corollary 1.11 applied with r−j = 1, r+j = ∞, 1 ≤ j ≤ m, we imme-
diately conclude that for any 1 < q1, . . . , qm < ∞ and weights wqij ∈ Aqj , inequality
(4.12) holds, which yields (1.41) for functions in L∞c . The desired inequality then
follows for f jkj ∈ L

qj(w
qj
j ) by a standard approximation argument. �
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5. More general vector-valued inequalities

In this section we explain how to obtain, via extrapolation, vector-valued inequali-
ties in a larger range than we proved in Theorem 1.29. The starting point is implicit
in the proof of [14, Corollary 4]: from it one can show that (1.17) holds provided

(5.1) wpii ∈ A1+(1−θi)(pi−1) ∩RH 1
1−θ3

,

where 1 < p1, p2, p <∞ with 1
p1

+ 1
p2

= 1
p
, and where θ1, θ2, θ3 ∈ (0, 1) are arbitrary

parameters satisfying

(5.2)
θ1
p′1
≤ 1

2
,

θ2
p′2
≤ 1

2
,

θ3
p
≤ 1

2
,

θ1
p′1

+
θ2
p′2

+
θ3
p

= 1.

In [14] the authors chose θ1 = θ2 = θ3 = 1
2
, which then gives Theorem 1.16.

If we now fix the parameters θ1, θ2, θ3 ∈ (0, 1), we can rewrite (5.1) as

(5.3) wpii ∈ A pi

r−
i

∩RH( r+
i
pi

)′ , where
1

r−i
= 1− θi

p′i
and

1

r+i
=
θ3
pi
.

Given this, we can apply our extrapolation result to obtain vector-valued inequalities
by varying p1, p2, p and θ1, θ2, θ3. We claim that, as a result, (1.30) holds (taking
w1 = w2 ≡ 1 for simplicity, but of course some natural weighted norm inequalities
are also possible) whenever 1 < s1, s2, q1, q2 < ∞, 1

s
= 1

s1
+ 1

s2
< 3

2
, 1
q

= 1
q1

+ 1
q2
< 3

2

and if there exist 0 ≤ γ1, γ2, γ3 < 1 with γ1 + γ2 + γ3 = 1 such that

(5.4) max

{
1

s1
,

1

q1

}
<

1 + γ1
2

, max

{
1

s2
,

1

q2

}
<

1 + γ2
2

, max

{
1

s′
,

1

p′

}
<

1 + γ3
2

,

and, additionally,

(5.5) min

{
1

s1
,

1

q1

}
+ min

{
1

s2
,

1

q2

}
>

1− γ3
2

.

Note that in (5.4) it could be that p ≤ 1 (or analogously s ≤ 1), in which case
1
p′

= 1− 1
p
≤ 0. If we compare our conditions with those in [5, Theorem 5] (see also

[14, Appendix A]), we see that ours impose the extra restrictions (5.5) and si, qi <∞.
Also, note that the last condition in (5.4) is implied by (5.5); nevertheless we make
it explicit in order to compare our conditions with those of [5, Theorem 5].

We now sketch how to prove our claim. Define

m1 = min

{
1

s1
,

1

q1

}
, m2 = min

{
1

s2
,

1

q2

}
, m̃1 =

2

1− γ3
m1, m̃2 =

2

1− γ3
m2.

With this notation, (5.5) becomes m̃1 + m̃2 > 1. The first step is to show that there
exist 0 < η1, η2 < 1 such that

(5.6) η1 + η2 = 1, η1 < m̃1, η2 < m̃2.
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To prove this we consider two cases. If |m̃1 − m̃2| < 1, we just need to pick η1 :=
1
2

+ m̃1−m̃2

2
, η2 := 1

2
+ m̃2−m̃1

2
. On the other hand, if |m̃1− m̃2| ≥ 1 then either m̃1 ≥ 1

or m̃2 ≥ 1. If m̃1 ≥ 1, let η1 = 1 − ε, η2 = ε with 0 < ε � 1; if m̃2 ≥ 1, let η1 = ε,
η2 = 1− ε with 0 < ε� 1.

Once η1, η2 are chosen we consider two cases. When 0 < η1 ≤ η2 < 1, we take

2η2
η1

< p1 <
2

(1− γ3)η1
, p2 = p1

η1
η2
, p = p1η1 = p2η2.

Then we have that p1, p2 > 2 and

(5.7) 1 = η1 + η2 ≤ 2η2 < p1η1 = p <
2

1− γ3
.

When 0 < η2 < η1 < 1, we choose

2η1
η2

< p2 <
2

(1− γ3)η2
, p1 = p2

η2
η1
, p = p1η1 = p2η2.

Again we have p1, p2 > 2 and

(5.8) 1 = η1 + η2 < 2η1 < p2η2 = p <
2

1− γ3
.

In both cases we have 1
p1

+ 1
p2

= 1
p
(η1 + η2) = 1

p
< 1. Now let

θ1 = p′1
1− γ1

2
, θ2 = p′2

1− γ2
2

, θ3 = p
1− γ3

2
.

Then θ1, θ2, θ3 > 0 since γ1, γ2, γ3 < 1. From (5.7) or (5.8) we have that θ3 < 1,
and, since p1, p2 > 2, it follows that θi < 1 − γi ≤ 1 for i = 1, 2. We also have that
θ1
p′1
≤ 1

2
, θ2
p′2
≤ 1

2
, and θ3

p
≤ 1

2
since γ1, γ2, γ3 ≥ 0. Finally, since we assumed that

γ1 + γ2 + γ3 = 1, we get

θ1
p′1

+
θ2
p′2

+
θ3
p

=
1− γ1

2
+

1− γ2
2

+
1− γ3

2
= 1.

Therefore, (5.2) holds and, as observed above, it follows that (5.1) yields (1.17).
By extrapolation (arguing as we did in the proof of Theorem 1.29) and using (5.3),

we get that (1.30) holds provided

(5.9)
θ3
pi

=
1

r+i
. <

1

si
,

1

qi
<

1

r−i
= 1− θi

p′i
, i = 1, 2.

Hence, we need to show that (5.4) and (5.5) imply that (5.9) holds. First, from (5.4)
we get that

max

{
1

si
,

1

qi

}
<

1 + γi
2

= 1− θi
p′i

=
1

r−i
, i = 1, 2.
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Second, (5.6) yields

1

r+i
=
θ3
pi

=
p

pi

1− γ3
2

= ηi < m̃i
1− γ3

2
= mi = min

{
1

si
,

1

qi

}
.

Hence, (5.9) holds, and this completes our sketch of the proof.
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