ON THE A,, CONDITION FOR ELLIPTIC OPERATORS IN 1-SIDED NTA DOMAINS
SATISFYING THE CAPACITY DENSITY CONDITION
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ABsTRACT. Let Q € R™!, n > 2, be a 1-sided non-tangentially accessible domain, that is, a set which is
quantitatively open and path-connected. Assume also that Q satisfies the capacity density condition. Let
Lou = —div(AoVu), Lu = — div(AVu) be two real (not necessarily symmetric) uniformly elliptic operators
in Q, and write wy,,w; for the respective associated elliptic measures. We establish the equivalence
between the following properties: (i) w; € Aw(wy,), (ii) L is LP(wy,)-solvable for some p € (1, c0), (iii)
bounded null solutions of L satisfy Carleson measure estimates with respect to wy,,, (iv) S < N (i.e., the
conical square function is controlled by the non-tangential maximal function) in L%(wy,) for some (or
for all) g € (0, co) for any null solution of L, and (v) L is BMO(wy,)-solvable. Moreover, in each of the
properties (ii)-(v) it is enough to consider the class of solutions given by characteristic functions of Borel
sets (i.e, u(X) = wf(S) for an arbitrary Borel set S C 6Q).

Also, we obtain a qualitative analog of the previous equivalences. Namely, we characterize the ab-
solute continuity of wy, with respect to wy, in terms of some qualitative local L?(wy,) estimates for the
truncated conical square function for any bounded null solution of L. This is also equivalent to the finite-
ness wr,-almost everywhere of the truncated conical square function for any bounded null solution of L.
As applications, we show that wy, is absolutely continuous with respect to w, if the disagreement of the
coeflicients satisfies some qualitative quadratic estimate in truncated cones for w;,-almost everywhere
vertex. Finally, when L, is either the transpose of L or its symmetric part, we obtain the corresponding
absolute continuity upon assuming that the antisymmetric part of the coefficients has some controlled
oscillation in truncated cones for w;,-almost every vertex.
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1. INTRODUCTION

The solvability of the Dirichlet problem (1.1) on rough domains has been of great interest in the last
fifty years. Given a domain Q ¢ R™*! and a uniformly elliptic operator L on €, it consists on finding
a solution u (satisfying natural conditions in accordance to what is known for the boundary data f) to
the boundary value problem

Lu=0 in Q
(1) {u in ,

u=f on 0Q.

To address this question, one typically investigates the properties of the corresponding elliptic measure,
since it is the fundamental tool that enables us to construct solutions of (1.1). The techniques from
harmonic analysis and geometric measure theory have allowed us to study the regularity of elliptic
measures and hence understand this subject well. Conversely, the good properties of elliptic measures
allow us to effectively use the machinery from these fields to obtain information about the topology
and the regularity of the domains. These ideas have led to a quite active research at the intersection of
harmonic analysis, partial differential equations, and geometric measure theory.

The connection between the geometry of a domain and the absolute continuity properties of its
harmonic measure goes back to the classical result of F. and M. Riesz [47], which showed that for a
simply connected domain in the plane, the rectifiability of its boundary implies that harmonic mea-
sure is mutually absolutely continuous with respect to the surface measure. After that, considerable
attention has focused on establishing higher dimensional analogues and the converse of the F. and M.
Riesz theorem. For a planar domain, Bishop and Jones [5] proved that if only a portion of the boundary
is rectifiable, harmonic measure is absolutely continuous with respect to arclength on that portion. A
counter-example was also constructed to show that the result of [47] may fail in the absence of some
strong connectivity property (like simple connectivity). In dimensions greater than 2, Dahlberg [12] es-
tablished a quantitative version of the absolute continuity of harmonic measures with respect to surface
measure on the boundary of a Lipschitz domain. This result was extended to BMO; domains by Jerison
and Kenig [38], and to chord-arc domains by David and Jerison [16] (see also [4, 28, 33] for the case
of 1-sided chord-arc domains). In this direction, this was culminated in the recent results of [3] under
some optimal background hypothesis (an open set in R"*! satisfying an interior corkscrew condition
with an n-dimensional Ahlfors-David regular boundary). Indeed, [3] gives a complete picture of the
relationship between the quantitative absolute continuity of harmonic measure with respect to surface
measure (or, equivalently, the solvability of (1.1) for singular data, see [26]) and the rectifiability of
the boundary plus some weak local John condition (that is, local accessibility by non-tangential paths
to some pieces of the boundary). Another significant extension of the F. and M. Riesz theorem was
obtained in [2], where it was proved that, in any dimension and in the absence of any connectivity con-
dition, every piece of the boundary with finite surface measure is rectifiable, provided surface measure
is absolutely continuous with respect to harmonic measure on that piece. It is worth pointing out that
all the aforementioned results are restricted to the n-dimensional boundaries of domains in R"*!. Some
analogues have been obtained in [14, 15, 17, 44] on lower-dimensional sets.

On the other hand, the solvability of the Dirichlet problem (1.1) is closely linked with the abso-
lute continuity properties of elliptic measures. The importance of the quantitative absolute continuity
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of the elliptic measure with respect to the surface measure comes from the fact that w;, € RHy (o)
(short for the Reverse Holder class with respect to o, being o the surface measure) is equivalent to the
LY (0)-solvability of the Dirichlet problem (see, e.g. [26]). In 1984, Dahlberg formulated a conjecture
concerning the optimal conditions on a matrix of coefficients guaranteeing that the Dirichlet problem
(1.1) with L? data for some p € (1, 00) is solvable. Kenig and Pipher [41] made the first attempt on
bounded Lipschitz domains and gave an affirmative answer to Dahlberg’s conjecture. More precisely,
they showed that elliptic measure is quantitatively absolutely continuous with respect to surface mea-
sure whenever the gradient of the coefficients satisfies a Carleson measure condition. This was done
in Lipschitz domains but can be naturally extended to chord-arc domains. In some sense, some recent
results have shown that this class of domains is optimal. First, [28, 33, 4] show that in the case of
the Laplacian and for 1-sided chord-arc domains, the fact that the harmonic measure is quantitatively
absolutely continuous with respect to surface measure (equivalently, the L”(o)-Dirichlet problem is
solvable for some finite p) implies that the domains must have exterior corkscrews, hence they are
chord-arc domains. Indeed, in a first attempt to generalize this to the class of Kenig-Pipher operators,
Hofmann, the third author of the present paper, and Toro [31] were able to consider variable coeffi-
cients whose gradient satisfies some L'-Carleson condition (in turn, stronger than the one in [41]). The
general case, on which the operators are in the optimal Kenig-Pipher—class (that is, the gradient of the
coefficients satisfies an L>-Carleson condition) has been recently solved by Hofmann et al. [30].

In another direction, one can consider perturbations of elliptic operators in rough domains. That
is, one seeks for conditions on the disagreement of two coefficient matrices so that the solvability of
the Dirichlet problem or the quantitative absolute continuity with respect to the surface measure of the
elliptic measure for one elliptic operator could be transferred to the other operator. This problem was
initiated by Fabes, Jerison and Kenig [18] in the case of continuous and symmetric coefficients, and
extended by Dahlberg [13] to a more general setting under a vanishing Carleson measure condition.
Soon after, working again in the domain Q = B(0, 1) and with symmetric operators, Fefferman [19]
improved Dahlberg’s result by formulating the boundedness of a conical square function, which allows
one to preserve the A, property of elliptic measures, but without preserving the reverse Holder expo-
nent (see [20, Theorem 2.24]). A major step forward was made by Fefferman, Kenig and Pipher [20]
by giving an optimal Carleson measure perturbation on Lipschitz domains. Additionally, they estab-
lished another kind of perturbation to study the quantitative absolute continuity between two elliptic
measures. Beyond the Lipschitz setting, these results were extended to chord-arc domains [45, 46], 1-
sided chord-arc domains [7, 8], and 1-sided non-tangentially accessible domains satisfying the capacity
density condition [1]. It is worth mentioning that the so-called extrapolation of Carleson measure was
utilized in [1, 7]. Nevertheless, a simpler and novel argument was presented in [8] to get the large
constant perturbation. More specifically, A, property of elliptic measures can be characterized by the
fact that every bounded weak solution of L satisfies Carleson measure estimates. Also, it is worth
mentioning that [1] considers for the first time perturbation results on sets with bad surface measures.

The goal of this paper is to continue with the line of research initiated in [1]. We work with Q c R™*!,
n > 2, a 1-sided non-tangentially accessible domain satisfying the capacity density condition. We
consider two real (not necessarily symmetric) uniformly elliptic operators Lou = —div(AoVu) and
Lu = —div(AVu) in Q, and denote by wy,,, wy, the respective associated elliptic measures. The paper
[1] considered the perturbation theory in this context providing natural conditions on the disagreement
of the coeflicients so that wy, is quantitatively absolutely continuous with respect to wy,, (see also [20]).
In our first main result we single out the latter property and characterize it in terms of the solvability
of the Dirichlet problem or some other properties that certain solutions satisfy. In a nutshell, we show
that such condition is equivalent to the fact that null solutions of L have a good behavior with respect
to wr,. The precise statement is as follows:
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Theorem 1.2. Let Q ¢ R™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10), and let Lu = — div(AVu) and Lou = — div(AqVu) be real (non-
necessarily symmetric) elliptic operators. Bearing in mind the notions introduced in Definition 3.6, the
following statements are equivalent:

(a) wr € Ax(0Q, wy,) (cf. Definition 3.3).

(b) Lis LP(wy,)-solvable for some p € (1, o).

(b)" L is LP(wr,)-solvable for characteristic functions for some p € (1, co).
(¢) L satisfies CME(wp,).

(c)" L satisfies CME(wy,) for characteristic functions.

(d) L satisfies S < N in LY(wy,) for some (or all) q € (0, oo).

(d)" L satisfies S < N in LY (wy,) for characteristic functions for some (or all) g € (0, c0).
(e) Lis BMO(wyg,)-solvable.

(e) L is BMO(wy,)-solvable for characteristic functions.

(f) Lis BMO(wr,)-solvable in the sense of [26].

(f)" L is BMO(wy,)-solvable in the sense of [26] for characteristic functions.

Furthermore, for any p € (1, o) there hold
(@) wr € RHy(0Q, wr,) < (b), Lis L’ (w,)-solvable,

(b), L is LP(wy,)-solvable = (b);, L is LP(wr,)-solvable for characteristic functions,

and
(b), Lis L (wy,)-solvable = (b), L is L(wy,)-solvable for all g > p.

Remark 1.3. Note that in Definition 3.6 the L”(wy,)-solvability depends on some fixed & and N. How-
ever, in the previous result what we prove is that if (a) holds then (b) is valid for all @ and N. For the
converse we see that if (b) holds for some @ and N then we get (a). This eventually says that if (b) holds
for some @ and N, then it also holds for every a and N. The same occurs with (d) where now there is
only a.

As an immediate consequence of Theorem 1.2, if we take Ly = L, in which case we clearly have
Wy € Ax(0Q,wy,) (indeed, w; € RH,(0Q, wr,) for any 1 < p < o0), then we obtain the following
estimates for the null solutions of L (note that (ii) and (iii) coincide with [1, Theorems 5.1 and 5.3]
respectively):

Corollary 1.4. Let Q ¢ R™! n > 2, be a I-sided NTA domain (cf. Definition 2.5) satisfying the
capacity density condition (cf. Definition 2.10), and let Lu = — div(AVu) be a real (non-necessarily
symmetric) elliptic operator. Bearing in mind the notions introduced in Definition 3.6, the following
statements hold:

(1) Lis LP(wp)-solvable, and also LP(wr)-solvable for characteristic functions, for all p € (1, c0).
(1) L satisfies CME(wp).
(iii) L satisfies S < N in L1(wy) for all g € (0, o).

(iv) L is BMO(wyr)-solvable, and also BMO(wp)-solvable for characteristic functions.
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(v) L is BMO(wp)-solvable, and also BMO(wy )-solvable for characteristic functions, in the sense
of [26].
Remark 1.5. We would like to emphasize that in (i) the L”(wp,)-solvability holds for all @ and N, the

same occurs with (iii) which holds for all «, see Definition 3.6.

Our second application is a direct consequence of [1, Theorems 1.5, 1.10] and Theorem 1.2:

Corollary 1.6. Let Q ¢ R™! n > 2, be a I-sided NTA domain (cf. Definition 2.5) satisfying the
capacity density condition (cf. Definition 2.10), and let Lu = — div(AVu) and Lou = — div(AoVu) be
real (non-necessarily symmetric) elliptic operators. Define

(1.7) 0(A,A))X) :=  sup  |A(Y) - Ao(Y), XeQ,
YEB(X.6(X)/2)

and

! Gr,(Xa, X)
lo(A, Ao)l := sup su lﬂ oA, Agy(x)2 G- X) 4y
5 5 w3 Mana S(X)2

where A = BN Q, A’ = B’ N Q, and the sup is taken respectively over all balls B = B(x, r) with x € 0Q
and 0 < r < diam(0Q), and B’ = B(x',r) with X' € 2A and 0 < v’ < cor/4, and ¢ is the Corkscrew
constant. We also define

3 oA A X\ ?
o(0(A, A))(x) := < //r " T dX> , x € 0Q,

where I'*(x) :={X € Q: |X — x| £ (1 + ®)o(X)}.
If
(1.8) lo(A, Ap)l <00 or  h(o(A,Ag)) € LT(0Q, wi,),

then all the properties (a)—(f)’ in Theorem 1.2 are satisfied.

Moreover, if given 1 < p < oo, there exists &, > 0 (depending only on dimension, the 1-sided NTA
and CDC constants, the ellipticity constants of Lo and L, and p) such that if

loA Al <&y or  lla(o(A ADll(ry) < &ps

then wy; € RHy (0Q, wy,) and hence L is LY(wg,)-solvable for q > p.

Our next goal is to state a qualitative version of Theorem 1.2 in line with [6]. The A condition
will turn into absolute continuity. The qualitative analog of S < N is going to be that the conical
square function satisfies L? estimates in some pieces of the boundary. On the other hand, as seen from
the proof of Theorem 1.2 (see Lemma 4.7 and (4.34)), the CME condition, more precisely, the left-
hand side term of (3.11) is connected with the local L>-norm of the conical square function. Thus, the
L?-estimates for the conical square function are the qualitative version of CME. In turn, all these are
equivalent to the simple fact that the truncated conical square function is finite almost everywhere with
respect to the elliptic measure wy,,.

Theorem 1.9. Let Q ¢ R™! n > 2, be a I-sided NTA domain (cf. Definition 2.5) satisfying the
capacity density condition (cf. Definition 2.10). There exists oy > 0 (depending only on the 1-sided
NTA and CDC constants) such that for each fixed @ > ag and for every real (not necessarily symmetric)
elliptic operators Lou = — div(AoVu) and Lu = — div(AVu) the following statements are equivalent:

(@) wr, < wy on Q.
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(b) 0Q = UNzO Fn, where wy,(Fo) = 0, for each N > 1, Fy = 02N 0Qy for some bounded 1-sided
NTA domain Qy C Q satisfying the capacity density condition, and S{u € LY(Fy, wy,) for every
weak solution u € Wllo’CZ(Q) N L=(Q) of Lu = 0 in Q, for all (or for some) r > 0, and for all (or
for some) q € (0, o).

(b)Y 0Q = UNZO Fy, where wi,(Fo) =0, for each N > 1, Fy = 0Q N 0Qy for some bounded 1-sided
NTA domain Qn C Q satisfying the capacity density condition, and Sfu € LI(Fy, wy,) where
uX) = (uL(S) X € Q, for any arbitrary Borel set S C 0Q, for all (or for some) r > 0, and for
all (or for some) q € (0, o).

(©) Stu(x) < oo for wr,-a.e. x € 0Q, for every weak solution u € WIIOCZ(Q) NL¥(Q) of Lu =0in Q
and for all (or for some) r > 0.

(©) Stu(x) < oo for wr,-a.e. x € 0Q where u(X) = a))L((S), X € Q, for any arbitrary Borel set
S € 0Q, and for all (or for some) r > 0.

(d) For every weak solution u € Wllo’f(Q) N L=(Q) of Lu = 0 in Q and for wy,-a.e. x € 08 there
exists ry > 0 such that S} u(x) < co.

(d)" For every Borel set S C 9Q and for wy,-a.e. x € 0€ there exists ry > 0 such that S} u(x) < oo,
where u(X) = wf(S ), X € Q.

Our first application of the previous result is a qualitative version of [1, Theorem 1.10]:

Theorem 1.10. Let Q ¢ R"™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the
capacity density condition (cf. Definition 2.10). There exists ay > 0 (depending only on the 1-sided
NTA and CDC constants) such that, if the real (not necessarily symmetric) elliptic operators Lou =
—div(AoVu) and Lu = — div(AVu) satisfy for some a > aq and for some r > 0

A, Ag)(X)?
(1.11) // o 0)(X) ———————dX < o0, for wr,-a.e. x € 09,
recy 6!

where (A, Ag) is as in (1.7), then wr, < wr.

To present another application of Theorem 1.9, we introduce some notation. For any real (not nec-

essarily symmetric) elliptic operator Lu = —div(AVu), we let L™ denote the transpose of L, and let
Lsym = % be the symmetric part of L. These are respectively the divergence form elliptic operators
with associated matrices AT (the transpose of A) and AY™ = #.
Theorem 1.12. Let Q ¢ R"™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the
capacity density condition (cf. Definition 2.10). There exists oy > 0 (depending only on the 1-sided
NTA and CDC constants) such that, if Lu = —div(AVu) is a real (not necessarily symmetric) elliptic
operator, and we assume that (A — A") € Lip,,.(Q) and that for some a > a and for some r > 0 one
has

(1.13) F(xA) = // ‘dich - AT)(X)‘2 S(X)'"dX < oo, for wp-a.e. x € 0Q,
ro(x)

where

n+l

diVC(A — AT)(X) = (Z ai(ai,j - aj,,-)(X)) . Xe Q,
i=1 1<j<n+1

then wp < wrT and WL <K Wsym.
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Moreover, if
(1.14) FH(x;A) < 00, for wp-a.e. and wir-a.e. x € 0Q,

then wp < Wit <K Wy, <K Wsym.

The structure of this paper is as follows. Section 2 contains some preliminaries, definitions, and tools
that will be used throughout. Also, for convenience of the reader, we gather in Section 3 several facts
concerning elliptic measures and Green functions which can be found in the upcoming [32]. The proof
of Theorem 1.2 is in Section 4. Section 5 is devoted to proving Theorem 1.9. In Section 6, we will
present the proofs of Theorems 1.10 and 1.12 which follow easily from a more general perturbation
result which is interesting in its own right.

We note that some interesting related work has been carried out while this manuscript was in prepa-
ration due to Feneuil and Poggi [21]. This work can be particularized to our setting and contains some
results which overlap with ours. First, [21, Theorem 1.22] corresponds to (c¢)) = (a) in Theorem 1.2.
It should be mentioned that both arguments use the ideas originated in [39] (see also [40]) which present
some problems when extended to the 1-sided NTA setting. Namely, elliptic measure may not always be
a probability and also it could happen that for a uniformly bounded number of generations the dyadic
children of a given cube may agree with that cube. These two issues have been carefully addressed
in [8, Lemma 3.10] (see Lemma 4.4 with § > 0) and although such a result is stated in the setting of
1-sided CAD it is straightforward to see that it readily adapts to our case. Our proof of (c)) = (a)
in Theorem 1.2 follows easily from that lemma. Second, [21, Theorem 1.27] (see also [21, Corol-
lary 1.33]) shows (d) in Theorem 1.2 with g = 2 for a class of perturbations of L. In our setting, we
are showing that (d) follows if (a) holds for any given operator L (whether or not it is a generalized
perturbation of Lg.)

2. PRELIMINARIES

2.1. Notation and conventions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each oc-
currence, which depend only on dimension and the constants appearing in the hypotheses of the
theorems (which we refer to as the “allowable parameters”). We shall also sometimes write a < b
and a ~ b to mean, respectively, that a < Cbh and 0 < ¢ < a/b < C, where the constants ¢ and C are
as above, unless explicitly noted to the contrary. Unless otherwise specified upper case constants are
greater than 1 and lower case constants are smaller than 1. In some occasions it is important to keep
track of the dependence on a given parameter 7y, in that case we write a <, b or a ~, b to emphasize
that the implicit constants in the inequalities depend on .

e Our ambient space is R > 2.
e Given E c R™! we write diam(E) = SUP, yeE |x — y| to denote its diameter.

e Given an open set ) C R™! we shall use lower case letters x, ¥, 2, etc., to denote points on 9€, and
capital letters X, Y, Z, etc., to denote generic points in R"*! (especially those in R™*! \ Q).

e The open (n+ 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when the center x lies
on 0Q, or B(X, r) when the center X € R"! \ Q. A surface ball is denoted A(x, r) := B(x,r) N 6Q,
and unless otherwise specified it is implicitly assumed that x € 0€.

o If 0Q is bounded, it is always understood (unless otherwise specified) that all surface balls have radii
controlled by the diameter of 0Q, that is, if A = A(x, r) then r < diam(dQ)). Note that in this way
A = 0Q if diam(0Q) < r < diam(0Q).



8 MINGMING CAO, OSCAR DOMINGUEZ, JOSE MARIA MARTELL, AND PEDRO TRADACETE

e For X € R"™!, we set §(X) := dist(X, 0Q).
e We let H" denote the n-dimensional Hausdorff measure.

e For a Borel set A ¢ R"*!, we let 14 denote the usual indicator function of A4, i.e. 1,X)=1ifX €A,
and 1,(X) =0if X ¢ A.

e We shall use the letter / (and sometimes J) to denote a closed (n + 1)-dimensional Euclidean cube
with sides parallel to the coordinate axes, and we let £(I) denote the side length of /. We use Q to
denote dyadic “cubes” on E or 0€2. The latter exist as a consequence of Lemma 2.13 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [38], we say that a domain Q C R™! satisfies the
Corkscrew condition if for some uniform constant 0 < ¢y < 1 and for every x € Q and 0 < r <
diam(9Q), if we write A := A(x, r), there is a ball B(Xa, cor) C B(x, r) N Q. The point X5 C Q is called
a Corkscrew point relative to A (or, relative to B). We note that we may allow r < C diam(0€2) for any
fixed C, simply by adjusting the constant cj.

Definition 2.2 (Harnack Chain condition). Again following [38], we say that Q satisfies the Harnack
Chain condition if there are uniform constants C1,Cy > 1 so that for every pair of points X, X’ € Q
there is a chain of balls By, By, ..., By C Q with N < C;(2 + logj IT), where

B X - X'|

" min{6(X), 6(X")}’

such that X € By, X’ € By, By N Byy1 # @ and forevery 1 <k <N

2.4) C5! diam(By) < dist(By, Q) < C, diam(By).
The chain of balls is called a Harnack Chain.

2.3)

We note that in the context of the previous definition if II < 1 we can trivially form the Harnack
chain B; = B(X,36(X)/5) and B, = B(X’,35(X”)/5) where (2.4) holds with C, = 3. Hence the Harnack
chain condition is non-trivial only when II > 1.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Q is a /-sided non-tangentially ac-
cessible domain (1-sided NTA) if it satisfies both the Corkscrew and Harnack Chain conditions. Fur-
thermore, we say that Q is a non-tangentially accessible domain (NTA domain) if it is a 1-sided NTA
domain and if, in addition, Qey := R"*! \ Q also satisfies the Corkscrew condition.

Remark 2.6. In the literature, 1-sided NTA domains are also called uniform domains. We remark that
the 1-sided NTA condition is a quantitative form of openness and path connectedness.

Definition 2.7 (Ahlfors regular). We say that a closed set E c R™"! is n-dimensional Ahlfors regular
(AR for short) if there is some uniform constant C; > 1 such that

(2.8) Ci' " <H"(ENB(x,r) <C, 1", x€E, 0<r<diam(E).
Definition 2.9 (1-sided CAD and CAD). A [-sided chord-arc domain (1-sided CAD) is a 1-sided
NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with AR boundary.

We next recall the definition of the capacity of a set. Given an open set D ¢ R™*! (where we recall
that we always assume that n > 2) and a compact set K ¢ D we define the capacity of K relative to D
as

Cap,(K, D) = inf {// IVv(X)[PdX : ve €. (D), v(x) > 1in K} .
D
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Definition 2.10 (Capacity density condition). An open set Q is said to satisty the capacity density
condition (CDC for short) if there exists a uniform constant ¢; > 0 such that
Cap,(B(x,r) \ Q, B(x,2r)) S
— >c
Cap,(B(x,r), B(x,2r))

@2.11)

for all x € 9Q and 0 < r < diam(9QY).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [42]. Using [25, Example
2.12] one has that

(2.12) Cap,(B(x, ), B(x,2r)) ~ !, forall x € R"! and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular every x € 0Q is
Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also, it was
proved in [48, Section 3] and [27, Lemma 3.27] that a set with Ahlfors regular boundary satisfies the
capacity density condition with constant ¢; depending only on n and the Ahlfors regular constant.

2.3. Dyadic grids and sawtooths. In this section we introduce a dyadic grid from [1, Lemma 2.33]
along the lines of that obtained in [9] but using the dyadic structure from [36, 37, 34]:

Lemma 2.13 (Existence and properties of the “dyadic grid”, [1, Lemma 2.33]). Let E ¢ R™! be a
closed set. Then there exists a constant C > 1 depending just on n such that for each k € Z there is a
collection of Borel sets (called “cubes’)

— k R
Dy :={QjCE: je},
where 3 denotes some (possibly finite) index set depending on k satisfying:
— k
(a) E = Ujefsk Q] for each k € Z.
(b) If m < k then either Q’J‘- cQm"orQ"n Q’J‘. = Q.
(c) Foreachk € Z, j € J;, and m < k, there is a unique i € 3, such that Q’]‘. c o

(d) Foreachk € Z, j€ 3 there is x]]‘ € E such that
B, CT'27nE c @5 ¢ B(Y, 27N E.

In what follows given B = B(x, r) with x € E we will denote A = A(x,r) = BN E. A few remarks
are in order concerning this lemma. Note that within the same generation (that is, within each Dy) the
cubes are pairwise disjoint (hence, there are no repetitions). On the other hand, we allow repetitions in
the different generations, that is, we could have that Q € Dy and Q’ € Dy_; agree. Then, although O
and Q' are the same set, as cubes we understand that they are different. In short, it is then understood
that D is an indexed collection of sets where repetitions of sets are allowed in the different generations
but not within the same generation. With this in mind, we can give a proper definition of the “length” of
a cube (this concept has no geometric meaning in this context). For every Q € Dy, we set £(Q) = 27X,
which is called the “length” of Q. Note that the “length” is well defined when considered on D, but it is
not well-defined on the family of sets induced by D. It is important to observe that the “length” refers
to the way the cubes are organized in the dyadic grid. It is clear from (d) that diam(Q) < ¢(Q). When
E = 0Q, with Q being a 1-sided NTA domain satisfying the CDC condition, the converse holds, hence
diam(Q) ~ €(Q), see [1, Remark 2.73]. This means that the “length” is related to the diameter of the
cube.
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Let us observe that if £ is bounded and k € Z is such that diam(E) < C~'27%, then there cannot be
two distinct cubes in Dg. Thus, Dy = {QF} with QX = E. Therefore, we are going to ignore those k € Z
such that 27% > diam(E). Hence, we shall denote by D(E) the collection of all relevant Ok, ie.,

D(E) := UDk,
k

where, if diam(E) is finite, the union runs over those k € Z such that 2% < diam(E). We write
E = 2C?, with C being the constant in Lemma 2.13, which is purely dimensional. For Q € D(E) we
will set k(Q) = k if Q € Dy. Property (d) implies that for each cube Q € D(E), there exist xp € E and
ro, with E716(Q) < rg < €(Q) (indeed ro = (2C)~1¢(Q)), such that

(214) A(XQ, ZI”Q) C Q C A(XQ, EI’Q).

We shall denote these balls and surface balls by

(215) BQ = B(XQ, I"Q), AQ = A(XQ, }"Q),
(2.16) By := B(xg,Erg),  Ag := A(xg,Erp),

and we shall refer to the point x¢ as the “center” of Q.

Let O € Dy and consider the family of its dyadic children {Q’ € Dy : Q' € Q}. Note that for any
two distinct children Q’, Q”, one has |xypr — xg/| > ror = rg» = ro/2, otherwise xg» € Q" N Ay C
Q" N Q’, contradicting the fact that Q’ and Q" are disjoint. Also xg, xg» € Q C A(xg, Zrg), hence by
the geometric doubling property we have a purely dimensional bound for the number of such xo and
hence the number of dyadic children of a given dyadic cube is uniformly bounded.

We next introduce the “discretized Carleson region” relative to Q € D(E), Do = {Q" € D : Q" C Q}.
Let ¥ = {Q;} ¢ D(E) be a family of pairwise disjoint cubes. The “global discretized sawtooth” relative
to ¥ is the collection of cubes Q € D(E) that are not contained in any Q; € ¥, that is,

Dy :=D\ | Dy,
QIET

For a given Q € D(E), the “local discretized sawtooth” relative to ¥ is the collection of cubes in D¢
that are not contained in any Q; € ¥ or, equivalently,

DT,Q = DQ \ U DQ,. =D# N DQ.
i
We also allow ¥ to be the null set in which case Dg = D(E) and Dg g = Dg.

In the sequel, Q ¢ R"*!, n > 2, will be a 1-sided NTA domain satisfying the CDC. Write D = D(5Q)
for the dyadic grid obtained from Lemma 2.13 with £ = Q. In [1, Remark 2.73] it is shown that under
the present assumptions one has that diam(A) = r for every surface ball A and diam(Q) = £(Q) for
every Q € D. Given Q € D we define the “Corkscrew point relative to 0 as X := X,. We note that

8(Xg) ~ dist(Xg, Q) ~ diam(Q).

We also introduce the “geometric” Carleson regions and sawtooths. Given Q € D we want to define
some associated regions which inherit the good properties of Q. Let W = W(Q) denote a collection
of (closed) dyadic Whitney cubes of Q c R™*!, so that the cubes in W form a covering of Q with
non-overlapping interiors, and satisfy

2.17) 4 diam(]) < dist(41,0Q) < dist(,0Q) < 40diam(I), VI e W,

and
diam(/,) = diam(/), whenever I, and I, touch.
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Let X(I) denote the center of I, let £(1) denote the side length of I, and write k = k; if £(1) = 27k,

Given 0 < 1 < 1 and I € ‘W we write I* = (1 + A)I for the “fattening” of /. By taking A small
enough, we can arrange matters, so that, first, dist(I*, J*) = dist(/, J) for every I,J € ‘W. Secondly,
I" meets J* if and only if 0 meets dJ (the fattening thus ensures overlap of I* and J* for any pair
I,J € ‘W whose boundaries touch, so that the Harnack Chain property then holds locally in I* U J*,
with constants depending upon A). By picking A sufficiently small, say 0 < 4 < Ay, we may also
suppose that there is 7 € (%, 1) such that for distinct I, J € ‘W, we have that tJ N I* = @. In what
follows we will need to work with dilations I** = (1 + 2A)I or I*** = (1 + 44)1, and in order to ensure
that the same properties hold we further assume that 0 < A < 4y /4.

Given ¢ € N, for every cube O € D we set
(2.18) W = {IeW:2770Q) <€) <27£(Q), and dist(l, Q) < 2"¢(Q)} .

We will choose ¢ > g, with ¢y large enough depending on the constants of the Corkscrew condition
(cf. Definition 2.1) and in the dyadic cube construction (cf. Lemma 2.13), so that Xy € I for some
I € (W’é, and for each dyadic child Q/ of Q, the respective corkscrew points Xpi € I/ for some
I e (WZ. Moreover, we may always find an I € “Wg with the slightly more precise property that
£(0)/2 < £(I) < €(Q) and

f(Q2; <2, and dist(Q1, Q2) < 1000£(05).

"ng N "WZZ # @, wheneverl <

For each I € ‘WY, we form a Harnack chain from the center X(/) to the Corkscrew point X and call
it H(I). We now let ‘W g* denote the collection of all Whitney cubes which meet at least one ball in the
Harnack chain H(I) with I € ‘W?, that is,

(VVZ* :={J € W : thereexists I € ‘WZ such that HI) N J # @}.

uh=|J a+nr= J r.

3 %
1 e’W'Z) Iew 0

We also define

By construction, we then have that
WHcWg cW and XgeU), Xp €Uy,

for each child Q7 of Q. It is also clear that there is a uniform constant k* (depending only on the 1-sided
CAD constants and #) such that

1K) < () <2 0Q). VIeWD,
X() »ys Xo, V1€ (Wg’*,
dist(1,0) <2°°€Q), VIe Wy

Here, X(I) _>UZ X means that the interior of Ug contains all balls in Harnack Chain (in Q) con-
necting X(I) to Xp, and moreover, for any point Z contained in any ball in the Harnack Chain, we

have dist(Z, 0Q) ~ dist(Z,Q \ U, g) with uniform control of implicit constants. The constant k* and the
implicit constants in the condition X(/) — vl X, depend at most on the allowable parameters, on 4,

and on . Moreover, given I € W we have that [ € "WZ’I*, where Q; € D satisfies £(Q;) = €(I), and
contains any fixed y € dQ such that dist(/, dQ) = dist(/,y). The reader is referred to [28, 32] for full
details. We note however that in [28] the parameter ¢ is fixed. Here we need to allow 9 to depend on
the aperture of the cones and hence it is convenient to include the superindex 9.
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For a given Q € D, the “Carleson box” relative to Q is defined by
Tg = int ( U Uﬁ,>.
Q’'eDg

For a given family ¥ = {Q;} ¢ D of pairwise disjoint cubes and a given Q € D, we define the “local
sawtooth region” relative to # by

(2.19) Qf, :=int< U Uﬂ,>=int< U 1*),
Q’'eDg o Ie"W}Q

where (Wl}l’ 0= UQ,eDﬁQ (Wg* Note that in the previous definition we may allow ¥ to be empty in
which case clearly Qg’Q = Tg. Similarly, the “global sawtooth region” relative to ¥ is defined as

(2.20) Qr :zint( U Ug,> :int< U 1*),

Q'eDy TeWy.

where ‘Wg_- = UQ,€D¢ (Wg* If ¥ is the empty set clearly Qg = Q. For a given Q € D and x € 9Q let
us introduce the “truncated dyadic cone”

rw:= J Ub.
xEQ’EDQ

where it is understood that Fg(x) =@ if x ¢ Q. Analogously, we can slightly fatten the Whitney boxes
and use /** to define new fattened Whitney regions and sawtooth domains. More precisely, for every
QeD,

DA 9, - 0, D, - %
Ty" = int ( U v > Q' :=int ( U vy > rg'w= J Uy,
Q'EDQ Q’EDrf’Q XEQ/EDQO
where U™ := Uyeqyn I*". Similarly, we can define Tg™, Q. T (x), and U™ by using I"** in
place of I**.

To define the “Carleson box” Tg associated with a surface ball A = A(x,r), let k(A) denote the
unique k € Z such that 27%=! < 200r < 27%, and set

(2.21) D* := {Q € Dy : QN2A # B},
We then define
(2.22) TY := int < U TZ).

QehA

We can also consider fattened versions of Tg given by

i (| 1g). =i 757))

QehA QehA

Following [28, 32], one can easily see that there exist constants 0 < x; < 1 and xp > 16= (with Z the
constant in (2.14)), depending only on the allowable parameters and on ¢, so that

(2.23) kKiBgNQCT)cTy cTy™ cT)™ ckoBonQ=:1B,NQ,

(2.24) SBANQCT, cT) Ty TV ckoBanQ =: 1B NQ,
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and also
(2.25) O CkoByNAQ = 1B, NIQ =: FA", Y Qe D",

where By is defined as in (2.15), A = A(x, r) with x € 0Q, 0 < r < diam(0€Q), and By = B(x,r) is so
that A = B N 9Q. From our choice of the parameters one also has that By, C B, whenever Q C 0.

Lemma 2.26 ([1, Lemma 2.54] and [28, Appendices A.1-A.2]). Let Q C R™! n > 2 bea l-

sided NTA domain satisfying the CDC. For every © > 9 all of its Carleson boxes T}, TZ’*, Tg’** and
TIZ, TZ’*, TZ’**, and sawtooth regions QY- Q%*, Qg;**, and Q% 0 Qg;TQ, Q%z are 1-sided NTA domains
and satisfy the CDC with uniform implicit constants depending only on dimension, the corresponding
constants for Q, and 9.

Given Q we define the “localized dyadic conical square function”
1
3
(2.27) Shu(x) = < // IVu(Y)|?s(Y)' " dY) , x €0Q,
) ()C)
0

for every u € WI’Z(TS). Note that S’éu(x) = 0 for every x € 9Q \ Q since F’é(x) = @ in such a case.

loc
The “localized dyadic non-tangential maximal function” is given by

(2.28) Nju(x):= sup [u(Y)l,  x€0Q,
Yery (x)

for every u € ‘K(Tg’*), where it is understood that Ngu(x) = 0 for every x € 0Q\ Q.

Given @ > 0 and x € 9Q we introduce the “cone with vertex at x and aperture o’ defined as
IMx) ={XeQ:|X-x <(+a)dX)}. One can also introduce the “truncated cone”, for every x € Q2
and 0 < r < cowesetI'%(x) = B(x,r) N I"*(x).

The “conical square function” and the “non-tangential maximal function” are defined respectively
as

(2.29) S%(x) := < // |Vu(Y)|26(Y)1‘”dY>2, N%u(x) := sup [u(X)|, x € 0Q,
I'*(x)

Xel(x)

for every u € Wllo’f(Q) and u € €' (Q) respectively. Analogously, the “truncated conical square function”
and the “truncated non-tangential maximal function” are defined respectively as

2
(2.30) S%u(x) := < // IVu(Y)*s(Y)! =" dY) . N%u(x):= sup Ju(X), x€dQ, 0<r<oo,
T (x) XeT?(x)
for every u € Wllo’z (Q N B(x,r)) and u € €(Q N B(x, r)) respectively.
We would like to note that truncated dyadic cones are never empty. Indeed, in our construction we
have made sure that Xy € Ug for every Q € D, hence for any Q € D and x € Q one has Xy € F’é(x).
Moreover, X¢o € Fg(x) for every Q" € Dy with Q' > x. For the regular truncated cones it could happen

that I'? (x) = @ unless « is sufficiently large. Suppose for instance that Q = {X = (xy,..., x,41) € R
Xiy...sXpe1 > 0} is the first orthant, then T'?(0) = @ forany 0 < r < 0w if @ < VYn+1—1. On the
other hand, if « is sufficiently large, more precisely, if @ > ¢ ' — 1, where ¢ is the corkscrew constant
(cf. Definition 2.1), then

2.31) Xawn €T,  VYxedQ, 0<r< diam(6Q).
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3. UNIFORMLY ELLIPTIC OPERATORS, ELLIPTIC MEASURE AND THE GREEN FUNCTION

Next, we recall several facts concerning elliptic measures and Green functions. To set the stage let
Q c R™! be an open set. Throughout we consider elliptic operators L of the form Lu = — div(AVu)
with A(X) = (a;, j(X))gf;lel being a real (non-necessarily symmetric) matrix such that a; ; € L*(€Q) and
there exists A > 1 such that the following uniform ellipticity condition holds

3.1 ATNEP < AXE - £, |AX)E - nl < Ale] Il

for all £, € R™! and for almost every X € Q. We write LT to denote the transpose of L, or, in other
words, L™u = —div(ATVu) with AT being the transpose matrix of A.

We say that u is a weak solution to Lu = 0 in Q provided that u € WIL;CZ(Q) satisfies
// AX)Vu(X) - Vp(X)dX = 0 whenever ¢ € 6.°(Q).
Q

Associated with L one can construct an elliptic measure {a)f }xeo and a Green function G (see [32]
for full details). If Q satisfies the CDC then it follows that all boundary points are Wiener regular and
hence for a given f € %.(0Q) we can define

u(X) := / f(z)dwf(z), whenever X € Q,
0Q

and u := f on 0Q and obtain that u € Wllo’cz(Q) N € (Q) and Lu = 0 in the weak sense in Q. Moreover,
if f € Lip(0Q) then u € W'?(Q).

We first define the reverse Holder class and the A, classes with respect to a fixed elliptic measure in
Q. One reason we take this approach is that we do not know whether H"|s5q is well-defined since we
do not assume any Ahlfors regularity in Theorem 1.2. Hence we have to develop these notions in terms
of elliptic measures. To this end, let Q satisfy the CDC and let Ly and L be two real (non-necessarily
symmetric) elliptic operators associated with Lou = —div(AoVu) and Lu = —div(AVu) where A and
Ay satisfy (3.1). Let a))L‘O and w¥ be the elliptic measures of Q associated with the operators Lo and L
respectively with pole at X € Q. Note that if we further assume that Q is connected, then Harnack’s

inequality readily implies that w} < wY on 4Q for every X, Y € Q. Hence if wfo < w{g on 0L for

some Xy, Yy € Q then wf < w{@ on 0Q for every X, Y € Q and thus we can simply write w; < wr,, on

0Q. In the latter case we will use the notation

X

d
(3.2) h(-;L, Lo, X) = =L

X
da)LO

to denote the Radon-Nikodym derivative of wy with respect to a))L(O, which is a well-defined function
w{o—almost everywhere on 0Q.

Definition 3.3 (Reverse Holder and A, classes). Fix Ag = By N 0Q where By = B(xg, ry) with xg € 0Q
and 0 < rg < diam(92). Given 1 < p < oo, we say that w; € RH,(Ag, wy,), provided that w; < wy,
on Ay, and there exists C > 1 such that

w, (D)

W (8)

1
(3.4) ( ][ h(y; L, Lo, Xay) ey (y)> "<c ][ h(y; L, Lo, Xag)dw) () = C
A A

for every A = BN 0Q where B C B(xg, o), B = B(x, r) with x € 0Q, 0 < r < diam(9Q2). The infimum
of the constants C as above is denoted by [w ] RH,(Ag.w1,)-
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Similarly, we say that w;, € RH,(0Q, wr,) provided that for every Ag = A(xo, ro) with xo € 0Q and
0 < rp < diam(0Q2) one has wy, € RH (Ao, wy,) uniformly on Ay, that is,

[wLIRH,(00.w1,) = SEP[CUL]RH,,(AO,LULO) < oo
0

Finally,
Aw(B0, wry) = | JRHy(Ao, wr,) and  Au(0Q, wr,) == | RHH(0Q, wy,).

p>1 p>1
Definition 3.5 (BMO). Fix Ag = By N 0 where By = B(xy, rg) with xp € 0Q and 0 < ry < diam(0€).
We say that f € BMO(Ay, wy) provided f € LIIOC(AO, waO) and

. X
Il IBMO(A0p) := SUP mf][ If (%) — ¢l dw; ™ (x) < oo,
A ceR A

where the sup is taken over all surface balls A = B N 9dQ where B C B(xy, ry), B = B(x, r) with x € 0Q,
0 < r < diam(9Q).

Similarly, we say that f € BMO(0Q, wy) provided that for every Ay = A(xp, o) with xg € JQ and
0 < rp < diam(9Q) one has f € BMO(Ag, w) uniformly on Ay, that is, f € Lfoc(ag, wy) (that is,
1f Tallz @Q.uY) < for every surface ball A C 9Q and for every X € ) —albeit with a constant that

may depend on A and X) and satisfies
. X,
Il /llBMO(@@©,w;) = sup sup inf ][ If (%) — el dw, ™ (x) < o0,
AO A ceR A

where the sups are taken respectively over all surface balls Ag = B(xp,ry) N 0Q with xg € 0Q and
0 < rp < diam(0Q), and A = BN 9Q, B = B(x,r) C By with x € 0Q and 0 < r < diam(9Q2).

Definition 3.6 (Solvability, CME, S < N). Let Q C R™! n > 2, be a 1-sided NTA domain (cf.
Definition 2.5) satisfying the capacity density condition (cf. Definition 2.10), and let Lu = — div(AVu)
and Lou = — div(A¢Vu) be real (non-necessarily symmetric) elliptic operators.

e Given 1 < p < oo, we say that L is LP(wy,)-solvable if for a given @ > 0 and N > 1 there exists
Con = 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of Lo
and L, @, N, and p) such that for every Ay = A(xop, r9) with xg € 0Q,0 < ry < diam(d€2), and for
every f € € (0Q) with supp f € NAy if one sets

3.7) u(X) := /a Qf(y)dw’f(yx XeQ,
then
(3.8) INGull < Conlifl

Xpg .-
LP(Ao,wLO ) L/’(NAo,a)LO )

e We say that L is BMO(wp,)-solvable, if there exists C > 1 (depending only on n, the 1-sided
NTA constants, the CDC constant, and the ellipticity of Ly and L) such that for every f € € (0Q) N
L*(0Q, wy,) if one takes u as in (3.7) and we set uz o(X) := a)f((')Q), X € Q, then

1
I 19 faaaun )06 Xa, 00X < Cliflvona,
@) oo

XA
(J_)LO

3.9 sup sup
B B

where A = BNAQ, A’ = B'NOQ, far, = ][ f dwfﬁ, and the sups are taken respectively over all balls
A

B = B(x, r) with x € 0Q and 0 < r < diam(0QQ), and B’ = B(x’,r") with x’ € 2A and 0 < ¥’ < rcp/4,
and c is the Corkscrew constant.
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e We say that L is BMO(wy,)-solvable in the sense of [26], that is, there exists C > 1 (depending
only on n, the 1-sided NTA constants, the CDC constant, and the ellipticity of Ly and L) such that
for every € € (0, 1] there exists p(g) > 0 such that p(¢) — 0 as € — 0% in such a way that for every
f €€ 0Q) N L*(0Q, wy,) if one takes u as in (3.7), then

1
(3.10)  supsup ——— // VuCOPGLy(Xa,» X) dX < C(Iflamowawr,) + €N Ex@0.0.,))>
Bs B’ wLOS(A/) NQ
where A, = B. N 0Q, A’ = B’ N 0Q, and the sups are taken respectively over all balls B; = B(x, er)
with x € 9Q and 0 < r < diam(0LQ2), and B’ = B(x’,r") with x’ € 2A, and 0 < ¥’ < ercy/4, and ¢ is
the Corkscrew constant.

e We say that L satisfies CME(wy,), if there exists C > 1 (depending only on n, the 1-sided NTA
constants, the CDC constant, and the ellipticity of Ly and L) such that for every u € Wllo’f(Q) NL®(Q)
satisfying Lu = 0 in the weak sense in €2 the following estimate holds

1
3.11) sup su
Bp B’p wfg(A’)

// IVu(X)*Gry(Xa. X) dX < Cllulloqy)»
B'NQ

where A = BN dQ, A’ = B’ N 9Q, and the sups are taken respectively over all balls B = B(x, r) with
x € 0Qand 0 < r < diam(0Q), and B’ = B(x’,r’) with X’ € 2A and 0 < ¥’ < rco/4, and cg is the
Corkscrew constant.

e Given 0 < g < oo, we say that L satisfies S < N in L1(wy,) if for some given @ > 0, there exists
C, > 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of L
and L, @, and ¢) such that for every Ay = A(xp, rg) with xy € 0Q,0 < ry < diam(9Q), and for every
ue€ WIIO’CZ(Q) satisfying Lu = 0 in the weak sense in € the following estimate holds

(3.12) Ise %y, < CallNEu|
Wp)

u X .
”L‘i(Ao Lq(SAO,wL(fO )

e We say that any of the previous properties holds for characteristic functions if the corresponding
estimate is valid for all solutions of the form u(X) = wf (8), X € Q, with § c 9Q being an arbitrary
Borel set (with § C NAg in the case of L”(wr,)-solvability).

Remark 3.13. We would like to observe that when either Q and 9Q are both bounded or dQ is un-
bounded, the elliptic measure is a probability (that is, u; o(X) = w{ (0Q) = 1 for every X € Q). Hence,
it has vanishing gradient and one can then remove the term fa r,uz o in (3.9). This means that the only
case on which subtracting fa 1,ur. o is relevant is that where € is unbounded and 62 is bounded (e.g.,
the complement of a ball). As a matter of fact, one must subtract that term or a similar one for (3.9)
to hold. To see this, take f = 1 € BMO(0Q, wy,) so that ||f||BMo(3g,wL0) = 0 and let u = ur g be
the associated elliptic measure solution. One can see (cf. [32]) that the function u; o is non-constant
(it decays at infinity), hence 0 < u; o(X) < 1 for every X € Q and |Vuy | # 0. This means that the
version of (3.9) without the term fa ;4 o cannot hold. Moreover, note that in this case (3.9) is trivial:
Jaroura = urq and the left-hand side of (3.9) vanishes.

Remark 3.14. As just explained in the previous remark when either 2 and 9Q are both bounded or Q2
is unbounded, the left-hand sides of (3.9) and (3.10) are the same, as a result (e) clearly implies (f)
—and (e)” implies (f)’— upon taking o(g) = 0 (we will see in the course of the proof that these two
implications always hold). Much as before, when € is unbounded and 0Q is bounded, (3.10) needs to
incorporate the term o(g)||f II%m(m’wL0 y otherwise it would fail for u = u; .

Remark 3.15. In (3.9) one can replace far, by fa.r, (see Remark 4.43 below). Also, when Q is
unbounded and dQ bounded one can subtract a constant that does not depend on A nor A’. Namely, let
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Xq € Q satisfy 6(Xq) = diam(0Q) (say, Xq = Xa(x.) With xg € 0Q and ry ~ diam(0€2)). Then in (3.9)

one can replace far, by faa.r, = ][ f dwi?, see Remark 4.43.
0Q

The following lemmas state some properties of Green functions and elliptic measures, proofs may
be found in [32].

Lemma 3.16. Suppose that Q ¢ R"™', n > 2, is an open set satisfying the CDC. Given a real (non-
necessarily symmetric) elliptic operator L = — div(AV), there exist C > 1 (depending only on dimension
and on the ellipticity constant of L) and cg > 0 (depending on the above parameters and on 6 € (0, 1))
such that G, the Green function associated with L, satisfies

(3.17) GL(X,Y) < CIX - Y|'™;

(3.18) clX =Y <GLX,Y), ifIX-Y|<65X), 6¢€(0,1);
(3.19) G, Y)e€(Q\(Y}) and Gr(Vlsa=0 YYeQ;
(3.20) GL(X,Y)20, VX,YeQ X=#VY;

(3.21) GL(X,Y)=G~(Y,X), VX, YeQ, X=#Y

Moreover, Gr(-,Y) € WIIO’CZ(Q \{Y}) for any Y € Q and satisfies LGy(-,Y) = Oy in the sense of
distributions, that is,

(3.22) // AX)VxGL(X,Y) - Vo(X)dX = ¢(Y), Ve €. Q).
Q

In particular, Gr(-, Y) is a weak solution to LG (-, Y) = 0 in the open set Q \ {Y}.
Finally, the following Riesz formula holds:

// AT(X)VxG~(X,Y) - Vo(X)dX = ¢(Y) —/ goda){, fora.e. Y € Q,
Q oQ

for every ¢ € €= (R,

Remark 3.23. If we also assume that Q is bounded, following [32] we know that the Green function
G, coincides with the one constructed in [24]. Consequently, for each ¥ € Q and 0 < r < §(Y), there
holds

(3.24) GL(-Y) € W(Q\ B(Y, 1) n Wy (Q).
Moreover, for every ¢ € €:°(€2) such that 0 < ¢ < 1 and ¢ = 1 in B(Y,r) with 0 < r < 6(Y), we have
that

(3.25) (1 - @)GL(-, Y) € Wy (Q).

The following result lists a number of properties which will be used throughout the paper:

Lemma 3.26. Suppose that Q ¢ R"™, n > 2, is a I-sided NTA domain satisfying the CDC. Let
Lo = —div(AgV) and L = — div(AV) be two real (non-necessarily symmetric) elliptic operators, there
exist C1 > 1, p € (0, 1) (depending only on dimension, the I-sided NTA constants, the CDC constant,
and the ellipticity of L) and C, > 1 (depending on the same parameters and on the ellipticity of Ly),
such that for every By = B(xg, ro) with xg € 0Q, 0 < ry < diam(dQ), and Ay = By N 0Q we have the
following properties:
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(a) wL(Ao) > C1 foreveryY € Cy By N Qanda)L O(Ao) > C1 .
(b) If B = B(x, r) with x € 0Q and A = BN 0Q is such that 2B C By, then for all X € Q\ By we have
that

CiwL(A) < "1IGL(X, Xp) < CLwf(A).
1

(c) If X € Q\ 4By, then
W} (2A0) < Crw(A).
(d) If B= B(x,r)with x € 0Q and A := BN 0Q is such that B C By, then for every X € Q \ 2« By
with kg as in (2.24), we have that

inAO(A)_ ( )

XAO
c WX(ag) = Cren B

As a consequence,

11 de 1
Crafdy) = r )< 'w¥ (Do)’

(e) Forevery X € BynQ andfor any j >1

X
for wi-a.e. y € Ay.

7 sX)\” .
C;()L ) <C (U) , for w¥-a.e.y € dQ\ 2/ Ay.
d 2/ 2/ 1y

wr

() If0<uce WIL’CZ(BO N Q) N E(By N Q) satisfies Lu = 0 in the weak-sense in By N Q and u = 0 in
Ao then

u(X) < C) (?)pu(xm), XelBna.

Remark 3.27. We note that from (d) in the previous result and Harnack’s inequality one can easily see
that given Q, Q’, Q" € D(0Q)

XQ// (Q) X
(3.28) ——=" ~w,?(Q),  whenever Qc Q' c 0"
Q//
w” (O )
Also, (d), Harnack’s inequality, and (2.14) give
Xor
dw;® 1 /
(3.29) w}% —(V) * , for a)}L(Q -a.e. y € Q',whenever Q' c Q”.
deQ LQ Q)

. X ’/ X /
Observe that since w; %" < w;*?

Radon-Nikodym derivative.

we can easily get an analogous inequality for the reciprocal of the

Remark 3.30. It is not hard to see that if w; < wy, then Lemma 3.26 gives the following:

3.31) wr € RH,(0Q, w,)) & sup lA(-; L, Lo, X))l
x€0Q,0<r<diam(0Q)

LP(A(x,r)w A(”)) <
The left-to-right implication follows at once from (3.4) by taking B = By (hence A = Ap) and
Lemma 3.26 part (a). For the converse, fix By = B(xy, r9) and B = B(x, r) with B C By, xo, x € 0Q and
0 < rg, r < diam(9Q2). Write Ag = Bo N 0Q and A = BN 9Q. If r =~ ry we have, by Lemma 3.26 part
(@),

X »
(][ h(y; L, Lo,XAO)pde(?O(Y)> S 1A 5 L, Lo, Xa)ll Xag
A LP(AO(U

’LO)
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= ||h(-; L, Lo, X
A5 L Lo Xall 5

On the other hand, if » < rp, we have by Lemma 3.26 part (d) and the fact that w;, < wy,, that

Xagy XA X, XA XA
dw dw,™ dw?® dw . (D) }
h(-;L, Lo, Xa,) = )L(A LA L XA ~ h(-;L, LO,XA) X ,  wry-ae. inA.
dw;?® da)L deo dwy” a)LO °(A)
This and Lemma 3.26 part (d) give
s L Lo Xy %)) % (- : L Lo, Xa) L Lo X,y Y ®
ya 0> A() a) s Loy LQs A() Ll’(A,w)L(g) ~ s Loy L)y AA LP(A’w)L(g)wst(A)

Thus, (3.4) holds and the right-to-left implication holds.

Remark 3.32. It is not difficult to see that under the assumptions of Lemma 3.26 one has

I/ lIBMO@Q.w1) & SUP 1r€1f ][ 1f(x) — el dw)* (%),
Q C

where the sup is taken over all surface balls A = B(x,r) N dQ with x € 0Q and 0 < r < diam(0Q).
Thus, we could have taken this as the definition of f € BMO(0Q, wy).

Remark 3.33. Under the assumptions of Lemma 3.26, for every Ag as above if f € BMO(A, wy),
then John-Nirenberg’s inequality holds locally in Ay and the implicit constants depend on the doubling

property of a))L(A" in 2Ag. Thus, if one further assumes that f € BMO(9L, wr), then forevery 1 < g < oo
there holds

1
(3.34) I.fllBMO@Q.w1) * Sup SUp| lnf ][ 1f(x) = cl dwy, O(X)> ! <o,

where the sups are taken respectively over all surface balls Ag = B(xg, 9) N 0Q with xy € dQ and
0 < rp < diam(0Q2), and A = BN IQ, B = B(x,r) C By with x € dQ and 0 < r < diam(d€2). Note
that the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC constant,
the ellipticity of L, and q.

4. ProoF oF THEOREM 1.2

We first observe that for any p € (1, o) the equivalence (a),, < (b), easily implies (a) & (b).
Also, since Jensen’s inequality readily gives that w; € RH (0, wy,) implies w; € RH,(0Q, wy,) for
all ¢ > p, the equivalence (a),, < (b), yields (b), = (b), for all ¢ > p. Finally, (b), = (b);7
clearly implies (b) = (b)’. With all these in mind, we will follow the scheme

(@), &= (b), = (b)), (b)Y = (a), (a) = (d) = d) = (a),
(c) = (¢), (e) = () = (¢, ) =0 = () = (),
(a) = (o), (@) = (e), (@) = (e).

Before proving all these implications we present some auxiliary results:

Lemma4.1. Let Q c R n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10), and let Lu = —div(AVu) and Lou = —div(AgVu) be real
(non-necessarily symmetric) elliptic operators. There exists p € (0, 1) (depending only on dimension,
the 1-sided NTA constants, the CDC constant, and the ellipticity of L) and C; > 1 (depending on
the same parameters and on the ellipticity of Ly) such that the following holds: If A = BN 9Q and
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N = B N 9Q, where B = B(x,r) with x € 0Q and 0 < r < diam(0Q2), and B’ = B(x',r") with x' € 2A
and 0 < 1’ < rco/4, where ¢ is the Corkscrew constant, and up o(X) := w)L(((?Q), X € Q, then

1
W (A)

/

// Vi oG (X X)dx<c( ! )zp
wog 8 Lol 2A, ="\ diam@Q)) -

4.2)

Proof. Fix B = B(x,r) with x € dQ and 0 < r < diam(dQ) and B’ = B(x’,r’) with X' € 2A and
0<r <reo/d. Let A= BnNoQ, N =B NoQ.

We note that when either Q2 is unbounded or 0Q and  are both bounded then elliptic measure
is a probability, hence u; o = 1 and the desired estimate is trivial. This means that we may assume
that 0Q is bounded and Q is unbounded (e.g, the complement of a closed ball). In that scenario, u; o
decays at 00, 0 < ur o < 1in Q, and ur glsg = 1. Define v := 1 — uy o and note that our assumptions
guarantee that v € Wllo’cz(Q) N (Q) with 0 < v < 1 and v|sq = 0. By Lemma 3.26 part (f) applied in
B(x’, diam(0Q)/2) we have

o(X) 6X) )p
diam(6QY) diam(0Q)/ ’
Set Wp :={I e W:INB # @} and we pick Z; p € IN B’ for I € ‘Wp . Caccioppoli’s and Harnack’s
inequalities, and the previous estimate yield

// IVv(X)PPdX < €)™ // v(X)dX < e W(Zp)* < ey (
1 I

Thus, Lemma 3.26 gives

// IVVOOPGLy(Xa, X)dX < Y w)*(Qned)'™ // IVVOOPP dX
’NQ 1

e
0<v(X) < ( ) V(XA diam(©9Q)/2)) < ( XeB NQ.

() ) 2p
diam(0Q)/

IE(WB/
N an N\
< 3 0@ Gamam)
IE(WB’
2k 2p X
<Y (2 S oo,
et dlam(aQ) ) €Wy ;[([):2“"

where Q; € D(9Q) is so that £(Q;) = £(I) and contains y; € dQ such that dist(/, dQ) = dist(y;, ). It is
easy to see that if 27% < r, then the family {Q;} tew, o(n=2-+ has bounded overlap uniformly on k, and
also that Q; ¢ CA’ for every I € Wy, where C is some harmless dimensional constant. Hence,

/

2_k 2p r 2p
VW(X)PGLy(Xa, X)dX < —— ) MCA) S () W),
//ml VOFGra ) ”k_;,<diam(ag)> VL (CA) = (diam(@Q)) W1y (&)

This gives the desired estimate. O

Given Qg € D(0Q), ¥ € N, and for every i € (0, 1) we define the modified non-tangential cone

(4.3) Thn@:=J Ubs U= | Ul
QGDQO Q,EDQ
0o (@1

It is not hard to see that the sets { Ug » }0eDy, have bounded overlap with constant depending on 7.

The following result was obtained in [8, Lemma 3.10] (for 8 > 0) and in [6, Lemma 3.40] (for
B = 0), both in the context of 1-sided CAD, extending [40, Lemma 2.6] and [39, Lemma 2.3]. It is not
hard to see that with [1, Remark 2.73] in hand the proof works with almost no change in our setting:
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Lemma 4.4. Let Q c R™! n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10), and let Lu = — div(AVu) be a real (non-necessarily symmetric)
elliptic operator. There exist 0 < n < 1 (depending only on dimension, the 1-sided NTA constants, the
CDC constant, and the ellipticity of L), and By € (0, 1), C, > 1 both depending on the same parameters
and additionally on n, such that for every Qy € D(0Q), for every 0 < B < By, and for every Borel set

F c Qg satisfying a))L(QO (F) < Ba))L(QO(QO), there exists a Borel set S C Qg such that the bounded weak
solution u(X) = w}L((S ), X € Q, satisfies

(4.5) Shy (x) = < // IVu(Y)Ps(¥)'~ ”dY> > C, ' (log(B™ h):,  VxeF

Furthermore, in the case 8 = 0, that is, when w)L(QO (F) = 0, there exists a Borel set S C Qg such that
the bounded weak solution u(X) = a)x (S), X € Q, satisfies

(4.6) Qo ,]u(x) = VxeF.

Lemma4.7. Let Q c R n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10), and let Lu = — div(AVu) and Lou = — div(AgVu) be real (non-
necessarily symmetric) elliptic operators. There exists C > 1 (depending only on dimension, the 1-sided
NTA constants, the CDC constant, and the ellipticity of L and Ly) such that the following holds. Given
B = B(x,r) with x € 0Q and 0 < r < diam(dQ), and B’ = B(x’,r") with x' € 2A and 0 < ¥’ < rey/4, let
A=BNaoQ, A =B NIQ, for every u € WIIOCZ(Q) N L= (Q) satisfying Lu = 0 in the weak sense in Q
there holds

// IVu(X)I* G, (Xa, X) dX
A(AI 'NQ

XZA/

<C [ SS%u(y) dw;?™ (y) + C sup{lu(Y)| : Y € 2B, 6(Y) = 1 /C}.

2N

Proof. Fix B, B’, A, A’, and u as in the statement. Define Wy = {I € W : I N B # @} and
"Wé’{ ={l € Wp : £I) < r'/M} for M > 1 large enough to be taken. For each I € Wp pick
Z; € INB and Q; € D(AQ) so that £(Q;) = £(I) and contains y; € Q such that dist(, Q) = dist(yy, ).
Ifz€ Q;and I € W, then

|z = X'| < |z =yl + dist(y;, I) + diam(]) + |Z; — x'| < C, (D) + ' < (1 + C,/M)r" < 2r,

provided M > C,. Hence, Q; C 2A’ for every I € W¥. Write F for the collection of maximal cubes
in {Qy} rewY» with respect to the inclusion (maximal cubes exist since Q; C 2A’ for every [ € W ).

Hence Q; c Q for some Q € ¥. Let ¥ = 9y and by construction [ € ‘Wﬂ[ C (ng (see Section 2.3).
Hence, foreveryy e Q € ¥

U 1< U e U vp=rom
IeW,”f, :yeQr€Dg Ie”Wj‘g’{ :yeQreDg yeQ’eDg
This gives
Tii= Y w0 // IVu(XO)I2 5(X) "dXx

M
TeWy

=) D, @@ // IVu(X)I> 6(X)! "dX

O IeW:0;€Dg
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=Y / > // IVu(X) 60" ™"dX dw}(y)
0 I

0eF " % IeW yeQreDg

< IVu(X)P? 6(X) " dXdw ()
2 /Q //rz(y) to

QcF
=3 /Q Shu(y)* dwy* (y).
QeF

To continue letye Q € ¥ and X € Fg(y). Then X € I* with [ € ’Wg’,* andy € Q" € Dg. Thus,
|X — y| < diam(I™) + dist(Z, Q") + diam(Q") <y €(I) ~ §(X) < ¥ /M.

where we have used (2.23) and the last estimate holds since £(I) < ' /M forevery I € (W% . This shows
that taking M large enough X € F‘Z’;,(y) for some @’ = o’(¢#). Note also that 27" < rcy/2 < diam(0Q),
and we can now conclude that

IEDS /Q S5 u( dew2 () 5 /2 SHu dwf ) = W) /2 ST e ),
QcF
where we have used Lemma 3.26.

Now, we note that for each I € Wgy \ (W% we have €(Qy) = €(I) =y ', hence for every Y € I" we
have

' <y oY) <Y = Z;| + 6(Z)) < diam(I™) + 6(Z)) < dist(1,0Q) + 6(Z;) < 26(Z)) < 2|Z; — x| < 27
Also,
[y; — xX'| + dist(yy, I) + diam(/) + |Z; — x| < dist(1,0Q) + |Z; — X'| < 2|1Z; — X'| < 2r'.

Thus, Lemma 3.26 implies that wfg(QI) ~up wﬁ? (A”). As a consequence of this, we get

R D0, (0)) //I IVu(X)P 6(X)'"dX

IeWp\WH
Sty Y et // Vu(X)*dX
IeWp\WH !
1 N N () // u(X)|* dX
TeW g\ W !

S W) KWy \ W) supllu(Y)| : Y € 2B,6(Y) 2 1/ [CF
Su @A) supllu(Y)] 1 Y € 2B',6(V) 2 7' /CP,

where we have used that Wp \ ‘W has bounded cardinality depending on n and M.

To complete the proof we use Lemma 3.26 and the estimates proved for £ and X;:

// IVu(X)PGLy(Xa, X)dX < > // IVu(X)Gy(Xa, X) dX
'NQ I

IG(WB/

~ Y w0 //I IVu(X)P 6(X)' ~"dX

IEWB/
= 21 + 22
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< w’{ﬁ(A’)( / S5 u(y)? dw () + supllu(Y)| : ¥ € 2B, 5(Y) > r’/C}2>.
2N
This completes the proof. O

For the following result we need to introduce some notation:

1
2
ATF(x) = <// |F(Y)|2dY> . x€dQ, 0<r<oo,a>0,
re(x)

for any F € L? (Q N B(x,1r)).

loc

Lemma4.8. Let Q c R n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10), and let Lou = — div(AgVu) be a real (non-necessarily symmetric)
elliptic operator. Given 0 < g < o0, 0 < @, @’ < oo there exists C > 1 (depending only on dimension,
the 1-sided NTA constants, the CDC constant, the ellipticity of Ly, g, «, and ) such that the following
holds. Given B = B(x,r) with x € 0Q and 0 < r < diam(9Q), let A = BN 9Q, for every F € leoc(Q)
there holds

4.9) A F| FeL?.(QN6B),

o
Lraw) = ClMAs, F ”L«GA@ZEA)’ loc
and
17 o
(4.10) NGl sy S CING g i, F € 6(QN8B)

Proof. We start with (4.9) and borrow some ideas from [43, Proposition 3.2]. We may assume that
a > o', otherwise the desired estimate follows trivially. Let v € A (09, wy,). By the classical theory
of weights (cf. [10, 22]), we can find p € (1, o) such for every A as in the statement we have

4 p_l
Co:= SUP[V]A,,(A,wLO) = sup sup (][ v(x) dwfﬁ(x)) (][ v(x)! =P dwi?(x)) < oo,
A AN A A

where the sups are taken over all A’ = B'NdQ with B’ ¢ 5B, B’ = B(x',r’), x’ € 0Q,0 < r’ < diam(dQ),
and where Cy depends on [V]Aoo(ﬁﬂ,mo)- Note that for any such A’ and for any Borel set F ¢ A’ we
have, by Holder’s inequality,

wmn () = (faras) = (f 1ot by
0
< (][/ 1pv dwfﬁ) (][ vl_”'dwfﬁ)p_l

-1 f vdwr?
< Co(][ 1 vdeA) (][ vda)XA) = Cof—t0
L , Lo I vda)}L(g
Lety € A and X € I'?(y) and pick x so that |[X — X] = 6(X). Then one can easily see that

Xe2B, 6X)<r yeA(Xmin{(3+a)5(X),2r}) = A, B:= B(x, min{(3 + @)5(X), 2r}) C 5B.
Then, by (4.11) and Lemma 3.26 we get

/vdeA <C()<CL)XL°A@Z))ID/vdeA <o o Co/va’wxA
AT T \ep@y/ S e T R

where A := A(x, min{a’, 1}6(X)). Moreover, if X € 2B with §(X) < rand y € A one can easily show
that
ly— x| <3r, |X—y <minf{l +a’,2}6(X).
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If we now combine the previous estimates, then we conclude that
0] 2 _ 2 XA
7P = ] JFOOP a0y )

< // IF(X))? ( /~ v(y)dwfg(y))dx
2BN{6(X)<r} A

Soarn o || FOOR ([ vy ) ax
2BN{S(X)<r) A

<Cy / // IFOOR dX v(y) dwf )
38 g o)

’
= Co||AL.F|]? .
ollA, ”L2(3A,vdwf§)

We can now extrapolate (locally in 3A) as in [11, Corollary 3.15] to conclude that

\AF|| wa'q \AG,F||

Xh S XA
Li(Avdwp[}) L'GAvdw,])

The desired estimate follows at once by taking v = 1 which clearly belongs to A, (092, wy,).
Let us next consider (4.10). First, introduce

MG, h(z) == sup ][ |hldw)® = sup ][ hlsadw)®,  ze€A.
’ Az,s) Az,s)

0<s<3r 0<s<3r

We proceed as in [35, Proposition 2.2] and write for any A > O and 8 > 0
EB,r,2) :={yedQ: NPF(y) > A).

Lety € E(a,r, 1) N A. Hence, there is X € I'?(y) with |F(X)| > A. Pick x € dQ so that |X — x] = 6(X).
Note that

A := AR, min{1,’}6(X)) € A := A(y, min{(2 + @ + @)5(X),3r}) and A C 2A.
One can easily see that if z € A then X € Fg’;(z). Hence,
AcCE@,3n)NA

and

XA ’ N XA/ A
Wt (E(@,3r,A)NA Wit (A
L, (E(@,3r,2) )> Lo (B)

MG, Ve 30 () 2 = 2
o wpy (B) wpy (B)

> y = ')’a,a”
where in the last estimate we have used that
W) (A) < WA AR, min{(4 + 2a + @)(X), 51) Sew WA (A).
We have then shown that
E(@,r,)NAC{y€A: Mg, Tewsn0) > ¥,
and by the Hardy-Littlewood maximal inequality we get
WA (B, )N A) < w2 (y € A MG, 1p@ 3,000 > 7))
< WM(E(@',3r,0) N4A) < w)f* (E(a/,4r,2) N 4A).

This readily implies (4.10). O
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4.1. Proof of (a), = (b),. Fixa > 0and N > 1. Take Ay = A(xo, ro) with xo € dQ and 0 < rg <
diam(0QY) and fix f € €(0Q) with supp f € NAg. We may assume that Nry < 4 diam(dQ), otherwise
0Q) is bounded and 4 diam(0Q2)/N < rg < diam(dQ) and we can work with N’ = 2 diam(dQ)/ry €
(2,N/2] and N’ Ay = 0Q.

Let u be the associated elliptic measure L-solution as in (3.7). Assume w;, € RH,/(0Q, wy,) and our
goal is to obtain that (3.8) holds. By Gehring’s lemma [23] (see also [10]) there exists s > 1 such that
wy, € Rprs(aQ, a)LO).

Introduce the family of pairwise disjoint cubes
Fao :={0 € DOQ) : (N +3E)rg < £{(Q) < 2(N +3E)ry, QN 3EA #+ B}.

Take x € Ag and X € I} (x). Let Ix € ‘W be such that X € Ix. Take yx € dQ such that dist(/y, 9Q) =
dist(Zx,yx) and let Ox € D be the unique dyadic cube satisfying £(Qx) = ¢(Ix) and yx € Qx. By
construction (see Section 2.3), Iy € (Wg; and thus I* C I'p,(yx). Thus, by the properties of the
Whitney cubes

5 5
0(X) < 1X — yx| < diam(Iy) + dist(Ix, yx) < 2 dist(Ix, 0Q) < Zé(X)
and
5
46(Qx) = 4€(Ix) < dist(ly, Q) < 6(X) < I dist(Ix, 0Q) < 50 Vn + 1£(Ix) = 50 Vn + 1£(Qx).

These and the fact that X € Iy (x) give

1 1 1
_ < —|X — _
{(0x) < 1 o(X) < 4IX x| < 4ro.

Also, for every z € Qx
9
l2 = xol < la = yxl +lyx = X| + X = x| + |x = xo| < 22H(Qx) + J1X = x| + 70 < (E+4) ro < 3Ero,

since Z > 2, and
|z = x| < |z —yx| + lyx = X[+ [X — x| < 2E€(Qx) + (3 + @)6(X) < 2E + a)do(X) =: Co6(X),

since X € T (x). Thus, Ox C 3E2Ag N A(x, Cp6(X)) and there exists a unique va € Fa, such that
Ox & Ox. In particular, X € Ix C Up, C F@X(y) for all y € Qx and

u(0| < N uy),  forally € Ox.

. . X .
Taking the average over Qx with respect to w Lgo we arrive at

X X
u(X)] < ) N u() dwp () S][Q sup Nou(y) dwp,’ (y)
X

x Q€T
XAO XAO
<a sup Nou(y)dw,* () < sup sup Nou(y) dw ™ (v),
A(x,Co0(X)) QE(FAO 0<r<Cqro J A(x,r) QeFa,

where in the last inequality we have used that 6(X) < |X — x| < rg since I'; (x) C B(x, ro). Taking now
the supremum over all X € I'; (x), we arrive at

Npu(x) <o sup ][ sup Nou(y) dwfﬁo ), for all x € Ay.
0<r<Cqro J A(x,r) QETAO

Applying the Hardy-Littlewood maximal inequality and the fact that the set F, has bounded cardinal-
ity, we have
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(4.12) ||N;f)ullu(A W0, Se || sup ][ sup NQu(y)deOO(y)
0:Wp 0<r<Cqro J AC,r) Q€Fa, Ll’(Ao,a))L(ﬁo)
susu Nou v < sup |[Noull ~y sup [INoull  x. .
ooty Clrana) S oo T et TN gk TN gy

where we have used that for every Q € ¥, we have supp(Nou) C Q.
Let us also observe that for every Q € ¥, we can pick yp € QN 3EA so that if z € NAg there holds

|z — xgl < |z = x0l + |x0 — yol + lyg — xol £ (N +3E)ry + Erg < 28rg.

That is, NAy C 2ZQ and we are now ready to invoke [1, Lemma 3.20] to see that

(4.13) Nou(x) < sup ][If(y)ldwfg(y), xe Q.
A

A>x
0<rp<4Erg

To continue let x € Q € Fa, and let A be a surface ball such that x € A and 0 < A < 4Zrp. In

~ ~ X~
particular, A € CyAg = Ag and Q C Ag. Note that wﬁ“ SN Ls" by Harnack’s inequality and the fact
that (5(XA0) =X 10, 6(XZ0) ~y Fo, and |XA0 - XZO| <N T10-

~ X;

Recall that w; € RHp(0Q,wy,) implies w;, € RH, S(Ao,wLSO) (uniformly). Therefore, using
Hélder’s inequality and recalling that h(-; L, Lo, X) denotes the Radon-Nikodym derivative of w} with
respect to wy, we get

X~
FlroNdo; o) < % ][ FONhG: L, Lo, X ) do, > )

w (D) 72
% (A) , Xz , z @'y

< wi‘i ( ][ h(y; L, Lo, X5, )" deLﬁ(y)) ( ][ I de °<y>) ’

wLAO (A) A

XZO w'sy

Wi, (A) XZO 'sy XZO
<P hy: L, Lo, Xz, ) deo, () ( f O dow,) (y))

(‘)LAO (A) A A

Iy X5 #
( ][A FOIP deOO@))( "

This, (4.13), and (4.12) yield

;X T X
INGull” ) San Sup /( sup f O d AO(y)) dw, (%)

LP (Ao, ™) 0eFa, Asx
0<ra <4_J”Q

X~
[ IfPdwy,’ @) =y AP
o LP(NAo.wy,)
where we have used the boundedness of the local Hardy-Littlewood maximal function in the second

o~ X+ X+ ~
term on L(P’ITY(AO, a)Lso), which follows from p > (p’s)’ and the fact that a)L(?O is doubling in 10A.

This completes the proof of (b),,. O
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4.2. Proof of (b), = (a),/. Fix p € (1, c0) and assume that L is L”(wp,)-solvable. That is, for some
fixed ap and some N > 1 there exists Cq, y > 1 (depending only on n, the 1-sided NTA constants, the
CDC constant, the ellipticity of Lg and L, ag, N, and p) such that (3.8) holds for « as in (3.7) for any
f € €(0Q) with supp f € NAg. From this and (4.10) we conclude that we can assume that a > ¢ -1,
where ¢ is the Corkscrew constant (cf. Definition 2.1), and we have

(4.14) INzull ) Saag NG ull

LP(Ao, X4AO)— aON”f” Xpp o

LP(4Ay, LP(NAo.wy,”)

for u as in (3.7) with f € €(0Q) with supp f € NAg and for any Ag = A(xo,rg), xo € 0Q and
0 < rp < diam(0Q)/4. 1t is routine to see this estimate also holds with ry =~ diam(d€Q2). Indeed,
by splitting f into its positive and negative part we may assume that f > 0. In that case if x € 9Q
and X € I} (x)\ ngam(ag) /S(x) we have that 6(X) = diam(dQ) and by (2.31) one has that X’ :=
XA(x diam(09Q)/5) € ngam(ﬁﬂ) /S(x). Harnack’s inequality implies then that u(X) ~ u(X’) and this shows
that Nt u(x) < N, C‘l’iam( 0Q) /Su(x). Further details are left to the interested reader.

We claim that for every Ag = A(xo, rp), xo € 0Q and 0 < ry < diam(dQ), and for every f € € (9Q)
with supp f € NAg

@15 [ sordu )] <o

Ly (NAo,w)L(AO )
To see this let u be the L-solution with datum |f] (see (3.7)). Write Xy := X, and Xo =X o) Ay

Note that 6(Xy) = ry, 6(X0) ~, 1o, and |Xo - Xol < 2ry. Hence Harnack’s inequality yields u(XO) X,

u(Xp). The choice of @ guarantees that Xo € r(z+ 1o (x0) € I (x0), see (2.31). Let xo € 0Q so that

6(X0) = |X0 — Xo|. Clearly, for every z € A(xo, a(S(Xo)),

- - - l+a
|Xo — 2| < |Xo — Xol + [x0 — 2| < (I + @)d6(Xp) < 7 g0 <o

thus Xo €I (2) and
N2u(z) > u(Xo) %o u(Xo),  forevery z € ARy, @d(Xo)).
Note also that if z € A(Xp, @5(Xo)) then
Iz = xol < |z = Fol + [Xo — Xol + 1Xo — xol < (@ + 16(Xo) + 1Xo — xol < (@ +2)|Xo — X0l < ro,

hence A(Xy, aé(y(o)) C Ap. Additionally, if z € Ag then

N S S - 2
|z = X0l < |z — x| + |x0 — Xo| + | X0 — Xo| < 1o+ |x0 — Xol + 0(Xp) < ro+ 2|xg — Xo| < <1 + o a,)l"() < 2ryp,
and this shows that Ag C A(Xy, 2rp). This together with Lemma 3.26 gives

1S @ (A0) < w2 (Ao, 2r0)) Sa @i (Ao, @ co 70/ (2 + @) < Wy (AGo, @6(X0)))

and the previous estimates readily give (4.15):
/ FO) dowp )] < u(Xo) <o u(X)w (Ao, as(X0)? <IN a0y S W i 0

To proceed we fix Ag = A(xg, r9), xp € 0Q and 0 < ry < diam(9Q)/2. Let F C Ag be a Borel set.

. X X .
Since w LSAO and w LMO are Borel regular, for each & > 0, there exist compact set K and an open set U
such that K ¢ F c U C 2 Ay satisfying

(4.16) WU\ K) + 0 M (U\K) < &.
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Using Urysohn’s lemma we can construct fr € %.(0Q) such that 1x < fr < 1y. Then, by (4.15)
(applied with 2Ap) and (4.16) yield

X
G <sr oK) <o+ [ 0o 0
Xongy 1 Xon, 1
<&+ CQ’N”fFHLP(A wXMO) <e+ CQ’N(,L)LO U)yr <e+ CQ,N(Q)LO (F)y+e)r.
05 Lo

. . X X L X Xon, . ,
Letting € — 0+, we obtain that a)LMO (F) San a)LSAO (F)». Hence, a)LMO < wLéAO in Ag. By Harnack’s
inequality and the fact that we can cover 9Q2 with surface balls like Ag we conclude that w; < wy, in

0Q. We can write h(-; L, Ly, X) = de e Ll (0Q, a)L ) which is well-defined w)L‘O-a.e. in 0Q. Thus, for

loc

every f € €(0Q) with supp f C 2A0 we obtain from (4.15)

| o JOROAL, Lo, Xon)) dey, ()] = / FO) dwi ™ 3) Satt W1l 00, 200

Using the ideas in [1, Lemma 3.38] and with the help of [1, Lemma 3.29], we can then conclude that
.- <
Hh( ) L, LO, XZAO)”LP’ (A(),«)ZAO) ~a,N 1.
This, Harnack’s inequality, and the fact that Ag = A(xp, rg) with xg € dQ and 0 < ry < diam(9€2)/2
arbitrary easily yield that

[l 5 L, Lo, X))l A(X,)) Sen 1, for every x € 0Q and 0 < r < diam(9Q).

LY (A(x,r),w

This and Remark 3.30 readily imply that w;, € RH (082, wy,) and the proof is complete. O

4.3. Proof of (b), = (b);,. Assume that L is L”(wy,)-solvable with p € (1,00). Fixa >0, N> 1,a

surface ball Ag, and a Borel set § ¢ NAg. Take an arbitrary £ > 0 and since a))L(s" and a))L(AO are Borel
regular, we can find a closed set F' and an open set U such that F ¢ § ¢ U C (N + 1)Ap and

WU\ F)+w, " (U\F) <.

Using Urysohn’s lemma we can then construct f € %.(0Q) such that 1 < f < 1y. Set,
u(X) := w{(S), v(X) = / fO) dw}L((y), XeQ.
0Q

For every M > ¢! define the truncated cone and truncated non-tangential maximal function

M ) =T¢N{XeQ:6X) = ro/M), N yu(x):= sup |JuX),  xe€dQ.
Xel? ()

Note that if x € Ag and X € F;’()’M(x) then ro/M < 6(X) < 1o, co ro < 6(Xa,) < 1o, and | X — Xa,| < 2ry.
Hence, by the Harnack chain condition and Harnack’s inequality, there is a constant Cj; depending on
M such that

WU\ F) < Cpyw,®(U\F) < Cye,

and
0<uX)=wi(S)<Cye+w)(F)<Cye +/ fO)dwf () = Cy & +v(X).
0Q

Thus
Ny yu(x) < Cy &+ Nyv(x), Y x € Ao.
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Note that our assumption is that LP(wr,)-solvability holds with the fixed parameters @ > 0 and N > 1,
but since we already know that (a) & (b) it follows that the L”(wp,)-solvability holds with & > 0
and N + 1. Thus, the fact that f € 6.(0Q) with supp f c U C (N + 1)Ap gives

XA 1
NG el x5 < Cyewp " (Bo)? + |INgVI] Xy S Cue+ Conlifll
Lr(Ag,wp ™)

3 XAO
L8000 . LP((N+1)0.w;0°)

XA, 1 X, 1 1
SCue+ Conwp,* (U)r <Cye+ Con(wy,*(S) + )7 =Cye+ Con (sl N XAO)-I-E)!’.
0-Wp

+ : (0% < 1 (4 @
We let &€ — 0% and obtain ”N’O’MMHLP(AO,JZOAO) < CQ’NHIS”LP(NAO,JL%O)' Since NrO’Mu(x) /" Nyu(x)
for every x € 0Q as M — oo we conclude the desired estimate by simply applying the monotone
convergence theorem. O

4.4. Proof of (b)) = (a). Fix p € (1, c0) and assume that L is LP(wy,)-solvable for characteristic
functions. That is for some @ > 0 and some N > 1 there exists C,y > 1 (depending only on n, the
1-sided NTA constants, the CDC constant, the ellipticity of Ly and L, a, N, and p) such that (3.8) holds
for u as in (3.7) for any f = 1g with § being a Borel set § C NAy.

Take an arbitrary Ag = A(xp,rp), X0 € 0Q and 0 < ryp < diam(0Q). We follow the proof of
(b), = (a),y and observe that the same argument we used to obtain (4.15) easily gives, taking f = 1g
with S being a Borel set S € NA, that

Xag rn Xag _ Xag ok
(@.17) G = [ OG0 S0 WSl v =0l

. e X, Xa, . . . . .
This readily implies that wLAO < wL(’jO in Ao, and since Ay is arbitrary we conclude that w; < wy, in

0Q. To proceed, fix By = B(xp, rg) and B = B(x, r) with B C By, xg, x € 0Q and 0 < rgp, r < diam(0Q).
Write Ag = BN dQ and A = BN 9Q. Let S C A be an arbitrary Borel set. If r ~ ry we have by
Harnack’s inequality and Lemma 3.26 part (a)

G NS) W)

w0 () WD)

XA 1 XAO 1
w S > w S D

w)L(A(S) SaN w)L(S(S)% ~ ( )L(OA( )); ~ ( ;}Z ( ))p,
R () G(B)

where in the third estimate we have used (4.17) with A in place of Ag. On the other hand, if r <« rg we
have by Lemma 3.26 part (d) that w;, < wr, with

Xag X809y 1
OL°S) _ 50(5) g0 (S ~ (L BN)7,
XA L > LO XA

w; (D) wr,’ (D)

where again we have used (4.17) with A in place of Ay in the middle estimate. In short we have proved
that

Xag Xag 1
S w; "(S)\ 1
w)L(A ) SaN ( f(‘; ( )) ", for any Borel set S C A.

w0 (A) w0 (A)

Using the fact that the implicit constants do not depend on A (nor on Ag) and Lemma 3.26 part (c), this

readily implies that (u)L(AO € RH (Ao, wfﬁo) for some g € (1, c0) where ¢ and the implicit constants do not
depend on Ay, see [10, 22]. Hence, we readily conclude that w; € RH,(0Q, wy,) (see Definition 3.3).
This completes the proof of the present implication. O
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4.5. Proof of (a) = (d). Assume that w; € A.(0Q,wr,). By the classical theory of weights
(cf. [10, 22]) and Lemma 3.26 part (c) it is not hard to see that w;, € A(0Q,wr), hence wy, €
RH,(0Q, wr) for some 1 < p < co. In particular for every Qp € D(0Q2) and Q € Dy, by Lemma 3.26
part (c¢) we have

alte)
XQ() :
W, 2(0)

1
( ][ h(y; Lo, L, Xg,)"dew, <y)>' <C ][ h(y; Lo, L, Xg,)dw, % (y) = C
[¢) 0

Thus, for F ¢ Q we obtain, by Holder’s inequality,

Xo, Xo
F 0
@ie) 2 = L 10 = %D f 1m0, L Xo w0
w, Q) o wr, (Q) 70

Xg 1, Xo 1 Xo 1

wy °(0) ][ Xo (W (F)\» wy Y(F)\»

< h(y; Lo, L, Xg,)’dw; () < .

wfoQO(Q)< 0 0 0 L ) (waO(Q)) <w}L(Q0(Q)>

To continue we need a dyadic version of (3.12): for every Qg € D(9Q) and for every 9 > ¥y we
claim that

(4.19) 1S, ull < ColIND ul , 0<g<oo.

X, X,
L9(Q0.w,,) L9(Q0.w;,)

This estimate can be proved following the argument in [1, Section 5.2] with the following changes.
Recall [1, (5.9)] (here we note that the argument in [1, Section 5.2] was done with a fixed value of
9 sufficiently large, but it is routine to see that one can repeat it with this parameter with harmless
changes)

9
(4.20) w, " ({x € Q) SEu() > pA, Ny u(x) <ya}) s (g) W% (Q)),
ko

where 4, B, y > 0; Q; is some dyadic cube (see [1, Section 5.2]); SQj u is a truncated localized dyadic
conical square function with respect to the cones

9 ,ko — 7 .
oo = |J  Ubs
er'EDQ
€Q")227*0 £(Qo)

and ko is large enough (eventually kp — o0). It should be noted that the implicit constant in the
inequality (4.20) does not depend on ky. Combining (4.20) with (4.18) we easily arrive at

Y
B

From this we can derive [1, (5.7)] with a))L(OQO in place of a))L(QO and a typical good-A argument much as
in [1, Section 5.2] readily leads to (4.19).

With (4.19) at our disposal we can then proceed to obtain (3.12). Fix Ag = A(xg, rp) with xy €
0Q,0 < rg < diam(9Q2). Let M > 1 be large enough to be chosen and set

Fao := {0 € DOQ) : ro/2M) < €(Q) < ro/M, QN Ay # D}
One has that ¥, is a pairwise disjoint family and

Ay C U 0c %Ao,
Q€Fa,

4.21) o ({x e Q)1 SFPouw > pa, Nju) <y 1)) < (5)7 w, (@),

provided M is large enough.
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Write 7y := ro/2M. Let x € Qo € Fa, and X € Ffri‘o(x). Let Ix € W be so that Iy > X and pick
Ox € D(0Q) with x € Qx and £(Qx) = {(Ix). Note that

2(Qx) = t(x) < diam(Iy) < dist(Ix, Q) < 6(X) < |X — x| < 7y = 2% < £(Qo).
This and the fact that x € Qg N Ox gives Ox C Qp. On the other hand,
dist(Ix, Ox) < |X — x| < (1 + @)8(X) < (1 + a)(diam(Iy) + dist(Ix, AQ))
<41Vn+1(1 + a)ly) = 41 Vn + 1(1 + a)0(Qx).
This shows that if we fix # = (@) so that 2% > 41 Va+ 1(1 + @) then Iy € WY < W}’ As aresult,

XelycC ng and X € FZO(X)- All these show that for every Qg € Fa, and x € Qy € Fa, we have
T2 (x) € I, (x). Thus (4.19) yields

ISl D | Shucordwrr o

QoeFa,

< > / Sh,u(x)? dwfj“(x) > Ngou(x)" dwfﬁ“(x)-

QoeFa, QoeFa,

To continue let Qg € Fa,. x € Qp and X € I';"(x). Then X € I** with I € (WZ** and x€ Q C Qp. As a
consequence,

|X — x| < diam(I"™) + dist(Z, Qp) + diam(Qp) Sy €(I) = 6(X) < kot(Qo) < 2koT0
where we have used (2.23) and the last estimate holds provided M is large enough. This shows that

Xe ng 7o (x) for some @’ = @’/ (1#) (hence depending on @). As a consequence of these, we obtain

> / Np u(x)qdeAo(x)< / zkorou(x)qdeAO(x)

QoeFa,
/ 8K0r0u(x)q dw 10 (x) < / Na u(x)? dw 0 (x),
where we have used (4.10) and the last estimate follows provided M is large enough. O

4.6. Proof of () = (d)’. This is trivial since for any arbitrary Borel set S C 9Q, the solution
u(X) = wi(S), X € Q, belongs to u € W52 (Q). O

4.7. Proof of (d)) = (a). Assume that (3.12) holds for some fixed a¢ and g € (0, o) and for

uX) = wf(S ), X € Q, for any arbitrary Borel set § € 0Q. By Lemma 4.8 (applied to F(X) =

[Vu(X)|8(X)1=72), for any « large enough to be chosen we have

(4.22) IS5 || how) Saao 1S5, ull
Lo

Xi5a, ~ Xay
L1G3Ay. ?L(;AO)$QO Wy, (ISAO)q wr, (AO)q

for every Ay = A(xo, ro) with xy € 9Q,0 < ro < diam(0Q)/3, and where we have used that 0 < u < 1.
Let us see how to extend the previous estimate, in the case d€2 is bounded, to any diam(dQ)/3 < rp <
diam(0Q2). Note that if x € Ag and X € Fdlam(ag)(x) \I giam( 90/ 4(x), then

- diam(@Q) SIX=x<(1+a)dX) <(1+a)X—xl<(l+a)diam(0Q).

Set W, ={l € W In (Fdlam(m)(x) \ Tiame@aq) 4 (X)) # @}, whose cardinality is uniformly bounded
(depending in dimension and a). Thus, since ||ul|z~) < 1, Caccioppoli’s inequality gives
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Il

IVu(X)26(X) ™" dX < Z oqn'" // [Vu(X)P? dX
1

giam(()ﬂ)(x)\rgiam(aQ)M(x) IeW,
<y anT // P dX < #W, $q 1.
IeW, r

With this in hand and (4.22) applied with ry = diam(9€2)/4 < diam(0Q)/3, we readily obtain

S%u xy < IS, u X
1S, ”m(Ao,wLﬁ") S diamac lqu(Ao,wLﬁ")

XA, 1
< |ISg; u— Sy u Xy + IS5 u Xy S w;r Y(Ag)e.
” diam(0Q) diam(0Q)/4 ”L‘Z(Ao,stO) ” diam(0Q)/4 ”L‘i(Ao,sto) Ly ( 0)

We next see that given y € (0, 1) there exists 8 € (0, 1) so that for every Qg € D(9Q2) and for every
Borel set F' ¢ Qp we have

XQ() XQO F
(4.23) Y wXLQ“i() <y
% (Qo) ©,%(Q)

Indeed, fix y € (0,1) and Qg € D(0L), and take a Borel set F C Qy so that a))L(QU (F) < ,Bwao(Qo),
where 8 € (0, 1) is small enough to be chosen. Applying Lemma 4.4, if we assume that 0 < 8 < S,
then u(X) = cu)L( (§) satisfies (4.5) and therefore

q
@24)  Cyllog (B W P(F) < / Sk u()! dw (x) < /Q Sk u()! dwy® (x).
F 0

We claim that there exists ag = ag(Jg, ) (hence, depending on the allowable parameters) such that

(4.25) Iy (xc r‘:go (x),  x€Qy,

with ro = 2korg, (cf. (2.23)). To see this, let x € Qp and X € FZ%J](X). Then X € I* for some
I € ‘Wg‘i’*, where Q" € Q € Dy, with Q 5> x and {(Q’) > 7°€(Q). Then X € TZ‘(’)* C By, N Q (see
(2.23)) and
IX = x| < 1X = xg,| + [xg, — x| < korg, + Erg, < 2korg, = r'p,,
and also
IX — x| < diam(/*) + dist(1, Q") + diam(Q) <y, €(I) = 6(X).
Hence, there exists ag = ag(t, n) such that X € l"fgo (x), that is, (4.25) holds.

To continue, observe first that by (2.14) and the fact that k9 > 16Z (cf. (2.23)) we have Qg C A*QO.
This, (4.25), Harnack’s inequality, (4.22), and Lemma 3.26 imply

) Xo @ Xo
(4.26) /QO SQ%J]u(x)q dwp”(x) < /A*Q Sr*QO u(x)? dwy,° (x)
0

] q XA*QO XA*QO * X0
< [ S oy, () 5o w1, (20,) ~ W (Qo)
2

Combining (4.24) and (4.26) we conclude that

X

wLQO (F)

w2 (Q0)

This readily gives (4.23) by choosing 8 small enough so that C;, s, 4 log (/3‘1)7% <.

_9
< Cpeg log (B 2.
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Next, we show that (4.23) implies w; € A«(0Q, wyr,). To see this we first obtain a dyadic-A
condition. Fix Q0 Qo € D with Qy c Q°. Remark 3.27 gives for every F C Qo

X0, X0y Xgy
427) 1w (F) wLO "(F) <c waO (F) and v a)) (F) _ (F) <c wa, (F)’
G wa"(Qo) 0200 w%(Q0) Ci wL“)(Qo) wLQ Q) @, %(00)

for some C; > 1. Thus, given y € (0, 1), take the corresponding 8 € (0, 1) so that (4.23) holds with
v/C\ in place of y. Then,

Xoo F F
% (F) ﬂ=>wLQ(F)ﬁ:> Q() y:>wL0()
(Qo) N 1% (Q0) W 2(Q)  Ci .2 (Q0)
To complete the proof we need to see that (4.28) gives wy € An(0Q, wr,). Fix y € (0,1) and a

surface ball Ag = By N 0Q, with By = B(xg, rp), xo € 0Q, and 0 < rg < diam(d€2). Take an arbitrary
surface ball A = B N 0Q centered at 9 with B = B(x,r) C By, and let F C A be a Borel set such

that wfjo (F) > ’ywﬁ“ (A). Consider the pairwise disjoint family ¥ = {Q e D : 0N A # @, /5
{(Q) < 5=} where E is the constant in (2.14). In particular, A C UQ€¢ O c 2A. The pigeon- hole

(4.28)

principle yields that there is a constant C” > 1 depending just on the doubling constant of w Lso so that

(‘)2(30 (FnN Qo)/wﬁo(Qo) > y/C’ for some Qg € F. Let Q° € D be the unique dyadic cube such that

Qo c 0° and ’70 < £(0% < ry. We can then invoke the contrapositive of (4.28) with y/C’ in place of y
to find 5 € (0, 1) such that by Lemma 3.26, and Harnack’s inequality we arrive at

x
L) w, *(F N Qy) wLAO (F N Qo) wLQ (FnQo) B
wLAO @ W@ W (Q0) Yoy O

In short, we have obtained that for every y € (0, 1) there exists ﬂ € (0 1) such that

XAO XAO
inA (F) by = L (F)
wp (D) "(A)

This and the classical theory of weights (cf. [10, 22]) show that w; € A«(0Q, wr,), and the proof is
complete. O

4.8. Proof of (¢c) = (c)’. This is trivial since for any arbitrary Borel set S c JQ, the solution
u(X) = wX(S), X € Q, belongs to W-2(Q) N LX(Q). O

loc

4.9. Proof of (¢) = (f). Let A, = B, N0Q, A’ = B’ N 0Q, where B, = B(x, er) with x € 9Q and
0 < r < diam(0Q), and B’ = B(x’,r’) with x’ € 2A, and 0 < r' < grcy/4, and ¢ is the Corkscrew
constant. Using (3.9) and Lemma 4.1 we easily obtain

1
X // IVu(X)Gr,(Xa,. X) dX
a)LOE(A’) NQ

1
(L)LO N,

/

2 2 r ¥
< Wisionny + W00y ()

2 2 2
S Ifllsmo@a.wry) + I lE=@0,.w.,)8 P,
Taking the sup over B, and B’ we readily arrive at (3.10). O
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4.10. Proof of (f) = (c)’. We first observe that (f) applied with & = 1 gives

(4.29) supsup
B B

Vu(X)[*Gp. (XA, X) dX
] w‘;‘%(A’) ///QQ| ( )| L()( A )

2 2 2
< C(Hf”BMO((‘)Q,wLO) + Q(l)“f”LDO(aQ,wLO)) s ||f||Lw(aQ,wL0),

where A = BN dQ, A’ = B’ N dQ, and the sups are taken respectively over all balls B = B(x, r) with
x € 0Qand 0 < r < diam(0Q), and B’ = B(x’,r’) with x* € 2A and 0 < ¥’ < reg/4, and ¢y is the
Corkscrew constant.

With this in place we are now ready to establish (c)’. Take an arbitrary Borel set § ¢ dQ and let
uX) = a))L( (§), X € Q. Fix Xy € Q and use that a)}L(“ is Borel regular to see that for every j > 1 there
exist a closed set F'; and an open set U so that F; C S C U; and w)L(O(Uj \F)) < j~'. Using Urysohn’s
lemma we can construct f; € ¢'(0Q2) such that 15, < f; < 1y, and for X € Q set

b(X) = /a M)

It is straightforward to see that [15(x) — f(x)| < 1y,\F;(x) for every x € 9Q, hence for every compact
set K ¢ Q and for every X € K we have by Harnack’s inequality

lu(X) - v;(X)| < /a . 15 (x) — £i(x)| dw§ (x) < wF(U;j\ F)j) < Ckx,w°(Uj\ Fj) < Cxp )

Thus v; — u uniformly on compacta in Q. This together with Caccioppoli’s inequality readily imply
that Vv; — Vu in L2 (Q). In particular, Vv; — Vu in L*(K) for every compact set K C Q.

Fix A=BnNaQ, A" = BN oQ, with x € 9Q and 0 < r < diam(0Q2), and B’ = B(x’,r’) with x’ € 2A
and 0 < 1’ < rcp/4, and ¢ is the Corkscrew constant. Let fja z, := fA fi dcuL0 and u; o(X) := wj X(0Q),
X € Q. For every compact set K C Q we then have by (4.29) applied to each f;

// IVu(X)? Gr,(Xa, X)dX = hm // IVvJ(X)lzGLO(XA,X) dX < 1.
KNB'NQ KNB'NQ

A(A/ A(Ar

Taking the sup over B and B’ we then conclude that (¢)” holds since by the maximum principle one has
llell =) = 1. O

4.11. Proof of (¢)) = (f)’. The argument used to see that (¢€) = (f) can be carried out in the
present scenario with no changes. O

4.12. Proof of (f)Y = (c¢)’. Let f = 15 with § c dQ a Borel set such that w}L‘O(S ) # 0 for some (or
all) X € Q. Note that ||f”BMO(aQ,wLO) < ||f||L00(aQ,wLO) = 1. This and the fact that u(X) = w{(S), XeQ,
verifies ||ull.~q) = 1, we readily see that (3.10) with & = 1 readily implies (3.11). O

4.13. Proof of (c)) = (a). Let u(X) = w¥(S), X € Q, for an arbitrary Borel set § C Q. Let & >
and 7 € (0, 1). Then

(4.30) / St t0? dai () = / < // IVu(¥)P5(Y)! "dY> dw,® (%)
Qo L)

_ // |Vu(Y)|25(Y)1—"( / 10 (x)(Y)dw’L‘fO(x)) ay,
By, NQ Qy Qo
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where we have used that FEO n(x) C Tl9 e B* N Q (see (2.23)), and Fubini’s theorem. To estimate the
inner integral we fix Y € B* K9 and y € E)Q such that |Y — 3| = 6(Y). We claim that

(4.31) {x€Qo: YeT)h, (0} CAG, Con5(Y)).

To show this let x € Qg be such that Y € 1“’9 (). This means that there exists Q € Dy, such that x € Q
and Y € Ul9 . Hence, there is Q' € DQ w1th Q') > p*6(Q) such that ¥ € UQ, and consequently
oY) ~y dlst(Y Q') =~y €(Q"). As aresult,

— 3 < diam(Q) + dist(Y, Q") + 6(Y) <9 £(Q) + 6(Y) $p 7 >6(Y),

thus x € A(y, C1977_3(5(Y)) as desired. If we now use (4.31) we conclude that for every Y € B*QO nQo
(4.32) / Iy () de % (x) < a)L " (AG, Con?8(Y))) Soy a)LO " (AG, 8(Y))).
Qo

Write B = SCalB*QO, B = By, A= BNoQ, A’ = B'N Q. Assuming that rg = 16c61/<0rQ0 < diam(0Q)
we have by Lemma 3.26 part (b) and Harnack’s inequality

433) w2 (AG(Y)) ~ W (AG,6(Y)) = 8(Y)"'Gry(Xa,Y), Y eBy NQ=BNQ.
If we then combine (4.30), (4.32), and (4.33) we conclude that (c)” and Lemma 3.26 yield

X
(4.34) /Q St dw; & (x) oy // Q|Vu(Y)|2GLO<XA,Y>dY<wLA(A)||u||Lw<Q) < w2 (Qp).
0 "N

Note that this estimate corresponds to (4.26) for ¢ = 2. Hence the same argument we use in (d)) = (a)
applies in this scenario. Note however, that we have assumed that 16¢;, IKO”Qo < diam(0€2) and this
causes that (4.28) is valid under this restriction. If € is unbounded then the same argument applies.
When 0Q is bounded we can replace the family ¥ by ¥’ consisting on all Q" € D with Q" c Q for
some Q € F and £(Q’) = 2~M{(Q) where M is large enough so that 2™M < Zco/(8kp). This guarantees
that 16¢, 1KorQ < diam(0Q) for every Q' € ¥’ and thus (4.28) holds for every Q" € ¥'. At this point
the rest of the argument can be carried out mutatis mutandis, details are left to the reader. O

4.14. Proof of (a) = (c). Note that we have already proved that (a) implies (d), in particular we

know that (3.12) holds with ¢ = 2 and for any a > ¢ !, Our goal is to see that the latter estimate implies
(c). With this goal in mind consider u € WIIOCZ(Q) N L*(Q) satisfying Lu = 0 in the weak sense in Q.
Fix B = B(x, r) with x € 0Q and 0 < r < diam(0QQ) and B’ = B(x’,r’) with x’ € 2A and 0 < 1’ < rcp/4.
Let A= BN JQ, A’ = B’ N 9Q. Note that 2r' < rcg/2 < diam(9Q) and we can now invoke Lemma 4.7

and (3.12) with g = 2 to conclude that

A( A // o IVUOPGLy(Xa, X) dX

/ SSeu()? dw) () + sup{lu(Y)| : Y € 2B, 8(Y) = 1 /CY?

Xoar
< / (P dw2 () + ey
4N

2
< Nlullzs ()

Taking the sup over B and B’ we have then shown (3.11). O
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4.15. Proof of (a) = (e). Fix f € €(0Q) N L*(9Q) and let u be its associated solution as in (3.7).
Let uy o(X) := w)L((c?Q), X € Q. Fix B = B(x,r) with x € 0Q and 0 < r < diam(dQ) and B’ = B(x’, 1)
withx’ € 2Aand 0 < 7’ < rco/4. Let A = BN 0Q, A’ = BN 0Q. Let ¢ € € (R) with 1jp4) < ¢ < 1j08)
and @ := (| - —x’|/r") so that 14 < @ar < 1ga-. Recall that for every surface ball A we write

i Lo = ]gfdwzz. Then,
’ A

f=fary = (f = fanro) + (far o — fare) = (f = fanr zo)en + (f = fanro)(d = oar) + (fanr 1y — faLo)
=: Moc + hglob + (fSA’,Lo - anLO)'

Hence,
(4.35) v(X) :== u(X) = farouLoX) = /a Q(f(y) — fary) dwi ()

= / Bioe(y) dw} (y) + / Ralob ) dw} (V) + (fanr.ry = faro)ur.o(X)
oQ 0Q

= Vioe(X) + verob(X) + (fsar.Ly — fa.Lo)ur.a(X).
Note that hjoc, Aglob € E(0Q) N L®(0Q).

Let us observe that we have already proved that (a) implies (d), in particular we know that (3.12)
holds with ¢ = 2 and for any a > ¢, =1, Hence, since 2r’ < rcg/2 < diam(AQ) and we can now invoke
Lemma 4.7 and (3.12) with g = 2 to conclude that

// IVVi0e(X)I*Gy(Xa, X) dX
B'NQ

(4.36)

XA Ar
W)
< gr(f\/loc()’)z dwng’ (y) + Sup{lvloc(Y)l 1Y e2 B” 5(Y) = r//C}z
2N
XZA’ X
S | N0 do 0) + / sl )

2
< [ Mivaco? doi o)+ ([ Ihaldols o)
=11+ 1>
Regarding 7, we note that by Lemma 3.26 part (@) there holds

2
(4.37) ns( /8 O = faaders ) 5 W R,

To estimate 7| we first observe that since w; € A(0Q,wr,), there is g € (1,00) so that wy €
RH,(0Q, wy,). Note that by Jensen’s inequality we may assume that g < 2 (since RH,, (0Q, wy,) C
RH,,(0Q, wy,) if g2 < q1). Note that we have already proved that (a), implies (b),/, hence (3.8) holds
with p = ¢’ > 2. This, Holder’s inequality and the fact that & € %' (0Q) with supp hyoe C 8A’ readily
lead to

(438) I < (INSvieel? wng’(4A)<q/zy < ocl?

L7 @ w2 L7 8N w )

2

< ([ V0= fiwaat a2 0)7 < Wihoone,

8A
where the last estimate uses Lemma 3.26 part (a) and John-Nirenberg’s inequality (cf. (3.34)).

We next turn our attention to the estimate involving vgop. Note that
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(o)
|hgiobl < 1f = fanrrollonaar = Z If = foar Lo Mokei an ok pr
k=2

(o)

< U - fovnol@ran —@raa) =t D> hgobks

k=2 k>2:2Kr" <diam(6Q)

with the understanding that the sum runs from k = 2 to infinity when 0Q is unbounded.

Fix k > 2 with 26 < diam(6Q) and note that Agenx € €(6Q) with supp heopx C 2KH2A7 \ 2F71A7,
Thus, for every X € B’ N Q, by Lemma 3.26 part (f) we have

o(X) \r
(439 bons 0 = | hgons ) 4o 0) 5 (3575 ) VeonsKat 110
oQ r

Next we estimate vgjopk(Xpt-15-), kK > 2, via a telescopic argument. Indeed applying Harnack’s in-
equality, that w;, € RH,(0Q, wy,), Lemma 3.26, and John-Nirenberg’s inequality (cf. (3.34)) we arrive
at

Xok—1pr
Valobk(Xok-1pr) < / 1fO) = fanr,ol dwp ™™ ()

2k+2 A7

Xok+2 a7
< / FO) = fon 2ol de 22 ()
2k+2Ar

< (£ 1O~ hwal? @)
Dk+2 A7

k+1

1
k+207 q
< (. 100 = P al? ™) + 3 fovrsesy = P
Dk+2 A7 =
1 k+1

k2 , 7 /
= (]f F0) = frorar g7 2™ +Z][ 1) = Fomta gl deop™ )
k+1 5
SZ(][ YO = farraal de )
=3 27+ 1A
< kllfllBMO@Q.w1y)-

This and (4.39) give for every X € B N Q

[ hawoldoiors Y [ hmdefor= 3 v

k>2:2kr <diam(9Q2) k>2:2%r" <diam(6Q2)

6(X) 8(X)
> Zk <2k 1 /> IlfllBMO©GQ.wL,) & (T> lfllBMO@Q.w1,)-

If we next write Wp :={I € W : IN B # @} and pick Z; p € I N B’, the previous estimate gives for
every I € Wpy

2
// IVvaiob(X)PdX < €1 // velon(X)?dX < €(D)* // ( / gl dwf () " dX
1 I I oQ

’ 2 g I 2
<ty ([ hawo)do” 0)) < 00 (52) Wi,
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Thus, Lemma 3.26 gives
// Vvaob(X)PGry(Xa. X)dX < > w* (@)™ // [Vvgion (I dX
’NQ 1

IE(WB/
C(H)\ 20
2 X,
< 1oy Y @@ (=)
IEWB/
27k\ 20
2 X
< Iflismow@0.01,) Z ( - ) Z wr, (QD),
k27k<r! IeWpy :£(I)=27*

where Q; € D(9Q) is so that £(Q;) = £(I) and contains y; € 6Q such that dist(Z, dQ) = dist(y;, I). It
is easy to see that for every k with 27% < 7/, the family {Q;} Tew, (n=2-+ has bounded overlap and also
that Q; ¢ CA’ for every I € ‘Wp, where C is some harmless dimensional constant. Hence,

27K\ 20 ,
(4.40) // Voo (LG, (X X dX < /o, 2. (o) @ (CA)
B'NQ

k27k<r
2 X ’
< IflBmo@e.wr,) @re (A)-

To continue we pick ko > 3 such that r < 25" < 2r. Note that 2%*!A” and A have comparable
radius and x” € 2A N 2%0*1 A’ Hence, Lemma 3.26 and Harnack’s inequality yield

ko

@AD  fswio = farel £ fararry = Frriargl + froriar iy — faol
k=3
ko

Xk pr
S O = ol ol 0+ A 10 = fovoy g d )
3 J 2N A ’

ko
Xok+1
> ][ ) = faerar | A2 (3)
=3 2k+1A’

< ko llfllBMO@GQ,w1,)
< (1 +1og(r/r)) I fllBMO@Q.w1,)-

This and Lemma 4.1 imply

1
(442) —- // |(foav o = fio) Vi 00| "Gy (Xa, X) dX
a)LO(A’) B'NQ
\\2 r 2 2
< (1 +log(r/r)) <cﬁaTG3ED) I lBmoe,wry)

2 (N7 2
< (110201 (=) T Bioonany) < I Bvioasaany

Here we note in passing that if diam(9€) = oo (or if both dQ and Q are bounded) then the left-hand
side of the previous estimate vanishes as we know that u; o = 1.

To complete the proof we just collect (4.35)—(4.38), (4.40), and (4.42):

// IVv(X)|* Gy (Xa, X) dX < // Vv10e(X)|* G Ly (Xa, X) dX + // Vva1on(X)|* Gy (Xa, X) dX
"NQ "NQ B'NQ

+ // . | oo = faro)Vur o) Gy (Xa, X) dX
N
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2 X
s “f”BMO(ﬁQ,wLO)wLS(A,)'
This completes the proof. O

Remark 4.43. 1t is not difficult to see that in (3.9) one can replace far, by fa'.r,. Indeed, this is what
we have essentially done in the proof: much as in (4.41) one has that

[fao = fav,Lol < (1 +1og(r/r) [l fllBmo@Q.w1)-
With this we can proceed as in (4.42) to see that

1 2
v [ st = fa 1) V000 GrXa, X X 5 1 Ryioran,
Wy (A JBno 0

Hence, (3.9) with fa 1, is equivalent to (3.9) with fa 1,,.
On the other hand, when Q is unbounded and Q2 bounded, in (3.9) one can replace fa 1, by faq.r, :
f dwfg’, where Xq € Q satisfy 6(Xq) =~ diam(0Q) (say, Xo = Xa(x.r) With xo € 0Q and ry
dﬂ?m(aQ)). To see this, one proceeds as in (4.41) to see that
[fa.Lo — foaLol < (1 + log(diam(02)/ ) || fllBmMO@Q,w1)-
This and Lemma 4.1 readily give
1

Wy (&)

X

|fato = foo10)Vur,o(0 | Gry(Xa, X) dX
Q
/N

/

) 2 r 20
< (1 + log(diam(0Q)/r)) <m) ”f”BMo(aQ,wLO)

. r 2p
< (1 + log(diam(9Q)/r))? (m) 1By, ) S I MBmo@ow,
Hence, (3.9) with fa 1, is equivalent to (3.9) with fsq 1.

4.16. Proof of (a) = (e)’. The proof is almost the same as the previous one with the following
modifications. We work with f = 1g with S C 0Q an arbitrary Borel set. We replace ¢ by 1j94) and
use in (4.36) that Lemma 4.7 is also valid for the associated vj, since it belongs to WI]O’S(Q) N L=(Q).
Also, in (4.37) we need to invoke that (a), = (b), = (b)’q,. The rest of the proof remains the
same, details are left to the interested reader. O

5. Proor oF THEOREM 1.9

The implications (b) = (¢) = (d), (b)) = (¢)) = (d)’ are trivial. Also, since for any
Borel set S € 9Q the solution u(X) = a)’L( (S) belongs to WIIO’C2 Q)N L™(Q), it is also straightforward that
(b) = (), (c) = (¢),and (d) = (d)'.

We next observe that for every @ > 0,0 < r < 7/, and w € R, if F c 9Q is a bounded set and
ve L2 (Q),then

loc

(5.1 sup // WY)P8(Y)PdY < co.
xeF JJTG (0P (x)

To see this we first note that since F is bounded we can find R large enough so that ' C B(0, R). Then,
if x € F one readily sees that
,

1+

I ()\[(x) ¢ BO,” + )N {Y €Q: <o)< r'} - K.
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Note that K c Q is a compact set. Then, since v € leoc(Q), we conclude that

(5.2) sup // W(Y)?5(Y)TdY < max {r', * 0‘} // W(Y)PdY < oo.
x€F JJT% (0\[2(x) r K

Using then (5.1) it is also trivial to see that (d) = (c¢) and (d)) = (c)’. Hence we are left with
showing

(a) = (b) and (c) = (a).

5.1. Proof of (a) = (b). Assume that wy, < wr. Let ¢ > ¥y large enough to be chosen (this
choice will depend on «). Fix an arbitrary Qg € Dy, where kg € Z is taken so that 27k = ¢(Qp) <
diam(9Q)/M,, where My > 8koc| I ko is taken from (2.23), and cq is the Corkscrew constant. Let
Xo = XMOAQ0 be a Corkscrew point relative to MpAg, so that Xy ¢ 4B*Q0 by the choice of My. By
Lemma 3.26 part (@) and Harnack’s inequality, there exists Cy > 1 such that

(5.3) w*(Qo) = Cj'.

Set

(54) w =), w:i=Cw (0w, Go:=Gr(Xo,), and G :=Cow)(Q0)GL(Xo,").
By assumption, we have wg < w and by (5.3),

| < @(Q)
~ wo(Qo)

For N > Co, we let ¥y = {Q;} C Dg,\{Qo}, respectively, Fy = {Q;} € Dg,\{Qo}, be the collection
of descendants of Qg which are maximal (and therefore pairwise disjoint) with respect to the property
that

(5.5) = Cow)(Qp) < Co.

w(Q)) : w(Q;)

(5.6) < —, respectivel = > N.
w0(Q) - N PN (@)

Write F := ¥ U Fy and note that ¥y N Fy = @. By maximality, there holds

1 w(Q)

5.7 — < <N, YQeD .

(5.7 N (UO(Q) Q Fn.00

Denote, for every N > Co,

(5.8) Ey:=|J) 0  Ey:=E\UEy. Ey:=0Q\E},

<7
and
(5.9) Q0=<ﬂE2,>u<UEN> ::EOU(UEN>.
N>Cy N>Cy N>Cy

By Lemma 2.26, Q%V,Qo is a bounded 1-sided NTA satisfying the CDC for any ¢ > Jy. As in [28,
Proposition 6.1]

EyC Fy =030k , <0\ |J inQ).
QjefN
Hence,

FN\Ey C (Qo\ U int(Qj)>\<Qo\ U Qj) C3Q0U< U aQ]).

Q;€Ffn Q;eFfn Q;efn
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This, [1, Lemma 2.37], and Lemma 3.26 imply
(5.10) wo(Fy \ Ey) =0.
Next, we are going to show
(5.11) wo(Ep) = 0.
Let x € Ey . Then there exists Qy € F,, such that x € Q,. By (5.6), we have

w0y 11 . W(Q)
w00 SN+l SN TCeETNa o 0y

By the maximality of the cubes in ¥, one has Q. C @ for some Q) € ¥y with x € Q) C Ej.
Thus, {E}}n, {Ey}v and {ER,}N are decreasing sequences of sets. This, together with the fact that
w(Ey) < w(Qp) < Cown(Qo) < Cp and wo(Ey) < wo(Qo) < 1, implies that

(5.12) w< N E}f,) = lim w(E%)  and cu0< N Ej—{,> = lim wo(EX).
N>Cy N>Cy
By (5.6) and (5.8),

>N+1>N if Oy € Fy,y.

1 1 1
WEN =Y 0@ <5 > 0@ = onER) <

N b
QeFy QeFy
which together with (5.12) yields
w( N E7V> = lim Ww(E}) = 0.
N>Cy
In view of the fact that by assumption wy < w, we then conclude that
(5.13) 0 = wp ( N Ej{,) = lim wo(EX).
N>Cy
On the other hand, (5.6) yields

_ 1 1 G
wEy) = D (@) < D w(Q) = Sw(Ey) < 7,
QeFy OeFy
and hence,
(5.14) wo< N E;,) = lim wy(Ey) = 0.
N>Co N>

Since {ER,}N is a decreasing sequence of sets with wo(EIO\,) < wo(Qo) < 1, (5.13) and (5.14) readily
imply (5.11):
wo(Ep) = lim wo(EY) < Jim wo(ER) + Jim wo(Ey) = 0.

Now we turn our attention to the square function estimates in LY(Fy, wg) for g € (0,00). Let u €
Wllo’cz(Q) N L*(Q) be a weak solution of Lu = 0 in Q. To continue, we observe that if Q € Dy, is so

that Q N Ey # @, then necessarily Q € Dy, o,, otherwise, Q C Q" € Fy, hence Q C Qo\Ey which is a
contradiction. As a result,

0(Q) _

w(Q)
By the (dyadic) Lebesgue differentiation theorem with respect to w, along with the fact that wy < w
(cf. (5.4)), we conclude that dwg/dw(x) ~y 1 for w-a.e. x € Ey, hence also for wg-a.e. x € Ey. Thus,

N1, VxeEy, Q€Dg,, O3 ux



42 MINGMING CAO, OSCAR DOMINGUEZ, JOSE MARIA MARTELL, AND PEDRO TRADACETE
9 9 dwy 9
S, u(x)dwy(x) = Sy u(x)?—(x) dw(x) =N S, u(x)? dw(x)
Qo Qo dw Qo
Ey Ey En

</, S, u(x)? dw(x) < . N, u(x)? do(x) S lullfg,0(Q0) < lullf s
0 0

where in the third estimate we have used (4.19) with w;, = wr (see also [1, Theorem 5.3]) which holds
since wy, € Ax(0Q, wr). This and (5.10) imply

(5.15) St € LU(Fy, wp).

Now, note that for fixed @ > 0, we can find ¢ sufficiently large depending on « such that for any
rg < 2_k0,
(5.16) I (x) Fgo(x), ¥ x € Qp.

Indeed, let ¥ € I (x). Pick I € W so that I 3 ¥, hence £(I) ~ 6(Y) < |Y — x| < ry < 275 = ¢(Qp).
Pick Q; € Dy, such that x € Q; and £(Q;) = £(I) < £(Qp). Thus,

dist(/, Op) <Y — x| < (1 + @)o(Y) < C(1 + o)1) = C(1 + a)t(Qp).

Recalling (2.18), if we take ¢ > ¥ large enough so that 29 >C(l+a),thenY e € (WZI C (ng*
The latter gives that Y € U 5, C Fgo(x) and consequently (5.16) holds. We would like to mention that
the dependence of ¥ on @ implies that all the sawtooth regions QQN’ 0o above as well as all the implicit
constants depend on a.

Next, (5.16) readily yields that 87 u(x) < Szou(x) for every x € Qqg. This, together with (5.15),
implies that Sj u € LY(Fy,wp). If we next take an arbitrary X € Q, by Harnack’s inequality (albeit
with constants depending on X) and by (5.1), then we have

(5.17) S%u € LY(Fy,w),), foranyr>0.
Note also that by (5.11) and Harnack’s inequality
(5.18) w},(Eo) = 0.

To complete the proof, we perform the preceding operation for an arbitrary Q¢ € Dy,. Therefore,
invoking (5.8), (5.9), and (5.10) with Oy € Dy,, we conclude, with the induced notation, that

5.19 = | Qk:< U E’é)U( U UEﬁ‘v)

OreDy, Or€Dy, OreDyy N>Co

(YUY Q)= ()

X _ k _ 9 9 : :
where wy, (Fo) = 0 (by (5.18)) and F, = oQN (?Qka’Qk where each Qﬂ’j,Qk C Q is a bounded 1-sided

NTA domain satisfying the capacity density condition. Combining (5.19) and (5.17) with F 5‘\, in place
of Fy, the proof of (a) = (b) is complete. O

5.2. Proof of (c)) = (a). Let ag be so that (4.25) holds. Suppose that (c)’ holds where throughout
it is assumed that @ > ao. In order to prove that w;, < wy on 0Q2, by Lemma 2.13 and the fact that by
Harnack’s inequality wj < wj and w}, < wj, forany X, Y € Q, it suffices to show that for any given

Qo €D,
(5.20) FcQp w2F)=0 = w2F)=0.
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Consider then F c Qg with wfg(’ (F) = 0. Lemma 4.4 applied to F gives a Borel set S C Qg such that
u(X) = w}L((S), X € Q, satisfies

(5.21) S u(x) > S u(x)=o0,  VxeF,

.
Qo
where the first inequality follows from (4.25) and the fact that @ > a, and rp; = 2kprg,. By assumption
and (5.1) we have that S‘% u(x) < oo for wffo -a.e. x € 0Q. Hence, waQO (F) = 0 as desired and the
0

proof of (¢)) = (a) is complete. O

6. Proor oF THEOREMS 1.10 AnND 1.12

We will obtain Theorems 1.10 and 1.12 as a consequence of the following qualitative version of [8,
Theorem 4.13]:

Theorem 6.1. Let Q ¢ R™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying the capacity
density condition (cf. Definition 2.10). There exists ay > 0 (depending only on the 1-sided NTA and
CDC constants) such that the following holds. Assume that Lou = — div(AgVu) and Liu = — div(A|Vu)
are real (not necessarily symmetric) elliptic operators such that Ao — A1 = A+ D, where A, D € L™(Q)
are real matrices satisfying the following conditions:

(i) There exist a1 > ag and r; > 0 such that

(6.2) // a(X)?6(X) " 1dX < 0o,  for wy,-a.e. x € OQ,
I )
where a(X) := sup JA(Y)|, X € Q.
YeB(X,6(X)/2)

(ii) D € Lip,,.(Q) is antisymmetric and there exist ay > ao and ry > 0 such that
(6.3) // |dive DX)P6(X)!™dX < o0,  for wy,-a.e. x € OQ.
I2(x)

Then wr, < wi,.

Assuming this result momentarily we deduce Theorems 1.10 and 1.12:

Proo]iof Zheorim 1.10. For Ly and L as in the statement set Avo = Ay, Avl =A, A= Ap—A,and D = 0so
that Ag—A; = A+D. Note that (6.2) follows at once from (1.11), and also that (6.3) holds automatically.
With all these in hand Theorem 6.1 gives wy, = wp, Wi, = wr. O

Proof of Theorem 1.12. SetAg = A, Ay =AT,A=0,and D = A—AT sothat Ag—A; = A+D. Observe
that D € Lip,,.(€2) is antisymmetric, (6.2) holds trivially, and (6.3) agrees with (1.13). Thus, Theorem
6.1 implies that w;, < wgr.

On the other hand, w; < wsm follows similarly if we set Ag = A, A} = (A + AT")/2, A =0and
D=(A-A")/2.

Finally, w;r < wy, follows from what has been proved by switching the roles of L and LT and the
fact that #(x; A) < oo for wyr-a.e. x € AQ. O

Before proving Theorem 6.1 we need the following auxiliary which adapts [31, Lemma 4.44] and
[1, Lemma 3.11] to our current setting:
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Lemma 6.4. Let Q ¢ R"™! be a I-sided NTA domain (cf. Definition 2.5) satisfying the capacity density
condition (cf. Definition 2.10). Given Qo € D, a pairwise disjoint collection ¥ C Dg,, and N > 4 let
Fn be the family of maximal cubes of the collection F augmented by adding all the cubes Q € Dy,
such that £(Q) < 27Ne(Qy). There exist ‘{’% € %”C‘”(R”“) and a constant C > 1 depending only on
dimension n, the 1-sided NTA constants, the CDC constant, and 0, but independent of N, ¥, and Qy
such that the following hold:

. -1 o
() C 14 <WY <1,0-
QTN’QO N QTN-QO

(ii) supyeq IVPL(X)|6(X) < C.
(iii) Setting
65  Whe= |J Wy W ={IeW):3Te W\ W withdlnoJ + B},

QeDry.00
one has
(6.6) wi=0 in | J I
[eW\WE*
and there exists a family {QI} rew!* 50 that
6.7) Clu < Q) < Ced),  distd,0p) < C ), S 1 <cC

I e(W]’?,‘2

Proof. The proof combines ideas from [31, Lemma 4.44], [1, Lemma 3.11], and [29, Appendix A.2].
The parameter ¢ > 1y will remain fixed in the proof and then constants are allowed to depend on it.
To ease the notation we will omit the superscript ¢ everywhere in the proof. Recall that given I, any
closed dyadic cube in R we set I* = (1 + DI and I** = (1 + 2 D)I. Let us introduce I+ = (1+ %/l)l
so that

(6.8) I* Cint(I*) € I* C int(I*).

Given [ := [—%, %]”” c R fix ¢g € € (R™!) such that Iy < ¢o < 173 and |Vgo| < 1 (the implicit

constant depends on the parameter 1). For every I € ‘W = W(Q) we set ¢;(-) = ¢0( ;()%I)) so that

pre CXR"™Y, 1 <p; <1 7 and [V¢;| < £()~" (with implicit constant depending only on 7 and A).

For every X € Q, we let ®(X) := ),y ¢1(X). It then follows that ® € €"*°(Q) since for every
compact subset of Q, the previous sum has finitely many non-vanishing terms. Also, 1 < ®(X) < C,
for every X € Q since the family {IN*} 1ew has bounded overlap by our choice of 4. Hence we can set
®; = ¢;/® and one can easily see that @; € CKf’(R”“), Czlll* <@ <1z and VO < &n~'. With
this at hand, set

;4/ $1(X)

IeWy

Yy(X) = O;(X) = ————, X e Q.
,;;N 3 %)

We first note that the number of terms in the sum defining ¥y is bounded depending on N. Indeed,
if Q € Dg, o, then Q € Dy, and 27Ne(Qo) < €(Q) < €(Qp) which implies that D#.0, has finite
cardinality with bounds depending on dimension and N (here we recall that the number of dyadic
children of a given cube is uniformly controlled). Also, by construction W, has cardinality depending

only on the allowable parameters. Hence, #Wy < Cy < co. This and the fact that each ®; € €.° (R
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yield that Wy € ‘KC‘X’(R"” ). Note also that (6.8) and the definition of Wy give

supp Py C U I = U U Fcint( U U I**) :int< U U*Q) :Q*TN,Q()'

IeWy QeDyy 0y I€W], 0Dy g, I€W, Q€D 0,

This, the fact that Wy C W, and the definition of ¥y immediately give that ¥y < lg; o On
N-20
the other hand, if X € Qy = Qg, o,, then there exists I € Wy such that X € I*, in which case
Yr(X) > Op(X) > C;l. All these imply (7). Note that (ii) follows by observing that for every X € Q we
have
VENXOI < D IV 01 s Y e 1E(X) 5 6X)7,
IeWy Iew

where we have used that if X € I* then 0(X) = £(I) and also that the family {ﬁ},ew has bounded
overlap.

To see (iii) fix I € (WN\(WIZ\, and X € I, and set Wy :={J € W : ¢;(X) # 0} so that [ € Wyx. We
first note that Wy c ‘Wy. Indeed, if ¢;(X) # 0 then X € J*. Hence X € I"* N J** and our choice of A
gives that 91 meets dJ, this in turn implies that J € Wy since I € Wy \ ‘WIZ\, All these yield

> (%) > (X > X

p (X) JeWy JeWnnWy JeWnnWy 1
N = = = =
> $s(X) > $s(X) > X
JeW JeWy JeWnnWy

Hence Wy o = 1 for every I € Wiy \ ’W,%, This and the fact that ¥y € %;’"(R"“) immediately give
that V‘PN = 0 in UIE(WN\(W[ZV I**

We are left with showing the last part of (iii) and for that we borrow some ideas from [29, Appendix
A2]. Fix I € (WIE\, and let J be so that J € ‘W \ Wy with dI N dJ # @, in particular £(I) ~ €(J).
Since I € ‘W}:, there exists Q; € Dy, g,. Pick Q; € D so that £(Q;) = £(J) and it contains any fixed
y € 0 such that dist(J, Q) = dist(J,y). Then, as observed in Section 2.3, one has J € ‘W *QJ. But, since

J € W\ Wy, we necessarily have Q; ¢ Dy, o, = Dg, N Dg,. Hence, W3 = Wrt U wrruwy?
where

Wy' = e Wy: Qo c Q).
Wit i={le Wy: Q;C QeFul,
WY =l e WY : 0,0 Q) =3}
For later use it is convenient to observe that
(6.9) dist(Qy, I) < dist(Qy, J) + diam(J) + diam(I) ~ €(J) + £(I) ~ €(I).
Let us first consider W', If I € (W,E\;l we clearly have

Qo) < UQy) = L)) = &) = {(Qr) < €(Qo)
and since Q; € Dy,

dist(Z, xg,) < dist(Z, Q) + diam(Qy) ~ €(I).
In particular, #(W,%,’1 < 1. Thus if we set QI := Qj it follows from (6.9) that the two first conditions in
(6.7) hold and also 34,51 15, < #Wy' < 1.

To see that (6.7) holds for (Wf,’z and ‘W, we proceed as follows. For any I € (WIZ\;Z U (WIZ\;3 we
pick Q; € D so that Q; 3 xp, and £(Qj) = 2~M" ¢(Q;) with M’ > 3 large enough so that 2" > 252 (cf.
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(2.14)). Note that QI C A, C Q; which, together with (6.9), implies

(6.10) dist(Z, O) < dist(I, Q) + diam(Q,) < €(I)
and
(6.11) diam(Q;) <22 rg, < 2ENQ) =2"M 200 <= €0)).

Hence, the first two conditions in (6.7) hold for I € ‘Wﬁ’z U ‘Wﬁs.

To see that the last condition in (6.7) holds, we start with the family ‘WIZV’Z. For any I € ’WIZV’Z
there is a unique Q; € ¥y such that Q; C Q;. But, since Q; € Dy, o, then necessarily Q; ¢ Q; and
0;\ Q; # @. This and the fact that 2Ap, € Q; C Q; imply

2271 0(Q)) < dist(xg,,0Q\ Q)) < dist(xg,, Or \ Q)
< diam(Q) + dis(Q, J) + diam(J) + diam(7) + dist(Z, Q) + diam(Q;) ~ £(J) ~ £().

Thus, 2271 £(Qy) < dist(xg,,0Q\Q;) < C {(J). Suppose next that I, I’ € ‘WIZ\,’Z are so that Q]ﬁé[/ +0
(it could even happen that they are indeed the same cube) and assume without loss of generality that
Qp - QI, hence £(I") < {(I). Let Q;, Qy € Fn be so that Q; C Qjand Q; C Q. Then, xg, € Q1 and
Xg, € Qp - QI C Qy. As aconsequence, xg, € Oy NQ;yC Q;N Q’ and this forces Q; = Q (since
Fn is a pairwise disjoint family). This and (6.11) readily imply

25! £(Qy) < diSt(XQJ,aQ \ Q]) < |XQJ — XQJ,| + diSt(XQJ,,aQ \ Q])
< diam(é,) +dist(xg,,,0Q\ Q) < diam(@) +ClJ) <= £(0)) + Ce(J")
and therefore 27! £(Q)) < C€(J’) This in turn gives £(I) =~ £(J) = {(J") = £(I'). Note also that since /
touches J, I’ touches J’, and Q, N Qp # () we obtain
dist(1, I’) < diam(J) + dist(J, Q) + diam(Q;) + diam(Q)
+dist(Qy, J") + diam(J") = £(J) + €(J") = €(]).
As a result, for fixed [ € ‘W,ZV’Z there is a uniformly bounded number of I’ € (WJZ\,’Z with QI N Qp +0,
thus Zle‘le\;z 1@1 <1

We finally take into consideration ’WIZ\,’3. Let I € ’WIZ\,’3. Then, Qo N2Ap, € Qo N Q; = @ and
therefore 227! £(Q)) < dist(xg,, Qo). Besides, since Q; C Qop, we have

dist(xg,. Qo) < diam(Qy) + dist(Qy, J) + diam(J) + diam() + dist(I, Q;) + diam(Q;) ~ £(J) ~ £(I).

Thus, 2271 €(Q)) < dist(xp,, Qo) < C{(J). Suppose next that I,1” € ”Wf,s are so that Q, N QI/ 0
(it could even happen that they are indeed the same cube) and assume without loss of generality that
Or C Oy, hence £(J") < €(J). Then, since xg, € Q7 and xg,, € Qp C Q7 we get from (6.11) that

2E714(Qy) < dist(xg,, Qo) < Ixg, — xg, | + dist(xg,,, Qo)
< diam(QI) +CLJ) <E Q) + ced),
and therefore 27! £(Q;) < C£(J’). This yields (1) = ¢(J) = €(J') =~ £(I’). Note also that since /
touches J, I’ touches J’, and O; N Qp # @ we obtain
dist(Z, I') < diam(J) + dist(J, Q) + diam(Q;) + diam(Q)
+dist(Qy, J") + diam(J") = £(J) + €(J") = €(]).
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Consequently, for fixed I € (W]E\;3 there is a uniformly bounded number of I’ € (Wf,"g with QIO Qp + 0.
As aresult, ) rews? 1 o, S 1. This completes the proof of (iii) and hence that of Lemma 6.4. O

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We use some ideas from [8, Section 4] and [6, Section 4]. Let u € Wﬁ)’g(Q) N
L>(Q) be a weak solution of Lju = 0 in Q and assume that ||ul|;~q) = 1. Applying Theorem 1.9
(c) = (a) to u, we are reduced to showing that for some r > 0,

SPu(x) < oo, for wy,-a.e. x € 0Q,

where ag is given in Theorem 1.9. By (5.16) and Lemma 2.13, it suffices to see that for every fixed
Qo € Dy, and for some fixed large ¥} (which depends on @ and hence solely on the 1-sided NTA and
CDC constants) one has

(6.12) Qo=|JEy. w°(Ep)=0 and ShuelX(Ey,wp), YN21,
N>0
where Xy is given at the beginning of Section 5.1. Fix then Qy € Dy, and write

(6.13) wo =), wi=w,  Go=GrXo,), and G :=Gr,(Xo,").

Much as in (4.25) (with n = 213 50 that FZ’: = F’é’:’n) there exist @p > 0 and C (depending on the
1-sided NTA and CDC constants) such that if we set 7 := C rg, > 0, then

(6.14) rewe= |J Uh cr®w., xeQo

xeQeDg,
As a result,

) 2 . _ 9. 2 -n—1 : 2 1-
6.15) S’ ()= > yhi= > //U . aX?sX) ™ dx + //U . 1dive DOOPS(X)!™"dX
x€QeDyg, x€QeDyg, Q o
< // a(X)*6(X)"ldx + // |dive DCX)P6(X) "dX
o o
< // a(X)’s7"1dx + |dive D(X)]?6'™"dX < oo,
Z]lax(?rl )(.X) F:fax(?,rz)(x)

for wy,-a.e. x € Qp, where we have used the fact that the family {Ug’*}QeD has bounded overlap, that
a1, > @p and the last estimate follows from (6.2), (6.3), and (5.1).

Given N > Cy (Cy is the constant that appeared in Section 5.1), let ¥ C Dg, be the collection of
maximal cubes (with respect to the inclusion) Q; € Dy, such that

(6.16) S s
QjCQeID)QO
Write
617 Eo:= () (@\Ew, Ex:=00\ |J @ Qo=Eou(Q\En=EuU( [J Ev).
N>Cj QjeFn N>Co

Let us observe that
(6.18) So,y’(x) <N, Vxe€Ey.

Otherwise, there exists a cube Q, > x such that ZQxCQEDQO yg > N2, hence x € Q, C Q; for some
Q; € Fn, which is a contradiction.
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Note that if x € E, then for every N > Cy there exists in € Fy such that Q;V > x. By the definition
of F, we then have

So'@*= > vpz Y. vo> N
xeQeDg, QY cQeDy,
On the other hand, if x € Qg \ Ey+ there exists Q, € Fy+1 such that x € Q.. By (6.16) one has
S Yh> W1 >N
QXCQGDQO

and the maximality of the cubes in Fy gives that O, c Q' for some Q’, € ¥y with x € Q’. € Qo \ Ey.
This shows that {Qg \ En}y is a decreasing sequence of sets, and since Qg \ Ey C Qp for every N we
conclude that

(619) wo(Eo) = lim wo(Qo \ Ex) < lim wo(lx € Qo = S,y (x) > N))

= wo({x € Qo : Sgyy’(x) = o0}) = 0,
where the last equality uses (6.15). This and (6.17) imply that to get (6.12) we are left with proving
(6.20) Sp,u € L(Ey,wp), YN > Co.

With this goal in mind, note that if Q € Dy, is so that Q N Ey # @, then necessarily Q € D¢, o,
otherwise, 0 C Q" € Fy, hence Q0 € Qo\Ey. Recalling (6.13) and the fact Xo ¢ 4B, , we use
Lemma 3.26 and Harnack’s inequality to conclude that

(6.21) / St u(x)*dwo(x) = / // IVu(Y)*8(Y)' " dY dw(x)
En Ey U up
ereDQO
< Y 10 on@nty [| WurPay
QeDy, Uo
< ) U Q) // Vu(Y)Pdy
QEDTN~QO Ug
Y // IVu(Y)PGo(Y)dY
QEDTNvQO Ug

< // Vu(Y)PGo(V)dY,
Q%\LQO

where we have used that the family {U S}QeD has bounded overlap. To estimate the last term we make
the following claim

6.22) I, murrGmar son@n+ 3 vhan@.
Q%on 0€Dgy, 0,

where the implicit constant is independent of N.

Assuming this momentarily we note that

62 3 Ae@=[ 3 yhdoeo

QEDTNvQO QO XGQEDTN,QO
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< /E SoY' @ dwo(x)+ > > yhwo(@N Q)

Q;eFn 0€Dyy 0,

<NwoQ+ Y. Y. Yhwo(QNQ),

QjETN QGDTN,QO

where the last estimate follows from (6.18). In order to control the last term we fix Q; € Fy. Note that
if O € Dy, ¢, is so that 0 N Q; # @ then necessarily Q; ¢ Q C Qp. Write é ; for the dyadic parent of
Qj, that is, 0 ; 1s the unique dyadic cube containing Q; with «0 ;) = 20(Q;). By the fact that Q; is the
maximal cube so that (6.16) holds one obtains

> Y= D, Vo=

QjchDQO Qj<0eDg,
As aresult,
624) > > yhwo(QNON= > wo(Q) Y. ¥d
QjeFn 0Dy 0, Qj€Fn Q;C0eDy,
<N ) wo(Q)) SN2w0< U Q,~> < N?wo(Qo)-
Qjefn Q;€Ffn

Collecting (6.21), (6.22), (6.23), and (6.24), we deduce that
(Sh,u(x))* dwo(x) < Cy wo(Qo) < Cy.
En

This shows (6.20) and completes the proof of Theorem 6.1 modulo proving (6.22).

Let us then establish (6.22). For every M > 4, we consider the pairwise disjoint collection Fy ps
given by the family of maximal cubes of the collection ¥ augmented by adding all the cubes Q € Dy,
such that £(Q) < 27M¢£(Qp). In particular, Q € Dy 1.0, if and only if Q € Dy, o, and £(Q) > 27Me(0y).

B 0 0
Moreover, D¢y, 0, C DTN,M"QO for all M < M’, and hence QTN,M,QO C QTN,M»,QO C QTN,Qo' Then the
monotone convergence theorem implies
(6.25) //  VuPGydx = lim // IVul’Go dX = lim Ky
;)FNon e %V,Mon o

Write &(X) := A;(X) — Ao(X) and pick Wy s from Lemma 6.4. By Leibniz’s rule,

1
(6.26) A1Vu-Vu Go¥y y = A1 Vu - VuGo¥i u) - EAOV(MZ‘P%V’M) -VGo
1 1 1
+ EAOVGP%V,M) VGo u? — Eonwz) - V(¥3 11)G0 - 58V<u2> V(GoPR )

Note that u € Wltcz(Q) NLY(Q), Gy € Wllo’g (Q\ {Xo}), and that Q%V*; 0, is a compact subset of  away

from Xy since Xo ¢ 4By, and (2.23). Hence, u € Wl’z(Qg;;L’QO) and ugo‘Plz\,’ G Wé’Z(QI;;L’QO). These

together with the fact that Lju = 0 in the weak sense in € give

(6.27) // A\Vu - V(uGoWi p)dX = // L AV V(uGo¥3 4)dX = 0.
o e

FNM-L0
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On the other hand, Lemma 3.16 (see in particular (3.22)) implies that G, € Wl’z(Qﬂ’*:h 0,) and LjGo =

FN
0 in the weak sense in Q \ {Xp}. Thanks to the fact that uz‘P,QV’ € WS’Z(QQ’;’L’QO), we then obtain
(6.28) // AV ) - VGodX = // . AVGo- VW3 ) dX = 0.
Q Ql

FN,Mm-20

By Lemma 6.4, the ellipticity of A; and Ao, (6.26)—(6.28), the fact that ||u||z~q) = 1, and our assumption
& =A1 — Ay = —(A + D) we then arrive at

(6.29) K = // IVulPGoWa .y dX < // A\Vu - Vu GoWs y dX
Q Q

S// |V‘PN,M||VQ0|dX+// \Vul [V¥N,ml Go dX
Q o

// AV@?) - V(G 4p) dX // DV@?) - V(Go¥% 1) dX’
Q Q
= I] +I2+I3 +I4.

+ +

We estimate each term in turn. Regarding 7| we use Lemma 6.4, Caccioppoli’s and Harnack’s
inequalities, and Lemma 3.26:

(630) Irs ) / V¥l IVGoldX < ) e(l)‘lmi( / *|V§0|2dX>

1 efwlﬁ/, 1 ew,ﬁ,

S ) WTIGXUN S Y wo@)swo( U Ql)SwO(CAQO)SwO(QO),
Ie’W,‘?,% Ie’W}z,ﬁ,, Ie(W]'ﬁd

where the implicit constants do not depend on N nor M. We estimate 7, similarly:

631) s Y, // VN Ml Vil GodX < ) f(1>‘1|1|5go(xu)>< / |Vu|2dX>2
* I*

I e’W}?,ﬁd I e’W}?ﬁW

< Y LD Go(X) < wo(Qo).

X
IeWyy

Concerning 73 we use that A € L*(Q) and [|ullz~q) = 1:

(6.32) VERS // |A||Vu| IVQOI‘PJZ\,’M X + // IVul (VY Nml YNm Go dX =: T5+ I75.
Q Q

Observe that I"* c {Y € Q : |Y — X| < 6(X)/2} for every X € I", and hence sup;.. |A| < inf}- a. By
Cauchy-Schwarz inequality, Caccioppoli’s and Harnack’s inequalities, and Lemma 3.26 we have

7 7
(6.33) 5 ) > slup|A|< // |Vu|2\y§,’de) < // |Vg0|2dx)

QED'FN,Q() IE(WZ*

< Z Z ( //1 |Vu|2‘P12V’MdX>

QeD?}v,Qo IG(WZ’*

D=

(suplaPGocxnyecny)’

[
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DYDY < //I |VMIZQO‘P12V,MdX>2<wO(Q) //I a(X)26(X)_”_1dX>2

0eDyy.0, [ewy’

S ( // IVuIZQo‘IJ%,MdX>2< Y. @@ // a(X)zé(X)‘"‘ldX>2
Q UZ’*

QGDTN’QO
1 i
<Kiw (D Vown(@)".
QGDTN’QO

where we used the fact that the family {/**};cqy has bounded overlap. Additionally, as in (6.30)

1

(6.34) IY < < // |Vu|2go‘P12V’MdX>z< // |VlPN,M|2godX>2
Q Q

S 7?15,1”( > an! goo«m) < Ky 00(Q0)*.

9,2
IeWyy

Finally, to bound 74, we note that u? € W,;2(Q), Go¥3,,, € W'*(Q) and supp(Go¥3, ) € Q"

FnmQo
is compactly contained in €. Then [8, Lemma 4.1] and Lemma 3.26 imply that
(6.35) Iy = // dive D - V(u?) Go \PIZV,M dX‘
Q
> >
< ( // IVul®* Go ¥ m dX) ( // |dive DI* Go W3 m dX>
Q Q
1
~1 ' b
< Kim ( ) Goxy) // | dive DP? dX)
QEDfN.Qo IE(WZ’* !
1
1 2
< «]@,M< YD) w@ // |dive DOOP 6(X)" ™ dX)
€Dy, 0, IE(WZ‘* r
1
~1 3
< Wﬁ,M( > @O //U ,. | dive DOOP 500!~ dX)
QEDTN~QO 9
~1 i
<K (Y vheo @)
QED(FN*QO
Gathering (6.29)—(6.35) and using Young’s inequality we obtain
~ ~1 o~ 3
Ko < 00(Q0) + Ky 000 + Ko (3 vhen(@)
QGD'FN~QO
1 ~
SCawn(@)+C Y Yowo(@)+ 5 K,

QED«;:N ’QO

where the implicit constants are independent of N and M. Note that ‘7~(N, M < oo because supp ¥y u C

Q%;M’ 00 which is a compact subset of Q and u € WIIO’CZ(Q). Thus, the last term can be hidden and we
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eventually obtain

K < K S wo(Qo) + Z Yo wo(Q).
QEDTN’QO

This estimate (whose implicit constant is independent of N and M) and (6.25) readily yield (6.22) and
the proof is complete. O
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