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Abstract. We give an overview of the generalized Calderón-Zygmund theory for
“non-integral” singular operators, that is, operators without kernels bounds but ap-
propriate off-diagonal estimates. This theory is powerful enough to obtain weighted
estimates for such operators and their commutators with BMO functions. Lp − Lq

off-diagonal estimates when p ≤ q play an important role and we present them.
They are particularly well suited to the semigroups generated by second order ellip-
tic operators and the range of exponents (p, q) rules the Lp theory for many operators
constructed from the semigroup and its gradient. Such applications are summarized.
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1. Introduction

The Hilbert transform in R and the Riesz transforms in Rn are prototypes of
Calderón-Zygmund operators. They are singular integral operators represented by
kernels with some decay and smoothness. Since the 50’s, Calderón-Zygmund opera-
tors have been thoroughly studied. One first shows that the operator in question is
bounded on L2 using spectral theory, Fourier transform or even the powerful T (1), T (b)
theorems. Then, the smoothness of the kernel and the Calderón-Zygmund decompo-
sition lead to the weak-type (1,1) estimate, hence strong type (p, p) for 1 < p < 2. For
p > 2, one uses duality or interpolation from the L∞ to BMO estimate, which involves
also the regularity of the kernel. Still another way for p > 2 relies on good-λ estimates
via the Fefferman-Stein sharp maximal function. It is interesting to note that both
Calderón-Zygmund decomposition and good-λ arguments use independent smooth-
ness conditions on the kernel, allowing different generalizations for each argument.
Weighted estimates for these operators can be proved by means of the Fefferman-
Stein sharp maximal function, one shows boundedness on Lp(w) for every 1 < p <∞
and w ∈ Ap, and a weighted weak-type (1, 1) for weights in A1. Again, the smooth-
ness of the kernel plays a crucial role. We refer the reader to [Gra] and [GR] for more
details on this topic.

It is natural to wonder whether the smoothness of the kernel is needed or, even
more, whether one can develop a generalized Calderón-Zygmund theory in absence of

Date: July 10, 2009.
2000 Mathematics Subject Classification. 42B20, 42B25, 47A06, 35J15, 47A60, 58J35.
Key words and phrases. Calderón-Zygmund theory, spaces of homogeneous type, Muckenhoupt

weights, singular non-integral operators, commutators with BMO functions, elliptic operators in
divergence form, holomorphic calculi, Riesz transforms, square functions, Riemannian manifolds.

This work was partially supported by the European Union (IHP Network “Harmonic Analysis
and Related Problems” 2002-2006, Contract HPRN-CT-2001-00273-HARP). The second author was
also supported by MEC “Programa Ramón y Cajal, 2005”, by MEC Grant MTM2007-60952, and
by UAM-CM Grant CCG07-UAM/ESP-1664.

1



2 PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

kernels. Indeed, one finds Calderón-Zygmund like operators without any (reasonable)
information on their kernels which, following the implicit terminology introduced in
[BK1], can be called singular “non-integral” operators in the sense that they are still
of order 0 but they do not have an integral representation by a kernel with size and/or
smoothness estimates. The goal is to obtain some range of exponents p for which Lp

boundedness holds, and because this range may not be (1,∞), one should abandon
any use of kernels. Also, one seeks for weighted estimates trying to determine for
which class of Muckenhoupt these operators are bounded on Lp(w). Again, because
the range of the unweighted estimates can be a proper subset of (1,∞) the class Ap,
and even the smaller class A1, might be too large.

The generalized Calderón-Zygmund theory allows us to reach this goal: much of
all the classical results extend. As a direct application, we show in Corollary 3.3 that
assuming that for a bounded (sub)linear operator T on L2, the boundedness on Lp

—and even on Lp(w) for Ap weights— follows from two basic inequalities involving
the operator and its action on some functions and not its kernel:∫

Rn\4B
|Tf(x)| dx ≤ C

∫
B

|f(x)| dx, (1.1)

for any ball B and any bounded function f supported on B with mean 0, and

sup
x∈B
|Tf(x)| ≤ C−

∫
2B

|Tf(x)| dx+ C inf
x∈B

Mf(x), (1.2)

for any ball B and any bounded function f supported on Rn \4B. The first condition
is used to go below p = 2, that is, to obtain that T is of weak-type (1, 1). On the other
hand, (1.2) yields the estimates for p > 2 and also the weighted norm inequalities in
Lp(w) for w ∈ Ap, 1 < p <∞. In Proposition 3.6 below, we easily show that classical
Calderón-Zygmund operators with smooth kernels satisfy these two conditions —
(1.1) is a simple reformulation of the Hörmander condition [Hör] and (1.2) uses the
regularity in the other variable.

The previous conditions are susceptible of generalization: in (1.1) one could have
an Lp0−Lp0 estimate with p0 ≥ 1, and the L1−L∞ estimate in (1.2) could be replaced
by an Lp0 −Lq0 condition with 1 ≤ p0 < q0 ≤ ∞. This would drive us to estimates on
Lp in the range (p0, q0). Still, the corresponding conditions do not involve the kernel.

Typical families of operators whose ranges of boundedness are proper subsets of
(1,∞) can be built from a divergence form uniformly elliptic complex operator L =
− div(A∇) in Rn. One can consider the operator ϕ(L), with bounded holomorphic
functions ϕ on sectors; the Riesz transform ∇L−1/2; some square functions “à la”
Littlewood-Paley-Stein: one, gL, using only functions of L, and the other, GL, com-
bining functions of L and the gradient operator; estimates that control the square
root L1/2 by the gradient. These operators can be expressed in terms of the semi-
group {e−t L}t>0, its gradient {

√
t∇e−t L}t>0, and their analytic extensions to some

sector in C. Let us stress that those operators may not be representable with “usable”
kernels: they are “non-integral”.

The unweighted estimates for these operators are considered in [Aus]. The instru-
mental tools are two criteria for Lp boundedness, valid in spaces of homogeneous type.
One is a sharper and simpler version of a theorem by Blunck and Kunstmann [BK1],
based on the Calderón-Zygmund decomposition, where weak-type (p, p) for a given p
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with 1 ≤ p < p0 is presented, knowing the weak-type (p0, p0). We also refer to [BK2]
and [HM] where Lp estimates are shown for the Riesz transforms of elliptic operators
for p < 2 starting from the L2 boundedness proved in [AHLMT].

The second criterion is taken from [ACDH], inspired by the good-λ estimate in the
Ph.D. thesis of one of us [Ma1, Ma2], where strong type (p, p) for some p > p0 is
proved and applied to Riesz transforms for the Laplace-Beltrami operators on some
Riemannian manifolds. A criterion in the same spirit for a limited range of p’s also
appears implicitly in [CP] towards perturbation theory for linear and non-linear elliptic
equations and more explicitly in [Sh1, Sh2].

These results are extended in [AM1] to obtain weighted Lp bounds for the operator
itself, its commutators with a BMO function and also vector-valued expressions. Us-
ing the machinery developed in [AM2] concerning off-diagonal estimates in spaces of
homogeneous type, weighted estimates for the operators above are studied in [AM3].

Sharpness of the ranges of boundedness has been also discussed in both the weighted
and unweighted case. From [Aus], we learn that the operators that are defined in terms
of the semigroup (as ϕ(L) or gL) are ruled by the range where the semigroup {e−t L}t>0

is uniformly bounded and/or satisfies off-diagonal estimates (see the precise definition
below). When the gradient appears in the operators (as in the Riesz transform∇L−1/2

or in GL), the operators are bounded in the same range where {
√
t∇e−t L}t>0 is

uniformly bounded and/or satisfies off-diagonal estimates.

In the weighted situation, given a weight w ∈ A∞, one studies the previous proper-
ties for the semigroup and its gradient. Now the underlying measure is no longer dx
but dw(x) = w(x) dx which is a doubling measure. Therefore, we need an appropriate
definition of off-diagonal estimates in spaces of homogeneous type with the following
properties: it implies uniform Lp(w) boundedness, it is stable under composition, it
passes from unweighted to weighted estimates and it is handy in practice. In [AM2]
we propose a definition only involving balls and annuli. Such definition makes clear
that there are two parameters involved, the radius of balls and the parameter of the
family, linked by a scaling rule independently on the location of the balls. The price
to pay for stability is a somewhat weak definition (in the sense that we can not be
greedy in our demands). Nevertheless, it covers examples of the literature on semi-
groups. Furthermore, in spaces of homogeneous type with polynomial volume growth
(that is, the measure of a ball is comparable to a power of its radius, uniformly over
centers and radii) it coincides with some other possible definitions. This is also the
case for more general volume growth conditions, such as the one for some Lie groups
with a local dimension and a dimension at infinity. Eventually, it is operational for
proving weighted estimates in [AM3], which was the main motivation for developing
that material.

Once it is shown in [AM2] that there exist ranges where the semigroup and its
gradient are uniformly bounded and/or satisfy off-diagonal estimates with respect
to the weighted measure dw(x) = w(x) dx, we study the weighted estimates of the
operators associated with L. As in the unweighted situation considered in [Aus],
the ranges where the operators are bounded are ruled by either the semigroup or its
gradient. To do that, one needs to apply two criteria in a setting with underlying
measure dw. Thus, we need versions of those results valid in Rn with the Euclidean
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distance and the measure dw, or more generally, in spaces of homogeneous type (when
w ∈ A∞ then dw is doubling).

This article is a review on the subject with no proofs except for the section dealing
with Calderón-Zygmund operators. The plan is as follows. In Section 2 we give some
preliminaries regarding doubling measures and Muckenhoupt weights. In Section 3
we present the two main results that generalize the Calderón-Zygmund theory. The
easy application to classical Calderón-Zygmund operators is given with proofs. We
devote Section 4 to discuss two notions of off-diagonal estimates: one that holds for
arbitrary closed sets, and another one, which is more natural in the weighted case,
involving only balls and annuli. In Section 5 we introduce the class of elliptic operators
and present their off-diagonal properties. Unweighted and weighted estimates for the
functional calculus, Riesz transforms and square functions associated such elliptic
operators are in Section 6. The strategy to prove these results is explained in Section 7.
Finally in Section 8 we present some further applications concerning commutators with
BMO functions, reverse inequalities for square roots and also vector-valued estimates.
We also give some weighted estimates for fractional operators (see [AM5]) and Riesz
transforms on manifolds (see [AM4]).

2. Preliminaries

We use the symbol A . B for A ≤ CB for some constant C whose value is not
important and independent of the parameters at stake.

Given a ball B ⊂ Rn with radius r(B) and λ > 0, λB denotes the concentric ball
with radius r(λB) = λ r(B).

The underlying space is the Euclidean setting Rn equipped with the Lebesgue mea-
sure or more in general with a doubling measure µ. Let us recall that µ is doubling
if

µ(2B) ≤ C µ(B) <∞

for every ball B. By iterating this expression, one sees that there exists D, which is
called the doubling order of µ, so that µ(λB) ≤ Cµ λ

D µ(B) for every λ ≥ 1 and every
ball B.

Given a ball B, we write Cj(B) = 2j+1 B \ 2j B when j ≥ 2, and C1(B) = 4B. Also
we set

−
∫
B

h dµ =
1

µ(B)

∫
B

h(x) dµ(x), −
∫
Cj(B)

h dµ =
1

µ(2j+1B)

∫
Cj(B)

h dµ.

Let us introduce some classical classes of weights. Let w be a weight (that is, a non
negative locally integrable function) on Rn. We say that w ∈ Ap, 1 < p <∞, if there
exists a constant C such that for every ball B ⊂ Rn,(

−
∫
B

w dx
)(
−
∫
B

w1−p′ dx
)p−1

≤ C.

For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball B ⊂ Rn,

−
∫
B

w dx ≤ C w(y), for a.e. y ∈ B.
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We write A∞ = ∪p≥1Ap. The reverse Hölder classes are defined in the following way:
w ∈ RHq, 1 < q <∞, if there is a constant C such that for any ball B,(

−
∫
B

wq dx
) 1
q ≤ C −

∫
B

w dx.

The endpoint q =∞ is given by the condition w ∈ RH∞ whenever there is a constant
C such that for any ball B,

w(y) ≤ C −
∫
B

w dx, for a.e. y ∈ B.

The following facts are well-known (see for instance [GR, Gra]).

Proposition 2.1.

(i) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q <∞.

(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.

(iii) If w ∈ Ap, 1 < p <∞, then there exists 1 < q < p such that w ∈ Aq.
(iv) If w ∈ RHq, 1 < q <∞, then there exists q < p <∞ such that w ∈ RHp.

(v) A∞ =
⋃

1≤p<∞

Ap =
⋃

1<q≤∞

RHq.

(vi) If 1 < p <∞, w ∈ Ap if and only if w1−p′ ∈ Ap′.
(vii) If w ∈ A∞, then the measure dw(x) = w(x) dx is a Borel doubling measure.

Given 1 ≤ p0 < q0 ≤ ∞ and w ∈ A∞ we define the set

Ww(p0, q0) =
{
p : p0 < p < q0, w ∈ A p

p0
∩RH( q0p )

′
}
.

If w = 1, then W1(p0, q0) = (p0, q0). As it is shown in [AM1], if not empty, we have

Ww(p0, q0) =
(
p0 rw,

q0

(sw)′

)
where rw = inf{r ≥ 1 : w ∈ Ar} and sw = sup{s > 1 : w ∈ RHs}.

If the Lebesgue measure is replaced by a Borel doubling measure µ, all the above
properties remain valid with the notation change, see [ST]. A particular case is the
doubling measure dw(x) = w(x) dx with w ∈ A∞.

3. Generalized Calderón-Zygmund theory

As mentioned before, we have two criteria that allow us to derive the unweighted
and weighted estimates. These generalize the classical Calderón-Zygmund theory and
we would like to emphasize that the conditions imposed involve the operator and its
action on some functions but not its kernel.

The following result appears in [BK1] in a slightly more complicated way with
extra hypotheses. See [Aus] and [AM1] for stronger forms and more references. We
notice that this result is applied to go below a given q0, where it is assumed that
the operator in question is a priori bounded on Lq0(µ). The proof is based on the
Calderón-Zygmund decomposition.
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Theorem 3.1. Let µ be a doubling Borel measure on Rn, D its doubling order and
1 ≤ p0 < q0 ≤ ∞. Suppose that T is a sublinear operator bounded on Lq0(µ) and that
{AB} is a family indexed by balls of linear operators acting from L∞c (µ) (the set of
essentially bounded functions with bounded support) into Lq0(µ). Assume that

1

µ(4B)

∫
Rn\4B

|T (I −AB)f | dµ .
(
−
∫
B

|f |p0 dµ
) 1
p0 , (3.1)

and, for j ≥ 1, (
−
∫
Cj(B)

|ABf |q0 dµ
) 1
q0 ≤ αj

(
−
∫
B

|f |p0 dµ
) 1
p0 , (3.2)

for all ball B and for all f ∈ L∞c (µ) with supp f ⊂ B. If
∑

j αj 2D j <∞, then T is of

weak type (p0, p0), hence T is of strong type (p, p) for all p0 < p < q0. More precisely,
there exists a constant C such that for all f ∈ L∞c (µ)

‖Tf‖Lp(µ) ≤ C ‖f‖Lp(µ).

A stronger form of (3.1) is with the notation above,(
−
∫
Cj(B)

|T (I −AB)f |p0 dµ
) 1
p0 ≤ αj

(
−
∫
B

|f |p0 dµ
) 1
p0 , j ≥ 2. (3.3)

Our second result is based on a good-λ inequality. See [ACDH], [Aus] (in the
unweighted case) and [AM1] for more general formulations. In contrast with Theorem
3.1, we do not assume any a priori estimate for T . However, in practice, to deal with
the local term (where f is restricted to 4B) in (3.4), one uses that the operator is
bounded on Lp0(µ). Thus, we apply this result to go above p0 in the unweighted case
and also to show weighted estimates.

Theorem 3.2. Let µ be a doubling Borel measure on Rn and 1 ≤ p0 < q0 ≤ ∞. Let
T be a sublinear operator acting on Lp0(µ) and let {AB} be a family indexed by balls
of operators acting from L∞c (µ) into Lp0(µ). Assume that(

−
∫
B

|T (I −AB)f |p0 dµ
) 1
p0 ≤

∑
j≥1

αj

(
−
∫

2j+1B

|f |p0 dµ
) 1
p0 , (3.4)

and (
−
∫
B

|TABf |q0 dµ
) 1
q0 ≤

∑
j≥1

αj

(
−
∫

2j+1B

|Tf |p0 dµ
) 1
p0 , (3.5)

for all f ∈ L∞c (µ), all B and for some αj satisfying
∑

j αj <∞.

(a) If p0 < p < q0, there exists a constant C such that for all f ∈ L∞c (µ),

‖Tf‖Lp(µ) ≤ C ‖f‖Lp(µ).

(b) Let p ∈ Ww(p0, q0), that is, p0 < p < q0 and w ∈ A p
p0
∩ RH( q0p )

′. There is a

constant C such that for all f ∈ L∞c (µ),

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w). (3.6)

An operator acting from A to B is just a map from A to B. Sublinearity means
|T (f + g)| ≤ |Tf | + |Tg| and |T (λf)| = |λ| |Tf | for all f, g and λ ∈ R or C. Next,
Lp(w) is the space of complex valued functions in Lp(dw) with dw = w dµ. However,
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all this extends to functions valued in a Banach space and also to functions defined
on a space of homogeneous type.

Let us notice that in both results, the cases q0 = ∞ are understood in the sense
that the Lq0-averages are indeed essential suprema. One can weaken (3.5) by adding
to the right hand side error terms such as M(|f |p0)(x)1/p0 for any x ∈ B (see [AM1,
Theorem 3.13]).

3.1. Application to Calderón-Zygmund operators. We see that the previous re-
sults allow us to reprove the unweighted and weighted estimates of classical Calderón-
Zygmund operators. We emphasize that the conditions imposed do not involve the
kernels of the operators.

Corollary 3.3. Let T be a sublinear operator bounded on L2(Rn).

(i) Assume that, for any ball B and any bounded function f supported on B with
mean 0, we have ∫

Rn\4B
|Tf(x)| dx ≤ C

∫
B

|f(x)| dx. (3.7)

Then, T is of weak-type (1, 1) and consequently bounded on Lp(Rn) for every
1 < p < 2.

(ii) Assume that, for any ball B and any bounded function f supported on Rn\4B,
we have

sup
x∈B
|Tf(x)| ≤ C−

∫
2B

|Tf(x)| dx+ C inf
x∈B

Mf(x). (3.8)

Then, T is bounded on Lp(Rn) for every 2 < p <∞.

(iii) If T satisfies (3.7) and (3.8) then, T is bounded on Lp(w), for every 1 < p <∞
and w ∈ Ap.

Proof of (i). We are going to use Theorem 3.1 with p0 = 1 and q0 = 2. By assumption
T is bounded on L2(Rn). For every ball B we set ABf(x) =

(
−
∫
B
f dx

)
χB(x). Then,

as a consequence of (3.7) we obtain (3.1) with p0 = 1:

1

|4B|

∫
Rn\4B

|T (I −AB)f | dx . −
∫
B

|(I −AB)f | dx . −
∫
B

|f | dx.

On the other hand, we observe that ABf(x) ≡ 0 for x ∈ Cj(B) and j ≥ 2, and for
x ∈ C1(B) = 4B we have |ABf(x)| ≤ −

∫
B
|f | dx. This shows (3.2) with p0 = 1 and

q0 = 2.† Therefore, Theorem 3.1 yields that T is of weak-type (1, 1).
By Marcinkiewicz interpolation theorem, it follows that T is bounded on Lp(Rn)

for 1 < p < 2. �

Proof of (ii). We use (a) of Theorem 3.2 with p0 = 2 and q0 = ∞. For every ball B
we set ABf(x) = χRn\4B(x) f(x). Using that T is bounded on L2(Rn) we trivially
obtain (

−
∫

2B

|T (I −AB)f |2 dx
) 1

2
.
(
−
∫

4B

|f |2 dx
) 1

2
, (3.9)

†In fact, we have (3.2) with p0 = 1 and q0 =∞. We take q0 = 2 since in Theorem 3.1 we need T
bounded on Lq0(Rn). This shows that one can assume boundedness on Lr(Rn) for some 1 < r <∞
(in place of L2(Rn)), and the argument goes through.
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which implies (3.4) with p0 = 2. On the other hand, (3.8) and (3.9) yield

‖TABf‖L∞(B) . −
∫

2B

|TAB f(x)| dx+ inf
x∈B

M(ABf)(x)

≤ −
∫

2B

|T (I −AB) f(x)| dx+−
∫

2B

|Tf(x)| dx+ inf
x∈B

Mf(x)

.
(
−
∫

4B

|f |2 dx
) 1

2
+−
∫

2B

|Tf(x)| dx+ inf
x∈B

Mf(x)

≤ −
∫

2B

|Tf(x)| dx+ inf
x∈B

M(|f |2)(x)
1
2 .

Thus, we have obtained (3.5) with q0 = ∞, p0 = 2 and αj = 0, j ≥ 2, plus an error

term infx∈BM(|f |2)(x)
1
2 . Applying part (a) of Theorem 3.2 with the remark that

follows it, we conclude that T is bounded on Lp(Rn) for every 2 < p <∞.‡

Let us observe that part (b) in Theorem 3.2 yields weighted estimates: T is bounded
on Lp(w) for every 2 < p <∞ and w ∈ Ap/2. �

Proof of (iii). Note that (ii) already gives weighted estimates. Here we improve this
by assuming (i), that is, by using that T is bounded on Lq(Rn) for 1 < q < 2.

Fixed 1 < p <∞ and w ∈ Ap, there exists 1 < r < p such that w ∈ Ap/r. Then, by
(i) (as we can take r very close to 1) we have that T is bounded on Lr(Rn). Then, as
in (3.9), we have (

−
∫

2B

|T (I −AB)f |r dx
) 1
r
.
(
−
∫

4B

|f |r dx
) 1
r
.

This estimate allows us to obtain as before

‖TABf‖L∞(B) . −
∫

2B

|Tf(x)| dx+ inf
x∈B

M(|f |r)(x)
1
r .

Thus we can apply part (b) of Theorem 3.2 with p0 = r and q0 =∞ to conclude that
T is bounded on Lq(u) for every r < q <∞ and u ∈ Aq/r. In particular, we have that
T is bounded on Lp(w). �

Remark 3.4. We mention [AM1, Theorem 3.14] and [Sh2, Theorem 3.1] where (3.8)
is generalized to(

−
∫
B

|Tf(x)|q0 dx
) 1
q0 .

(
−
∫

2B

|Tf(x)|p0 dx
) 1
p0 + inf

x∈B
M
(
|f |p0

)
(x)

1
p0 ,

for some 1 ≤ p0 < q0 ≤ ∞ and f bounded with support away from 4B. In that
case, if T is bounded on Lp0(Rn), proceeding as in the proofs of (ii) and (iii), one
concludes that T is bounded on Lp(Rn) for every p0 < p < q0 and also on Lp(w) for
every p0 < p < q0 and w ∈ Ap/p0 ∩RH(q0/p)′ .

Remark 3.5. To show that T maps L1(w) into L1,∞(w) for every w ∈ A1 one needs to
strengthen (3.7). For instance, we can assume that (3.7) holds with dw(x) = w(x) dx
in place of dx and for functions f with mean value zero with respect to dx. In this case,
we choose AB as in (i). Taking into account that w ∈ A1 yields −

∫
B
|f | dx . −

∫
B
|f | dw,

the proof follows the same scheme replacing everywhere (except for the definition

‡As before, if one a priori assumes boundedness on Lr(Rn) for some 1 < r < ∞ (in place of
L2(Rn)) the same computations hold with r replacing 2, see the proof of (iii).
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of AB) dx by dw. Notice that the boundedness of T on L2(w) is needed, this is
guaranteed by (iii) as A1 ⊂ A2.

Let us observe that we can assume that (3.7) holds with dw(x) = w(x) dx in place
of dx, but for functions f with mean value zero with respect to dw. In that case, the
proof goes through by replacing everywhere dx by dw, even in the definition of AB.

When applying this to classical operators the first approach is more natural.

Proposition 3.6. Let T be a singular integral operator with kernel K, that is,

Tf(x) =

∫
Rn
K(x, y) f(y) dy, x /∈ supp f, f ∈ L∞c ,

where K is a measurable function defined away from the diagonal.

(i) If K satisfies the Hörmander condition∫
|x−y|>2 |y−y′|

|K(x, y)−K(x, y′)| dx ≤ C

then (3.7) holds.

(ii) If K satisfies the Hölder condition

|K(x, y)−K(x′, y)| ≤ C
|x− x′|γ

|x− y|n+γ
, |x− y| > 2 |x− x′|,

for some γ > 0, then (3.8) holds.

Remark 3.7. Notice that in (i) the smoothness is assumed with respect to the second
variable and in (ii) with respect to the first variable. If one assumes the stronger
Hölder condition in (i), it is easy to see that (3.7) holds with dw(x) = w(x) dx in
place of dx for every w ∈ A1. Therefore, the first approach in Remark 3.5 yields that
T maps L1(w) into L1,∞(w) for w ∈ A1.

Proof. We start with (i). Let B be a ball with center xB. For every f ∈ L∞c (Rn) with
supp f ⊂ B and

∫
B
f dx = 0 we obtain (3.7):∫

Rn\4B
|Tf(x)| dx =

∫
Rn\4B

∣∣∣ ∫
B

(K(x, y)−K(x, xB)) f(y) dy
∣∣∣ dx

≤
∫
B

|f(y)|
∫
|x−y|>2 |y−xB |

|K(x, y)−K(x, xB)| dx dy .
∫
B

|f(y)| dy.

We see (ii). Let B be a ball and f ∈ L∞c be supported on Rn \ 4B. Then, for every
x ∈ B and z ∈ 1

2
B we have

|Tf(x)− Tf(z)| ≤
∫

Rn\4B
|K(x, y)−K(z, y)| |f(y)| dy

.
∞∑
j=2

∫
Cj(B)

|x− z|γ

|x− y|n+γ
|f(y)| dy .

∞∑
j=2

2−j γ −
∫

2j+1B

|f(y)| dy . inf
x∈B

Mf(x).

Then, for every x ∈ B we have as desired

|Tf(x)| ≤ −
∫

1
2
B

|Tf(z)| dz +−
∫

1
2
B

|Tf(x)− Tf(z)| dz . −
∫

2B

|Tf(z)| dz + inf
x∈B

Mf(x).

�
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4. Off-diagonal estimates

We extract from [AM2] some definitions and results (sometimes in weaker form)
on unweighted and weighted off-diagonal estimates. See there for details and more
precise statements. Set d(E,F ) = inf{|x− y| : x ∈ E, y ∈ F} where E,F are subsets
of Rn.

Definition 4.1. Let 1 ≤ p ≤ q ≤ ∞. We say that a family {Tt}t>0 of sublinear
operators satisfies Lp−Lq full off-diagonal estimates, in short Tt ∈ F

(
Lp−Lq

)
, if for

some c > 0, for all closed sets E and F , all f and all t > 0 we have(∫
F

|Tt(χE f)|q dx
) 1
q
. t−

1
2

(n
p
−n
q

)e−
c d2(E,F )

t

(∫
E

|f |p dx
) 1
p
. (4.1)

Full off-diagonal estimates on a general space of homogenous type, or in the weighted
case, are not expected since Lp(µ) − Lq(µ) full off-diagonal estimates when p < q
imply Lp(µ)−Lq(µ) boundedness but not Lp(µ) boundedness. For example, the heat
semigroup e−t∆ on functions for general Riemannian manifolds with the doubling
property is not Lp−Lq bounded when p < q unless the measure of any ball is bounded
below by a power of its radius (see [AM2]).

The following notion of off-diagonal estimates in spaces of homogeneous type in-
volved only balls and annuli. Here we restrict the definition of [AM2] to the weighted
situation, that is, for dw = w(x) dx with w ∈ A∞. When w = 1, it turns out to be
equivalent to full off-diagonal estimates. Also, it passes from unweighted estimates to
weighted estimates.

We set Υ(s) = max{s, s−1} for s > 0. Given a ball B, recall that Cj(B) =
2j+1B \ 2j B for j ≥ 2 and if w ∈ A∞ we use the notation

−
∫
B

h dw =
1

w(B)

∫
B

h dw, −
∫
Cj(B)

h dw =
1

w(2j+1B)

∫
Cj(B)

h dw.

Definition 4.2. Given 1 ≤ p ≤ q ≤ ∞ and any weight w ∈ A∞, we say that a family
of sublinear operators {Tt}t>0 satisfies Lp(w)−Lq(w) off-diagonal estimates on balls,
in short Tt ∈ O

(
Lp(w)−Lq(w)

)
, if there exist θ1, θ2 > 0 and c > 0 such that for every

t > 0 and for any ball B with radius r and all f ,(
−
∫
B

|Tt(χB f)|q dw
) 1
q
. Υ

(
r√
t

)θ2 (
−
∫
B

|f |p dw
) 1
p
; (4.2)

and, for all j ≥ 2,(
−
∫
B

|Tt(χCj(B) f)|q dw
) 1
q
. 2j θ1 Υ

(
2j r√
t

)θ2
e−

c 4j r2

t

(
−
∫
Cj(B)

|f |p dw
) 1
p

(4.3)

and (
−
∫
Cj(B)

|Tt(χB f)|q dw
) 1
q
. 2j θ1 Υ

(
2j r√
t

)θ2
e−

c 4j r2

t

(
−
∫
B

|f |p dw
) 1
p
. (4.4)

Let us make some relevant comments (see [AM2] for further details and more prop-
erties).

• In the Gaussian factors the value of c is irrelevant as long as it remains positive.
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• These definitions can be extended to complex families {Tz}z∈Σθ with t replaced by
|z| in the estimates.

• Tt may only be defined on a dense subspace D of Lp or Lp(w) (1 ≤ p < ∞) that
is stable by truncation by indicator functions of measurable sets (for example,
Lp ∩ L2, Lp(w) ∩ L2 or L∞c ).

• If q =∞, one should adapt the definitions in the usual straightforward way.

• L1(w)−L∞(w) off-diagonal estimates on balls are equivalent to pointwise Gaussian
upper bounds for the kernels of Tt.

• Hölder’s inequality implies O
(
Lp(w)−Lq(w)

)
⊂ O

(
Lp1(w)−Lq1(w)

)
for all p1, q1

with p ≤ p1 ≤ q1 ≤ q.

• If Tt ∈ O
(
Lp(w)− Lp(w)

)
, then Tt is uniformly bounded on Lp(w).

• This notion is stable by composition: Tt ∈ O
(
Lq(w)−Lr(w)

)
and St ∈ O

(
Lp(w)−

Lq(w)
)

imply Tt ◦ St ∈ O
(
Lp(w)− Lr(w)

)
when 1 ≤ p ≤ q ≤ r ≤ ∞.

• When w = 1, Lp−Lq off-diagonal estimates on balls are equivalent to Lp−Lq full
off-diagonal estimates.

• Given 1 ≤ p0 < q0 ≤ ∞, assume that Tt ∈ O
(
Lp − Lq

)
for every p, q with

p0 < p ≤ q < q0. Then, for all p0 < p ≤ q < q0 and for any w ∈ A p
p0
∩ RH(

q0
q

)′ we

have that Tt ∈ O
(
Lp(w)− Lq(w)

)
, equivalently, Tt ∈ O

(
Lp(w)− Lq(w)

)
for every

p ≤ q with p, q ∈ Ww(p0, q0).

5. Elliptic operators and their off-diagonal estimates

We introduce the class of elliptic operators considered. Let A be an n × n matrix
of complex and L∞-valued coefficients defined on Rn. We assume that this matrix
satisfies the following ellipticity (or “accretivity”) condition: there exist 0 < λ ≤ Λ <
∞ such that

λ |ξ|2 ≤ ReA(x) ξ · ξ̄ and |A(x) ξ · ζ̄| ≤ Λ |ξ| |ζ|,
for all ξ, ζ ∈ Cn and almost every x ∈ Rn. We have used the notation ξ · ζ =
ξ1 ζ1 + · · ·+ ξn ζn and therefore ξ · ζ̄ is the usual inner product in Cn. Note that then
A(x) ξ · ζ̄ =

∑
j,k aj,k(x) ξk ζ̄j. Associated with this matrix we define the second order

divergence form operator

Lf = − div(A∇f),

which is understood in the standard weak sense as a maximal-accretive operator on
L2(Rn, dx) with domain D(L) by means of a sesquilinear form. The operator −L
generates a C0-semigroup {e−t L}t>0 of contractions on L2(Rn, dx). Define ϑ ∈ [0, π/2)
by,

ϑ = sup
{∣∣ arg〈Lf, f〉

∣∣ : f ∈ D(L)
}
.

Then, the semigroup {e−t L}t>0 has an analytic extension to a complex semigroup
{e−zL}

z∈Σπ
2−ϑ

of contractions on L2(Rn, dx). Here we have written Σθ = {z ∈ C∗ :

| arg z| < θ}, 0 < θ < π.
The families {e−t L}t>0, {

√
t∇e−t L}t>0, and their analytic extensions satisfy full

off-diagonal on L2(Rn). These estimates can be extended to some other ranges that,
up to endpoints, coincide with those of uniform boundedness.
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We define J̃ (L), respectively K̃(L), as the interval of those exponents p ∈ [1,∞]
such that {e−t L}t>0, respectively {

√
t∇e−t L}t>0, is a bounded set in L(Lp(Rn)) (where

L(X) is the space of linear continuous maps on a Banach space X).

Proposition 5.1 ([Aus, AM2]). Fix m ∈ N and 0 < µ < π/2− ϑ.

(a) There exists a non empty maximal interval of [1,∞], denoted by J (L), such that if
p, q ∈ J (L) with p ≤ q, then {e−t L}t>0 and {(zL)me−z L}z∈Σµ satisfy Lp − Lq full

off-diagonal estimates and are bounded sets in L(Lp). Furthermore, J (L) ⊂ J̃ (L)

and IntJ (L) = Int J̃ (L).

(b) There exists a non empty maximal interval of [1,∞], denoted by K(L), such that
if p, q ∈ K(L) with p ≤ q, then {

√
t∇e−t L}t>0 and {

√
z∇(zL)me−z L}z∈Σµ satisfy

Lp − Lq full off-diagonal estimates and are bounded sets in L(Lp). Furthermore,

K(L) ⊂ K̃(L) and IntK(L) = Int K̃(L).

(c) K(L) ⊂ J (L) and, for p < 2, we have p ∈ K(L) if and only if p ∈ J (L).

(d) Denote by p−(L), p+(L) the lower and upper bounds of the interval J (L) (hence,

of Int J̃ (L) also) and by q−(L), q+(L) those of K(L) (hence, of Int K̃(L) also).
We have p−(L) = q−(L) and (q+(L))∗ ≤ p+(L).

(e) If n = 1, J (L) = K(L) = [1,∞].

(f) If n = 2, J (L) = [1,∞] and K(L) ⊃ [1, q+(L)) with q+(L) > 2.

(g) If n ≥ 3, p−(L) < 2n
n+2

, p+(L) > 2n
n−2

and q+(L) > 2.

We have set q∗ = q n
n−q , the Sobolev exponent of q when q < n and q∗ =∞ otherwise.

Given w ∈ A∞, we define J̃w(L), respectively K̃w(L), as the interval of those
exponents p ∈ [1,∞] such that the semigroup {e−t L}t>0, respectively its gradient
{
√
t∇e−t L}t>0, is uniformly bounded on Lp(w). As in Proposition 5.1 uniform bound-

edness and weighted off-diagonal estimates on balls hold essentially in the same ranges.

Proposition 5.2 ([AM2]). Fix m ∈ N and 0 < µ < π/2− ϑ. Let w ∈ A∞.

(a) Assume Ww

(
p−(L), p+(L)

)
6= Ø. There is a maximal interval of [1,∞], denoted

by Jw(L), containing Ww

(
p−(L), p+(L)

)
, such that if p, q ∈ Jw(L) with p ≤ q,

then {e−t L}t>0 and {(zL)me−z L}z∈Σµ satisfy Lp(w)−Lq(w) off-diagonal estimates

on balls and are bounded sets in L(Lp(w)). Furthermore, Jw(L) ⊂ J̃w(L) and

IntJw(L) = Int J̃w(L).

(b) Assume Ww

(
q−(L), q+(L)

)
6= Ø. There exists a maximal interval of [1,∞], de-

noted by Kw(L), containing Ww

(
q−(L), q+(L)

)
such that if p, q ∈ Kw(L) with

p ≤ q, then {
√
t∇e−t L}t>0 and {

√
z∇(zL)me−z L}z∈Σµ satisfy Lp(w) − Lq(w)

off-diagonal estimates on balls and are bounded sets in L(Lp(w)). Furthermore,

Kw(L) ⊂ K̃w(L) and IntKw(L) = Int K̃w(L).

(c) Let n ≥ 2. Assume Ww

(
q−(L), q+(L)

)
6= Ø. Then Kw(L) ⊂ Jw(L). Moreover,

inf Jw(L) = inf Kw(L) and (supKw(L))∗w ≤ supJw(L).
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(d) If n = 1, the intervals Jw(L) and Kw(L) are the same and contain (rw,∞] if
w /∈ A1 and are equal to [1,∞] if w ∈ A1.

We have set q∗w = q n rw
n rw−q when q < n rw and q∗w = ∞ otherwise. Recall that

rw = inf{r ≥ 1 : w ∈ Ar} and also that sw = sup{s > 1 : w ∈ RHs}.
Note that Ww

(
p−(L), p+(L)

)
6= Ø means p+(L)

p−(L)
> rw(sw)′. This is a compatibility

condition between L and w. Similarly,Ww

(
q−(L), q+(L)

)
6= Ø means q+(L)

q−(L)
> rw(sw)′,

which is a more restrictive condition on w since q−(L) = p−(L) and (q+(L))∗ ≤ p+(L).

In the case of real operators, J (L) = [1,∞] in all dimensions because the kernel e−t L

satisfies a pointwise Gaussian upper bound. Hence Ww

(
p−(L), p+(L)

)
= (rw,∞). If

w ∈ A1, then one has that Jw(L) = [1,∞]. If w /∈ A1, since the kernel is also positive
and satisfies a similar pointwise lower bound, one has Jw(L) ⊂ (rw,∞]. Hence,
IntJw(L) =Ww

(
p−(L), p+(L)

)
.

The situation may change for complex operators. But we lack of examples to say
whether or not Jw(L) and Ww

(
p−(L), p+(L)

)
have different endpoints.

Remark 5.3. Note that by density of L∞c in the spaces Lp(w) for 1 ≤ p < ∞,
the various extensions of e−z L and

√
z∇e−z L are all consistent. We keep the above

notation to denote any such extension. Also, we showed in [AM2] that as long as
p ∈ Jw(L) with p 6= ∞, {e−t L}t>0 is strongly continuous on Lp(w), hence it has an
infinitesimal generator in Lp(w), which is of type ϑ.

6. Applications

In this section we apply the generalized Calderón-Zygmund theory presented above
to obtain weighted estimates for operators that are associated with L. The off-diagonal
estimates on balls introduced above are one of the main tools.

Associated with L we have the four numbers p−(L) = q−(L) and p+(L), q+(L).
We often drop L in the notation: p− = p−(L), . . . . Recall that the semigroup and
its analytic extension are uniformly bounded and satisfy full off-diagonal estimates

(equivalently, off-diagonal estimates on balls) in the interval IntJ (L) = Int J̃ (L) =
(p−, p+). Up to endpoints, this interval is maximal for these properties. Analogously,

the gradient of the semigroup is ruled by the interval IntK(L) = Int K̃(L) = (q−, q+).

Given w ∈ A∞, if Ww

(
p−, p+

)
6= Ø, then the open interval IntJw(L) contains

Ww

(
p−, p+

)
and characterizes (up to endpoints) the uniform Lp(w)-boundedness and

the weighted off-diagonal estimates on balls of the semigroup and its analytic ex-
tension. For the gradient, we assume that Ww

(
q−, q+

)
6= Ø and the corresponding

maximal interval is IntKw(L).
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6.1. Functional calculi. Let µ ∈ (ϑ, π) and ϕ be a holomorphic function in Σµ with
the following decay

|ϕ(z)| ≤ c |z|s (1 + |z|)−2 s, z ∈ Σµ, (6.1)

for some c, s > 0. Assume that ϑ < θ < ν < µ < π/2. Then we have

ϕ(L) =

∫
Γ+

e−z L η+(z) dz +

∫
Γ−

e−z L η−(z) dz, (6.2)

where Γ± is the half ray R+ e±i (π/2−θ),

η±(z) =
1

2π i

∫
γ±

eζ z ϕ(ζ) dζ, z ∈ Γ±, (6.3)

with γ± being the half-ray R+ e±i ν (the orientation of the paths is not needed in what
follows so we do not pay attention to it). Note that |η±(z)| . min(1, |z|−s−1) for
z ∈ Γ±, hence the representation (6.2) converges in norm in L(L2). Usual arguments
show the functional property ϕ(L)ψ(L) = (ϕψ)(L) for two such functions ϕ, ψ.

Any L as above is maximal-accretive and so it has a bounded holomorphic functional
calculus on L2. Given any angle µ ∈ (ϑ, π):

(a) For any function ϕ, holomorphic and bounded in Σµ, the operator ϕ(L) can be
defined and is bounded on L2 with

‖ϕ(L)f‖2 ≤ C ‖ϕ‖∞ ‖f‖2

where C only depends on ϑ and µ.

(b) For any sequence ϕk of bounded and holomorphic functions on Σµ converging
uniformly on compact subsets of Σµ to ϕ, we have that ϕk(L) converges strongly
to ϕ(L) in L(L2).

(c) The product rule ϕ(L)ψ(L) = (ϕψ)(L) holds for any two bounded and holomor-
phic functions ϕ, ψ in Σµ.

Let us point out that for more general holomorphic functions (such as powers), the
operators ϕ(L) can be defined as unbounded operators.

Given a functional Banach space X, we say that L has a bounded holomorphic
functional calculus on X if for any µ ∈ (ϑ, π), and for any ϕ holomorphic and satisfying
(6.1) in Σµ, one has

‖ϕ(L)f‖X ≤ C ‖ϕ‖∞ ‖f‖X , f ∈ X ∩ L2, (6.4)

where C depends only on X, ϑ and µ (but not on the decay of ϕ).
If X = Lp(w) as below, then (6.4) implies that ϕ(L) extends to a bounded operator

on X by density. That (a), (b) and (c) hold with L2 replaced by X for all bounded
holomorphic functions in Σµ, follow from the theory in [McI] using the fact that on
those X, the semigroup {e−t L}t>0 has an infinitesimal generator which is of type ϑ
(see Remark 5.3).

Theorem 6.1 ([BK1, Aus]). If p ∈ IntJ (L) then L has a bounded holomorphic
functional calculus on Lp(Rn). Furthermore, this range is sharp up to endpoints.

The weighted version of this result is presented next. We mention [Ma1] where
similar weighted estimates are proved under kernel upper bounds assumptions.
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Theorem 6.2 ([AM3]). Let w ∈ A∞ be such that Ww

(
p−(L), p+(L)

)
6= Ø. Let

p ∈ IntJw(L) and µ ∈ (ϑ, π). For any ϕ holomorphic on Σµ satisfying (6.1), we have

‖ϕ(L)f‖Lp(w) ≤ C ‖ϕ‖∞ ‖f‖Lp(w), f ∈ L∞c , (6.5)

with C independent of ϕ and f . Hence, L has a bounded holomorphic functional
calculus on Lp(w).

Remark 6.3. Fix w ∈ A∞ with Ww

(
p−(L), p+(L)

)
6= Ø. If 1 < p < ∞ and L has

a bounded holomorphic functional calculus on Lp(w), then p ∈ J̃w(L). Indeed, take

ϕ(z) = e−z. As Int J̃w(L) = IntJw(L) by Proposition 5.1, this shows that the range
obtained in the theorem is optimal up to endpoints.

6.2. Riesz transforms. The Riesz transforms associated to L are ∂jL
−1/2, 1 ≤ j ≤ n.

Set ∇L−1/2 = (∂1L
−1/2, . . . , ∂nL

−1/2). The solution of the Kato conjecture [AHLMT]
implies that this operator extends boundedly to L2. This allows the representation

∇L−1/2f =
1√
π

∫ ∞
0

√
t∇e−t Lf dt

t
, (6.6)

in which the integral converges strongly in L2 both at 0 and ∞ when f ∈ L2. The Lp

estimates for this operator are characterized in [Aus].

Theorem 6.4 ([Aus]). Under the previous assumptions, p ∈ IntK(L) if and only if
∇L−1/2 is bounded on Lp(Rn).

In the weighted case we have the following analog.

Theorem 6.5 ([AM3]). Let w ∈ A∞ be such that Ww

(
q−(L), q+(L)

)
6= Ø. For all

p ∈ IntKw(L) and f ∈ L∞c ,

‖∇L−1/2f‖Lp(w) ≤ C ‖f‖Lp(w). (6.7)

Hence, ∇L−1/2 has a bounded extension to Lp(w).

For a discussion on sharpness issues concerning this result, the reader is referred to
[AM3, Remark 5.5].

6.3. Square functions. We define the square functions for x∈Rn and f ∈L2,

gLf(x) =
(∫ ∞

0

|(t L)1/2 e−t Lf(x)|2 dt
t

) 1
2
,

GLf(x) =
(∫ ∞

0

|
√
t∇e−t Lf(x)|2 dt

t

) 1
2
.

These square functions satisfy the following unweighted estimates.

Theorem 6.6 ([Aus]). (a) If p ∈ IntJ (L) then for all f ∈ Lp ∩ L2,

‖gLf‖p ∼ ‖f‖p.
Furthermore, this range is sharp up to endpoints.

(b) If p ∈ IntK(L) then for all f ∈ Lp ∩ L2,

‖GLf‖p ∼ ‖f‖p.
Furthermore, this range is sharp up to endpoints.



16 PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

In this statement, ∼ can be replaced by .: the square function estimates for L
(with .) automatically imply the reverse ones for L∗. The part concerning gL can be
obtained using an abstract result of Le Merdy [LeM] as a consequence of the bounded
holomorphic functional calculus on Lp. The method in [Aus] is direct. We remind the
reader that in [Ste], these inequalities for L = −∆ were proved differently and the
boundedness of G−∆ follows from that of g−∆ and of the Riesz transforms ∂j(−∆)−1/2

(or vice-versa) using the commutation between ∂j and et∆. Here, no such thing is
possible.

We have the following weighted estimates for square functions.

Theorem 6.7 ([AM3]). Let w ∈ A∞.

(a) If Ww

(
p−(L), p+(L)

)
6= Ø and p ∈ IntJw(L) then for all f ∈ L∞c we have

‖gLf‖Lp(w) . ‖f‖Lp(w).

(b) If Ww

(
q−(L), q+(L)

)
6= Ø and p ∈ IntKw(L) then for all f ∈ L∞c we have

‖GLf‖Lp(w) . ‖f‖Lp(w).

We also get reverse weighted square function estimates as follows.

Theorem 6.8 ([AM3]). Let w ∈ A∞.

(a) If Ww

(
p−(L), p+(L)

)
6= Ø and p ∈ IntJw(L) then

‖f‖Lp(w) . ‖gLf‖Lp(w), f ∈ Lp(w) ∩ L2.

(b) If rw < p <∞,

‖f‖Lp(w) . ‖GLf‖Lp(w), f ∈ Lp(w) ∩ L2.

Remark 6.9. Let us observe that IntJw(L) is the sharp range, up to endpoints, for
‖gLf‖Lp(w) ∼ ‖f‖Lp(w). Indeed, we have gL(e−t Lf) ≤ gLf for all t > 0. Hence, the

equivalence implies the uniform Lp(w) boundedness of e−t L, which implies p ∈ J̃w(L)
(see Proposition 5.2). Actually, IntJw(L) is also the sharp range up to endpoints for
the inequality ‖gLf‖Lp(w) . ‖f‖Lp(w). It suffices to adapt the interpolation procedure
in [Aus, Theorem 7.1, Step 7]. Similarly, this interpolation procedure also shows that
IntKw(L) is sharp up to endpoints for ‖GLf‖Lp(w) . ‖f‖Lp(w).

7. About the proofs

They follow a general scheme. First, we choose AB = I − (I − e−r2 L)m with r the
radius of B and m ≥ 1 sufficiently large and whose value changes in each situation.

A first application of Theorem 3.1 and Theorem 3.2 yield unweighted estimates,
and weighted estimates in a first range. This requires to prove (3.1) (or the stronger
(3.3)), (3.2), (3.4) and (3.5) with measure dx, using the full off-diagonal estimates of
Proposition 5.1.

Then, having fixed w, a second application of Theorems 3.1 and Theorems 3.2 yield
weighted estimates in the largest range. This requires to prove (3.1) (or the stronger
(3.3)), (3.2), (3.4) and (3.5) with measure dw, using the off-diagonal estimates on
balls of Proposition 5.2.

There are technical difficulties depending on whether operators commute or not
with the semigroup. Full details are in [AM3]
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8. Further results

We present some additional results obtained in [AM3], [AM4], [AM5].
Let µ be a doubling measure in Rn and let b ∈ BMO(µ) (BMO is for bounded mean

oscillation), that is,

‖b‖BMO(µ) = sup
B
−
∫
B

|b− bB|dµ <∞,

where the supremum is taken over balls and bB stands for the µ-average of b on B.
When dµ = dx we simply write BMO. If w ∈ A∞ (so dw is a doubling measure) then
the reverse Hölder property yields that BMO(w) = BMO with equivalent norms.

For T a sublinear operator, bounded in some Lp0(µ), 1 ≤ p0 ≤ ∞, b ∈ BMO, k ∈ N,
we define the k-th order commutator

T kb f(x) = T
(
(b(x)− b)k f

)
(x), f ∈ L∞c (µ), x ∈ Rn.

Note that T 0
b = T and that T kb f(x) is well-defined almost everywhere when f ∈ L∞c (µ).

If T is linear it can be alternatively defined by recurrence: the first order commutator is
T 1
b f(x) = [b, T ]f(x) = b(x)Tf(x)− T (b f)(x)

and for k ≥ 2, the k-th order commutator is given by T kb = [b, T k−1
b ].

Theorem 8.1 ([AM1]). Let k ∈ N and b ∈ BMO(µ).

(a) Assume the conditions of Theorem 3.1 with (3.1) replaced by the stronger condi-
tion (3.3). Suppose that T and Tmb for m = 1, . . . , k are bounded on Lq0(µ) and
that

∑
j αj 2D j jk <∞. Then for all p0 < p < q0,

‖T kb f‖Lp(µ) ≤ C ‖b‖kBMO(µ) ‖f‖Lp(µ).

(b) Assume the conditions of Theorem 3.2. If
∑

j αj j
k <∞, then for all p0 < p < q0,

w ∈ A p
p0
∩RH( q0p )

′,

‖T kb f‖Lp(w) ≤ C ‖b‖kBMO(µ) ‖f‖Lp(w).

With these results in hand, we obtain weighted estimates for the commutators of
the previous operators.

Theorem 8.2 ([AM3]). Let w ∈ A∞, k ∈ N and b ∈ BMO. Assume one of the
following conditions:

(a) T = ϕ(L) with ϕ bounded holomorphic on Σµ, Ww

(
p−(L), p+(L)

)
6= Ø and p ∈

IntJw(L).

(b) T = ∇L−1/2, Ww

(
q−(L), q+(L)

)
6= Ø and p ∈ IntKw(L).

(c) T = gL, Ww

(
p−(L), p+(L)

)
6= Ø and p ∈ IntJw(L).

(d) T = GL, Ww

(
q−(L), q+(L)

)
6= Ø and p ∈ IntKw(L).

Then, for every for f ∈ L∞c (Rn), we have

‖T kb f‖Lp(w) ≤ C ‖b‖kBMO ‖f‖Lp(w),

where C does not depend on f , b, and is proportional to ‖ϕ‖∞ in case (a).

Let us mention that, under kernel upper bounds assumptions, unweighted estimates
for commutators in case (a) are obtained in [DY1].
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8.1. Reverse inequalities for square roots. The method described above can be
used to consider estimates opposite to (6.7). In the unweighted case, [Aus] shows that

if f ∈ S and p is such that max
{

1, n p−(L)
n+p−(L)

}
< p < p+(L), then

‖L1/2f‖p . ‖∇f‖p.
The weighted counterpart of this estimate is considered in [AM3]. Let w ∈ A∞ and
assume that Ww

(
p−(L), p+(L)

)
6= Ø, then

‖L1/2f‖Lp(w) . ‖∇f‖Lp(w), f ∈ S, (8.1)

for all p such that max
{
rw ,

n rw p̂−(L)
n rw+p̂−(L)

}
< p < p̂+(L), where rw = inf{r ≥ 1 :

w ∈ Ar}, and p̂−(L), p̂+(L) are the endpoints of Jw(L), that is,
(
p̂−(L), p̂+(L)

)
=

IntJw(L).

Let us define Ẇ 1,p(w) as the completion of S under the semi-norm ‖∇f‖Lp(w).

Arguing as in [AT] (see [Aus]) combining Theorem 6.5 and (8.1), it follows that L1/2

extends to an isomorphism from Ẇ 1,p(w) into Lp(w) for all p ∈ IntKw(L) with p > rw,
provided Ww

(
q−(L), q+(L)

)
6= Ø.

8.2. Vector-valued estimates. In [AM1], by using an extrapolation result “à la
Rubio de Francia” for the classes of weights A p

p0
∩ RH( q0p )

′ , it follows automatically

from Theorem 3.2, part (b), that for every p0 < p, r < q0 and w ∈ A p
p0
∩RH( q0p )

′ , one

has ∥∥∥(∑
k

|Tfk|r
) 1
r
∥∥∥
Lp(w)

. C
∥∥∥(∑

k

|fk|r
) 1
r
∥∥∥
Lp(w)

. (8.2)

As a consequence, one can show weighted vector-valued estimates for the previous
operators (see [AM3] for more details). Given w ∈ A∞, we have

• If Ww

(
p−(L), p+(L)

)
6= Ø, and T = ϕ(L) (ϕ bounded holomorphic in an appro-

priate sector) or T = gL then (8.2) holds for all p, r ∈ IntJw(L)

• If Ww

(
q−(L), q+(L)

)
6= Ø, and T = ∇L−1/2 or T = GL then (8.2) holds for all

p, r ∈ IntJw(L) ∩ (rw,∞).

8.3. Maximal regularity. Other vector-valued inequalities of interest are∥∥∥( ∑
1≤k≤N

|e−ζkLfk|2
) 1

2
∥∥∥
Lq(w)

≤ C
∥∥∥( ∑

1≤k≤N

|fk|2
) 1

2
∥∥∥
Lq(w)

(8.3)

for ζk ∈ Σα with 0 < α < π/2−ϑ and fk ∈ Lp(w) with a constant C independent of N ,
the choice of the ζk’s and the fk’s. We restrict to 1 < q <∞ and w ∈ A∞. By [Wei,
Theorem 4.2], we know that the existence of such a constant is equivalent to the
maximal Lp-regularity of the generator −A of e−tL on Lq(w) with one/all 1 < p <∞,
that is the existence of a constant C ′ such that for all f ∈ Lp((0,∞), Lq(w)) the
solution u of the parabolic problem on Rn × (0,∞),

u′(t) + Au(t) = f(t), u(0) = 0,

satisfies

‖u′‖Lp((0,∞),Lq(w)) + ‖Au‖Lp((0,∞),Lq(w)) ≤ C ′ ‖f‖Lp((0,∞),Lq(w)).
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Proposition 8.3 ([AM3]). Let w ∈ A∞ be such that Ww

(
p−(L), p+(L)

)
6= Ø. Then

for any q ∈ IntJw(L), (8.3) holds with C = Cq,w,L independent of N, ζk, fk.

This result follows from an abstract result of Kalton-Weis [KW, Theorem 5.3] to-
gether with the bounded holomorphic functional calculus of L on those Lq(w) that
we established in Theorem 6.2. However, the proof in [AM3] uses extrapolation and
`2-valued versions of Theorems 3.1 and 3.2. Note that q = 2 may not be contained in
IntJw(L) and the interpolation method of [BK2] may not work here.

8.4. Fractional operators. The fractional operators associated with L are formally
given by, for α > 0,

L−α/2 =
1

Γ(α/2)

∫ ∞
0

tα/2 e−t L
dt

t
.

Theorem 8.4 ([Aus]). Let p− < p < q < p+ and α/n = 1/p − 1/q. Then L−α/2 is
bounded from Lp(Rn) to Lq(Rn).

Remark 8.5. A special case of this result with p− = 1 and p+ =∞ is when L = −∆
as one has that L−α/2 = Iα, the classical Riesz potential whose kernel is c |x|−(n−α). If
one has a Gaussian kernel bounds, then |L−α/2f | . Iα(|f |) and the result follows at
once from the well known estimates for Iα. For a more general result see [Var].

Theorem 8.6 ([AM5]). Let p− < p < q < p+ and α/n = 1/p − 1/q. Then L−α/2 is
bounded from Lp(wp) to Lq(wq) for every w ∈ A1+ 1

p−
− 1
p
∩RHq (

p+
q

)′. Furthermore, for

every k ∈ N and b ∈ BMO, we have that (L−α/2)kb —the k-th order commutator of
L−α/2— satisfies the same estimates.

The proof of this result is based on a version of Theorem 3.2 adapted to the case
of fractional operators and involving fractional maximal functions.

Remark 8.7. In the classical case of the commutator with the Riesz potential, un-
weighted estimates were considered in [Cha]. Weighted estimates were established in
[ST] by means of extrapolation. Another proof based on a good-λ estimate was given
in [CF]. For k = 1 and elliptic operators L with Gaussian kernel bounds, unweighted
estimates were studied in [DY2] using the sharp maximal function introduced in [Ma1],
[Ma2]. In that case, a simpler proof, that also yields the weighted estimates, was ob-
tained in [CMP] using the pointwise estimate

∣∣[b, L−α/2]f(x)
∣∣ . Iα(|b(x) − b| |f |)(x).

A discretization method inspired by [Per] is used to show that the latter operator is
controlled in L1(w) by ML logL,αf for every w ∈ A∞. From here, by the extrapolation
techniques developed in [CMP], this control can be extended to Lp(w) for 0 < p <∞,
w ∈ A∞ and consequently the weighted estimates of [b, L−α/2] reduce to those of
ML logL,α which are studied in [CF].

8.5. Riesz transform on manifolds. Let M be a complete non-compact Riemann-
ian manifold with d its geodesic distance and µ the volume form. Let ∆ be the positive
Laplace-Beltrami operator on M given by

〈∆f, g〉 =

∫
M

∇f · ∇g dµ

where ∇ is the Riemannian gradient on M and · is an inner product on TM . The
Riesz transform is the tangent space valued operator ∇∆−1/2 and it is bounded from
L2(M,µ) into L2(M ;TM, µ) by construction.
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The manifold M verifies the doubling volume property if µ is doubling:

(D) µ(B(x, 2 r)) ≤ C µ(B(x, r)) <∞,
for all x ∈ M and r > 0 where B(x, r) = {y ∈ M : d(x, y) < r}. A Riemannian
manifold M equipped with the geodesic distance and a doubling volume form is a
space of homogeneous type. Non-compactness of M implies infinite diameter, which
together with the doubling volume property yields µ(M) =∞ (see for instance [Ma2]).

One says that the heat kernel pt(x, y) of the semigroup e−t∆ has Gaussian upper
bounds if for some constants c, C > 0 and all t > 0, x, y ∈M ,

(GUB) pt(x, y) ≤ C

µ(B(x,
√
t))

e−c
d2(x,y)

t .

It is known that under doubling it is a consequence of the same inequality only at
y = x [Gri, Theorem 1.1].

Theorem 8.8 ([CD]). Under (D) and (GUB), then

(Rp)
∥∥ |∇∆−1/2f |

∥∥
p
≤ Cp‖f‖p

holds for 1 < p < 2 and all f ∈ L∞c (M).

Here, | · | is the norm on TM associated with the inner product.
We shall set

q+ = sup
{
p ∈ (1,∞) : (Rp) holds

}
.

which satisfies q+ ≥ 2 under the assumptions of Theorem 8.8. It can be equal
to 2 ([CD]). It is bigger than 2 assuming further the stronger L2-Poincaré inequali-
ties ([AC]). It can be equal to +∞ (see below).

Let us turn to weighted estimates.

Theorem 8.9 ([AM4]). Assume (D) and (GUB). Let w ∈ A∞(µ).

(i) For p ∈ Ww(1, q+), the Riesz transform is of strong-type (p, p) with respect to
w dµ, that is, ∥∥ |∇∆−1/2f |

∥∥
Lp(M,w)

≤ Cp,w ‖f‖Lp(M,w) (8.4)

for all f ∈ L∞c (M).

(ii) If w ∈ A1(µ) ∩ RH(q+)′(µ), then the Riesz transform is of weak-type (1, 1) with
respect to w dµ, that is,∥∥ |∇∆−1/2f |

∥∥
L1,∞(M,w)

≤ C1,w ‖f‖L1(M,w) (8.5)

for all f ∈ L∞c (M).

Here, the strategy of proof is a little bit different. Following ideas of [BZ], part
(i) uses the tools to prove Theorem 3.2, namely a good-λ inequality, together with
a duality argument. For part (ii), it uses a weighted variant of Theorem 3.1. The

operator AB is given by I − (I − e−r
2 ∆)m with m large enough and r the radius

of B. Note that here, the heat semigroup satisfies unweighted L1 − L∞ off-diagonal
estimates on balls from (GUB), so the kernel of AB has a pointwise upper bound.

Remark 8.10. Given k ∈ N and b ∈ BMO(M,µ) one can consider the k-th order
commutator of the Riesz transform (∇∆−1/2)kb . This operator satisfies (8.4), that is,
(∇∆−1/2)kb is bounded on Lp(M,w) under the same conditions on M,w, p.
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If q+ =∞ then the Riesz transform is bounded on Lp(M,w) for rw < p <∞, that
is, for w ∈ Ap(µ), and we obtain the same weighted theory as for the Riesz transform
on Rn :

Corollary 8.11 ([AM4]). Let M be a complete non-compact Riemannian manifold
satisfying the doubling volume property and Gaussian upper bounds. Assume that the
Riesz transform has strong type (p, p) with respect to dµ for all 1 < p < ∞. Then
the Riesz transform has strong type (p, p) with respect to w dµ for all w ∈ Ap(µ) and
1 < p <∞ and it is of weak-type (1, 1) with respect to w dµ for all w ∈ A1(µ).

Unweighted Lp bounds for Riesz transforms in different specific situations were
reobtained in a unified manner in [ACDH] assuming conditions on the heat kernel
and its gradient. The methods used there are precisely those which allowed us to
start the weighted theory in [AM1].

Let us recall three situations in which this corollary applies (see [ACDH], where
more is done, and the references therein): manifolds with non-negative Ricci cur-
vature, co-compact covering manifolds with polynomial growth deck transformation
group, Lie groups with polynomial volume growth endowed with a sublaplacian. A sit-
uation where q+ <∞ is conical manifolds with compact basis without boundary. The
connected sum of two copies of Rn is another (simpler) example of such a situation.
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[BK1] S. Blunck and P. Kunstmann, Calderón-Zygmund theory for non-integral operators and
the H∞-functional calculus, Rev. Mat. Iberoamericana 19 (2003), no. 3, 919–942.

[BK2] S. Blunck and P. Kunstmann, Weak-type (p, p) estimates for Riesz transforms, Math. Z.
247 (2004), no. 1, 137–148.

[CP] L.A. Caffarelli and I. Peral, On W 1,p estimates for elliptic equations in divergence form,
Comm. Pure App. Math. 51 (1998), 1–21.

[Cha] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7–16.
[CD] T. Coulhon and X.T. Duong, Riesz transforms for 1 ≤ p ≤ 2, Trans. Amer. Math. Soc.

351 (1999), 1151–1169.
[CF] D. Cruz-Uribe and A. Fiorenza, Endpoint estimates and weighted norm inequalities for

commutators of fractional integrals, Publ. Mat. 47 (2003), 103–131.
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[Hör] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math.
104 (1960), 93–140.

[KW] N. Kalton and L. Weis, The H∞-calculus and sums of closed operators, Math. Ann. 321
(2001), 319–345.

[LeM] C. Le Merdy, On square functions associated to sectorial operators, Bull. Soc. Math.
France 132 (2004), no. 1, 137–156.

[Ma1] J.M. Martell, Sharp maximal functions associated with approximations of the identity in
spaces of homogeneous type and applications, Studia Math. 161 (2004), 113–145.

[Ma2] J.M. Martell, Desigualdades con pesos en el Análisis de Fourier: de los espacios de tipo
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