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Abstract. Let (Γ, µ) be an infinite graph endowed with a reversible Markov kernel
p and let P be the corresponding operator. We also consider the associated discrete
gradient ∇. We assume that µ is doubling, a uniform lower bound for p(x, y) when
p(x, y) > 0, and gaussian upper estimates for the iterates of p. Under these condi-
tions (and in some cases assuming further some Poincaré inequality) we study the
comparability of (I−P )1/2f and ∇f in Lebesgue spaces with Muckenhoupt weights.
Also, we establish weighted norm inequalities for a Littlewood-Paley-Stein square
function, its formal adjoint, and commutators of the Riesz transform with bounded
mean oscillation functions.
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1. Introduction

It is well-known that the Riesz transforms are bounded on Lp(Rn) for all 1 < p <∞
and of weak type (1,1). By the weighted theory for classical Calderón-Zygmund
operators, the Riesz transforms are also bounded on Lp(Rn, w(x)dx) for all w ∈ Ap,
1 < p <∞, and of weak type (1,1) with respect to w when w ∈ A1.

Besides, the Euclidean case, several works have considered the Lp boundedness of
the Riesz transforms on Riemannian manifolds. In general, the range of p for which
we have the Lp boundedness is no longer (1,∞). Although there are numerous results
on this subject, so far the picture is not complete, we refer the reader to [2] and [1]
for more details and references. For weighted norm inequalities on manifolds see [5].
Another context of interest where one can study the Lp boundedness of the Riesz
transform is that given by graphs, see [15], [16], [6].

Our purpose in this paper is to develop the weighted theory on graphs for the
associated Riesz transforms as was done in [5] for manifolds. We also consider the
corresponding reverse weighted inequalities where one controls the discrete Laplacian
by the gradient, in which case, taking into account the unweighted case thoroughly
studied in [6], we further assume a Poincaré inequality for p < 2 (see (Pp) below). In
doing that, we need to prove weighted estimates for a Littlewood-Paley-Stein square
function and its formal adjoint which are interesting on their own right. Finally,
weighted estimates for commutators of the Riesz transform with BMO functions are
obtained. Weights have played an important role in the classical Calderón-Zygmund
and PDE theories. We extend some of the weighted results to a discrete setting where
the operators in question do not belong to the Calderón-Zygmund class. Introducing
weights allows also to consider more classes of spaces where the estimates hold, in
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particular we can change the underlying measure and use functions that could be
more singular.

The plan of the paper is as follows. We next give some preliminaries of graphs,
the geometrical assumptions and recall the definitions of the Muckenhoupt weights.
In Section 2 we state our main results on Riesz transforms, reverse inequalities and
square functions. The proofs of these results are in Section 3. A short discussion
on commutators of the Riesz transform with bounded mean oscillation functions is
in Section 4. Finally, Appendix A contains some auxiliary Calderón-Zygmund type
results from [3] used to proved our main results and also a weighted Calderón-Zygmund
decomposition for the gradient that extends [6].

1.1. Graphs. The following presentation is partly borrowed from [10], [6]. Let Γ be
an infinite set and let µxy = µyx ≥ 0 be a symmetric weight on Γ× Γ. We call (Γ, µ)
a weighted graph. In the sequel, we write Γ instead of (Γ, µ). If x, y ∈ Γ, we say that
x ∼ y if and only if µxy > 0. Denote by E the set of edges in Γ:

E = {(x, y) ∈ Γ× Γ : x ∼ y} ,

and notice that, due to the symmetry of µ, (x, y) ∈ E if and only if (y, x) ∈ E .

Given x, y ∈ Γ, a path joining x to y is a finite sequence of edges x0 = x, ..., xn = y
such that, for all 0 ≤ i ≤ n − 1, xi ∼ xi+1. By definition, the length of such a
path is n. Assume that Γ is connected, which means that, for all x, y ∈ Γ, there
exists a path joining x to y. For all x, y ∈ Γ, the distance between x and y, denoted
by d(x, y), is the shortest length of a path joining x and y. For all x ∈ Γ and all
r ≥ 0, let B(x, r) = {y ∈ Γ, d(y, x) ≤ r}. In the sequel, we always assume that Γ is
locally uniformly finite, which means that there exists N ≥ 1 such that, for all x ∈ Γ,
#B(x, 1) ≤ N (#E denotes the cardinal of any subset E of Γ).

For all x ∈ Γ, set m(x) =
∑
y∼x

µxy. Notice that since Γ is connected we have that

m(x) > 0 for all x ∈ Γ. If E ⊂ Γ, define m(E) =
∑
x∈E

m(x). For all x ∈ Γ and r > 0,

we write V (x, r) in place of m(B(x, r)) and, if B is a ball, m(B) will be denoted by
V (B).

For all 1 ≤ p <∞, we say that a function f on Γ belongs to Lp(Γ,m) (or Lp(Γ)) if

‖f‖Lp(Γ) =

(∑
x∈Γ

|f(x)|pm(x)

)1/p

<∞.

When p =∞, we say that f ∈ L∞(Γ,m) (or L∞(Γ)) if

‖f‖L∞(Γ) = sup
x∈Γ
|f(x)| <∞,

and f ∈ L∞c (Γ) if f ∈ L∞(Γ) and f has compact support. We define p(x, y) =
µxy/m(x) for all x, y ∈ Γ. Observe that p(x, y) = 0 if d(x, y) ≥ 2. For every x, y ∈ Γ
we set

p0(x, y) = δ(x, y), pk+1(x, y) =
∑
z∈Γ

p(x, z)pk(z, y), k ∈ N.
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The pk’s are called the iterates of p. Notice that p1 ≡ p and that for all x ∈ Γ, there
are at most N non-zero terms in this sum. Observe also that, for all x ∈ Γ,∑

y∈Γ

p(x, y) = 1 (1.1)

and, for all x, y ∈ Γ,
p(x, y)m(x) = p(y, x)m(y). (1.2)

Given a function f on Γ and x ∈ Γ, we define

Pf(x) =
∑
y∈Γ

p(x, y)f(y)

(again, this sum has at most N non-zero terms). From p(x, y) ≥ 0 for all x, y ∈ Γ and
(1.1), one has that for all 1 ≤ p ≤ ∞

‖Pf‖Lp(Γ) ≤ ‖f‖Lp(Γ) . (1.3)

We observe that for every k ≥ 1, P kf(x) =
∑

y∈Γ pk(x, y) f(y).

By means of the operator P we define a Laplacian on Γ. Consider a function
f ∈ L2(Γ), by (1.3), (I − P )f ∈ L2(Γ) and

〈(I − P )f, f〉L2(Γ) =
∑
x,y∈Γ

p(x, y)(f(x)− f(y))f(x)m(x)

=
1

2

∑
x,y∈Γ

p(x, y) |f(x)− f(y)|2m(x),
(1.4)

where we have used (1.1) in the first equality and (1.2) in the second one. As in [9]
we define the operator “length of the gradient” by

∇f(x) =

(
1

2

∑
y∈Γ

p(x, y) |f(y)− f(x)|2
) 1

2

.

Then, (1.4) shows that

〈(I − P )f, f〉L2(Γ) = ‖∇f‖2
L2(Γ) . (1.5)

Notice that (1.2) implies that P is self-adjoint on L2(Γ). Thus, by (1.5), I − P can
be considered as a discrete “Laplace” operator which is non-negative and self-adjoint
on L2(Γ). By means of spectral theory, one defines its square root (I − P )1/2. The
equality (1.5) exactly means that∥∥(I − P )1/2f

∥∥
L2(Γ)

= ‖∇f‖L2(Γ) . (1.6)

1.2. Assumptions. We need some further assumptions on Γ. We say that (Γ, µ)
satisfies the doubling property if there exists C > 0 such that, for all x ∈ Γ and all
r > 0,

V (x, 2r) ≤ CV (x, r). (D)

Note that this assumption implies that there exist C,D ≥ 1 such that, for any ball B
and λ > 1,

V (λB) ≤ C λD V (B). (1.7)

Here and in the sequel we use the following notation: if B = B(x, r) is a ball with
r > 0, we write λB = B(x, λ (r + 1)) for all λ ≥ 1.
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Under doubling (Γ, d, µ) becomes a space of homogeneous type (see [8]). Notice that
Γ being an infinite set implies that it is also unbounded (since it is locally uniformly
finite) and therefore m(Γ) =∞ (see [14]).

The second assumption on (Γ, µ) is a uniform lower bound for p(x, y) when x ∼ y,
i.e. when p(x, y) > 0. Given α > 0, we say that (Γ, µ) satisfies the condition ∆(α) if,
for all x, y ∈ Γ,

x ∼ y ⇐⇒ µxy ≥ αm(x), and x ∼ x. (∆(α))

The next assumption on (Γ, µ) is a pointwise upper bound for the iterates of p. We
say that (Γ, µ) satisfies (UE) (an upper estimate for the iterates of p) if there exist
C, c > 0 such that, for all x, y ∈ Γ and all k ≥ 1,

pk(x, y) ≤ Cm(y)

V (x,
√
k)
e−c

d2(x,y)
k . (UE)

It is known that under doubling this is equivalent to the same inequality only at y = x,
(also (D) and (UE) are equivalent to a Faber-Krahn inequality, [9, Theorem 1.1]).
Notice that, when (D) holds, (UE) is also equivalent to

pk(x, y) ≤ Cm(y)

V (y,
√
k)
e−c

d2(x,y)
k , (1.8)

which will be used in the sequel.

1.3. Muckenhoupt weights. Since Γ is a space of homogeneous type one can con-
sider weights (positive and finite functions) in the Muckenhoupt class A∞(Γ) (see
[17]). We say that w ∈ Ap(Γ), 1 < p < ∞, if there exists a constant C such that for
every ball B ⊂ Γ,( 1

V (B)

∑
x∈B

w(x)m(x)
)( 1

V (B)

∑
x∈B

w(x)1−p′m(x)
)p−1

≤ C.

For p = 1, we say that w ∈ A1(Γ) if there is a constant C such that for every ball
B ⊂ Γ

1

V (B)

∑
x∈B

w(x)m(x) ≤ C w(y), for y ∈ B.

Finally, A∞(Γ) is the union of all the Ap(Γ) classes. The reverse Hölder classes are
defined in the following way: w ∈ RHq(Γ), 1 < q <∞, if( 1

V (B)

∑
x∈B

w(x)qm(x)
) 1
q ≤ C

1

V (B)

∑
x∈B

w(x)m(x)

for every ball B. The endpoint q = ∞ is given by the condition w ∈ RH∞(Γ): for
any ball B,

w(y) ≤ C
1

V (B)

∑
x∈B

w(x)m(x), for y ∈ B.

Notice that we have excluded the case q = 1 since the class RH1(Γ) consists of all the
weights and that is the way that RH1(Γ) is understood.

For every 1 ≤ p < ∞ and w ∈ A∞(Γ) we write Lp(Γ, w) for the corresponding
Lebesgue space with measure w(x)m(x). Finally, for every E ⊂ Γ and w ∈ A∞, we
write w(E) :=

∑
x∈E w(x)m(x).
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Given w ∈ A∞(Γ) we define rw = inf{p > 1 : w ∈ Ap(Γ)} and sw = sup{s > 1 : w ∈
RHs(Γ)} for which we have 1 ≤ rw < ∞ and 1 < sw ≤ ∞. Given 1 ≤ p0 < q0 ≤ ∞
we introduce the (possibly empty) set

Ww(p0, q0) =
(
p0 rw,

q0

(sw)′

)
= {p : p0 < p < q0, w ∈ Ap/p0(Γ) ∩RH(

q0
p

)′(Γ)}.

The reader is referred to [17] for more details on Muckenhoupt weights in spaces of
homogeneous type. Some of the needed properties can be also found in [3, Section 2].

2. Main results

2.1. Riesz Transform. We recall a result from [15].

Theorem 2.1. [15] Under the assumptions (D), (∆(α)) and (UE), we have that∥∥∇(I − P )−1/2f
∥∥
p
≤ Cp ‖f‖p (Rp)

holds for 1 < p < 2 and all f ∈ L∞c (Γ). Moreover, the Riesz transform is of weak-type
(1, 1).

We notice that for p = 2 this estimate is indeed an equality (see (1.5)). We define

q+ = sup{p ∈ (1,∞) : (Rp) holds},
which satisfies q+ ≥ 2 under the assumptions of Theorem 2.1. It can be equal to 2 ([15,
Section 4] with n = 2). It is bigger than 2 assuming further the stronger L2-Poincaré
inequalities [6].

The main result of this paper gives the following weighted estimates for the Riesz
transform:

Theorem 2.2. Let (Γ, µ) be a weighted graph and assume that (D), (∆(α)) and (UE)
hold. Let w ∈ A∞(Γ).

(i) If p ∈ Ww(1, q+), then the Riesz transform is of strong-type (p, p) with respect to
w(x)m(x), that is,

‖∇(I − P )−1/2f‖Lp(Γ,w) ≤ Cp,w‖f‖Lp(Γ,w),

for all f ∈ L∞c (Γ).

(ii) If w ∈ A1(Γ) ∩ RH(q+)′(Γ), then the Riesz transform is of weak-type (1,1) with
respect to w(x)m(x), that is,

‖∇(I − P )−1/2f‖L1,∞(Γ,w) ≤ Cp,w‖f‖L1(Γ,w),

for all f ∈ L∞c (Γ).

Notice that if q+ = ∞ then the Riesz transform is bounded on Lp(Γ, w) for rw <
p < ∞, that is, for w ∈ Ap(Γ), and we obtain the same weighted theory as for the
Riesz transforms on Rn:

Corollary 2.3. Let (Γ, µ) be a weighted graph such that (D), (∆(α)) and (UE)
hold. Assume that the Riesz transform has strong type (p, p) with respect to m for all
1 < p <∞. Then the Riesz transform has strong type (p, p) with respect to w(x)m(x)
for all w ∈ Ap(Γ) and 1 < p <∞ and it is of weak-type (1, 1) with respect to w(x)m(x)
for all w ∈ A1(Γ).
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2.2. Reverse Inequalities. For the reverse inequalities, we also obtain a weighted
norm inequalities assuming further Poincaré inequalities:

Definition 2.4 (Poincaré inequality). We say that (Γ, µ) satisfies a scaled Lp-Poincaré
inequality on balls if there exists C > 0 such that, for any x ∈ Γ, any r > 0 and any
function f ∈ Lploc(Γ) such that ∇f ∈ Lploc(Γ),∑

y∈B(x,r)

|f(y)− fB|pm(y) ≤ Crp
∑

y∈B(x,r)

|∇f(y)|pm(y), (Pp)

where

fB =
1

V (B)

∑
x∈B

f(x)m(x)

is the mean value of f on B.

If 1 ≤ p < q <∞, then (Pp) implies (Pq) (this is a very general statement on spaces
of homogeneous type, see [12]). Thus the set of p’s such that (Pp) holds is, if not
empty, an interval unbounded on the right. A deep result from [13] implies that this
set is open in [1,∞). We define

r− = inf
{
p ∈ [1,∞) : (Pp) holds

}
.

We recall the already known unweighted estimates for the reverse inequalities:

Theorem 2.5. [6] Assume (D), (∆(α)) and that 1 ≤ r− < 2. Then, for all r− < p <
∞

‖(I − P )
1
2f‖p ≤ C‖∇f‖p. (RRp)

Moreover, if (P1) holds, there exists C > 0 such that, for all λ > 0,

m
{
x ∈ Γ :

∣∣(I − P )1/2f(x)
∣∣ > λ

}
≤ C

λ
‖∇f‖1. (2.1)

For p < 2, this result is proved in [6, Theorem 1.11]. For p > 2, it is well known
that (RRp) follows from (Rp′) which holds by Theorem 2.1 (see [15]). Let us observe
that in that case (UE) follows from (D), (∆(α)) and (P2) (see [10]).

The weighted version is the following:

Theorem 2.6. Let (Γ, µ) be a weighted graph such that (D), (∆(α)) hold, and assume
that 1 ≤ r− < 2.

(i) For every r− < p <∞ and w ∈ A p
r−

(Γ) we have

‖(I − P )
1
2f‖Lp(Γ,w) ≤ C‖∇f‖Lp(Γ,w). (2.2)

(ii) If (P1) holds, for every w ∈ A1(Γ) we have

‖(I − P )
1
2f‖L1,∞(Γ,w) ≤ C‖∇f‖L1(Γ,w). (2.3)
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2.3. Square function. To prove Theorem 2.6 we need to obtain a weak-type estimate
for an operator that turns out to be the adjoint of a discrete version of the Littlewood-
Paley-Stein square function. The boundedness of this square function is interesting
on its own right so we give here the weighted estimates that we obtain using our
techniques.

For every function f on Γ we define Littlewood-Paley-Stein square function

gPf(x) =
( ∞∑
k=1

∣∣√k (I − P )P kf(x)
∣∣2)1/2

.

In [6] it is shown that gP is bounded on Lp(Γ) for every 1 < p < ∞. The adjoint of

gP (as an `2-valued operator) is defined as follows: given ~f = {fk}k≥1

SP ~f(x) =
∞∑
k=1

√
k (I − P )P kfk(x).

It is straightforward to show that for every ~f = {fk} and h we have∑
x∈Γ

SP ~f(x)h(x)m(x) =
∑
x∈Γ

〈~f(x), ~gPh(x)〉`2 m(x), (2.4)

where ~gPh(x) = {
√
k (I − P )P kh(x)}k≥1. Therefore, by duality it follows that SP is

bounded from Lp`2(Γ) to Lp(Γ) for every 1 < p <∞:

‖SP ~f‖Lp(Γ) ≤ C ‖~f‖Lp
`2

(Γ) = C
∥∥∥( ∞∑

k=1

|fk|2
)1/2∥∥∥

Lp(Γ)
,

with ~f ∈ L∞`2,c(Γ), that is, ‖~f‖`2 ∈ L∞c (Γ).

Theorem 2.7. Let (Γ, µ) be a weighted graph such that (D), (∆(α)) and (UE) hold.

(i) If 1 < p <∞ and w ∈ Ap(Γ), then

‖gPf‖Lp(Γ,w) ≤ Cp,w‖f‖Lp(Γ,w), f ∈ L∞c (Γ).

(ii) If w ∈ A1(Γ) then

‖gPf‖L1,∞(Γ,w) ≤ Cp,w‖f‖L1(Γ,w), f ∈ L∞c (Γ).

(iii) If 1 < p <∞ and w ∈ Ap(Γ), then

‖SP ~f‖Lp(Γ,w) ≤ Cp,w‖~f‖Lp
`2

(Γ,w), ~f ∈ L∞`2,c(Γ).

(iv) If w ∈ A1(Γ) then

‖SP ~f‖L1,∞(Γ,w) ≤ Cp,w‖~f‖L1
`2

(Γ,w), ~f ∈ L∞`2,c(Γ).

Let us notice that in the unweighted case the weak-type estimates for p = 1 are
new.

3. Proofs of the main results

We recall that if B = B(x, r) is a ball with r > 0, then λB = B(x, λ (r+ 1)) for all
λ ≥ 1. Given B we write C1(B) = 4B and Cj(B) = 2j+1B \ 2jB for all j ≥ 2. Also,
for any subset A ⊂ Γ, we define ∂A = {x ∈ A : ∃ y ∼ x, y /∈ A} .
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3.1. Proof of Theorem 2.2. The proof follows the ideas in [5] which in turn uses
some arguments from [7].

We need to introduce some notation. Given 1 ≤ p < ∞ and w ∈ A∞(Γ) we write
Lp`2(Γ, w) for the `2-valued Lp(Γ, w) space, that is, F ∈ Lp`2(Γ, w) if and only if

‖F‖Lp
`2

(Γ,w) =
∥∥‖F (x, y)‖`2y

∥∥
Lp(Γ,w)x

=

∥∥∥∥(∑
y∈Γ

|F (·, y)|2
) 1

2
∥∥∥∥
Lp(Γ,w)

=

(∑
x∈Γ

(∑
y∈Γ

|F (x, y)|2
) p

2

w(x)m(x)

) 1
p

.

Analogously, one defines the unweighted L∞`2 (Γ). We say that F has compact support
if there exists a ball B so that suppF (·, y) ⊂ B for all y ∈ Γ.

We consider the `2(Γ)-valued gradient

~∇f(x) =
{ 1√

2
p(x, y)

1
2

(
f(y)− f(x)

)}
y∈Γ

,

so that

‖~∇f(x)‖`2(Γ) =

(
1

2

∑
y∈Γ

p(x, y) |f(y)− f(x)|2
) 1

2

= ∇f(x).

We notice that in the previous expressions, since Γ is locally uniformly finite, there
are at most N non-zero terms.

Proof of Theorem 2.2, (i). We fix w ∈ A∞(Γ) and p ∈ Ww(1, q+). Using [3, Proposi-
tion 2.1] there exist p0, q0 such that

1 < p0 < p < q0 < q+ and w ∈ A p
p0

(Γ) ∩RH( q0p )
′(Γ).

By [3, Lemma 4.4] we have that v = w1−p′ ∈ Ap′/q′0(Γ) ∩RH(p′0/p
′)′(Γ).

Let us write T f = ~∇(I − P )−1/2f for the corresponding `2-valued linear operator
and observe that Tf(x) = ∇(I − P )−1/2f(x) = ‖T f(x)‖`2(Γ). Thus, the boundedness
of T on Lp(Γ, w) is equivalent to that of T from Lp(Γ, w) to Lp`2(Γ, w). Notice that T
is a linear operator and so we can consider its adjoint which is written as T ∗. Thus,
the boundedness of T from Lp(Γ, w) to Lp`2(Γ, w) is equivalent to that of T ∗ from

Lp
′

`2(Γ, v) to Lp
′
(Γ, v).

We are going to use Theorem A.1 (see below). Given f ∈ L∞`2,c(Γ), we write h = T ∗f
and F = |h|q′0 . Notice that F ∈ L1(Γ): T ∗ is bounded from L

q′0
`2(Γ) to Lq

′
0(Γ) since

1 < q0 < q+ implies that T is bounded from Lq0(Γ) to Lq0`2(Γ). We pick Ak =

I − (I − P 2 (1+k2))m with m large enough. Let B be a ball of radius k and center xB.
We write

F ≤ GB +HB ≡ 2q
′
0−1 |(I −A∗k)h|q

′
0 + 2q

′
0−1 |A∗kh|q

′
0 .

We first estimate HB. Set q = p′0/q
′
0 and observe that by duality there exists

g ∈ Lp0(B,m/V (B)) with norm 1 such that for all x ∈ B( 1

V (B)

∑
y∈B

HB(y)qm(y)
) 1
q q′

0 . V (B)−1
∑
y∈Γ

|h(y)| |Akg(y)|m(y)
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.
∞∑
j=1

2j D
( 1

V (2j+1B)

∑
Cj(B)

|h(y)|q′0 m(y)
) 1
q′
0

( 1

V (2j+1B)

∑
Cj(B)

|Akg(y)|q0 m(y)
) 1
q0

≤MF (x)
1
q′
0

∞∑
j=1

2j D
( 1

V (2j+1B)

∑
Cj(B)

|Akg(y)|q0 m(y)
) 1
q0 . (3.1)

Next, we use (1.8) to obtain that for all j ≥ 1 and 1 ≤ i ≤ m,

sup
y∈Cj(B)

|P 2 i (1+k2)g(y)| ≤ C e−c 4j 1

V (B)

∑
y∈B

|g(y)|m(y). (3.2)

Then expanding Ak we conclude that( 1

V (B)

∑
y∈B

HB(y)qm(y)
) 1
q q′

0 .MF (x)
1
q′
0

∞∑
j=1

2j De−c 4j
( 1

V (B)

∑
y∈B

|g(y)|p0 m(y)
) 1
p0

.MF (x)
1
q′
0 . (3.3)

We next estimate GB. Using duality there exists g ∈ Lq0(B,m/V (B)) with norm 1
such that for all x ∈ B( 1

V (B)

∑
y∈B

GB(y)m(y)
) 1
q′
0 . V (B)−1

∑
y∈Γ

‖f(y)‖`2 ‖T (I −Ak)g(y)‖`2 m(y)

.
∞∑
j=1

2j D
( 1

V (2j+1B)

∑
Cj(B)

‖f(y)‖q
′
0

`2 m(y)
) 1
q′
0

×
( 1

V (2j+1 B)

∑
Cj(B)

|T (I −Ak)g(y)|q0 m(y)
) 1
q0

≤M(‖f‖q
′
0

`2)(x)
1
q′
0

∞∑
j=1

2j D
( 1

V (2j+1B)

∑
Cj(B)

|T (I −Ak)g(y)|q0 m(y)
) 1
q0 .

In order to control the terms in the sum we use the following auxiliary lemma whose
proof is given below.

Lemma 3.1. Let β ∈ [1, q̃+) ∪ [1, 2]. Then, for all m ≥ 1, there exists C > 0 such
that for all j ≥ 2, all ball B with radius k, and all g ∈ L1(Γ) with support in B,( 1

V (2j+1B)

∑
x∈Cj(B)

|∇(I − P )−1/2(I − P 2 (1+k2))mg(x)|βm(x)
) 1
β

≤ C4−jm
1

V (B)

∑
x∈B

|g(x)|m(x).

(3.4)

Here, q̃+ is defined as the supremum of those p ∈ (1,∞) such that for all k ≥ 1,

‖∇P kf‖Lp(Γ) ≤ C k−1/2‖f‖Lp(Γ). (3.5)

By the analyticity of P , one always have q̃+ ≥ q+. Under the doubling volume property
and L2-Poincaré, it is shown in [6, Theorem 1.4] that q+ = q̃+.
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Using this lemma one easily estimates the terms j ≥ 2. For j = 1, we use that T is
bounded on Lq0(Γ), since 1 < q0 < q+, and (3.2):∑

y∈4B

|T (I −Ak)g(y)|q0 m(y) .
(∑
y∈B

|g(y)|q0 m(y) +
∞∑
l=1

∑
y∈Cl(B)

|Akg(y)|q0 m(y)
)

.
∑
y∈B

|g(y)|q0 m(y)
∞∑
l=1

2l D e−c 4l .
∑
x∈B

|g(y)|q0 m(y). (3.6)

Using this and (3.4) (with β = q0 < q+ ≤ q̃+) we conclude the estimate for GB:( 1

V (B)

∑
x∈B

GB(y)m(y)
) 1
q′
0 .M(‖f‖q

′
0

`2)(x)
1
q′
0

∞∑
j=1

2j D4−j m
( 1

V (B)

∑
y∈B

|g(y)|q0 m(y)
) 1
q0

≤ CM(‖f‖q
′
0

`2)(x)
1
q′
0 = G(x)

1
q′
0 , (3.7)

provided m > D/2. With (3.3) and (3.7) in hand we can use Theorem A.1 with r =
p′/q′0, q = p′0/q

′
0 and H1 ≡ 0. Notice that v ∈ RHs′(Γ) with s = p′0/p

′, 1 < s < q <∞
and r = q/s. Hence, using v ∈ Ar(Γ) we obtain the desired estimate

‖T ∗f‖q
′
0

Lp′ (Γ,v)
≤ ‖MF‖Lr(Γ,v) . ‖M(‖f‖q

′
0

`2)‖Lr(Γ,v) .
∥∥‖f‖`2∥∥q′0Lp′ (Γ,v)

= ‖f‖q
′
0

Lp
′
`2

(Γ,v)
.

�

Proof of Lemma 3.1. We first observe that the desired estimate for a fixed β0 implies
the same one for all β with 1 ≤ β ≤ β0. Since q̃+ ≥ q+ ≥ 2 it follows that if q̃+ = 2 it
suffices to obtain the case β = 2, and if q̃+ > 2 it suffices to treat the case 2 ≤ β < q̃+.
Thus, we fix β ≥ 2.

As in [6] we write (I − P )−1/2 =
∑∞

l=0 al P
l where the coefficients al are those from

the Taylor expansion centered at 0 of the function (1 − x)−1/2. Then, expanding

(I − P 2 (1+k2))m we have

(I − P )−1/2(I − P 2 (1+k2))m =
∞∑
l=0

al P
l

m∑
j=0

Cj
m (−1)j P 2 j (1+k2)

=
m∑
j=0

Cj
m (−1)j

∞∑
l=0

al P
l+2 j (1+k2)

=
m∑
j=0

Cj
m (−1)j

∞∑
l=2 j (1+k2)

al−2 j (1+k2) P
l

=
∞∑
l=0

( ∑
0≤j≤m:2j(1+k2)≤l

Cj
m (−1)j al−2 j (1+k2)

)
P l

=
∞∑
l=0

dl P
l,

and therefore

∇(I − P )−1/2(I − P 2 (1+k2))mg(x) =
∞∑
l=0

dl∇P lg(x).
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Notice that for 0 ≤ l ≤ 3 we have∇P lg(x) = 0 for every x ∈ Cj(B) with j ≥ 2. Indeed
in that case we have that ∇P lg is supported in B(xB, k + 4) (since g is supported
in B(xB, k)) and B(xB, k + 4) ∩ Cj(B) = Ø for every j ≥ 2. This implies that the
previous series runs from l = 4 to ∞. We claim that there exists γ = γ(β) such that
for every l ≥ 2 and z ∈ B,(∑

x∈Γ

|∇xpl(x, z)|β eγ
d2(x,z)

l m(x)
) 1
β ≤ C

m(z)√
l V (z,

√
l)1−1/β

. (3.8)

This and Minkowski’s inequality imply( 1

V (2j+1B)

∑
x∈Cj(B)

|∇(I − P )−1/2(I − P 2 (1+k2))mg(x)|βm(x)
) 1
β

≤
∞∑
l=4

|dl|
∑
z∈B

|g(z)|
( 1

V (2j+1B)

∑
x∈Cj(B)

|∇xpl(x, z)|βm(x)
) 1
β

.
∞∑
l=4

|dl| e−γ
′ 4j (1+k2)

l

∑
z∈B

|g(z)| m(z)√
l V (z,

√
l)1−1/β V (2j+1 B)1/β

.
∞∑
l=4

|dl| l−1/2 e−γ
′ 4j (1+k2)

l max
{

1,
k + 1√

l

}D (1− 1
β

)( 1

V (B)

∑
z∈B

|g(z)|m(z)
)

.
∞∑
l=4

|dl| l−1/2 e−c
4j (1+k2)

l

( 1

V (B)

∑
z∈B

|g(z)|m(z)
)
.

Thus, it suffices to show that
∞∑
l=4

|dl| l−1/2 e−c
4j (1+k2)

l . 4−j m. (3.9)

We follow the ideas in [6, Section 4]. For every 0 ≤ i ≤ m we write

Σi = {l ≥ 4 : 2 i (1 + k2) < l ≤ 2 (i+ 1) (1 + k2)},
and Σm+1 = {l : l > 2 (m+ 1) (1 + k2)}. Then we have,

|dl| ≤ Cm

{
(l − 2 i (1 + k2))−1/2, l ∈ Σi, 0 ≤ i ≤ m;

(1 + k2)m l−m−1/2, l ∈ Σm+1.

Following mutatis mutandis [6, Lemma 4.1] we obtain
∞∑
l=4

|dl| l−1/2 e−c
4j (1+k2)

l ≤
m∑
i=0

∑
l∈Σi

· · ·+
∑

l∈Σm+1

· · · = I + II,

and we estimate each term in turn. For I, considering the cases i = 0 and i ≥ 1
separately we obtain

I .
m∑
i=0

∫ 2 (i+1) (1+k2)

2 i (1+k2)

e−c
4j (1+k2)

t

√
t
√
t− 2 i (1 + k2)

dt .
m∑
i=0

∫ 1

0

e−c
4j

i+t

√
t
√
i+ t

dt

.
∫ 1

0

e−c
4j

t
dt

t
+ e−c 4j

∫ 1

0

dt√
t
. e−c 4j .
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To control II we use the estimate for |dl| to show that

II .
∫ ∞

2 (m+1) (1+k2)

e−c
4j (1+k2)

t t−1/2 (1 + k2)m t−m−1/2 dt

. 4−j m
∫ 4j

2 (m+1)

0

e−c t tm
dt

t
. 4−j m.

Gathering the obtained estimates we conclude (3.9).

To finish we need to show (3.8). We recall [15, Lemma 7]: there exists γ0 > 0 such
that for every l ≥ 1 we have( 1

V (z,
√
l)

∑
x∈Γ

|∇xpl(x, z)|2 eγ0
d2(x,z)

l m(x)
) 1

2 ≤ C
m(z)√
l V (z,

√
l)
. (3.10)

Notice that this gives the case β = 2, and this completes the proof when q̃+ = 2.
We consider the case q̃+ > 2 and then it suffices to take 2 < β < q̃+. We pick q,
β < q < q̃+. For every z ∈ Γ and l ≥ 1 we have as in [15, Lemma 3]∑

x∈Γ

e−c
d2(x,z)

l m(x) ≤
∑

x:d(z,x)≤
√
l

m(x) +
∞∑
i=0

e−c 4i
∑

x:2i
√
l<d(z,x)≤2i+1

√
l

m(x)

≤ V (z,
√
l) +

∞∑
i=0

e−c 4i V (z, 2i+1
√
l)

. V (z,
√
l)
∞∑
i=0

e−c 4i2iD

. V (z,
√
l). (3.11)

Given l ≥ 2 we write l = n + n′ where n′ = n = l/2 if l is even and n′ = n + 1 =
(l + 1)/2 if l is odd. For every l ≥ 1 we have pl+1(x, z) = P

(
pl(·, z)

)
(x), then it is

immediate to see that

pl(x, z) = pn+n′(x, z) = P n(pn′(·, z))(x).

Then, since 2 ≤ q < q̃+ we can use (3.5). This, (1.8) and (3.11) yield( 1

V (z,
√
l)

∑
x∈Γ

|∇xpl(x, z)|qm(x)
) 1
q

=
( 1

V (z,
√
l)

∑
x∈Γ

|∇xP
n(pn′(·, z))(x)|qm(x)

) 1
q

. n−1/2
( 1

V (z,
√
l)

∑
x∈Γ

|pn′(x, z)|qm(x)
) 1
q

. l−1/2 m(z)

V (z,
√
n′)

( 1

V (z,
√
l)

∑
x∈Γ

e−c
d2(x,z)

n′ m(x)
) 1
q

.
m(z)√
l V (z,

√
l)
. (3.12)

To complete the proof we take r = (q − 2)/(q − β) so that r′ = (q − 2)/(β − 2) and
2/r + q/r′ = β. We set γ = γ0/r, then Hölder’s inequality, (3.10), and (3.12) imply( 1

V (z,
√
l)

∑
x∈Γ

|∇xpl(x, z)|β eγ
d2(x,z)

l m(x)
) 1
β
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≤
( 1

V (z,
√
l)

∑
x∈Γ

|∇xpl(x, z)|2 eγ0
d2(x,z)

l m(x)
) 1
β r
( 1

V (z,
√
l)

∑
x∈Γ

|∇xpl(x, z)|qm(x)
) 1
β r′

.

(
m(z)√
l V (z,

√
l)

) 2
β r

+ q
β r′

=
m(z)√
l V (z,

√
l)
,

and this readily leads to the desired estimate. �

Proof of Theorem 2.2, (ii). The proof is similar to that in [5, Theorem 1.2, (ii)], ap-
plying Theorem A.2 with p0 = 1, q0 = q+. We see that the four items hold. Fix
w ∈ A1(Γ) ∩ RH(q+)′(Γ). By [3, Proposition 2.1], there exists 1 < q < q+ such that
w ∈ Aq(Γ) ∩RH(q+/q)′(Γ). This means that q ∈ Ww(1, q+), therefore by Theorem 2.2

part (i), T = ∇(I − P )−1/2 is bounded on Lq(Γ, w) and thus (a) holds.

We pick Ak = I − (I − P 2 (1+k2))m with m large enough to be chosen. Notice that

expanding Ak, (3.2) yields (b) with αj = C e−c 4j . To see (c) we apply Lemma 3.1 with
(sw)′ < β —notice that such β exists: we have q+ ≤ q̃+ and w ∈ RH(q+)′(Γ) implies
(sw)′ < q+. Then, we obtain (c) with αj = C 4−j m. Finally, we pick m > Dw/2 so
that (d) holds and therefore Theorem A.2 gives the weak-type (1, 1) with respect to
w(x)m(x). �

3.2. Proof of Theorem 2.6. We need the following auxiliary result whose proof is
given below.

Lemma 3.2. Under the hypotheses of Theorem 2.6, take r− < r < q <∞. Let B be
a ball with radius k and m ≥ 1 be a large enough integer. Then,(

1

V (B)

∑
x∈B

∣∣(I − P )
1
2

(
I − P 2(1+k2)

)m
f
∣∣rm(x)

) 1
r

≤
∑
j≥1

g1(j)

(
1

V (2j+1B)

∑
x∈2j+1B

|∇f |rm(x)

) 1
r

, (3.13)

for m large enough depending on q and r, and(
1

V (B)

∑
x∈B

∣∣(I − P )
1
2

(
I −

(
I − P 2(1+k2)

)m)
f
∣∣qm(x)

) 1
q

≤
∑
j≥1

g2(j)

(
1

V (2j+1B)

∑
x∈2j+1B

|(I − P )
1
2f |rm(x)

) 1
r

, (3.14)

where g1(j) = Cm2j4−mj and g2(j) = Cme
−c 4j .

Proof of Theorem 2.6, (i). Since w ∈ A p
r−

(Γ), then [3, Proposition 2.1] implies that

there exist r, q, with r− < r < p < q <∞, such that

w ∈ A p
r
(Γ) ∩RH( q

p
)′(Γ).

Note that (3.13) and (3.14) are respectively the conditions (A.5) and (A.6) of Theorem

A.3 with p0 = r, q0 = q, T = (I −P )
1
2 , Ak = I − (I −P 2(1+k2))m, with k the radius of
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the ball B, m large enough and Sf = ∇f . Therefore, we obtain the desired inequality
(2.2). �

Proof of Lemma 3.2. We write h = (I −P )
1
2f and h =

∑
j≥1 hχCj(B) =

∑
j≥1 hj. We

then obtain that for every 1 ≤ l ≤ m,(
1

V (B)

∑
x∈B

∣∣P 2 l (1+k2)hj(x)
∣∣qm(x)

) 1
q

≤ sup
x∈B

∣∣P 2 l (1+k2)hj(x)
∣∣

. e−c 4j 1

V (2j+1B)

∑
x∈Cj(B)

|h(x)|m(x) . e−c 4j
(

1

V (2j+1B)

∑
x∈Cj(B)

|h(x)|rm(x)

) 1
r

,

where we have used (1.8). This and the commutation rule readily lead to (3.14) after

expanding (I − P 2(k2+1))m.

To estimate (3.13) we recall the following estimate that follows from (D) and (UE),
see [6]: if B = B(x0, k) and f is supported in Cj(B), j ≥ 2, one has that for l ≥ 1,

sup
x∈B

(
|P lf(x)|+ l|(I − P )P lf(x)|

)
≤ C e−c

4jk2

l
1

V (2j+1B)

∑
x∈Cj(B)

|f(x)|m(x). (3.15)

We first observe that

(I − P )
1
2 (I −Ak)f = (I − P )

1
2 (I −Ak)(f − f4B) =

∑
j≥1

(I − P )
1
2 (I −Ak)hj,

where h = f − f4B, hj = hφj, φj = χCj(B) for j ≥ 3, φ2 = χ8B −φ1 and

φ1(x) =


1 d(x, x0) ≤ 2 k;

4 k−j
2 k

d(x, x0) = j, 2 k ≤ j ≤ 4 k;

0 d(x, x0) ≥ 4 k.

Notice that
∑

j≥1 φj ≡ 1. We estimate the term j = 1:

‖(I − P )
1
2 (I −Ak)h1‖r = ‖(I −Ak)(I − P )

1
2h1‖r ≤ C‖(I − P )

1
2h1‖r ≤ C‖∇h1‖r,

where we have used (RRr) in Theorem 2.5 (notice that r− < r < ∞). It is easy to
show that ∇h1 is supported in 4B (since φ1 is supported in B(x0, 4 k − 1)) and also
that |φ1(x) − φ1(y)| ≤ (2 k)−1 whenever d(x, y) ≤ 1. This allows one to obtain that
for every x ∈ 4B

∇h1(x) = ∇(hφ1)(x) ≤ ∇h(x) + (23/2 k)−1 |h(x)| = ∇f(x) + (23/2 k)−1 |f(x)− f4B|.
Then, (Pr) implies

‖(I − P )
1
2 (I −Ak)h1‖r ≤ C ‖∇h1‖Lr(4B) ≤ C ‖∇f‖Lr(4B),

and therefore(
1

V (B)

∑
x∈B

|(I − P )
1
2 (I −Ak)h1(x)|rm(x)

) 1
r

≤ C

(
1

V (4B)

∑
x∈4B

∇f(x)rm(x)

) 1
r

.

Next, we consider the case j ≥ 3 and write

(I − P )
1
2 (I −Ak)hj =

∞∑
l=0

al(I − P )P l(I − P 2(1+k2))mhj =
∞∑
l=0

dl(I − P )P lhj,
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where al and dl are the coefficients considered in Lemma 3.1. We observe that under
the notation of Lemma 3.1 if l ∈ Σ0 we can use the estimate |dl| ≤ Cm l

−1/2 and then
it is easy to see that

2 (1+k2)∑
l=4

|dl|
l
e−c

4jk2

l =
∑
l∈Σ0

|dl|
l
e−c

4jk2

l ≤ C

∫ 2 (1+k2)

3

t−
3
2 e−c

4jk2

t dt ≤ C k−1e−c
′ 4j .

(3.16)
This and (3.9) imply

∞∑
l=4

|dl|
l
e−c

4jk2

l ≤
2 (1+k2)∑
l=4

|dl|
l
e−c

4jk2

l + k−1
∑

l>2 (1+k2)

|dl| l−1/2e−c
4j(1+k2)

l ≤ k−1 4−j m.

Therefore, as in Lemma 3.1 it follows that for x ∈ B

|(I − P )
1
2 (I −Ak)hj(x)| ≤

∞∑
l=0

|dl||(I − P )P lhj(x)|

≤ C

(
1

V (2j+1B)

∑
x∈Cj(B)

|h(x)|m(x)

) ∞∑
l=4

|dl|
l
e−c

4jk2

l

≤ C 4−j m k−1

(
1

V (2j+1B)

∑
x∈2j+1B

|f(x)− f4B|rm(x)

) 1
r

≤ C 4−j m k−1

j+1∑
i=3

(
1

V (2iB)

∑
x∈2iB

|f(x)− f2iB|rm(x)

) 1
r

≤ C 4−j m
j+1∑
i=3

2i
(

1

V (2iB)

∑
x∈2iB

|∇f(x)|rm(x)

) 1
r

,

where we have used (3.15), (D) and (Pr). Consequently, for j ≥ 3 we have shown(
1

V (B)

∑
x∈B

|(I − P )
1
2 (I −Ak)hj(x)|rm(x)

) 1
r

≤ C 4−j m
j+1∑
i=3

2i
(

1

V (2iB)

∑
x∈2iB

|∇f(x)|rm(x)

) 1
r

. (3.17)

For the remaining term j = 2, notice that in (3.15) we can also take j = 2 and
f = h2 whose support is contained in 8B \ 2B. Using this and the fact that |h2| ≤
|f − f4B|χ8B\2B we can argue similarly and obtain that (3.17) can be extended to the
case j = 2.

Gathering the obtained estimates we conclude as desired (3.13). �

It remains to prove part (ii) of Theorem 2.6. The proof follows the method in the
unweighted case using Proposition A.4.

Proof of Theorem 2.6, (ii). We follow the proof of in [6, Theorem 1.11]. Consider f
such that ∇f ∈ L∞c (Γ), fix w ∈ A1(Γ) and let λ > 0. We perform the Calderón-
Zygmund decomposition of f given by Proposition A.4.
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We use that the measure w(x)m(x) is doubling and (A.11):

w(∪i4Bi) ≤ C
∑
i

w(Bi) ≤
C

λ

∑
x∈Γ

∇f(x)w(x)m(x). (3.18)

Next, we take any r > 1. Since w ∈ A1(Γ), then w ∈ Ar(Γ) and we can apply Theorem
2.6, part (i) (note that r− = 1),

I = w{x ∈ Γ : |(I − P )1/2g(x)| > λ/3} ≤ C

λr

∑
x∈Γ

∇g(x)r w(x)m(x)

=
C

λr

∑
x∈∪i4Bi

∇g(x)r w(x)m(x) +
C

λr

∑
x/∈∪i4Bi

∇g(x)r w(x)m(x)

≤ C w(∪i4Bi) +
C

λ

∑
x/∈∪i4Bi

∇g(x)w(x)m(x)

≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x) + I1,

where we have used (A.8) and (3.18). To estimate I1 we write F = Γ \ (∪iBi).
Following the computations in [6, pp. 305–306], if x /∈ ∪i4Bi and y ∼ x then x, y ∈ F
and therefore g(x) = f(x) and g(y) = f(y). Thus, we conclude that ∇g(x) = ∇f(x)
for every x /∈ ∪i4Bi and consequently

I1 =
C

λ

∑
x/∈∪i4Bi

∇f(x)w(x)m(x) ≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x).

Gathering the obtained estimates we conclude that

I ≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x). (3.19)

Next, we use the following expansion of (I − P )1/2:

(I − P )1/2 =
∞∑
k=0

ak(I − P )P k, (3.20)

where {ak}k is the sequence in Lemma 3.1. For each i ∈ I, there is j ∈ Z such that
2j−1 ≤ r(Bi) < 2j and we define ri = 2j (we notice that r(Bi) ≥ 1/2 and then j ≥ 0).
We split the expansion (3.20) into two parts:

(I − P )1/2 =

r2i∑
k=0

ak(I − P )P k +
∞∑

k=r2i+1

ak(I − P )P k = Ti + Ui.

We claim that

II = w
{
x /∈ ∪i4Bi :

∣∣∣∑
i∈I

Tibi(x)
∣∣∣ > λ/3

}
≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x). (3.21)

and

III = w
{
x ∈ Γ :

∣∣∣∑
i∈I

Uibi(x)
∣∣∣ > λ/3

}
≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x). (3.22)
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Deferring the proof of these estimates for the moment, gathering them with (3.18)
and (3.19) we easily conclude as desired

w{x ∈ Γ : |(I − P )1/2f(x)| > λ} ≤ w(∪i4Bi) + I + II + III

≤ C

λ

∑
x∈Γ

∇f(x)w(x)m(x).

We show (3.21). We need the following estimate, see [6]: if f is supported in B,
j ≥ 2 and l ≥ 1,

sup
x∈Cj(B)

(
|P lf(x)|+ l|(I − P )P lf(x)|

)
≤ C e−c

4jr(B)2

l
1

V (B)

∑
x∈B

|f(x)|m(x). (3.23)

Using some ideas from [4], the fact that supp bi ⊂ Bi, (3.23) and that 0 ≤ ak . k−1/2

we obtain

II ≤ 3

λ

∑
i∈I

∑
x/∈4Bi

|Tibi(x)|w(x)m(x) ≤ 3

λ

∑
i∈I

∞∑
j=2

∑
x∈Cj(Bi)

|Tibi(x)|w(x)m(x)

≤ 3

λ

∑
i∈I

∞∑
j=2

∑
x∈Cj(Bi)

r2i∑
k=1

|ak| |(I − P )P kbi(x)|w(x)m(x)

≤ C

λ

∑
i∈I

∞∑
j=2

w(2j+1Bi)

V (Bi)

r2i∑
k=1

k−3/2e−c
4jr2i
k

∑
x∈Bi

|bi(x)|m(x)

≤ C

λ

∑
i∈I

∞∑
j=2

2j D
r2i∑
k=1

k−3/2e−c
4jr2i
k

∑
x∈Bi

|bi(x)| w(2j+1Bi)

V (2j+1Bi)
m(x)

≤ C

λ

∑
i∈I

∞∑
j=2

2j D
r2i∑
k=1

k−3/2e−c
4jr2i
k

∑
x∈Bi

|bi(x)|w(x)m(x)

≤ C
∑
i∈I

w(Bi)
∞∑
j=2

2j D
r2i∑
k=1

k−3/2ri e
−c 4

jr2i
k .

where we have used that w ∈ A1(Γ) and (A.10). Easy computations lead to

r2i∑
k=1

k−3/2ri e
−c 4

jr2i
k ≤ C ri

∫ r2i+1

1

t−3/2 e−c
4jr2i
t dt ≤ C

∫ r2i

1/2

s1/2 e−c 4j s ds

s
≤ C e−α 4j

which, by (A.11), yields as desired (3.21):

II ≤ C
∑
i∈I

w(Bi) ≤
C

λ

∑
x∈Γ

∇f(x)w(x)m(x).

Let us obtain (3.22). For every j ≥ 0 and k ≥ 2 we define

βj =
∑

i∈I, ri=2j

bi
ri
, fk =

ak√
k

∑
j: 4j<k

2j βj.
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We also set f1 = 0. Then,∑
i∈I

Uibi =
∑
i∈I

∞∑
k=r2i+1

ak(I − P )P kbi =
∞∑
j=0

∞∑
k=4j+1

ak(I − P )P k(2j βj)

=
∞∑
k=2

√
k (I − P )P kfk

=
∞∑
k=1

√
k (I − P )P kfk = SP ~f,

where ~f = {fk}k≥1. By Theorem 2.7 it follows that SP is bounded from L1
`2(Γ, w) into

L1,∞(Γ, w). Then,

III = w{x ∈ Γ : |SP ~f(x)| > λ/3} ≤ C

λ

∑
x∈Γ

( ∞∑
k=1

|fk(x)|2
) 1

2
w(x)m(x).

By Cauchy-Schwarz and using that 0 ≤ ak . k−1/2 we have

∞∑
k=1

|fk|2 .
∞∑
k=2

k−2
∣∣∣ ∑
j: 4j<k

2j βj

∣∣∣2 . ∞∑
k=1

k−3/2
∑

j: 4j<k

2j |βj|2

.
∞∑
j=0

|βj|2 ≤
( ∞∑
j=0

|βj|
)2

≤
(∑

i∈I

|bi|
ri

)2

.

Then, (A.10) and (A.11) yield

III .
1

λ

∑
i∈I

r−1
i

∑
x∈Bi

|bi(x)|w(x)m(x)

.
∑
i∈I

r−1
i w(Bi) r(Bi) .

∑
i∈I

w(Bi) .
1

λ

∑
x∈Γ

∇f(x)w(x)m(x).

This shows (3.22) and therefore the proof is complete. �

3.3. Proof of Theorem 2.7. We first observe that (i) and (iii) are equivalent. Fix

1 < p < ∞ and w ∈ Ap(Γ). We see that (i) implies (iii): by (2.4) for ~f ∈ L∞`2,c(Γ)

and h ∈ L∞c (Γ) we have∣∣∣∑
x∈Γ

SP ~f(x)h(x)w(x)m(x)
∣∣∣ ≤∑

x∈Γ

‖~f(x)‖`2 gP (hw)(x)m(x)

≤ ‖~f‖Lp
`2

(Γ,w) ‖gP (hw)‖Lp′ (Γ,w1−p′ ) ≤ C ‖~f‖Lp
`2

(Γ,w) ‖h‖Lp′ (Γ,w),

where we have used (i) and the fact that w1−p′ ∈ Ap′(Γ). To conclude (iii) it suffices
to take the supremum over all those h with ‖h‖Lp′ (Γ,w) ≤ 1. Conversely, to obtain

that (iii) implies (i) we proceed as follows: by (2.4) for ~f ∈ L∞`2,c(Γ) and h ∈ L∞c (Γ)
we have∣∣∣∑

x∈Γ

〈~f(x), ~gPh(x)〉`2 w(x)m(x)
∣∣∣ ≤∑

x∈Γ

|SP (~f w)(x)| |h(x)|m(x)

≤ ‖SP (~f w)‖Lp′ (Γ,w1−p′ ) ‖h‖Lp(Γ,w) ≤ C ‖~f‖
Lp
′
`2

(Γ,w)
‖h‖Lp(Γ,w),
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where we have used (iii) and the fact that w1−p′ ∈ Ap′(Γ). To conclude (i) it suffices

to take the supremum over all those ~f with ‖~f‖
Lp
′
`2

(Γ,w)
≤ 1.

Taking the previous equivalence into account we show (iii), (iv) and (ii).

Proof of Theorem 2.7, (iii). Fix 1 < p < ∞ and w ∈ Ap(Γ). There exists 1 < p0 <
min{p, 2} such that w ∈ Ap/p0 . We use Theorem A.3 (indeed we use its vector-valued

extension) with p0 just chosen and q0 =∞. We pick T = SP , Ak = I−(I−P 2(1+k2))m,

with k the radius of the ball B, m large enough and S ~f = ~f . We notice that TAk =

AkT . Then, expanding Ak and writing T ~f(x) =
∑∞

j=1 T
~f(x) χCj(B)(x), (3.15) implies

(A.6) with αj = Cm e
−c 4j .

To complete the proof we need to show (A.5). Given ~f ∈ L∞`2,c(Γ) we write ~f =∑∞
j=1

~fj with ~fj = ~f χCj . Set fl,j = fl χCj . For j = 1 we use that SP is bounded

from Lp0(Γ) into Lp0`2 (Γ):( 1

V (B)

∑
x∈B

|SP (I −Ak)~f1(x)|p0m(x)
) 1
p0 .

1

V (B)
1
p0

‖(I − P 2(1+k2))m ~f1‖Lp0
`2

(Γ)

.
1

V (B)
1
p0

‖~f1‖Lp0
`2

(Γ) +
m∑
n=1

1

V (B)
1
p0

‖P 2n (1+k2) ~f1‖Lp0
`2

(Γ)

.
( 1

V (4B)

∑
x∈4B

‖~f(x)‖p0`2m(x)
) 1
p0 +

m∑
n=1

In.

Fixed 1 ≤ n ≤ m we estimate In using (1.8) for i = 1 , (3.23) for i ≥ 2, and
Minkowski’s inequality:

In ≤
∞∑
i=1

(V (2i+3B)

V (B)

) 1
p0

( ∞∑
l=1

sup
x∈Ci(4B)

|P 2n (1+k2)(fl χ4B)(x)|2
) 1

2

.
∞∑
i=1

2iD/p0 e−c4
i
( ∞∑
l=1

( 1

V (4B)

∑
x∈4B

|fl(x)|m(x)
)2) 1

2

.
1

V (4B)

∑
x∈4B

‖~f(x)‖`2m(x)

≤
( 1

V (4B)

∑
x∈4B

‖~f(x)‖p0`2m(x)
) 1
p0 .

Thus we conclude that( 1

V (B)

∑
x∈B

|SP (I −Ak)~f1(x)|p0m(x)
) 1
p0 .

( 1

V (4B)

∑
x∈4B

‖~f(x)‖p0`2m(x)
) 1
p0 .

Next, we consider j ≥ 2:( 1

V (B)

∑
x∈B

|SP (I −Ak)~fj(x)|p0m(x)
) 1
p0

≤
∞∑
l=1

√
l
( 1

V (B)

∑
x∈B

|(I − P )P l(I −Ak)fl,j(x)|p0m(x)
) 1
p0
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≤
2j+1 (1+k2)m∑

l=1

· · ·+
∑

l>2j+1 (1+k2)m

· · · = I + II.

To estimate I we expand Ak, and use (3.15) and Cauchy-Schwarz in the sum in l:

I .
m∑
n=0

2j+1 (1+k2)m∑
l=1

√
l e
−c 4j k2

l+2 (1+k2)n

l + 2 (1 + k2)n

1

V (2j+1B)

∑
x∈2j+1B

|fl(x)|m(x)

≤ 1

V (2j+1B)

∑
x∈2j+1B

‖~f(x)‖`2 m(x)
m∑
n=0

( 2j+1 (1+k2)m∑
l=1

l e
−c 4j k2

l+2 (1+k2)n

(l + 2 (1 + k2)n)2

) 1
2

.

It is straightforward to show that

2j+1 (1+k2)m∑
l=1

l e
−c 4j k2

l+2 (1+k2)n

(l + 2 (1 + k2)n)2
≤
∫ 2j+1 (1+k2)m+1

1

e
−c 4j (1+k2)

t+2 (1+k2)n

t+ 2 (1 + k2)n
dt

.
∫ ∞
cm 2j

e−c s
ds

s
. e−c 2j . (3.24)

Therefore we obtain

I ≤ Cm e
−c 2j

( 1

V (2j+1B)

∑
x∈2j+1B

‖~f(x)‖p0`2 m(x)
) 1
p0 .

We next consider II. We claim that the following estimates hold (the proof is given
at the end of this section): for every n ≥ 1

|(I − P )P ng(x)| ≤ C

nV (x,
√
n)
‖g‖L1(Γ) (3.25)

and

‖P 2n (1+k2) − P 2 (n+1) (1+k2)g‖L1(Γ) ≤ C n−1 ‖g‖L1(Γ) (3.26)

with C independent of k.

Fix l > 2j+1 (1 + k2)m. Then, there exists an integer q ≥ 2j−1 such that 4 q (1 +
k2)m < l ≤ 4 (q + 1) (1 + k2)m. We set n = l − 2 q (1 + k2)m. By (3.25) and (3.26),
for every x ∈ B = B(x0, k) we have

|(I − P )P l (I − P 2 (1+k2))mg(x)| = |(I − P )P n (P 2 q (1+k2) − P 2 (q+1) (1+k2))mg(x)|

≤ Cm
n qm V (x,

√
n)
‖g‖L1(Γ) ≤

Cm

l V (x0,
√
l)

(k2

l

)m
‖g‖L1(Γ), (3.27)

where we have used that B(x0,
√
l) ⊂ B(x, 2

√
l) and as a consequence V (x0,

√
l) ≤

C V (x,
√
l). We define γl = l−1/2 V (x0,

√
l)−1 (k2/l)m for l > 2j+1 (1+k2)m and γl = 0

for 1 ≤ l ≤ 2j+1 (1 + k2)m. Using the previous estimate and Hölder’s inequality we
obtain

II .
∑

x∈2j+1B

∞∑
l=1

γl |fl(x)|m(x)

≤ ‖~γ‖`2
∑

x∈2j+1B

‖~f(x)‖`2m(x)
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≤ ‖~γ‖`2 V (2j+1B)
( 1

V (2j+1 B)

∑
x∈2j+1B

‖~f(x)‖p0`2 m(x)
) 1
p0 .

On the other hand, it is straightforward to show that

‖~γ‖2
`2 V (2j+1B)2 =

∑
l>2j+1 (1+k2)m

(V (x0, 2
j+1 (k + 1))

V (x0,
√
l)

)2 (k2

l

)2m1

l

.
∑

l>2j+1 (1+k2)m

(
1 +

2j+1 k√
l

)2D (k2

l

)2m1

l

.
∫ ∞

2j+1 k2m

(
1 +

2j+1 k√
t

)2D (k2

t

)2mdt

t

. 2−j (2m−D).

Gathering this with the estimates obtained before we conclude that for every j ≥ 2:( 1

V (B)

∑
x∈B

|SP (I −Ak)~fj(x)|p0m(x)
) 1
p0

. 2−j (m−D
2

)
( 1

V (2j+1B)

∑
x∈2j+1B

‖~f(x)‖p0`2 m(x)
) 1
p0 .

This and the corresponding estimate for j = 1 lead to (A.5) with αj = 2−j (m−D
2

) in
which case we take m > D/2 to obtain

∑
j αj <∞. �

Proof of Theorem 2.7, (iv). We use Theorem A.2 (indeed its vector-valued extension)

with p0 = 1, q0 =∞, T = SP , Ak = I − (I − P 2(1+k2))m, with k the radius of the ball
B and m large enough. Fix w ∈ A1(Γ). Note that (a) follows from (iii) since SP is
bounded on Lq(w) for every 1 < q < ∞. After expanding Ak, it suffices to show (b)

for P 2n (1+k2) with 1 ≤ n ≤ m: fixed such an n, (3.2) yields as desired

sup
x∈Cj(B)

‖P 2n (1+k2) ~f(x)‖`2 . e−c 4j
∥∥∥∥{ 1

V (B)

∑
x∈B

|fl(x)|m(x)

}
l

∥∥∥∥
`2

≤ e−c 4j 1

V (B)

∑
x∈B

‖~f(x)‖`2 m(x).

To see (c) we take β = ∞ and fix j ≥ 2. We proceed as in the Proof of Theorem
2.7, (iii), to obtain

sup
x∈Cj(B)

|SP (I −Ak)~f(x)| ≤
∞∑
l=1

√
l sup
x∈Cj(B)

|(I − P )P l(I −Ak)fl(x)|

≤
2j+1 (1+k2)m∑

l=1

· · ·+
∑

l>2j+1 (1+k2)m

· · · = I + II.

To estimate I we expand Ak and use (3.23) and (3.24) to conclude that

I .
m∑
n=0

2j+1 (1+k2)m∑
l=1

√
l e
−c 4j k2

l+2 (1+k2)n

l + 2 (1 + k2)n

1

V (B)

∑
x∈B

|fl(x)|m(x)
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≤ 1

V (B)

∑
x∈B

‖~f(x)‖`2 m(x)
m∑
n=0

( 2j+1 (1+k2)m∑
l=1

l e
−c 4j k2

l+2 (1+k2)n

(l + 2 (1 + k2)n)2

) 1
2

≤ Cm e
−c 2j 1

V (B)

∑
x∈B

‖~f(x)‖`2 m(x).

To estimate II we proceed as in (3.27) to obtain that for every x ∈ Cj(B)

|(I − P )P l (I − P 2 (1+k2))mg(x)| ≤ Cm

l V (x,
√
l)

(k2

l

)m
‖g‖L1(Γ)

≤ Cm 2j
D
2

l V (x0,
√
l)

(k2

l

)m
‖g‖L1(Γ)

since B(x0,
√
l) ⊂ B(x, 2(j+3)/2

√
l). We take the same sequence as before ~γ and obtain

II ≤ 2j
D
2

∑
x∈B

∞∑
l=1

γl |fl(x)|m(x)

≤ 2j
D
2 ‖~γ‖`2

∑
x∈B

‖~f(x)‖`2 m(x)

≤ 2−j (m−D
2

) 1

V (B)

∑
x∈B

‖~f(x)‖`2 m(x),

where we have repeated the computations to estimate ‖~γ‖`2 and we have used that

B ⊂ B(x0,
√
l). Collecting I and II we conclude (c) with αj = 2−j (m−D

2
). To obtain

(d) we just need to take m > Dw +D/2. �

Proof of Theorem 2.7, (ii). We use Theorem A.2 (indeed its vector-valued extension)

with p0 = 1, q0 = ∞, T = gP , Ak = I − (I − P 2(1+k2))m, with k the radius of the
ball B and m large enough. Fix w ∈ A1(Γ). Note that (a) follows from (i) since gP is
bounded on Lq(w) for every 1 < q < ∞. Notice that expanding Ak, (3.2) yields (b)

with αj = C e−c 4j . To see (c) we take any β > (sw)′, fix j ≥ 2 and f supported in

B. We proceed by duality. Let ~h ∈ L∞`2 (Γ) with supp~h ⊂ Cj(B) and ‖h‖
Lβ
′
`2

(Γ)
≤ 1.

Then, using (2.4) and that SP and Ak commute we have∣∣∣∑
x∈Γ

〈~gP (I −Ak)f(x),~h(x)〉`2 m(x)
∣∣∣ ≤∑

x∈Γ

|f(x)| |SP (I −Ak)~h(x)|m(x)

≤
∑
x∈B

‖~f(x)‖`2 m(x) sup
x∈B
|SP (I −Ak)~h(x)|.

Fixed x ∈ B and proceeding as in the proof of Theorem 2.7 part (iii) we obtain

|SP (I −Ak)~h(x)| ≤
∞∑
l=1

√
l sup
x∈B
|(I − P )P l(I −Ak)hl(x)|

≤
2j+1 (1+k2)m∑

l=1

· · ·+
∑

l>2j+1 (1+k2)m

· · · = I + II.
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To estimate I we expand Ak, use (3.15) and (3.24) to conclude that

I .
m∑
n=0

2j+1 (1+k2)m∑
l=1

√
l e
−c 4j k2

l+2 (1+k2)n

l + 2 (1 + k2)n

1

V (2j+1 B)

∑
x∈2j+1B

|hl(x)|m(x)

≤ 1

V (2j+1B)

∑
x∈2j+1B

‖~h(x)‖`2 m(x)
m∑
n=0

( 2j+1 (1+k2)m∑
l=1

l e
−c 4j k2

l+2 (1+k2)n

(l + 2 (1 + k2)n)2

) 1
2

≤ Cm e
−c 2j

( 1

V (2j+1B)

∑
x∈2j+1B

‖~h(x)‖β
′

`2 m(x)
) 1
β′

≤ Cm e
−c 2j V (2j+1B)

− 1
β′ .

We next estimate II as we did before:

II ≤ ‖~γ‖`2
∑

x∈2j+1B

‖~h(x)‖`2 m(x) ≤ 2−j (m−D
2

) 1

V (2j+1 B)

∑
x∈2j+1B

‖~h(x)‖`2 m(x)

≤ 2−j (m−D
2

) V (2j+1B)
− 1
β′
( ∑
x∈2j+1B

‖~h(x)‖β
′

`2 m(x)
) 1
β′ ≤ 2−j (m−D

2
) V (2j+1B)

− 1
β′ .

Gathering the obtained estimates and taking the sup over all such ~h we conclude that( 1

V (2j+1B)

∑
x∈Cj(B)

(gP (I −Ak)f(x))βm(x)
) 1
β

≤ Cm 2−j (m−D
2

) 1

V (B)

∑
x∈B

‖~f(x)‖`2 m(x).

Thus, we have proved (c) with αj = 2−j (m−D
2

). Finally, if m is taken so that m >
Dw +D/2 then we obtain (d) and the proof is complete. �

Proof of (3.25). We need the following estimate (see [6, p. 288] and the references
therein): for every x, y ∈ Γ and n ≥ 1

|pn(x, y)− pn+1(x, y)| ≤ C m(y)

nV (x,
√
n)
e−c

d(x,y)2

n . (3.28)

Then we clearly have

|(I − P )P ng(x)| ≤
∑
y∈Γ

C m(y)

nV (x,
√
n)
e−c

d(x,y)2

n |g(y)| ≤ C

nV (x,
√
n)

∑
y∈Γ

|g(y)|m(y).

�

Proof of (3.26). Given l ≥ 1 using (3.28) we have

‖(I − P )P lg‖L1(Γ) ≤
∑
x,y∈Γ

C m(y)

l V (x,
√
l)
e−c

d(x,y)2

l |g(y)|m(x)

≤ C

l

∑
y∈Γ

|g(y)|m(y)
∑
x∈Γ

e−c
d(x,y)2

l

V (x,
√
l)
m(x)
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≤ C

l

∑
y∈Γ

|g(y)|m(y), (3.29)

where the last estimate is as follows:

∑
x∈Γ

e−c
d(x,y)2

l

V (x,
√
l)
m(x) ≤

∑
x:d(x,y)≤4

√
l

1

V (x,
√
l)
m(x) +

∞∑
j=2

∑
x:2j<d(x,y)/

√
l≤2j+1

e−c 4j

V (x,
√
l)
m(x)

≤
∞∑
j=1

∑
x∈B(y,2j+1

√
l)

e−c 4j

V (x,
√
l)
m(x) ≤ C

∞∑
j=1

e−c 4j 2j D ≤ C,

where we have used that B(y, 2j+1
√
l) ⊂ B(x, 2j+2

√
l) and therefore V (y, 2j+1

√
l) ≤

C 2j D V (x,
√
l).

To obtain (3.26) we use (3.29):

‖P 2n (1+k2) − P 2 (n+1) (1+k2)g‖L1(Γ) ≤
2 (n+1) (1+k2)−1∑
l=2n (1+k2)

‖(P l − P l+1)g‖L1(Γ)

≤
∑
y∈Γ

|g(y)|m(y)

2 (n+1) (1+k2)−1∑
l=2n (1+k2)

C

l
≤ C

n

∑
y∈Γ

|g(y)|m(y).

�

4. Commutators

Let b ∈ BMO(Γ), that is,

‖b‖BMO(Γ) = sup
B

1

V (B)

∑
x∈B

|b(x)− bB|m(x) <∞,

where the sup is taken over all balls and bB is the average of b over B. Write T =
∇(I − P )−1/2 which is a sublinear operator. Given k ≥ 0 we define the kth order
commutator of the Riesz transform as

T kb f(x) = T ((b(x)− b)k f)(x), f ∈ L∞c (Γ), x ∈ Γ.

Note that T 0
b = T . One can alternatively define the commutators using the associated

linearization of T . Let us write again T = ~∇(I − P )−1/2 which is a linear operator.
We define the first order commutator T 1

b g = [b, T ]g = b T g − T (b g), and for k ≥ 2
the k-th order commutator is T kb = [b, T k−1

b ]. Here g, b are scalar valued and T kb g is
`2-valued . It is straightforward to see that T kb f = ‖T kb f‖`2 .

Theorem 4.1. Under the assumptions of Theorem 2.2, for every k ≥ 1, and w ∈
A∞(Γ) we have

‖T kb f‖Lp(Γ,w) ≤ Cp,w‖b‖kBMO(Γ) ‖f‖Lp(Γ,w), f ∈ L∞c (Γ),

for all p ∈ Ww(1, q+).

Note that even the unweighted Lp estimates for the commutators are new.
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Proof. The proof is similar to that of Theorem 2.2 using again the ideas from [5] and
[7], we point out the main changes. We only consider the case k = 1: the general
case follows by induction and the details are left to the reader (see [3, Section 6.2] for
similar arguments). As in [3, Lemma 6.1] it suffices to assume qualitatively b ∈ L∞(Γ)
and quantitatively ‖b‖BMO(Γ) = 1 and get uniform bounds.

We proceed as before working with T 1
b in place of T . Write F = |(T 1

b )∗f |q′0 with
f ∈ L∞`2 (Γ) with compact support. Observe that F ∈ L1(Γ) since b ∈ L∞(Γ) and T ∗

is bounded from L
q′0
`2(Γ) into Lq

′
0(Γ) (since 1 < q0 < q+) —we note that this is the only

place where we use that b ∈ L∞(Γ)—. Fixing B, we write b̂ = b− bB and decompose

T 1
b as T 1

b g = −T (b̂g) + b̂ T g. Using this equality one sees that (T 1
b )∗ = −(T ∗)1

b . Then
we have

F = |(T 1
b )∗f |q′0 = |(T ∗)1

bf |q
′
0 ≤ 2q

′
0−1 |b̂ T ∗f |q′0 + 2q

′
0−1 |T ∗(b̂ f)|q′0

≤
(
2q
′
0−1 |b̂ T ∗f |q′0 + 4q

′
0−1 |(I −A∗k)T ∗(b̂ f)|q′0

)
+ 4q

′
0−1 |A∗kT ∗(b̂ f)|q′0

= GB +HB.

We estimate HB. As before, let us set q = p′0/q
′
0 and by duality we take g ∈

Lp0(B,m/V (B)) with norm 1:( 1

V (B)

∑
y∈B

HB(y)qm(y)
) 1
q q′

0 = C
∣∣∣ 1

V (B)

∑
y∈Γ

T ∗(b̂ f)(x)Akg(y)m(y)
∣∣∣

= C
∣∣∣ 1

V (B)

∑
y∈Γ

(
− (T ∗)1

bf + b̂ T ∗f
)
(y)Akg(y)m(y)

∣∣∣
.

1

V (B)

∑
y∈Γ

|(T ∗)1
bf(y)| |Akg(y)|m(y) +

1

V (B)

∑
y∈Γ

|b̂(y)| |T ∗f(y)| |Akg(y)|m(y)

= I + II.

The estimate for I follows as in (3.1), (3.3) by using (3.2): for all x ∈ B,

I .
∞∑
j=1

2j D
( 1

V (2j+1B)

∑
y∈Cj(B)

F (y)m(y)
) 1
q′
0

( 1

V (2j+1B)

∑
y∈Cj(B)

|Akg(y)|q0 m(y)
) 1
q0

.MF (x)
1
q′
0 .

Regarding II we use Hölder’s inequality to obtain that for all x̄ ∈ B

II .
∞∑
j=1

2j D
( 1

V (2j+1B)

∑
y∈Cj(B)

|T ∗f(x)|q′0 m(y)
) 1
q′
0 sup
y∈Cj(B)

|Akg(y)|

×
( 1

V (2j+1B)

∑
y∈2j+1B

|b̂(y)|q0 m(y)
) 1
q0

. ‖b‖BMO(Γ)M(|T ∗f |q′0)(x̄)
1
q′
0

∞∑
j=1

2j De−c 4j (1 + j) .M(|T ∗f |q′0)(x̄)
1
q′
0 ,

where we have used (3.2) and John-Nirenberg’s inequality. Collecting I and II, we
conclude the first estimate in (A.1) with H1 = M(|T ∗f |q′0). Let us write GB,1 and
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GB,2 for each of the terms that define GB and we estimate them in turn. Let δ > 1
to be chosen and use John-Nirenberg’s inequality: for any x ∈ B, we have

1

V (B)

∑
y∈B

GB,1(y)m(y) = C
1

V (B)

∑
y∈B

|(b̂ T ∗f)(y)|q′0 m(y)

.
( 1

V (B)

∑
y∈B

|T ∗f |q′0 δ(x)m(y)
) 1
δ
( 1

V (B)

∑
y∈B

|b(y)− bB|q
′
0 δ
′
m(y)

) 1
δ′

. ‖b‖q
′
0

BMO(Γ)M(|T ∗f |q′0 δ)(x)
1
δ .

To estimate GB,2 we proceed as with GB in the proof of Theorem 2.2. Let g be
the corresponding dual function and use again John-Nirenberg’s inequality: for any
x ∈ B,( 1

V (B)

∑
y∈B

GB,2(y)m(y)
) 1
q′
0 = C

( 1

V (B)

∑
y∈B

|(I −Ak)∗ T ∗(b̂f)(y)|q′0 m(y)
) 1
q′
0

.
1

V (B)

∑
y∈Γ

|b̂(y)| ‖f(y)‖`2 ‖T (I −Ak)g(y)‖`2 m(y)

.
∞∑
j=1

2j D
( 1

V (2j+1B)

∑
y∈2j+1B

|b(y)− bB|q
′
0 δ
′
m(y)

) 1
q′
0
δ′

×
( 1

V (2j+1B)

∑
y∈Cj(B)

‖f(y)‖q
′
0 δ

`2 m(y)
) 1
q′
0
δ

×
( 1

V (2j+1B)

∑
y∈Cj(B)

|T (I −Ak)g(y)|q0 m(y)
) 1
q0

.M(‖f‖δ q
′
0

`2 )(x)
1
δ q′

0

∞∑
j=1

2j D (1 + j)
( 1

V (2j+1B)

∑
y∈Cj(B)

|T (I −Ak)g(y)|q0 m(y)
) 1
q0

.M(‖f‖δ q
′
0

`2 )(x)
1
δ q′

0 .

where in the last estimate we have proceeded as in (3.7) using (3.4) for j ≥ 2 and
(3.6) for j = 1. Gathering the estimates for GB,1 and GB,2 we conclude the second

estimate in (A.1) with G = M(|T ∗f |q′0 δ) 1
δ +M(‖f‖δ q

′
0

`2 )
1
δ .

We apply Theorem A.1 as in the proof of Theorem 2.2. In this case, we observe
that since v ∈ Ar(Γ), we can take 1 < δ < r so that v ∈ Ar/δ(Γ). Then, the desired
estimate follows

‖(T 1
b )∗f‖q

′
0

Lp′ (Γ,v)
≤ ‖MF‖Lr(Γ,v) . ‖G‖Lr(Γ,v) + ‖H1‖Lr(Γ,v)

≤ ‖M(‖f‖δ q
′
0

`2 )
1
δ ‖Lr(Γ,v) + ‖M(|T ∗f |δ q′0)

1
δ ‖Lr(Γ,v)

. ‖f‖q
′
0

Lp
′
`2

(Γ,v)
+ ‖T ∗f‖q

′
0

Lp′ (Γ,v)

. ‖f‖q
′
0

Lp
′
`2

(Γ,v)
,

where we have used that T ∗ is bounded from Lp
′

`2(Γ, v) into Lp
′
(Γ, v). �



WEIGHTED NORM INEQUALITIES ON GRAPHS 27

Appendix A. Auxiliary results

We use the following version of [3, Theorem 3.1] in the setting of spaces of homo-
geneous type (see [3, Section 5]).

Theorem A.1. Fix 1 < q <∞, a ≥ 1 and v ∈ RHs′(Γ), 1 < s < q. Then, there exist
C and K0 ≥ 1 with the following property: Assume that F , G and H1 are non-negative
functions on Γ such that for any ball B there exist non-negative functions GB and HB

with F (x) ≤ GB(x) +HB(x) for a.e. x ∈ B and, for all x, x̄ ∈ B,( 1

V (B)

∑
x∈B

HB(x)qm(x)
) 1
q ≤ aMF (x) +H1(x̄),

1

V (B)

∑
x∈B

GB(x)m(x) ≤ G(x).

(A.1)
If 1 < r ≤ q/s and F ∈ L1(Γ) (this assumption being only qualitative) we have

‖MF‖Lr(Γ,v) ≤ C ‖G‖Lr(Γ,v) + C ‖H1‖Lr(Γ,v). (A.2)

The following result is taken from [5, Theorem 3.3], see also [3, Theorem 8.8].

Theorem A.2. Let 1 ≤ p0 < q0 ≤ ∞ and w ∈ A∞(Γ). Let T be a sublinear operators
defined on L2(Γ) and {Ak}k≥1 be a family of operator acting from L∞c (Γ) into on
L2(Γ). Assume the following conditions:

(a) There exists q ∈ Ww(p0, q0) such that T is bounded from Lq(Γ, w) to Lq,∞(Γ, w).

(b) For all j ≥ 1, there exist constants αj such that for any ball B with k its radius
and for any f ∈ L∞c (Γ) supported in B,( 1

V (2j+1 B)

∑
x∈Cj(B)

|Akf(x)|q0 m(x)
) 1
q0 ≤ αj

( 1

V (B)

∑
x∈B

|f(x)|p0 m(x)
) 1
p0 . (A.3)

(c) There exists β > (sw)′, i.e. w ∈ RHβ′(Γ), with the following property: for all
j ≥ 2, there exist constants αj such that for any ball B with k its radius and for
any f ∈ L∞c (Γ) supported in B and for j ≥ 2,( 1

V (2j+1 B)

∑
x∈Cj(B)

|T (I −Ar(B))f(x)|βm(x)
) 1
β ≤ αj

( 1

V (B)

∑
x∈B

|f(x)|p0 m(x)
) 1
p0 .

(A.4)

(d)
∑

j αj 2Dw j <∞ for αj in (b) and (c), where Dw is the doubling constant of the

measure w(x)m(x).

If w ∈ A1(Γ) ∩RH(q0/p0)′(Γ) then, for all f ∈ L∞c (Γ),

‖Tf‖Lp0,∞(Γ,w) ≤ C ‖f‖Lp0 (Γ,w).

The following result is borrowed from [3], see [3, Theorem 3.7] for the Euclidean
version and [3, Section 5] for the extension to spaces of homogeneous type.

Theorem A.3. Let 1 ≤ p0 < q0 ≤ ∞. Suppose that T is a sublinear operator acting
on Lp0(Γ), (Ak)k≥1 is a family of operators acting from a subspace D of Lp0(Γ) into
Lp0(Γ) and S is an operator from D into the space of measurable functions on Γ.
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Assume that( 1

V (B)

∑
x∈B

|T (I −Ak)f |p0m(x)
) 1
p0 ≤ C

∑
j≥1

αj

( 1

V (2j+1 B)

∑
x∈2j+1B

|Sf(x)|p0 m(x)
) 1
p0

(A.5)
and( 1

V (B)

∑
x∈B

|TAkf |q0m(x)
) 1
q0 ≤ C

∑
j≥1

αj

( 1

V (2j+1B)

∑
x∈2j+1B

|Tf(x)|p0 m(x)
) 1
p0 ,

(A.6)
for all f ∈ D, every ball B with radius k and for some sequence {αj}j with

∑
j≥1 αj <

∞. Let p0 < p < q0 and w ∈ A p
p0

(Γ) ∩RH(
q0
p

)′(Γ). Then for all f ∈ D we have

‖Tf‖Lp(Γ,w) ≤ C‖Sf‖Lp(Γ,w).

We present an adapted weighted Calderón-Zygmund decomposition that extends
[6, Proposition 1.15] (see also [4, Lemma 6.6] and [3, Proposition 9.1]).

Proposition A.4. Assume that (D) and (P1) hold. Let w ∈ A1(Γ) and take a
function f on Γ such that ∇f ∈ L1(Γ, w) and λ > 0. Then, one can find a collection
of balls (Bi)i∈I , functions (bi)i∈I and g such that the following properties hold:

f = g +
∑
i∈I

bi, (A.7)

‖∇g‖∞ ≤ Cλ, (A.8)

supp bi ⊂ Bi,
∑
x∈2Bi

∇bi(x)w(x)m(x) ≤ Cλw(Bi), (A.9)

∑
x∈Bi

|bi(x)|w(x)m(x) ≤ Cλw(Bi) r(Bi), (A.10)

∑
i∈I

w(Bi) ≤ Cλ−1
∑
x∈Γ

∇f(x)w(x)m(x), (A.11)

∑
i∈I

χBi ≤ N, (A.12)

where C and N depend on the constants in (D) and (P1) and w ∈ A1(Γ).

Proof. The proof follows the steps of [6, Proposition 1.15] with q = p = 1 with
the underlying measure w(x)m(x) that is doubling since w ∈ A1(Γ). We need a
weighted-Poincaré inequality. We claim that there exists τ ≥ 1 such that for every
f ∈ L1

loc(Γ, w) such that ∇f ∈ L1
loc(Γ, w) and for every ball B we have∑

y∈B

|f(y)− fB,w| w(y)m(y) ≤ C r(B)
∑
y∈τ B

|∇f(y)| w(y)m(y), (P1(w))

where fB,w is the w-average of f on B. We notice that in [6, Proposition 1.15] the
corresponding unweighted Poincaré inequality holds with τ = 1. Here we may have
τ > 1, but a closer examination of the proof reveals that this change is harmless:
the balls come from a Whitney covering and therefore τ B on the right hand-side will
be handled by passing to a sufficiently large ball that meets the complement of the
level set (details are left to the reader). Consequently, one obtains (A.7), (A.8), (A.9),
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(A.11), (A.12). It remains to show (A.10). Following the notation in [6, Proposition
1.15] and using (P1(w)),∑

x∈Bi

|bi(x)|w(x)m(x) =
∑
x∈Bi

|f(x)− fBi,w|χi(x)w(x)m(x)

≤
∑
x∈Bi

|f(x)− fBi,w|w(x)m(x)

. r(Bi)
∑
x∈τ Bi

|∇f(y)| w(y)m(y)

≤ r(Bi)w(τ Bi)Mw(∇f)(x0)

. r(Bi)w(Bi)λ,

where x0 ∈ Bi ∩ Ωc, Ω = {x ∈ Γ : Mw(∇f)(x) > λ} (here Bi stands for a dilation
of the Whitney ball Bi that meets Ωc) and Mw is the Hardy-Littlewood maximal
function for the measure w(x)m(x).

To complete the proof we show (P1(w)). We use [11]. From (P1) and w ∈ A1(Γ)

1

V (B)

∑
y∈B

|f(y)− fB| m(y) ≤ C r(B)
1

w(B)

∑
y∈B

|∇f(y)| w(B)

V (B)
m(y)

≤ C r(B)
1

w(B)

∑
y∈B

|∇f(y)| w(y)m(y) = a(B).

Let {Bi}i ⊂ B be a family of disjoint balls. Then, w ∈ A1(Γ) and (1.7) imply(r(Bi)

r(B)

)D
.
V (Bi)

V (B)
=

1

w(B)

∑
x∈Γ

χBi
(x)

w(B)

V (B)
m(x)

.
1

w(B)

∑
x∈Γ

χBi
(x)w(x)m(x) =

w(Bi)

w(B)
.

We fix 1 < r ≤ D
D−1

if D > 1 and 1 < r <∞ if D = 1. Then, it is easy to obtain∑
i

a(Bi)
r w(Bi) =

∑
i

r(Bi)
r

w(Bi)r−1

(∑
x∈Bi

∇f(x)w(x)m(x)
)r

.
r(B)r

w(B)r−1

∑
i

(w(Bi)

w(B)

) r−D (r−1)
D

(∑
x∈Bi

∇f(x)w(x)m(x)
)r

≤ r(B)r

w(B)r−1

(∑
i

∑
x∈Bi

∇f(x)w(x)m(x)
)r

≤ r(B)r

w(B)r−1

(∑
x∈B

∇f(x)w(x)m(x)
)r

= a(B)r w(B).

We apply [11, Theorem 2.3] and Kolmogorov’s inequality to conclude that

1

w(B)

∑
y∈B

|f(y)− fB,w| w(y)m(y) ≤ 2

w(B)

∑
y∈B

|f(y)− fB| w(y)m(y)
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≤ ‖f − fB‖Lr,∞(Γ,
w(x)m(x)
w(B)

)
≤ C a(τ B) = C r(B)

1

w(τ B)

∑
y∈τ B

|∇f(y)| w(y)m(y),

and this readily leads to (P1(w)). �
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