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Abstract. We show that many classical operators in harmonic analysis —such
as maximal operators, singular integrals, commutators and fractional integrals—
are bounded on the variable Lebesgue space Lp(·) whenever the Hardy-Littlewood
maximal operator is bounded on Lp(·). Further, we show that such operators satisfy
vector-valued inequalities. We do so by applying the theory of weighted norm
inequalities and extrapolation.

As applications we prove the Calderón-Zygmund inequality for solutions of4u =
f in variable Lebesgue spaces, and prove the Calderón extension theorem for vari-
able Sobolev spaces.

To appear in Ann. Acad. Sci. Fenn. Math.

1. Introduction

Given an open set Ω ⊂ Rn, we consider a measurable function p : Ω −→ [1,∞),
Lp(·)(Ω) denotes the set of measurable functions f on Ω such that for some λ > 0,∫

Ω

(
|f(x)|

λ

)p(x)

dx < ∞.

This set becomes a Banach function space when equipped with the norm

‖f‖p(·),Ω = inf

{
λ > 0 :

∫
Ω

(
|f(x)|

λ

)p(x)

dx ≤ 1

}
.

These spaces are referred to as variable Lebesgue spaces or, more simply, as variable
Lp spaces, since they generalize the standard Lp spaces: if p(x) = p0 is constant,
then Lp(·)(Ω) equals Lp0(Ω). (Here and below we write p(·) instead of p to emphasize
that the exponent is a function and not a constant.) They have many properties in
common with the standard Lp spaces.

These spaces, and the corresponding variable Sobolev spaces W k,p(·)(Ω), are of
interest in their own right, and also have applications to partial differential equations
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and the calculus of variations. (See, for example, [1, 12, 15, 19, 30, 39, 46] and their
references.)

In many applications, a crucial step has been to show that one of the classical
operators of harmonic analysis—e.g., maximal operators, singular integrals, fractional
integrals—is bounded on a variable Lp space. Many authors have considered the
question of sufficient conditions on the exponent function p(·) for given operators to
be bounded: see, for example, [13, 15, 27, 28, 29, 40].

Our approach is different. Rather than consider estimates for individual operators,
we apply techniques from the theory of weighted norm inequalities and extrapolation
to show that the boundedness of a wide variety of operators follows from the bound-
edness of the maximal operator on variable Lp spaces, and from known estimates on
weighted Lebesgue spaces. In order to provide the foundation for stating our results,
we discuss each of these ideas in turn.

The maximal operator. In harmonic analysis, a fundamental operator is the
Hardy-Littlewood maximal operator. Given a function f , we define the maximal
function, Mf , by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all cubes containing x. It is well-known that M
is bounded on Lp, 1 < p < ∞, and it is natural to ask for which exponent functions
p(·) the maximal operator is bounded on Lp(·)(Ω). For conciseness, define P(Ω) to
be the set of measurable functions p : Ω −→ [1,∞) such that

p− = ess inf{p(x) : x ∈ Ω} > 1, p+ = ess sup{p(x) : x ∈ Ω} < ∞.

Let B(Ω) be the set of p(·) ∈ P(Ω) such that M is bounded on Lp(·)(Ω).

Theorem 1.1. Given an open set Ω ⊂ Rn, and p(·) ∈ P(Ω), suppose that p(·)
satisfies

(1.1) |p(x)− p(y)| ≤ C

− log(|x− y|)
, x, y ∈ Ω, |x− y| ≤ 1/2,

(1.2) |p(x)− p(y)| ≤ C

log(e + |x|)
, x, y ∈ Ω, |y| ≥ |x|.

Then p(·) ∈ B(Ω), that is, the Hardy-Littlewood maximal operator is bounded on
Lp(·)(Ω).

Theorem 1.1 is independently due to Cruz-Uribe, Fiorenza and Neugebauer [10]
and to Nekvinda [35]. (In fact, Nekvinda replaced (1.2) with a slightly more general
condition.) Earlier, Diening [12] showed that (1.1) alone is sufficient if Ω is bounded.
Examples show that the continuity conditions (1.1) and (1.2) are in some sense close
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to necessary: see Pick and Růžička [37] and [10]. See also the examples in [33]. The
condition p− > 1 is necessary for M to be bounded; see [10].

Very recently, Diening [14], working in the more general setting of Musielak-Orlicz
spaces, has given a necessary and sufficient condition on p(·) for M to be bounded
on Lp(·)(Rn). His exact condition is somewhat technical and we refer the reader to
[14] for details.

Because our proofs rely on duality arguments, we will not need that the maximal
operator is bounded on Lp(·)(Ω) but on its associate space Lp′(·)(Ω), where p′(·) is the
conjugate exponent function defined by

1

p(x)
+

1

p′(x)
= 1, x ∈ Ω.

Since

|p′(x)− p′(y)| ≤ |p(x)− p(y)|
(p− − 1)2

,

it follows at once that if p(·) satisfies (1.1) and (1.2), then so does p′(·)—i.e., if these
two conditions hold, then M is bounded on Lp(·)(Ω) and Lp′(·)(Ω). Furthermore,
Diening’s characterization of variable Lp spaces on which the maximal operator is
bounded has the following important consequence (see [14, Theorem 8.1]).

Theorem 1.2. Let p(·) ∈ P(Rn). Then the following conditions are equivalent:

(a) p(·) ∈ B(Rn).

(b) p′(·) ∈ B(Rn)

(c) p(·)/q ∈ B(Rn) for some 1 < q < p−.

(d) (p(·)/q)′ ∈ B(Rn) for some 1 < q < p−.

Weights and extrapolation. By a weight we mean a non-negative, locally inte-
grable function w. There is a vast literature on weights and weighted norm inequal-
ities; here we will summarize the most important aspects, and we refer the reader to
[17, 21] and their references for complete information.

Central to the study of weights are the so-called Ap weights, 1 ≤ p ≤ ∞. When
1 < p < ∞, we say w ∈ Ap if for every cube Q,(

1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)1−p′ dx

)p−1

≤ C < ∞.

We say that w ∈ A1 if Mw(x) ≤ Cw(x) for a.e. x. If 1 ≤ p < q < ∞, then Ap ⊂ Aq.
We let A∞ denote the union of all the Ap classes, 1 ≤ p < ∞.

Weighted norm inequalities are generally of two types. The first is

(1.3)

∫
Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

|f(x)|p0 w(x) dx,
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where T is some operator and w ∈ Ap0 , 1 < p0 < ∞. (In other words, T is defined and
bounded on Lp0(w).) The constant is assumed to depend only on the Ap0 constant
of w. The second type is

(1.4)

∫
Rn

|Tf(x)|p0 w(x) dx ≤ C

∫
Rn

|Sf(x)|p0 w(x) dx,

where S and T are operators, 0 < p0 < ∞, w ∈ A∞, and f is such that the left-hand
side is finite. The constant is assumed to depend only on the A∞ constant of w. Such
inequalities are known for a wide variety of operators and pairs of operators. (See
[17, 21].)

Corresponding to these types of inequalities are two extrapolation theorems. As-
sociated with (1.3) is the classical extrapolation theorem of Rubio de Francia [38]
(also see [17, 21]). He proved that if (1.3) holds for some operator T , a fixed value
p0, 1 < p0 < ∞ and every weight w ∈ Ap0 , then (1.3) holds with p0 replaced by any
p, 1 < p < ∞, whenever w ∈ Ap. Recently, the analogous extrapolation result for in-
equalities of the form (1.4) was proved in [11]: if (1.4) holds for some p0, 0 < p0 < ∞
and every w ∈ A∞, then it holds for every p, 0 < p < ∞. (More general versions of
these results will be stated in Section 6 below.)

1.1. Main results. The proofs of the above extrapolation theorems depend not on
the properties of the operators, but rather on duality, the structure of Ap weights,
and norm inequalities for the Hardy-Littlewood maximal operator. These ideas can
be extended to the setting of variable Lp spaces to yield our main result, which can
be summarized as follows: If an operator T , or a pair of operators (T, S), satisfies
weighted norm inequalities on the classical Lebesgue spaces, then it satisfies the
corresponding inequality in a variable Lp space on which the maximal operator is
bounded.

To state and prove our main result, we will adopt the approach taken in [11].
There it was observed that since nothing is assumed about the operators involved
(e.g., linearity or sublinearity), it is better to replace inequalities (1.3) and (1.4) with

(1.5)

∫
Rn

f(x)p0 w(x) dx ≤ C

∫
Rn

g(x)p0 w(x) dx,

where the pairs (f, g) are such that the left-hand side of the inequality is finite. One
important consequence of adopting this approach is that vector-valued inequalities
follow immediately from extrapolation.

Hereafter F will denote a family of ordered pairs of non-negative, measurable
functions (f, g). Whenever we say that an inequality such as (1.5) holds for any
(f, g) ∈ F and w ∈ Aq (for some q, 1 ≤ q ≤ ∞), we mean that it holds for any pair
in F such that the left-hand side is finite, and the constant C depends only on p0

and the Aq constant of w.
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Finally, note that in the classical Lebesgue spaces we can work with Lp where
0 < p < 1. (Thus, in (1.4) or (1.5) we can take p0 < 1.) We would like to consider
analogous spaces with variable exponents. Define P0(Ω) to be the set of measurable
functions p : Ω −→ (0,∞) such that

p− = ess inf{p(x) : x ∈ Ω} > 0, p+ = ess sup{p(x) : x ∈ Ω} < ∞.

Given p(·) ∈ P0(Ω), we can define the space Lp(·)(Ω) as above. This is equivalent to
defining it to be the set of all functions f such that |f |p0 ∈ Lq(·)(Ω), where 0 < p0 < p−
and q(x) = p(x)/p0 ∈ P(Ω). We can define a quasi-norm on this space by

‖f‖p(·),Ω =
∥∥|f |p0

∥∥1/p0

q(·),Ω.

We will not need any other properties of these spaces, so this definition will suffice
for our purposes.

Theorem 1.3. Given a family F and an open set Ω ⊂ Rn, suppose that for some
p0, 0 < p0 < ∞, and for every weight w ∈ A1,

(1.6)

∫
Ω

f(x)p0 w(x) dx ≤ C0

∫
Ω

g(x)p0 w(x) dx, (f, g) ∈ F ,

where C0 depends only on p0 and the A1 constant of w. Let p(·) ∈ P0(Ω) be such that
p0 < p−, and (p(·)/p0)

′ ∈ B(Ω). Then for all (f, g) ∈ F such that f ∈ Lp(·)(Ω),

(1.7) ‖f‖p(·),Ω ≤ C ‖g‖p(·),Ω,

where the constant C is independent of the pair (f, g).

We want to call attention to two features of Theorem 1.3. First, the conclusion
(1.7) is an a priori estimate: that is, it holds for all (f, g) ∈ F such that f ∈ Lp(·)(Ω).
In practice, when applying this theorem in conjunction with inequalities of the form
(1.3) to show that an operator is bounded on variable Lp we will usually need to
work with a collection of functions f which satisfy the given weighted Lebesgue
space inequality and are dense in Lp(·)(Ω). When working with inequalities of the
form (1.3) the final estimate will hold for a suitable family of “nice” functions.

Second, the family F in the hypothesis of and conclusion of Theorem 1.7 is the
same, so the goal is to find a large, reasonable family F such that (1.6) holds with a
constant depending only on p0 and the A1 constant of w.

Remark 1.4. In Theorem 1.3, (1.7) holds if p(·) satisfies (1.1) and (1.2). By Theorem
1.1, setting q(x) = p(x)/p0 we have that q(·) ∈ P(Ω) and

|q′(x)− q′(y)| ≤ |p(x)− p(y)|
p0(p−/p0 − 1)2

.

Remark 1.5. When Ω = Rn, if 1 ≤ p0 < p−, then by Theorem 1.2 the hypothesis that
(p(·)/p0)

′ ∈ B(Rn) is equivalent to assuming that p(·) ∈ B(Rn). As we will see below,
this will allow us to conclude that a variety of operators are bounded on Lp(·)(Rn)
whenever the Hardy-Littlewood maximal operator is.
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Remark 1.6. Our approach using pairs of functions leads to an equivalent formulation
of Theorem 1.3 in which the exponent p0 does not play a role. This can be done by
defining a new family Fp0 consisting of the pairs (fp0 , gp0) with (f, g) ∈ F . Notice
that in this case (1.6) is satisfied by Fp0 with p0 = 1. Thus, the case p0 = 1 will
imply that if 1 < p− and p(·)′ ∈ B(Ω) then (1.7) holds. Therefore, if we define
r(x) = p(x) p0, we have that r(·) ∈ P0(Ω), p0 < r−, (r(·)/p0)

′ ∈ B(Ω) and (1.7) holds
with r(·) in place of p(·). But this is exactly the conclusion of Theorem 1.3.

Remark 1.7. We believe that a more general version of Theorem 1.3 is true, one
which holds for larger classes of weights and yields inequalities in weighted variable
Lp spaces. However, proving such a result will require a weighted version of Theorem
1.1, and even the statement of such a result has eluded us. For such a weighted
extrapolation result the appropriate class of weights is no longer A1, but Ap (as in
[38]) or A∞ (as in [11]). We emphasize, though, that the class A1, which is the
smallest among the Ap classes, is the natural one to consider when attempting to
prove unweighted estimates.

Theorem 1.3 can be generalized to give “off-diagonal” results. In the classical
setting, the extrapolation theorem of Rubio de Francia was extended in this manner
by Harboure, Maćıas and Segovia [24].

Theorem 1.8. Given a family F and an open set Ω ⊂ Rn, assume that for some p0

and q0, 0 < p0 ≤ q0 < ∞, and every weight w ∈ A1,

(1.8)

(∫
Ω

f(x)q0w(x) dx

)1/q0

≤ C0

(∫
Ω

g(x)p0w(x)p0/q0 dx

)1/p0

, (f, g) ∈ F .

Given p(·) ∈ P0(Ω) such that p0 < p− ≤ p+ < p0 q0

q0−p0
, define the function q(·) by

(1.9)
1

p(x)
− 1

q(x)
=

1

p0

− 1

q0

, x ∈ Ω.

If (q(x)/q0)
′ ∈ B(Ω), then for all (f, g) ∈ F such that f ∈ Lq(·)(Ω),

(1.10) ‖f‖q(·),Ω ≤ C‖g‖p(·),Ω.

Remark 1.9. As before, (1.10) holds if p(·) satisfies (1.1) and (1.2).

We can generalize Theorem 1.3 by combining it with the two extrapolation the-
orems discussed above. This is possible since A1 ⊂ Ap, 1 < p ≤ ∞. This has
two advantages. First, it makes clear that the hypotheses which must be satisfied
correspond to those of the known weighted norm inequalities; see, in particular, the
applications discussed in Section 2 below. Second, as in [11], we are able to prove
vector-valued inequalities in variable Lp spaces with essentially no additional work.
All such inequalities are new.
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Corollary 1.10. Given a family F and an open set Ω ⊂ Rn, assume that for some
p0, 0 < p0 < ∞, and for every w ∈ A∞,

(1.11)

∫
Ω

f(x)p0 w(x) dx ≤ C0

∫
Ω

g(x)p0 w(x) dx, (f, g) ∈ F .

Let p(·) ∈ P0(Ω) be such that there exists 0 < p1 < p− with (p(·)/p1)
′ ∈ B(Ω). Then

for all (f, g) ∈ F such that f ∈ Lp(·)(Ω),

(1.12) ‖f‖p(·),Ω ≤ C ‖g‖p(·),Ω.

Furthermore, for every 0 < q < ∞ and sequence {(fj, gj)}j ⊂ F ,

(1.13)
∥∥∥(∑

j

(fj)
q
) 1

q
∥∥∥

p(·),Ω
≤ C

∥∥∥(∑
j

(gj)
q
) 1

q
∥∥∥

p(·),Ω
.

Corollary 1.11. Given a family F and an open set Ω ⊂ Rn, assume that (1.11) holds
for some 1 < p0 < ∞, for every w ∈ Ap0 and for all (f, g) ∈ F . Let p(·) ∈ P(Ω)
be such that there exists 1 < p1 < p− with (p(·)/p1)

′ ∈ B(Ω). Then (1.12) holds
for all (f, g) ∈ F such that f ∈ Lp(·)(Ω). Furthermore, for every 1 < q < ∞ and
{(fj, gj)}j ∈ F , the vector-valued inequality (1.13) holds.

The rest of this paper is organized as follows. To illustrate the power of our results,
we first consider some applications. In Section 2 we give a number of examples of
operators which are bounded on Lp(·). These results are immediate consequences of
the above results and the theory of weighted norm inequalities. Some of these have
been proved by others, but most are new. We also prove vector-valued inequalities for
these operators, all of which are new results. In Section 3 we present an application
to partial differential equations: we extend the Calderón-Zygmund inequality (see
[5, 22]) to solutions of 4u = f with f ∈ Lp(·)(Ω). In Section 4 we give an application
to the theory of Sobolev spaces: we show that the Calderón extension theorem (see
[2, 4]) holds in variable Sobolev spaces. In Section 5 we prove Theorems 1.3 and 1.8.
Our proof is adapted from the arguments given in [11]. Finally, in Section 6 we prove
Corollaries 1.10 and 1.11.

Throughout this paper, we will make use of the basic properties of variable Lp

spaces, and will state some results as needed. For a detailed discussion of these
spaces, see Kováčik and Rákosńık [30]. As we noted above, in order to emphasize
that we are dealing with variable exponents, we will always write p(·) instead of p to
denote an exponent function. Throughout, C will denote a positive constant whose
exact value may change at each appearance.

2. Applications: Estimates for classical operators on Lp(·)

In this section we give a number of applications of Theorems 1.3 and 1.8, and Corol-
laries 1.10 and 1.11, to show that a wide variety of classical operators are bounded on
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the variable Lp spaces. In the following applications we will impose different condi-
tions on the exponents p(·) to guarantee the corresponding estimates. In most of the
cases, it will suffice to assume that p(·) ∈ B(Rn), or in particular that p(·) satisfies
(1.1) and (1.2).

As we noted in the remarks following Theorem 1.3, to prove these applications we
will need to use density arguments. In doing so we will use the following facts:

(1) L∞
c , bounded functions of compact support, and C∞

c , smooth functions of
compact support, are dense in Lp(·)(Ω). See Kováčik and Rákosńık [30].

(2) If p+ < ∞ and f ∈ Lp+(Ω) ∩ Lp−(Ω), then f ∈ Lp(·)(Ω). This follows from
the fact that |f(x)|p(x) ≤ |f(x)|p+χ{|f(x)|≥1} + |f(x)|p−χ{|f(x)|<1}.

2.1. The Hardy-Littlewood maximal function. It is well known that for 1 <
p < ∞ and for w ∈ Ap,∫

Rn

Mf(x)pw(x) dx ≤ C

∫
Rn

f(x)pw(x) dx.

¿From Corollary 1.11 with the pairs (Mf, |f |), we get vector-valued inequalities for
M on Lp(·), provided there exists 1 < p1 < p− with (p(·)/p1)

′ ∈ B(Rn); by Theorem
1.2, this is equivalent to p(·) ∈ B(Rn). To apply Corollary 1.11 we need to restrict
the pairs to functions f ∈ L∞

c , but since these form a dense subset we get the desired
estimate for all f ∈ Lp(·)(Rn).

Corollary 2.1. If p(·) ∈ B(Rn), then for all 1 < q < ∞,∥∥∥(∑
j

(Mfj)
q
) 1

q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

|fj|q
) 1

q
∥∥∥

p(·),Rn
.

Remark 2.2. From Corollary 1.11 we also get one of the implications of Theorem 1.2:
if (p(·)/p1)

′ ∈ B(Rn) then p(·) ∈ B(Rn). It is very tempting to speculate that all of
Theorem 1.2 can be proved via extrapolation, but we have been unable to do so.

2.2. The sharp maximal operator. Given a measurable function f and a cube Q,
define

fQ =
1

|Q|

∫
Q

f(y) dy,

and the sharp maximal operator by

M#f(x) = sup
x3Q

1

|Q|

∫
Q

|f(y)− fQ| dy.

The sharp maximal operator was introduced by Fefferman and Stein [20], who showed
that for all p, 0 < p < ∞, and w ∈ A∞,∫

Rn

Mf(x)pw(x) dx ≤ C

∫
Rn

M#f(x)pw(x) dx.
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(Also see Journé [26].) Therefore, by Corollary 1.10 with the pairs (Mf,M#f),
f ∈ L∞

c (Rn), and by Theorem 1.2 we have the following result.

Corollary 2.3. Let p(·) ∈ P0(Rn) be such that there exists 0 < p1 < p− with
p(·)/p1 ∈ B(Rn). Then,

(2.1) ‖Mf‖p(·),Rn ≤ C‖M#f‖p(·),Rn ,

and for all 0 < q < ∞,

(2.2)
∥∥∥(∑

j

(Mfj)
q
) 1

q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

(M#fj)
q
) 1

q
∥∥∥

p(·),Rn
.

Remark 2.4. Corollary 2.3 generalizes results due to Diening and Růžička and [15,
Theorem 3.6] and Diening [14, Theorem 8.10], who proved (2.1) with Mf replaced
by f on the lefthand side and under the assumptions that p(·) and p′(·) ∈ B(Rn)
with 1 < p− ≤ p+ < ∞ in the first paper and p(·) ∈ B(Rn) in the second. Notice
that our result is more general since we allow p(·) to go below 1 and we only need
(p(·)/p1)

′ ∈ B(Rn) for some small value 0 < p1 < p−. Furthermore, we automatically
obtain the vector-valued inequalities given in (2.2).

2.3. Singular integral operators. Given a locally integrable function K defined
on Rn \ {0}, suppose that the Fourier transform of K is bounded, and K satisfies

(2.3) |K(x)| ≤ C

|x|n
, |∇K(x)| ≤ C

|x|n+1
, x 6= 0.

Then the singular integral operator T , defined by Tf(x) = K ∗ f(x), is a bounded
operator on weighted Lp. More precisely, given 1 < p < ∞, if w ∈ Ap then

(2.4)

∫
Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx.

(For details, see [17, 21].)

¿From Corollary 1.11, we get that T is bounded on variable Lp provided there
exists 1 < p1 < p− with (p(·)/p1)

′ ∈ B(Rn); by Theorem 1.2 this is equivalent to
p(·) ∈ B(Rn). Again, to apply the corollary we need to restrict ourselves to a suitable
dense family of functions. We use the fact that C∞

c is dense in Lp(·)(Rn), and the fact
that if f ∈ C∞

c , then Tf ∈
⋂

1<p<∞ Lp ⊂ Lp(·)(Rn).

Corollary 2.5. If p(·) ∈ B(Rn), then

(2.5) ‖Tf‖p(·),Rn ≤ C‖f‖p(·),Rn ,

and for all 1 < q < ∞,

(2.6)
∥∥∥(∑

j

|Tfj|q
) 1

q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

|fj|q
) 1

q
∥∥∥

p(·),Rn
.
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Remark 2.6. We can get estimates on sets Ω in the following way: observe that (2.4)
implies that for any Ω ⊂ Rn we have∫

Ω

|Tf(x)|p w(x) dx ≤
∫

Rn

|Tf(x)|p w(x) dx

≤ C

∫
Rn

|f(x)|p w(x) dx = C

∫
Ω

|f(x)|p w(x) dx

for all f such that supp(f) ⊂ Ω and for all w ∈ Ap. Thus, we can apply Corollary
1.11 on Ω and in particular, if p(·) ∈ P(Ω) satisfies (1.1) and (1.2), then

‖Tf‖p(·),Ω ≤ C‖f‖p(·),Ω.

We will use this observation below.

Singular integrals satisfy another inequality due to Coifman and Fefferman [7]:∫
Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

|Mf(x)|p w(x) dx,

for all 0 < p < ∞ and w ∈ A∞ and f such that the lefthand side is finite. In
particular, if w ∈ A1 ⊂ Ap, then the lefthand side is finite for all f ∈ L∞

c (Rn). Thus,
by applying Corollary 1.10 we can prove the following.

Corollary 2.7. Let p(·) ∈ P0(Rn) be such that there exists 0 < p1 < p− with
p(·)/p1 ∈ B(Rn). Then

(2.7) ‖Tf‖p(·),Rn ≤ C‖Mf‖p(·),Rn ,

and for all 0 < q < ∞,

(2.8)
∥∥∥(∑

j

|Tfj|q
) 1

q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

|Mfj|q
) 1

q
∥∥∥

p(·),Rn
.

Remark 2.8. Inequality (2.5) was proved by Diening and Růžička [15, Theorem 4.8]
using (2.1) and assuming that p(·), (p(·)/s)′ ∈ B(Rn) for some 0 < s < 1. More re-
cently, Diening [14] showed that it was enough to assume p(·) ∈ B(Rn). Note that our
technique provides an alternative proof which also yields vector-valued inequalities.
A weighted version of (2.5) was proved by Kokilashvili and Samko [28].

Remark 2.9. These results can be generalized to the so-called Calderón-Zygmund op-
erators of Coifman and Meyer. Also, the same estimates holds for T∗, the supremum
of the truncated integrals. We refer the reader to [17, 26] for more details.

Similar inequalities hold for homogeneous singular integral operators with
“rough” kernels. Let Sn−1 denote the unit sphere in Rn, and suppose

(2.9) K(x) =
Ω(x/|x|)
|x|n

,
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where Ω ∈ Lr(Sn−1), for some r, 1 < r ≤ ∞, and
∫

Sn−1 Ω(y) dy = 0. Then, if
r′ < p < ∞ and w ∈ Ap/r′ , inequality (2.4) holds. (See Duoandikoetxea [16] and
Watson [44].) To apply Theorem 1.3 we restate these weighted norm estimates as∫

Rn

(
|Tf(x)|r′

)s
w(x) dx ≤

∫
Rn

(
|f(x)|r′

)s
w(x) dx

for every 1 < s < ∞ and all w ∈ As. We consider the family of pairs
(
|Tf |r′ , |f |r′

)
which satisfy the hypotheses of Corollary 1.11. Then for s(·) ∈ P(Rn) such that
(s(·)/s1)

′ ∈ B(Rn) for some 1 < s1 < s−, we have∥∥|Tf |r′
∥∥

s(·),Rn ≤ C
∥∥|f |r′∥∥

s(·),Rn .

By Theorem 1.2, the assumptions on s(·) are equivalent to s(·) ∈ B(Rn). If we
let p(x) = s(x) r′, then we see that T is bounded Lp(·)(Rn) for all p(·) such that
p(·)/r′ ∈ B(Rn). In the same way we can prove `q-valued inequalities as (2.6) for all
r′ < q < ∞. Note in particular that all of these estimates hold if p− > r′ and p(·)
satisfies (1.1) and (1.2).

Similar inequalities also hold for Banach space valued singular integrals, since
such operators satisfy weighted norm inequalities with Ap weights. For further details,
we refer the reader to [21]. Here we note one particular application. Let φ ∈ L1 be a
non-negative function such that

|φ(x− y)− φ(x)| ≤ C|y|
|x|n+1

, |x| > 2|y| > 0.

Let φt(x) = t−nφ(x/t), and define the maximal operator Mφ by

Mφf(x) = sup
t>0

|φt ∗ f(x)|.

If 1 < p < ∞ and w ∈ Ap, then ‖Mφf‖Lp(w) ≤ C‖f‖Lp(w). (In the unweighted case,
this result is originally due to Zo [48].) Therefore, by Corollary 1.11, Mφ is bounded
on Lp(·) for p(·) ∈ B(Rn). In particular, it is bounded if p(·) satisfies (1.1) and (1.2);
this gives a positive answer to a conjecture made in [9].

2.4. Commutators. Given a Calderón-Zygmund singular integral operator T , and
a function b ∈ BMO, define the commutator [b, T ] to be the operator

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

These operators were shown to be bounded on Lp(Rn), 1 < p < ∞, by Coifman,
Rochberg and Weiss [8]. In [36] it was shown that for all 0 < p < ∞ and all w ∈ A∞,

(2.10)

∫
Rn

∣∣[b, T ]f(x)
∣∣p w(x) dx ≤ C

∫
Rn

M2f(x)p w(x) dx,

where M2 = M ◦ M . Hence, if 1 < p < ∞ and w ∈ Ap, then [b, T ] is bounded on
Lp(w). Thus, we can apply Corollaries 1.10 and 1.11 and Theorem 1.2 to get the
following.
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Corollary 2.10. Let p(·) ∈ P0(Rn).

(a) If there exists 0 < p1 < p− with p(·)/p1 ∈ B(Rn), then∥∥[T, b]f
∥∥

p(·),Rn ≤ C ‖M2f‖p(·),Rn ,

and for all 0 < q < ∞,∥∥∥(∑
j

∣∣[T, b]fj

∣∣q) 1
q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

|M2fj|q
) 1

q
∥∥∥

p(·),Rn
.

(b) If p(·) ∈ B(Rn), then ∥∥[T, b]f
∥∥

p(·),Rn ≤ C ‖f‖p(·),Rn ,

and for all 1 < q < ∞,∥∥∥(∑
j

∣∣[T, b]fj

∣∣q) 1
q
∥∥∥

p(·),Rn
≤ C

∥∥∥(∑
j

|fj|q
) 1

q
∥∥∥

p(·),Rn
.

Very recently, the boundedness of commutators on variable Lp spaces was proved
by Karlovich and Lerner [27].

2.5. Multipliers. Given a bounded function m, define the operator Tm, (initially

on C∞
c (Rn)) by T̂mf = mf̂ . The function m is referred to as a multiplier. Here

we consider two important results: the multiplier theorems of Marcinkiewicz and
Hörmander.

On the real line, if m has uniformly bounded variation on each dyadic interval in
R, then for 1 < p < ∞ and w ∈ Ap,

(2.11)

∫
R
|Tmf(x)|pw(x) dx ≤ C

∫
R
|f(x)|pw(x) dx.

(See Kurtz [31].) Therefore, by Corollary 1.11, if p(·) ∈ B(Rn),

‖Tmf‖p(·),R ≤ C‖f‖p(·),R;

we also get the corresponding vector-valued inequalities with 1 < q < ∞.

In higher dimensions (i.e., n ≥ 2) let k = [n/2] + 1 and suppose that m satisfies
|Dβm(x)| ≤ C|x|−|β| for x 6= 0 and every multi-index β with |β| ≤ k. If n/k < p < ∞
and w ∈ Apk/n then Tm is bounded on Lp(w). (See Kurtz and Wheeden [32].)
Proceeding as in the case of the singular integral operators with “rough” kernels we
obtain that if p(·)/(n/k) ∈ B(Rn), then

‖Tmf‖p(·),Rn ≤ C‖f‖p(·),Rn ,

with constant C independent of f ∈ C∞
c (Rn). We also get `q-valued inequalities with

n/k < q < ∞ in the same way.



THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE Lp SPACES 13

Remark 2.11. Weighted inequalities also hold for Bochner-Riesz multipliers, so from
these we can deduce results on variable Lp spaces. For details, see [17] and the
references it contains.

2.6. Square functions. Let φ be a Schwartz function such that
∫

φ(x) dx = 0, and
for t > 0 let φt(x) = t−nφ(x/t). Given a locally integrable function f , we define two
closely related functions: the area integral,

Sφf(x) =

(∫
|x−y|<t

|φt ∗ f(y)|2dt dy

tn+1

)1/2

,

and for 1 < λ < ∞ the Littlewood-Paley function

g∗λf(x) =

(∫ ∞

0

∫
Rn

|φt ∗ f(y)|2
(

t

t + |x− y|

)nλ
dy dt

tn+1

)1/2

.

In the classical case, we take φ to be the derivative of the Poisson kernel.

Given p, 1 < p < ∞, and w ∈ Ap, the area integral is bounded on Lp(w). In the
classical case, this is due to Gundy and Wheeden [23]; in the general case it is due
to Strömberg and Torchinsky [43]. Therefore, for all p(·) ∈ B(Rn),

‖Sφf‖p(·),Rn ≤ C‖f‖p(·),Rn .

The same inequality is true for g∗λ if λ ≥ 2. If 1 < λ < 2, then for 2/λ < p < ∞ and
w ∈ Aλp/2, g∗λ is bounded on Lp(w). In the classical case, this is due to Muckenhoupt
and Wheeden [34]; in the general case it is due to Strömberg and Torchinsky [43].
Therefore, arguing as before, if p(·)/(2/λ) ∈ B(Rn), then

‖g∗λf‖p(·),Rn ≤ C‖f‖p(·),Rn ,

with constant C independent of f ∈ C∞
c (Rn). For both kinds of square functions we

also get the corresponding vector-valued inequalities.

2.7. Fractional integrals and fractional maximal operators. Given 0 < α < n,
define the fractional integral operator Iα (also known as the Riesz potential), by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

Define the associated fractional maximal operator, Mα, by

Mαf(x) = sup
Q3x

1

|Q|1−α/n

∫
Q

|f(y)| dy.

Both operators satisfy weighted norm inequalities. To state them, we need a different
class of weights: given p, q such that 1 < p < n/α and 1

p
− 1

q
= α

n
, we say that w ∈ Ap,q

if for all cubes Q,
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1

|Q|

∫
Q

w(x) dx

(
1

|Q|

∫
Q

w(x)−p′/q dx

)q/p′

≤ C < ∞.

Note that this is equivalent to w ∈ Ar, where r = 1+q/p′, so in particular, if w ∈ A1,
then w ∈ Ap,q. Muckenhoupt and Wheeden [34] showed that if w ∈ Ap,q then(∫

Rn

|Iαf(x)|q w(x) dx

)1/q

≤ C

(∫
Rn

|f(x)|p w(x)p/q dx

)1/p

(∫
Rn

Mαf(x)q w(x) dx

)1/q

≤ C

(∫
Rn

|f(x)|p w(x)p/q dx

)1/p

.

(These results are usually stated with the class Ap,q defined slightly differently, with
w replaced by wq. Our formulation, though non-standard, is better for our purposes.)

As in Remark 2.6, these estimates hold with the integrals restricted to any Ω ⊂ Rn.
Thus Theorems 1.8 and 1.2 immediately yield the following results in variable Lp

spaces.

Corollary 2.12. Let p(·), q(·) ∈ P(Ω) be such that p+ < n/α and

1

p(x)
− 1

q(x)
=

α

n
, x ∈ Ω.

If there exists q0,
n

n−α
< q0 < ∞, such that q(x)/q0 ∈ B(Ω), then

(2.12) ‖Iαf‖q(·),Ω ≤ ‖f‖p(·),Ω

and

(2.13) ‖Mαf‖q(·),Ω ≤ ‖f‖p(·),Ω.

This result follows automatically from Theorem 1.8 applied to the pairs (|Iαf |, |f |)
and (Mαf, |f |), since the estimates of Muckenhoupt and Wheeden above give (1.8)
for all 1 < p0 < n

α
and n

n−α
< q0 < ∞ with 1

p0
− 1

q0
= α

n
.

Remark 2.13. When Ω = Rn, the condition on q(·) is equivalent to saying that
q(·) (n− α)/n ∈ B(Rn). If there exists q0 as above such that q(·)/q0 ∈ B(Rn), then

q(x)

n/(n− α)
=

q(x)

q0

q0

n/(n− α)
∈ B(Rn),

since the second ratio is greater than one. (Given r(·) ∈ B(Rn) and λ > 1, then by
Jensen’s inequality, r(·) λ ∈ B(Rn).)

On the other hand, by Theorem 1.2, if q(·) (n − α)/n ∈ B(Rn) then there is
λ > 1 such that q(·) (n − α)/(n λ) ∈ B(Rn). Taking q0 = n λ/(n − α) we have that
q0 > n/(n− α) and q(·)/q0 ∈ B(Rn) as desired.
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Inequality (2.12) extends several earlier results. Samko [40] proved (2.12) assuming
that Ω is bounded, p(·) satisfies (1.1), and the maximal operator is bounded. (Note
that given Theorem 1.1, his second hypothesis implies his third.) Diening [13] proved
it on unbounded domains with (1.2) replaced by the stronger hypothesis that p(·) is
constant outside of a large ball. Kokilashvili and Samko [29] proved it on Rn with
Lq(·) replaced by a certain weighted variable Lp space. (They actually consider a
more general operator Iα(·) where the constant α in the definition of Iα is replaced by
a function α(·).) Implicit in these results are norm inequalities for Mα in the variable
Lp spaces, since Mαf(x) ≤ CIα(|f |)(x). This is made explicit by Kokilashvili and
Samko [29].

Inequality (2.13) was proved directly by Capone, Cruz-Uribe and Fiorenza [6]; as
an application they used it to prove (2.12) and to extend the Sobolev embedding
theorem to variable Lp spaces. (Other authors have considered this question; see [6]
and its references for further details.)

3. The Calderón-Zygmund inequality

In this section we consider the behavior of the solution of Poisson’s equation,

4u(x) = f(x), a.e. x ∈ Ω,

when f ∈ Lp(·)(Ω), p(·) ∈ P(Ω). We restrict ourselves to the case Ω ⊂ Rn, n ≥ 3.

We begin with a few definitions and a lemma. Given p(·) ∈ P(Ω) and a natural
number k, define the variable Sobolev space W k,p(·)(Ω) to be the set of all functions
f ∈ Lp(·)(Ω) such that ∑

|α|≤k

‖Dαf‖p(·),Ω < +∞,

where the derivatives are understood in the sense of distributions.

Given a function f which is twice differentiable (in the weak sense), we define for
i = 1, 2,

Dif =

(∑
|α|=i

(Dαf)2

)1/2

.

We need the following auxiliary result whose proof can be found in [30].

Lemma 3.1. If Ω ⊂ Rn is a bounded domain, and if p(·), q(·) ∈ P(Ω) are such that
p(x) ≤ q(x), x ∈ Ω, then ‖f‖p(·),Ω ≤ (1 + |Ω|)‖f‖q(·),Ω.

Theorem 3.2. Given an open set Ω ⊂ Rn, n ≥ 3, suppose p(·) ∈ P(Ω) with p+ < n/2
satisfies (1.1) and (1.2). If f ∈ Lp(·)(Ω), then there exists a function u ∈ Lq(·)(Ω),
where

(3.1)
1

p(x)
− 1

q(x)
=

2

n
,
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such that

(3.2) 4u(x) = f(x), a.e. x ∈ Ω.

Furthermore,

‖D2u‖p(·),Ω ≤ C ‖f‖p(·),Ω,(3.3)

‖D1u‖r(·),Ω ≤ C ‖f‖p(·),Ω,(3.4)

‖u‖q(·),Ω ≤ C ‖f‖p(·),Ω,(3.5)

where
1

p(x)
− 1

r(x)
=

1

n
.

In particular, if Ω is bounded, then u ∈ W 2,p(·)(Ω).

Proof. Our proof roughly follows the proof in the setting of Lebesgue spaces given by
Gilbarg and Trudinger [22], but also uses this result in key steps.

Fix f ∈ Lp(·)(Ω); without loss of generality we may assume that ‖f‖p(·),Ω = 1.
Decompose f as

f = f1 + f2 = f χ{x:|f(x)|>1} +f χ{x:|f(x)|≤1} .

Note that |fi(x)| ≤ |f(x)| and so ‖fi‖p(·),Ω ≤ 1. Further, we have that f1 ∈ Lp−(Ω)

and f2 ∈ Lp+(Ω) since, by the definition of the norm in Lp(·)(Ω) and since ‖f‖p(·),Ω = 1,∫
Ω

f1(x)p− dx =

∫
{x∈Ω:|f(x)|>1}

|f(x)|p− dx ≤
∫

Ω

|f(x)|p(x) dx ≤ 1,∫
Ω

f2(x)p+ dx =

∫
{x∈Ω:|f(x)|≤1}

|f(x)|p+ dx ≤
∫

Ω

|f(x)|p(x) dx ≤ 1.

Thus, we can solve Poisson’s equation with f1 and f2 (see [22]): more precisely, define

u1(x) = (Γ ∗ f1)(x), u2 = (Γ ∗ f2)(x),

where Γ is the Newtonian potential,

Γ(x) =
1

n (2− n) ωn

|x|2−n,

and ωn is the volume of the unit ball in Rn. Since p− and q− also satisfy (3.1), by the
Calderón-Zygmund inequality on classical Lebesgue spaces, u1 ∈ Lq−(Ω). Similarly,
since p+ and q+ satisfy (3.1), u2 ∈ Lq+(Ω). Let u = u1+u2; then u ∈ Lq−(Ω)+Lq+(Ω).
Since u1 and u2 are solutions of Poisson’s equation,

4u(x) = 4u1(x) +4u2(x) = f1(x) + f2(x) = f(x), a.e. x ∈ Ω.

We show that u ∈ Lq(·)(Ω) and that (3.5) holds: by inequality (2.12),



THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE Lp SPACES 17

‖u‖q(·),Ω ≤ ‖u1‖q(·),Ω + ‖u2‖q(·),Ω =
1

n (2− n) ωn

(
‖I2f1‖q(·),Ω + ‖I2f2‖q(·),Ω

)
≤ C

(
‖f1‖p(·),Ω + ‖f2‖p(·),Ω

)
≤ C = C‖f‖p(·),Ω;

the last equality holds since ‖f‖p(·),Ω = 1.

Similarly, a direct computation shows that for any multi-index α, |α| = 1,

|DαΓ(x)| ≤ 1

n ωn

|x|1−n.

Therefore,

|Dαu(x)| ≤ |Dα(Γ ∗ f1)(x)|+ |Dα(Γ ∗ f2)(x)|

= |(DαΓ ∗ f1)(x)|+ |(DαΓ ∗ f2)(x)| ≤ 1

n ωn

(
I1(|f1|)(x) + I1(|f2|)(x)

)
.

So again by inequality (2.12) we get

‖Dαu‖r(·),Ω ≤ C
(
‖f1‖p(·),Ω + ‖f2‖p(·),Ω

)
≤ C,

which yields inequality (3.4).

Given a multi-index α, |α| = 2, another computation shows that DαΓ is a singular
convolution kernel which satisfies (2.3). Therefore, the operator

Tαg(x) = (DαΓ ∗ g)(x) = Dα(Γ ∗ g)(x)

is singular integral operator, and as before (3.3) follows from inequality (2.5) and
Remark 2.6 applied to f1 and f2.

Finally, if Ω is bounded, since p(x) ≤ q(x) and p(x) ≤ r(x), x ∈ Ω, by Lemma 3.1
we have that u ∈ W 2,p(·)(Ω). �

Remark 3.3. In the previous estimates we could have worked directly with f . Had
we done so, however, we would have had to check that all the integrals appearing
were absolutely convergent. The advantage of decomposing f as f1 + f2 is that we
did not need to pay attention to this since f1 ∈ Lp−(Ω), f2 ∈ Lp+(Ω).

We also want to stress that u1 and u2, as solutions of Poisson’s equation with
f1 ∈ Lp−(Ω) and f2 ∈ Lp+(Ω), satisfy Lebesgue space estimates. For instance, as
noted above, u ∈ Lq−(Ω) + Lq+(Ω). However, we have actually proved more, since
Lq(·)(Ω) is a smaller space. Similar remarks hold for the first and second derivatives
of u.

4. The Calderón Extension Theorem

In this section we state and prove the Calderón extension theorem for variable
Sobolev spaces. Our proof follows closely the proof of the result in the classical
setting; see, for example, R. Adams [2] or Calderón [4]. First, we give two definitions
and a lemma.
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Definition 4.1. Given a point x ∈ Rn, a finite cone with vertex at x, Cx, is a set of
the form

Cx = B1 ∩ {x + λ(y − x) : y ∈ B2, λ > 0},
where B1 is an open ball centered at x, and B2 is an open ball which does not contain
x.

Definition 4.2. An open set Ω ⊂ Rn has the uniform cone property if there exists
a finite collection of open sets {Uj} (not necessarily bounded) and an associated
collection {Cj} of finite cones such that the following hold:

(1) there exists δ > 0 such that

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} ⊂
⋃
j

Uj;

(2) for every index j and every x ∈ Ω ∩ Uj, x + Cj ⊂ Ω.

An example of a set Ω with the uniform cone property is any bounded set whose
boundary is locally Lipschitz. (See Adams [2].)

Finally, in giving extension theorems for variable Lp spaces, we must worry about
extending the exponent function p(·). The following result shows that this is always
possible, provided that p(·) satisfies (1.1) and (1.2).

Lemma 4.3. Given an open set Ω ⊂ Rn and p(·) ∈ P(Ω) such that (1.1) and (1.2)
hold, there exists a function p̃(·) ∈ P(Rn) such that:

(1) p̃ satisfies (1.1) and (1.2);
(2) p̃(x) = p(x), x ∈ Ω;
(3) p̃− = p− and p̃+ = p+.

Remark 4.4. Diening [13] proved an extension theorem for exponents p(·) which sat-
isfy (1.1), provided that Ω is bounded and has Lipschitz boundary. It would be
interesting to determine if every exponent p(·) ∈ B(Ω) can be extended to an expo-
nent function in B(Rn).

Proof. Since p(·) is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on Ω. Straightforward limiting arguments show
that this extension satisfies (1), (2) and (3).

The extension of p(·) on Ω to p̃(·) defined on all of Rn follows from a construc-
tion due to Whitney [45] and described in detail in Stein [42, Chapter 6]. For ease
of reference, we will follow Stein’s notation. We first consider the case when Ω is
unbounded; the case when Ω is bounded is simpler and will be sketched below.

When Ω is unbounded, (1.2) is equivalent to the existence of a constant p∞, p− ≤
p∞ ≤ p+, such that for all x ∈ Ω,

|p(x)− p∞| ≤
C

log(e + |x|)
.
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Define a new function r(·) by r(x) = p(x) − p∞. Then r(·) is still bounded (though
no longer necessarily positive), still satisfies (1.1) on Ω and satisfies

(4.1) |r(x)| ≤ C

log(e + |x|)
.

We will extend r to all of Rn. If we define ω(t) = 1/ log(e/2t), 0 < t ≤ 1/2,
and ω(t) = 1 for t ≥ 1/2, then a straightforward calculation shows that ω(t)/t
is a decreasing function and ω(2t) ≤ C ω(t). Further, since log(e/2t) ≈ log(1/t),
0 < t < 1/2, and since r is bounded, |r(x) − r(y)| ≤ Cω(|x − y|) for all x, y ∈ Ω.
Therefore, by Corollary 2.2.3 in Stein [42, p. 175], there exists a function r̃(·) on Rn

such that r̃(x) = r(x), x ∈ Ω, and such that r̃(·) satisfies (1.1). For x ∈ Rn \ Ω, r̃(x)
is defined by the sum

r̃(x) =
∑

k

r(pk)φ
∗
k(x),

where {Qk} are the cubes of the Whitney decomposition of Rn \ Ω, {φ∗k} is the
partition of unity subordinate to this decomposition, and each point pk ∈ Ω is such
that dist(pk, Qk) = dist(Ω, Qk).

It follows immediately from this definition that for all x ∈ Rn, r− ≤ r̃(x) ≤ r+.
However, r̃(·) need not satisfy (4.1) so we must modify it slightly. To do so we need
the following observation: if f1, f2 are functions such that |fi(x)−fi(y)| ≤ Cω(|x−y|),
x, y ∈ Rn, i = 1, 2, then min(f1, f2) and max(f1, f2) satisfy the same inequality. The
proof of this observation consists of a number of very similar cases. For instance,
suppose min(f1(x), f2(x)) = f1(x) and min(f1(y), f2(y)) = f2(y). Then

f1(x)− f2(y) ≤ f2(x)− f2(y) ≤ Cω(|x− y|),
f2(y)− f1(x) ≤ f1(y)− f1(x) ≤ Cω(|x− y|).

Hence,

|min(f1(x), f2(x))−min(f1(y), f2(y))| = |f1(x)− f2(y)| ≤ Cω(|x− y|).

It follows immediately from this observation that

s(x) = max(min(r̃(x), C/ log(e + |x|)),−C/ log(e + |x|))

satisfies (1.1) and (4.1). Therefore, if we define

p̃(x) = s(x) + p∞,

then (1), (2) and (3) hold.

Finally, if Ω is bounded, we define r(x) = p(x)−p+ and repeat the above argument
essentially without change. �
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Theorem 4.5. Given an open set Ω ⊂ Rn which has the uniform cone property, and
given p(·) ∈ P(Ω) such that (1.1) and (1.2) hold, then for any natural number k there
exists an extension operator

Ek : W k,p(·)(Ω) → W k,p(·)(Rn),

such that Eku(x) = u(x), a.e. x ∈ Ω, and

‖Eku‖p(·),Rn ≤ C(p(·), k, Ω)‖u‖p(·),Ω.

The proof of Theorem 4.5 in variable Sobolev spaces is nearly identical to that in
the classical setting. (See Adams [2].) The proof, beyond calculations, requires the
following facts which our hypotheses insure are true.

• By Lemma 4.3, p(·) immediately extends to an exponent function on Rn.
• Functions in C∞(Ω) are dense in W k,p(·)(Ω). By our hypotheses, the maximal

operator is bounded on Lp(·)(Ω), and the density of C∞(Ω) follows from this
by the standard argument (cf. Ziemer [47]). For more details, see Diening [12]
or Cruz-Uribe and Fiorenza [9].

• If φ is a smooth function on Rn \ {0} with compact support, and if there
exists ε > 0 such that on Bε(0), φ is a homogeneous function of degree k,
k > −n, then ‖φ ∗ f‖p(·),Ω ≤ C(p(·), φ)‖f‖p(·),Ω. This again follows from the

fact that the maximal operator is bounded on Lp(·)(Ω), and from the well-
known inequality |φ∗ f(x)| ≤ CMf(x). For more details, see Cruz-Uribe and
Fiorenza [9].

• Singular integral operators with kernels of the form

K(x) =
G(x)

|x|n
,

where G is bounded on Rn \ {0}, has compact support, is homogeneous of
degree zero on BR(0)\{0} for some R > 0, and has

∫
SR

G dx = 0, are bounded

on Lp(·)(Ω). Such kernels are essentially the same as those given by (2.9), and
as discussed above, our hypotheses imply that they are bounded.

Remark 4.6. If p(·) satisfies (1.1), then C∞
c (Rn) is dense in W k,p(·)(Rn). (See [9, 41].)

Hence, if the hypotheses of Theorem 4.5 hold, then it follows immediately that the
set {uχΩ : u ∈ C∞

c (Rn)} is dense in W k,p(·)(Ω). However this result is true under
much weaker hypotheses; see [9, 18, 19, 25, 46] for details.

↑ The Referee gives some reference???? I do not know them!
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5. Proof of Theorems 1.3 and 1.8

Since Theorem 1.3 is a particular case of Theorem 1.8 with p0 = q0, it suffices to
prove the second result.

We need two facts about variable Lp spaces. First, if p(·), q(·) ∈ P0(Ω) and
p(x)/q(x) = r, then it follows from the definition of the norm that

(5.1) ‖f‖r
p(·),Ω = ‖|f |r‖q(·),Ω.

Second, given p(·) ∈ P(Ω), we have the generalized Hölder’s inequality

(5.2)

∫
Ω

|f(x)g(x)| dx ≤
(
1 +

1

p−
− 1

p+

)
‖f‖p(·),Ω‖g‖p′(·),Ω,

and the “duality” relationship

(5.3) ‖f‖p(·),Ω ≤ sup
g

∣∣∣ ∫
Ω

f(x)g(x) dx
∣∣∣ ≤ (1 +

1

p−
− 1

p+

)
‖f‖p(·),Ω,

where the supremum is taken over all g ∈ Lp′(·)(Ω) such that ‖g‖p′(·),Ω = 1. For proofs
of these results, see Kováčik and Rákosńık [30].

The proof of Theorem 1.8 begins with a version of a construction due to Rubio
de Francia [38] (also see [11, 21]). Fix p(·) ∈ P0(Ω) such that p− > p0, and let
p̄(x) = p(x)/p0. Define q(·) as in (1.9), and let q̄(x) = q(x)/q0. By assumption, the
maximal operator is bounded on Lq̄′(·)(Ω), so there exists a positive constant B such
that

‖Mf‖q̄′(·),Ω ≤ B‖f‖q̄′(·),Ω.

Define a new operator R on Lq̄′(·)(Ω) by

Rh(x) =
∞∑

k=0

Mkh(x)

2k Bk
,

where, for k ≥ 1, Mk = M ◦M ◦· · ·◦M denotes k iterations of the maximal operator,
and M0 is the identity operator. It follows immediately from this definition that:

(a) if h is non-negative, h(x) ≤ Rh(x);

(b) ‖Rh‖q̄′(·),Ω ≤ 2 ‖h‖q̄′(·),Ω;

(c) for every x ∈ Ω, M(Rh)(x) ≤ 2 BRh(x), so Rh ∈ A1 with an A1 constant
that does not depend on h.

We can now argue as follows: by (5.1) and (5.3),

‖f‖q0

q(·),Ω = ‖f q0‖q̄(·),Ω ≤ sup

∫
Ω

f(x)q0 h(x) dx,
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where the supremum is taken over all non-negative h ∈ Lq̄′(·)(Ω) with ‖h‖q̄′(·),Ω = 1.
Fix any such function h; it will suffice to show that∫

Ω

f(x)q0 h(x) dx ≤ C ‖g‖q0

p(·),Ω

with the constant C independent of h. First note that by (a) above we have that

(5.4)

∫
Ω

f(x)q0 h(x) dx ≤
∫

Ω

f(x)q0 Rh(x) dx.

By (5.2), (b), and since f ∈ Lq(·)(Ω),∫
Ω

f(x)q0 Rh(x) dx ≤ C ‖f q0‖q̄(·),Ω ‖Rh‖q̄′(·),Ω

≤ C ‖f‖q0

q(·),Ω ‖h‖q̄′(·),Ω ≤ C ‖f‖q0

q(·),Ω < ∞.

Therefore, we can apply (1.8) to the righthand side of (5.4) and again apply (5.2),
this time with exponent p̄(·):∫

Ω

f(x)q0 Rh(x) dx ≤ C

(∫
Ω

g(x)p0 Rh(x)p0/q0 dx

)q0/p0

≤ C ‖gp0‖q0/p0

p̄(·),Ω ‖(Rh)p0/q0‖q0/p0

p̄′(·),Ω

= C ‖g‖q0

p(·),Ω ‖(Rh)p0/q0‖q0/p0

p̄′(·),Ω.

To complete the proof, we need to show that ‖(Rh)p0/q0‖q0/p0

p̄′(·),Ω is bounded by a con-

stant independent of h. But it follows from (1.9) that for all x ∈ Ω,

p̄′(x) =
p(x)

p(x)− p0

=
q0

p0

q(x)

q(x)− q0

=
q0

p0

q̄′(x).

Therefore,

‖(Rh)p0/q0‖q0/p0

p̄′(·),Ω = ‖Rh‖q̄′(·),Ω ≤ C‖h‖q̄′(·),Ω = C.

This completes our proof. �

6. Proof of Corollaries 1.10 and 1.11

The proofs of Corollaries 1.10 and 1.11 require the more general versions of the
extrapolation theorems discussed in the Introduction. For the convenience of the
reader we state them both here.

Theorem 6.1. Given a family F and an open set Ω ⊂ Rn, assume that for some p0,
0 < p0 < ∞, and for every w ∈ A∞,

(6.1)

∫
Ω

f(x)p0 w(x) dx ≤ C0

∫
Ω

g(x)p0 w(x) dx, (f, g) ∈ F .
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Then for all 0 < p < ∞ and w ∈ A∞,

(6.2)

∫
Ω

f(x)p w(x) dx ≤ C0

∫
Ω

g(x)p w(x) dx, (f, g) ∈ F .

Furthermore, for every 0 < p, q < ∞, w ∈ A∞, and sequence {(fj, gj)}j ⊂ F ,

(6.3)
∥∥∥(∑

j

(fj)
q
) 1

q
∥∥∥

Lp(w,Ω)
≤ C

∥∥∥(∑
j

(gj)
q
) 1

q
∥∥∥

Lp(w,Ω)
.

Theorem 6.2. Given a family F and an open set Ω ⊂ Rn, assume that for some
p0, 1 < p0 < ∞, and for every w ∈ Ap0, (6.1) holds. Then for every 1 < p < ∞ and
w ∈ Ap, (6.2) holds. Furthermore, for every 1 < p, q < ∞, w ∈ Ap, and sequence
{(fj, gj)}j ⊂ F , (6.3) holds.

Theorem 6.1 is proved in [11]. The original statement of Theorem 6.2 is only for
pairs of the form (|Tf |, f), and does not include the vector-valued estimate (6.3).
(See [17, 21, 38].) However, an examination of the proofs shows that they hold
without change when applied to pairs (f, g) ∈ F . Furthermore, as we noted before,
this approach immediately yields the vector-valued inequalities: given a family F
and 1 < q < ∞, define the new family Fq to consist of the pairs (Fq, Gq), where

Fq(x) =
(∑

j

(fj)
q
)1/q

, Gq(x) =
(∑

j

(gj)
q
)1/q

, {(fj, gj)}j ⊂ F .

Clearly, inequality (6.1) holds for Fq when p0 = q, so by extrapolation we get (6.3).

Corollary 1.10 follows immediately from Theorems 1.3 and 6.1. Since (1.11) holds
for some p0, by Theorem 6.1 it holds for all 0 < p < ∞ and for all w ∈ A∞. Therefore,
we can apply Theorem 1.3 with p1 in place of p0 to obtain (1.12). To prove the vector-
valued inequality (1.13), note that by (6.3) we can apply Theorem 1.3 to the family
Fq defined above, again with p1 in place of p0.

In exactly the same way, Corollary 1.11 follows from Theorems 1.3 and 6.2.
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