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ABSTRACT. Let Q@ C R™1, n > 2 be a l-sided non-tangentially accessi-
ble domain (aka uniform domain), that is, a set which satisfies the inte-
rior Corkscrew and Harnack chain conditions, which are respectively scale-
invariant/quantitative versions of openness and path-connectedness. Assume
also that 2 satisfies the so-called capacity density condition, a quantitative
version of the fact that all boundary points are Wiener regular. Let Lou =
—div(AoVu), Lu = — div(AVu) be two real (non-necessarily symmetric) uni-
formly elliptic operators, and write wr,,, wy, for the respective associated ellip-
tic measures. The goal of this paper is to find sufficient conditions guaranteeing
that wy, satisfies an Aoo-condition or a RHgy-condition with respect to wr,,.
We show that if the discrepancy of the two matrices satisfies a natural Car-
leson measure condition with respect to wr, then wy € Aoo(wLO). Moreover,
we obtain that wy, € RHq(wr,) for any given 1 < ¢ < oo if the Carleson
measure condition is assumed to hold with a sufficiently small constant. This
“small constant” case extends previous work of Fefferman-Kenig-Pipher and
Milakis-Pipher together with the last author of the present paper who consid-
ered symmetric operators in Lipschitz and bounded chord-arc domains respec-
tively. Here we go beyond those settings, our domains satisfy a capacity density
condition which is much weaker than the existence of exterior Corkscrew balls.
Moreover, the boundaries of our domains need not to be Ahlfors regular and
the restriction of the n-dimensional Hausdorff measure to the boundary could
be even locally infinite. The “large constant” case, that is, the one on which we
just assume that the discrepancy of the two matrices satisfies a Carleson mea-
sure condition, is new even in the case of nice domains (such as the unit ball,
the upper-half space, or non-tangentially accessible domains) and in the case
of symmetric operators. We emphasize that our results hold in the absence of
a nice surface measure: all the analysis is done with the underlying measure
wr,, which behaves well in the settings we are considering. When particular-
ized to the setting of Lipschitz, chord-arc, or 1-sided chord-arc domains, our
methods allow us to immediately recover a number of existing perturbation
results as well as extend some of them. Of independent interest, is the exten-
sion of the Dahlberg-Jerison-Kenig result concerning conical square function
and non-tangential maximal functions to 1-sided non-tangentially accessible
domains satisfying the capacity density condition.
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CHAPTER 1

Introduction and Main results

The purpose of this article is to study some perturbation problems for second
order divergence form real elliptic operators with bounded measurable coeflicients
in domains with rough boundaries. Let Q C R™*!, n > 2, be an open set and let

Lu = — div(AVu) be a second order divergence form real elliptic operator defined in
(). Here the coefficient matrix A = (a;, ]());1;;11 is real (non-necessarily symmetric)

with a; ; € L*°(Q) and is uniformly elliptic, that is, there exists a constant A > 1
such that

(1.1) AT < A(X)E - €, [A(X)E -l < Al¢][n]

for all £, € R™*! and for almost every X € Q. Associated with L one can construct
a family of positive Borel measures {w3 }xeq, defined on 9Q with wX (9Q) < 1 for
every X € (1, so that for each f € C.(9f) one can define its associated weak-
solution

(1.2) u(X) = f(2)dwy (2), whenever X € Q,
o0

which satisfies Lu = 0 in 2 in the weak sense. In principle, unless we assume some
further condition, u needs not be continuous all the way to the boundary but still
we think of u as the solution to the continuous Dirichlet problem with boundary
data f. We call wy the elliptic measure of (2 associated with the operator L with
pole at X € Q). For convenience, we will sometimes write wy, and call it simply the
elliptic measure, dropping the dependence on the pole.

Given two such operators Lou = —div(4oVu) and Lu = —div(AVu), one
may wonder whether one can find conditions on the matrices Ay and A so that
some “good estimates” for the Dirichlet problem or for the elliptic measure for Lg
might be transferred to the operator L. Similarly, one may try to see whether A
being “close” to Ay in some sense gives some relationship between wy, and wi,,.
In this direction, a celebrated result of Littman, Stampacchia, and Weinberger in
[LSW63] states that the continuous Dirichlet problem for the Laplace operator
Lo = A, (ie., A is the identity) is solvable if and only if it is solvable for any real
elliptic operator L. By solvability here we mean that the elliptic measure solutions
as in (1.2) are indeed continuous in . It is well known that solvability in this sense
is in fact equivalent to the fact that all boundary points are regular in the sense
of Wiener, a condition which entails some capacitary thickness of the complement
of €. Note that, for this result, one does not need to know that L is “close” to
the Laplacian in any sense (other than the fact that both operators are uniformly
elliptic).

On the other hand, if Q = Rf_ is the upper-half plane and Ly = A, then the
harmonic measure associated with A is the Poisson-kernel which is mutually abso-
lutely continuous with respect to the surface measure on the boundary. However,
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2 1. INTRODUCTION AND MAIN RESULTS

Caffarelli, Fabes, and Kenig in [CFK81] constructed a uniformly real elliptic oper-
ator L in the plane — the pullback of the Laplacian via a quasiconformal mapping
of the upper half plane to itself — for which the associated elliptic measure wy, is not
even absolutely continuous with respect to the surface measure (see also [MM81]
for another example). Hence, in principle the “good behavior” of harmonic measure
does not always transfer to any elliptic measure even in a nice domain such as the
upper-half plane. Consequently, it is natural to see if those good properties can be
transferred by assuming some conditions reflecting the fact that L is “close” to Lg
or, in other words, imposing some conditions on the disagreement of A and Ag.

To describe positive results in this direction, with Ly and L as above, we define
the disagreement of A and Ag as

o(A4, Ap)(X) = sup |A(Y) — Ao (Y)], X e,
YEB(X,5(X)/2)

where §(X) = dist(X,09Q) (thus, the supremum is taken over a Whitney ball).
Define, for every z € 90 and 0 < r < diam(95?),

(o e
h(xm) = (U(B(LE,T) m@Q) //B(z,r)ﬂﬂ 5(X) dX) s

where 0 = H"|gq (i.e, the n-dimensional Hausdorff measure restricted to the bound-
ary). The study of perturbation of elliptic operators was initiated by Fabes, Jerison,
and Kenig in [FJK84] and later studied by Dahlberg [Dah86] for symmetric op-
erators. Dahlberg in the case of 2 = B(0, 1) observed that if
}1_% ‘gsc?:pl h(z,r) =0

and if w, < o with dwy/do € RH,(o) (the classical reverse Hélder condition
with respect to the surface measure) for some 1 < ¢ < oo then w; < o and
dwy,/do € RHy(o). The importance of these reverse Holder conditions comes from
the fact that dwr,/do € RH,(0) is equivalent to the L7 -solvability of the Dirichlet
problem, that is, the non tangential maximal function for the solution w given in
(1.2) is controlled by f in the L7 (¢)-norm. Dahlberg’s approach was to define
Ay = (1 —t)Ag + tA for 0 <t < 1, obtaining a differential inequality for the best
constant in the reverse Holder inequality for dwy, /do. Later, Fefferman in [Fef89]
made the first attempt to remove the smallness of the function h. Working again in
the domain 2 = B(0, 1) and with symmetric operators, he showed than an A (o)
condition is still inherited from the first measure (that is, wg € As (o) implies
wr, € Ay (o)) provided that A(o(A, Ag)) € L*(0B(0,1)) (and the bound needs
not to be small). Here,

9 3
(1.3) Alo(A, Ag))(z) = <//F( )WM>

and I'(z) is the non-tangential cone with vertex at € 9Q with angular aperture
0 < m/2. Using Fubini’s theorem one can easily see the connection between h(z, )

and A(o(A, Ap))(x):

1 2
h@,r) S (o(B(z,C’T) noQ) /B(x,Cr)maﬂ Ale(4, 40))() dU)

1
2




1. INTRODUCTION AND MAIN RESULTS 3

It was also noted in [FKP91] that finiteness of [|A(o(A, Ao))|| L (0B(0,1)) does not
allow one to preserve the reverse Holder exponent. Indeed it was shown that for a
given 1 < p < oo, there exist uniformly elliptic symmetric matrices Ag and A with
the property that A(o(A, Ag)) € L>*(8B(0,1)), wr, € RH,(0) but wy, ¢ RH,(0).
On the other hand, one of the main results in the pioneering perturbation article
by Fefferman, Kenig, and Pipher [FKP91] established that if the Carleson norm
SUPg<y<1, |z|=1 P(7,7) is merely assumed to be finite (not necessarily going to zero
as r — 0) then wr, € Ax (o) implies wy, € Ax(0) in the symmetric case. In the
same article, it was shown that the assumption that the previous Carleson norm
SUPo<y<1, [o|=1 P(7, ) being finite is also necessary and cannot be weakened. One
of the ingredients in [FKP91] was to see that if  is a Lipschitz domain and if

(1.4)

1
2

. 1 2y GLo(X)
i (wM(B(w,rmam o420 dX) o

0<r<diam(9)

for ¢ sufficiently small then wy, € RHa(wp, ), where G, (X) = G, (X0, X) is the
Green function for Ly in 2 with a pole at some fixed Xy € Q. We also remark that
in [FKP91] the authors also considered L"-averages of the disagreement function
0(A, Ap) as opposed to the supremum. Using that approach it was shown that there
exists r (depending on ellipticity) such that for each ¢ > 1 there exists ¢, so that
wr, € RHy(wr,) provided that L"-average of the disagreement function o(A4, Ap)
satisfies (1.4) with g,.

Milakis, Pipher, and the fourth author of this article in [MPT13] made the
first attempt to study perturbation problems for symmetric operators beyond the
Lipschitz setting. To describe their results we need more notions which will be
described briefly here and made precise later. A domain is called non-tangentially
accessible (NTA for short) if it satisfies quantitative interior and exterior openness
as well as quantitative (interior) path-connectedness. A boundary of a domain is
called Ahlfors regular if the surface measure of balls with center on the bound-
ary and radius r behaves like 7™ (in ambient dimension n + 1). Note that NTA
domains with Ahlfors regular boundaries (called chord-arc domains) are not nec-
essarily Lipschitz domains and in general they cannot be locally represented as
graphs. The first result of Fefferman, Kenig, and Pipher discussed above was gen-
eralized in [MPT13] to bounded chord-arc domains. That is, if © is a chord-arc
domain and if (1.4) is satisfied for some €9 > 0 small then wy, € RHa(wr,) (see also
[MT10]). Also, [MPT13] established that if h(z,r) is small enough (uniformly
inz e 0N and 0 < r < diam(99Q)) and wr, € RHy(o) for some 1 < ¢ < o0
then wr, € RHy(o). Also, assuming that h(z,r) is merely bounded (uniformly
inz € 00 and 0 < r < diam(9R)) then wr, € RHy(o) for some 1 < ¢ < o0
implies that w;, € RHy(o) for some 1 < p < oco. We also mention that Escau-
riaza in [Esc96] showed that if Q is a Lipschitz domain and h(z,r) is uniformly
bounded for every x € 0 and 0 < r < diam(9?) then log(dwy,/do) € VMO(o) if
log(dwr, /do) € VMO(o), here VMO stands for the space of vanish mean oscillation
introduced by Sarason. This result was further generalized to bounded chord-arc
domains in [MPT14].

In [CHM19], Cavero, the second and the third authors of this article stud-
ied the “small”’and “large” perturbation for symmetric operators when the domain
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is 1-sided NTA domain with Ahlfors regular boundary (called 1-sided chord-arc
domains). Here 1-sided NTA domains (aka uniform domains) satisfy only quantita-
tive interior openness and path-connectedness. In [CHM19], the perturbation re-
sults of [FKP91, MPT13] were generalized to 1-sided chord-arc domains. Again,
smallness of h(x,r) allowed the authors to preserve the exponent in the reverse
Hélder condition while finiteness yields only that the A, condition is transferred
from one operator to the other. It is relevant to mention that the approach in
[CHM19]|, which is different from [FKP91, MPT13], uses the extrapolation of
Carleson measure, originally introduced by Lewis and Murray in [LM91] (but
based on the Corona construction of [Car62, CGT75]) and later developed in
[HLO1, HM14, HM12], as well as good properties of sawtooth domains (fol-
lowing the sawtooth construction in [DJK84]). The bottom line is that the large
perturbation case can be reduced to the small perturbation in some sawtooth subdo-
mains. We would like to note that the arguments of [FKP91, MPT13, CHM19]
are written explicitly only in the case of real symmetric coefficients, but we would
expect that similar arguments could be carried over to the non-symmetric case as
well. We also mention [CHMT20] where the non-symmetric case is also consid-
ered by using a different method, as well as [MP20], where perturbation theory
for certain degenerate elliptic operators is developed in the setting of domains with
lower dimensional boundaries.

One common feature in the previous perturbation results is that the surface
measures of the boundary of the domains always have good properties, since in all
cases the boundary is Ahlfors regular. For those results on which one is perturbing
RH, (o) or A (o), this is natural as one implicitly needs to make sense of o and to
that extent the Ahlfors regularity is natural. However, if one carefully looks at (1.4)
and the conclusion derived from it, that is, wy, € RHa(wr, ), there is no appearance
of the surface measure, and these conditions make sense whether or not the surface
measure is a well-behaved object. Another natural question that arises from (1.4)
is whether one can target some other reverse Holder conditions by allowing €( to be
larger, or ultimately to investigate what are the conclusions that can be obtained
assuming that eq is just an arbitrary large finite constant.

The goal of this monograph is to answer these questions. Our setting is that of
1-sided NTA domains satisfying the so called capacity density condition (CDC for
short), see Chapter 2 for the precise definitions. The latter is a quantitative version
of the well-known Wiener criterion and it is weaker than the Ahlfors regularity
of the boundary or the existence of exterior Corkscrews. This setting guarantees
among other things that any elliptic measure is doubling in some appropriate sense,
hence one can see that a suitable portion of the boundary of the domain endowed
with the Euclidean distance and with a given elliptic measure wr, is a space of
homogeneous type. In particular, classes like Ao (wr,) or RHp(wr,) have the same
good features of the corresponding ones in the Euclidean setting. However, our
assumptions do not guarantee that the surface measure o has any good behavior
and could even be locally infinite. One of our main results considers both the case
in which (1.4) holds with small or large £9. The small constant case can be seen as
an extension of [FKP91, MPT13] to a setting on which surface measure is not
a good object. Furthermore, the large constant case is new even in nice domains
such as balls, upper-half spaces, Lipschitz domains or chord-arc domains. In this
line, our main result is, to the best of our knowledge, the first one being able to
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establish perturbation results on sets with bad surface measures. Also, for the first
time we are able to consider large perturbations in the sense of (1.4). Finally, we
do not require the operators to be symmetric. Our main result is formulated as
follows:

THEOREM 1.5. Let Q@ C R™"*! n > 2 be a 1-sided NTA domain (cf. Def-
inition 2.5) satisfying the capacity density condition (cf. Definition 2.10). Let

Lu = —div(AVu) and Lou = —div(AoVu) be real (non-necessarily symmetric)
elliptic operators. Define the disagreement between A and Ag in € by
(1.6) 0(A, Ap)(X) := [|[A — Aol (B(x.5(x)/2))5 X e,

where §(X) := dist(X,00), and

7)ot Aol = supsup — [ ot ag 0SS ix

where A = BNON, A" = B'NONQ, and the sups are taken respectively over all balls
B = B(x,r) with x € 0Q and 0 < r < diam(992), and B’ = B(a',r") with 2’ € 2A
and 0 < 1’ < rep/4, and cq is the Corkscrew constant.

(a) If |lo(A, Ap)|| < oo, then wr € Ax(0Q,wr,) (cf. Definition 2.58). More
precisely, there exists 1 < g < oo such thatwy, € RH,(0Q,wr,) (cf.Definition
2.58). Here, q and [wr]rm, (00w (cf Definition 2.58) depend only on
dimension, the 1-sided NTA and CDC constants, the ellipticity constants
of Lo and L, and |[o(A, Ao)|l-

(b) Given 1 < p < oo, there exists €, > 0 (depending only on dimension, the
1-sided NTA and CDC constants, the ellipticity constants of Ly and L, and
p) such that if one has ||o(A, Ao)|| < ep, then wy € RH,(0Q,wr,) (cf.
Definition 2.58). Here, [WL|rH, (00.w,) (¢f- Definition 2.58) depends only on
dimension, the 1-sided NTA and CDC constants, the ellipticity constants of
Lg and L, and p.

REMARK 1.8. Let us make a few remarks regarding the expression in (1.6).
First, the collection of B’ in the second sup is chosen so that Xa ¢ 4B’, hence
the Green function is not singular in the domain of integration. But even if the
domain of integration contained X this would not cause any problem, since the
corresponding estimate near Xa becomes easy by invoking Lemma 2.59 below:

1 Gro(Xa, X
oA // o4, A0)(x)? el X
w2 (A) JJB(xa6(xa)/2) (X)

1
2 1—n
S (1A = Aol oo (B(xa,6(x8)/2))) FENE //B(X . |X — Xal'"™dX
A A

S (1A = Aol (xas(xa)/20)*
Second, at a first glance (1.6) seems different than (1.4), the condition imposed
by Fefferman, Kenig, and Pipher in [FKP91], which in the current case and if
is bounded (avoiding the pole as just mentioned) would read as

19 Mool =swp s [ ot anor e ax,

where X € Q is a “center” of Q (say, Xq is the Corkscrew point associated
with the surface ball A(xg, diam(092)/2) for some fixed zg € Q) so that §(Xq) =
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diam(99Q); A’ = B’ N 9O and the sup is taken over all balls B’ = B(a/,r’) with
' € 00 and 0 < r < diam(0Q)cg/4. We can easily see that [|o(A4, Ao)|| =~
lle(A, Ao)|l,. First, using Lemma 2.69 below and possibly Harnack’s inequality,
one can see that for B = B(x,r) and B’ = B(2/,7') as in (1.7) if X € B’ N then

GrolXaX) o GrgXeX) “yyg, [llo(A, Ao)|| S Ille(A, Ao)]l,. To obtain the con-

wipdan T wrean
verse inequality, let B’ = B(a/,7’) with 2’ € 9Q and 0 < ' < diam(0Q)cy/4.
Pick max{3,47'/(diam(0Q)co)} < 6 < 1 and write r = 6 diam(9Q) so that
diam(99Q)/2 < r < diam(992) and ' < reg/4. Set B = B(a',r) and note that the
Harnack chain condition and Harnack’s inequality easily yield wX¢(A) ~ w¥Xa(A/),
and also Gr,(Xq,X) = GL,(Xa,X) for every X € B' N, where A = BN oN
and A’ = B’ N 9Q. All these give at once that [|o(4, Ao)ll, < [lo(4, Ao)|l|l- Hence,
lle(A, Ao)|ll = llle(A, Ao)||l, when Q is bounded.
In the unbounded case, one could use a similar argument working with a pole
at infinity, which would require to normalize appropriately wr, and Gp,; here we
will simply work with the scale-invariant expression (1.7) to avoid that issue.

Finally, we also have a generalization of a result [Fef89, FKP91, MPT13]:

THEOREM 1.10. Let Q C R" n > 2, be a 1-sided NTA domain (cf. Definition
2.5) satisfying the capacity density condition (cf. Definition 2.10), and let Lu =
—div(AVu) and Lou = —div(AgVu) be real (non-necessarily symmetric) elliptic
operators. Given o > 0, set

(111)  Au(o(A, Ao))(z) := <//F()de> . weon,

where Tp(2) ={Y € Q: Y —z| < (1 + a)d(Y)}.

(a) If An(0(A, Ap)) € L>®(wyr,), then wr, € Aoc(0Q,wr,) (cf. Definition 2.58).
More precisely, there exists 1 < g < oo such that wr, € RH (09Q,wr,) (cf.
Definition 2.58). Here, q and [WL]rH,(90.w,) (¢f- Definition 2.58) depend
only on dimension, the 1-sided NTA and CDC' constants, the ellipticity con-
stants of Lo and L, c, and || Aq(0(A, Ao))ll L (wp,)-

(b) Given p, 1 < p < oo, there exists €, > 0 (depending only on p, dimension,
the 1-sided NTA and CDC constants, the ellipticity constants of Ly and L,
and o) such that if Aa(0(A, Ao)) € L>(wr,) with || Aa(0(A, Ao)) ||z (wr,) <
€p, then wr, € RH,(0Q, wr,) (cf. Definition 2.58). Here [wr]rm,(90,w0)
(cf. Definition 2.58) depends only on dimension, the 1-sided NTA and CDC
constants, the ellipticity constants of Lo and L, «, and p.

REMARK 1.12. Note that in the previous result we are not specifying the pole
for the elliptic measure wr,,. However there is no ambiguity since, as a matter of
fact, for any given X, Y € 2 one has that wfo and w{o are mutually absolutely
continuous, thus L>(9Q, wr ) = L= (9Q,wy, ) with ||~||Loo(89,wico) = ||~||Loo(897wzo).

The plan of this paper is as follows. Next chapter contains some of the prelim-
inaries, definitions, and tools which will be used throughout the paper. Chapter
3 is devoted to proving our main results. As a matter of fact Theorem 1.5 fol-
lows from a local version, interesting on its own right, which is valid on bounded
domains, see Proposition 3.1. The proof of Theorem 1.10 is also in Chapter 3.
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The proof of Proposition 3.1 is in Sections 3.2 and 3.3 which respectively handle
the large and small constant cases. The proof of the large constant case is based
on the extrapolation of Carleson measure technique mentioned above. Chapter 4
contains some dyadic version of the main lemma of [DJK84] which is needed in
our arguments. In Chapter 5 we present a couple of results which are interesting
on its own right. In Theorem 5.1 we show that bounded weak-solutions satisfy
Carleson measure estimates adapted to the elliptic measure and in Theorem 5.3 we
establish that the conical square function can be controlled by the non-tangential
maximal function in norm with respect to the elliptic measure, extending [DJK84]
to our general setting. Finally, in Appendix A we apply our main results to con-
sider the case of 1-sided CAD (cf. Definition 2.9) —hence the domain is 1-sided
NTA and satisfies the CDC condition— and show in Corollaries A.2 and A.5 that
one can immediately recover some results from [CHM19, CHMT20] (see also
[Dah86, Fef89, FKP91, MPT13]) as well as give new extensions.






CHAPTER 2

Preliminaries

2.1. Notation and conventions

We use the letters ¢, C' to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allow-
able parameters”). We shall also sometimes write a < b and a & b to mean,
respectively, that ¢ < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C
are as above, unless explicitly noted to the contrary. Unless otherwise specified
upper case constants are greater than 1 and lower case constants are smaller
than 1. In some occasions it is important to keep track of the dependence on a
given parameter v, in that case we write a <., b or a =, b to emphasize that the
implicit constants in the inequalities depend on +.

Our ambient space is R"*1, n > 2.
Given E C R""! we write diam(E) = sup,, ,c g |z — y| to denote its diameter.

Given a domain 2 C R**!, we shall use lower case letters z, v, z, etc., to denote
points on 052, and capital letters X, Y, Z, etc., to denote generic points in R**+!
(especially those in R™*1\ 9Q).

The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(z,r)
when the center x lies on 99, or B(X,r) when the center X € R"™1\ Q. A
surface ball is denoted A(x,r) := B(z,r) N I, and unless otherwise specified it
is implicitly assumed that x € 9.

If 09 is bounded, it is always understood (unless otherwise specified) that all
surface balls have radii controlled by the diameter of 9, that is, if A = A(x, )
then r < diam(992). Note that in this way A = 9Q if diam(99Q) < r < diam(05).

For X € R"" we set §(X) := dist(X, 99Q).
We let H™ denote the n-dimensional Hausdorfl measure

For a Borel set A C R"*!, we let 14 denote the usual indicator function of A,
ie. 14(X)=1if X € A,and 14(X) =01if X ¢ A.

We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean cube with sides parallel to the coordinate axes, and we let £(I) denote
the side length of I. We use @ to denote dyadic “cubes” on F or 0f). The latter
exist as a consequence of Lemma 2.33 below.
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2.2. Some definitions

DEFINITION 2.1 (Corkscrew condition). Following [JK82], we say that a
domain Q C R"*! satisfies the Corkscrew condition if for some uniform constant
0 < ¢p <1 and for every z € 02 and 0 < r < diam(99Q), if we write A := A(x,r),
there is a ball B(Xa,cor) C B(z,r) N Q. The point X C Q is called a Corkscrew
point relative to A (or, relative to B). We note that we may allow r < C diam(9%2)
for any fixed C', simply by adjusting the constant cg.

DEFINITION 2.2 (Harnack Chain condition). Again following [JK82], we
say that Q satisfies the Harnack Chain condition if there are uniform constants
C1,C5 > 1 such that for every pair of points X, X’ € Q there is a chain of balls
B1,Bs,...,Byx C Q with N < C;(2 4+ logg IT) where

X - X
min{3(X),0(X')}

such that X € By, X' € By, Bx N Bry1 # @ and for every 1 <k < N

(2.3) I :=

(2.4) Cy ! diam(By) < dist(By, 99) < Cy diam(By).
The chain of balls is called a Harnack Chain.

We note that in the context of the previous definition if IT < 1 we can trivially
form the Harnack chain By = B(X,36(X)/5) and By = B(X’,35(X’)/5) where
(2.4) holds with Cy = 3. Hence the Harnack chain condition is non-trivial only
when II > 1.

DEFINITION 2.5 (1-sided NTA and NTA). We say that a domain Q is a
1-sided non-tangentially accessible domain (1-sided NTA) if it satisfies both the
Corkscrew and Harnack Chain conditions. Furthermore, we say that ) is a non-
tangentially accessible domain (NTA domain) if it is a 1-sided NTA domain and if,
in addition, Qe := R™"1\ Q also satisfies the Corkscrew condition.

REMARK 2.6. In the literature, 1-sided NTA domains are also called uniform
domains. We remark that the 1-sided NTA condition is a quantitative form of path
connectedness.

DEFINITION 2.7 (Ahlfors regular). We say that a closed set E C R"™! is n-
dimensional Ahlfors regular (AR for short) if there is some uniform constant C; > 1
such that

(2.8) Crtrm <HY(EN B(z,r) < Cr", z€E, 0<r<danm(E).

DEFINITION 2.9 (1-sided CAD and CAD). A I-sided chord-arc domain (1-
sided CAD) is a 1-sided NTA domain with AR boundary. A chord-arc domain
(CAD) is an NTA domain with AR boundary.

We next recall the definition of the capacity of a set. Given an open set D C
R"™*! (where we recall that we always assume that n > 2) and a compact set K C D
we define the capacity of K relative to D as

Cap, (K, D) = inf{//D Vo(X)|?dX : v e C§P (D), v(x) >1in K}.
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DEFINITION 2.10 (Capacity density condition). An open set € is said to
satisfy capacity density condition (CDC for short) if there exists a uniform constant
c¢1 > 0 such that

Capy(B(z,7) \ Q, B(z,2r)) S
Capy(B(z, 1), B(z,2r))
for all z € 902 and 0 < r < diam(99?).

(2.11)

The CDC is also known as the uniform 2-fatness as studied by Lewis in [Lew88].
Using [HKMO06, Example 2.12] one has that

(2.12) Capy(B(x, 1), B(x,2r)) ~ r" 1 for all z € R**! and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular
every © € 0N is Wiener regular. It is easy to see that the exterior Corkscrew
condition implies CDC. Also, it was proved in [Zhal8, Section 3] and [HLMN17,
Lemma 3.27] that a set with Ahlfors regular boundary satisfies the capacity density
condition with constant ¢; depending only on n and the Ahlfors regular constant.

2.3. Dyadic analysis

Throughout this section we will work with £ C R"*! and a countable collection
of Borel sets D = {Q}gep which is a dyadic grid on E, whose elements will be called
“cubes”. This means that D = (J, ., Dx (with Dy # O for each k € Z) and the
following properties hold:

o [ = UQeDk Q for every k € Z with the union comprising pairwise disjoint
sets.

o If Q € Dy and Q' € D; with k£ > j then either Q C Q" or QN Q' = Q.

o If for every k > j and @ € Dy there exists (a unique) @' € D; such that
QcQ.

See Section 2.4 below (and the references [Chr90], and [HK12, HK13]) for
a discussion of the existence of such a dyadic system, as well as its additional
properties.

Note that by assumption, within the same generation (that is, within each Dy)
the cubes are pairwise disjoint (hence, there are no repetitions). On the other
hand, we allow repetitions in the different generations, that is, we could have that
Q € Dy and Q' € Di_; agree. Then, although Q and Q' are the same set, as cubes
we understand that they are different. In short, it is then understood that D is
an indexed collection of sets where repetitions of sets are allowed in the different
generations but not within the same generation. With this in mind, we can give a
proper definition of the “length” of a cube (this concept has no geometric meaning
in this context). For every Q € Dy, we set £(Q) = 27%, which is called the “length”
of ). Note that the “length” is well defined when considered on D, but it is not
well-defined on the family of sets induced by . It is important to observe that the
“length” refers to the way the cubes are organized in the dyadic grid and in general
may not have a geometrical meaning (see the examples below).

REMARK 2.13. We would like to observe that in our notion of dyadic grid the
generations run for all £ € Z. However, as we are about to see, sometimes it is
natural to truncate the generations (from above or from below). For instance, it
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could be that E = Qg for some Qp € Dy, and ko € Z, hence D, = {Qo} for all
k < kg. In that scenario it is convenient to ignore those k € Z with k < kg and work
with D = [, ko Di. We will actually use this convention throughout this paper
and, more specifically, when F is bounded we will be working with the generations
k € Z so that 27% < diam(E). In any case, the results and proofs in this section
remain valid with or without the truncation of generations.

It is interesting to introduce some examples. In R™ we can consider the col-
lection of classical dyadic cubes. Note that here there are no repetitions at all,
FE = R", and that if we let D; be the collection of those dyadic cubes with side
length 27%, then the “length” is indeed the side length. Analogously, with £ = R"™
we can let Dy, be the collection of those dyadic cubes with side length 27% and
Dy k41 = Dai. Hence there are repetitions of cubes in D and “length” is comparable
to the square root of the side length.

Another example is the collection of dyadic subcubes of the unit cube Qg =
[0,1)". To frame this in the previous definition (without truncating the genera-
tions), we let Dy, be the collection of dyadic subcubes of Qq if k > 0 and Dy, = {Qo}
for k£ < 0. In this scenario £ = )y and we have that all the dyadic ancestors of Qg
are indeed @), hence there are repetitions in . Observe that the “length” agrees
with the side length in D for £ > 0. On the other hand, for Q € D with £ <0
we have that £(Qr) = 2% (note that Q; and Qo are the same set but as dyadic
cubes they are distinct). In this case, it may be convenient and more natural to
truncate the generations and just work with Dy, £ > 0, in which case the “length”
agrees with the side length.

We can also consider all classical dyadic cubes with side length at least 1. In
this scenario, let I, be the set of classical dyadic cubes with side length 2% for
k <0, and Dy, the collection of classical dyadic cubes with side length 1 for k£ > 0.
In this scenario, £ = R™ and he have that all the dyadic descendants of any cube
(@ with length side equal 1 are indeed @, hence there are repetitions in ID. Note
that “length” agrees with the side length in Dy, for k£ < 0, however in Dy for & > 0
the “length” is 27% although the cubes comprising that family have side length 1.
Again, in this example, it may be more natural to truncate the generations and
work with Dy, k£ < 0, so that “length” and side length agree.

Our last example is that of dyadic subcubes of the unit cube Q¢ = [0,1)™ with
side length at least 2= with N € N fixed. We let D, be the collection of dyadic
subcubes of Qp if 0 < k < N, Dy = {Qo} for £ < 0, and Dy, k > N, is the
collection of all dyadic subcubes of Qg of side length 27V, In this case, E = Qo,
all the dyadic ancestors of Q¢ are indeed @y, and all the dyadic descendants of any
cube @ with length side equal 27 are indeed . We have infinitely many cubes
but only a finite number of different sets. Here the reasonable thing is to truncate
the generations and just work with D, 0 < k < N.

We next introduce the “discretized Carleson region” relative to @, Dg = {Q’ €
D:Q C Q}. Let F = {Q;} C D be a family of pairwise disjoint cubes. The “global
discretized sawtooth” relative to F is the collection of cubes Q € D that are not
contained in any @; € F, that is,

Dr:=D)\ U Dy,
QeF
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For a given @ € D, the “local discretized sawtooth” relative to F is the collection
of cubes in Dg that are not contained in any @; € F or, equivalently,

Drq:=Dg\ |J Do, =DrNDyg.
QieF
We also allow F to be the null set in which case Dy =D and Dg g = Dg.
With a slight abuse of notation, let Q° be either E, and in that case Dgo :=D,
or a fixed cube in D, hence Dgo is the family of dyadic subcubes of Q°. Let p be
a non-negative Borel measure on Q” so that 0 < p(Q) < oo for every @ € Dgo.

Consider the operators Ago, Bgo defined by
(2.14)
%

1 2 1
Aboa(z) :z( Z 042Q> , Bioa(x):= sup ( Z aé,) ,
Q erE]D)QD :U‘(Q) Q xEQEDQo :U(Q) Q'eDg

where a = {aQ}QGDQO is a sequence of real numbers. Note that these operators are
discrete analogues of those used in [CMS85] to develop the theory of tent spaces.
Sometimes, we use a truncated version of Ago, defined for each k£ > 0 by

Hsk — LO}%
Ago ”"( 2 u()Q>’

erEDgo

where ID)’C?2 ={Q €Dg : Q") <27%0(Q)}.
The following lemma is a discrete version of [CMS85, Theorem 1] and extends
[CHM19, Lemma 3.8]:

LEMMA 2.15. Under the previous considerations, given Q° as above, and o =
{aQ}QGDQCM 8= {ﬁQ}QGDQO sequences of real numbers, we have that

(2.16) S Jagfel <4 / Ay a(@) Bl B(x) du().
QGDQU

PrOOF. The proof follows the argument in [CHM19, Lemma 3.8] which in
turn is based on [CMS85, Theorem 1]. We first claim that it suffices to assume
that Q° € D. Indeed, if Q° = F we have

> lagBel =) IaQﬁQIZSUP > D> lagbel

Q€EDyo QeD QeD_n Q'eDqg
<tsp Y /A 2)BYB() dyu( <4/ Ay (2)Blo B() dp(z),
QeD_n

where in the first estimate we have used our claim for ), which has finite length,
and in the second one the fact that the cubes in D_y are pairwise disjoint.

From now on we assume Q° € D, hence £(Q°) < oo. Recall D that is countable
collection of cubes and then we can find D' ¢ D*> ¢ --- c DV C ... C D with
D = Uys, DV and #DV¥ < N. Given N > 1, let gV = {ﬁg}QeDQo where
Bg = Bg if @ € DV and ﬂg = 0 otherwise. With this notation in mind, if we show
(2.16) for BN then observing that BgoﬁN < Bgoﬁ we just need to let N — oo and
the desired estimate follows at once.
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Thus from now on we work with V. To simplify the presentation we drop
the exponent and keep in mind that Bg = 0 for every @ ¢ DV. For Q € Dgo, let
kg > 0 be so that £(Q) = 27%¢¢(Q"). Suppose that Q' € Dgo satisfies £(Q’) <
27k (Q%) = £(Q) and Q' N Q # @, then necessarily Q' € ]D)Q and for every z €

(2.17) &g ::]{Q(Ag’“‘? ][Q > 1oy )ﬁQ’ 1(y)

Q'eDg
Z B3 < (BloB(x))”.

Q’G]D)
Since Bg = 0 for Q@ ¢ DV and #DV < N, we have A’éoﬁ(m) < Cy < oo for every
z € Q° and hence &g < C% < oo. Now, define

Fy={xeQ": ALIB(x) > 2B A(x), Yk > 0}.

1
In particular, using (2.17), we have Ag’fQ (z) > 2&4 for each x € QN Fy. We claim

that 4u(Q N Fy) < pu(Q). Indeed, if g = 0 then one can see that Aé’fQﬂ(y) =0 for
every y € @ and hence @ N Fy = @, which trivially gives that 4u(Q N Fy) < p(Q).
On the other hand, if {g > 0, we have

16ou@nF) < [ (A560)" duly) < o (@),
QNFy
and the desired estimate follows since 0 < {g < 0o. Let us now consider
(2.18) k(z) :=min {k > 0: ALB(x) <2Bh.Bx)},  x€Q’\ F.
Setting F1 g :={x € Q\ Fo : k(z) > kg} and using (2.17) we obtain
FioCleeQ\Fy: A59B() > 265}

Applying Chebyshev’s inequality, it follows that
1 / k 1
Flq) < AL < —pu(Q).
pFia) < g [ (4G Bw) duty) < i)

Setting Fy g 1= {x € Q \ Fy : k(z) < kg}, and gathering the above estimates, we
have

1
wlFzq) = Q) — p(@N Fo) — p(F1q) = 51(Q).
Hence, Cauchy-Schwarz’s inequality and (2.18) yield
| aQfq| laqBal
2 (F: 2 1 d
Y loaal<2 30 ubariiatisz [ o ) el

QeD o QED 4o

<2/QO\FOAgOa(x)( > @Bélpz,Q(x)>édu(x)

QeDgo

B mk(x)
<2 Apag 5 dutz)

<4 o Aéoa(x)Bgo,B(x) du(z),
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where we have used that Q) € ]D)g(;c ) for each = € Iy . This completes the proof of
(2.16). d

LEMMA 2.19. Under the previous considerations, given Q° as above, let u and
v be two non-negative Borel measures on Q° so that 0 < u(Q),v(Q) < co for every
Q € Dgo. Assume that there exist o, 3 € (0,1) such that

1(F) v(F)
2.20 FcQebDg, —= >a = > .
(220) @ Q) 70
Given v = {’YQ}QEDQO , a sequence of non-negative real numbers, if we set
I, = > (@ v, = o) > v n(@).

QEDQO ( Q'eDg (Q) Q'€eDg
then,
1

2.21 1-— < < .
(2.21) (L =a) Bl < VI, < A—a)d Il

Let us observe that when p is dyadically doubling (that is, there exists C,, such
that 1(Q) < Cuu(Q') for every Q, Q" € Dgo with £(Q) = 24(Q")), the assumption
(2.20) means exactly v € AL2dic(QO 1) (see Definition 2.24 below).

Proor. We first consider the case on which #{Q € Dgo : 7o # 0} < o0 so
that [[v[[,, [[vll, < oo (albeit with constants depending on the set {Q : v # 0}),
condition which will be used qualitatively. We will eventually see how to pass to
the general case.

Fix Qo € Dgo. Let F = {Q;}; be the collection of dyadic cubes contained in
Qo that are maximal with respect to the inclusion, and therefore pairwise disjoint,
with respect to the property that

W@ 1 Q)

Q) 1—a u(Qo)

Note that F C Dg, \ {Qo} since (1 — )~ > 1. Also, the maximality of the cubes
in F immediately gives

MQ) _ 1 v(Qu)
@)~ 1—a p(Qo)’

U e

Q;EF
and note that if F is the null set then we understand that Ej is also empty. The
definition of the family F gives

Z/J a)zy(Qj):(lfa)V(EO)gl—a

Qert g,er V(@) ¥(Qo)

Applying (2.20) to F = Qo \ Ep which satisfies u(Qo \ Fo) > ap(Qq) we obtain
v(Qo \ Ep) > Br(Qo) and eventually v(Ep) < (1 — 8)v(Qop). Therefore,

S wer@= > Y wu@ <, D v@)

QEDg, \Dr,q, Q;€F QeDg, Q;EF

(2.22)

(2.23) VQ € Dr o,

Set




16 2. PRELIMINARIES

_ |||7||V1/< U Qj) = Il (Bo) < (1= B) Il #(@Q)-

Q;EF
On the other hand, invoking (2.23),
1 1 1
N D er@ < — e > 1en@)
0 QEDF g, 0 QGD}' .Qo
1
< < e .
oy 2 en@ < = I,

QGDQO

Combining the previous estimates we arrive that

Z Yo V(@ ﬁ( Yoo @+ Y 7@”(@))

QEDQ QEDG,\Dr,q, QEDF g,

1
<(1- — :
< @ =Bl + 3= v,

We next take the supremum over all Q¢ € Dgo to conclude

1
I, < @ =B Il + 3= IV ll.-

Recalling that in the current case ||v[|, < oo (and this is used qualitatively) the
first term in the right hand side can be absorbed and we eventually see that

1
Il < A—a)d (lod

Let us now remove the assumption #{Q : 7¢ # 0} < co. Much as in the proof
of Lemma 2.15 we can find D' ¢ D> C --- c DV C --- Cc D with D = UN21DN

and #DVY < N. Given N > 1, let vV = {’Yg}QeDQo where vg = Bg if @ € DV
and ’yg = 0 otherwise. Note that #{Q : ’yg # 0} < N < oo hence the previous
estimate applies to vV. Thus, for every Qg € Do

T Z Yo v(Q) = sup (220) Z Yo v(Q)

QGDQU Nzl v QEDQOO]D)N

1 N 1
_ S R
swp i 2 (@) < s e [V, < =gy I

QeDg,
Taking now the supremum over all )y € Dgo we conclude the second estimate in
(2.21).

Obtaining the first estimate in (2.21) is now easy. Set @« = 1 — 3 and B =l-a
and note that for any F' C @ € Dgo, applying the contrapositive of (2.20) to Q \ F
we obtain

v(EF) _ v(@Q\F)

>a = <p u@\Ftozﬁg——zﬂ

v(Q) (@) wQ) ~ Q)

That is, in (2.20) holds with u and v swapped, and with &, and B Hence, the
second estimate in (2.21) with p and v swapped yields

u(F)

1 1
vl < a5 I, = A-a)p i,



2.3. DYADIC ANALYSIS 17

which is the first estimate in (2.21). This completes the proof. O

As above, QU is either E, and in which case Dgo := D, or a fixed cube in D,
hence Dgo is the family of dyadic subcubes of Q. For the rest of the section we

will be working with p which is dyadically doubling in QY. This means that there
exists C,, such that u(Q) < Cuu(Q’) for every Q,Q" € Do with £(Q) = 20(Q’).

DEFINITION 2.24 (A%yadic)  Given Q° and p, a non-negative dyadically dou-
bling measure in Q°, a non-negative Borel measure v defined on Q° is said to belong
to ALyadic(Q0, 1) if there exist constants 0 < a, 8 < 1 such that for every @ € Dgo
and for every Borel set F' C (), we have that

(2.25) A L

Q) Q) "

It is well known (see [CF74, GCRAF85]) that since p is a dyadically doubling
measure in QY, v € ALadic(Q0 1) if and only if v < p in Q¥ and there exists
1 < p < oo such that v € RHgyadiC(QO,p), that is, there is a constant C' > 1 such

that
p €T 1 7[ €T x) = V( )

for every @ € Dgo, and where k = dv/dp is the Radon-Nikodym derivative.
For each F = {Q;} C Dgo, a family of pairwise disjoint dyadic cubes, and each
f € L _(n), we define the projection operator

’ij:f(l') = f(l')lE\(UQ,;eF Q7)(x) T Z (

QieF VG

loc
F) dy) ) 1o, (@).

If visa non—negative Borel measure on Q°, we may naturally then define the

measure Phv as Prv(F) = [, P¥1p dv, that is,
F N Q
(2.26) Phy(F) = V(F\ U Qz) + > HEN Q) v(Qi),
Q.cF Q.cF

for each Borel set F' C Q°.
The next result follows easily by adapting the arguments in [HM14, Lemma
B.1] and [HM10, Lemma 4.1] to the current scenario.

LEMMA 2.27. Given Q, let p be a non-negative dyadically doubling measure
in Q°, and let v be a non-negative Borel measure in QV.

(a) If v is dyadically doubling on Q° then Prv is dyadically doubling on Q°.
(b) If v e AW2dic(Q0) ) then Py € Adyadic(QO, ).

Let v = {1} qen,, Pe a sequence of non-negative numbers. For any collection
D" C Dgo, we define an associated “discrete measure”

(2.28) m, (D) == ) g
Qeb’
We say that m, is a “discrete Carleson measure” (with respect to p) in QO if

m, (Do) _
(2.29) My lle(go ) == sup —=
Te@nm) Q€D o n(Q) QeDQo H

@ <

Q'eDq
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For simplicity, when Q° = E we simply write ||m,[c(,).
Given F = {Q;} C Dgo, a (possibly empty) family of pairwise disjoint dyadic
cubes, we define m, r by

(2.30) my F(D) =m,(D'NDF) = Y g, D' CDg.
QeD'NDx

Equivalently, m, r = m,, where v = {’YJ:,Q}QeDQo is given by

YQ if Q € ]D]_-7Q()7
TF.Q = .
710 ifQeDg, \Drg.

Note that if 7 = @, then v = v and hence m, o = m,.

The following result was proved in [HM14, Lemma 8.5] under the additional
assumption that 02 is AR, however a careful inspection of the proof shows that
the same argument can be carried out under the current assumption. We note
that [HM14, Lemma 8.5] was formulated and proved in the case that Q° € D,
but clearly that implies the case Q° = E. We caution the reader to beware of
the distinction between sub- and super-script, Qo vs. Q°, in the statement of the
following lemma.

LEMMA 2.32 ([HM14, Lemma 8.5]). Given Q°, let pu, v be a pair of non-
negative dyadically doubling Borel measures on Q°, and let m., be a discrete Car-
leson measure with respect to w, with

(2.31)

lmy llecgo, < Mo.

Suppose that there exists € such that for every Qo € Dgo and every family of
patrwise disjoint dyadic cubes F = {Q;} C Dg, verifying

m,(Dr.q)
m,, F ) — Sup —— <S¢
H Y ||C(Q0 ;) QG]D)QO /L(Q)
we have that Pv satisfies the following property:
u(F) Phv(F) _ 1
V¢ e (0,1), FC¢>1 suchthat (FCQyy, —=5>2( = —————=>—]).
e, 9 (Fe@ L2 = Phiay 2 o)

Then, there exist ng € (0,1) and 1 < Cy < 0o such that, for every Qo € Dgo
F v(F) 1
IFcC QOa 2 1-— Mo — Z —_—
#(Qo) v(Qo) — Co

In other words, v € AYadic(Q0 ).

2.4. Existence of a dyadic grid

In this section we introduce a dyadic grid along the lines of that obtained in
[Chr90]. More precisely, we will use the dyadic structure from [HK12, HK13],
with a modification from [HMMM17, Proof of Proposition 2.12]:

LemMA 2.33 (Existence and properties of the “dyadic grid”). Let F C
R™1 be a closed set. Then there exists a constant C > 1 depending just on n such
that for each k € Z there is a collection of Borel sets (called “cubes”)

Dy = {Q;CCE J €I}

where Jy, denotes some (possibly finite) index set depending on k satisfying:
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(a) E = Ujeﬁk Q? for each k € Z.
(b) If m < k then either Q? C QM or@Qn Q? = Q.

(¢c) For each k € Z, j € Ji, and m < k, there is a unique i € J,, such that

Q c Q.
(d) For each k € Z, j € 3y, there is xf € E such that

B(k,.c7'27MynE c QY c B(zh,C27%)nE.

PROOF. We first note that E is geometric doubling. That is, there exists IV
depending just on n such that for every x € E and r > 0 one can cover the surface
ball B(z,r) N E with at most N surface balls of the form B(z;,r/2) N E with
x; € E —observe that geometric doubling for E is inherited from the corresponding
property on R™*! and that is why N depends only on n and it is independent of
FE. Besides, letting n = 1—16, for every k € Z it is easy to find a countable collection
{2%}jes, C E such that

|$§_$§/|277k7 jvj/eﬁka J#]/a jI‘l’GI%n|£C—xj‘<’r]k, Vz € E.

k
Invoking then [HK12, HK13] on FE with the Euclidean distance and ¢y = Cp =1
one can construct a family of dyadic cubes associated with these families of points,
say Dy, for k € Z. These satisfy (a)—(d) in the statement with the only difference
that we have to replace 27% by n* in (d).

At this point we follow the argument in [HMMM17, Proof of Proposition
2.12] with n = ;. For any k € Z we set D; = D, for every 4k < j < 4(k + 1).
It is straightforward to show that properties (a), (b) and (c) for the families Dy
follow at once from those for the families D). Regarding (d), let Q° € D; and let
k € Z such that 4k < j < 4(k + 1) so that Q' € D; = Dj. Writing 2° € E for the
corresponding point associated with Q' € ©; and invoking (d) for ®;, we conclude

B(z',C™'27)nE c B(z',C™'n*)nE Cc Q' ¢ B(z',Cn*)NE C B(2*,160279)NE,
hence (d) holds. O

In what follows given B = B(z,r) with € E we will denote A = A(z,r) =
BN E. A few remarks are in order concerning this lemma. We first observe that if
E is bounded and k € Z is such that diam(E) < C~'27% then there cannot be two
distinct cubes in Dg. Thus, Dj, = {Q*} with Q% = E. Therefore, as explained in
Remark 2.13 we are going to ignore those k € Z such that 27% < diam(E). Hence,
we shall denote by D(FE) the collection of all relevant Q?, ie.,

D(E) = | J Dy,
k

where, if diam(E) is finite, the union runs over those k € Z such that 27% <
diam(FE). For a dyadic cube @ € Dy, as explained above we shall set /(Q) = 2%,
and we shall refer to this quantity as the “length” of Q). It is clear from (d) that
diam(Q) < 4(Q) (we will see below that in our setting the converse hold, see
Remark 2.73). We write = = 202, with C being the constant in Lemma 2.33,
which is a purely dimensional. For Q € D(E) we will set £(Q) = k if Q € Dy.
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Property (d) implies that for each cube @ € D, there exist zg € E and rg, with
E7H(Q) < rg < Q) (indeed rg = (2C)~1(Q)), such that

(234) A(IQ,2TQ) cQcC A(ZQ,ET’Q).

We shall denote these balls and surface balls by

(2.35) Bq = B(zq,7q),  Aqg:=A(zq,7q),
(2.36) EQ = B(.Q?Q,E’I“Q)7 KQ = A(l‘Q,ET’Q),

and we shall refer to the point zg as the “center” of Q.

Let @ € Dy, and consider the family of its dyadic children {Q’ € D41 : Q' C Q}.
Note that for any two distinct children @', Q"”, one has |zg/ — zgr| > rgr =rgr =
ro/2, otherwise zgr € Q" N Ag C Q" N Q’, contradicting the fact that @’ and
Q" are disjoint. Also zg,zgr € Q C A(zg,rqg), hence by the geometric doubling
property we have a purely dimensional bound for the number of such g/ and hence
the number of dyadic children of a given dyadic cube is uniformly bounded.

LEMMA 2.37. Let E C R"*! be a closed set and let D(E) be the dyadic grid
as in Lemma 2.33. Assume that there is a Borel measure j which is doubling, that
is, there exists C,, > 1 such that p(A(z,2r)) < Cup(A(z, 1)) for every x € E and
r > 0. Then pu(0Q) =0 for every Q € D(E). Moreover, there exist 0 < 19 < 1, C
and n > 0 depending only on dimension and C,, such that for every T € (0,79) and
Q € D(E)

(2.38) p({r e @: dist(z, B\ Q) < 74(Q)}) < C17"u(Q).

PROOF. The argument is a refinement of that in [HM14, Proposition 6.3] (see
also [GCRAF85, p. 403] where the Euclidean case was treated). Fix an integer k,
a cube @ € Dy, and a positive integer m to be chosen. Fix 7 > 0 small enough to
be chosen and write

S, ={zeQ:dist(z,E\ Q) < 7¢(Q)}.
We set
{Qi} :=D" :=Dg NDyym,
and make the disjoint decomposition Q@ = J@Q;. We then split D' = D! U D2,
where Q} € Db if QF meets ,, and Q} € DY? otherwise. We then write Q =

RV U RY2, where
rR"=JQ!,  RY=Jal
D1 D12
and for each cube Q! € DU, we construct Q\} as follows. We enumerate the
elements in DV as Q! , QL ..., Q} | and then set (Q})* = Q! U (0Q} N Q) and

QL = (@), QL= (QL"\(@L)", QL= (@) \ (@) U(@L)). ..

so that R™! covers ¥, and the modified cubes @Zl are pairwise disjoint.
We also note from (2.34) that if 27™ < =72 /4 then

dist (Mg, E\ Q) > 70 > Z7H(Q),  diam(Q}) < 25rgy <22U(Q}) <
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Then RV misses Ag provided 7 < Z71/2. Otherwise, we can find = € QI N Ag

with Q! € D!, The latter implies that there is y € QX N ¥,. All these yield a
contradiction:

=71(Q) < dist (Mg, B\ Q) < o — y| + dist (3, E\ Q)
< diam(QT) + 7£(Q) < Z-1(Q).
Consequently, by the doubling property,
1(@) < u(2Aq) < C) u(Ag) < C), u(R™).

Since R! and R%? are disjoint, the latter estimate yields
(R < (1- 5) @) = 0u(Q),

where we note that 0 < 6 < 1.

Let us now repeat this procedure, decomposing @11 for each Q! € Db We
set D*(Q}) = D1 N Dgyom and split it into D*H(Q;) and D**(Q}) where Q' €
D>Y(Q)) if @ meets ¥,. Associated to any Q' € D1 (Q}) we set (Q')* = (Q' N
QH U (8Q' N (Q NQL)). Then we make these sets disjoint as before and we have
that R?1(Q}) is defined as the disjoint union of the corresponding 62\’ Note that
Q! = R21(Q}) U R*2(Q!) and this is a disjoint union. As before, R%1(Q}) misses
AQ% provided 7 < 27™Z71/2 so that by the doubling property

D < u2Agy) < Cu(Agr) < C) w(R*(@Q)))

@
and then p(R>'(Q}
corresponding R?!

L)) < HM( }). Next we set R*! and R?? as the union of the
(Q}) and R 2(Q}) with Q} € Db, Then,

pE=u( ) BH@D) = Y w(R*QD)
Ql D11 Ql D11
<0 > n 0 w(RY) < 62 w(Q).
Q}E]D)l 1

Iterating this procedure we obtain that for every k = 0,1,...,if 7 < 27*m="1/2
then p(RFFLY) < 0F14u(Q). Let us see that this leads to the desired estimates.
Fix 7 < Z71/2 and find k > 0 such that 2-(F+m=-1/2 < 7 < 2=kmz-1/9 By
construction ¥, € RFt11 and then

logo 0~1  logg 01

p(Er) < p(BFFEY) <O @) < (25) (@),
. . . . . o lozp 071 log, 61
which easily gives (2.38) with C; = (28)” = — and n = —2-—. On the other

hand, note that
Qc () Ta,

ji2—i<E-1/2

also ¥y (j+1) C Xg—;. Thus clearly,
0 < u(0Q) < lim p(Xe-;) < lim C12797u(Q) = 0,
J—r00 J—00

yielding that ©(0Q) = 0. O



22 2. PRELIMINARIES

REMARK 2.39. Note that the previous argument is local in the sense that if
we just want to obtain the desired estimates for a fixed )y we would only need
to assume that p is doubling in 2&@0. Indeed we would just need to know that
w(A(z,2r)) < C p(A(z,r)) for every x € Qp and 0 < r < 2¢(Qy), and the involved
constants in the resulting estimates will depend only on dimension and C),. Further
details are left to the interested reader.

2.5. Sawtooth domains

In the sequel, Q C R"*! n > 2, will be a l-sided NTA domain satisfying
the CDC. Write D = D(99) for the dyadic grid obtained from Lemma 2.33 with
E = 09Q. In Remark 2.73 below we shall show that under the present assumptions
one has that diam(A) = ra for every surface ball A. In particular diam(Q) ~ 4(Q)
for every @ € D in view of (2.34). Given @) € D we define the “Corkscrew point
relative to Q7 as X¢g := Xa,. We note that

(5(XQ) ~ diSt(XQ, Q) ~ dlam(Q)

Much as we did in Section 2.3 of, given @ € D and F a possibly empty family of
pairwise disjoint dyadic cubes, we can define Dg, the “discretized Carleson region”;
D, the “global discretized sawtooth” relative to F; and Dx g, the “local discretized
sawtooth” relative to F. Note that if F to be the null set in which case Dy = D
and D@’Q = ]D)Q.

We also introduce the “geometric” Carleson regions and sawtooths. Given
@ € D we want to define some associated regions which inherit the good properties
of Q. Let W = W(Q) denote a collection of (closed) dyadic Whitney cubes of
Q) ¢ R so that the cubes in W form a covering of Q with non-overlapping
interiors, and satisfy

(2.40)  4diam(]) < dist(41,09) < dist(I,09) < 40diam(I), VI € W,

and

diam(I;) ~ diam(I3), whenever I; and I touch.

Let X (I) denote the center of I, let ¢(I) denote the side length of I, and write
k= kpif £(I) =27%.

Given 0 < A < 1 and I € W we write I* = (1 + A)I for the “fattening” of
I. By taking A small enough, we can arrange matters, so that, first, dist(I*, J*) ~
dist(I, J) for every I, J € W. Secondly, I* meets J* if and only if I meets 9J (the
fattening thus ensures overlap of I* and J* for any pair I, J € W whose boundaries
touch, so that the Harnack Chain property then holds locally in I* U J*, with
constants depending upon \). By picking A sufficiently small, say 0 < A < A\g, we
may also suppose that there is 7 € (%, 1) such that for distinct I, J € W, we have
that 7JNI* = @. In what follows we will need to work with dilations I** = (1+2X)I
or I*** = (1+4M)I, and in order to ensure that the same properties hold we further
assume that 0 < A < A\g/4.

For every @ € D we can construct a family W¢, C W(2), and define

Ug = U I,

Iewg
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satisfying the following properties: Xg € Ug and there are uniform constants k&*
and K such that

(2.41) X(I) —Uq XQ7 VI € WZ‘?,
dist(I,Q) < Ko2 %9, vI e Wp,.

Here, X(I) =y, Xq means that the interior of Ug contains all balls in a Harnack
Chain (in ) connecting X (I) to X¢, and moreover, for any point Z contained in
any ball in the Harnack Chain, we have dist(Z, 0Q) ~ dist(Z, 2\ Ug) with uniform
control of the implicit constants. The constants k*, Ky and the implicit constants
in the condition X (I) =y, X¢g, depend on at most allowable parameters and on
A. Moreover, given I € W(Q) we have that I € W, , where Q; € D satisfies
£(Qr) = £(I), and contains any fixed § € 99 such that dist(I,9Q) = dist(I, ). The
reader is referred to [HM14, HMT14] for full details.
For a given ) € D, the “Carleson box” relative to @ is defined by

Q/GDQ

For a given family F = {Q;} C D of pairwise disjoint cubes and a given Q € D, we
define the “local sawtooth region” relative to F by

(2.42) Qf,th< U UQ,)mt< U I*>,
Q' eEDF q I1eWr g

where Wr ¢ = Ugrep, o WG Note that in the previous definition we may allow
F to be empty in which case clearly Qg o = T. Similarly, the “global sawtooth
region” relative to F is defined as

(243) Q}‘ = int ( U UQ/) = int ( U I*>,
Q' eEDr IeWr
where Wr = UQ,@D}]r W5 It F is the empty set clearly {2y = (2. For a given
Q € D and x € 09 let us introduce the “truncated dyadic cone”
FQ ((E) = U UQ/v
xEQ'E]D)Q

where it is understood that I'g(z) = @ if z ¢ (. Analogously, we can slightly
fatten the Whitney boxes and use I** to define new fattened Whitney regions and
sawtooth domains. More precisely, for every @ € D,

T}, = int < U Ugg,), Qo = int ( U U5,>, o) = | Uy
Q'eDq Q'EDF, g z€Q'€Dq,
where U := Ulewgz I**. Similarly, we can define T¢)", Q% o, I'5' (), and Ug" by
using I™** in place of I**.
Given @) we next define the “localized dyadic non-tangential maximal function”
(2.44) Nou(z) = sup |u(Y)], x € 09,

YEry (z)
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for every u € C(T¢,), where it is understood that Ngu(z) = 0 for every x € 900\ Q
(since I'jy(z) = O in such a case). Finally, let us introduce the “localized dyadic
conical square function”

(2.45) Soqu(z) == (//FQ@ |Vu(Y)[25(Y) dY)é, T € 09,

for every u € W&f(TQO). Note that again Squ(z) = 0 for every x € 90Q\ Q.
To define the “Carleson box” Ta associated with a surface ball A = A(x,r),
let k(A) denote the unique k € Z such that 275~ < 200r < 27%, and set
(2.46) D* = {Q € Dyay: QN2A# O}
We then define
(2.47) T :=int ( U TQ>.
QebA
We can also consider fattened versions of Ta given by
TZ::int( U Té), TZ*::int( U TQ**>
QeDa Qeb4

Following [HM14, HMT14], one can easily see that there exist constants
0 < k1 <1 and kg > 162 (with = the constant in (2.34)), depending only on the
allowable parameters, so that

(2.48) k1B NQ C Ty CTHCTH CTE CroBgNQ=:3B5NQ,
(2.49) SBANQCTA CTA CTA CTXF CroBaNQ=: $BANK,
and also

(2.50) Q C koBa N0 = $BA NN =: A", VQ e D>,

where By is defined as in (2.35), A = A(z,r) with € 9Q, 0 < r < diam(99), and
Ba = B(z,r) is so that A = Bao N 0. From our choice of the parameters one also
has that Bf, C B, whenever Q C Q'.

In the remainder of this section we show that if 2 is a 1-sided NTA domain
satisfying the CDC then Carleson boxes and local and global sawtooth domains
are also 1-sided NTA domains satisfying the CDC. We next present some of the
properties of the capacity which will be used in our proofs. From the definition of
capacity one can easily see that given a ball B and compact sets F;, C Fy C B then

(2.51) Cap,(F1,2B) < Capy(F3,2B).
Also, given two balls By C Bs and a compact set F' C By then
(2.52) Cap,(F,2B3) < Capy(F,2B;).

On the other hand, [HKMO06, Lemma 2.16] gives that if F is a compact with
F C B then there is a dimensional constant C,, such that

(2.53) C1 Capy(F,2B) < Cap,(F,4B) < Cap,(F,2B).

LEMMA 2.54. Let Q@ C R"™, n > 2, be a I-sided NTA domain satisfying the
CDC. Then all of its Carleson boxes T and Ta, and sawtooth regions r, and
Qr.q are 1-sided NTA domains and satisfy the CDC with uniform implicit constants
depending only on dimension and on the corresponding constants for ).
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PROOF. A careful examination of the proofs in [HM14, Appendices A.1-A.2]
reveals that if 2 is a 1-sided NTA domain then all Carleson boxes T and Ta, and
local and global sawtooth domains Q2 ¢ and Qr inherit the interior Corkscrew and
Harnack chain conditions, hence they are also 1-sided NTA domains. Therefore, we
only need to prove the CDC. We are going to consider only the case Qx ¢ (which
in particular gives the desired property for Tg by allowing F to be the null set).
The other proofs require minimal changes which are left to the interested reader.
To this end, fix Q € D and F C D¢ a (possibly empty) family of pairwise disjoint
dyadic cubes. Let z € 0Qr ¢ and 0 < r < diam(Qr g) = £(Q).

Case 1: §(x) = 0. In that case we have that z € 9Q and we can use that ) satisfies
the CDC with constant ¢y, (2.51) and the fact that Qr o C 2 to obtain the desired
estimate

cir™ ! < Capy(B(z,7) \ ©Q, B(x, 2r)) < Capy(B(x,7) \ Qr,q, B(x,2r)).

Case 2: 0 < 0(z) < r/M with M large enough to be chosen. In this case x €
QN 0QF q and hence there exist Q' € Dx g and I € W), such that 2 € 9I*. Note
that by (2.41)
|z — 2or| < diam(I*) + dist(I, Q') + diam(Q’) < U(Q') ~ £(I) ~ §(z) < ﬁ
Let Q" € Dg be such that zo € Q" and 55; < Q") < 17 < £(Q) provided that
M is taken large enough. If Z € Bg~ then taking M large enough
— 2| < |Z - zon " — o ozl <o+ L <
12 — 2| <|Z —zqr|+egr — 2l +leg —2| SUQT) + 7 S 57 <7
and Bgr C B(z,r). On the other hand, if Z € B(z,2r), we analogously have
provided M is large enough

r
|Z —zgr| < |Z — x|+ |z —zg/ |+ |z —zgr] < 27"—|—C'M + Ergr < 6MErgy

and thus B(z,2r) C 6MEBg~. Once M has been fixed so that the previous es-
timates hold, we use them in conjunction with the fact that €2 satisfies the CDC
with constant ¢, (2.51)-(2.53), and that Qr ¢ C Q to obtain

&1

Wﬂlil < 017”2);1 S Capy(Bgr \ ,2Bgr) S Capy(Bor \ Q,6 MEBgr)

< Cap2(BQ” \ Qa B(:E, QT)) < CapQ(B(w, 7“) \ Q]—',Q; B(LE, QT))v

which gives us the desired lower bound in the present case.

Ty Ty

0 0 %

FIGURE 1. Case 1 and Case 2 for Tg.

Case 3: §(z) > r/M. In this case z € QNINr o and hence there exists Q' € Dr g
and I € W), such that € 91" and int(I*) C Qr . Also there exists J € W, with
J > x such that J ¢ W, for any Q" € Dr g which implies that 7J C Q\ Qr g
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for some 7 € (3,1) (see Section 2.5). Note that () ~ ¢(J) ~ 6(z) 2 r, and more
precisely /M < 6(z) < 41 diam(J) by (2.40).

Tq

o0 \«

Q

FIGURE 2. Case 3 for Tj.

Let B’ = B(2',s) with s = r/(300M) and 2’ being the point in the segment
joining z and the center of J at distance 2s from z. It is easy to see that B’ C
B(z,r) C B(z,2r) C 1000M B’ and also B’ C int(J) \ Qxo. We can then use
(2.12) and (2.51)—(2.53) to obtain the desired estimate:

1

n—1_ _n—1 —_— R
@1 T Cap,(B’,2B") < Cap,(B’,1000M B')

< Capy(B', B(z,2r)) < Cap,y(B(x,r) \ Qr.q, B(x,2r)).
Collecting the 3 cases and using (2.12) we have been able to show that
(2.55)
Capy(B(z,7m) \ Qr @, B(z,2r)) >
Capy(B(z,r), B(z,2r))  ~
which eventually gives that Q) o satisfies the CDC. This completes the proof. [

Vo e 30]:7(2, O0<r< diam(Q;:)Q),

2.6. Uniformly elliptic operators, elliptic measure and the Green
function

Next, we recall several facts concerning elliptic measure and the Green func-
tions. To set the stage let Q@ C R™*! be an open set. Throughout we consider
elliptic operators L of the form Lu = —div(AVu) with A(X) = (a;,; (X))?jzll be-
ing a real (non-necessarily symmetric) matrix such that a; ; € L°(Q) and there
exists A > 1 such that the following uniform ellipticity condition holds

(2.56) AP < A(X)E €, |AX)E -l < Alg][n]

for all £, € R**! and for almost every X € Q. We write L to denote the transpose
of L, or, in other words, LTu = — div(AT Vu) with AT being the transpose matrix
of A.

We say that u is a weak solution to Lu = 0 in Q provided that u € Wlif(ﬂ)
satisfies

// A(X)Vu(X) - Vo(X)dX =0 whenever ¢ € C5°(2).

Associated with L one can construct an elliptic measure {wy } xeo and a Green
function G, (see [HMT14] for full details). Sometimes, in order to emphasize the
dependence on €2, we will write wy, g and G, . If Q satisfies the CDC then it follows
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that all boundary points are Wiener regular and hence for a given f € C.(02) we
can define

u(X) = . f(2)dwy (2), whenever X € Q,

so that u € WL2(Q) N C(Q) satisfying u = f on dQ and Lu = 0 in the weak sense.
Moreover, if f € Lip(Q) then u € W12(Q).

We first define the reverse Holder class and the A, classes with respect to
fixed elliptic measure in 2. One reason we take this approach is that we do not
know whether H"|sq is well-defined since we do not assume any Ahlfors regular-
ity in Theorem 1.5. Hence we have to develop these notions in terms of elliptic
measures. To this end, let Q satisfy the CDC and let Ly and L be two real (non-
necessarily symmetric) elliptic operators associated with Lou = — div(4pVu) and
Lu = —div(AVu) where A and Ay satisfy (2.56). Let wg® and wy be the elliptic
measures of () associated with the operators Ly and L respectively with pole at
X € Q. Note that if we further assume that  is connected then wy < w} on
o for every X,Y € Q. Hence if wfo < w{?} on 0f2 for some Xg,Yy € Q then
W < wfo on 0N for every X,Y € Q and thus we can simply write wr, < wr, on
0. In the latter case we will use the notation

X
_ dwy

2.57 h(-;L, Lo, X) =
(2.57) ( 0, X) do

to denote the Radon-Nikodym derivative of wy with respect to wfo, which is a
well-defined function wfo—almost everywhere on 0f).

DEFINITION 2.58 (Reverse Holder and A, classes). Fix Ag = By N 9 where
By = B(xg,10) with xg € 9Q and 0 < ¢ < diam(99Q). Given p, 1 < p < 0o, we say
that wr, € RH,(Ag,wr, ), provided that wy, < wr, on Ay, and there exists C' > 1
such that

(][ My L, Lo, X, e <y>) ‘< Cy[ h(y: L, Lo, Xag)dary 2 (y)
A A
@A)
o8,
wro (A)

for every A = BN 02 where B C B(zo,r0), B = B(x,r) with z € 9Q, 0 < r <
diam(9€2). The infimum of the constants C' as above is denoted by [WL]rH, (Agws,)-

Similarly, we say that w; € RH,(0Q,wr,) provided that for every Ay =
A(xg, 1) with zg € 9 and 0 < 19 < diam(0f2) one has wr € RH,(Ao,wr,)
uniformly on Ay, that is,

[WL]RHP(BQ,wLO) = SXp[wL]RHP(AO,UJLO) < 0.
0

Finally,
Aso(Do,wiy) = | ) RHp(Ag,wr,) and  As(0Q,wr,) = | ] RH,(0Q,wL,).
p>1 p>1

The following lemmas state some properties for the Green functions and elliptic
measures, proofs may be found in [HMT14].
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LEMMA 2.59. Suppose that Q C R"t1 n > 2, is an open set satisfying the
CDC. Given a real (non-necessarily symmetric) elliptic operator L = — div(AV),
there exist C > 1 (depending only on dimension and on the ellipticity constant of
L) and co > 0 (depending on the above parameters and on 6 € (0,1)) such that Gy,
the Green function associated with L, satisfies

(2.60) GL(X,Y)<CO|X —Y[|'™™,

(2.61) col X —Y|' " < GL(X,Y), if | X -Y|<605X), 6€(0,1);
(2.62) Gr(-Y) e C(Q\{Y}) and GL(Y)|loga=0 VY €
(2.63) GL(X,Y)>0, VX,YecQ, X#Y;

(2.64) GL(X,Y)=G~(V,X), VX, Ye€Q, X#Y

Moreover, G, (- Y) € WL (Q\ {Y}) for any Y € Q and satisfies LGL(-,Y) =
dy in the sense of distributions, that is,

(2.65) //Q AX)VxGL(X,Y) - Vo(X)dX = o(Y), VeeOX(Q).

In particular, GL(-,Y) is a weak solution to LGL(-,Y) = 0 in the open set Q\{Y}.
Finally, the following Riesz formula holds:

//QAT(X)VxGLT(X,Y).VQO(X)C[X:SO(Y)_/

@dwz, for a.e. Y € Q,
oQ

for every ¢ € C°(R™ 1),

REMARK 2.66. If we also assume that  is bounded, following [HMT14] we
know that the Green function G coincides with the one constructed in [GW82].
Consequently, for each Y € © and 0 < r < §(Y"), there holds

(2.67) Gr(-,Y) e WH2(Q\ B(Y,r) n Wy (Q).

Moreover, for every ¢ € C2°(€2) such that 0 < ¢ <1 and ¢ =1 in B(Y,r) with
0 <7 < §(Y), we have that

(2.68) (1-¢)GL(-Y) € Wy*(9).

The following result lists a number of properties which will be used throughout
the paper:

LEMMA 2.69. Suppose that Q C R"*! n > 2, is a 1-sided NTA domain satisfy-
ing the CDC. Let Ly = — div(AgV) and L = —div(AV) be two real (non-necessarily
symmetric) elliptic operators, there exist C1 > 1, p € (0,1) (depending only on di-
mension, the 1-sided NTA constants, the CDC' constant, and the ellipticity of L)
and Co > 1 (depending on the same parameters and on the ellipticity of Lg), such
that for every By = B(xo,r0) with xg € 082, 0 < 1o < diam(95?), and Ag = ByNoQ
we have the following properties:

(a) wY (Ag) > Ot for every Y € C;7 By N Q and wa‘)(Ao) >Crt.
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(b) If B= B(x,r) with x € 0Q and A = BN O is such that 2B C By, then for
all X € Q\ By we have that

1
awf(A) < T"ilGL(X, Xa) < C’lwf(A).
(¢) If X € Q\ 4By, then
wi((QAo) S Clwi{(Ao).
(d) If B= B(z,r) with x € 9Q and A := BN IQ is such that B C By, then for
every X € Q\ 2k9By with kg as in (2.49), we have that
1 x4, Wi (A)
il A) < ZL\=2)
Cle ( )—wi((AO)

As a consequence,

< Cwp 20 (A).

11 duwy 0 1

l < R o —

Cirwf(Ag) = dwy () < 1wf(A0)

(e) If B = B(x,r) withx € Ay, 0 < r < r9/4 and A = BN I, then we have
that

for wX-a.e. y € A.

1
C—lwf%(F) < wi%AO (F) < C’lwi{%(F), for every Borel set F' C A.
(f) If L = Ly in B(zo,2k0m0) N Q with ko as in (2.49), then
1
awff‘) (F) < wa" (F) < C’gwff" (F),  for every Borel set F' C Ay.

(9) For every X € BoNQ and for any j > 1

X P
dwiL(y) <C <6(X)> ) for wX-a.e. y € 9N\ 27 Ag.

dwfw’ g 27 To

REMARK 2.70. We note that from (d) in the previous result and Harnack’s
inequality one can easily see that given Q,Q’, Q" € D

XQ//
Q

(2.71) “)L(Qi(/)

wr, Q)

Also, (d), Harnack’s inequality, and (2.34) give

~ wal (@), whenever Q C Q' C Q.

Xgr

d 1 17
(2.72) w)L( —(y) ~ ————, for wa -a.e. y € Q', whenever Q' C Q".
deQ wLQ (Q/)

. X " X ’ . . .
Observe that since w; ¢ < w; ¢ we can easily get an analogous inequality for the
reciprocal of the Radon-Nikodym derivative.

REMARK 2.73. Given (2, a 1-sided NTA domain satisfying the CDC, we claim
that if A = A(x,r) with € 9Q and 0 < r < diam(92) then diam(A) ~ r.
To see this we first observe that diam(A) < 2r. If diam(A) > ¢or/4 —cp is the
Corkscrew constant— then clearly diam(A) ~ r. Hence, we may assume that
diam(A) < cor/4. Let s = 2diam(A) so that diam(A) < s < r and note that one
can easily see that A = A’ := A(z, s). Associated with A and A’ we can consider
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Xa and X the corresponding Corkscrew points. These are different, despite the
fact that A = A(z,r). Indeed,

cor S (5(XA) S |XA *XA’| —+ |XA’ 71’| S |XA 7XA/| + s < |XA 7XA/| —+ CEO’I"

which yields that XA — Xa/| > 7. Note that Xa ¢ 2B’ := B(x,2s) since
otherwise we would get a contradiction: cor < §(Xa) < | Xa — x| < 25 < cor.
Hence we can invoke Lemma 2.69 parts (a) and (b) and (2.60) to see that

~ wa(A) = wi(A(A') ~ SnilGL(XA,XA/) /S Sn71|XA — XA/|17n S (S/’I”)nil.
This and the fact that n > 2 easily yields that r < s as desired.



CHAPTER 3

Proofs of the main results

In order to prove Theorem 1.5 we are going to obtain a local version valid for
bounded domains, interesting on its own right, which in turn will imply the desired
results.

PROPOSITION 3.1. Let Q Cc R™! n > 2, be a bounded 1-sided NTA do-
main satisfying the CDC. Let Lu = —div(AVu) and Lou = — div(ApgVu) be two
real (non-necessarily symmetric) elliptic operators. Fiz xg € 0Q and 0 < 19 <

diam(0R?) and let By = B(xo,70), Ao = By NN Set

(3:2)  lle(A, Al s, = up ) / /B . (A, Ap)(X) 3(X)?2 X,

where p(A, Ag) was defined in (1.6), A = BN IQ, and the sup is taken over all
balls B = B(z,r) with x € 2Ag and 0 < r < roco/4 (¢o is the Corkscrew constant).

(a) If llo(A, Ao)ll 5, < oo, then wr € Asx(Ao,wr,), that is, there exists 1 <
q < oo such that wy, € RHy (Ao, wr,). Here, ¢ and the implicit constant de-

pend only on dimension, the 1-sided NTA and CDC constants, the ellipticity
constants of Lo and L, and [[o(A, Ao)|| 5, -

(b) Given 1 < p < oo, there exists €, > 0 (depending only on p, dimension, the
1-sided NTA and CDC constants and the ellipticity constants of Lo and L)
such that if one has ||o(A, Ao)|lp, < €p, then wr, € RHp(Ao,wr, ), with the
implicit constant depending only on p, dimension, the 1-sided NTA and CDC
constants, and the ellipticity constant of Lo and L.

Assuming this result momentarily we can prove Theorem 1.5:

PROOF OF THEOREM 1.5, PART (a).
Case 1: () bounded.

For every By = B(xg,79) with g € 9 and 0 < 9 < diam(9?), we clearly
have [[o(A, Ao)llp, < lle(A; Ao)l| < oo. We can then invoke Proposition 3.1
part (a) to find ¢, 1 < g < oo, such that wy, € RH(Ag,wr,). Moreover, since
supg, [le(4, Ao)llg, < llle(A; Aol then the same g is valid for every By and also
supa, [WLlrRH, (Agwy,) < 00. This means that wy € RHy (09 wr,) and hence
wy, € Am(aﬂ,wLO).

Case 2: ) unbounded.

Fix By = B(zg,70) with 29 € 9Q and 0 < ry < diam(9f2). From Lemma 2.54,
we know that every Th is a 1-sided NTA domain satisfying the CDC and moreover
all the implicit constants depend on the corresponding ones for €2. Write cj for the
associated Corkscrew constant (which is independent of A), set K = max{1,c}/co}
and fix M > 16K > 16. We have two sub-cases:

31
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Case 2a: 0 < ro < diam(0Q)/(2M).

Set By = M By, so that rg, < diam(9Q)/2, and let Ao = By N 9. Define
Q, = TA0 C , and our goal is to apply Proposition 3.1 in this bounded domain.
From Lemma 2.54, it follows that €0, is a 1-sided NTA domain satisfying the CDC
and moreover all the implicit constants depend on the corresponding ones for (2
but are uniform on M. In particular, the interior Corkscrew condition holds with
¢ (which does not depend on M).

Write BO = B(xo,ro) = B(zo, K1) so that 8By C 8Bo - BO, and set AO =
By N 09, Ay = BynoQ,, and Af := By N dN,. Note that by (2.49) we have
SBO nQ c Bo na C TA = (), and hence 8A0 = 8A Moreover, one can also
see that for every X € 4B() NQ = 4By N Q, then §(X) = dist(X,dQ,) =: 8,(X).
Consequently, if Xa; denotes the Corkscrew point relative to Ag for the domain
Q, and X Ao denotes the Corkscrew point relative to Ao for the domain 2 we have

coro < 0.(Xag) = 6(Xag) <ro, coro < 6(X3,) = 0:(X5,) < 7o,
and |XA6 — Xﬁo‘ < (1 + K)’I“o.

Fix x € 2A, 0 < r < roch/4, write B = B(z,r), A = BN N, A* = BN O,

and note that from the above observations A = A*. Invoking Lemma 2.69 part (e),

the Harnack chain condition for €2, allows us to obtain

Xax Xz X5
wLoA,Q (A%) ~ Wi, 82 (A) ~ WLOA,?z(A)-
On the other hand if Y € BN Q, = BN Q and we pick y € 9N so that |Y —y| =
(YY) = 6,(Y) < ro. Write By = B(y,26(Y)) which satisfies By C 5B and hence
Ay := By NoQ = By N, =: A}.. Then if XA, (respectively XA;) stands for the
Corkscrew point relative to Ay (respectively A3 ) with respect to € (respectively
Q) we observe that

X *
Groo.(Xag,Y) =~ G0, (Xag, Xay ) ~ (V) "wp 6 (AY)
~ B(Y) w0 (Ay) & 5(Y) ", 20 (Ay)
~ GLQ,Q( A07XAY) ~ GLQ,Q(X£07Y)7

where we have used the Harnack chain condition in both Q and €),, Harnack’s
inequality, and Lemma 2.69 parts (b) and (e). Finally,

Q*(A7 Ao)(Y) = ||A - AOHB(Y,(S*(Y)/Q) = HA - AO”B(Y,(S(Y)/Q) = Q(A7Ao)(Y)

since Y € BNQ C 4By NQ = 4By N Q, and hence §(Y) = 46,(Y).
At this point we collect the previous estimates to obtain that

lle(A, Ao)ll , .0,

1 Gro0. (Xag, X)
= s [ gt s ix
B=B(z,r) w, 2 (A*) BNQ *( )
wE€A}0<r<rocy /4 Lo
G Xx,Y
< sup // o(A, Ap)(X) Lﬁ;)dx
B=B(z,r) AO BmQ 6(X)

~ Wr 0
z€A,0<Tr<Toco/4 0,82

< [lle(A4; Ao)ll < o0,
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where all the implicit constants are independent of M and uniform in By. We can
then invoke Proposition 3.1 part (a) (since € is bounded) to find ¢, 1 < ¢ < oo,
such that wr o, € RH¢(Ao,wry,0,). On the other hand, by Lemma 2.69 part
(e) we have that wr o, and wg o are comparable in Ay and so are wr, o, and
wre,0. Thus eventually, wy, o € RHy(Ag,wr, 0). Moreover, the previous estimate
is independent of By and the same ¢ is valid for every By as in the present case.

Case 2b: diam(09Q)/(2M) < ro < diam(0f2).

Note first that this case is vacuous if J€) is unbounded. Hence we may assume
that 0 is bounded. We first find a finite maximal collection of points {x;}7_; € Ag
with 1 < J < (14 20M)"*! such that |z; — x| > diam(99)/(10M) for 1 < j <
k < J. For any of the balls B; = B(xz;,diam(02)/(10M)) by Case 2a we have
that wy, € RH,(3A;,wr,) where the implicit constants do not depend on j, and we
have written wr, = wr, 0 and wy = wr o.

To show that w;, € RHy(Ag,wr,), let B = B(z,r) C By with z € 9Q and
A=Bnod IKFANA; # @ and 0 < r < diam(0Q)/(10M) we note that
ANA; CAC3A; and thus

1
1 / XA B
T XA h(y;L7L01XA )qdw O(y)
(wfo% (A) Jana,; ’ "o

X @ X
< (f h(y: L Lo, Xan, e <y>> <
A

b j(A)%WL (A)
o, (B) e, ()

[¢]

where we have used Harnack’s inequality and that w;, € RH,(3A,,wr,). On the
other hand, if ANA; # @ and diam(0)/(10M) < r < rg we have that r =~ ro =

XAO XA

diam(9€2). Thus, by Lemma 2.69 parts (a), (b), and (c), wp " (A) = wp 7 (A)) = 1
and the same occurs for wy. These yield

1 / Xa
—_— h(y; L, Lo, XA, )%dw; 7°(y
(wXAO 5 S, M0 e Do X )

Lo
1
q XA]' ) XA
< h(y; L, Lo, X _)qdeAj( )] < wy ' (4) ~1 YL °(A)
~ Y; Ly Lo, AA; Lo Y S XA v ,
A wr, ' (4;) wro*(A)

where we have used Harnack’s inequality and the fact that wy, € RH,(3A;,wr,).
All these, the fact A C [J; A; NA, and the bound J < (1 +2M)™*! imply

Q=

<]l h(y; L, Lo, Xa, )y 20 (y))

A
J a Xa
1 / Xa Wy, 0(A>
< < h(y; L, Lo, Xn,) dwr > (y) | S X%
5w () Jana, v Wy (A)

which eventually shows wr o € RHy(Ao,wr,,0) in the current case.

Collecting Case 2a and Case 2b we have shown that wy, o € RH, (Ao, wr,.0)
uniformly on Ay which eventually means that wr o € RH,(0,wr,.q) and hence
wr.0 € A (09, wr, o). This completes the proof.
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d

PROOF OF THEOREM 1.5, PART (b). We follow the same argument as in the
previous proof using part (b) in place of part (a) in Proposition 3.1. Further details
are left to the interested reader. (I

PROOF OF THEOREM 1.10. Fix a > 0. It is immediate to see that parts (a)
and (b) follow respectively from parts (a) and (b) in Theorem 1.5 and the following
estimate:

(3-3) lle(A, Ao)lll Sa [ Aa(e(A; Ao)) 7wy, )

where, as explained in Remark 1.12, the pole for wr, needs not to be specified.
Hence everything reduces to obtaining such estimate. With this goal in mind, fix
Ay = By N o with By = B(xg,70), g € 0, and 0 < rg < diam(99). Let
A = BNoQ with B = B(z,r), x € 2Ap, and 0 < r < rpco/4, here ¢q is the
Corkscrew constant. Write Xg = Xa, and wp = wﬁ? Note that this choice
guarantees that Xy ¢ 4B. Define

Wp={IeW:INB#0}

and for every I € Wg let X; € I N B so that 4diam(I) < dist(1,0Q) < §(X;) <r
and hence I C 2B. Pick z; € 0Q such that [X; — z;| = §(X;) < diam(J) +
dist(Z,09Q) and let @; € D be such that x; € Qr and £(I) = ¢(Q). By Lemma
2.69 parts (a)—(c) and Harnack’s inequality one can show that

wo(Qr) = U(I)" " Gry(Xo, X1) = 6(Y)" " GLe(Xo,Y), forevery Y € 1.

Then,
2

A Ag)(Y
// On+1) dY wo(Qr)
IeW Bnl

0(A, Ap)
//Bmsz 0n+1) Z 1;(Y) wo(Qr) Y.

IeWg
Fix Y € B and note that by the nature of the Whitney cubes one has #{I € Wgp :
I>Y} <, for some dimensional constant (indeed the I’s have non-overlapping
interiors and hence for a.e. Y € Q, there is just one Iy containing Y). Pick y € 9Q
such that |Y —y| = d(Y). Let z € Qr, then by (2.34) and (2.40)

lz =yl < |z =@+ |z — Xo| + [ X = Y|+ [V —y|
< EUQr) 4+ 6(Xy) + diam(I) + 6(Y) < 326(Y)
and therefore Q; C A(y,324(Y)). Note also that
Aly,ad(Y)) C B(Y,(1+a)d(Y))NoQ C (2+ a)A.

Then using Lemma 2.69 parts (a) and (c)

Y 1Y) wo(Qr) < Crwo(Aly, 325(Y)))

I1eWp
<o wo(A(y,ad(Y))) < wo(BY, (1+)d(¥)) No0).
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Hence, using again Lemma 2.69 parts (a) and (¢), and Harnack’s inequality we
conclude:

Ip Sa //Bm WWO (B(Y, (1 + @)3(Y)) N 9Q) dY

A Ap)
/ // 0”+1 vy 15y, (14+a)5(v))non(2) dY dwo(z)
(24a)A BN

A 0(A, Ag)(YV)?
dwo(z)
/2+a)A //r (2) y)ntl

- / Aa@(A,Ao))(z)?dwo(z)
(24a)A

< [4a(o(A, Ao)) 1 Z o (g wo (2 + @) A)
Sa [Ma(0(A, A0)) |70 (uy)wo (D)
This eventually shows (3.3) and this completes the proof of Theorem 1.10. (I

3.1. Auxiliary results
We next state some auxiliary lemmas which will be needed for our arguments.

LEMMA 3.4. Let Q be a bounded 1-sided NTA domain satisfying the CDC.
Consider Lo = —div(A¢V) and L = —div(AV) two real (non-necessarily symmet-
ric) elliptic operators, and let ug € W12(Q) be a weak solution to Loug = 0 in .
Then,

(3.5) //Q Al (V)VyGpr (Y, X)  Vug(Y)dY =0,  for a.e. X € Q.

ProOOF. We follow the argument in [CHM19, Lemma 3.12] where it was as-
sumed that 02 is AR and the operators were symmetric. Pick ¢ € C§°(R) with
1) < ¢ < 1gg). Fix Xo € Q, for each 0 < € < §6(X0)/16 we set ¢ (X) =
o(|X — Xol|/e) and 9. = 1 — ¢.. By (2.68), one has that G+ (-, Xo)1. € W, (Q),
which together with the assumption that ug € W12(Q) is a weak solution to
Loug = 0 in 2, allows us to see that

/ AJ (Y)V(Gpr (- X0)y:) (Y) - Vg (Y) dY = 0.

As a consequence,

/ AJVGLT(-,X0)~Vu0dY:// Ay V(G (-, Xo)p:) - Vug dY
Q Q

/ Ay VG (-, Xo) - Vg ngdY+// A Vo - Vug G (-, Xo)dY
Q Q
= 7. +IT..

For the first term, we use (1.1), Cauchy-Schwarz’s inequality, Caccioppoli’s inequal-
ity for G v (-, Xo) (which satisfies LT G (-, Xo) = 0 in the weak sense in Q\ {X,}),
and (2.60)

IZ.| S // VG (-, Xo)| [Vug| dY
B(X[)726)
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1

© 3
<> (// Vy Gy (Y, XO)QdY>
- 2-7e<|Y —Xp|<2-7t1le

7=0
1
2
X (// |Vu0|2dY>
B(X(,2-it1¢)

< Ma(|Vuol1a)(Xo)

> .o n=t %
X Z (27J€) 2 <// |GLT (K XO)|2 dY)
j=1 2-i-1e<|Y —Xo|<2-9+2¢

S eMa(|Vug|1a)(Xo),

where My f := M(|f|?)2, with M being the Hardy-Littlewood maximal operator
on R™*L. For the second term, we invoke again (2.60) and Jensen’s inequality:

|zzg|55—1//<ly o [ X0 [V ¥
eS —Xp|<2e

S e " // |V’LLO(Y)| dY g EM2(|V’LLO|1Q)(X0)
B(Xo,2¢)

Combining the obtained estimates we have shown that, for every Xy € € and for
every 0 < € < §(Xy)/16,

(3.6)

// ATV (- Xo) - Vg dY‘ < eMy(|Vuo|10)(Xo).
Q

Since up € W12(Q) it the follows that My(|Vug|lg) € L?°°(R™T1), and as a result
M3 (|Vug|1g) is finite almost everywhere in R**1. Thus, we can let € — 07 in (3.6)
to obtain the desired equality. ([

LEMMA 3.7. Let Q) be a bounded 1-sided NTA domain satisfying the CDC.
Let Ly = —div(AoV) and L = —div(AV) be two real (non-necessarily symmetric)
elliptic operators. Given g € Lip(02), consider the solutions ug and u given by

wX) = [ swatw. w0 = [ swaie).  Xeo
Then,
(38)  u(X) — up(X) = / /Q (Ao — AT (V)Vy Gpr (Y, X) - Vg (V) dY
for almost every X € Q.

Proor. We again follow the argument in [CHM19, Lemma 3.18] with some
appropriate changes. Following [HMT14] we know that ug = g—vg and u = g—w,
where § € Lip,(R"*1) is a Lipschitz extension of g, and vg,v € Wol’Q(Q) are the
Lax-Milgram solutions of Logvg = Log and Lv = Lg respectively. Hence, we have
that u — ug = vo — v € Wy*(Q), and following again [HMT14] one can extend
(2.65) so that

(u —up)(X) = //Q AT(Y)Vy G (Y, X) - V(u—ug)(Y)dY, forae X €.

For almost every X € Q we then have that
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(1 — o) / (Ao — AT (V)Vy G pr (Y, X) - Vg (V) dY

:// AT(Y)VyGpr (Y, X)-Vu(Y) de// Ay (Y)Vy Gt (Y, X)-Vue(Y) dY.
Q Q

Using Lemma 3.4 for both terms the right side of the above equality vanishes almost
everywhere, and this proves (3.8). O

For the following result, we recall the definition of the localized dyadic conical
square function in (2.45). Also, if 4 is a non-negative Borel measure on Qg so that
0 < p(Q) < oo for every @ € D, , we define the localized dyadic maximal function
with respect to p as

d _ v(Q)
Mo () = rcoeho, Q)

where v is a non-negative Borel measure on Q.

LEMMA 3.9. Let Q2 be a 1-sided NTA domain satisfying the CDC and let Ly =
—div(4oV) and L = —div(AV) be two real (non-necessarily symmetric) elliptic
operators. Let Qo € D and let F = {Q,;}; C Dg, be a (possibly empty) family of
pairwise disjoint dyadic cubes. Let ug € W,52(Q), and let 0 < H € L>®(). Let
Yo € Q\ BY, (see (2.48)) and define v, = {7y, }Qeng, where

Mo.Q = WLO Z ||HHL°°(I ) Q € Dg,.
Iewy

Then,
(3.10) / / Y)|Vy Grr (Y, Yo)| [Vuo(Y)|dY
Q]: Qo

Sl gy [ M, o @R @S0l o)

ProoOF. To ease the notation let us write wg := Wz?,’ w = wzfo, Vo0,Q = Qs
and 7y, = 7. From the definition of Qr ¢,; Cauchy-Schwarz’s, Caccioppoli’s and
Harnack’s inequalities (applied to G (-, Yp) which satisfies LT G+ (-, Yy) = 0 in the
weak sense in 2\ {Yo}); the fact that {(I) = £(Q) ~ §(Y) for every YV € I" € W;
(2.64); and Lemma 2.69 part (b) in conjunction with (2.48), we clearly have

IO = //Q]: o H(Y)‘VYGLT (Y, Y0)| |V’U,O(Y)|dy

< XX Ml [[ 9G] Fu(¥)aY

QeEDE, Qo IEW*

< > > Hl=ay (// IVy G (Y, Yo)| dy) (/ i |VUQ(Y)|2dY>é

QEDF g, IEW)

» Gur (X, Yo) gy
Z Z [ H || poc (1) £(1) L(S(XQ)O(/I* [Vuo(Y)[?6(Y)! dY)

QEDF @ TEWG
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S5 i@ ff. |wo(y>|25(y>1w)é

QEDF g, IEW)
2 3
“@) // VUO(Y)|25(Y)1ndY> "o
Ug

(
“ (wO(Q) (&

where in the last estimate we have used that the family {I*};ew; has bounded
overlap. If we now set a = {aq}qen,, with

aq = (WO(Q) (C:((%)))Q /I ) |Vuo<Y>|2<5<Y>1—”dY>é . QeDq,

we obtain by invoking Lemma 2.15 with u = wq

1

<Y agrio <4 /Q A a(@)BE2 ({7h o Yacpa, ) () duio ().

QEDQO

Note that for every x € Qg

=

2
Aa) = 3 (‘”(Q) ) // Vo (V) 26(Y) 1= dY
z€QEDq, wo(Q) Ug
S MG, w0 () Sqouo()
where we have used that the family {UQ}QEDQO has finite overlap. Besides, if
T € Qo

1

1 1 1
Bt dassa )@ = sw (o 3 ara) < lmrlig

IGQGDQO Q' GDQ
Collecting all the obtained estimates completes the proof of (3.10). (]
Our next auxiliary result adapts [HMT17, Lemma 4.44] to our current setting:

LEMMA 3.11. Let Q C R™! be a 1-sided NTA domain satisfying the CDC.
Given Qg € D and N > 4 consider the family of pairwise disjoint cubes Fn =
{Q € Dg, : U(Q) =27V U(Qo)} and let Uy = Qry g, and Uy = UV o . There
exists Uy € C°(R"Y) and a constant C > 1 depending only on dimension n, the
1-sided NTA constants, the CDC' constant, and independent of N and Q¢ such that
the following hold:

(i) C vy SUN < 1o«
(i) SHPXeQW‘I’N( )o(X) <C.
(#i1) Setting

(3.12)
Wy:= () W5 Wy:={IeWy:3IJeW\ Wy withdINIJ # 0}.
QGDFN«QO
one has
(3.13) VUny=0 in U

IeWnN\Wx
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and there exists a family {QI}IGWE, so that

(314) TN <UQp <CUl), dist(I,Qr) <CUI), Y 15, <C.
Iewy
ProoOF. We proceed as in [HMT17, Lemma 4.44]. Recall that given I, any
closed dyadic cube in R"*! we set I* = (1 + A\)I and I** = (1 + 2A)I. Let us

introduce I* = (1+ 2 A\)I so that

(3.15) I* Cint(I*) C I* C int(I**).

Given Iy := [—%,5]""! € R™", fix ¢ € C°(R™?) such that 17r < ¢ < 15
0

and |[V¢g| < 1 (the implicit constant depends on the parameter ). For every

IeW=W(Q)weset ¢r(-) = ¢of ;5)(1)) so that ¢; € C®(R"1), 17+ < ¢p < 1%

and |V¢r| < (1)~ (with implicit constant depending only on n and \).

For every X € Q, we let ®(X) := >, #1(X). It then follows that ® €
C.(2) since for every compact subset of €, the previous sum has finitely many
non-vanishing terms. Also, 1 < ®(X) < C) for every X €  since the family
{I"*};ew has bounded overlap by our choice of A\. Hence we can set &7 = ¢;/® and
one can easily see that ®; € C2°(R"*1), O 17 < @7 < 1 and [V&;| < £(1)~1
With this in hand set

S,
Un(X) = IEXW:N ®;(X) = W XeQ.

We first note that the number of terms in the sum defining ¥ is bounded depend-
ing on N. Indeed, if Q € Dz, g, then Q € Do, and 27N¢(Qy) < 4(Q) < £(Qo)
which implies that Dz, ¢, has finite cardinality with bounds depending only on the
AR property and N (here we recall that the number of dyadic children of a given
cube is uniformly controlled). Also, by construction W, has cardinality depending
only on the allowable parameters. Hence, #W/Wy < Cny < oo. This and the fact
that each ®; € C°(R"H!) yield that Uy € C°(R™*!). Note also that (3.15) and
the definition of Wy give

swpyc | = U U f*cint( U U I**)

Iewn QEDry Qo IEVVE2 QEDry,qp IEW(*J
it J 05) =%
QEDxy, Qo

This, the fact that Wy C W, and the definition of ¥y immediately give that
Uy < 1g:. On the other hand if X € Qy = QIN 3o then the exists I € Wy such

that X € I* in which case ¥y (X) > ®;(X) > C;*. All these imply (i). Note that
(i) follows by observing that for every X € Q2

VINXO)I< D (VE(X)| S Y U 1E(X) S6(X)7
IeWn Iew

where we have used that if X € I* then §(X) ~ ((I) and also that the family
{I*} ;¢ has bounded overlap.

To see (iii) fix [ € Wy\Wx and X € I**, and set Wx = {J € W : ¢,;(X) # 0}
so that I € Wx. We first note that Wx C Wy. Indeed, if ¢;(X) # 0 then X € J*.
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Hence X € I"*NJ** and our choice of A gives that dI meets d.J, this in turn implies
that J € Wy since I € Wy \ Wx. All these yield
> (X) >, ¢s(X) >, ¢s(X)

JewW JEWNNW JEWNNW
\I/N(X) — N — N X — N X — 1

> da(X) > os(X) > 9s(X)

Jew JEWX JEWNNWXx

Hence Wy |,.. = 1 for every I € Wy \WJ. This and the fact that ¥y € C°(R"!)
immediately give that V¥ =0 in UIGWN\WIX\:, T+

We are left with showing the last part of (iv) and for that we borrow some ideas
from [HMM16, Appendix A.2]. Fix I € Wx and let J be so that J € W\ Wy
with 81 N dJ # @, in particular ¢(I) ~ £(J). Since I € Wx there exists Q; €
Dry.q0 (that is, Q@ C Qo with Q_NK(Q()) < é(QI) < E(Qo) so that I € WE}I
Pick Q; € D so that £(Qy) = ¢(J) and it contains any fixed ¥ € 9§ such that
dist(J, 0Q2) = dist(J,y). Then, as observed in Section 2.5, one has J € Wy, . But,
since J € W\ Wy, we necessarily have Q; ¢ Dr, o, = Dr, N Dg,. Hence,
Wi = W]%,’l U WE,’Q U W]%,’s where

Wit i={T € WX :QocQsh

Wi = {1 € WX : Qs € Qo, Q) <27V U(Q)},

Wit ={I e Wy :Q,NQy=0}.
For later use it is convenient to observe that
(3.16)  dist(Qy, 1) < dist(Qy, J) + diam(J) + diam(I) ~ £(J) + £(I) =~ £(1).

Let us first consider Wf,’l. Ifle W]%,’l we clearly have
U(Qo) < UQ.y) =L(J) = U(I) = £(Qr) < £(Qo)
and since Q7 € Dg,
dist(I, zg,) S diam(I) + dist(Z, Q) + diam(Qr) ~ £(I).

In particular, #Wy"' < 1. Thus if we set Q1 := Qy it follows from (3.16) that the
two first conditions in (3.14) hold and also Zlewli\l],l 15, < #W}%J < 1.

Consider next Wﬁg. For any I € W]%,’Q we also set @1 := @ so that from
(3.16) we clearly see that the two first conditions in (3.14) hold. It then remains
to estimate the overlap. With this goal in mind we first note that if I € WJ%,’Z, the
fact that Q; € Dry o, yields

27N Qo) < UQr) I = L(J) = £(Q) < 27V £(Qo),
hence £(I) ~ 27N £(Q,). Suppose next that Q; NQ, = Q;NQ; # O for I,I' €
W]%,’z. Then since I touches J and I’ touches J’
dist(I, I') < diam(J) + dist(J, Q) + diam(Q ;) + diam(Q’;) + diam(J")
~0(J)+(J) =~ 27N Q).
Hence fixed I € WE’Q there is a uniformly bounded number of I’ € WI%/Q with
QrNQr # D, and, in particular, Zjewlzv,z 15, <1

We finally take into consideration the most delicate collection WI%,’?’. In this
case for every I € Wf,s we pick Q1 € D so that Qr 2 zg, and {(Q;) = oM Q)
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with M > 3 large enough so that 2M" > 252 (cf. (2.34)). Note that since M > 3
we have that Q; C @ which, together with (3.16), implies
dist(1, Q) < dist(I, Q) + diam(Q ) < ().

Hence the first two conditions in (3.14) hold in the current situation.
On the other hand, the choice of M and (2.34) guarantee that

(3.17) diam(Q;) < 2215, <28(Qy) =21 EUQ,) <=M UQ.).
Also, since Ag, C Qy, it follows that Qo N Ag, = @ and therefore 2271 £(Q ;) <
dist(z¢q,, Qo). Besides, since Q1 C Qo
dist(zg,, Qo) < diam(Q ;) + dist(Q s, J) + diam(J)
+ diam(7]) + dist(Z, Q) + diam(Qr) ~ £(J) ~ £(I).
Thus, 227! K(QJ) < dist(zg,, Qo) < C¥(J). Suppose next that I,I" € W]%,g are

so that Q N Q r # O and assume without loss of generality that Q 1 C Q I, hence
£(J') < £(J). Then, since zg, € Q; and rqQ, € Q1 C Q; we get from (3.17)

221 é(QJ) < diSt(l‘QJ,Qo) < \mQJ — xQJ,| + diSt(JL‘Q‘], , Qo)
< diam(Qr) + CL(J") < BT UQ.) + CUT)

and therefore -1 £(Q ;) < C ¢(J) which in turn gives ((I) =~ ((J]) = oJ) = e(I').
Note also that since I touches J, I’ touches J', and QI N Qp % () we obtain

dist(Z,I') < diam(J) + dist(J, Q) + diam(Q ) + diam(Q ;)
+dist(Qr, J') + diam(J') ~ £(J) + £(J") =~ £(I).

Consequently, fixed I € WE,’S there is a uniformly bounded number of I’ € Wff’g

with Qr NQr # O. As a result, >, )53 15, < 1. This clearly completes the
N

proof of (4i7) and hence that of Lemma 3.11. O

LEMMA 3.18. Let Q C R™! be a 1-sided NTA domain satisfying the CDC.
Given Qo € D and let F = {Q;} C Dg, be a family of pairwise disjoint cubes.
There exists Yo, € 2N QF g, N Q% o, so that

(3.19) dist(Yo,, 09Q) =~ dist(Ya,, 0Qr.q,) ~ dist(Ya,, 0% o) ~ £(Qo),

where the implicit constants depend only on dimension, the 1-sided NTA constants,
the CDC constant, and is independent of Qo and F.

Proor. Note first that Qr g, is a 1-sided NTA domain satisfying the CDC
(see Lemma 2.54). Pick an arbitrary xo € 0Qr ¢, and let Yy be a Corkscrew point
relative to B(zg, diam(0Qr,g,)/2) N0 r g, for the bounded domain Qr g, (recall
that one has diam(9Qr g,) =~ ¢(Qo) < oo by (2.48)). Note that Yy € Qr o, C Q,
which is comprised of fattened Whitney boxes, then Y, € I** for some I € W, with
int(I**) C Qr,g,. Let Yo, = X(I) be the center of I so that 6(Yy) = (1) = 6(Yog,).
Then

ﬁ(QQ) ~ diam(@ﬂ;’QO) ~ diSt(Yo, GQ;QO) < dist(Yyp, 89]:,@3) < (5(}/0)
~ 0(Yg,) = () < diam(Qr g,) = diam(0Qr,g,) ~ €(Qo)-
This completes the proof. (I
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LEMMA 3.20. Let Q C R™! be a 1-sided NTA domain satisfying the CDC.
Given Qo € D and f € C(09) with supp f C 2Aq, let

w(X) = mf(y) dop (y), X €99
Then for every x € Qo,
(3.21) No@) 5 sw [ 17wl
Adx A

0<ra<4Zrq,

and, as a consequence, for every 1 < q < oo
<
(322) Qg on) S I

Moreover, the implicit constants depend just on dimension n, the 1-sided NTA
constants, the CDC' constant, and the ellipticity constant of L and on q in (3.22).

-~ X .
La(2Rq,.w;, °°)

PROOF. By decomposing f into its positive and negative parts we may assume
that f is non-negative with supp f C 2&@0 and construct the associated u as in
the statement which is non-negative. Fix x € Qo and let X € I'y, (x). Then, by
definition there are @ € Dg, and I € W) such that x € Q and X € I"*. Hence
using Harnack’s inequality and the notation introduced in (2.34)—(2.36)

wX)= [ fly)dwi(y)~ | fly)dw,®(y)
o0 o0

dw @ 3 W) =S,
</ RULACTEDY /A\A P ) = 3T

Let ko > 0 be such that £(Q) = 27%¢(Qg). Observe that for every j > ko + 3 one
has that 2Aq, \ 271 Ag = @. Otherwise there is z € 2Ag, \ 27'A and hence
we get a contradiction:
427rg, <2 71ThogZrg =297 Erg < |z —2g| < |2 — g, +|TQ — g, < 3ET0,-
With this in hand, and since supp f C QEQO, we clearly see that Z; = 0 for
j>ko+ 3.

In order to estimate the Z;’s we need some preparatives. Note that for every
2 < j < ko + 2 one has 2/ Bg C 5Bg,. We claim that

(3.23)
dw, " 2@ 1 .
:LXQO )< X0 (2iA)’ for wy, ®-ae. y €2 Ag, 2 < j < ko +2.
wr, wr, Q

Indeed, this estimate follows from Harnack’s inequality and Lemma 2.69 part (a)
when j ~ kg since 27 £(Q) ~ £(Qo), and from Lemma 2.69 part (d) whenever j < k.
We also observe that Lemma 2.69 part (a) and Harnack’s inequality readily give
that

X ] A .o~
(3.24) w, 7T9(2Ag) ~ 1,  for every 2 < j < ko + 2.
Finally, by Lemma 2.69 part (g) and Harnack’s inequality it follows that
(3.25) ooy (y) <2797 for wy %-ae. y € I\ 2 1Ag, j >3
. X2j715Q Y) 3 P L €.y Q, J = o
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Let us start estimating Zo. Use Harnack’s inequality and (3.24), (3.23) with
j =2, to conclude that

12%]{5 f(y)dwf%(y)% C fly)der® (y).

On the other hand, for 3 < j < kg + 2, we employ (3.25), Harnack’s inequality,
(3.24), and (3.23)

T <2—jp d X2J'*15Q <2—jp d XQjEQ
i S o fy)dwy (y) £ o f)dwr, ()
27 AQ\27_1 Aqg 27 Aq

~ 2*“]['  fly) dw % (y).
27 AQ

If we now collect all the obtained estimates we conclude as desired (3.21):

ko+2 ko+2

Zz<zwf F) e )
QJAQ
sup ][If i) S 2797 sup ][If )] dw @ (y)

Adz i—9
0<ra<8Erq, = 0<TA<4_TQO
To complete the proof we just need to obtain (3.22) but this follows at once
upon using (3.21) and observing that the local Hardy-Littlewood maximal function
on its right hand side is bounded on L4(20 Ag,,w) ?°) since w; % is a doubling

measure in 20 EQO by Lemma 2.69 parts (a) and (c). O

Throughout the rest of this section we will always assume that €2 is a 1-sided
NTA domain satisfying the CDC, hence 912 is also bounded. We fix D = D(99)
the dyadic grid for Lemma 2.33 with E = 0Q. Let Lu = —div(AVu) and Lou =
—div(ApVu) be two real (non-necessarily symmetric) elliptic operators. Fix xg €
0N and 0 < rg < diam(95?) and let By = B(xo,70), Ag = By NI From now on
Xo = Xn,, wWo 1= wfoo and w := wf".

We further assume that 0 < r¢ < diam(9€2)/2. In particular roa, < diam(99).
We introduce the following notation (which should not be confused with the one
introduced in (2.46)):

(326) D& ={QeD: QNN £ 0, forg <UQ) < ro}.

Fixed ¢ € C*(0,00) with 1¢g 1) < ¢ < 1(g,2), we define

(3.27) Pig(x) := / wi(x,1)g(y) dwo(y) whenever z € 99,
o0

where

(3.28) o, y) =

whenever x,y € 0S.

Joa ¥ (Iw Z‘) dwo(2)

A variant of the following lemma was shown in [CHM19, Lemma 3.5].
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LEMMA 3.29. Let Q C R™! be a I-sided NTA domain satisfying the CDC.
Let Lou = —div(AgVu) be a real (non-necessarily symmetric) elliptic operator.
Fiz o € 0%(0,00) with 191y < ¢ < 1gg2y. There exists C' depending only on
dimension n, the 1-sided NTA constants, the CDC constant, the ellipticity constant
of Lo, and ¢ (and independent of A ), such that for every Q € Dgo with Q" € Do,
and with P; as above then the following statements are true:

(a) If g € L9(00, wp), 1 < g < oo, then

0<§1<1£(Q) HPtQHLq(Q&Q,wO) < C”gHLq(gﬁQM[)y

(0) If g € L1(0Q,wp), 1 < g < o0, and 0 < t < £(Q) then P,(glg) € Lip(9Q) N
L“(@Q,wo).

(¢) If g € L0, wp), 1 < g < oo, then P,g — g in Lq(2£Q,w0) ast— 0T,

(d) If g € C(09Q) then Pig(z) — g(z) ast — 01 for every x € QAQ.

(e) If supp(g) C A(zx,r) then supp(Pg) C Az, r + 2t).

PROOF. We start with some preliminaries. Fix Q € Dgo with Q° € D20, Set

H(x) ::/ <p<|a:—z|) dwo(2), x € 0N
o0 t
and observe that wo(A(z,t)) < H(z) < wo(A(z,2t)). Hence if 2,y € 90

1A @) (Y) 1A@z,20(Y)
wo(A(z,2t)) wo(A(z, 1))

This easily implies (e) and also, recalling the notation in (2.34)—(2.36),

(3.30) < pi(z,y) <

1A z,t (y) lA x,2t (3/)
SAED) < (g, y) < @20
wo(A(z,t)) wo(A(z,2t))
by Lemma 2.69 part (c), and the implicit constant does not depend on ¢. Moreover,
for every xz € 4Aq

(3.32) sup |Pg(x)| <C  sup ][ 19()] dwo(y).
0<t<L(Q) 0<t<2£(Q)J Az, t)

(3.31) 0<t<Q", zec4Ag,

Note also that fixed 0 < t < £(Q) < £(Q°) < ro for every x € 4Aq we have
6(XA(x,2t)) > co2t and since Q° € D2o
I XA@@,2t) = Xaol <1 X A2 — 2|+ |2 — 20| +|2g — 200 | + 200 — 20| + |20 — XA, |
< 2t + 620(QY) + 3ro < 1.
Hence, the Harnack Chain condition and Harnack’s inequality yield
(3.33) wol(A(w, 2t)) ~ wp 20 (A(x, 26)) ~ 1

where the last estimate follows from Lemma 2.69 part (a) and the implicit constants

depend on t but are uniform in x € 4A¢.
To show (a), note first (Ptg)lzﬁQ = (Pt(glng))lzzQ whenever 0 < ¢t < £(Q).
This, Fubini’s theorem and (3.32) yield

1Pl 05wy < M9l 530 mn) 00 [Pl 05wy < Cl9l e (330 -
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Thus, (a) follows easily from Marcinkiewicz’s interpolation theorem.
To obtain (b) we first observe that (e) yields supp(P;(9lg)) C 3Aq. This,
(3.31), Holder’s inequality, and (3.33) give for every x € 3Ag

|Pi(g1Q)(x)] S][A( . 19(W) 1o (y) dwo(y) St l9llLe(@.wo)-
x,2t

Thus, Pi(glg) € L™(0Q,wp).

We next see that P,(glg) € Lip(0f2). Using what we have proved so far it is
trivial to see that it suffices to consider the case on which |z — 2’| < £(Q) and both
z,x € 4£Q. Taking such points we note that

[P (91q)(x) — Pi(glq)(2")| < /89 ot (2, ) — (', 9)| l9(y)] 1o (y) dwo(y).

Note that for every y € @) we have by the mean value theorem and easy calculations

(522 (22

N |2" — gyl 11
P\t H(z) H(z')
Vel Lo ,
< WVPllLe (o0 2 )
S @) T a@@y )
St Vol pee |z — 2|,

. 1
|<Pt($,y) - (pt(x 7y)| < H(l’)

where in the last estimate we have used (3.33). Consequently,

[Pi(g1q)(x) — Pe(g1lQ) ()] Se Vellpoelw — 2| /aQ l9(W)[1q(y) dwo(y)

S IVellzellgllzaw,.@ lz — 2,

and this completes the proof of (b).
Let us now establish (d). Since g € C(9Q) and 9 is bounded, g is uniformly
continuous and hence given € > 0 there exists n > 0 such that |g(y) — g(z)| < &

whenever |z — y| < min{n, £(Q)}. Hence, if 0 <t < /2 and = € 4Ag by (3.31)

Pgle) = g@I £ f oo~ gle)lden < =
A(z,2t)

and therefore Pig(x) — g(x) for every z € 4A¢g (which is indeed stronger than

what stated in (d)).

Finally, we show (c¢). To set the stage, fix e > 0 and g € L?(wp, 9), 1 < g < 0.
Pick h € C(09) such that ||g — hl|La(90,w,) < € Proceeding as in the proof of (d)
there exists n > 0 such that |h(y) — h(x)| < € whenever |z — y| < min{n, {(Q)}.
Hence, if 0 <t <n/2 and = € 2&@ by (3.31)

Pih(z) — h(z)| < ][A o 1)~ H@d <

Using all these we obtain for all 0 < ¢t < 7/2

H—Ptg - g”Lq(zﬁQ,wO) < HPt(g - h)||Lq(2§Q7w0)
+ HPth - h”Lq(QZQMO) + ||h - g||Lq(2§Q7w0) S €
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where we have used item (a) and the fact that wy(9€2) < 1. This completes the
proof. ([

LEMMA 3.34. Let Q C R"™! be a 1-sided NTA domain satisfying the CDC
and adopt the notation introduced above. There exists k > 0 depending only on
dimension n, the 1-sided NTA constants, the CDC constant, and the ellipticity
constant of Lo (and independent of Ag) such that if Q° € D20 and we set

(3.35) 10 =7x0@ =wo(Q) Y A= Aolli<(ey, Q€ Do,
Iewg)

then |[m lle(@o.wy) < Klllo(A; Ao)ll 5, -

PrOOF. Fix Q° € D20 and pick yo € Q° N Ag. Let Q € Dgo and note that by
(2.34) and the fact that kg > 162

lzg —20| < | —yo|+|yo—z0| < 2Ergo+7ro < 2EL(Q°)+710 < <4 + 1) ro < 27p.

Hence zg € 2A,. Note also that B, = 2KorqQ < 2k00(Q°) < roco/4. This means
that B, is one of the balls in the sup in (3.2). Also, Xo ¢ 4B hence if Q" € Dq
and Y € I* € W), we have by Harnack’s inequality and Lemma 2.69 parts (a)—(c),

wo(Q) ® wo(Agr) = U(Q)" ™ GL, (X0, Xg) = (V)" GL, (X0, Y).

On the other hand, by (2.40) and recalling that I* = (1 4+ A\)I with 0 < A < 1, it
follows that I* C B(Y,0(Y)/2) and thus ||A — Agl[zee(1+) < 0(A, Ao)(Y). All these
imply

(3.36) my(Dg) = Y wo(@) D 1A= Aol sy
Q'eDg Iewy,
o(A, Ap)
< Z wo(Q Z // ‘;H dY
Q'eDg Iewp, *
2 WO(Q)
= 3 [ et ey
Q/GDQ
~ Y // 0(A, Ao)( )2GL0(X°’ Yy
Q/EDQ U ! (

< llle(A; Aol , wo(Ag)
S llle(A; Ao)lll 5, wo(Q),

where have used that the families {I*};ey and {Ugq } g’ ep,, have bounded overlap,
(2.48), and Lemma 2.69, parts (b) and (c). This leads to the desired estimate. [
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For each j € N (large enough), let (see Figure 1)
. AY) fYeQandd(Y)>277;
(V) =

(3.37) , _
Ap(Y) ifY € Qand §(Y) <27,

and define L/u = — div(A7Vu). Note that the matrix A7 is uniformly elliptic with
constant Ag = max{Aa, A4, }, where Ay and A4, are the ellipticity constants of A
and Ag respectively. Let wy; be elliptic measure of €2 associated to the operator L’
with pole at Xj.

A

aﬂw

FIGURE 1. Definition of the matrix A7 in .

The following result is a version of [CHM19, Proposition 4.28] adapted to our
setting.

LEMMA 3.38. Let Q C R™"! be bounded 1-sided NTA domain satisfying the
CDC. Assume that there exists q, 1 < q < 0o, such that wr; € RHq(ng,wo) for
every j > jo and with implicit constants which are uniform in j and in Ag. Then
wr € RHg(Ag,wo) with [wL]ri,(Agwe) S SUP;>j, (Wil RE, (3 A0,00), With an implicit
constant depending on dimension n, the 1-sided NTA constants, the CDC constant,
and the ellipticity constants of Ly and L (and independent of Ag).

PROOF. Set YT := sup;>;, Wrilra, (320w Consider an arbitrary Aj = Bj N
00 with By = B(zy,r)) C By. Write X = Xay,s w = wffl’, wy = wfé’ (and note
that wy = wfoo since Xo = Xa,). Write Ay = 2A{, let r; = 2r{ be its radius and
set X1 = Xa,. By hypotheses wy; < wp in %AO, hence h(-; L7, Lo, X) is defined
wp-a.e. in %Ao.

If vy < coro/(3ko) so that Xo € 2\ 2k9B1, by Lemma 2.69 part (d) applied to
L; and Ly we have
dwl?  dw)? dwp) dwi? _wp(Ay)

Xo X1 X1 Xo 7 Xo
dwp?  dwp) dwp! dwp?  wp?(Ar)

(3.39) h(-;L7, Ly, Xo) = h(-; L7, Lo, X1),

wp-a.e. in Aj. This and Lemma 2.69 part (d) give

1

”LQ(Al,wal) ~ w[)/(jo (Al)

(3.40) ||h(-; L7, Lo, X1) Ih(-3 L7, Lo, Xo)ll La(ay wo)

N 1
7 7

< Wrs] Ry (3 Aguwe)Wo (A1) "7 < Two(Af) ™,

where the implicit constants are independent of j.
For any f € C(09), we define

O(f):= | fly)d'(y).

o0
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Let f € Lip(0€) with supp(f) € A; and consider the following solutions to the
Dirichlet problems associated with the operators L and L7 in :

wX)= [ flydwi(y) and u(X)= [ f(y)dwp;(y), X e
o9 o9

Implicit in the way that w;; is defined and since {2 is bounded one has that u; =
F — v; where F is a compactly supported Lipschitz extension (e.g., [EG92, p.
80] multiplied some cut-off function) of f such that ||F||Lip@n+1y < || fllLipon) +
£l o0y and v; € W, 2() is the unique Lax-Milgram solution to the problem
L’v; = L7F in €. Also, one has

(3.41) sup [[ujllwr2() < Cal[Fllwiz) < oo
J

where the implicit constants depend on diam(9€2) and Ag.
Since f € Lip(0f?) it follows that we can use Lemma 3.7 (slightly moving X
if needed) to obtain

w(Xh) — uy (X0) = /Q (47— A)T(YV)Vy G (V. X5) - Vg (V) dY,

We want to estimate the right hand-side of this identity. To this end, if j > jo is
large enough so that 277 < §(Xx;)/2 then

Y ={Y €eQ: §(Y) <277} nB(X,,8(X()/2) = 0.
Then using (1.1) and Hoélder’s inequality we have

(3.42) IU(X('])—UJ'(X(’))IS/ VY G (Y, Xo)l [V (Y)ldY

ons,

SIVy G (¢, X0) s, || 22 o) sup [|ul w2 o)
J

By Remark 2.66 and (3.41) the dominated convergence theorem gives that u;(Xg) —
u(X() as j — oo. Using this observation, the definitions of w, u;, ®, and the fact
that supp(f) C Ay, we get that for every f € Lip(99Q) with supp(f) C Ay

(343) (/)] = |u(Xp)| = lim Ju; (Xp)

S ||f||Lq’(A1,w6) Silp ||h(-;Lj7L07XA1)HLq(A1,w2(01) 5 Hf”Lq’(AhWO)TWU(A())_q .
JZJ

Note that in the previous inequalities we have employed that A{j C A; have com-
parable radii, Harnack’s inequality, and (3.40).

We next write Ay = %A{) so that A C A C Ay C Ay C Ay and let f €

’ X A

L7 (Ag,w() (where we recall that wj = wLOAO ). Abusing the notation we extend f
by 0 in 9Q \ Ay so that supp(f) C As. By definition of ]D)*Az’, see (3.26), we have
that Aj C Ay C UQE]D)*A& QQ where the cubes in D20 are pairwise disjoint. Also, by
Harnack’s inequality and Lemma 2.69 parts (a) and (c)

#DY ~ DAY < Y wh@ <wo( | @) <1,

AL Al
QeD, ° QeD, °
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hence #D2° is uniformly bounded. This means that by Lemma 3.29 applied with
wy, in place of wy
Pf= Y Piflg) € L*(99,wh) N Lip(dQ)
Qepid

provided 0 < t < cor(/(32k0) =: to. Note that tg < £(Q) for every Q € ]Dfe. Also
Lemma 3.29 applied with wj, in place of wg implies that

9
supp(P; f) C A(xg, gré +2t) C Ay,

provided 0 < t < r({/16. Consequently, if 0 < t < to we have shown that P,f €
Lip(09Q) with supp(P:f) C A;. We can then invoke (3.43) to see that

1
7

T wo(Al)« sup |®(Pf)| S sup 1PNl Lo (a7 o)
0<t<to 0<t<to

< sup  [|[P(f1)|| o (22,
z:ﬁ/ 0<t<E(Q) Q/lLa (2Aq,wp)
QeD,°

S Z ||f1Q||Lq’(35Q,w6) S ||f||L‘1'(A2,w6)’
Qep

where we have used that supp(Py(f1g)) C A(zg,Crg +2t) C 2Aq for every
Q € D20, Lemma 3.29 applied with w}, in place of wp, and that #D%¢ is uniformly
bounded.

On the other hand, if 0 < ¢,s < ¢y we have that P,f — Pyf € Lip(9Q) with
supp(P,f — Psf) C A; and again we can invoke (3.43) to see that a similar com-
putation lead us to

T o (8) 7 [®(PLS) = B(Pof)| = T e (A0) 7 [B(Pif — Pu)|
SIPf = Pofll e (ay,wp)
<SNBS = Fllze aywy) 1P f = Fllzer ay,wp)
< > IP(F1Q) = flall e pag wy + 1P (FLQ) = flall Lo i -
QeDre
This and Lemma 3.29 applied with wj in place of wy yield that {®(Ff)}o<t<t,

is a Cauchy sequence and we can define 5( f) = limy_g+ ®(P.f). Clearly, ® is a
well-defined linear operator and satisfies

B(f)| = lim [2(P)| < sup |B(Pf)] S Two(A) ™7 | Fll par (ag.r)-
t—0+ 0< 0

t<to

1
g7

Consequently, there exists g € LI(Ag,wy) with [|g]lLa(a,.wy) S Two(Aj) ¢ such
that

(3.44) o(f) = A FW)gly) dwp(y), Ve LY (Agwp).

We now assume that f € C(99) with supp(f) C Ag, thus f € LY (Ay,w)) and
hence P, f € Lip(9€2). Also, proceeding as above
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sup |®(Pf)| < Z sup )||Pt(f1Q)HLoo(25Q,wg)

0<t<to T 0<t<(Q
€D, °

S Z/ ||f1QHLoo(3ZQ,w6) S ||fHL°°(6Q,w(’J)~
Qe
Note also that, as mentioned above, for ¢ small enough one has supp(P;f) C A
and the cubes in ]D)*AO cover Ay. Hence by Lemma 3.29 applied with w{, in place of
wp it follows that P;f(z) — f(z) ast — 07 for every y € A;. These, the definitions

of @, &, and the dominated convergence theorem yield for every f € C(9) with
supp(f) C Ay

(345) @(f) = lim B(Pf) = lm | Pf(y)de'(y) = lim [ Prf(y)de'(y)
t—0+ t—=0t Jo0 t—=0t JA

Ay

= [ fy)dy) = /8 ) ) = 9(7).

Our next goal is to show that w’ = wfo < wf{f = w) in Az = {IA}. Let
E C Ajs a Borel set. Since both measures are Borel regular, given € > 0 we can

find a compact set K and open set U such that K C E C U C A satisfying
WU\ K)+wy(U\K) <e.

Using Urysohn’s lemma we construct f € C.(0€2) such that 1x < f < 1y and
supp(f) C Ag. Thus, combining (3.44) and (3.45), and using definition of ® and ®
we have

W(E)<e+w(K)<e+ » F)dw'(y) = & + O(f) = e + ®(f)

1 _ 1
S e+ I lpe (g 19l La(aswy) S &+ (e +wp(E)) 7 Two(Ap) ™).

1
7

By letting e — 0 we see that w'(E) < wé(E)ing(Ag)fq and c9nsequently

~

X(J ’
w' < wj in As. Thus we can write h(:) := h(-; L, Lo, X)) = dwﬁ(é = 4 ¢
deO 0

L'(A3,w)) which is well-defined for wj-a.e. point in Az and if f € C(99Q) with
supp f C Az C Ag

(3.46)

FWg)dwy(y) = (f) = 0(f) = | fly)dw'(y) = N F)h(y)dws(y)-

As a0
Note that h = (g — h)1a, € L'(09Q,w}) hence proceeding as above if 0 < t < tg
Lemma 3.29 applied with w( in place of wy gives
[ Peh — B[y (agwy) < Z 1P:(h1Q) = P1Qll 11 2R ¢ ) = O ast — 07,
Qepso
On the other hand, for any « € Aj and 0 < ¢ < (/32 if we consider ¢; as in (3.28)
with w}, in place of wy we have supp(p:(z,-)) C A(z,2t) C Az. Thus, we can invoke

(3.46) with f = ¢(x,-) to get Pih(x) = 0 for every x € Af. Thus, Lemma 3.29
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part (c) applied with wj allows us to conclude that h=0 wp-a.e. in Aj. Hence

1
7

g=nh>0uwj-ae in Ay and using that |||l pa(a,.w,) S Two(Ap) @

= < h(y)qdw6(9)>
A

7 S\
o) tdu(y) | < veelBe) T
(DY)

Q=

1
q

(347) ( N h(yaLvLOaX(/))qdw(,)(y)>

(£

where the last estimate follows from Lemma 2.69 part (a). At this point we can
repeat the computations we have done in (3.39) replacing L’ by L and A; by As
—we already know that w’ < wf) in Az = £ A{, where B} was arbitrary chosen so
that Bj, C By, hence taking B{, = By we conclude that w < wp in Az— to obtain
that

~ Two(Ag) 7,

’
0

X,
0 A /
wy( 3)h(z;L7L0,XA3) ~ w(Ap)

h(z; L, Lo, Xo) ~
( T o (A))

h(z; L, Lo, X)),

for wp-a.e. z € Ag, and where we have used Harnack’s inequality to pass from X
to Xa,. This, Lemma 2.69 part (d), and (3.47) give

‘ w(A} z
][ h(y7L7LOaXO)quO(y) ~ (70); ][ h’(y7L7L07X(l))qdw(l)(y)
Af wo(Ap)T \/a;
w(Ap)
<7T = h(y; L, Ly, Xo)dw .
~ WO(A(]) A (y 0 0) O(y)

Since Af, = B{N 0N was arbitrary with B, = B(z(, 1) C By we therefore conclude
that wy, € RH,(Ag,wp) with [WL]RHq(Ao,wLO) < T and this completes the proof. [

3.2. Proof Proposition 3.1, part (a)

We start assuming that {2 is a bounded 1-sided NTA domain satisfying the
CDC and whose boundary 0f2 is bounded. We fix D = D(99Q) the dyadic grid
from Lemma 2.33 with F = 0f). As in the statement of Proposition 3.1 let
Lu = —div(AVu) and Lou = —div(AoVu) be two real (non-necessarily symmet-
ric) elliptic operators. Fix zp € 0 and 0 < v < diam(99Q) and let By = B(zo, ro),
Ay = By N ON. From now on Xy := Xa,, wo := wfoo and w = wfo.

We first observe that we can reduce the proof to the case 0 < ry < diam(9)/2.
Assuming that this has been already proved we now explain how to consider the gen-
eral case. Let By = B(xg, ) with diam(9)/2 < rg < diam(92). We proceed as
Case 2b in the proof of Theorem 1.5 part (a) with M = 1 to find the corresponding
collection {xj}}]ﬂ with J < 21""1. Let B; = B(z;,diam(0)/10) for 1 < j < J.
Then we can easily see that Harnack’s inequality yields sup; << ; |o(4; Ao)|lg, o, <
llo(A, Ao)lll 5, and since rp; < diam(92)/2 we can apply the claimed case to con-
clude that wy, € RHy(3Aj,wr,) (for part (b), ¢ = p). At this point we carry out
the same argument mutatis mutandis to conclude that wy, € RH,(Ag,wr,) which
completes the proof.

We split the proof in several steps.
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3.2.1. Step 0. We first make a reduction which will allow us to use some
qualitative properties of the elliptic measure. By Lemma 3.38 it suffices to show
that there exists 1 < ¢ < oo such that for every j large enough wy; € RHq(%AO,wO)
uniformly in j and in Ag. Thus we fix j € N and let L = L be the operator
defined by Lu = —div(AVu), with A = A7 (see (3.37)). As mentioned above A
is uniformly elliptic with constant Ag = max{A4,Aa,}. Also, since L= Lo in
{Y € Q: §(Y) < 277}, by Lemma 2.69 part (f) and Harnack’s inequality give
that wy, < w; < wr,, hence recalling (2.57) we have that h(-;L, Lo, X) exists
wg(—a.e. for every X € Q. Moreover, fixed Ay = A(xy,71) with z; € 9Q and
0 <7y <27972/ky for every A = BN oS with B = B(z,r) C By, x € 02, and
0 < r < diam(0?), we have by Lemma 2.69 part (f)

Xa
w="1(A(z,r ~
1~ # :][ h(y; L, Lo, XA,) dwz(fl (y)-
Wro ! (A(x,r)) Alwr)

Letting r — 07 the Lebesgue differentiation theorem (whose applicability is ensured
by the fact that wj ' is doubling in A;) yields

h(y;z,Lo,XAl) ~1, for wfoﬁl—a.e. T € Ay

Thus, by Harnack’s inequality h(-; E, Lo, X) € LfOOC(BQ,wZO) for every X, Y € Q —
the actual norm will depend on X, Y and j, but we will use this fact in a qualitative
fashion. This qualitative control will be essential in the following steps. At the end
of Step 3 we will have obtained the desired conclusion for the operator L = L7,
with constants independent of j € N, which as observed above will allow us to

complete the proof by Lemma 3.38.

3.2.2. Step 1. Let us recall that we have fixed already z¢ € 99 and 0 < rg <
diam(09Q)/2 and let By = B(xzg,70), Ao = BoN 0N, Xog = Xa,, and wy = wf{? Set
W= w%(O, Fix Q° € D20 (see (3.26)), so that by (2.48),

(348) X € Q \ Béo C Q\ %Béo cQ \ Téé
Set £(Y) 1= A(Y) — Ap(Y), Y € Q, and consider v = {7g}qen,0

(3.49) Y0 = VX0, = wo(Q) Z sup HSH%OO(I*) whenever @ € Dgo.
rewy Y&

Lemma 3.34 yields that [[m,[lc(qowe) S lle(4; Ao)llp, < oo, hence m, is a dis-
crete Carleson measure with respect to wy in Q°. Our goal is to show that @ €
Adyadic(Q0 )5) and we will use Lemma 2.32 with g = wg. To this aim we fix
Qo € Dgo and a family of pairwise disjoint dyadic cubes F = {Q;} C Dg, such
that

m, (D
(3.50) My, 7lle(@owe) = qup m, (Dr.q) < gy,

€Dgq, wo (Q)

with €9 > 0 sufficiently small to be chosen and where we have used the notation
introduced in (2.30) and (2.31).
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We modify the operator L inside the region Qr.0, (see (2.42)), by defining
L = Ll}—’Q0 as Lyu = —div(A;Vu), where

AY) Y €Qrq,,
A(Y) = (Y) i F,Qo
AO(Y) ifYEQ\Q}"QO.

See Figure 2. Recalling that A = A7 (see (3.37)), it is clear that & := A; — Ao
verifies [€1] < |€]1q, o, and also & (Y) = 0if 6(Y) < 277 (this latter condition will
be used qualitatively). Hence much as before if we write wi = wfl for every X € )
and w, = wf(o we have that w1 < wp and hence we can write h(-; L1, Lo, Xo) =
dwy /dwo which is well-defined wp-a.e. Also, as shown in Step 0 we have that
h(-; L1, Lo, Xo) € LS. (09, wp) (the bound depends on X, and the fixed j but we

will use this qualitatively).

FIGURE 2. Definition of the matrix A7 in €.

We next fix Qf € Dg, an define L} = LT’QS as Lju = — div(A}Vu) where

A*(Y) Z(Y) if Y e QF7Q67
BT Ao(Y) i Y €\ Qpg;.

Note that if Qf = Qo then L] = L;. Again £ := A} — Ag verifies |E]] < [€]1q,,
and also &F(Y) = 0 if §(Y) < 277 (this latter condition will be used qualitatively).
Hence if write w¥ = wf; for every X € Q we have that w < wy for every X € Q
and hence we can write h(-; L}, Lo, X) = dw /dwg’ which is well-defined wg -a.e.
Also, as shown in Step 0 we have h(-; L}, Lo, X) € L, (9Q,w{) for every X, Y € Q

(the bound depends on X, Y and the fixed j but we will use this qualitatively).
Set X, := XC(TlAg* which satisfies 2xo7g; < d(X) < 1o since £(Qg) < £(Qo) <
0
0(Q%) < %ro. Moreover, X, € Q\ Bag. To simplify the notation set w, = wX*
and wj = wy *.
We have two cases:
Case 1: Qf ¢ Dr q,, that is, Q5 C Q; € F for some j. Clearly, Qr g: = O

and hence Lf = Ly in Q. As a consequence, wy = w{ for every X € Q and
h(-; L%, Lo, Xx) =1 in Q. In turn we obtain

(3.51) 1A G5 LT, Loy Xo)ll Lo (@ o) = «0(Q5) -

-
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Case 2: Qj € Dr g,. In this case it is easy to see that

For={Q; € F:Q;NQ; # 0}t ={Q; € F: Q; CQ} C Dgy.
Thus, Dr NDg; = Dr, NDg; and Qr g5 = QF, @5 On the other hand, we set
v* = {’YZQ}QEDQS where
78 = W (Q) Z sup [|€]17< (1), whenever Q € Dg; .
rewy Y&

Using (2.71) and Harnack’s inequality we have that w§(Q) ~ wo(Q)/wo(QF) for
Q € Dg; where wy = wy *. Hence, by (3.49),

* wO(Q) 2 Q
G~ sup [[El|7eey = — 570 @ €Dg;.
Q WO(QS) jezw:é ver- Loo (1) WO(QB) Q5

and, by (3.50),

(3.52)  [Imy 7 lle@gwy) = sup %: %
QEDqy wp (Q) QEDgy wi(Q)

m,Dro) =~ my[Dro)

X~ su < |m < e€g.
p WO(Q) — || 'Y»-FHC(Q0,0J()) =<0

QEDgs “Wo 0 (@)wo(Q5) QeDgy

We next fix 1 < ¢ < oo and 0 < g € LYQ5,ws) with [|g]|La(qs,wg) = 1. Extend
g by 0in 00\ QF. Set g: = Prg with 0 < ¢t < £(Q})/3 (see (3.27)) and note that
Lemma 3.29 gives that g; € Lip(9€2) with supp(g:) C 2Aq;. We then consider

uh(X) = /mgxy)dwéf(y) and it (X) = /8 _aae),  Xeo

Since {2 is bounded, we can use Lemma 3.7 (slightly moving X, if needed). This,
Lemma 3.9, (3.52), and Hoélder’s inequality yield

[ (X)) — up(X)| =

/ AO - )VYG(L* (}/’ X*) . VUB(Y)dY

//Q V) IVy Gy (V. X[ [Vug (V)| dY

Fxs Q*
< e B /Q M 5 (97 (2) S () ()
0
S<d | MG ) () Sy () )
:
< 5 1M8: s (@)l o (3 ) 1505 4 (@] L@ -

Using the well-known fact that MS* ‘ is bounded on L9 /(Qa,w(j) and that, as
mentioned before w, < w§ with h(-; Ll, Lo, X,) = dw,/dw}, it readily follows that

||M56,w6 (W*)||Lq’(Q5,w5) 5 Hh(ﬁLLLOa *)”Lq’(Qg,wO*)-

On the other hand, Theorem 5.3, Lemmas 3.20 and 3.29, Remark 2.70, and Har-
nack’s inequality to pass from X, to X, and the fact that suppg C @, yield

1Sqsuo (@)l Loz ws) S INQsubllLa@sws) S N9ellLaqs.ws)
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~

———— 9l La (@ w0) S 1911 La(@5.w0) = 9]l La(q@y.ws) = 1-

<1
wo@o) wo(Q3)
Thus we conclude that
[0 () = ub(X)| S & A £ Loy Xo) | Lo g )
and hence using the definitions of u{, and u! we conclude that
(3.53)

| /8 o)~ [ i)

< Jul(Xy) — up(X)| + [lg — gelloroa.ws) + 119 — gl L1 (90,0,
S e b5 LY, Lo, X)ll Lo g wg) T 119 = gtllr00.0) + 119 — gellzr00,0.)-
Since g € L1(Qo,wp) with supp(g) C Qf, it follows that supp(g), supp(g:) C
2Aq; . Hence, Lemma 3.29, Harnack’s inequality and (2.72) give
359 llg— gl ons) = 9~ Piglla o, )

+
)Hg_Ptg”Ll(zEQS,wO) —0, ast—0".

N 1

T wo(@Q
Similarly, using also that as mentioned above w, < wp with h(-; L7, Lo, X4) €
Lﬁ?c(aﬂ,(,g}())

(355) llg = il o0 = 9= Pegll sz
< IBC L Lo Xl g w19~ P9l s a5 gy > 0 @t 0%,

Combining (3.53), (3.54), (3.55) and letting ¢t — 0 we conclude that

0< [y Lt Lo X )i (v) = [ By Lt Lo, X) g(w)dai ()
Q3 1919)
= / 9(y)dw,(y)
o

'l
S &g lIh(-5 LY, Lo, Xl 1ot (o) + [}Qg(y)dwa(y)

: * * * i/
<egllnl; LlaLOvX*)HLq’(Qg,wa) + wj (Q5) @

Taking now the sup over all 0 < g € LY(Qg,wg) with [|gl[La(qs.wg) = 1 we eventually
get

1 * * * i/
(3.56)  [[A(-: LT, Lo, Xl por (@wg) < €6 1A (5 LT, Loy Xl Lo (@ gy + w05 (Q5)

Since h(-; L1, L§, X)) € LS. (09, w§) (albeit with bounds which may depend on X,
or j) we can hide the first term on the right hand side and eventually obtain fixing
o small enough (depending on n, the 1-sided NTA constants, the CDC constant,
the ellipticity constants of Ly and Ls, and on ¢),

1
(3.57) 1R(3 Lt Loy Xo)ll o () S 5(@0) 7

Note then that by (3.51) we conclude that (3.57) holds for any Qf € Dg,. On
the other hand, using [HM14, Lemma 3.55] (which holds as well in our scenario),
there exists 0 < K1 < k1 (see (2.48)), depending only on the allowable parameters,
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such that ElBQa QQ}‘,QO = RIBQZ; HQF»Q& Hence L,I( =Lqin k\lBQS N <2 which, by
Lemma 2.69 part (f) and Harnack’s inequality, gives that w, and wj are comparable
in nAgy with n = K1/(2k0), thus h(-; L7, Lo, Xi) = h(-; L1, Lo, Xy) for wg-a.e. in
nAq; (hence, also wp-a.e.). This, Remark 2.70, Harnack’s inequality, and Lemma
2.69 part (c¢) yield

Xo Xo 1 Xu 7 X,
del B del del deO

h(-; Ly, Ly, Xp) = =
( 1 Lo, Xo) dwfoo dwfl* dwfﬂ* dwﬁf
* w1 (nAo+
~ wl(QS)h(';LhLOvX*) ~ Mh( ;LLLO»X*),
wo(Qp) wo(nAq;)

and these hold wp-a.e. in nAgs an VQj € Dg, (recall that w; and wy are mutually
absolutely continuous). Eventually, (3.57), Remark 2.70 and Harnack’s inequality
allow us to conclude that for all Qf € Dg,

1

a’

(3.58) (][A h(y; L1, Lo, Xo)q/dwo(y)>

wi(nAgy) ][ / -
N ———J0C h(y; LT, Lo, X4)? dwj(y

wO(nAQS) nAQa ( 1> +0 ) 0( )
wi(nAgy)
wo(nAgy)

<

~

2][ h(y; L1, Lo, Xo)dwo(y).
WAQB

Our next goal is to show that the latter implies that w; € A%2di¢(Qy, wy) and
to show that we use an argument similar to [CHM19, Lemma 3.1]. Let Q € Dg,
and a Borel set F' C nA¢g and note that by (3.58) applied to Q

wl(F)

ot AV A 1r(W)h(y; L1, Lo, Xo)dw
el = fou, TN L Lo o)

< (%) <]{7AQ h(y;LlaLo,Xo)q/dwo(y)>
< (zhm) (

]1[7A h(y;Ll,Lo,Xo)dwo(y)>
:Cl< wo(F) )Ml(m@)

Q=
Q=

wo(nAq)) wo(nlq)
and hence
i (F) ( wo(F) )3
3.59 — <o (2 ), VFCplAg, QeDg,.
B39 Lae) = (Gmag) @ @<Dq

On the other hand, by Lemma 2.69 part (c), wo(Q) < Cawo(nAg) for all
Q € Dg,. Fix then a, 0 < a < (C2Cf)~!, and take F C Q such that wo(F) >
(1 — a)wo(Q). Writing Fy = nAg N F and F; =nAg \ F, it is clear that

wo(Q) wo(F) < wo(Fo) | wo(Q\nAg)

=) mae) = mmho) < mlnhe) T wo(nda)
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__wo(Fo) + wo(Q)
wo(nAq) — wo(nlAq)

_]_,

and hence
wo(F1) _ . wo(Fo) wo (@)
(3.60) woling) T woling) < “eolnag) =™

Q=

Combining (3.59) and (3.60) applied to F} we obtain wy (F1)/w1(nAg) < C1(Caa) ?.
This and the fact that w1 (Q) < Cswi(nAg), by Lemma 2.69 part (c), yield

wi(nAQ) wilfb) (1 _wi(f) )
wi(Q) wi(nAg) = 77 wi(nAg)
>0y (1= Cy(Coa)7) =2 1 - B,
with 0 < B < 1 by our choice of a. This eventually shows that w; € A%Y2dic(Qq, wy)

(see Definition (2.24)) as desired. This with the help of Lemma 2.27 allows us to
obtain that Piw; € A%Y2di¢(Qy, wy), which is the conclusion of Step 1.

>

3.2.3. Step 2. We next define a new operator Lou = — div(A2Vu) where (see
Figure 3):

Z(Y) ity e TQO \ Q]—',Qm
AQ(Y = .
Av(Y) lfYGQ\(TQo\Q]:,QO)'

Ao

Zo

FIGURE 3. Definition of matrix Ay in €.

The goal of this step is to show that P ws € AR?i¢(Qg, wp), where much as
before let wy = wf;

We apply Lemma 3.18 to obtain Yy, € QNQr g, satisfying (3.19). For k =1,2

.Y Y, o . . .
we write kaO =w LfOQ a for the elliptic measures associated with L; for the domain

2 and with pole at Yy, . Likewise, let w,};io = wsz)ﬂf o be the elliptic measures

associated with L for the domain Qr g, and with pole at Yg,. By definition
Ay = Ain Ty, As = Ap in Q\ Tg,, and As = Ay in Qr g,. Hence Ly = L; in

Y, Y . . Y
Qr.q,, and thus wy?° = w; ?°. If we now consider the associated measures l/LlQO

and Z/Z;QO in (4.5) from Lemma 4.4 it follows from (4.6) (with p = wy which is clearly

(dyadically) doubling in Qo by Lemma 2.69 part (c)) that PZ° UZ/?O = P‘]"_-Ouzfo as
measures on Q.
In Step 1 we showed that P4°w; € AY2(Qq, wp), then there is 1 < ¢ < oo

such that PYw; € RHqilyadiC(Qo,wo). Note that by Remark 2.70 and Harnack’s
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inequality we have that P3° w:QO ~ PPwi/wi(Qo) for k = 1,2. Then given Q €
Dg, and a Borel set F' C @) we have that all these yield

1

PLwy(F)  Piw 2 (F) _ (P3w, 2 (F) g (P )
’P;J_-OQ)Z(Q) ’P YQO (Q) ~ wo YQO (Q) o /Pwo YQO(Q)

1
o (PRe )" (M)é . (w(F))e;af
Pow (@) T \PFw(@)) T \w(@)
where in the second and third estlmates we have invoked Lemma 4.4 respectively
for Ly (with parameter 03) and Ly, and the last estimate follows easily from the fact
that P3°w; € RH: dyad’C(Qo,wo) and Holder’s inequality. This, the fact that P5ws
is dyadic doubhng in Qo by Lemma 2.27 part (a) since ws is indeed doubling in

43590 by Lemma 2.69 part (c), and [HM14, Lemma B.7] (which is a purely dyadic
result and hence applies in our setting) gives that there exists 6,6’ > 0 such that

wo(F)\’ _ PEwa(F) _ (wo(F)\”
(361) (wo@)) wa2<cz>5(wo<@>>  TECQ @ePa

3.2.4. Step 3. In this part, we change the operator outside of T(, to complete
the process. To this end, let Lgu = — div(A3Vu), where

Ay (Y) if Y eTp,,
A3(Y _ ~2( ) Qo
AY) i YeQ) 10,

and note that Lz = L in (see Figure 4) Let wXD = wLO be the elliptic measure
of € associated with the operator L3 = L with pole at Xg.

A

Zo

FIGURE 4. Definition of the matrix Az in €.

In this step we are going to need the following property: if 7 > 0 is small

enough, there exists C. > 1 such that
w3(E) _ wa(E) w3(E)

3.62 ot < <C, ,
(3:62) w3(Qo) ~ w2(Qo) ~ " w3(Qo)
where ¥, := {z € Qo : dist(z, 00\ Qo) < T€(Qo)}.

Assuming this momentarily, our final goal is to prove that for every (, 0 < { < 1,
there exists C¢ > 1 such that

wo

wo(Qo) PFws(Qo) — C

VECQO\ETy

(3.63) F C Qo,
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Fix then ¢ € (0,1), and F C Qo with wo(F') > Cwo(Qo). Consider first the case on
which F = {Qo}, in which case

POws(F)  ombgws(Qo)  wy(F)

= = >
PEs(Qo) Qs (o) w(@) ~

which is the desired estimate with C; = ¢. Thus we may assume that F C Dg, \
{Qo}. Let 7 < 1 small enough to be chosen and let Qf := Qo \ Ug ez, Q', where

I, = {Q € Dg, : TH(Qo) < U(Q') <274(Qn), Q' N, # O},

By construction, ¥, C UQ’GL— Q’', and by (2.34) every Q' € I, satisfies Q' C
Y(144z)r- Using Lemma 2.37 and Remark 2.39, along with the fact that wg is
doubling in 4A, with a constant which does not depend on Aq (see Lemma 2.69
part (¢)), if 7 =7(¢) > 0 is sufficiently small then

wo(Qo \ Qp) < wo(B(144z)-) S 7"wo(Qo) <

Letting F' = F N Q7, it follows that

DO [

wo(Qo)-

Gu0(Q0) < wo(F) < wn(F") +w0(Qo \ @F) < wol(F") + 3100(Qu).

Hence wo(F")/wo(Qo) > ¢/2 and by (3.61), we conclude that

Pwy(F) o (wolF)\’ _ 1¢\°
(3:64) Py ~ <w2(Q0)> > (3) -

Our next goal is to show that there exists ¢c > 0 such that Pws(F’) >
ccPPwa(F"). To see this let Q) € F be such that F' N Qj # ©O. We consider two
cases. If Q C QF, we can invoke (3.62) since Qf C Qo \ X, to conclude that

w2 (Qr) _ w3(Qk)
w2(Qo) " w3(Qo)’
Otherwise, Q \ QF # O, and there exists Q' € Z, such that Q; N Q' # @. Then
necessarily Q' C Qr —if Qr C Q' then Qr C Qo\QJ, contradicting that F'NQy # @
and F C Qj— and, in particular, £(Qy) > 7¢(Qo). Take Qr € Dg, with zg, € Qr,

Q) = 27M¢(Qy,) and M > 1 to be chosen. Note that diam(Qy) ~ 2~M(Q})
(see Remark 2.73) and clearly

(3.65)

UQr) = 1o, < dist(zg,, 0\ Ag,) < diam(Qy) + dist(Qr, 92\ Ag,)
~ 27 M(Qr) + dist(Qr, 92\ Ag,).
Taking M > 1 large enough, we conclude that

crl(Qo) < cl(Qr) < dist(Qr, 00\ Ag, ) < dist(Qr, 92\ Qo)

and hence Q; C Qo \ B¢r. Using again (3.62) (with e¢r in place of 7) and Lemma
2.69 part (¢) we obtain

wa(Qk) L wa(Qu) _ w2(Qk) o w2(Qu)
w3(Qo) ~ ws(Qo) " w2(Qo) ™ w2(Qo)’

Combining (3.65), (3.66) and invoking (3.62), since F/ C Q] C Qo\ X, we conclude
that

(3.66)
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PFws(Qo) — PFws(Qo) w3 (Qo) gcr wol@r)  ws(Qo)

w2 (F'\ Ug, cr Qr) wo(Qr NF) w2 (Qr)  Pws(F") ¢\
< w2(Qo) +kaef wo(Qr)  w2(Qo)  PEw2(Qo) < ( ) ’

where we have used that 7 = 7((), that P7°w;(Qo) = wi(Qo) for i = 2,3, and the
last estimate follows from (3.64). This eventually proves (3.63) in the present case
and it remains to establish our claim (3.62).

To show (3.62) write r = 74(Qo)/(8k0) (see (2.49)) and find a maximal collec-
tion of points {zx }rex C Qo\ X, with respect to the property that |z, — x| > 2r/3
for every k, k' € K with k # k’. Write A = A(xg,r) and observe that {%Ak}ke;g
is a family of pairwise disjoint surface balls such that Qo \ ¥+ C J,cxc Ar- Note
that by (2.34), we have $A; C QAQO C Az, 320(Qo)), for every k € K, hence
Lemma 2.69 part (c¢) yields

#KC wo(2R0,) < 3 wo(2Ay) = wo( U %Ak) < wo(2A0,),
ke kel
which eventually gives #K < C..

We claim that B; N Q C Tg,, with B := BJ, = B(xy,2kor) and kg as in
(2.49). To see this let Y € B} NQ and take I € W such that Y € I. Pick y, € 092
verifying dist(I,99Q) = dist(I, yx) and let Ry € D be the unique dyadic cube such
that yx € Ry and ((Ry) = £(I), thus I € Wy, . Let us see that Ry, € Dg,. First,
by (2.40) and our choice of M

PFws(F) > Pows(F) — ws(F"\Ug,cr @r) n Z wo(Qr N F') w3(Qy)

1 1
L(Rg) = (1) < dist(1,090) < |z — Y] < 2Kkor = ETK(QQ) < EE(QO)'
Also, since z € Qo \ X, we can write by (2.40)
T(Qo) < dist(zg, 90\ Qo) < |zg — Y| + diam(I) + dist (7, yx) + dist (yx, 92\ Qo)
<

< %T@(Qo) + g dist(I,9Q) + dist(yx, 02 \ Qo) %TE(QO) + dist(yg, 02\ Qo),

and hence y; € int(Qp). Since yx € Qo N Ry and £(Ry) < £(Qo)/4 it follows that
Ry, € Dg,. This and the fact that Y € I € W, allow us to conclude that Y € Tg,.
Consequently, we have shown that B;; N Q) C T, and thus Ly = L3 in Bf N} for
every k € K.

Next, we observe that §(Xg,) = £(Qo), 6(Xa,) ~ 70(Qo), and | Xg, — Xa,| S
£(Qo). Hence, we can use Harnack’s inequality to move from X¢q, to Xa, with
constants depending on 7, Lemma 2.69 part (f) and Remark 2.70 to obtain that if
Fj C Aj N Qj

wa (F] XA, XA ws (F)
wj((QI;)) ~ waO (Fy) ~r wy % (Fr) = wyq 2 (Fg) = wg(QO (Fy) =~ WEEQ]:))).
This and the fact Qo \ X7 C [y cx Ar readily give (3.62) and we finish Step 3.

3.2.5. Step 4. Let us recap what we have obtained so far. Fixed zy € 0N
and 0 < ro < diam(99Q)/2, we set By = B(zo,70), Ao = By N 0N, Xo = Xa,, and
wo = wf:, in Step 0 we took an arbitrary j and wrote L = L7, (see (3.37)) and
W= w?”. For an arbitrary Q° € D20 (see (3.26)), and for any given Qg € Dgo we

let F = {Q;} C Dg, be a family of pairwise disjoint dyadic cubes such that (3.50)
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holds with €y small enough to be chosen. Combining Step 1-Step 3 we have shown
that if £¢ is small enough (depending only in the allowable parameters) then (3.63)
is satisfied. Note that keeping track of the constants one can easily see that Cs does
not depend on 7, g, 79, Q° and Qo —the fact that L= L7, which agrees with Lg in
small boundary strip, was mainly used, and only in a qualitative fashion, in (3.56)
in Step 1 to a priori know that some term is finite so that it can be hidden. We can
then invoke Lemma 2.32 with the dyadically doubling measures (see Lemma 2.69
part (c)) g = wo and v = & to eventually show that (3.63) (recalling that Ls = L
as mentioned in Step 3) yields @ € A®2dic(Q0 ;) (uniformly on the implicit j
and @), that is, there exist 1 < ¢ < oo and C (independent of j an Q%) such that
for every @ € Dgo with Q° € D20

w(Q)
wo(Q)
Our next goal is to see that @ € RHy(3Ag,wp) (uniformly in j). To do this let

A = BnoQ with B = B(z,r) C gBo such that € 0Q. Write ¥ = min{ jz, gg;‘; ,
where E is the constant in (2.34), and let

(3.67) (][Q h(y;f,Lo,XO)qdwo(y)>q < C]é h(y; L, Lo, Xo)dwo(y) = C

ﬁA:{QeD: ONA +0, FgE(Q)<2F}.

Clearly, DA is a family of pairwise disjoint cubes such that A C UQeHN)A Q C 2A.
Note that if Q € D® then @ # QNA C QN 32A; C QN 3Ay, thus QNQ° # O
for some Q° € Dv. Besides, £(Q) < 27 < coro/(16r0) < £(Q"). Consequently,
Q € Dgo and (3.67) applies to each @ € D». All in one we have

<][A h(y;Z,LO,Xo)quO(y))q <S> (f; h(y;E,LO,XO)qdwo(y)>

QeDA

1
q

~—

w(@) [ (2A) _ @A)
S 2 i@ S wO(A)”< U= 20(B) = wod)’

QeDA QebA

where we have used that wo(A) & we(Q) for every Q € D2, and also that &(2A) ~
W(A). These in turn follow from Lemma 2.69 part (¢) and the facts that @ meets
A and 4(Q) ~ 7 = r since 0 < r < 9. This eventually establishes that wfj =we
RHq(%AO7 wp) with a constant that depends only on the allowable parameters and
which is ultimately independent of j and Ag. This, as explained in Step 0, allows
us to conclude that wy, € RH (Ao, wp) with the help of Lemma 3.38, completing
the proof of Proposition 3.1, part (a). |

3.3. Proof Proposition 3.1, part (b)

We start assuming that ) is a bounded 1-sided NTA domain satisfying the
CDC and whose boundary 9 is bounded. We fix D = D(d2) the dyadic grid
from Lemma 2.33 with E = 0. As in the statement of Proposition 3.1 let
Lu = —div(AVu) and Lou = — div(AgVu) be two real (non-necessarily symmet-
ric) elliptic operators. Fix zp € 02 and 0 < 7o < diam(9Q) and let By = B(zo, ro),
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Ay = By NoQ. From now on Xy 1= Xa,, wo 1= wﬁ? and w := wfo. As ob-
served in the proof of part (a), without loss of generality we may assume that
0 < 7o < diam(99)/2.

We fix 1 < p < oo and assume that [|o(A, Ao)[|p, < &, where € is a small
enough parameter to be chosen. Our goal is to obtain that w € RH,(Ag,wp).

We split the proof in several steps.

3.3.1. Step 0. Much as before Lemma 3.38 guarantee that just need to see
that for every j large enough wy; € RHP(%AO,(JJ()) uniformly in j and in Ag. Thus
we fix 7 € N and let L = L7 be the operator defined by Lu = —diV(ZV’U/), with
A= AJ (see (3.37)), and set & := w%(O. As mentioned above A is uniformly elliptic
with constant Ag = max{Aa,A4,}. Also, since L=Loin{Y e Q: §Y) <
277}, the analogous step in part (a) showed, wy < w; < wp and h(o;z,Lo,X) €
Lf‘fc(BQ,w}jo) for every X,Y € Q —the actual norm will depend on X, Y and j,
but we will use this fact in a qualitative fashion. This qualitative control will be
essential in the following steps. At the end of Step 3 we will have obtained the
desired conclusion for the operator L=1L , with constants independent of j € N,
which as observed above will allow us to complete the proof by Lemma 3.38.

3.3.2. Step 1. Consider an arbitrary surface ball Ay = A(zy,r1) with z; €
%Ao and 0 < r1 < 753570, and let By = B(xzy,7r1). Set A, := B, N 9N with
0

B, := B(xy,rs) where z, = z1 and r, = 2kor; (hence A, = 2k9A;) satisfy
T, € 3A¢ and 0 <7, < 1325 7g. By (2.49), (2.50) we have
0

(3.68) X, =X, 10, €Q\BA, CQ\1Bi CO\TL

Note also that 2kor. < §(X,) < 9. We claim that DA~ C D20 = UQOGDAO Dgo
(see (2.46) and (3.26)). To see this, let Qo € D?+ and pick y, € Qo N 2A,. Then

* To| * Ty + Ly o 27* + To > To To,
Y Y 5/4)(2] 9

hence y, € %Ao and there exists a unique Q° € D20 such that y, € Q°. Moreover,
by construction

0 < 2 py < 6(Q0),

0(Qo) = 27FA) < 4007, < —2
(Qo) <4007 < 755,370 < Toi

and therefore Qg € Dgo as desired.
Set £(Y) :=A(Y) — Ao(Y), Y € Q, and consider v = {’YQ}QE]D)AO

(3.69) 70 = Vx0.Q = wo(Q) Z sup ||5||2Loo(1*), whenever Q € D20,
rewy Y&

Lemma 3.34 yields that for every Qo € D?+, if Q° € D2° is selected so that
Qo € ]D)Qo

(3.70) Imylle(@owe) < IMylle@own < llle(4, Ao)lls, <,

where the last inequality is our main assumption in the current scenario and ¢ is
to be chosen.
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We also set wg = wy * and v* = {75} gepa. Where
75 = wh(@Q) Z sup ||5||2Lm(1*), whenever Q € D?+.
Tewy Y&
@

Using (2.71) and Harnack’s inequality we have that wj(Q) = wo(Q)/wo(QF). Hence,
by (3.69)

. WO(Q) 2 e A
N sup [|E\|Z oy = — s €D
e wo (@) Iezw:* ver €0l wo (@) ¢
Q
and, by (3.70),
(371) ||m *”C X wx) = Sup —’Y* — /&R sup %
Y (QFwg) QeDg; wO(Q) QeDgy wO(Q)WO(QO)
m, (Dg)
~ sup ———= < ||m Se
QeDzé wo(Q) o lec@u.

We modify the operator L inside the region Ta, (see (2.47)), by defining L; =
LY as Lyu = — div(A4,Vu), where
AY) ifY €Ta,,
Al(Y) = .
Ag(Y) Y € Q\Ta,.

See Figure 5. Write wi¥ = wf for every X € Q and w, = wfl*.

Ao

FIGURE 5. Definition of A; in .

Recalling that A = A7 (see (3.37)), it is clear that & := A; — Ay verifies
&1 < |17, and also & (Y) = 0 if 6(Y) < 277 (this latter condition will be
used qualitatively). Hence much as before if write wi* = wy, for every X € Q we
have that wi® < wi for every X € Q and hence we can write h(-; L1, Lo, X) =
dwsX Jdwg’ which is well-defined wi-a.e. Also, as shown in Step 0 we have that
h(-; L1, Lo, X) € L2 (99, w() for every X,Y € Q (the bound depends on X, Y and
the fixed j but we will use this qualitatively).

In order to simplify the notation, we recall (2.49), (2.50), and set A, =1 AY =

-2
Az, kory) and let 0 < g € LV (A,,wf) with lgll L (&, vy = L Extend g by 0

in 09\ A,. Set g, = Pig with 0 < t < kor1/3 (see (3.27)). It is easy to see that
A, C %AO, hence A, can be covered by the cubes in D20, This and the fact that
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r+/3 < coro/(16kK0) guarantee that Lemma 3.29 applies to give g; € Lip(9Q) with
supp(g:) C A%X. We then consider

uh(X) = /6 () (5) nd ul(X) = /6 _a@al).,  Xeq

Since {2 is bounded, we can use Lemma 3.7 (slightly moving X, if needed). This,
Lemma 3.9 with F = @, (3.71), and Holder’s inequality yield

(3.72)
[ (X.) — ub ()| = \ J[ (0= 407079 Gy (v X - Vub(v)ay

<[] 1809y G v X IVl v
< 5[] NG (v X Va v a

i *
<Y I Wi [ M) @) Sazubladi (@)
QoEDAl QO

<et 3 [ M3, () @)Sa,ub()das (2)

QoeDA+ Qo

A

1
e D IIME, s @) lzr@ows) 15001 (@) 1o (o o)
QoEDA*
Using the well-known fact that Mg wg is bounded on LP(Qo,wf) and that, as
mentioned before w, < wg with A(-; Ll,LO7 ») = dw,/dw}, it readily follows that

1M, s @l (@) S I1P(5 L1y Loy Xo) [l Lo (o o) -

On the other hand, given Qg € D?+, let Q° € D20 be such that Qo C Q°. We
claim that A} C 2Ago and hence supp g; C 2Ago. Indeed, if y € A} and we recall
that y, € Qo N 2A, we obtain

ly —zgo| < |y — 2o + e — yu| + |yx — 20| < 2(ko + 1)r% + Crgo
8(}0
< 100 —— 719 +Z2
thus y € 28620 as desired. On the other hand, observe that Xo € Q\ 2k0BL =
B(z,,2k3r,), for otherwise we would get a contradiction:

128
OSE(QO) + Ergo < 28rgo,

4
coro < 0(Xp) < | Xo — x4| < 2/4:37“* < %ro

Hence Lemma 2.69 part (d) and Harnack’s inequality to pass from X, to X«
dwi 1

dwo — wo(A%)
After all these observations we use Harnack’s inequality to pass from X, to Xqo

and from Xgo to Xo, Remark 2.70, Theorem 5.3, and Lemmas 3.20, 3.29, and 2.69
to conclude

(3.73) wp-a.e. in A}.

1

¢ ) W< :
HSQOUO($)||Lp (Qo,wg) ~ wO(Qo)i ||SQOUO(x)||Lp/(QO7w;(QO)
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1
< -
~ gt , X
wo@oy? N o e
L gl
~ 2 9tll L (o)
wo(Qo)? ’
1
< -
wo(Qo) 7 Er (880 w0)
Ll
= —— 1 9llr (A,
Wo QO)I}' LP( wo)
1
LA
~ T L (A, w
wo(Qo)?’ 7 (Bed)

~ 1.
Plugging the obtained estimates into (3.72) we conclude that
(%) — (X S 8 32 I3 Lo, Lo Xl ooty
Qo€EDA~
S e lh( 5 L, Lo, X poa, s
where we have used (2.50) and that D+ has bounded cardinality, which follows

from wo(Qo) ~ wo(A,) for every Qo € DA+ and (2.50). Using then the definitions
of uf, and u! we conclude that

(3.74)
[ st~ [ atuasi)

< Juf (X)) — ub(XOl + lg = gellro0.wp) + 119 — gell L1000,
S e2h(5 Ly, Los Xl 1o (R, wp) T 119 = 9tllr@0.wp) + 119 = gellr 00.0.)-
Fix Qo € D?*, we showed before that if we pick Q° € D20 so that Qy C Q°,

then A¥ C 2&@0. Recalling that 0 < g € Lp/(ﬁ*,wg), with supp(g), supp(g:) C A%,
then (3.73) and Lemma 3.29 give

1
(3.75) g — gtllLro0.ws) = 19 = gellLr(arwg) = mﬂg = 9tll L1 (A w0)
1
- _ _ +
< w0 (A7) lg Ptg||L1(2AQ07wo) —0, ast—0".
Similarly, using also that as mentioned above w; < wg with h(-; Ly, Lo, X4) €
Lﬁ?c<aQ,WQ)
(3.76) g — gtllzr 00w = 19 — Pegllrrasw.)
< Hh( i L1, Lo, X*)||L°°(Ai,w5)||g - PtgHLl(AI,wS) — 0, ast— 07",
Combining (3.74), (3.75), (3.76) and letting ¢t — 0 we conclude that

0< /A g(y)dw.(y) = / 9(y)dw, (y)

A, o0

:/ 9() hy; L1, Lo, X..) dus(y)
o0



66 3. PROOFS OF THE MAIN RESULTS

1 *
< ML L0 X anga, gy + [ o))

PN 1
||h( ; L17 L07X*)||LP(B*’MS) + Wo (A*)p’

[

3

IN

Taking now the sup over all 0 < g € Lp,(ﬁ*,w(*)) with ||g||Lp,(& wp) = 1 we eventu-
ally get

1 ~ 1
(377) ||h( 7 L17 LO’ X*)”Lp(g*,wa») 5 Eé ||h,( 7 L17 L07 X*)||Lp(3*7w6) + WS(A*) P,
Since h(-; Ly, Lo, X4) € L2 (09, w}d) (albeit with bounds which may depend on X,

loc
or j) we can hide the first term on the right hand side and eventually obtain fixing

¢ small enough (depending on n, the 1-sided NTA constants, the CDC constant,
the ellipticity constants of Ly and Lo, and on p)

(3.78) 1A(-5 L1, Loy Xo) | o &, ) S w6 (B0)7.
3.3.3. Step 2. Let us next define
A1 (Y) ifY €Ta,,
AQ(Y) = ~ .
AY) ifY €Q\Ta,,

and set Lyu := — div(42Vu). Note that Ly = L in © (see Figure 6). Since L = Ly
in {Y € Q: () < 277} we have already mentioned in Step 0 that wy, = wy
o (09, wy,) for

loc

and wr,, are mutually absolutely continuous with h(- ;Z, Lo, X)e L
every X,Y € Q.

Tx

FIGURE 6. Definition of A5 in 2.

Note that by construction B; = ﬁB*. Besides, by (2.49), 2k¢B1 N Q C

5B, NQ C Ta, and since L=1L =1L in Ta,, Lemma 2.69 part (f) and

Harnack’s inequality give that Wz and wp " = w, are comparable in Ay, thus

h(-; L1, Lo, X,) ~ h(-;L, Lo, X,) for wi-a.e. y € Ay (and also wp-a.e.). On the

other hand using that as shown above Xy € Q\ 2k0BX, CQ \ 2k B1 we can invoke

Lemma 2.69 part (d) and Harnack’s inequality to see that

~ dwX0 dwXo dwXs JuX-
h(-5L, Lo, Xo) = —5= = % L %0
dwpy  dwz dwp dwr]

N wl(Al)

LOQ(Al)

h(-;ﬂLo,X*) =~
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for wo-a.e. y € A (recall that w; and wy are mutually absolutely continuous).
This, the fact that A; C A,, (3.78) and Lemma 2.69 part (d) yield

1 1
379 (f, 1o zo Xordan()) "~ 20 (f ni Lo X))
A wo(A1) \Ja,
< a(Al)
~ UJO(Al).
3.3.4. Step 3. Let us summarize what we have obtained up to this point.
We fixed g € 9Q and 0 < 1y < diam(9Q)/2, we set By = B(zo,r0), Ao =

By N o, Xo = Xa,, and wy = wﬁ? We also fix 1 < p < oo and assumed that
lle(A, Ao)llp, < € with € small enough at our disposal In Step 0 we took an

arbitrary j and wrote L = Li, (see (3.37)) and & = w~ . For an arbitrary surface
ball Ay = A(zq,r) with a; € gAO and 0 < 7 § 05ngro we have obtained,
combining Step 1 and Step 2, that provided ¢ is small enough (independently of
j and Aq) then (3.79) holds.

Our next goal is to see that (3.79) holds as well with gAO replacing A;. To
do this r = mﬁ,—"ﬁgro and find a maximal collection of points {x}rex C %AO with
respect to the property that |xy — xx/| > 2r/3 for every k, k' € K with k # k.
Write Ay = A(zy,r) and note that {1Ag}rex is a family of pairwise disjoint
surface balls such that %Ao C UkelC A C %Ao. Note that since r =~ ry and x; €
5Ag it follows from Lemma 2.69 part (c) that wo(3A0) ~ wo(Ax) and &(3A¢) ~
W(2Ag) ~ W(Ay) ~ @(3Ak) for every k € K. Thus using (3.79) for every Ay
(whose applicability is ensure by the facts that zj € %Ao and ra, =7 = 1005—(’1137‘0)
it follows that
1

(3.80) ( h(y; L, Lo, Xo)Pdwo(y ) <Y ( h(y; L, Lo, Xo)Pdwo(y ))

ke

ST e~ way 520 ey )

kek kek kek
LT1(%A0) _ @(3A0)
wo(2Ap) ~ wo(2A)
We now have all the ingredients to show that & € RH,(3Ag,wr,) (uniformly

in j) and to do this we let A = BN JQ with B = B(z,r) C 2By and z € 9Q.
If ra < 1 < {5570 then we can invoke (3.79) with A; = A and this gives us
[9)

the desired estimate. Assume otherwise that ra > 1752570, hence ra =~ 7o since
[0}

B C gBO implies that rao < %ro. In that scenario using that A C %AO and that
wo(A) = wo(2A0), @(A) = ©(5A¢) by Lemma 2.69 part (c) we obtain that (3.80)
gives as desired

(][ h(y;Z,LmXo)pdwo(y))p < (][ h(y;Z>L07X0)pdwo(y)>
A 7N

B(380) @A)
wo(ng) WO(A>.

1
P

S
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All in one, we have shown that w € RHp(gAO,wLO), where the implicit constant
depends only on the allowable parameters and which is ultimately independent of
j and Ag. This, as argued in Step 0, permits us to show that wy € RH,(Ag,wr,)
with the help of Lemma 3.38. The proof of Proposition 3.1, part (b) is then com-
plete. O



CHAPTER 4

Dyadic sawtooth lemma for projections

In this section, we shall prove two dyadic versions of the main lemma in
[DJK84]. To set the stage we quote a proposition from [HM14, Proposition 6.7]
which is proved under the further assumption that 92 is Ahlfors regular. However,
a careful examination of the proof shows that the same argument applies in our
scenario.

We present some versions of the main lemma in [DJK] which are valid for
discrete sawtooth regions based on dyadic cubes. The first result involves the
projection operators and was used in Step 2 above. The second result (cf. Lemma
A.2) is interesting in its own right and is a dyadic analog of the main lemma in
[DJK]. For both lemmas, the proofs follow the idea of the argument in [DJK], but
are technically much simpler, owing to the dyadic setting in which we work here

PRrROPOSITION 4.1 ([HM14, Proposition 6.7]). Let Q be a 1-sided NTA domain
satisfying the CDC. Fiz Qo € D and let F = {Qx}r C Dg, be a family of pairwise
disjoint dyadic cubes. Then for each QQ; € F, there is an n-dimensional cube
P; C 0Qr,,, which is contained in a face of I* for some I € W, and which
satisfies
(4.2) U(P;) = dist(P;, Q) =~ dist(P;,0Q) =~ £(I) ~ £(Q;),
where the constants depend on allowable parameters.

Next we claim that

(4.3) > 1p, <€,
J

with C' depending on the allowable parameters.

To see this, observe that as in [HM14, Remark 6.9] if P; N Py # O then
Q) = £(Qk). Indeed from the previous result P; C I and P, C I} for some
Ij, I, € W. Thus I} meets [}, and by construction [; and I meet. Using (4.2)
and the nature of the Whitney cubes we see that ¢(Q;) ~ ¢(I;) =~ (1) ~ £(Qk).
Using this and (4.2) one can also see that dist(Q;, Qr) < 4(Q;) = ¢(Qr). Hence,
fixing Pj, and « € P;, we have some constant kg > 1 (depending on the allowable
parameters) such that

lej(x) < #{Pk = ﬂPjO * @}
J
< #{Qk: 277 < FgH <2 dist(Qu, Qi) < 2°0(Q5) )

ko
= > #{Qu: UQx) =2°0Q;,), dist(Qr, Qj,) <2F0Qj))} = Y Ni.

k=—ko k=—ko

69



70 4. DYADIC SAWTOOTH LEMMA FOR PROJECTIONS

To estimate each of the terms in the last sum fix £ and note that since the cubes
belong to the same generation then Q;’s involved are disjoint and hence so they
are the corresponding Ag,’s which all have radius (2C)~12%4(Q;,). In particular,
lzQ, — 2| 2 280(Q;,) > 27%04(Q,,) for any such cubes Q, and Q. Moreover,

|z, — 7q,,| < diam(Qy) + dist(Qr, Qj,) + diam(Q;,) < 2k°€(QjO).

Thus it is easy to see (since R"*! is geometric doubling) that N, < 22ko(n+1) Al
these together gives us desired (4.3) —we note in passing that the argument in
[HM14, Remark 6.9] used the fact there 90 is AR to estimate each Ny, while here
we are invoking the geometric doubling property of the ambient space R?*!.

We are now ready to state the first main result of this chapter which is a version
of [HM14, Lemma 6.15] (see also [DJK®84]) valid in our setting:

LEMMA 4.4 (Discrete sawtooth lemma for projections). Suppose that Q C
R n > 2 is a bounded 1-sided NTA domain satisfying the CDC. Let Qo € D,
let F = {Qi} C Dg, be a family of pairwise disjoint dyadic cubes, and let p be
a dyadically doubling measure in Qo. Given two real (non-necessarily symmetric)
elliptic Lo, L, we write wé/Qo = w{foﬂ, wz% = wz/Q for the elliptic measures as-
sociated with Lo and L for the domain Q with fized pole at Yo, € Qr.q, NS (cf.

Lemma 3.18). Let w}L/)Q }L/Qé’f o, be the elliptic measure associated with L for

the domain Qr g, with fized pole at Yo, € Qr g, N Q. Consider V{QO the measure
defined by

19 e =l (U @)+ ¥ 950 0em)  req,

YQ
QieF Oier Wi (Qi)

where P; is the cube produced in Proposition /.1. Then ’P;VLQU (see (2.26)) depends

only on wS/QO and wfio , but not on wz/@‘). More precisely,
Y, Y, wFNQ:) v
(@6) Pro(F) = (F\ U @)+ 3 5o IR Yoo p), P equ.
QiEF QiEF

Moreover, there exists 6 > 0 such that for all Q € Dg, and all F' C Q, we have

(p; Z%(F))Q Piv, 0 (F) _ Phwy® (F)
Phor®(@)/) ~ Py @)~ wa}f%(@

PROOF. Our argument follows the ideas from [HM14, Lemma 6.15] and we
use several auxiliary technical results from [HM14, Section 6] which were proved
under the additional assumption that 92 is AR. However, as we will indicate along
the proof, most of them can be adapted to our setting. Those arguments that
require new ideas will be explained in detail.

We first observe that (4.6) readily follows from the definitions of P% and VZ/QO
We first establish the second estimate in (4.7). With this goal in mind let us fix
Q € Dg, and F C Q.
Case 1: There exists @; € F such that Q C @;. By (4.6) we have
FNQ;) Y F Ye
Pro(F) _ i wnt (P) _ p(F) _ i@g=en” (Q) _ Py (F)

(4.7)

Y . Y Y :
Phup®(Q)  Mag@d, e (p)  w(@Q) MO8 R(Q) Pl (Q)
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Case 2: Q ¢ Q; for any Q; € F, that is, Q € Dr g,. In particular if QN Q; # @
with @); € F then necessarily ); C (). Let z7 denote the center of P; and pick
ri = 0(Q;) = {(P;) so that P; C A,(x},r;) = B(a},r;) N 0Qr.q,. Note that by
Lemma 2.54, Harnack’s inequality and Lemma 2.69 parts (a) and (¢) we have that
w}L/iO (P) =~ wfi‘) (As(zF,7;)). On the other hand as in [HM14, Proposition 6.12]
one can see that

(48) AZ:= Bl t) N0, < (@\ U @)U( U Aderm)
QieF QieEF:Q:CQ

with tq ~ €(Q), zf) € 90 q, and dist(Q,A?) < £(Q) with implicit constants

depending on the allowable parameters. We note that the last expression is slightly

different to that in [HM14, Proposition 6.2], nonetheless the one stated here follows

from the proof in account of [HM14, (6.14) and Proposition 6.1] as 9Q; is contained
in Tg,. Besides, Proposition 4.1 easily yields

w (@ Ue)U( U 7

QieF:Q;CQ
clevUe)U( U atnm)cea,
QieF QieF:Q:CQ
hence
(410) w2 ((@\ U QU U a@nm)) sw@ad).
QieF:Q:CQ

Writing Ep = Qo \ UQief Q; COQNINE g (see [HM14, Proposition 6.1]) we
have

Y. Y, N
(4.11) WL * (AQ) Lio (@N Ey) + Z WLQ*O (Ax(xi,7i))
QieEF:QiCQ
SWPQNE)+ Y. w (R
QiEF:Q:iCQ

ILL(Q N QZ) Yq,

=02 (QNE)+ Y. w, % (P)

QieF:QiCQ Qi)

and, by (4.3),

Y, Y,
(4.12) Ph, Q) =w, 2 (QNE)+ > @)
Qierqicq MW
=02 QNE)+ > w(P)
QieF:Q;:CQ

sor(@neaU( U n))

QieEF:Q:iCQ

/J“(Q N Ql) w{@o (PL)

S (A9).

Since Q € Dr g, we can invoke [HM14, Proposition 6.4] (which also holds
in the current setting) to find Yo € Qr g, which serves as a Corkscrew point
simultaneously for Qr g, with respect to the surface ball A, (yq, sq) for some yg €
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Qr o and some sg ~ £(Q), and for  with respect to each surface ball A(z, sg),
for every x € (). Applying (2.72) and Harnack’s inequality to join Yy with X¢ and
Yo, with Yo we have

0
dw)? o1
de/QO wzfQO (@)
On the other hand one can see that
(4.14) BoU( U  BGrm) € Ble3a),
QieEF:Q;CQ

for some 5o =~ sg. Invoking then Lemma 2.54, and Lemma 2.69 parts (¢) and (e)
in the domain Q2 g, we can analogously see

YQO
s wr,

(4.13)

-a.e. in Q.

de,* ~ 1 - 1

Yo, Y ~
deio wLio (A(yq:5q)) WL * (AQ)
Next we invoke (4.11), (4.14), and (4.13) to obtain

(4.15) wzi"—a.e. in A(yg,30).

pét:yz’Qo(F) wziO(FﬁEo)_i_ Z w(FNQ;) wL* ()
7)# YQq (Q) Z/io (A?) Qi Foica (Ql) YQo (AQ)

FnNnaQ;
~wS(FNE)+ > uwf‘i(a).
, QiEF:Q:iCQ M<Ql) ,

We claim the following estimates hold
(4.17) w2 (FNE) Swi®(FNEy),  w%(P) Swi®(Q).

The first estimate follows easily from the maximum principle since Qr g, C 2 and
FNnEy CoQnof ]-' .Qo- For the second one, by the maximum principle we just
need to see that wyX (Q;) > 1 for X € P;, but this follows from Lemma 2.69 part
(a), (2.34), Harnack’s inequality, and (4.2).

With the previous estimates at our disposal we can the continue with our
estimate (4.16):

N(F N Qz) Yo

Prr,™ (F) Swit(FNE)+ Y w (@)

Pl (Q) ocroico M@
w) % (F N Ey) W(F N Qi) w) 2 (Q)
i_|_
W% (Q) Qiegig‘? Q) w0 (Q)
_ PRy (F) _ Phw,® (F)
W OQ) Pl (Q)

where we have used (4.14) and that waz/@[’ Q) = w}-:QO (Q). This proves the second
estimate in (4.7) in the current case.

Once we have shown the second estimate in (4.7) we can invoke [HM14, Lemma
B.7] (which is a purely dyadic result and hence applies in our setting) along with
Lemma 4.21 below to eventually obtain the first estimate in (4.7). O

)

As a consequence of the previous result we can easily obtain a dyadic analog
of the main lemma in [DJK84].
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LEMMA 4.18 (Discrete sawtooth lemma). Suppose that Q C R** n > 2, is
a bounded 1-sided NTA domain satisfying the CDC. Let Qo € D and let F =
{Q:} € Dq, be a family of pairwise disjoint dyadic cubes. Given two real (non-
necessarily symmetric) elliptic Lo, L, we write ng = wa(b, w}L/Q = wz%“ for
the elliptic measures associated with Ly and L for the domain Q with fixed pole at
Yo, € Qr.g, NQ (¢f Lemma 3.18). Let wLQO = wzng o, e the elliptic measure
associated with L for the domain QF ¢, with fized pole at YQO € Qr,0,NQ. Consider
I/fQO the measure defined by (4.5). Then, there exists 8§ > 0 such that for all
Q € Dg, and all F C Q, we have
Y, ) Y, Y.
(wLQO <F>> _ ) _ oy (F)
Y. Y. ~ Y, ‘
w,*(Q) v, Q) w,T(Q)
In particular, if F C Q\ Ug,cr Qi; we have
Y.
(wf% <F>>9 _ Wit (F) _wy®(F)
Y, ~ Y ~ Y,
WLQO (Q) WLQ*O (AQ) WLQO (@)
where AY := = B(z5),tQ) NI F,q, withtq ~ U(Q), x5 € INF q, and dist(Q, AP <

Q) with zmplzczt constants depending on the allowable parameters (see [HM14,
Proposition 6.12]).

(4.19)

(4.20)

)

PROOF. Letting p = wz which is dyadically doubling in @)y, one easily has
P;wf% = waO and 73}-1/L = Z/ZQO. Thus (4.7) in Lemma 4.4 readily yields
(4.19). Next, to obtain (4.20) we may assume that F' is non-empty. Observe
that if F € Q\ Ug,er Qi» then ;% (F) = w;%(F). On the other hand, if
F c Q\Ug,er Qi we must be in Case 2 of the proof of Lemma 4.4, hence (4.11)

and (4.12) hold. With all these we readily obtain (4.20). O

Qo Q(J

Our last result in this section establishes that both v/
ically doubling on Q.

and Phy,“° are dyad-

LEMMA 4.21. Under the assumptions of Lemma 4./, I/EQ" and P;VZ/QU are
dyadically doubling on Q.

PRrROOF. We follow the ideas in [HM14, Lemma B.2]. We shall first see VI}J/QO
is dyadically doubling. To this end, let @ € Dg, be fixed and let Q' be one of its
dyadic children. We consider three cases:

Case 1: There exists ); € F such that () C @;. In this case we have

Yoo D1 2(Q)  vo, W 2(Q) Yo, Yau v
v, Q) = m w2 (P) S m‘%i (P) = v, (Q)

where we have used Harnack’s inequality and Lemma 2.69 parts and (a) and (c).

Case 2: Q' € F. For simplicity say Q' = Q1 € F and in this case VEQO(Q’) =
ng*O (P1). Note that then Q € Dr o, and we let F; be the family of cubes Q; € F
with Q; N Q # O and observe that if Q; € F; then Q; g Q. Then by (4.3)

am  e@-ur(e) U ) ¥ % YQ?QQ” Wy (P)

QiEF Qi€F1 wr, )
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Y. Y,
o2\ U @)+ X v
Y.
<we((ev U e)U( U r))
Q F

k3 [ 1
Recall that in Case 2 in the proof of Lemma 4.4 we mentioned that P; C A, (x%,71)
with 27 being the center of P; and r1 = £(Py) = £(Q1) =~ ¢(Q) since Q is the dyadic
parent of Q. Note that since Q; € F; by (4.2)

U(F) = dist(P;, Q) = £(Qi) S Q) = 26(Q1) = £(P) = dist(Qu, P1) ~ 71

Thus
(@\ U @)U( U ) cadercn,
QiEF Q.EF1
where we here and below we use the notation A, for the surface balls with respect
to 0Qr g,. Using this, (4.22), and Lemma 2.69 parts (a) and (c) and Harnack’s
inequality we derive

v12(Q) S w0 (Au(a}, Cr1)) S w, P (Au(af, 1)) S w2 (P1) = v, 20(Q).

Case 3: None of the conditions in the previous cases happen, and necessarily
Q,Q € Drg,. We take the same set F; as in the previous case and again if
Q; € Fy then Q; € Q (otherwise we are driven to Case 1). Introduce Fa, the
family of cubes Q; € F with @Q; N Q' # @. Again, if Q; € F» we have Q; C Q’;
otherwise either Q' = @; which is Case 2, or Q' C @; which implies @ C Q; and
we are back to Case 1.

Note that since @ is the dyadic parent of (', using the same notation as in
(4.8) applied to Q' € Dr g, we have that

dist(z3y, Q) < dist(xg,, Q") SUQ") = £(Q) = g

Also by (4.2)

dlst(xQ,, P) < dlSt(:EQ/,Q) +4(Q)+dist(Q, P;) S Q) +dist(Qs, ) S Q) = tgr.
These readily give
(@\ U @)U( U P)c Ay Cto).
QiEF QiEF1
We can then proceed as in the previous case (see (4.22)) to obtain

(@) Swr ((@\ U e)U( U 7))

Qi€EF1
S w2 (A (38, Cley)) S w0 (AD),

where A? = B(xg,tq) N0QF q, (see (4.8)) and we have used Lemma 2.69 parts
(a) and (¢) and Harnack’s inequality. On the other hand, proceeding as in (4.11)
with @’ in place of @ since Q' € Dr g,:

D 20(AY) <Ly (@Q NE)+ S wr® (A (1)
Q;eF2

S @ NE)+ Y w % (P)

QiEF2
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Y.
Q@B+ Y @08 o p
giers  wr ' (Q:)

=1,2(@).
Eventually we obtain that V}j@” Q) < VE/QO (Q"), completing the proof of the dyadic
doubling property of V;:QO.

We next deal with Pjéyf%, and we could use Lemma 2.27 in which case the

doubling constant would depend on p and Z/Z/QO, and for the latter it was shown
above that depends of wZ/Q". However, as stated in Lemma 4.4, Pﬁ-l/f% does not

depend on wzfQ“ and hence it is reasonable to expect that the doubling constant

does not depend on that measure. As a matter of fact we can simply follow the
previous argument replacing w)L/Q" by ’P;UEQO to see that in Cases 2 and 3 we
have that P_/;-Z/Z/QO Q) = Z/Z/QO (Q) and Pjél/z/Q“ Q) = VEQO (@), hence the doubling
condition follows from the previous calculations and the constant depend on that
of wzi". With regard to case one on which @ C @Q; for some ); € F one can easily
see that
!/
P (Q) = 2 (p) 5 L)Y (p) =) (@),
wp,™ (@) wp,~ (Qi)

which uses that p is dyadically doubling in Q. Eventually we have seen that
doubling constant depend on that of wz% and p as desired. This completes the

*

proof. O






CHAPTER 5

Square function and Non-tangential maximal
function estimates

In this section we first show that bounded weak-solutions satisfy Carleson mea-
sure estimates adapted to the elliptic measure. This is in turn the main ingredient
to obtain that the conical square function can be locally controlled by the non-
tangential maximal function in norm with respect to the elliptic measure.

THEOREM 5.1. Let Q C R", n > 2, be a I-sided NTA domain satisfying
the capacity density condition. Let Lu = —div(AVu) be a real (non-necessarily
symmetric) elliptic operator. There exists C' depending only on dimension n, the
1-sided NTA constants, the CDC constant, and the ellipticity constant of L, such
that for every u € WI})CQ (Q)NL>®(Q) with Lu = 0 in the weak-sense in Q there holds

1
(5.2) supsupT///ﬁQ IVu(X)]2Gr(Xa, X)dX < C’Hu||2Loo(Q),

B B wp®(A)
where A = BNON, A = B'NON, and the sups are taken respectively over all balls
B = B(z,r) with x € 02 and 0 < r < diam(99), and B’ = B(z',r") with 2’ € 2A
and 0 < 1’ <reg/4, and ¢y is the Corkscrew constant.

Using this result we are able to extend some estimates from [DJK84] to our
general setting.

THEOREM 5.3. Let Q C R*", n > 2, be a 1-sided NTA domain satisfying
the capacity density condition. Let Lu = —div(AVu) be a real (non-necessarily
symmetric) elliptic operator. For every 1 < g < oo, there exists Cy depending
only on dimension n, the 1-sided NTA constants, the CDC' constant, the ellipticity
constant of L, and q, such that for everyu € Wli)f (Q) with Lu = 0 in the weak-sense
in Q, for every Qo € D, there holds

(54) ||SQOU||LQ(QO’“;§QD) g Cq ||NQOU||LQ(QO,M2(QO)'

5.1. Proof of Theorem 5.1

By renormalization we may assume without loss of generality that ||ul| o) =
1. We will first prove a dyadic version of (5.2). Let D = D(9f2) the dyadic grid
from Lemma 2.33 with £ = 0. Our goal is to show that

1
(5.5)  Mp:= sup sup < // |VU(X)|2 Gr(Xgo,X)dX S1
QOGD QoEDQo wLQ (QO) TQO
Qo)< g
with M > 4 large enough. Assuming this momentarily let us see how to derive (5.2).
Fix B and B’ as in the suprema in (5.2). Let k,k’ € Z be so that 28=1 < r < 2*

7
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and 2% =1 < 1/ < 2% and define k" := min{k’, k — 10ky;} where ky; > 1 is large
enough to be chosen depending on M and the allowable parameters. Set

W i={IeW:INB #0.0I) <2} JI e W InB #0,0I)>2""}
=: W] UWS,.
Note that for every I € W with I N B’ # @ we have
dist(7,0Q) o' oo
— < —<2 .
I
As a consequence, if W, # @, then k" = k — 10 kyy, and picking I € Wi # @ one
has

(1) < diam(T) <

a2 a2 <o) <2F 2 a ! <
This gives r’ a5 r and #W) Spr 1.
To proceed, let us write

//mV“(X)FGL(XA’XMXS//U I|W(X)\2GL(XA,X)dX

Iew]
+Z//|Vu WP GrL(Xa, X)dX =T+ 11,
Iew)

and we estimate each term in turn.

To estimate ZZ we may assume that W5 # @, hence k" = k—10kp, ' ~ r and
#W, < 1. Then Lemma 2.69, the fact that w(92) < 1, Caccioppoli’s inequality,
the normalization ||u| ;) = 1, and Harnack’s inequality give

IT= ) //|vu WP GL(Xa, X)dX $ Y o1 ”/I|Vu(X)|2dX

Iew) Iew)
< I <o XA A/
SH#FW, S1rwp(A).

Next we deal with Z. Introduce the disjoint family 7' = {Q € D : £(Q) =
2" =1.QN3B # @) Given I € W}, let X; € B'N1, and Q; € D be so that
£(Qr) = ¢(I) and it contains some fixed y; € 9 such that dist(I, 092) = dist(, yr).
Then, as observed in Section 2.5, one has I € We, - Note that

5
lyr — 2’| < dist(yr, I) + diam(I) + | X; — 2'| < 1 dist(I,00) + | X7 — 2|
< 21X, -l <37,

hence y; € QN3 A’. This and the fact that, as observed before, £(Qr) = £(I) < 2¥"
imply that Q; C Q for some @ € F'. Hence, I C (1+\)I C Ug, C T for some
Q@ € F'. This eventually show that J rew I C Uger Tq and therefore

I<Z// |Vu(X)]?Gr(Xa, X)dX.
Qer ' Ta

For any @ € F' pick the unique (ancestor) @ € D with 6(@) =21and Q C @
Note that 6(Xa) = 1, §(Xg5) = Q) = 21 ~ r. Also,
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| Xa = Xl < [Xa —a|+ |z — 2| + 2" —zq| + |vqg — 75| + |lzg — X5
< 37+ 37" 4 diam(Q) + diam(Q) + £(Q) < r 428" +2F < 1.

Hence by the Harnack chain condition one obtains that G'L(Xa, X) = GL(Xg, X)
for every X € Ty (in doing that we need to make sure that ks is large enough so
that the Harnack chain joining XA and X o which is c¢r-away from 0f2, does not

get near T, which is ko £(Q)-close to 99). Note also that % =o'k < 9-kum <

M~!, provided ks is large enough depending on M. All in one we can eventually
obtain from (5.5)

2 //T Vu(X) GL(Xg X)dX S My 3 wr9(Q)

QeF' QeF’

<My Y wieQ) < Mowa( U Q) < Mywa (CA') < MywXa (A),
QeF’ QeF’
where we have used Lemma 2.69. This completes the prof of the fact that (5.5)
implies (5.2).

We next focus on showing (5.5). With this goal in mind we fix Q° € D = D(99Q)
and let Qo € Do with £(Qo) < £(Q")/M with M large enough so that Xqo ¢ 4 Bf,
(cf. (2.48)). Write wy, = waO and G, = G1.(Xqo, ) and note that our choice of M,
(2.64), and (2.65) guarantee that LT Gy, = LTG 7 (-, Xgo) = 0 in the weak sense in
4Bg,.

Fix N > 1 and consider the family of pairwise disjoint cubes Fn = {Q € Dg, :
Q) = 27N 1(Qo)} and let Qn = Qry g, (cf. (2.42)). Note that by construction
Qn C Tg, is an increasing sequence of sets converging to Tg,. Our goal is to show
that for every N > 1 there holds

(5.6) / /Q V() G (X) dX < Mowp(Qo),

with My independent of Q°, Qq, and N. Hence the monotone convergence theorem
yields

[ wu0R a0 ax = Jim [[[9u0R 6,06) X < Mywr (@)
which is (5.5).

Let us next start estimating (5.6). Using ¥y from Lemma 3.11 and the ellip-
ticity of the matrix A we have

// IVu(X)P Go(X) dX < // Vu(X)? Gu(X) Uy (X) dX
QN Rn+1
< / AX)Vu(X) - Vu(X) G (X) U (X) dX
Rn+1
- /RW AX)Vu(X) - V(uGr, Ux)(X)dX

B % / | ADOVE I)(X) - VLX) dX
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1
- 7/ AX)V(?)(X) - VU N(X)Gr(X)dX
Rn+1

//]Rn+1 X)VUn(X) - VGL(X) U(X)2 dX

:211 —|—IQ —|—Ig —|—I4

We observe that u Gy, ¥y and u? ¥ belong to W12(Q) since u € VVIOC (Q)NL>(Q),
suppUyn C Q%, §(X) = 27V 4(Qp) for every X € Q%, Lemma 2.59 and the
fact that Xgo is away from Qf since §(Xgo) ~ £(Q°) and by (2.48) one has
8(X) S Qo) < Q%) /M < §(Xgo)/2 for every X € Q and provided M is large
enough. Using all these one can easily see via a limiting argument that the fact
that Lu = 0 in the weak sense in {2 implies that Z; = 0. Likewise, one can easily
show that Z, = 0 by recalling that supp ¥y C Q3 C 3 Bo™ NQ (see (2.48)) and
that as mentioned above LTG;, = 0 in the weak sense in 4322. Thus we are left
with estimating the terms Z3 and Zy. By (i4¢) in Lemma 3.11 and the fact that
llul| o= (@) = 1 we obtain

|Z5] + | Z4] <// \Vu\gL-HVgLD 5(~)_1 dX
<

Iesz
// |vu|2dX * Gu(xX // |VQL|2dX 5)
4 WE . .

< 2w ([ e ax) = )a o)

Iewl

<Y T GL(X (D)),

Iewsl

where X (I) denotes the center of I, and we have used Harnack’s and Cacciop-
poli’s inequalities, that LTG;, = 0 and Lu = 0 in the weak sense in I*** C
3 B N Q (see (2.48)). Invoking Lemmas 2.69 and Lemma 3.11 one can see that

(N1 GL(X(T)) < wp(Qr) for every I € Wx. This together with Lemma 3.11
allows us to conclude

Zs| + 1Tu| S D we (@) < ( U QI)

Iewy Iewy
Note that if y € @1 with I € W5 one has
ly —zg,| < diam(@;) +dist(Qy, I+ diam(I) +dist(I, zg,) S () +4(Qo) S £(Qo)
where we have used (3.14) and (2.48). Thus, Lemma 2.69 gives
| Zs| + 74| S wr(C Agy) S wi(Qo)-

This allows us to complete the proof of Theorem 5.1. (]
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5.2. Proof of Theorem 5.3

We borrow some ideas from [HMM19]. Given k € N introduce the truncated
localized conical square function: for every Q) € Dg, and = € @, let

1
2
Sgu(z) = ( / / Vu()Pa(y) dY) , where T'f)(z) := U Uq,
FQ () wEQ/EDQ
£(Q")227"£(Qo)
where if £(Q) < 27%£(Qo) it is understood that I'f)(x) = @ and Su(x) = 0. Note
that by the monotone convergence theorem Sgu(x)  Squ(x) as k — oo for every

T € Q.
Fixed ko large enough (eventually, kg — 00), our goal is to show that we can
find ¥ > 0 (independent of kg) such that for every 8,7+, A > 0 we have

(5.7) wf% ({z €Qo: Sg‘gu(x) > (1+ B) A, Ngou(z) <vA})

< (3) e (€ Qo: Sut) > 42)).

where the implicit constant depend on the allowable parameters and it is indepen-
dent of ky. To prove this we fix 3,v, A > 0 and set

Ey:={ze€Q: Sg%u(x) > A}

Consider first the case Ex C Qg. Note that if z € E), by definition Sg:)u(a:) >
A. Let Q, € Dg, be the unique dyadic cube such that Q, > z and ¢(Q,) =
27k0¢(Qp). Then it is clear from construction that for every y € Q, one has

Fg’o (x) = U Ug = Fg“o (y) and A< Sg%u(x) = Sg%u(y)
Q=CQRCQo
Hence, @), C Ey and we have shown that for every z € E) there exists @, € Dg,
such that @, 3 = and @, C F). We then take the ancestors of @),, and look for
the one with maximal side length Q%'** D @), which is contained in Ey. That is,
Q C E) for every Q, C Q@ C Q¥ and @zmax N Qo \ Ex # O where @zma" is the
dyadic parent of Q2** (during this proof we will use @ to denote the dyadic parent
of @, that is, the only dyadic cube containing it with double side length). Note
that the assumption Ey C Qo guarantees that Q' € D, \{Qo}. Let Fo = {Q;};
be the collection of such maximal cubes as x runs in ) and we clearly have that
the family is pairwise disjoint and also E) = UQj er, @j- Also, by construction
Q) > 27%¢(Qo) and by the maximality of each @Q; we can select z; € @j \ E).
On the other hand, for any x € @); we have, using that z; € @j \ El,

= U e=tg@U( U ve)crg@Urs,w)
z€QEDg, Q; CQCQo
£(Q)>27%0 £(Qo)

and therefore
Sg%u(:c) < Sgoju(:c) + Sg%u(xj) < Sgiu(m) + A
As a consequence,

{z€Q;:SHula)>1+B)A} C{zeQ;:SHulx)> A}
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and
{zeQo: Sgoou(z) >1+8)A={ze€Q: Sgoou(:c) > (1+B) A} NE,
U {z € Q; :Sg‘;u(x) >(1+B)A} C U {z €@ Sg;u(os) > BA}.

Qj;E€Fo Q;EFo

This has been done under the assumption that E\ C Qg. In the case E\ = @y we
set Fo = {Qo}. Then in both cases we obtain

(5.8) {zeQo: Sg%u(x) >(1+B)A} C U {zeQ;: Sgoju(x) > BA}.

QjE€Fo
Thus, to obtain (5.7) it suffices to see that for every Q; € Fy

(5:9) @i ({o e Q: SGul@) > 5 Noyu() <9} < (3 ) @),

From this we just need to sum in Q); € Fy to see that (5.8) together with the
previous facts yield the desired estimate (5.7):

w2‘%<{we@o-8’“° <> (14 B8) A, Noyu(z) <vA})

< 3w ({r e Sula) > A Noyul) <vA})
QjEFo
() eim@= () U @)= (5) e

Let us then obtain (5.9). Fix Q; € Fy and to ease the notation write Py = Q.
Set

(5.10) E\ = {zep: Slkpgu(x) > BA}, F\ = {z € Py: Ng,u(z) <y}

If wXQO (F)\) = 0 then (5.9) is trivial, hence we may assume that waO (Fy) > 0so
that PynNF\ = F) # . We subdivide Py dyadically and stop the first time that
Q N F\ = O. If one never stops we write Fp = {Q}, otherwise Fp = {P;}; C
Dp, \{Po} is the family of stopping cubes which is maximal (hence pairwise disjoint)
with respect to the property F) N Q = @. In particular, F)\ C Py \ (UDF}*DO’PO Pj).

Next we claim that

(5.11) |J () C U Ug Cint( U Ug;) =QF; p, =

zEF QGD;;O,pO Qe]l));;j(),p0

€(Q)>27"0 £(Qo)
To verify the first inclusion, we fix ¥ € F’f;% (x) with x € Fy. Then, Y € Ug
where z € Q € Dp,. Since z € F\ we must have () € D].-;O (otherwise Q C P;
for some P; € Fp and this would imply that * € P; N F\ = @) and therefore
QeD Fi,Po which gives the first inclusion. The second inclusion in (5.11) is trivial
(since Ug C int(Up)).
To continue we see that

(5.12) [u(Y)| <A, for all Y € Q..

Fix such a Y so that Y € U, for some Q € D]:;O’po. If QN F\ = @, by maximality
of the cubes in Fp,, it follows that @ C P; for some P; € Fp , which contradicts
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the fact Q € Df;07p0. Thus, Q N F)\ # @ and we can select z € Q N F so that by
definition |u(Y)| < Ng,u(x) <X since Y € U C Ty, (z).
Apply Lemma 3.18 to find X, := Yp, € Q, N so that

(5.13) U(Py) ~ dist(X,,09,) ~ §(X.,).

Let wy = wfﬂ be the elliptic measure associated with L relative to £, with pole

at X, and write 0, = dist(-,0€). Given Y € ., we choose yy € 9, such that
Y — yy| = 6.(Y). By definition, for x € F and Y € I'p,(z), there is a Q € Dp,
such that Y € Ug and = € ). Thus, by the triangle inequality, and the definition
of Ug, we have that for Y € T'p, (z),

(5.14) |t —yy| < |z =Y |4+ 0.(Y) = (V) + 5. (V) = 5.(Y)

where in the last step we have used that

(5.15) YV)~6.(Y) for Ye |J Ug
QGD}'I’;O,PO

On the other hand, as observed above Fy C Py \ (UrQ;) C 9QN Q. see [HM14,
Proposition 6.1]. Using this and the fact that if Q N F\ # @ then Q € ID);;O,pO we
have

(5.16)

/n SQEU(x)deE(IF/B //k [Vu(Y)[? §(Y) " dY dwj (z)

s/ﬂ 3 //U IVu(Y) 2 5(Y)! " dY i (2)

T€EQEDR,
s S (ff, wemrar)carei@nny

£Q)=27"0 @(Qo)

QeDxx py
S SRR >
QGD}';‘,O,PO QED}'}*.,U,PO
£(Q)=M " e(Py) (Q)<M ™ e(Py)
=: E1 + ZQa

where M is a large constant to be chosen.
We start estimating 3;. Note first that #{Q :€ Dp, : £(Q) > M~ 1(Py)} <
Cyr, thus

ss Y mz/ Vu(Y) 2 dy
QG]D]_-;OYPO IEW
UQ)=M ™ e(Py)

D (2) Bl // Y)|2dYy

QEDF; .py Tewy
HQ)>M™ 4(Py)
GRS W ((#) Lt {0 s

QEDz, Iewy
2Q)>M~1e(Py)

A
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Su (7N

where we have used (5.12), along with the fact that int(/**) C int(Up) C €
for any I € W, with Q € ]D)}-;O, Py, and the fact that W¢ has uniformly bounded
cardinality. To estimate X5 we note that picking yg € QNF\ we have that QNF) C
B(yq,2 diam(Q)) N 0, =: Ay. Write X¢) for Corkscrew relative to Ay, with
respect to (2, so that 0,(X()) ~ diam(Q) < M~Y(Py). Note that by (5.13), we
clearly have X, € Q\ B(yg,4 diam(Q)) provided M is sufficiently large. Hence, by
Lemma 2.69 part (b) applied in €2, which is a 1-sided NTA domain satisfying the
CDC by Lemma 2.54, we obtain for every Y € Ug

(5.17)

UQ)' "W (QN Fy) S diam(Q)' "W (AY) S Gra(Xe, X§) & Gru(X.,Y),
where G, . is the Green function for the operator L relative to the domain €Q,.
Above the last estimate uses Harnack’s inequality (we may need to tale M slightly
larger) and the fact that by (5.15), one has 6.(Y) = £(Q) ~ diam(Q) = 6.(X()
(see Remark 2.73) and that if I 5 Y with I € W,

Y — X, | < diam(I) + dist([, Q) + diam(Q) + |y — X*| < diam(Q).
Write {Pi}; C Dp, for the collection of dyadic cubes with M ¢(Py) < ((P}) <
2 M{(Py) which has uniformly bounded cardinality depending on M. Note that

{Q eDr; p, : U(Q) < M~Y(Py)} C UD}'}’;O,Pg'

For each i, if Dr. pi # © then Pl e Dy P, and hence PN Fy # (. Pick then
X 0
y; € P} N Fy and note that for every @) € ]D)}'* P by (2.48) it follows that

Ug CTp: N CB* NQ C By, Crol(PY)) N QL =: B; N Q.
Using then (5.17) we have

o < > // [Vu(Y)|? Gp.(X,,Y)dY
Ug

QEDF* Py
€Q)<M ™ 1Z(P0

S ) // IVu(Y)P Gr (X, Y) dY

i QeDr
{R)<M™ 1Z(Po)

N Z// [Vu(Y)]? GL (X, Y)dY
i B;NQ,
S ulld .y D wi(BiN o)

S (N
where we have invoked Theorem 5.1 applied in €2, which is a 1-sided NTA domain
satisfying the CDC by Lemma 2.54, and we may need to take M slightly larger
and use Harnack’s inequality; (5.12); and the fact that {P¢}; C Dp, has uniformly
bounded cardinality.
Using Chebyshev’s inequality, (5.16), and collecting the estimates for ¥; and
Y9 we conclude that



5.2. PROOF OF THEOREM 5.3 85

T Jesos Sﬁﬁ“(z)gd‘”m

7\ 2

B/\ / Sllgg de( )S (E) :
At this point we invoke Lemma 4.18 in Py with F5 b, —Wwe warn the reader that %
and Fp, = {P;}; play the role of Qo and {Q;}; and that associated to each P; one

finds P; as in Proposition 4.1, which now plays the role of P; in that result, and 1 =
wy* (recall that X, = Yp,) and observe that the fact that F\ C Py \ (Up,. )
Py’

implies on account of (4.20) that for some ¥ > 0 we have

~ ~ 9
Wi (BN F) (wz(E,\ﬁF,\)>2 < (1)0
wit(Po) T\ wi(Al) -

(JJE(E)\ n FA) <

B

where we have used that wj (Af°) ~ 1 since AL := B(x} ,tp,) N O with tp, ~
(Py) =~ diam(0Q), 5, € 0L, (5.13), Harnack’s inequality, and Lemma 2.69 part
(a). We can then use Remark 2.70, Harnack’s inequality, and (5.13), to conclude
that

waO(E)\mF)\) N waO(E)\ﬂF)\) N wf*(E)\ﬂFA) < (’}/)19

WfQO (Po) wfpo (Po) wp = (Po)

B

Recalling that Py = Q; € Fy, and the definitions of Ey and Fy in (5.10) the
previous estimates readily lead to (5.9).

To conclude we need to see how (5.7) yields (5.4). With this goal in mind we
first observe that for every x € Qg and Y € ]."ko (x) one has that Y € Biaoﬂ Q (see

(2.48)) and also §(Y) 2 270 £(Qq). Hence, since u € W, *(Q), one has
(5.18)  sup S = sup // |Vu(Y)[?6(Y) ™ "dY)§
z€Qo z€Qo o (@)

< (2% 0(Qy)) // IVu(Y )|2dY)§
He MY e:6(Y) 22750 £(Qo)}

On the other hand, given 1 < ¢ < oo, we can use (5.7)

q
(47 ISE, o v,

= [T o (fre Qo slut) > 1+ 9)3) 2
< [T axer (o e Qo Siute) > (14 9) A Noyute) <92}) 2
0
+/0 Wwa”({ero:NQo“(x)MA})%

e dA
< (%) /O g X ({o € Qo SFule) > BA}Y) T

&
q q
Y INGl? oy,

7)19 q q
< (L) g N, .
<(3) s, o, T WalY s



86 5. SQUARE FUNCTION AND NON-TANGENTIAL MAXIMAL FUNCTION ESTIMATES

We can then choose v small enough so that we can hide the first term in the right
hand side of the last quantity (which is finite by (5.18)) and eventually conclude
that i
q q
ISEN, o van) S INaIE o,

Since the implicit constant does not depend on k¢ and Sésou(m) S Soou(x) as
k — oo for every x € @, the monotone convergence theorem yields at once (5.4)
and the proof Theorem 5.3 is complete.



APPENDIX A

Domains with Ahlfors-regular boundary

Throughout this section we assume that  C R**!, n > 2, is a 1-sided CAD
(cf. Definition 2.9). This means that  is a 1-sided NTA domain (it satisfies the
Corkscrew and Harnack Chain conditions) and 02 is AR. As mentioned in Section
2.2, the latter condition implies that €2 satisfies the CDC, hence the theory we have
developed in this paper applies to €2. On the other hand, the fact that Ahlfors
regularity condition says that the surface measure o := H"|gq is a well-behaved
object. The goal of this section is to show how some earlier perturbation results,
valid in Lipschitz, NTA or 1-sided NTA settings, can be obtained easily from our
results. Before giving the precise statements let us present some definition:

DEFINITION A.1 (Reverse Holder and A, classes with respect to surface mea-
sure). Given p, 1 < p < oo, we say that wy € RH, (012, o), provided that wy < o
on 0F), and there exists C' > 1 such that, writing k; = dcf—; for the associated
Radon-Nikodym, for every Ag = By NI where By = B(xzg, 1) with zg € 09 and
0 < ro < diam(09)

Xa,

<][A k7> (y)” do—(y)> "< C][ kY20 do(y) = C wLa(A()A)

A

for every A = BNOSY where B C By, B = B(z,r) with z € 9Q, 0 < r < diam(99).
The infimum of the constants C' as above is denoted by [wL|rH, (90,0)-
We also define
A (09, 0) = | | RH,(09,0).

p>1
These are the results that we can reprove with our methods:
COROLLARY A.2. Let Q C R*! n > 2, be a 1-sided CAD. Consider Lu =

—div(AVu) and Lou = — div(AoVu) two real (non-necessarily symmetric) elliptic
operators. Define the disagreement between A and Ag in 0 by

(A.3) 0(A, A0)(X) == |A = Aollr=(B(x5(x)/2)), X €,
where §(X) := dist(X,00), and

1 (4, Ap)(X)?
A4 o(A, A U::supi// ———dX,
(A1) o, o)l = sup —s [ 22

where A = BN N, and the sup is taken over all balls B = B(xz,r) with x € 9S
and 0 < r < diam(992).

(a) Assume that [|o(A, Ao)lll, < oo. Ifwr, € Axc(0Q,0), then wy, € A (0, 0).
More precisely, if wp, € RH,(0Q,0) for some p, 1 < p < oo, then wy €
RH, (09, 0) for some q, 1 < q < occo. Here, q and [wr|rH,90.0) depend only

87



88 A. DOMAINS WITH AHLFORS-REGULAR BOUNDARY

on dimension, the 1-sided CAD constants, the ellipticity constants of Lo and
L, lle(A; Ao)ll,» p, and [wr,]rE, (90.0)-

(b) Ifwr, € RH,(0Q,0), for some p, 1 < p < oo, there exists £, > 0 (depending
only on dimension, the 1-sided CAD constants, the ellipticity constants of
Lo and L, p, and [wr,|rH,(00,0)) such that if [|o(A, Ao)lll, < ep, then wy €
RH,(0Q,0). Here, [wi]rH,00,0) depends only on dimension, the 1-sided
CAD constants, the ellipticity constants of Lo and L, p, and [wLU}RHp(ag)g).

COROLLARY A.5. Let Q C R"™, n > 2, be a 1-sided CAD. Consider Lu =
—div(AVu) and Lou = —div(AoVu) two real (non-necessarily symmetric) elliptic
operators, and recall the definition of Aa(0(4, Ao)) in (1.11) for any given o > 0.

(a) Assume that Ay(0(A, Ag)) € L>®(0). If wr, € Ax(0Q,0), then wr €
A (092, 0). More precisely, if wr, € RH,(02,0) for some p, 1 < p < oo,
then wr, € RH,(09Q,0) for some q, 1 < q < co. Here, ¢ and [Wr]rH,(90.0)
depend only on dimension, the 1-sided CAD constants, the ellipticity con-
stants of Lo and L, a, [[Aa(0(A, Ao)) L~ (0), P, and (WL, rH,(00,0)-

(b) Ifwr, € RHp(09Q,0), for some p, 1 < p < oo, there exists €, > 0 (depending
only on dimension, the 1-sided CAD constants, the ellipticity constants of
Lo and L, p, and [wr,]|rH,(90,0)); such that if Ao(0(A, Ag)) € L>(0) with
A (0(A; Ao))llLo (o) < €p, then wr, € RH,(09Q,0). Here, [WL|rH, (00,0) de-
pends only on dimension, the 1-sided CAD constants, the ellipticity constants
of Lo and L, «, p, and [wr,|ri,(00,0)-

In the case of symmetric operators, part (b) of Corollary A.2 has been proved
for the unit ball in [Dah86], for bounded CAD in [MPT13], and for 1-sided CAD
domains in [CHM19]. On the other hand, part (a) of Corollary A.2 can be found
for Lipschitz domains in [FKP91] and for bounded CAD in [MPT13], both in the
case of symmetric operators (but we would expect that similar arguments could be
carried over to the non-symmetric case as well). The corresponding result in the
setting of 1-sided CAD has been obtained in [CHM19] for symmetric operators
and then extended to the general case in [CHMT20]. Note then that Corollary
A.2 part (b) seems to be new in the case of non-symmetric operators in 1-sided
CAD. Regarding Corollary A.5, part (a) for symmetric operators was proved in
[Fef89] in the unit ball and in [MPT13] in the setting of bounded CAD.

Before proving the previous results we need the following auxiliary lemma:

LEMMA A.6. Let Q C R be a 1-sided CAD and let Lu = — div(AVu)
and Lou = —div(AgVu) be real (non-necessarily symmetric) elliptic operators. If
WLy, € Aco(0Q,0) and wy, € A (0, wr,) then wy, € Ax(0Q,0). More precisely,
if wp, € RH,(0Q,0), 1 < p < 00, and wy, € RH (0, wr,), 1 < q¢ < oo, then

wr, € RH,.(09Q,0) with r = pqu_l € (1,min{p, ¢}) and, moreover,

1
a

[WL]RHT((?Q,U) < [WL]RHq(BQ,wo) [wLOLq%Hp(BQ,U)'

PROOF. Fix Ag = By N 9N where By = B(xg,79) with 2o € 9Q and 0 < rg <

diam(92). Write wg = wfoAO and w = waO. By definition wy < ¢ and w < wy,

hence w < 0. Given A = BN IQ where B C B(zg,ro), B = B(z,r) with « € 09,
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(L)) - (f < W)
(L () () ()
< (290)" (. ()"
() (L) o>(1

Sl

Q=

Q=
N

Q=

PR
>
7N
o | &
q‘§
N——
bS]
IS
q
N———
Q\
3

< [WL]RH (69,wo) [WLO RH,(89,0)

1

7

[wL]RH (0€2,wo) [wLo]RH (092,0) J(A)

Thus we conclude that wy, € RH, (09, o) with
1
WrlrH, (90,0) < WLIRH, (99.w0) [WLol byt L (09Q,0)

and the proof is complete. ([l

PROOF OF COROLLARY A.2. Assume that wr, € A (9Q, o). Our first goal is
to show that using the notation in (1.7) we have

(A7) lle(A; Ao)lIl'S llleCA; Ao)ll,-

To see this we take some ideas from the proof of Theorem 1.10. Let D = D(992)
be the dyadic grid from Lemma 2.33 with £ = 9. For any Q € D we set

_ 1 Q(A7 AO)(X)2
Q) //U s

Fix By = B(xg,ro) with £y € 9Q and 0 < 7y < diam(92). Let A = BN 9N
with B = B(x,r), x € 2/, and 0 <7 < roco/4, here ¢g is the Corkscrew constant.
Write Xg = Xa, and wp = wL Note that this choice guarantees that Xy ¢ 4B.
Define

Wp={IeW:INB+#0}
and for every I € Wg let X1 € I N B so that 4diam(J) < dist(I,90Q) < §(X;) <r
and hence I C 2B. Pick z; € 0Q such that |X; — z;| = §(X;) < diam(J) +
dist(7,09) and let Q; € D be such that x; € Q; and 4(I) = ¢(Q). By Lemma
2.69 parts (a)—(c), Harnack’s inequality and the fact that 02 is AR one has

Gro(Xo,Y) _ Gro(Xo, X1) _ wo(Qr) _ wo(Qr)
6(Y) () onr o(Qr)’

VY e I.

Using this

L 2 Gy (Xo,Y)
IB L= //BmQ Q(A,Ao)(Y) 5(Y)2 dY
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< Z / / o(4, Ao d wo((gll))

IeWp

o(4, Ao (V)? 1y @o(@1)
- 1EWs //UQI o(Qr)
= > 7o w(Qr),
IeWs

where we have used that by construction I C Ug, € Wy, .
Note that ¢(Qr) = £(I) < diam(Q;) < r/4. Also if z € @y, then by (2.34) and
(2.40)

|z —a| < |z — 2| + op — Xi| + [ X; — 2
< 2UQr) + 5(X) + 2 < E0(Qr) + diam(I) + dist(1, Q) + 2 <1257
and therefore Qr C 12ZA. Write then Fa ={Q €D: 7 <4(Q) < §,QN12EA #
@}, so that Fa is a family of pairwise disjoint dyadic cubes with uniformly bounded

cardinality and so that 12EA C Uger,@ C 13EA. By construction, if I € W,
then Q; C @Q for some @ € Fa. Introducing the notation

;2 erwe(@),

Q”e%,

7l = sup  sup
QEFA Q' €Dg OJO

it follows that

A8) Tn< 3 Y 90 wl(@) < lly,a Y «(@

QEFa Q' €Do QEFa
S MV lllg,a wo(ABEA) S 1Vl 4 wol(A),
where we have used Lemma 2.69.

We next estimate [|7][,, o- Since we have assumed that wr, € A (9Q,0), it
follows that wr,, € RH, (0, o) for some p, 1 < p < oo, then it is straightforward to
see using Lemma, 2.69 that wfoq € RH*i¢(Q, o) for every Q € D (cf. Definition
2.24). In particular, for every @' € Dg with @ € D and for every F' C () we have

w;i;];) :f,lefoQ doly) < (;(3))5 (f/kff(y)l’do(y))p
< ornsomor (200)

W2 (Q)
a(@)

where C' > 1 is a uniform constant. Take then oo = %, B=(2C [WLO}RHP(ag,O-))_pI €

(0,1), and apply Lemma 2.19 with p = wf and v = o to obtain

sup Z ’anw ) Z ")/QHJ //

/
Q’EDQ UJL Q Q/IeDQ/ Q' Q”ED ,

-, @ 2 //U ?1% B

Q// E]D)

// o(A, Ao )
N Q/GDQ THr
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1 0(A, Ap)(X)?
<o sm /), S 16

< [lle(A4; o)l

where we have used that the family {Ug }grep has bounded overlap, (2.48), the AR
property of o and (A.4). Invoke once again Lemma 2.69 and Harnack’s inequality
to conclude that (A.8) along with the previous estimate readily yield

1 X!
Ip Swo(d) sup sup ——— > qorwpt(Q") Swo(d) [le(4, Aol
QEFa Q/G]D)Q wLOQ (Q/) Q”EDQI

Taking then the sup over all B and By as above we have shown that (A.7) holds.

With (A.7) at hand we are now ready to prove (a) and (b) in the statement.
To prove (a) note that by assumption [|o(A, Ao)||, < oo and wr, € Ax(09Q,0).
Hence, (A.7) says that ||o(A, Ao)|| < oo and Theorem 1.5 part (a) yields wy €
A (0Q,wr,). In turn, Lemma A.6 implies that wy, € A (02, 0) as desired.

To prove (b) we proceed as follows. Assume that wr, € RH,(0Q,0). By
Gehring’s lemma [Geh73] (see also [CF74]) there exists s > 1 such that wr, €
RH,;(0Q,0). Set q := ssp__ll > 1 and note that by (A.7) and Theorem 1.5 part
(b) we can find €, > 0 sufficiently small (depending only on dimension, the 1-sided
CAD constants, the ellipticity constants of Lo and L, p, and [wr,|ru,(00,0)) SO
that if [|o(A, Ao)||, < €p then wy € RH (09, wr,). If we apply Lemma A.6 with
p s and our choice of ¢ we conclude that wy, € RH,.(02,0) where r = pffq{l =p.
This completes the proof.

PRrROOF OF COROLLARY A.5. Note first that in both cases (a) and (b), the fact
that wr, € Ax (09, o) implies wy,, < o. On the other hand, since the A, property
is symmetric we clearly have that ¢ < wr,. It is important to emphasize that by
Harnack’s inequality wyX < wY for every X,Y € €, hence we do not need to specify
the pole in wy. All these show that || [z~ (o) = || - | (wy,)-

To prove (a) we then observe that the assumption A, (9(A, Ag)) € L>°(0) gives
at once that A, (0(A4, Ag)) € L>*(wr,) and by Theorem 1.10 part (a) we conclude
that wy, € A (0Q,wr,). This, the fact that wr, € Ax(0Q,0), and Lemma A.6
readily gives that wy, € A, (99, 0) as desired.

To prove (b) we proceed much as in the corresponding case in the proof of
Corollary A.2. Assume that wr, € RH,(0Q,0) and once again by Gehring’s lemma
find s > 1 such that wr, € RHys(0Q,0). Set ¢ := Ssp%ll > 1 and note that if
[ Aa(o(A; Ao))llLoe (o) = Aa((A, Ao))l| Lo (wy,) is sufficiently small, Theorem 1.10
part (b) says that w;, € RH,(0Q,wr,). We next apply Lemma A.6 with ps and
our choice of ¢ to conclude that w;, € RH,(99Q, o) much as we did before. O
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Symbol Index

indicator function of A, 9

class of Muckenhoupt weights with respect to wo, 27
class of Muckenhoupt weights with respect to o, 87
class of dyadic Muckenhoupt weights, 17

transpose matrix of A, 26

conical square function, 6

discretized square function, 13

discretized truncated square function, 13

(n+1)-dimensional Euclidean ball of radius r centered at X € R™*T*\
o9, 9

(n + 1)-dimensional Euclidean ball of radius r centered at z € 99, 9
large dilation of Bg, 24

large dilation of Ba, 24

discretized Carleson measure operator, 13

capacity, 10

dyadic grid definition, 11

dyadic grid existence, 18

dyadic grid for E, 19

dyadic generation, 11

global discretized sawtooth, 12

local discretized sawtooth, 13

discretized Carleson region, 12

dyadic cubes associated with A, 24

dyadic cubes associated with A, 43

diameter, 9

collection of pairwise disjoint cubes, 12

Green function, 26

n-dimensional Hausdorff measure, 9

dwit / dwfo, 27

closed (n + 1)-dimensional Euclidean cubes with sides parallel to the
coordinate axes, 9

fattenings of I, 22

dwr,/do, 87

transpose operator of L, 26

side length of I, 9

length of the dyadic cube @, 11

localized dyadic maximal function with respect to u, 37
discrete measure, 17

discrete measure restricted to Dx, 18

discrete Carleson measure norm, 17

localized dyadic non-tangential maximal function, 23
approximation of the identity adapted to OS2, 43
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RH,(09,0)
RHIc)lyadic
TQ

S&u(x)
Squ(z)

Tq

75, 16"

Ta
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Us, Uy

w
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Wo
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NOMENCLATURE

projection operator, 17

dyadic cube on E or 012, 9

class of reverse Holder weights with respect to wo, 27
class of reverse Holder weights with respect to o, 87

class of dyadic reverse Holder weights, 17

radius of of the dyadic cube @, 20

truncated localized dyadic conical square function, 81
localized dyadic conical square function, 24

Carleson box relative to a dyadic cube, 23

fattened Carleson boxes relative to a dyadic cube, 23
Carleson box relative to a surface ball, 24

fattened Carleson boxes relative to a surface ball, 24
Whitney region, 22

fattened Whitney regions, 23

Whitney decomposition, 22

Whitney decomposition of €2, 22

family of Whitney cubes comprising the Whitney region above @, 22
center of I, 22

Corkscrew point relative to @, 22

Corkscrew point relative to A, 10

center of the dyadic cube @, 20

truncated dyadic cone, 23

fattened truncated dyadic cones, 23

truncated dyadic cone from below, 81

distance to 992, 9

B(z,r) N N surface ball of radius r centered at x € 99, 9
large dilation of A, 24

relevant geometric constants, 24

relevant geometric constant, 22

relevant geometric constant, 19

disagreement between A and Ao, 5

Carleson measure norm of the disagreement between A and Ao, 5
Carleson measure norm of the disagreement between A and Ap in
Bo, 31

Carleson measure norm of the disagreement between A and Ao with
respect to o, 87

kernel of the approximation of the identity P;, 43

R™ ™\ Q exterior of ©, 10

global sawtooth region, 23

fattened global sawtooth regions, 23

local sawtooth region, 23

fattened local sawtooth regions, 23

elliptic measure, 26

elliptic measure with pole at X, 26
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1-sided

CAD, 10, 87-91

chord-arc domain, 10, 87-91

non-tangentially accessible
domain, 5, 6, 10, 22-26, 28-75,
77-86

NTA domain, 5, 6, 10, 22—26,
28-75, 77-86

Ay, 27, 87

dyadic, 17
Ahlfors regular, 10, 87-91
AR, 10, 8791

ball
Euclidean, 9
surface, 9

CAD, 10
capacity, 10
density condition, 5, 6, 11, 22-75,
77-86
Carleson
box
relative to a dyadic cube, 23
relative to a surface ball, 24
measure norm of the disagreement
between two matrices, 5, 31, 87
perturbation, 5, 31, 51-68, 87, 88
CDC, 5, 6, 11, 22-75, 77-86
center
dyadic cube, 20
Whitney cube, 22
chord-arc domain, 10
conical square function, 6, 24, 77-86
of the disagreement, 6
Corkscrew
condition, 10
point, 10

99

relative to a dyadic cube, 22
cube, see also dyadic, cube

center, 20

length, 11

radius, 20

disagrement between two matrices,
5, 87
discrete
Carleson measure, 17
measure, 17
restricted to Dx, 18
discretized Carleson region, 12
domain
1-sided
CAD, 10, 87-91
chord-arc, 10, 87-91
non-tangentially accessible, 5, 6,
10, 22-26, 28-75, 77-86
NTA, 5, 6, 10, 22-26, 28-75,
77-86
CAD, 10
chord-arc, 10
non-tangentially accessible, 10
NTA, 10
uniform, 10
dyadic
Ao, 17
conical square function, 24, 77-86
cube, 11, 18-22
discrete
Carleson measure, 17
measure, 17
measure restricted to Dz, 18
generation, 11
grid
definition, 11
existence, 18-22
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properties, 11, 18-22
non-tangential maximal function,
23, 77-86
projection operator, 17, 69-75
reverse Holder, 17
square function, 24, 77-86
dyadically doubling measure, 17

elliptic

matrix, 26

measure, 26
A, b, 6,27, 31, 87, 88
doubling, 29
properties, 28
reverse Holder, 5, 6, 27, 31, 87,

88

solution, 27

operator, 26

fattened

Carleson box

relative to a dyadic cube, 23

relative to a surface ball, 24
global sawtooth region, 23
local sawtooth region, 23
truncated dyadic cone, 23
Whitney

cube, 22

region, 23

global
discretized sawtooth, 12
sawtooth region, 23
Green function, 26
properties, 28

Harnack Chain, 10
condition, 10
Hausdorff measure, 9

large
perturbation, 5, 6, 31, 51-61, 87,
88
Carleson, 5, 31, 51-61, 87
length
dyadic cube, 11
Whitney cube, 22
local
discretized sawtooth, 13
sawtooth region, 23

localized dyadic
conical square function, 24, 81
non-tangential maximal function,
23

n-dimensional Ahlfors regular, 10,
87-91

non-tangential maximal function, 23,
77-86

non-tangentially accessible domain,
10

NTA domain, 10

perturbation

large, 6, 88
Carleson, 5, 31, 51-61, 87

small, 6, 88
Carleson, 5, 31, 61-68, 88
projection operator, 17, 69-75

RH,, see also reverse Holder
dyadic, see also reverse Holder,
dyadic
radius of a dyadic cube, 20
reverse Holder, 17, 27, 87
dyadic, 17

sawtooth
domain, 22-26
global
discretized, 12
region, 23
local
discretized, 13
region, 23
small
perturbation, 5, 6, 31, 61-68, 88
Carleson, 5, 31, 61-68, 88
square function, 24, 77-86
surface
ball, 9
measure, 87

truncated dyadic cone, 23, 81

uniform domain, 10

uniformly elliptic
matrix, 26
operator, 26
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