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WEIGHTED NORM INEQUALITIES, OFF-DIAGONAL ESTIMATES
AND ELLIPTIC OPERATORS

PART II: OFF-DIAGONAL ESTIMATES
ON SPACES OF HOMOGENEOUS TYPE

PASCAL AUSCHER AND JOSE MARIA MARTELL

ABSTRACT. This is the second part of a series of four articles on weighted norm
inequalities, off-diagonal estimates and elliptic operators. We consider a substitute
to the notion of pointwise bounds for kernels of operators which usually is a measure
of decay. This substitute is that of off-diagonal estimates expressed in terms of
local and scale invariant LP — LY estimates. We propose a definition in spaces of
homogeneous type that is stable under composition. It is particularly well suited to
semigroups. We study the case of semigroups generated by elliptic operators.
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1. INTRODUCTION

A seminal discovery of Gaffney [Gaf] is that the heat equation on complete Rie-
mannian manifolds satisfies the so-called L? off-diagonal estimates. In fact, one can
show that most semigroups generated by elliptic operators satisfy such estimates.
They are of the form

IT:(X g P2y < Ce (1.1)

valid for all t > 0 and all f € L* whenever E, F are closed sets and d(E, F') an ap-
propriate distance on sets. This estimate is relevant when ¢ is smaller than a time ¢,
comparable to d*(E, F') = d*: before ty, the heat, which we imagine with a Gaussian
distribution, has not had enough time to diffuse from E to give a significant contri-
bution on F, hence the decay in #/d*> which explains the terminology “off-diagonal.”
These estimates are instrumental in many applications of semigroups. For example,
they are the main technical tool (for the resolvent instead of the semigroup) in the
proof of the Kato conjecture [AHLMcT]. Whether one can improve integrability prop-
erties depends on other arguments. Such an improvement, called hypercontractivity
(see, e.g. [Da3]), is usually linked to some kind of Sobolev embedding.

A strong form of off-diagonal estimates is the Gaussian upper bound, that is, a
pointwise control of the kernel of T; by Gaussians:

_cd*(zy)
|K(z,y)| < Ct™%e t. (1.2)

This behavior appears frequently and has yielded in the 1990’s a number of beauti-
ful results on independence of sectors of analyticity for semigroups, independence of
LP-spectrum as p varies for their generators, maximal regularity problems, .... An
account on all this as well as a documented bibliographical list can be found in a
recent survey by Arendt [Are].

The power of ¢ in front of the Gaussian factor appears in homogeneous situations
where the volume of balls is comparable to a power of their radii. In this case, such an
estimate implies L' — L* boundedness of T} known as the ultracontractivity property.
There are geometric situations, such as Riemannian manifolds or weighted measures,
where the volume of a ball is not comparable to a power of its radius. In this case,
the Gaussian upper bound becomes

cd?(x,
| Ky (z,y)] ¢ e_%, (1.3)
Wol VD) Vol (B(y, V1))

and this no longer implies ultracontractivity. This estimate has to be treated as some
sort of local and scale invariant L' — L> bound which can be called L' — L* off-
diagonal estimates; it is still the improvement of regularity in the scale of Lebesgue
spaces that matters, even if it is local.

The Gaussian upper bound (1.2) is equivalent to

ITe(X g Pl < CE2e™ (1.4)

for all t > 0, f € L' and all closed sets F, F. Interpolation between (1.1) and (1.4)
yield intermediate L? — L?" conditions of the same type. Hence, one can formulate a
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definition for arbitrary p,q with 1 < p < ¢ < oo which we call here LP — L9 full off-
diagonal estimates. Such conditions appear naturally in absence of Gaussian upper
bounds (1.2). Davies showed that such a generalization already leads to improved
results on independence of sectors of analyticity and independence of LP-spectrum as
p varies [Dad].

In another direction, we owe Blunck and Kunstmann the fundamental observation
that a notion of LP— L4 (with p < ¢) off-diagonal estimates in the spirit of (1.3) permits
to develop a theory of singular “non-integral” operators on spaces of homogeneous
type for which one can formulate L” boundedness criteria for p in arbitrary intervals
in the absence of information on the kernels (pointwise bounds and even bounds in
mean). Let us mention their weak type (p,p) criterion for 1 < p < 2 in absence of
kernels and assuming weak type (2,2), similar to the generalization by Duong and
MclIntosh [DMc] of Hormander’s result [Hor] when p = 1 in presence of kernel bounds.
See their series of papers [BK1, BK2, BK3] (They further develop a study of off-
diagonal bounds in [BK4] in connection with Davies perturbation method.) See also
[HM] for related ideas. One can find in Fefferman’s work [Fef] the essence of such a
criterion but no explicit statement was needed because it was in a situation where
one can split operators in pieces with localized smooth kernels. In the same spirit,
[ACDH] proposes a strong type (p,p) criterion for one p > 2 (not all) via good-A
inequalities (we also refer the reader to the first article of the series [AM1] where we
generalize this to weighted norm estimates). In [Aus], all these ideas are presented in
the Euclidean setting and applied to some singular “non-integral” operators arising
from elliptic operators. This yields optimal ranges of exponents p for LP boundedness;
the weighted norm extension for this application is the purpose of [AM3].

Here, we look for a definition of LP — L% off-diagonal estimates with p < ¢ for
one-parameter families of operators on spaces of homogeneous type with the following
requirements: (a) it implies uniform L? boundedness (and more generally, uniform L”
boundedness for p < r < ¢) but not boundedness from L” to L%, (b) it is stable under
composition, (c¢) it passes to weighted estimates, and (d) it is handy in practice.

Such a definition should only involve balls and annuli and make clear that there are
two parameters involved, the radius of balls and the parameter of the family, linked
by a scaling rule independently on the location of the balls. Some examples suggest
possible definitions (called here strong or mild off-diagonal estimates) but they are
no longer stable under composition in a general context. Hence, the price to pay for
stability is a somewhat weak definition (in the sense that we can not be greedy in
our demands): see Definition 2.1. Nevertheless, it covers examples of the literature
on semigroups. Furthermore, in spaces of homogeneous type with polynomial volume
growth (that is, the measure of a ball is comparable to a power of its radius, uniformly
over centers and radii) it coincides with all other definitions. This is also the case
for more general volume growth conditions, such as the one for some Lie groups
with a local dimension and a dimension at infinity. Eventually, it is operational for
proving weighted estimates in [AM3], which was the main motivation for developing
this material. Since it is of independent interest, we present it here in a separate
article, which can be read independently of the other papers of our series.

In Section 2, we introduce our definition of LP — L? off-diagonal estimates on balls
for one-parameter (such as time) families of operators and state the main properties:
for p = 1,q = o0, it is equivalent to the Gaussian upper bound (1.3) for the associated
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kernels, and for arbitrary p,q, it implies uniform L” boundedness , is stable under
composition, and passes to the weighted case (proofs are given later in Section 6). We
provide an equivalent definition by restricting the family of balls. We also compare
our definition with that of Blunck and Kunstmann. As mentioned above, we discuss
in Section 3 other “expected” stronger definitions for off-diagonal estimates. The
proof that all our definitions coincide in spaces with polynomial volume growth is in
Section 6. We then present in Section 4 the application to semigroups: we establish a
correspondence between the interval of exponents p for LP-boundedness of T; and the
set of exponents (p, ¢) for which LP — L9 off-diagonal estimates on balls hold when the
latter set is not empty. This correspondence remains true for sectorial analytic exten-
sion of semigroups with independence of angles. Eventually, we show how unweighted
off-diagonal estimates imply weighted ones for appropriate A, weights. In Section
5, we apply all this and describe unweighted and weighted off-diagonal estimates on
balls of semigroups {e*£};~¢ and their gradient {/t Ve t£},o0 for a class of elliptic
operators L in R”.

Acknowledgement. We warmly thank the referee for his criticisms, his sugges-
tions to clarify some points and for pointing out the relevance of the reference [BK4].
This lead us to incorporate the result in Section 2.5.

2. OFF-DIAGONAL ESTIMATES ON BALLS

2.1. Setting and notation. Let (X, d, 1) be a space of homogeneous type, which is
a (non empty) set X endowed with a distance d (it could even be a quasi-distance but
we restrict to this situation for simplicity) and a non-negative Borel measure p on X
such that the doubling condition

w(B(z,2r)) < Cou(B(z,r)) < o0, (2.1)

holds for all z € X and r > 0, where B(z,7) ={y € X : d(z,y) <r}.

Throughout this paper we use the following notation: for every ball B, xg and rp
are respectively its center and its radius, that is, B = B(xp,rg). Given A > 0, we
will write A B for the A-dilated ball, which is the ball with the same center as B and
with radius ryg = Arpg.

If Cy is the smallest constant for which the measure p verifies the doubling condition
(2.1), then D = log, Cj is called the doubling order of p and we have that u(A B) <
C, AP u(B), for every ball B and for every A > 1.

Given a ball B we set C;(B) = 277 B\ 2/ B for j > 2; C1(B) = 4B and also
Cy(B) =4 B\ 2B. We sct

1 1
hdu:—/hdu, ][ hdu = / hdpu,
]{9 u(B) Jg e 1(2B) Jpe

and for j > 1
1
hdp = ———— / hdp.
][cj(B) w2t B) Je, s

The last notation can be seen as the average on 277! B of Xc,(B) h, where we denote

by X the indicator function of a set E. It is not necessarily the case that 2+ B and
C;(B) have comparable masses with constant independent of B and j (for example,
when C;(B) = ) so it is safer to divide out by the mass of the larger set (which is
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never 0 unless g = 0) and fortunately, this is the quantity arising in computations.
Although this is not needed in this work, let us mention a reasonable sufficient con-
dition insuring this comparability (see [AM1] for a proof): Assume that there exists
e € (0,1) such that for any ball B C X, (2—¢) B\ B # @. Then, u(2B) < u(2 B\ B)
for any ball B, where the implicit constants are independent of B.

For shortness we write Y(s) = max{s,s™'} for s > 0. We use the symbol A < B
for A < CB for some constant C' whose value is not important and independent of
the parameters at stake.

2.2. Definition and comments.

Definition 2.1. Given 1 < p < ¢ < o0, we say that a family {T;}i~o0 of sublinear
operators satisfies LP(u) — Li(p) off-diagonal estimates on balls, which by an abuse of
notation will be denoted T, € O(LP(n) — L9(p)), if there exist 61,6, > 0 and ¢ > 0
such that for every t > 0 and for any ball B, setting r = rp,

<]i|Tt<XB f)lqduf ,éT(%)eg (]ilflpdp>’l’; (2.2)

and, for all j > 2,

<]{9 T:(X ¢, B) f)|qd/i); S 2j91T<%) § 6_041T2 (]{; " i d/i); (2.3)

J

and

(f, im0 nean) s (1) (furan)’. o

J

Comments.

1. When ¢ = oo one has to change the LY-norms by the corresponding essential
suprema.

2. T, may only be defined on a subspace of LP(u) provided this subspace is stable
under truncation by indicator functions of measurable sets (balls would suffice
for the definition but measurable sets is needed for interpolation). In this case,
it is understood that the definition applies to functions f in this subspace.

3. Even though our definition makes sense when p > ¢ > 1, we restrict ourselves
to p < q to stress the regularizing effect in the scale of Lebesgue spaces.

4. Holder’s inequality implies O (LP(u) — L(p)) C O(LP () — L () for all py, g1
with p <p1 < ¢ <g¢.

5. T, € O(LP(p) — L9(p)) with p < ¢ does not imply that T} is bounded from LP(y)
into L9(u).

6. If T, is linear and defined on a dense subspace of LP(y), then T, € O(LP(n) —
L(p)) if and only if T; € O(L (u) — L¥'(n)) where T is the dual operator for
the duality form [, fgdpu.
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Given two Banach spaces B; and B,, this definition, with the corresponding
changes, is also valid for operators taking Bj-valued functions into Bs-valued
functions.

The chosen “time-space” scaling \/Lz is irrelevant. It can be changed at will to
7 for any v > 0 simply by changing T; to Ty2,. This scaling corresponds to
semigroups of second order operators, which is our main application in [AM3].
We prove below (see Proposition 2.4) that one obtains an equivalent definition
by restricting to balls with radii comparable to v/t. However, this equivalent
definition is less handy in applications.

—052

The profile s — e can be replaced by any non increasing ¢g : R™ — R such
that for all § > 0, we have s? g(s) — 0 as s — o0o. For example g(s) = e~**" with
¢, > 0 is acceptable. The value of ¢ has no interest to us provided it remains
non negative. Thus, we will freely use the same c from line to line. Profiles with
sufficiently large polynomial decay (1 + s)™? works as well, but p would have to
be adjusted to each application.

02

For s < 1, T(s)92 e~ is comparable to s~ Since s is to be replaced by

2]7;”, it is curious at first sight that we allow such negative powers; imposing
positive powers for small s seems more natural. We were forced into negative
powers to obtain stability under composition. See Lemma 6.3 below for the
technical reason. Fortunately, this apparently weak behavior is sufficient for
our applications in [AM3]. In Remark 2.5 below we point out that the right
hand sides of (2.2), (2.3), and (2.4) self-improve as a corollary of the proof of

Proposition 2.4.

One can replace 6; by 6; + a for any o > 0 and the same happens with
f5. In fact, making 6, > 6;, one obtains an equivalent definition by replac-

i (2ir )\ e . b _cair?
ing 2/ 01T<7:) e t by an expression of the form T(l) et (up

Vit
to changing the ¢’s). We stick to the first formulation for simplicity in some
calculations but this is a first indication that the value of the exponent #; is
irrelevant.

Definition 2.1 is given in terms of dyadic annuli but an equivalent definition can
be written in terms of a-adic annuli for all @ > 1. See the proof of Lemma 6.5
for a possible argument.

2.3. The case p = 1 and ¢ = oo. Off-diagonal estimates on balls for p = 1 and
q = oo coincide with the usual pointwise Gaussian decay of the introduction.

Proposition 2.2. Assume that the operators Ty, t > 0, are linear. Then T, €
(’)(Ll(,u) — Loo(u)) if and only if there exist constants C,c > 0 and for each t > 0, a
measurable function K; on X x X such that T, f(x) = [, Ki(x,y) f(y) du(y) holds for
almost every x € X whenever f € L'(u) and for almost every (z,y) € X x X,

C _cd2(a:,y)
|Kt(x7y)| < me to. (2.5)
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The (easy) proof in Section 6.1 shows the role of the independence of r and ¢ in
the condition T, € O(L'(n) — L>(n)) and of the scaling rule r/v/%. It also shows
the irrelevance of the exponents 61, 6, in this case. Note that the doubling condition
on p implies that the Gaussian expressions in (1.3) and (2.5) are comparable up to
changing the constants C, ¢ > 0.

2.4. Uniform boundedness and stability under composition. We state here
the most important features of this notion: Off-diagonal estimates on balls imply
uniform boundedness and are stable under composition.

Theorem 2.3.
(a) If T, € O(LP(p) — LP(p)) then Ty : LP(u) — LP(p) is bounded uniformly on t.

(b) Let 1<p<q<r<oo IfT; € O(LYp)—L"(n)) and S; € O(LP(1) — LI (1))
then Ty 0 S; € O(LP(p) — L"(p)). Furthermore if 61, 0, are the exponents ap-
pearing in Definition 2.1 for Ty and 1, o are the ones for Sy, then the compo-
sition Ty 0 Sy € O(LP(u) — L"(w)) satisfies the corresponding inequalities with
oy = max{6;,y1, D/r} and ay = max{6, 0y} + max{y, + D/q,7}.

In (b), if T; and S; are defined on subspaces, this result is understood in the sense
that one restricts to functions f for which T} o S, f is well-defined.
The proof of this result can be found in Sections 6.2 and 6.3.

2.5. An equivalent definition. In our definition, the values of r and ¢ vary with no
relation between them. This is very useful in applications (see [AM3]) as one often
needs to use estimates for unrelated ¢’s and r’s. However, one could have given an
alternative definition where r and ¢t are related by r ~ /%, in other words, the “space”
scale is adapted to the “time” scale. Note that when r ~ +/t, one can set #; = 6y =0
by choosing ¢ smaller if necessary. As we see in the following result, both definitions
are equivalent.

Proposition 2.4. Let 1 < p < q < oo and let {T;}i<0 be a family of sublinear
operators. Then, T, € O(LP(p) — LU (p)) if and only if T, € O(LP(p) — LY (p)) on
balls with radii \/t/4 <1 < 4/, that is, {T}}~o satisfies (2.2), (2.3), and (2.4) with
t and r related by /t/4 <r < 4/t

The definition with balls having radii r ~ V/t is closer to the estimates used by
Blunck and Kunstmann in [BK1, BK2]| which read in our notation

(£ 11X )" (%) (i) eo

with B ball of radius v/¢. By doubling, this is controlled by the right hand side of

(2.3) with #; = D/p and 0, = 0. So we allow in principle weaker behaviors. But as

we let the ¢’s vary this amounts to the same thing. See [BK4] for a further study of

bounds of the form (2.6). Note that [BK1, Lemma 3.3] contains in a somewhat hidden

form the fact that one can pass from estimates with r ~ v/t to estimates for all r, t.
The proof of this result is in Section 6.4.

"When 601 # 05 and v1 + D/q # 72, the value of s is correct. Otherwise, as is any number strictly
bigger than this value, see Remark 6.4 below.
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Remark 2.5. As a corollary of the proof of Proposition 2.4, the right hand sides of
the estimates in Definition 2.1 self-improve. That is, if T, € O(LP(u) — L()) with
some exponents 61, 65, ¢ > 0 then the right hand sides can be improved to the following

more precise forms: in (2.2) one can obtain max{1,r/v/t }? for some explicit exponent
, 4y _c4ir?
0;in (2.3), 27P/9¢™ "¢ for some ¢ > 0; and in (2.4), ¢~ ¢ for some ¢ > 0. Again,

for applications, the “loose” form of Definition 2.1 suffices.

2.6. Weighted off-diagonal estimates. Weighted off-diagonal estimates on balls
with weights in the Muckenhoupt class A, can be obtained from the off-diagonal
estimates on balls with respect to the underlying measure.

We use the following notation: given a weight w we consider the measure dw = w dpu,
so w(E) = [, dw = [,wdp and also LP(w) = LP(w dp). Notice that the notation for
the averages used before depends on the measure we are using and so

]ihd,u:%B)/Bhdu, ]{Bhdw:ﬁ/jghdw:ﬁ/ﬁehwdu,

the same happens for “averages” on B¢ and C;(B) as defined in Section 2.1.

Let w € Ay (we recall some basic facts about A, and RH, weights in Appendix
A). Since (X,d, ) is a space of homogeneous type, the measure w is doubling and
(X,d,w) is also a space of homogeneous type. Hence, off-diagonal estimates make
sense in that space.

Proposition 2.6. Let 1 < py < gy < 00 and Ty € O(LP(p) — L)) for all p, q with
Po <p<q<qy. Then, for allp, g withpy < p < q < qo and for any w € APLHRH(‘LO)/
0 q

we have that Ty € O(LP(w) — LI(w)).

The proof of this result can be found in Section 6.5.

3. OTHER TYPES OF OFF-DIAGONAL ESTIMATES

3.1. Full off-diagonal estimates. In the case where (X, d, 1) is the usual Euclidean
space with Lebesgue measure or more generally, a group with polynomial volume
growth (we say that (X, d, x) has polynomial volume growth when p(B(z,7)) ~ r"
for some n > 0 and uniformly for all x € X and r > 0), one encounters more precise
off-diagonal estimates. This yields a possible definition in spaces of homogeneous type.

Definition 3.1. Let (X,d, ) be a space of homogeneous type. Let 1 < p < g < o0.
We say that a family {T;}i~o0 of sublinear operators satisfies LP(u) — L (u) full off-
diagonal estimates, in short T, € F(LP(n) — L(w)), if for some constant 6 > 0,
with 0 # 0 when p < q, for all closed sets E and F', all f and all t > 0 we have

(/FITt<XE f)lqcm)‘ll §t_96_6d2(fﬂ(/E|f|pdu>;. (3.1)

Again, the operators are defined on some subspace D that is stable under truncation
by indicators of measurable sets. Full off-diagonal estimates appear when dealing with
semigroups of second order elliptic operators (see [Gaf, Da2, LSV, Aus]). The most
studied case is when p = 1 and ¢ = oo which means that the kernel of T} has pointwise
Gaussian upper bounds (see [Aro, FS, Cou, VSC, Da3, Rob, AMcT, AT, AE, DER]).
If one considers higher order operators, then ¢ changes to some positive power of ¢ and
the Gaussian to other exponential like function (if ¢ denotes time) (see [Da4, AT]).
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Our t here may not be the usual time scale and the Gaussian may be changed also.
We stick to this case to keep the presentation simple.

When X = R”, the usual value of € (given our choice of “space-time” scaling) is
0= (— — —) See the proof of Proposition 3.2.

p,
Here is a hst of simple and known facts whose proofs will be left to the reader.

(a) T, € F(LP(p) — L9(p)) implies T; bounded from LP(p) to L9(p).
(b) fp<r<gq, S € F(LP(n) — L"(p)) and T € F(L"(p) — L9(p)), then Ty 0 S, €
F(LP(p) — L (1))

Let us compare this definition with the previous one. On the one hand, if ¢ = p
then F(LP(u) — LP(p)) easily implies O(LP(u) — LP(p)). The converse is true and
follows from the proof of Proposition 3.2, (b), stated below. No further condition on
the space, besides doubling, is needed at this point.

On the other hand, these notions cease to be comparable when p < ¢ without further
information on the space X. Assume that T; € F(LF(p) — L9(p)). If E=F = B is

a ball, then | |
(f s )} w4 f e

Unless there is some control from above of p(B) by a power of the radius of B, we
cannot conclude that T; € O(LP(p) — L9(p)). Similarly, unless there is such a control,
one cannot conclude that T} is uniformly bounded on L"(u) for p < r < ¢. Eventually,
if p<p1 <q <gq, we do not know if T} € F(LF(p) — L™ (p)).

As LP(p) — L%(p) full off-diagonal estimates when p < ¢ imply LP(u) — L(u)
boundedness but not LP(x) boundedness, this is not an encountered notion on a
general space of homogenous type. For example, the heat semigroup e ** on functions
for general Riemannian manifolds with the doubling property is not L” — L? bounded
when p < ¢ unless, as Proposition 3.2 will show, the measure of any ball is bounded
below by a power of its radius.

Here is a statement that connects both notions. The proof is postponed to Section
6.6.

Proposition 3.2. Let (X, d, u) be a space of homogeneous type and 1 < p < q < 00o.

(a) Assume that X has volume growth at most polynomial, that is, p(B(x,r)) S r"
for some n > 0 and uniformly for allz € X andr > 0. IfT, € F(Lp( ) Li(p )

with exponent 0 in (3.1) equal to (2 — —) then T, € O(LP () — L9(p)).

p

(b) Assume that X has volume growth at least polynomial, that is, w(B(z,r)) = r™
for some n > 0 and uniformly for allz € X andr > 0. If T, € (’)(L”( ) Li(p )
then T, € F(LP(u) — L9(p)) with exponent 6 in (3.1) equal to 3 (% — 2).

p q

Let us go a little further. We say that a space of homogeneous type is of ¢-growth
if u(B(z,r)) ~ @(r) uniformly for x € X and r > 0, where ¢ is a non-decreasing
function on (0,00). Remark that the fact that space is of homogeneous type implies

that ¢ is doubling in the sense that sup,- “:;(25) < 00." A particular important example

is the Heisenberg group equipped with Riemannian distance and Haar measure: in

"We think that the discussion can be extended somehow to spaces with exponential growth, but
this is beyond the scope of the present article.
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this case, ¢(r) ~ r? for r < 1 and ¢(r) ~ P for r > 1, the exponents d > 0 and
D > 0 being called respectively its local dimension and its dimension at infinity. Call
“LP(u) — L9(p) full off-diagonal estimates of type ¢” the estimates of Definition 3.1

with ¢~% replaced by @(\/f)é_% for all ¢ > 0.

Proposition 3.3. Let (X,d, u) be a space of homogeneous type of p-growth and 1 <
p<q<oco. Then T, € O(LP(u) — L)) if and only if T; satisfies LP(p) — L9(p) full
off-diagonal estimates of type .

In other words, the scaling \/L% contained in the off-diagonal estimates on balls plus

the volume growth completely rule the function of v/# in the full off-diagonal estimates.
The proof of this result is postponed to Section 6.6.

Our last remark is that full off-diagonal estimates do not pass to weighted measures
as well: for example, in R", the power weights w(z) = |z|~ for 0 < a < n are neither
with polynomial growth from below or above nor with ¢-growth.

3.2. Mild off-diagonal estimates on balls. As in Section 2.6 full off-diagonal es-
timates imply some (but not full) off-diagonal weighted estimates for an appropriate
class of weights. Assume that X = R" is equipped with the Lebesgue measure. With
the same arguments (see Section 6.5) we obtain that if 1 < py < g < oo and T satis-
fies LP(dx) — L4(dxz) full off-diagonal estimates (3.1) for all p, ¢ with py < p < ¢ < qo
and 0 = %(%—%), then, for all p, ¢ with py < p < ¢ < qp and for any w € A% ﬁRH(%o),
we have that

( . Xk Ith|qdw>‘11 <ct, B, B K, K')(]{BXK T dw>i (3.2)

ar b cd (KK
o(t,B, B, K, K') = <ﬁ> 1 (T—f‘) I
B \/E
whenever B, B’ are balls, K, K’ are respective compact subsets, f bounded with sup-
port in K, ¢t > 0 and p1,q; are some numbers chosen with py < p; < ¢1 < qo. For
q = 00, the left hand side of (3.2) is understood as the essential supremum on B’. If
we specialize to the three cases of Definition 2.1, namely, (a) B = B’ = K = K, (b)
B =K,B' =2"B K = (C;(B) and (c) the symmetric case of (b), we obtain (2.2),
(2.3), (2.4) with 6; =n/q and 62 = n/p; —n/q > 0 and Y(s) is replaced by s.
This leads us to another definition of off-diagonal estimates in a general context.

where

Definition 3.4. Let (X,d,u) be a space of homogeneous type. Let 1 < p < q < c0.
We say that a family {T}}i~o of sublinear operators satisfies LP(u) — L9(p) mild off-
diagonal estimates on balls if there exist real numbers 01,05 > 0, ¢ > 0 with
0y > 0 when p < q such that (2.2), (2.3) and (2.4) hold with s replacing Y(s).

Remark 3.5. In replacing Y(s) by s then one cannot enlarge 6, at will as in the
definition of off-diagonal estimates on balls. Hence, the restriction that 6, should be
non negative when p < ¢ seems meaningful.

This is clearly stronger than Definition 2.1 since we impose the power of s to be
positive even for small s (see comment 10 after Definition 2.1). However, stability
under composition is unclear. If S; satisfies LP(u) — L9(p) mild off-diagonal estimates
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on balls and 7; satisfies L?(u) — L™ (p) mild off-diagonal estimates on balls, then we do
not know whether T} o S; satisfies LP(u) — L™ (1) mild off-diagonal estimates on balls.
Of course, Ty 0 S; € O(LP(u) — L"(p)) (hence, under ¢-growth there is stability)

We may have lost too much information in passing from full off-diagonal estimates
to mild off-diagonal estimates on balls, hence the lack of stability. In particular, we
restricted attention to balls while the closed sets E and F in (3.1) could be unbounded.

3.3. Strong off-diagonal estimates on balls. The following result will suggest an
even stronger definition.

Proposition 3.6. Assume that (X, d, p1) is the usual Euclidean space R"™ with Lebesgue
measure. Fiz 1 < py < qo < 0o. Assume that {T}}i~o satisfies Lp(da:) — Li(dz) full
off-diagonal estimates for all p,q with pgo < p < q < qo and 6 = ( — %) Fiz p,q

with po < p < q < qo and assume that w € A 2 N RH, (0y- Let B be a ball and set

r=rg. Then for all f,

(4, 1m0 ¢ D)’ < () (f o aw)’ (33)
)

(10 D) 5 () F(f, i) (3.

with B,v > 0 and non zero when p < q.
The proof of this result is postponed until Section 6.7.

and

RS

Definition 3.7. Let (X,d,u) be a space of homogeneous type. Let 1 < p < q < c0.
We say that a family {T;}i~o of sublinear operators satisfies LP(u) — L9(u) strong
off-diagonal estimates on balls if there exist real numbers o > 0 with o > 0 when
p < q and ¢ > 0 such that for any ball B and any t > 0, setting r = rg, and any f in
an appropriate space D,

f 10 ') 5 () f!f|pdu ; (3.5)
(]{23 |Tt(XB )|‘1dﬂ>; (%) —<= ][|f|pd,u : (3.6)

(]{B |Tt(X(23)c DIk d,u>‘11 < (%)ae_% (]{23) Vi du) ‘ (3.7)

It is clear that strong off-diagonal estimates on balls imply mild off-diagonal esti-
mates on balls: for instance, to get the analog of (2.3), we write B = 27! B and
note that C;(B) C (2 B)¢. So we apply (3.7) with B and then we obtain (2.3) with s
replacing Y(s), 6, = a and ¢; = D/q. The same can be done in the other cases.

It is also interesting to compare the last two inequalities of this definition with the
ones in Lemma 6.6: again T(s) is replaced by s. We also stress that such a definition
implies the partial LP(u) — L9(p) boundedness inequalities

(£ msran) < (Z2)" (g5 [ 101 an)’
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(o [ m0G Dran)” < (2) (f 1o aw)”

Had we put an estimate from B¢ to B¢ sumlar to (3 5) then we would derive global
LP(u) — L9(p) boundedness, which is not realistic when p < ¢ in a non polynomial
growth situation.

For this reason precisely, strong off-diagonal estimates do not compose well. The
best we can say (even if we allow the exponent « to take different values in (3.5),
(3.6), (3.7)) is: If S; satisfies LP(u) — L9(u) strong off-diagonal estimates on balls
and T; satisfies L(u) — L"(p) strong off-diagonal estimates on balls then T; o S;
satisfies LP(u) — L"(p) mild off-diagonal estimates on balls (this can be obtained
easily following the proof of (b) in Theorem 2.3 and using the definition of the strong
off-diagonal estimates on balls in place of Lemma 6.6). Again, assuming y-growth,
there is stability under composition, passing via full off-diagonal estimates.

and

In conclusion, using only balls, complements of balls and annuli for defining off-
diagonal estimates (instead of closed sets) forces us into an apparently weak definition
to have stability under composition. But under a polynomial (or ¢-) growth, all these
notions are the same.

4. PROPAGATION AND SEMIGROUPS

We are interested in values of p, ¢ for which LP — L9 off-diagonal estimates on balls
hold, especially when there is a regularizing effect, that is, when p < q.

4.1. Propagation property. Let 7 = {T;};~0 be a family of sublinear operators
defined on a space D contained in all LP(u) that is stable under truncation by indicator
functions of measurable sets.

Let J(7) be the interval of all exponents p € [1,00] such that 7; is bounded
uniformly with respect to ¢ on LP(u).

We introduce the set

O(T) ={(p.q) € [L,00*; p < ¢, T, € O(LP (1) — L()) }.
If we set C(7T) = {(]l?, é); (p,q) € O(T)}, then by interpolation, it is a convex set
contained in {(u,v) € [0,1]*; u > v}.

The relation between O(7) and J(7) is the following. If (p,q) € O(T) then the
interval [p, q] is contained in J (7). This fact is a consequence of Theorem 2.3, part
(a).

Also, if O(T) # O, then for p € Int J(T),! there exists ¢ = ¢(p) > p such that
T, € O(LP(p) — Lw)). In other words, LP(u) boundedness improves into some
off-diagonal estimates on balls with increase of exponent or, differently, off-diagonal
estimates on balls for one pair (p, ¢) propagate to pairs (p, ¢(p)) for all p € Int j(’]’).i
Indeed, let p € Int j(T) and (q,r) € O(T). If p = ¢ we have finished. Otherwise,
we have that p,q € j(T), and since p is in the interior, there exists p € j(T) such

If E is a subset of [1,00] with lower and upper bound p,q then we set Int E = (p,q) = {t €
R; p <t < ¢}, which is the interior of ENR in R.

iHere, we see p as the exponent in the source space. It could also be taken as the exponent of the
target space: for ¢ € Int J(7), there exists p = p(q) < ¢ such that T; € (’)(L”(,u) - Lq(,u)).
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that p lies in the open interval between p and q. The LP(u) boundedness implies
that T; satisfies (2.2), (2.3) and (2.4) with ¢ = p = p, 6 = D/p, 2 = 0 and
¢ = 0. We interpolate (by the real method since we allow sublinear operators) these
estimates with the ones coming from L9(u) — L"(p) off-diagonal estimates on balls.
Thus (g, r9) € O(T) where 1/q9 = 0/p+(1-6)/q, 1/rg = 0/p+(1—0)/r and 6 € (0, 1).
Choosing 6 such that gy = p proves that (p,q(p)) € O(T) with q(p) = rg > p.

In general, C(7) has no further structure. For example on R™ equipped with
Lebesgue measure, let T; be the operator of convolution with t=/2¢(z/+/t) for t > 0,
¢ positive, supported in the unit ball and ¢ € L? if and only if 1 < s < p for some
p € (1,00). From Young’s inequality, it is easy to determine C(7") as the region in
[0, 1]* below the diagonal v = u (excluded) and above the line v = u —1/p (included)
and also to find that J(7) = [1,00]. In particular, there is no interval I in [1, o0]
such that for all p,q with p < ¢, p,q € I is equivalent to T; € O(Lp(u) — Lq(u)), in
such a case C(7) (and O(7)) would be a triangle.

4.2. Application to semigroups. Let B be a Banach space of measurable functions
stable under truncations with indicator functions of measurable sets and containing
all simple functions. In this way, B N LP(u) is dense in LP(u) for all 1 < p < co.

Let {T;}+=0 be a semigroup of bounded linear operators on B, that is, we assume
for ¢t,s > 0 that

T; € L(B); T 0T, = Teps.

Here and in what follows £(X) denotes the set of bounded linear operators on a
Banach space X.

Proposition 4.1. Set 7 = {T,};~0. Assume there exist p,q with 1 < p < § < oo such
that T, € O(LP(p) — LI(w))." Then, there exists a unique subset of [1, 00|, which we
denote by J(7T), such that the following holds:

Vp.gellool, p<qg (TLeO(LP(p)— L) <==pqed(T)). (41
This set is an interval, contains [p,q), J(T) C J(T) and Int J(T) = Int J (7).

Remark 4.2. This propagation property is reminiscent of the extrapolation for LP—L?
boundedness developed for semigroups in [Coul.

With the notation of the previous section, (4.1) reformulates into

Vp.g€lloo, p<q ((pa) €O(T)=pqeI(T)),
which means that O(7) is a triangle.

Proof. Note that if E, I’ are two subsets such that (4.1) holds for £ and F then,
clearly, £ = F' and so the uniqueness follows. Let us now construct such a set.

Fix p <7 < q. Let J_(7) be the set of all p € [1,7] such that (p,7) € O(T). By
one of the remarks after Definition 2.1, this set is an interval with upper bound 7 and
it contains [p, 7]. Similarly, the set J.(7) of all p € [, 0] such that (7,p) € O(T), is
an interval containing [7, ¢]. Set J(7) = J-(7) U J+(7). This is clearly an interval
and it contains [p, g.

Let us see that p,q € J(7) with p < ¢ imply T; € O(LP(p) — L%(p)). Indeed, if
p<q<TorrT <p<gq,then T, € (’)(Lp(u) — Lq(u)) using one of the remarks after

Tt is understood that the functions to be considered are in L? (1) N B.
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Definition 2.1, hence (p,q) € O(T). If p <7 < g, then T, € O(LP(n) — L7(p)) and
T, € O(L™ () — L9(p)) hence by the semigroup property and Theorem 2.3, part (b),
Ty € O(LP(p) — L%(p)). But we may change 2¢ to t and we have (p, q) € O(T).

We prove the converse: let 1 < p < ¢ < oo with T, € O(LP(u) — L9(p)) and let us
show that p,q € J (7).

Case ¢ < 7+ We have T, € O(LP(p) — L9(p)) and T, € O(L7 () — L™(11)). Hence,
by interpolation, T, € O(LF?(p) — L%(n)) where 1/py = 0/p + (1 — 0)/F, 1/qp =
0/qg+ (1 —6)/F and 6 € (0,1). If p < inf J_(7) then we can choose 6 such that
po < inf J_(T) < g. Since J_(7) is an interval, gy € J_(T), that is, T, € O (L% () —
L”:(/L)). By Theorem 2.3, part (b), and the semigroup property, Ty € O(Lpﬂ (1) —
L7(w)). Changing 2t to t proves that py € J_(7), which is a contradiction. We have
therefore shown that p > inf 7 (7). If p > inf 7_(7), then p € J_(T) as p < 7 and
J_(T) is an interval. If p = inf J_(7), then ¢ € J_(T), hence T, € O (L () — L7 (p)).
AsT, € O(LP(u)—L%(p)) by assumption, we have again Ty, € O(LP(u)—L" (1)), hence
p € J-(T). We have shown in this case that both p and ¢ belong to J_(7") C J(7).

Case p > 7: This case is similar to the previous one by changing inf J_(7") to
sup J4+(7) (where the supremum is oo if J;(7) is unlimited) and arguing on ¢ in
place of p.

q: By one of the remarks after Definition 2.1, we have that T; &€

Case p < 7 <
— L"(p)) and Ty € O(L"(p) — L9()). Hence, by definition, p € J_(T) and

O(LP (1)
q € J(T).

Let us finish the proof by comparing the interiors of 7 (7) and J (7). By Theorem
2.3, J(T) € J(T), and the inclusion passes to interiors. Since p, G € J(T), O(T) #
@. We showed in the previous section that then for each p € Int J(T), T} € O(LP(p)—
L7(p)) for some ¢ = ¢(p) > p. In particular, p € J(7) by (4.1). Thus, Int J(T) c
Int (7). O

The following result shows that off-diagonal estimates on balls for a semigroup
propagate to a sectorial analytic extension with optimal angle of sectors provided
there is one pair (pg,pog) for which one has off-diagonal estimates on balls for the
analytic extension.

We consider {T}.cx, an analytic semigroup of bounded linear operators on B with
angle ¥ < 7/2, that is, we assume for z,2’ € ¥y = {¢ € C\ {0}; |arg (| < ¥},

T, € L(B); T.0T, =T, z € YNy — T, € L(B) is analytic.

We say that {T.}.ex, € O(LP(n) — L)) whenever it satisfies the estimates in
Definition 2.1 with |z| in place of t. By density, this implies in particular that the
semigroup has an analytic extension from ¥y into L£(L"(p)) for p <r <gq.

Recall that 7 (7) denotes the maximal interval of those p € [1, 00] for which T} is
bounded on LP(x) uniformly in ¢ > 0.
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Theorem 4.3. Let 1 < p < pg < q < 00 and 97 with 0 < ¢ < 9. Assume that
{T} =0 € O(LP(1) — L)) and that {T.}.ex, € O(LP(u) — LPo(p)). Then for any
m €N, {z" T ex,, € O(LP (1) — L(w)).

Proof. Assume first m = 0. Any z € ¥y, has a decomposition z = s + w + ¢t where
w € Yy, s,t > 0 and |z| ~ |w| ~ s ~ ¢, the constants of comparability depending
only on ¥, 9. Hence, we can write T, = T, 0T, oT; and use T; € (’)(Lp(u) — Lpo (u)),
T, € O(LPo(u) — L () and T, € O(LP(p) — L9(p)) together with part (b) in
Theorem 2.3.

For m > 0, we use a third angle ¥ with ¥; < ¥5 < 1. We just showed that
{T.}ies,, € O(LP(p) — L9(p)). To conclude we only have to use Cauchy formulae on

circular contours and compute 2% for z € By, from T¢ with ¢ € g,. g

Note that the assumption on the analytic semigroup is O(LP(u) — LP°(y)) for
the same exponent py at both places. In applications, py = 2 arises often (see the
introduction) but with a weight this exponent is no longer natural.

So far, we were only concerned about the action of the semigroup operator 7; on
LP(u) and its off-diagonal estimates. Recall that J(7) is the interval of exponents
p such that it has an extension to a bounded semigroup to LP(u). To define an
infinitesimal generator, it suffices that (the extension to LP(u) of) the semigroup is
continuous at 0 for the strong topology in £(LP(u)). As usual, we remove p = oo from
the discussion. However, the off-diagonal estimates play a crucial role.

Proposition 4.4. Assume that Proposition 4.1 applies and that there is some r €
J(T), r # oo, such that T, is strongly continuous on L"(u). Then, T; is strongly con-
tinuous on LP(pu) for all p € J(T) with p # oo. In particular, it has an infinitesimal
generator on those LP(u).

Proof. If p € J(T) with p < r, for f any simple function supported in a ball B we

deduce that
(£ ms=spaw) < (f ms=sraw) —o

as t — 0. Next, the off-diagonal estimates on balls imply that

(/W \th—flpdu); = (/(W Ithlpd/Q; —0

as t — 0, using the support of f and Lemma 6.6 below. Then a density argument
shows the strong continuity in LP(u).

Ifpe J(T), r<p< oo, then the above applies to the dual semigroup and we can
use the well-known fact that on a reflexive space, the dual semigroup of a strongly

continuous bounded semigroup is also strongly continuous (see, e.g. [Dal, Chapter
1)). O

Let us turn to weighted off-diagonal estimates. Assume that 7 is a semigroup as
in Proposition 4.1. Let w € A,. As (X, d,w) is a space of homogeneous type, we can
apply Proposition 4.1 provided we have some off-diagonal estimates to start with. In
this case, we can define an interval 7,(7) characterized as the unique set E in [1, 0]
for which whenever 1 < p < ¢ < oo the property T; € O(LP(w) — L9(w)) is equivalent
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to p,q € E. Also, J,,(T) is the interval of those p € [1,00] for which T} is bounded
uniformly in ¢ on LP(w).
Given 1 < py < qp < 0o we define the set

Wa(po,90) = {p:po <p < go,w € Az N RH(@)I}.

Corollary 4.5. Let 1 < pg < qo < 00 be such that (po,q0) C J(7T) and assume that
W (Do, qo) # D. Then, Wy, (po, @) C Juw(T) C jw(’]') and, consequently, Int 7,,(7T) =
Int jw(T). If, furthermore, T is strongly continuous on L"(u) for some r € (po, qo),
then T has an infinitesimal generator in LP(w) for all p € J,(T), p # oc.

Proof. The first statement is a consequence of Proposition 2.6 and the second of Propo-
sition 4.1 in this context together with the fact shown in [AM1] that if W,,(po, qo) # O
then it is an open interval. Concerning the last statement, by Proposition 4.4 it suffices
to check that 7 is strongly continuous on LP(w) for one p € J,,(7).

Choose p € Wy (po,qo).- Then there exists p; with py < p < p;1 < qo and w €
RH(%),. Hence,

1

(foaw) <(f o)

for any ball B and positive measurable function g. If we apply this to g = |T;f — f]
for f any simple function supported in a ball B (the hypothesis contains the fact that
T; is defined on LP* (1)) and let ¢ — 0, we deduce that

([ =) s ([ meesma —o

where we have used that T; is strongly continuous on LP'(u) by Proposition 4.4. Next,
the off-diagonal estimates on balls for dw imply that

(/(2 )C|th—f\pdw)’1’: (/(2 . ’th|pdw>; 0, 10,

using the support of f and Lemma 6.6 below. Then a density argument shows the
strong continuity in LP(w). O

Remark 4.6. Note that to define 7,(7), we only need the existence of some pair
(p,q) with p < g such that T, € O(LP(w) — L%(w)). Our statement here is a concrete
realization of this assumption.

5. A CASE STUDY

We work in the Euclidean space with the Lebesgue measure. Let A = A(x) be an
n X n matrix of complex and L*°-valued coefficients defined on R". We assume that
this matrix satisfies the following ellipticity (or “accretivity”) condition: there exist
0 < X <A < oo such that

MEPP <ReA(z)€-€ and |A(x) € - | < Al [¢],
for all £, € C" and almost every x € R". We have used the notation § - ¢ =
§1 G+ -+ + &, G, and therefore & - ¢ is the usual inner product in C". Note that then

A(x) € ¢ =22, ajk(x) & ¢;. Associated with this matrix we define the second order
divergence form operator

Lf =—div(AVYf),
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which is understood in the standard weak sense by means of a sesquilinear form.

The operator —L generates a C%-semigroup {e~'%},.¢ of contractions on L?. We
wish to study weighted off-diagonal estimates for {e~**},5¢ and {v/t Ve **},5. Be-
fore we do so, we recall what is known on unweighted off-diagonal estimates and give
some complements.

Remark 5.1. Let us emphasize that on R", full off-diagonal estimates are equivalent
to off-diagonal estimates on balls in the unweighted situation by Proposition 3.2. This
implies in particular that if e=** € f(Lp — Lq) for some 1 < p < ¢ < oo then (passing
to off-diagonal on balls and then going back to full off-diagonal estimates) it follows
that e~ ¢ F(Lpl — L‘“) for all p < p; < ¢ < q. We will use this fact later.

5.1. The intervals J(L) and K(L). Define J(L) (we change slightly the previous
notation to emphasize the dependence on L) as the interval of those exponents p €
[1,00] such that {e=*£},~¢ is bounded in L£(LP).

An almost complete study of LP — L9 full off-diagonal estimates with p < ¢ for
the semigroup has been done in [Aus| (and the exponent 6 of the definition must be
1(n

5(; — %)) According to Proposition 4.1 and Proposition 3.2, we have the following

result.

Proposition 5.2. There exists a unique subset of [1,00], denoted by J (L), which is
a non empty interval, such that

Vp,q€[l,0], p<q ( e tl e F(L” — Lq) <~ p,qe J(L) ) (5.1)
Furthermore, J(L) C J(L) and Int J (L) = Int 7 (L).

See Section 4.1 for the meaning of “interior.” Write p_(L) and p, (L) as the lower
and upper bounds in [1, 00| of J(L). According to the results proved or cited in [Aus],

J(L)=J(L)=[1l,00], ifn=12

2n 2n
(L) < —— and L) > ——, if n > 3.
p-(L) nt2 p+(L) n—2 =
Note that in dimensions n > 3, it is not clear what happens at the endpoints for either
boundedness or off-diagonal estimates: can one have boundedness and no off-diagonal

estimates? Is J (L) open in [1, c0]?

Let us turn to the gradient of the semigroup. Define IE(L) as the interval of those
exponents p € [1,00] such that {v/t Ve *%},-¢ is bounded in £(LP). This set has been
studied in [Aus|. It is an interval in [1, oo]. If ¢_(L) and ¢4 (L) denote respectively its
lower and upper bounds, then it is shown that ¢_(L) = p_(L) and p; (L) > (¢+(L))*
where, given ¢, its Sobolev exponent ¢* is defined as ¢* = nq/(n — q) if ¢ < n and
q* = oo otherwise. Also, we always have ¢, (L) > 2 with ¢, (L) = oo if n = 1.

This was proved with the help of full off-diagonal estimates. Define _(L) as
the set of all p € [1,2] such that {v/t Ve L},o, satisfies LP — L? full off-diagonal
estimates and K, (L) be the set of all p € [2,00] such that {v/t Ve *F},., satisfies
L? — [P full off-diagonal estimates. Set K(L) = K_(L) UK, (L). This is an interval
by interpolation since 2 € (L) and it is shown in [Aus] that Int (L) = Int K(L). If
n=1 K(L)=[1,00] (see [AMcT]).
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We wish to give some further observations, not noticed in [Aus], especially concern-
ing the endpoints of IC(L).

Lemma 5.3. Let 1 < p < 2. The following assertions are equivalent:
(a) e7tt e F(LP — L?).

(b) VtVe 't e F(LP — L?).

(c) tLe 't e F(LP — L?).

Proof. To prove that (a) implies (b), we observe that v/t Ve™'* € F(L? — L?) because
2 € K(L). Hence by composing with (a) and using the semigroup property, we obtain
(D).

Similarly, vte '*div A € F(L? — L?) because of duality and 2 € K(L*), and the
fact that multiplication by A(z) is bounded on L?. Hence, from (b), it follows that
Vite 't divAoy/tVe 't € F(LP — L?). This operator is nothing but —t Le " and
this proves (c).

Let us assume (c). Pick E,F two closed sets, f € L”? N L? with support in E and

LP-norm 1 and g € L? with support in F' and L?-norm 1. Setting h(t) = (e7'Lf, g),
cd*(E,F)

it suffices to prove |h(t)] < t%e” " ¢ with 0 = %(% — ). Observe that our

assumption says that th’(¢) has such a bound.

First, lim;_o h(t) = 0: this is a consequence of the bounded holomorphic functional
calculus for L on L? since z — e~ converges to 0 uniformly on compact subsets of
Rez > 0. Hence, we can write h(t) = — [~ I'(s) ds. Plugging the bound for sh’(s)
into this integral yields |h(t)| < ¢7Y. This bound suffices when d*(E, F) < t.

The second case is when 0 < t < d*(E,F). In particular £ and F are disjoint.
Then, one has lim; o h(s) = (f,g) = 0. As h(t) = fg R (s)ds, the bound for sh/(s)

cd?®(E,F)
easily yields |h(t)| St e ¢ . O
Lemma 5.4. Assumen > 2. Let 1 < p < q with ¢* < co. IfV/tVe 'L ¢ F(LP—L‘?),
then e™'t € F(LP — L7).
Proof. By Proposition 3.2, it suffices to show that e™** € O(LP — L7"). To this end,

we shall need the following form of Sobolev’s inequality.

Lemma 5.5. Let 1 < g <n. If g € L*(R") with Vg € L4(R") then g € LY (R") and
there is a constant C' > 0 such that for any ball B,

([, w)" <o [ . Vol dz)"

The first part of the lemma is non classical but easy: let ¢; be a smooth mollifying
sequence and set g; = p; x g. Then g; € L' N L®(R") and Vg; = Vg x ¢; € L1(R"),
so that in particular g; € WH¢(R™). Thus Sobolev’s inequality on R" applies to each
g; and yields

([ 1ol ae) <c( [ 1vapas) <o [ 1voar) ol

Of course, C' is independent of j. The conclusion that g € L (R") follows by applying
Fatou’s lemma to a subsequence.



WEIGHTED NORM INEQUALITIES AND ELLIPTIC OPERATORS 19

We next show the desired Sobolev estimate. It suffices to obtain the desired in-
equality for B being the unit ball, the general case follows by a change of variable
with no change on the constant. Besides, it is enough to assume that g € C}(R") by
density in W(R"). Then for any = ¢ B, one has g(x) = — [;* £0;g9(x£te;) dt where
e; is any vector of the canonical basis and the choice of signs depends on the location
of z: positive signs when x; > 0 and negative signs when x; < 0. With this choice of
signs, note that if x ¢ B we have forall ¢t > 0, [v+te;| > |z| > 1 and so x +te; ¢ B.
Hence, for all j =1,...,n, [g(x)] < fjoooo IVg(z + tej)| Xgm (7 + te;) dt. From there,
one can follow the standard argument first with ¢ = 1 and then with other values of
q (see, e.g. [Bre]).

We come back to Lemma 5.4, beginning with the proof of (2.4) with respect to dz.
Let B be a ball, r its radius and f € C§°(R") with support in B. Let j > 2. Observe
that g = e 'L f satisfies the hypotheses of Lemma 5.5. Indeed, the full off-diagonal
estimates on L? and the support of f imply that [, |g(z)]>ecl*=78F/t dx < oo for
some ¢ > 0 where zp is the center of B. Hence g € L'(R") from Cauchy-Schwarz
inequality. Furthermore, Vg € L4(R™) by our assumption. Thus, by Lemma 5.5 and
since Vt Ve 'L e f(Lp — Lq) we have

1>]
1,2 1
_n ,l(ﬁ,n),l c4 D D
< (22r)e t 2\p ) 2e t |fIP dx
1>j B
n 217~ %_ql* _c4tr? 1
< 97iF NG (—) e ( Pd:p)”
2 t 1

< T(Q%)Z QR E (ﬁlf!”dfﬁf'

Hence we obtain (2.4) for e*X € O(LP — L") with 6; = 0 and 6, = 2

The proof of (2.2) for e™'X € O(LP — L") is similar using Sobolev’s inequality on
R"™ only since we do not need a Gaussian term and we obtain the same values for 6,
0.

It remains to see (2.3) for e % € O(Lp — Lq*). Let B be a ball, r its radius, j > 2
and f € Cg°(R™) with supp f C C;(B). Since C;(B) = 27! B\ 27 B, we can cover
C;(B) by a finite number of balls B; with radii 2 2/ r, with centers at distance 2 27 r
from the center of B, and the number of balls is a dimensional constant independent
of j and B. It is enough to assume that f is also supported in one B; ;. Then observe
that B is contained in R"™ \ 2B;, hence the preceding argument changing B to Bj
yields (2.3) with 6, and 65 as above . Details are left to the reader.

In this way we have shown that e ¥ € O(Lp — Lq*) and by Remark 5.1 this
completes the proof. O
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Proposition 5.6. Assume n > 2. We have IC(L) C J(L) and K(L) is characterized
by
Vp,q€[l,o0], p<q ( VitVett e f(Lp — Lq) < p,q € K(L) ) (5.2)

In [Aus], it is only shown that Int/C(L) C J(L) and the characterization is not
considered.

Proof. From Lemma 5.3, K_(L) = J(L)N[1,2]. From p, (L) > (¢+(L))* > q+(L), we
have K (L) C J(L). Tt follows that K(L) C J(L).

Let us see (5.2). Assume that p,g € K(L) withp < q. f p<g<2o0r2<p<yg,
then vt Ve 'L ¢ ]—"(Lp — Lq) as a consequence of p,q € K_(L) or p,q € K, (L) using
the equivalence between full off-diagonal estimates and off-diagonal estimates on balls
(see Remark 5.1). If p <2 < g, then /t Ve~ 'L € F(L? — L) and e~'F € F(LP — L?)

by Lemma 5.3. Hence, by composition and the semigroup property, vt Ve t% &
F(LP — L9).

We turn to the converse. Let 1 < p < ¢ < oo with ViVe tl e F(Lp — Lq) and we
show that p,q € K(L).

Case 2 < p < ¢: We have Vvt Ve 'l € F(LP — L?) and vt Ve 't € F(L? — L?).
Hence, by interpolation, v/t Ve '* € F(LP0 — L%) where 1/py = (1 — 6)/p + 6/2,
/g9 = (1 —0)/qg+60/2 and 0 € (0,1). If p ¢ K (L) then ¢ > supK(L). We can
choose # such that py < sup K, (L) < gy. Since K (L) C J(L), one has py € J(L),
that is, e 'L € F(L*— L?). By composition and the semigroup property, vt Ve 'L €
F(L*—L%), hence gy € K (L). This is a contradiction. We have therefore shown that
p € K4(L). Aswehave /t Ve 'L € F(LP—L?) by assumption and e =% € F(L*—L?)
since p € J(L), by composition and the semigroup property, VtVe tl e F (L2 — Lq).
Hence ¢ € K (L).

Case p < 2 < ¢: Since vt Ve 'L ¢ .7:(Lp — Lq), using the equivalence between off-
diagonal estimates on balls and full off-diagonal estimates (see Remark 5.1), we have
that vt Ve 't € F(L? — L9) and Vvt Ve '* € F(LP — L?). Hence, p € K_(L) and
q € Ki(L).

Case p < ¢ < 2: Asn > 2, we have ¢* < oco. Hence, Lemma 5.4 yields in particular
p € J(L). As p < 2, we have p € K_(L) by Lemma 5.3 and since p < ¢ < 2,
g € K_(L) as well. d

Let us finish this section with analyticity issues. For L as above, there exists
¥ € [0,7/2) depending only on the ellipticity constants such that for all f € D(L)

|arg(Lf, f)] < 9.

We take the smallest 1 such that this estimate holds. In this case, one can obtain that
L is of type ¥ and its semigroup {e 'L},5o has an analytic extension to a complex
semigroup {€7ZL}ZeEﬂ/2719 of contractions on L2.

Applying Theorem 4.3 with py = 2 and Proposition 3.2, one can obtain full off-
diagonal estimates for the family {(zL)™e *"}.cx, in the range J(L) and a similar
type of arguments yields the same thing for the family {\/z V(2L)™e *%} ¢y, in the
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range (L), where 0 < p < 7/2 — 9 and |z| replaces ¢ in the estimates. We skip
details.
We gather here a particular case for later use in [AM3]. Recall that Int J(L) =

(p—(L),p+(L)) and Int K(L) = (¢-(L), ¢+(L)).
Proposition 5.7. Fizm € N and 0 < p < w/2 — 9.
(a) If p,q € (p—(L),p+(L)) with p < q, then {(zL)™e *L},cx, satisfies LP — L7 full

off-diagonal estimates and is a bounded set in L(LP).

(0) Ifp,q € (q-(L),q4(L)) withp < q, then {\/zV(2L)"e **} .cx, satisfies LP — L*
full off-diagonal estimates and is a bounded set in L(LP).

5.2. The intervals J,(L) and K,(L). As a consequence of Proposition 5.7 and
Proposition 2.6 we have the following result.

Proposition 5.8. Fizxm € N and 0 < p<7/2—19. Let w € Aw.

(a) If p,q € W (p—(L),p(L)) with p < q, then {(zL)"e™*"} s, satisfies LP(w) —
Li(w) off-diagonal estimates on balls and is a bounded set in L(LP(w)).

() If p,q € Wu(q-(L),q(L)) with p < q, then {\/zV(zL)"e * }.cx, satisfies
LP(w) — LY(w) off-diagonal estimates on balls and is a bounded set in L(LP(w)).

This statement says that one has some a priori knowledge of the intervals were we
have weighted off-diagonal estimates on balls. But, they could be larger than this.
For a weight w, we let (L) and K, (L) be the intervals of exponents p € [1, 00] such
that e *L and v/t Vet respectively are bounded on LP(w) uniformly in ¢ > 0.

Proposition 5.9. Fizm €N and 0 < p < 7/2 —1. Let w € Ax.

(a) Assume Wy, (p—(L),p+(L)) # @. There exists a unique subset of [1,00], denoted
by Jw(L), which is an interval containing YW, (p,(L),er(L)), such that

Vp,q €[1l,00], p<gq ( et e O(Lp(w) — Lq(w)) <~ p,q € Ju(L) ) (5.3)

Furthermore, Ju(L) C Juw(L) and Int Jo,(L) = Int Ty (L). Also if p,q € Juw(L)
with p < q, then {(2L)"e *%} e, satisfies LP(w) — LY (w) off-diagonal estimates
on balls and is a bounded set in L(LP(w)).

(b) Assume W, (q-(L),q+(L)) # @. There exists a subset of [1,00], denoted by
Kw(L), which is an interval containing W,,(q-(L), g4 (L)) with the following prop-
erties: if p,q € Ky(L) with p < q then VtVe 't € O(LP(w) — L(w)) and,
conversely, for p,q € [1,00] with p < q and p # infK,(L), if VtVett €
O(LP(w) — LU w)) then p,q € Kyw(L). In particular, K, (L) \ {inf K, (L)} is
the largest open interval I in (1,00] characterized by

Vp,ge (1,00, p<q ( ViVett e O(LP(w) — LY(w)) <= p,qel). (5.4)

Furthermore, Ky(L) C Ko(L) and Int Ky(L) = Int Ko(L). Also if p,q € Ku(L)
with p < q, then {\/zV(zL)"e *1} .cx, satisfies LP(w) — LY(w) off-diagonal es-
timates on balls and is a bounded set in L(LP(w)).
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(c) Let n > 2. Assume Wy, (q-(L),q4+(L)) # Q. Then Ky(L) C Jw(L), inf J,,(L) =
inf IC,y (L) and (sup IC\y(L))%, < sup J(L).

(d) If n =1, the intervals J,(L) and IC\y(L) are the same and contain (1, 0o].

We have set ¢, = % when ¢ < nr, and ¢, = oo otherwise. Recall that

ro =inf{r > 1; w e A,.}.

Remark 5.10. Let us assume that L has real coefficients. Then, the kernel of e~
_ad’(zy)
bounded above and below by Gaussians of the form Ct™"/%¢ ¢ with different

constants in each estimate. Hence, for p > 1 and w € A, we find that e~ is bounded
on LP(w) if and only if w € A,. The sufficiency comes from the upper bound on the
kernel. The necessity uses the positivity of the kernel and the doubling condition on
w to derive w € A,. Thus, J,(L) = {p € [1l,00] : w € A,}. At the same time
W (p-(L), p+(L)) = Wi(1,00) = (ry,00). If w € Ay, then one has that J,(L) =
(1,00 If w ¢ Ay, Juw(L) = (ry,o00]. In all cases Int J,,(L) = Wy, (p—(L),p+(L)).
The positivity of the semigroup makes it in some sense extremal among this class of
semigroups (for complex L).

Also KC\(L) is either (ry,ky) or (74, ky], where k, > q(;%j) and s, = sup{s €
(1,00]; w € RH,} (whether k, belongs to K, (L) is not known: we suspect that
Kw(L) is open in [1, o0]).

This also shows that there is no upper bound of sup J,(L) in terms of sup C,, (L)
as already observed for w = 1.

Remark 5.11. We do not know examples where J,,(L) and W, (p_(L), p+ (L)) have
different endpoints: such examples, if any, must be complex.

Remark 5.12. It seems natural to expect that J,,(L) and K, (L) are included in the
set of r € [1, 00| such that w € A,. We are unable to show this.

Also, in part (b), we lack of a general argument showing that if p = inf IC,, (L) < ¢ <
inf W, (¢-(L), ¢+ (L)) = q—(L)ry, and vt Ve ' * € O(LP(w) — LY(w)) then p € Kyy(L).

Proof of Proposition 5.9. Part (a) follows from Corollary 4.5. For the statement cor-
responding to the family {(z L)™ e *L} we observe that, given p,q € J,(L) with
p < q, there exists po, qo, 70 € Jw(L) so that pg < p < ¢ < qo and pg < 19 < qo with
ro € Waw(p—(L),p+(L)). By using Proposition 5.8 and Theorem 4.3 it follows that
{(zL)me*1} € O(LP(w) — L (w)) C O(LP(w) — Li(w)).

We next prove part (d), part (¢) and part (b) in this order. In fact, the construction
of K\y(L) is given during the proofs of part (d) for dimension 1 and part (c) for higher
dimensions.

tL is

Proof of Proposition 5.9, Part (d). We recall that p_(L) = ¢_(L) = 1 and py(L) =
¢+ (L) = 0o, because the kernels of e** and of v/t %e_w are pointwise dominated by
Gaussians [AMcT]. Hence, J,(L) is the interval of those p € [1,00] such that e~*% €
O(LP(w) — L**(w)) and it contains (r,,c0]. Define K, (L) as the interval of those
p € [1,00] such that v £ e7'F € O(LP(w) — L>(w)). We show that J,(L) = K, (L).

Let p € Ju(L). As VtLe 't € O(L>®(w) — L®(w)) and e '* € O(LP(w) —
Loo(w)), we have by composition and the semigroup property v/t % et ¢ (’)(Lp (w)—
L>(w)). Hence, p € K,(L).
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Conversely, assume v/t L e~ 'L € O(LP(w) — L*®(w)). Let ¢ € R with 1>, so
that w € Aq Let B be a ball (an interval), r its radius and f € C’oo( ). Since

e 'L f(x) Vanlshes at +o0o by the compact support of f and the decay of the kernel of

e tr. we have for all z € R,

e “f ()] S/ool(eth)’(y)|dy§/R|(e”f)’(y)ldy-

Now, with C; = Ci(B), we use w € Aa and our assumption, which implies that
p

Vidett ¢ O(DP(w) - L9(w)),
/| “Lpy)dy < 32 f et Y ) dy

>1
< ;2l+1 ][‘ (et F)(y ‘pdy>
S X2 (f I W)’
>1

1 4r . 2'r _cdly? 7
< rte (T(7> +;2”1+9 <7) e 1 )(]{B|f|”dw)
. r max{02,1+61} _i %
< ot 2T(%) <1+e : )(é\f’pdw>

< 1(%) (e

In particular, this proves (2.2) for e™'* € O(LP(w) — L*=(w)).
Remark that if # € C}, then one has the more precise estimate

et f ()] < / RGO

Indeed, it suffices to integrate (e~*Lf)’ from z to +oo if > 0 and from —oo to z if
z < 0. In both cases, the interval of integration is contained in R\ 27 B. Hence, the
same argument above yields

g s 1(20) e (f ),

which proves (2.4) for e7'* € O(LP(w) — L*=(w)).

Similarly, assume f supported in C; = C;(B). We want to estimate |e~*% f(x)| for
x € B. Split C; into its two connected components, B; 1, B; 2, which are intervals of
radius 2/~!r. Observe that B is contained in R\ 2 B, for k = 1,2. Assume that f
is supported in B, to fix ideas. Hence, for x € B, one has as before

@I [ e )
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Arguing as above (with 2 B;; in place of 2/ B) we obtain

e Ef(x)] < T(%)e o (7{9 |f]pdw>’17.

7,1

One does the same thing when f is supported in B;,. This proves (2.3) for e L €
O(LP(w) — L**(w)). Hence, p € J(L).

Proof of Proposition 5.9, Part (c). We have n > 2, W,,(q_(L),q+(L)) # @ and we
know that this is an open interval. Pick 7 € W, (¢-(L), ¢4+ (L)) and set

K_w(L)={pe€[l,7]; ViVett e O(Lp(w) — Lf(w))},
{p € [F,0]; Vivetl e (’)(Lf(w) - Lp(w))},
Kuw(L) =K_ (L) UK, (L).

By construction, K, (L) contains W,,(¢_(L), ¢+(L)) and it is clearly an interval.
We need the following lemmas whose proofs are given below:

Lemma 5.13. Let 1 < p < 7. The following assertions are equivalent:
(i) et e O(LP(w) — L™(w)).
(it) ViVe ™t e O(LP(w) — L™(w)).

Lemma 5.14. Assume 7 < p < oo and VtVe 't € O(L(w) — LP(w)). Then for
7 < q < p, we have e™'t € O(L7(w) — LI(w)).

Note that Lemma 5.13 yields that inf 7,,(L) = inf IC,,(L) and K_ ,,(L) C Ju(L). On
the other hand, Lemma 5.14 implies that (sup IC,, (L))} < sup J (L) and so K (L) C
Jw(L). This proves part (c).

Proof of Lemma 5.15. As 7 € W, (q—(L),q+(L)), we have vVt Ve 't € O(L"(w) —
Lf(w)). Hence, by composition and the semigroup property, we deduce that (i) implies
(7).

For the converse, we cannot follow the route of Lemma 5.3 so we use similar ideas as
in Lemma 5.4. We introduce some auxiliary exponents. Since 7 € W, (q_(L), q+(L)),
there exist py, ¢ such that ¢ (L) < py <7 < ¢ < q+(L) and w € Aﬁ N RH(%)/.
Note that ¢ (L) > (g—(L))*: indeed if n = 2 then ¢q_(L) = 1 and ¢, (L) > 2 whereas
ifn >3, ¢ (L) < nQ—fQ and ¢ (L) > 2. Thus one can choose p; < n and ¢ so that
P = ;_pgl < q.

We begin the proof of (i) with (2.4). Let B be a ball, r its radius and f € C§°(R")
with support in B. Let j > 2 and C; = C;(B). Observe that g = e7'Lf satisfies
the hypotheses of Lemma 5.5 with ¢ = p;. We use that w € RH(%)/ and e~ /2L ¢

F (L — L%) —because p_(L) = ¢-(L) < p1 < pj < 1 < q+(L) < pi(L)— and
Sobolev’s inequality on R™ and on R" \ 27! B (see Lemma 5.5):

(f st an)’ 5 (f, et an)?
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. (/ e~/ g
R\29-1 B
1
1
+ (/ Ve WAL g o1 daz) 1
Rn\2i-1 B
From w € A = and our assumption (iz), we have
<t > (@) ][ IVt Ve WAL f dw>
>1
n ) r max{ﬁg,ﬁ—&—@l} _er? %
< patir( L (1+e (][]f\pdw>
Vit B

n _l(n_mn c4d r? " L
S (@) ot ) {e_ t </ |e=(t/2) dx>p1
21-1 B
. n o _l(n_on, c4l r? 1
5 (2J T)iat 2'p] @ [e_T ( ‘v (t/2) Lf’pl )
1 n 1
</ ‘Ve_(t/Q)Lf‘m dl’) P1 < Z<2l+1 T)H ][ ‘Ve_(t/Q)Lf‘pl d.%') P1
R
noo1 T(47’>0 +221(n+91 (217“) 2 _6417"2 <][ ‘f|pd )11>
— — € w
Vi = Vi B

< mt—gr( > ][|f|pdw | (5.5)

The integral on R™\ 27~! B is analyzed similarly when j > 3 with a summation over
[ > j7—1.If 7 =2, then the integral on C} = 4B is replaced by one on C} = 4B\ 2B
whose contribution is of the same order than the one on Cg Hence,

€ 2 _c4iy? 3
Ve /DL g1 gy 97 1 2 T( ) ¢ ][ Pdw)”
(/Rn\2j13| f’ > ( ) \/7_f ( B‘f’ )

All together after rearranging the terms yields

- 2 g Ll_% _cdir? 1
—tL T d <2]92T( ) 7 ][ P p’
(]{Jjw 7T duw 7 I (S raw)

which is (2.4) for e7'* € O(LP(w) — L (w)).
The proof of (2.2) for e7'* € O(LP(w) — L7(w)) is similar using only Sobolev’s
inequality on R" Since we do not need a Gaussian term:

1 . L*
][‘6 th| dw ][|e th|qld:U)q1 <7» a1 tfﬁ(a* )(/ ’ t/2)Lf‘p1dx> 1

1
<rq1t‘5(a‘a>( Ve t/2>Lf|mdx)
Rn

From here we conclude the desired estimate as in (5.5).
It remains to prove (2.3) for e7'* € O(LP(w) — L™(w)). Let B be a ball, r its
radius, j > 2 and f € C5°(R") with supp f € C; = C;(B). Since C; = 271 B\ 27 B,



26 PASCAL AUSCHER AND JOSE MARIA MARTELL

we can cover C; by a finite number of balls B;; with radii g?j r, with centers at
distance g 27 r from the center of B, and the number of balls is a dimensional constant
independent of j and B. It is enough to assume that f is also supported in one B .
Using w € RH(%)/ and e- /2L e F(Lri — L9),

(£ 1ty aw)” < (f s do)
B
on 1 ooy o c4l r? N <
ST at 2 a’ e N </ |6—(t/2)Lf|p1 d:L') P
R™\2i-2 B

1
([ ]
21-2 B

We use Sobolev’s inequality in R™ and split R™ according to the sets Cy(2/t1 B), [ > 1.
Then w € Az and (i7) yield as before
p1

3 3
(/ e~ 1 dx) "< ( |Ve WL fp dx) "
R"\29-2 B

< (20 )3 T(Q\]ﬁ) (ij+13|f|pdw>;

with 92 max{ﬁg, +01} Next, observe that 2972 B is contained in R™\ 2B, , hence
by Lemma 5.5,

1

1 1
( / g )T 5 / Ve )
2i-2 B R™M\2B; %

Using a splitting of R™\ 2B;;, with the rings 2"* B\ 2! B, for [ > 1, w € A+ and
p1
(71) together with Lemma 6.5 give us

L . n 1 2] T 02 C4j ’I’2 1
(/ |V6_(t/2)Lf|p1 d33> p1 S(2r)emte T(—) et (][ |f‘pdw>p‘
Rn\2Bj,k \/% Bj,k

Gathering our estimates, we deduce that

- 1 2 §2+ﬁ7% _c4ir? 1
ethrdw)TgT(—> et <][ fpdw>p
(41 — 1

whenever f is supported in C; N Bjx. This gives us (2.3) for e7'* € O(LP(w) —
L7 (w)). O

Proof of Lemma 5.14. We know that 7 € W,,(¢-(L),q+(L)). Hence, w € A 0 C

Ay C Ap. Furthermore, for all r > r,, all balls B and Borel subsets £ of B,
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Let ¢ < oo with £ > » — 2. Using [FPW, Corollary 3.2], we have an LP(w) — L(w)

Poincaré inequality:
1 1
(£ lo- ol aw)" ra(f [9grdu)”.
B B

for all any B and Lipschitz function g where gg stands for the w-average of g on B.
Since convolution with a C§° function defines bounded map on L"(w) when w € A, an
approximation argument via mollifiers shows the validity of this inequality if g € L™ (w)
such that Vg € LP(w).

We begin with (2.2) for e 'L € O(L*(w) — L%(w)). Since 7 € Wy (¢-(L), ¢+ (L)) C
W (p—(L),p+(L)), et € O(L7(w) — L7 (w)). The matter is to improve integrability.
Let B be a ball, r its radius and f € C3°(R™) with support in B. Observe that the
Poincaré inequality above applies on B to g = e 'L f since we know that g € L"(w),
Vg € LP(w) from e~** € O(L7(w) — L"(w)), our assumption v/t Ve 'X € O(L"(w) —
LP(w)) and Lemma 6.6. Hence

(]£|e—th|qdw)‘11 § ]{3|e—th|dw+r<]{3|ve—th|pdw);'
w(G) (fran)’
This proves (2.2).

To prove (2.4), we take B and f as before. Let j > 2 and cover C; = C}(B) by
a finite number of balls B;; with radii 2277 and centers at distance 2 2/ r from the
center of B. For each ball B;;, we apply the same argument and obtain (2.4) using
the hypothesis with C; replaced by each Bjj. It suffices to add all the estimates to
conclude.

To prove (2.3), we apply the same argument as for (2.2) but with f now supported
in C;(B) for j > 2. Easy details are skipped. O

AN

Proof of Proposition 5.9, Part (b). In parts (¢) and (d), we defined a set K, (L) which is
an interval in [1, 00] containing W, (¢-(L), ¢+ (L)). The proof that p,q € K, (L) with
p < ¢ implies vVt Ve 'F € O(LP(w) — L9(w)) is entirely similar to that of Proposition
5.6 for K(L) replacing 2 by 7, full off-diagonal estimates by off-diagonal estimates on
balls and using Lemma 5.13 in place of Lemma 5.3.

Conversely assuming p, ¢ € [1, 00] with p < ¢ and p # inf K,,(L) and v/t Ve X €
O(LP(w) — L%w)) we conclude that p,q € K,(L) as in Proposition 5.6 for K(L)
except when p < ¢ < 7. For this situation, we argue as follows: As p # inf K, (L)
we have two cases. The first one is p > inf IC,,(L), which yields p, ¢ in the interval
K.w(L). The second one is p < inf K,,(L). Interpolating vt Ve~'% € O(LP(w)—L(w))
with vt Ve '* € O(LP(w) — Li(w)) for any p,q € K,,(L) with § < G, one can find
a pair pg, e with py < inf K,,(L) and go € W, (q—(L), ¢ (L)) such that vt Ve 'L €
O(LP¢ (w)— L% (w)). Lemma 5.13 holds with gy in place of 7 as gg € Wy, (¢ (L), ¢+ (L))
and thus py € J,(L). This leads to a contradiction since py < inf IC,,(L) = inf J,,(L).
Hence, this second case does not happen.
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The rest of the proof of (b) is easy: That Int Ky, (L) = Int K,y (L) is a consequence of
the discussion in Section 4.1 and the previous characterization (see also the last part
of the proof of Proposition 4.1). The extension of the off-diagonal estimates to the
analytic family follows that done for the semigroup. The L?(w) boundedness follows
from Theorem 2.3, part (a). We skip further details. O

We conclude this discussion with a word on infinitesimal generators.

Corollary 5.15. Assume W, (p—(L),p+(L)) # @. Forp € Ju(L) and p # oo, the
extension to LP(w) of {e *L}iso has an infinitesimal generator which is an operator
of type ¥ in LP(w).

Proof. This is a consequence of Corollary 4.5 and Proposition 5.9, noting that by
construction {e~*£}-q is strongly continuous on L? and 2 € (p_(L),p;(L)). The fact
that the infinitesimal generator is of type 1 comes from the holomorphic extension of
the semigroup on /5y for p € Jy(L). O

Remark 5.16. The inclusion KC,(L) C J,,(L) implies that if p € K, (L) with p #
00, the domain of the LP(w)-infinitesimal generator is contained in the space {f €
LP(w); Vf € LP(w)} (the gradient is defined in the distributional sense).

6. PROOFS OF THE MAIN RESULTS

6.1. Proof of Proposition 2.2. Assume first that K,(z,y) is given with the desired
properties. Fix ¢t > 0. Let B be a ball, r its radius and z its center. Let f € L'(u)
with support in B. Then for almost every = € B,

Tf ()] < / f] di f 71dn)

The doubling condition ylelds that u(B) =~ ,u(B(x,r)). If r < /t then u(B) <
p(B(z,/t). Otherwise r > v/, the doubling condition implies

u(B)~ u(B(a.) < (Z2) ulBl. VD),

and (2.2) holds with 6, = D, the doubling exponent of y. Similarly, (2.3) and (2.4)
hold with 6; = 0 and 6, = D. Hence T; € O(L*(n) — L™ (p)).

Conversely, assume T, € O(L'(n) — L>(un)). Fix ¢ > 0. It follows in particular
from (2.2) that for any ball B and any f,g € L' with support in B

C r\ %
[ st @) < () Ilhlal

Hence, there exists K; p € L>(B x B) such that

/Bg( x) Ty // x)Ke (. y) f(y) duly) dp(z).

It is easy to show that K; g(x,y) = K; p(z,y) almost everywhere on B x BN B’ x B’
so that we may define K; € L2 (X x X') which agrees almost everywhere with K; g

on B x B. Fix a Lebesgue point (zo,y) of K;. Assume that d(zo,y0) < vt. Fix
B = B(xg,V/1) so that 9,50 € B. Then, apply the formula above and let f, g
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approximate Dirac masses at o, o (more precisely, we use Lebesgue differentiation)
to obtain

C C
|Kt(l‘07y0)| S = .
p(B)  p(B(xg, V1))
If d(z0,10) > V/t, then we choose r = d(z¢,10)/6, and for f € L'(u) with support in
B = B(yo,r) and g € L'(u) with support in B’ = B(xg,r), we have (embed B and
B’ in a larger ball B” on which the formula for K; g~ is used)

[ s Ti@ ) = [ [ a@ke) 1) duts) duto)

Since B’ C Cy(B), we may apply (2.4) with j = 2 and by letting f and g approximate
Dirac masses as before, we obtain

| Ko, yo)| <

C (d(SC(]?yO))gz 6_0d2(5§07y0)
w(B) \ Vit

But d(zg,yo) > +/t implies that we can absorb the 65 power by the Gaussian factor and
also that pu(B(zo, V1)) < u(B(zo, d(xo, 1%0))) < pu(B(zo,7)) = n(B) as p is doubling.

6.2. Proof of Theorem 2.3: Part (a). We need the following basic facts about
spaces of homogeneous type. Indeed, the following property was used originally to
define those spaces, see [CW].

Lemma 6.1. There exists N € N depending on Cy in (2.1), such that, for every
j > 1, any ball B contains at most N7 points {xy} such that d(zy,,zr,) > rp/2’.

We also recall the following well-known covering lemma whose proof is left to the
reader (note that the covering family has to be countable since in any fixed ball the
number of r/2-separated points is finite by the previous result).

Lemma 6.2. Given r > 0 there ezists a sequence {zy}r C X so that d(xy,, xy,) > r/2
for all xy, # xy, and X =, B(xy, ).

We can now establish (a) in Theorem 2.3. We use Lemma 6.2 with r = v/t and
write By, = B(xy,/t). Then, if 1 < p < oo,

Tl < Y [ !th\pdu§2<z< 10X s D))
kY B k

- 761 i\02  —c4 1(By,) ’ p o\’
< Z(Zzﬁ Ty o (B ([, i) )
5 (Z _C4J/ |f|pd,u) (f:Qj(el‘Hb)p —c41>l

C;(Bk) 7=1

N Ze_cy /me > Xy dn <y e v NI /me o
j=1 k j=1

< / PP da,
X
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where we have used that for any j > 1 we have ), Xoj(Bk)(x) < N’*3. Indeed, for a
fixed x € X, there exists ky such that © € By,. Then, by Lemma 6.1,

ZXC’ ) <#{k:zxe 2B} < #{k‘ 2 € Blayg,, 212 } < NItH3,

since d(xk, x;) > r/2 = (2072r) /2773, The modification for p = oo is left to the reader.

6.3. Proof of Theorem 2.3: Part (b). We next show that the definition of off-
diagonal estimates on balls is stable under composition.

To prove this we need the following auxiliary results whose proofs are postponed
until the end of this subsection.

Lemma 6.3. Let s >0, a >0 and 6 > 0 with o # 3. Then, if 0 < ¢ < c,

Z oka T(2k s)’g emedts? < T(s)max{o"ﬁ} e~

k=0
Remark 6.4. We have assumed « # (3 in order to get explicit exponents. If o = (3
the same estimate remains true with the power of Y(s) being o + ¢, for any € > 0, in
place of a. For cleanness and shortness, we will use this lemma several times assuming
that the powers are different, if this is not the case the final power has to be slightly
enlarged for the estimate to be correct.

Lemma 6.5. If T, € O(LP(u) — LY(w)) with exponents 6; and b5, then for any ball B

with radius r we have
1

(fmocam ) <1(5)" ¥ (o)

<][51<B> T qu“) S T(f/g) § o~ <]{3|f|pd’u>;7

that is, Ty satisfies the last two estimates in Definition 2.1 with 7 = 1 and 61(3) mn
place of C;j(B).

Lemma 6.6. If T, € O(LP(u) — L(p)) with parameters 61,05, c then for 0 < ¢ < c,
for any ball B with radius r and for every j > 1 we have

1 " 2j r max{61,02} o 49 p2 1
0w D) S ) I ()
(£ X5 1) = L

and

and
car

1 . 95 -\ max{fi+D/q.02} 49 72 7
(][ AT >|Qdu)q§2wlT(_> ¢ (][Wd“)p'
(2B vt i

Once we have stated these auxiliary results we can proceed to establish Theorem
2.3, Part (b).

Proof of Theorem 2.3: Part (b). We start with (2.2) and assume that supp f C B.
Write A = r/+/t. Note that we have

(finora) < (£ m0Gs S8 an) + (10 SO1 )’
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= I+ 11
Then, since supp f C B C 2 B we have

s (iBuxxmg&ﬁvaisr@AVQ(ﬁBWJPmoé
< e (1) T (1)

On the other hand, applying Lemma 6.6 twice we have

1T < 20iy(2 ))mexifndel p—cian? ( ][
2B)°

S f? dﬂ) :

1

< 90147 T(Z )\)maX{Gl192}+maX{“fl+D/q,72} 670/4)‘2 <][ ‘flp d,LL)E

2B

S O ][ |f|pdu>;.
B

Collecting the bounds for I and /1 we obtain the desired estimate.
Next we consider (2.3). Let f be supported on C;(B) with j > 2. Let us set
= 27 rg//t. We first split the integral as follows

][mst i) < (f 100w ST )+ (160 e ST i)’
=1+11.

For I we write B = 29! B which has radius r5 = 29" r5. Thus, C;(B) =4 B\2B =
C1(B) and so by Lemma 6.5 we have

fs((fj(—lB) (1106 Scpran)’

< 2]’D/TT(2%)92 (£ 150X f)\qdu)é

cdri

S 2jD/7’ T(/\)Gz-‘r’m €—c>\2 (][ |f|p d,u) v
C;3(B)

On the other hand, by Lemma 6.6

Gj—1 max{61,02} o 431 2 1
II < 9(i—=1) 61 T(Q_TB) e ¢t £ (][ 1S, f|? dﬂ) e
Vi (251 B)e

< 20 ()l ome X ( ][ |Stf|qazu)?

(291 B)e

Besides,
1 1 1
(f . issvan) s (4 isiflrdu)+ (f  |sspdn)’ = 1n+ 16
(2j71 B)C 2i+2 B (2j+2 B)C
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For I1; we observe that

b 2i+2 B ' X2j+23 'LL ~ \/1_f 2i+2 B /11

<o (L )"

On the other hand for IT, we set B = 2+! B and so its radius is rg =2t rp. Thus,
(272 B)° = (2 B)® and 75/t = 2\. By Lemma 6.6 we have

1

1 1
L, = (]{ ) 1S,(f X§)|qdﬂ)q < 271T(4)\)max{71+D/q,72} ¢ N (][B|f|pd,u)p

2 B)e

< voyer o (f
C;(B

g )’

Collecting the bounds for I, II; and 1, we obtain the desired estimate.
Finally, we show (2.4). We take supp f C B and j > 2. Let us set A = 27 rp/V/t.
We proceed as follows

1

(][C,(B) \T1:<Stf>!’“du)i = (][C.<B) TH (X 251 5 Stf)|’“d/i);
+<]€_(B) T (X (25-1 Bye LN d,u>i — I+ II.

For I we write B = 201 B which has radius rg=2"tr. Thus, C;(B) = 4B\2B =
C1(B) and 75/t = \/2, so Lemma 6.5 yields

1

r-({f IO SHFdr)" ST (1917 )’

Ci(B B

= T e (1SN )" S YO e 10 (f 15 d)’

1
5 T(}\)92+’72 6—6)\2 (f |f|pdﬂ)p
B
On the other hand,

1 1
15 (4 100w SO + (4 e SN i)’
2i+2 B 2i+1 B
= I+ I,.

For I1; we use Lemma 6.6:

I, = <]£j+23 T (X2 5 (X(2jfl B)e St dllJ)i

92 1
Toi+2 B q
T e |Sefl0d
< Vit ) ( 2i+2 B X(za » 1571 'u>

211y ) max{v1+D/q,72,}

Vit

N

1

c4j_1'r23 1
et (][!flpdu)p
B

AN

T(A)% 2U-Dmy (
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1
. 2
S 9im T(}\>02+max{71+l)/q,72,} e cA <][ ’f|p dﬂ)p
B

On the other hand for I'T, we set B = 2/+! B and so its radius is rg =2/t r. Thus,
(272 B)e = (2 B)® and rz/v/t = 2, so by Lemma 6.6 we have

I, = (]{§ |Tt(X(2§)c S| dﬂ)i

, 2 s max{61,02} 2 1
< ony(ZlE e=° (][ S qd)"
( \/¥> (zé)c‘ tf‘ a

1
5 T()\)max{Gl,G'Q} €,CA2 (][ ’Stf’q du) q

(2742 B)e

. 95+2 max{71+D/qm2} 494242 1
S Tl gmeXt QWWT(TTB) T <][~|f " du)’
t B

< gim (A )me(Onfa}tmax{nD/an2} —eN’ (][ 1P dﬂ>;
B

Collecting the bounds for I, II; and I, we obtain the desired estimate. O

. _prak o2 a2 __ gk
Proof of Lemma 6.3. If s > 1, since s%e7¢4" %" < 75" . e 4" for some ¢’ > 0, we
have

i 2ka T(Qk S)B €—c4k 52 —c 52 Z 2k (a+B) —c” 4k —c’ 52 SJ T(s)max{a,ﬁ} -

If 0 < s < 1 then there is ky € N such that 2% < 5 < 27%+1 We obtain

Z 2k:a T(Qk —C4k 52 < Z Qk‘a 2k’ k‘() —c4k7k0
k=0
ZQ’W T (28 h0)” et 4 Z gk (2kko)? eme 0 = g g,
k=ko+1
Then, as a # (3,

I< ZQka —(k—ko) B < 9ko max{c,3} < Sfmax{a,/g’}

On the other hand, as a4+ (3 >0

&) 00
II< Z ok o(k—ko) B 6704’“—’“0 < gkoa Z ok (a+B) 6704]“ < gkoor < Sfmax{a,/o’}.
k=ko+1 k=1

Thus,

ZQka T(2k S)ﬂ e—c4’C 52 < 5 max{a,G} 5 T<S)maX{a,ﬁ} -
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Proof of Lemma 6.5. By Lemma 6.1, given B we can construct a sequence {z}%_, C
B with K < N? such that d(zg,z;) > rp/8 for j # k and with the property that
for all x € B we have some k for which d(z,z;) < rp/8 (this means that we cannot
pick more z}’s). Write By = B(xy,75/4) and note that B C (Ji_, By. Besides,
QI(B) C 2° By \ 22 By = Cy(By) U C3(By) UCy(By,) for each k. Let f be supported on
C1(B). Then, for each k, f = 24:2 fi where fi1 = f Xc,(,)- Assupp fix C Cj(Bx),

1 ; K 4 1
(f imsrran)” < ( ) (f mreran) 1S3 (7, Tl e)
K 4 B 02 c49 r(By)? %
S ;¥2j91 ( 7;/_k)> T k (]ZC: |f],k|pdlu>

14 '(Bk)
27\ % »

< T — Pu)”.

< (ﬂ) ][ |/l u)

where we have used that p(2/7! By) ~ u(4B) ~u(B) for j=23,4and 1 <k < K.
On the other hand if supp f C B we have that f = Zle fr where fi = f X, with

Eyx C By and the sets Ej are pairwise disjoint (for instance, we can take F; = By,
Ey = By \ Ey, ...). Then, as supp fr C By

(J[A Ith|qdu>E§
C1(B)

S 29 r(B)\ % _ et r(By)? !

S ZZQJGlT(T) e t (Bk|fk|17du)

k=1 j=2

2,,,, 92 o 2 1
< . p P
< T( t) e (]im )

Proof of Lemma 6.6. Suppose first that j > 2. Let us write A = 2/ r/y/t. Using that
T, € O(LP(p) — L(p)) we have

][ | T( X By ‘qd:“ < Z f T ( XCk(B )| dﬂ)
2"3 _c4kr2 =

< 2“’@( ) S G :

Z Vi ( Cu(B) )

k>j

1

K
k=1 j=2

g

[e.e]

< 200 N gkhp(gk \) et N (f

k=0 (27 B)®

< wnrpyn oo (f

(2 B)°

|fIP d/i);

\flpdu)’l’,

where we have used Lemma 6.3 (the power max{6;, 05} is correct whenever 6, # 65,
see Remark 6.4 otherwise).
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When j = 1, the argument is exactly the same but for the term £ = 7 = 1 on which
we use Lemma 6.5 in place of Definition 2.1.

On the other hand, assume that j > 2 (and the other case is done as just explained).
Then, since pu is doubling, we have

1

(.m0 e <5 (S52E) (| mox, o)’
< Z2<k_j)D/q2k€1T<27:> o2 6_c4’;r2 (]{3|f|pdlu>;

k>j

= 0 Y Ry (o) e ()
B

k=0

1
SRR (O e (][ 117 dp)”,
B

where, as before, we have used Lemma 6.3 (here, one needs 61 + D /q # 05, see Remark
6.4 otherwise). O

6.4. Proof of Proposition 2.4. Our goal is to show that (2.2), (2.3), and (2.4), for
\/f/ll < r < 4+t with 6, = 6, = 0 and ¢ > 0, yield the same estimates for every
r>0,t>0 with some ¢,0;,60, >0. We fixr >0,¢t>0, B= B(z,r) and j > 2. We
assume that 1 < p < ¢ < oo and leave the other cases to the reader.

Proof of (2.2): Caser < +/t. Let f be supported in B. Then we have that B C B, =
B(z,+/t). Applying (2.2) to B; we obtain for any 6, > 0

(f v < (450)' (f ) < (4)" (f, o)
n(B 1§(fB’f|pd“>;

=
~
)
QL
=
N——
Q|

Q=
Ve
S|
=
BES)
oW
=
N——
b

Proof of (2.2): Case r > +/t. There exists i € N such that 2' < r/vt < 271,
Applying Lemma 6.1, there exists a collection {z;}X , C B such that K < Nt <
(r/v/t)? (where 6 = log N/log?2), d(xy,,xr,) > r/27" for all zy, # 3, and B C
UkB<SL’k,T/2i+1).

We set By = B(xy,Vt) and it follows that B C U,By. Given f with supp f C B

we have that f = Z,Ile frx where fy = f X, with B C By, and the sets { £y}, are
pairwise disjoint (for instance £y = By, Ey = By \ E1, ...). Then,

(fimsman)" i (MBI ] ) (f - maga)]
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and we estimate each term in turn. Applying (2.2) to 4 By — notice that supp fr C
By, C 4 By, and also that r(4 By) = 4/t — it follows that

(o= ure) < (22 (f el

On the other hand, it is immediate to see that the argument of Lemma 6.6 goes
through for j = 2 and r = v/t (assuming only (2.4) for r = v/t). Therefore,

(£, 80" = (f, ) = (i 0 (i)

Notice that x;, € B implies that B C (27/v/t) By. Thus the doubling condition and
the obtained estimates yield

(4 Tf7dn)" <

1

o) ki;(]gm)q

Remark 6.7. We would like to point that the two cases just considered yield (2.2)
for any r, t > 0 with constant max{1,r/y/}%2. We use this below.

Proof of (2.3): Case 29r/\/t <8. Let f be supported in C;(B). By Remark 6.7, we
can use (2.2) with 27! B and 6y = 0. As supp f C C;(B) C 271 B :

< 97 D/q <]€]+1B Fii dM)
. c477" %
§2191 ( ) (][Cj(B)M‘pdu)

with §; = D/q and any 6, ¢ > 0.

Proof of (2.3): Case 2jr/\/f > 8 and r < /t. Take l > 3,1 € N, such that
2l < 2 r/y/t < 21 Write B, = B(z,+/t) and let supp f C C;(B). Observe that
Cj(B) C 2*2 B\2' B, = C(By)UCi41(By). Thus f = [ Xy T Xeyasy = [itfo
and it suffices to obtain the desired estimate for each function. As the argument is the

same for both of them, we work with f; leaving the other case to the reader. Using
that B C B; and (2.3) for B; and C;(B;) (notice that r(B;) = v/t) we obtain

(f 1551 ) < (’ﬁj) (£ 1m0s Xero)I"dit)"
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VT :
(L) e (f ra)
r Ci(Bt)

1 02 ) 1

, 2 r _cdir =

swﬁT(——) e i (f VV@Q”
Vit C;(B)

with 6; = % and any 6, > 0.

Proof of (2.3): Case 2j7”/\/1_f > 8 and r > /t. Take Il > 3, 1 € N, such that
2! <277 /y/t < 271 and let f be supported in C;(B). We cover B by the collection of
balls above { By }_,. Let us observe that C;(B) C 273 B;\2!"! By = U2, __Chin(By).

For each k we set fo,p = f Xy (Br)- Then, using (2.3) with By and Cyy,(Bg) —
notice that 7(By) = v/t — it follows that

1

(£ msiran)” < >y (]i 3 fl )’

m=—1 k=1
2 K 1
SY et (L )
m=—1 k=1 Crym(By

8= —

49 2

Sk (f rrdn)
Cj(B)

1 02 ) 1

. 23 r _cdlr =

§me(——> e (f VP@QP
Vi Cj(B)

with any 91, 92 2 0.

Proof of (2.4): Case 27r/+/t <8. Let f be supported in B. By Remark 6.7, we can
apply (2.2) to 277! B with 6, = 0. As supp f C B C 27! B:

(4 . o d) " < ( i e dn) " 5 £.our )’

i 02 i 1
) 27 c4d r? { =
§2j01T( _) e t ( fpd/L)p

with any 6y, 6, ¢ > 0.
Proof of (2.4): Case 27r/\/t > 8 and r < y/t. Take [ > 3, 1 € N, such that
2l < 2 r/\/t < 271, Assume that f is supported in B. Write B, = B(z,/t) and

observe that C;(B) C 272 B\ 2! B, = C)(B;)UCj41(B;). Using that supp f C B C B,
and (2.4) for B, and Cy(B,) (notice that r(B;) = v/t) we obtain

1 1
(f mavan) S (f  imfirde)
C;(B) Crym(Bt)

1
—_c I+m ;
e ( Iflpdu>
By

]~

m=0

A
=

m=0
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2 _c4Ir? L
<SPhT o (f )’
\/E B

Proof of (2.4): Case 2jr/ﬁ > 8 and r > /t. Take Il > 3, 1 € N, such that
2l < 27r/\/t < 2% and let f be supported in B. As above we cover B by the
balls { B} ;. Let us observe that C;(B) C 23 By \ 27! By = U2 __,Ci1(By). We
write [ = Zszl fr as before. Then, using (2.4) with By and C),,(By) — notice that
r(By) = v/t — it follows that

with any 6,6 > 0.

1 2 K 1
Tifftdp)’ S ( f Tifel? dr)
<£J(B) | f| ,u mzzl ; Cl+m(Bk) | f | Iu
2 K 1
sy Ze—“*”m( [Fel? dp)
m=—1 k=1 By,

with any 6, 65 > 0.

We could have proved Proposition 2.4 first to simplify to the proof of Theorem 2.3,
Part (b). However, the reader has certainly noticed that both results use the same
tools.

6.5. Proof of Proposition 2.6. We fix w € APL N RHwy and by Proposition
0 q

A1, (i17) and (iv), there exist p1, ¢1 with po < p1 < p < ¢ < @1 < o such that
w e APL N RHay. Tt is well-known that
1

q
1

weA% = (fgpld,u)mfl(][gpdw); (6.1)
B B

1

1 1
w E RH(%)/ = <][ quw>q < <][ g d,u)ql, (6.2)
B B

where in the right hand sides g runs over the set of non-negative measurable functions
and B runs over the set of balls. Thus, using (6.2), T, € O (L (u) — L% (u)) and (6.1)
we have

(f mocu nraw) < (f moxa nean)® sx(2)" (f e an)
() (e

N
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This shows (2.2). The same can be done to derive (2.3) and (2.4) and this completes
the proof.

6.6. Proof of Propositions 3.2 and 3.3.

Proof of Proposition 3.2. We prove (a). That T, € F(LP(u) — L9(p)) implies T, €
O(LP(p) — L(p)) is easy by specializing (3.1) to balls and annuli and using

u(B)y s S i
from the polynomial upper bound of the volume.

We turn to (b). Assume g < co. The argument mimics that of Theorem 2.3, part
(a). Let E, F be two closed sets and t > 0. Let f be supported in . We first assume
that ¢ < (d(E, F)/16)?. Pick a collection of balls By, = B(x,r) as in Lemma 6.2 with
r = d(E,F)/16. Observe that if z € F' and y € F then d(x,y) > d(E,F) = 167.
Hence, if © € By, then y ¢ 4By, so y € C;(By) for some j > 2. In what follows
the summation in k is restricted to those balls By so that F'N B, # ). Using that
supp f C E and (2.3), we have

TV < 3 [ st < > (z ([ 110X, D) )
N o (2T\® e p(By) )

< J 01 . 7 p

- Z<;2 T(\/E) ) u(2j+1Bk);</0j<Bk>|f| dﬂ) '

k

Next, by the polynomial lower bound of the volume, p < g and r > v/t, we have

1 1

/,L(Bk)q < /,L(Bk)q n_n _1 ﬂ_ﬂ)

. 1 — 1 .
W2 By (B

; 02 .
. J .2 . "2
2ot (2] e g e

for some ¢, ¢” > 0. Thus,

Also, note that

q < _l(ﬂ_ﬂ) 7C"r2
”thHLq(F,“) S o (trrate

_1(n_n 7CNT2 q > o 4d %
N ( 2(p q)e t ) </EZZG v ch(Bk) ’f‘pdu)
k

where we used the fact that % > 1. We conclude as in Section 6.2 using that

o o0

4l j+3 _—c' 47
D2 Xoypy S QN <0< o0
j=2 k j=2
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In the case where t > (d(E, F)/16)?, then we argue as before with r = v/¢. This
time, we have to incorporate the terms with j = 1 and use also (2.2) with 4B;,. We
obtain

ITef Ny S 257D 1l o

This proves the result when ¢ < oo. The modification for ¢ = oo is left to the
reader. U

Proof of Proposition 3.3. Assume first that T; satisfies LP(u) — L(u) full off-diagonal
estimates of type ¢. Let us see for example, how to obtain (2.2) for T, € O(LP(p) —
L7(p)), the other estimates being similar. We specialize (3.1) with ¢~ replaced by

¢(Vt)* ? to E=F = B. Then, using p(B) ~ gp(r) we obtain

(f imfpean) 3N< ) ][If!”du

and we observe that since ¢ is non-decreasing and p is doubling,

(r) r \D r\ P
<o () ()

where D is the doubling order of p.
We turn to the converse. The argument is the same as the one above. The only
change is in the inequality when t < (d(E, F')/16)? = r?, and it reads

By B,
B o WO, < p(V)
(274 By)r u(By)r
as ¢ is non-decreasing Vit < r and p < q. Further details are left to the reader. |

6.7. Proof of Proposition 3.6. Fix a ball B. Set r = rz and A = r/y/t. By (iii)
and (iv) in Proposition A.1, one can select py,q; with pg < p;1 <p < ¢q < ¢ < go and
1 q

»QM—‘
Q|-
S =

‘tH»—A

p(r)a”

Using (vii¢) and (viii) in Proposition A.1, we have that w'@ € A, with a =
1+ (L2 —1)(%) and

a1

N N C \ (Y
(o (528) ) ™ i)™ <2
(2B)e r B | B|at

where, in the last estimate we have used that w € RH o) . Let @ > 0 be such that
no = a( )', then by Holder’s inequality and the above estlmate

<J{23 ITX >|de)§§(]{23)c T(X s DI (@)a?dx)q?

Now decompose (2B)° as the union of the rings C;(B) for j > 1 where C1(B) is here
4B\ 2B. On each C;(B) we can use the LP*(dz) — L% (dx) full off-diagonal estimates
so that the right hand term is bounded by

1
<Z2jaq1 7c4a>\2 a )\H_E ][Lﬂpl p1 <)\”1_q£_E 70/\2 ][]f|pdw

j>1



WEIGHTED NORM INEQUALITIES AND ELLIPTIC OPERATORS 41

where we have used that w € A»
P1
of \is

n n a n
ﬁ:—————:—(L£>.
D1 q1 q D1 q

Let us prove the estimate (3.4). We pick p1, ¢; as before and take a so that a(
na’ where o =1+ (£ —1)(4)". Writing f; = X¢,(p) f, using that w € RH(?l
by the LP'(dx) — L% (dz) full off-diagonal estimates for T;

. Hence we have obtained (3.3) and the total power

and

by =
)

1

(7{9 (X oy f)\qdw)qﬁ(]i T(X e NI )q11<2(][mfﬂ"“dz>%

1
S 1; Zkﬁ_% e N </ LS dx)pl.
|Blr =1 C;(B)
< ! P

S Y An T e N 2;’“(/ <\$—$B’>“|f|p1 >1
|B|H iz C3(B)
|B| < [ ITRETY e—c4J/\2 J* Z/ xB‘) |f|p1 dx)H

ji>1

|Bm j B sy )

n n a n(q )
y=— 222 (1)),
Ppr @1 p1 @1 \P

Using Holder’s inequality Wlth - > 11t follows that

(]{9 |Tt<X(QB)C NI dw)é

—c\? 1 . _a( 2y 1
SEE ([ itwae) ([t (YA gy
| B|Pt (2B)e (2B)e r
1 : —na’ — 1
e (L ippaw) O ([ () g
~ (2B)¢ 1Bl N ey r

sveer (f ),
(2B)°

where the latter inequality is obtained as follows: since w'@) € A,, one has that
q1\/ / (2
w072 = =G0 € A, Thus (viit) in Proposition A.1 and w € Az imply
1

P1
—nao' % 1
</ wl—(é)'<x)<’x_x3|) da:) P1(pp) < (/ wl—(ﬁ)’@;) dx) P1 (R
(2B)e r B

P’ 1
sww@f(i@>m%y—'m“.

w(B)

where
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APPENDIX A. MUCKENHOUPT WEIGHTS

A weight w is a non-negative locally integrable function. We say that w € A,
1 < p < o0, if there exists a constant C' such that for every ball B C X,

(fw) (Lo <c

For p = 1, we say that w € A; if there is a constant C' such that for every ball B C X
][wdung(y), for a.e. y € B,
B

or, equivalently, Mw < C'w for a.e.. The reverse Holder classes are defined in the
following way: w € RH,, 1 < g < oo, if

<]{Bwqdu); < C]{deu

for every ball B. The endpoint ¢ = oo is given by the condition: w € RH,, whenever,
for any ball B,

w(y) <C f wdp, for a.e. y € B.
B

Notice that we have excluded the case ¢ = 1 since the class RH; consists of all the
weights and that is the way RH; is understood.
Next, we present some of the properties of these classes.

Proposition A.1.

(i) Ay CA, CA, for1 <p<gq< 0.

(i1) RHy, C RH, C RH, for 1 <p < ¢ < c0.

1) Ifw e Ay, 1 <p < oo, then there exists 1 < q < p such that w € A,.

p
(iv) Ifw e RH,, 1 < q < oo, then there ezists ¢ < p < oo such that w € RH,,.
(v) A U Ay = U RH,
1<p<oo 1<g<o0o

(vi) If 1 < p < oo, w € A, if and only if w'™ € A,.
(vit) If1 < qg< oo andl < s < oo, thenw € A;NRH, if and only if w® € Agg-1)11.

(viii) In the case of the Euclidean space R", if w € A,, 1 < p < oo, there exists C,,
such that for every ball B = B(xp,TR),

— -np
/ w(x) (M) dx < Cypw(B).
R"\2 B B

Properties (i)-(vi) are standard. For (vii) see [JN] in the Euclidean setting (and the
same argument holds in spaces of homogeneous type [ST]). The last property follows
easily by using the boundedness of M on LP(w) applied to f = Xp.
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