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Abstract. We show that if Ω ⊂ Rn+1, n ≥ 1, is a uniform domain (aka 1-
sided NTA domain), i.e., a domain which enjoys interior Corkscrew and Har-
nack Chain conditions, then uniform rectifiability of the boundary of Ω implies
the existence of exterior Corkscrew points at all scales, so that in fact, Ω is a
chord-arc domain, i.e., a domain with an Ahlfors-David regular boundary which
satisfies both interior and exterior Corkscrew conditions, and an interior Harnack
Chain condition. We discuss some implications of this result, for theorems of F.
and M. Riesz type, and for certain free boundary problems.

1. Introduction and statement of main result

An NTA (Non-Tangentially Accessible) domain Ω is one which enjoys an inte-
rior Harnack Chain condition, as well as interior and exterior Corkscrew conditions
(see Definitions 2.10, 2.11, and 2.16 below). This notion was introduced in [JK],
and has found numerous applications in the theory of elliptic equations and free
boundary problems. A chord-arc domain is an NTA domain whose boundary is
Ahlfors-David regular (ADR) (see Definition 2.1 below).

A 1-sided NTA domain (also known as a uniform domain in the literature) sat-
isfies interior Corkscrew and Harnack Chain conditions, but one imposes no as-
sumptions on the exterior domain Ωext := Rn+1 \ Ω. A 1-sided chord-arc domain
is a 1-sided NTA domain with an ADR boundary. In general, the 1-sided condi-
tions are strictly weaker than their standard counterparts: for example, the domain
Ω = R2 \ K, where K is Garnett’s “4-corners Cantor set” (see, e.g., [DS2]), is a
1-sided chord-arc domain, but Ω = R2, thus, there is no exterior domain.

The various versions of non-tangential accessibility have been studied in con-
nection with quantitative analogues of the F. and M. Riesz Theorem [RR], in which
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one obtains scale-invariant absolute continuity (e.g., the A∞ condition of Mucken-
houpt, or more generally, weak-A∞) of harmonic measure ω with respect to sur-
face measure on the boundary, given some quantitative rectifiability property of
the boundary, along with some quantitative connectivity hypothesis of Ω. This has
been done in 2 dimensions by M. Lavrentiev [Lav]; and in higher dimensions, for
Lipschitz domains by B. Dahlberg [Dah]; for chord-arc domains by G. David and
D. Jerison [DJ], and independently, by S. Semmes [Sem]; for NTA domains with-
out an ADR hypothesis by M. Badger [Bad]; for the Riesz measure associated to
the p-Laplacian in chord-arc domains, by J. Lewis and the fourth named author
of this paper [LN]; for domains with ADR boundaries, satisfying an “interior big
pieces of Lipschitz sub-domains” condition, by B. Bennewitz and J. Lewis [BL];
and for 1-sided chord-arc domains with uniformly rectifiable boundaries (see Def-
inition 2.3 below), by the second and third named authors of this paper [HM]. In
addition, the second and third authors of this paper, jointly with I. Uriarte-Tuero
[HMU], have obtained a free boundary result that is a converse to the theorem
of [HM], in which scale invariant absolute continuity of harmonic measure with
respect to surface measure, in the presence of the 1-sided chord-arc condition, im-
plies uniform rectifiability of ∂Ω.

It turns out, perhaps surprisingly, in light of the counter-example of T. Hrycak
(see [DS2]), that the result of [HM] may be subsumed in that of [DJ] and [Sem],
while on the other hand, the free boundary result of [HMU] is stronger than the
authors had initially realized. Our main result in this paper is the following.

Theorem 1.1. Suppose that Ω ⊂ Rn+1 is a uniform (aka 1-sided NTA) domain, and
that ∂Ω is uniformly rectifiable. Then Ω is a chord-arc domain.

Let us point out that both of our hypotheses are essential, in the sense that neither
one, alone, allows one to draw the stated conclusion. Indeed, as we have noted
above, a 1-sided NTA domain, with ADR boundary, need not be NTA in general:
in fact there may be no exterior domain. On the other hand, Hrycak’s example
shows that uniform rectifiability, in general, is strictly weaker than a “Big Pieces of
Lipschitz Graphs” condition1, whereas the latter property is enjoyed by boundaries
of chord-arc domains, by the main geometric result of [DJ].

Theorem 1.1, combined with previous work mentioned above, has implications
for theorems of F. and M. Riesz type, and for certain free boundary problems. We
now have the following.

Theorem 1.2. Suppose that Ω ⊂ Rn+1 is a uniform (aka 1-sided NTA) domain,
whose boundary is Ahlfors-David regular. Then the following are equivalent:

(1) ∂Ω is uniformly rectifiable.
(2) Ω is an NTA domain, and hence, a chord-arc domain.
(3) ω ∈ A∞.
(4) ω ∈ weak-A∞.

1However, as shown by the first named author of this paper and R. Schul [AS], uniform rectifia-
bility is equivalent to a “Big Pieces of Big Pieces of Lipschitz Graphs” condition.
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Here ω denotes harmonic measure for Ω, and the statements (3) and (4) are
understood in a scale invariant sense (see, e.g., [HM, HMU]). That (2) implies
(3) was proved in [DJ], and independently, in [Sem]; it is of course trivial that
(3) implies (4), while (4) implies (1) is the main result of [HMU]. Theorem 1.1
closes the circle by establishing that (1) implies (2). In particular, this yields a
sharpened version of the free boundary result of [HMU], namely, we now obtain
that (4) implies (2), under the stated background hypotheses.

In connection with the previous result we recall the David-Semmes conjecture
recently proved in [NToV] (see also [HMM] for the case of a boundary of a 1-sided
NTA domain with ADR boundary) which establishes that uniform rectifiability is
equivalent to the boundedness of the Riesz transform. Hence Theorem 1.1 implies
that, under the same background hypothesis, the Riesz transform is bounded on
L2(∂Ω) if and only if Ω is an NTA domain and consequently a chord-arc domain.

In Section 2, we establish notation and review some necessary definitions and
preliminary results. In particular, we recall two different characterizations of uni-
form rectifiability, one analytic and the other geometric. In Sections 3 and 4, we
give two separate proofs of Theorem 1.1, each one using a different characteriza-
tion. Finally, in an appendix, we provide the proof of a folklore theorem concerning
the equivalence of 1-sided NTA and uniform domains.

2. Preliminaries

2.1. Notation and conventions.

• We use the letters c,C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems. We shall also sometimes write
a . b and a ≈ b to mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C,
where the constants c and C are as above, unless explicitly noted to the contrary.
Unless otherwise specified upper case constants are greater than 1 and lower
case constants are smaller than 1.

• Given a domain Ω ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote
points on ∂Ω, and capital letters X,Y,Z, etc., to denote generic points in Rn+1

(especially those in Rn+1 \ ∂Ω).

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on ∂Ω, or B(X, r) when the center X ∈ Rn+1 \ ∂Ω. A
surface ball is denoted ∆(x, r) := B(x, r) ∩ ∂Ω.

• If ∂Ω is bounded, it is always understood (unless otherwise specified) that all
surface balls have radii controlled by the diameter of ∂Ω: that is if ∆ = ∆(x, r)
then r . diam(∂Ω). Note that in this way ∆ = ∂Ω if diam(∂Ω) < r . diam(∂Ω).

• For X ∈ Rn+1, we set δ(X) := dist(X, ∂Ω).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := Hn
∣∣
∂Ω

denote
the surface measure on ∂Ω.
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• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.
1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x < A.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let `(I) denote
the side length of I. We use Q to denote a dyadic “cube” on ∂Ω. The latter exist,
given that ∂Ω is ADR (cf. [DS1], [Chr]), and enjoy certain properties which we
enumerate in Lemma 2.18 below.

2.2. Some definitions.

Definition 2.1 (Ahlfors-David regular). We say that a closed set E ⊂ Rn+1 is n-
dimensional ADR (or simply ADR) (Ahlfors-David regular) if there is some uni-
form constant C such that

(2.2)
1
C

rn ≤ Hn(E ∩ B(x, r)) ≤ C rn, ∀r ∈ (0,R0), x ∈ E,

where R0 is the diameter of E (which may be infinite).

Definition 2.3 (Uniform Rectifiability). Following David and Semmes [DS1],
[DS2], we say that a closed set E ⊂ Rn+1 is n-dimensional UR (or simply UR)
(Uniformly Rectifiable), if it satisfies the ADR condition (2.2), and if for some
uniform constant C and for every Euclidean ball B := B(x0, r), r ≤ diam(E), cen-
tered at any point x0 ∈ E, we have the Carleson measure estimate

(2.4)
"

B
|∇2S1(X)|2 dist(X, E) dX ≤ Crn,

where S f is the harmonic single layer potential of f , i.e.,

(2.5) S f (X) := cn

∫
E
|X − y|1−n f (y) dHn(y).

Here, the normalizing constant cn is chosen so that E(X) := cn|X|1−n is the usual
fundamental solution for the Laplacian in Rn+1 (one should use a logarithmic po-
tential in ambient dimension n + 1 = 2).

A geometric characterization of uniform rectifiability can be given in terms of
the so called bilateral β-numbers. For x ∈ E, a hyperplane P, and r > 0 we set

bβE(x, r, P) = r−1

(
sup

y∈E∩B(x,r)
dist(y, P) + sup

y∈P∩B(x,r)
dist(y, E)

)
and then define

bβE(x, r) = inf
P

bβE(x, r, P)

where the infimum is over all n-dimensional hyperplanes P ⊆ Rn+1.

Definition 2.6 (BWGL). We say that an n-dimensional ADR set E satisfies the
bilateral weak geometric lemma or BWGL if, for each ε > 0, the set

B̂ε :=
{

(x, r) : x ∈ E, r > 0, bβE(x, r) ≥ ε
}

is a Carleson set, i.e., there is C1 > 0 so that if we define

σ̂(A) =

"
A

dHn dt
t
, A ⊂ E × (0,∞),
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then

(2.7) σ̂
(

B̂ε ∩
(
B(x, r) × (0, r)

))
≤ C1rn

for all x ∈ E and r > 0.

Theorem 2.8 ([DS2, Theorem 2.4, Part I]). An n-dimensional ADR set E is uni-
formly rectifiable if and only if it satisfies the BWGL.

Remark 2.9. We note that there are numerous characterizations of uniform rec-
tifiability given in [DS1, DS2]; the two stated above will be most useful for our
purposes, and appear in [DS2, Chapter 2, Part I] and [DS2, Chapter 3, Part III].

We recall that the UR sets are precisely those for which all “sufficiently nice”
singular integrals are bounded on L2 (see [DS1]). We further remark that uniform
rectifiability is the scale invariant version of rectifiability: in particular, BWGL
may be viewed as a quantitative version of the characterization of rectifiable sets in
terms of the existence a.e. of approximate tangent planes. In this context, see also
[Jo1].

Definition 2.10 (Corkscrew condition). Following [JK], we say that a domain
Ω ⊂ Rn+1 satisfies the Corkscrew condition if for some uniform constant c > 0 and
for every surface ball ∆ := ∆(x, r), with x ∈ ∂Ω and 0 < r < diam(∂Ω), there is a
ball B(X∆, cr) ⊂ B(x, r) ∩Ω. The point X∆ ∈ Ω is called a corkscrew point relative
to ∆, (or, relative to B). We note that we may allow r < C diam(∂Ω) for any fixed
C, simply by adjusting the constant c.

Definition 2.11 (Harnack Chain condition). Again following [JK], we say that
Ω satisfies the Harnack Chain condition if there is a uniform constant C such that
for every ρ > 0, Λ ≥ 1, and every pair of points X, X′ ∈ Ω with δ(X), δ(X′) ≥ ρ
and |X − X′| < Λ ρ, there is a chain of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Λ), with
X ∈ B1, X′ ∈ BN , Bk ∩ Bk+1 , Ø and C−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C diam(Bk).
The chain of balls is called a Harnack Chain.

Definition 2.12 (1-sided NTA). If Ω satisfies both the Corkscrew and Harnack
Chain conditions, then we say that Ω is a 1-sided NTA domain.

Remark 2.13. We observe that the 1-sided NTA condition is a quantitative connec-
tivity condition.

An alternative (and quantitatively equivalent) definition is as follows.

Definition 2.14 (Uniform domain). For 0 < c < 1 < C, we say that an open set
Ω ⊆ Rn+1 is a (c,C)-uniform domain if, for any two points X,Y ∈ Ω, there is a path
γ so that

(1) `(γ) ≤ C|X − Y |, where `(γ) denotes the length of γ, and
(2) for any Z ∈ γ, δ(Z) ≥ c dist(Z, {X,Y}).

We call such a curve a good curve for X and Y .

It is well known that Definitions 2.12 and 2.14 are equivalent, nevertheless find-
ing a precise reference is difficult. That every uniform domain is a 1-sided NTA
domain was proved by Gehring and Osgood [GO]. Indeed, the extension domains
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of P. Jones [Jo2] are clearly 1-sided NTA by definition, while in [GO], the authors
prove that extension domains are the same as uniform domains (see also [Väi]).
For a more direct proof of the fact that uniform domains are 1-sided NTA domains,
see [BS, Lemma 4.2 and 4.3], as well as their proofs. For completeness, we include
the converse implication below.

Theorem 2.15. If Ω is a 1-sided NTA domain then Ω is a uniform domain with
constants that only depend on the 1-sided NTA constants.

We defer the proof of Theorem 2.15 to an appendix.

Definition 2.16 (NTA domain). Following [JK], we say that a domain Ω is an
NTA domain if it is a 1-sided NTA domain and if, in addition, Ωext := Rn+1 \Ω also
satisfies the Corkscrew condition.

Definition 2.17 (Chord-arc domain). Ω is a chord-arc domain if it is an NTA
domain with an ADR boundary.

2.3. Dyadic grids.

Lemma 2.18 (Existence and properties of the “dyadic grid”). [DS1, DS2],
[Chr]. Suppose that E ⊂ Rn+1 satisfies the ADR condition (2.2). Then there exist
constants a0 > 0, η > 0 and C1 < ∞, depending only on dimension and the ADR
constants, such that for each k ∈ Z, there is a collection of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E = ∪ jQk
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = Ø.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) Diameter
(

Qk
j

)
≤ C12−k.

(v) Each Qk
j contains some surface ball ∆

(
xk

j, a02−k
)

:= B
(

xk
j, a02−k

)
∩ E.

(vi) Hn
({

x ∈ Qk
j : dist(x, E \ Qk

j) ≤ τ 2−k
})
≤ C1 τ

η Hn
(

Qk
j

)
, for all k, j and

for all τ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [Chr], with the dyadic parameter 1/2 replaced by some constant
δ ∈ (0, 1). In fact, one may always take δ = 1/2 (cf. [HMMM, Proof of
Proposition 2.12]). In the presence of the Ahlfors-David property (2.2), the
result already appears in [DS1, DS2].

• For our purposes, we may ignore those k ∈ Z such that 2−k & diam(E), in the
case that the latter is finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j, i.e.,

D := ∪kDk,
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where, if diam(E) is finite, the union runs over those k such that 2−k . diam(E).

• Given a cube Q ∈ D, we set

(2.19) DQ :=
{

Q′ ∈ D : Q′ ⊆ Q
}
,

• For a dyadic cube Q ∈ Dk, we shall set `(Q) = 2−k, and we shall refer to this
quantity as the “length” of Q. Evidently, `(Q) ≈ diam(Q).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk, there is a point xQ ∈ E,
a Euclidean ball B(xQ, rQ) and a surface ball ∆(xQ, rQ) := B(xQ, rQ) ∩ E such
that c`(Q) ≤ rQ ≤ `(Q), for some uniform constant c > 0, and

(2.20) ∆(xQ, 2rQ) ⊂ Q ⊂ ∆(xQ,CrQ),

for some uniform constant C. We shall denote this ball and surface ball by

(2.21) BQ := B(xQ, rQ) , ∆Q := ∆(xQ, rQ),

and we shall refer to the point xQ as the “center” of Q.

It will be useful to dyadicize the Corkscrew condition, and to specify precise
Corkscrew constants. Let us now specialize to the case that E = ∂Ω is ADR, with
Ω satisfying the Corkscrew condition. Given Q ∈ D(∂Ω), we shall sometimes refer
to a “Corkscrew point relative to Q”, which we denote by XQ, and which we define
to be the corkscrew point X∆ relative to the surface ball ∆ := ∆Q (see (2.20), (2.21)
and Definition 2.10). We note that

(2.22) δ(XQ) ≈ dist(XQ,Q) ≈ diam(Q).

Definition 2.23. (c0-exterior Corkscrew condition). Fix a constant c0 ∈ (0, 1),
and a domain Ω ⊂ Rn+1, with ADR boundary. We say that a cube Q ∈ D(∂Ω)
satisfies the the c0-exterior Corkscrew condition, if there is a point zQ ∈ ∆Q, and
a point X−Q ∈ B(zQ, rQ/4) \ Ω, such that B(X−Q, c0 `(Q)) ⊂ B(zQ, rQ/4) \ Ω, where
∆Q = ∆(xQ, rQ) is the surface ball defined above in (2.20)–(2.21).

3. The analytic proof of Theorem 1.1

We suppose that Ω is a 1-sided NTA (i.e., uniform) domain, with uniformly
rectifiable boundary. It suffices to show that Ω satisfies an exterior Corkscrew
condition at all scales (up to the diameter of ∂Ω).

To this end, we define a discrete measure m as follows. Let B = B(c0) denote
the collection of Q ∈ D(∂Ω) for which the c0-exterior Corkscrew condition (see
Definition 2.23) fails. Set

(3.1) αQ :=

{
σ(Q) , if Q ∈ B,

0 , otherwise .

For any subcollection D′ ⊂ D(∂Ω), we set

(3.2) m(D′) :=
∑
Q∈D′

αQ.
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We will prove, as a consequence of the UR and 1-sided NTA properties, that
the collection B satisfies a packing condition, i.e., that m is a discrete Carleson
measure, provided that c0 is small enough. More precisely, we have the following.

Lemma 3.3. Let Ω be a 1-sided NTA domain with UR boundary, and let B =

B(c0) ⊂ D be the collection defined above. Then there is a c0 sufficiently small,
such that the measure m satisfies the packing condition

(3.4) sup
Q∈D

m(DQ)
σ(Q)

= sup
Q∈D

1
σ(Q)

∑
Q′∈B: Q′⊂Q

σ(Q′) ≤ M1 ,

where the constants c0 and M1 depend only upon dimension, and on the ADR/UR
and 1-sided NTA constants.

Let us momentarily take the lemma for granted, and deduce the conclusion of
Theorem 1.1. We fix a cube Q ∈ D(∂Ω), and we seek to show that Ωext has a
Corkscrew point relative to Q. Let ∆Q ⊂ Q denote the surface ball defined in
(2.20)–(2.21), and let Q1 be a sub-cube of Q, of maximal size, that is contained
in ∆Q. We then have that `(Q1) ≥ c`(Q). By (3.4) (applied to Q1), and the ADR
condition, there is a constant c1, depending only on M1 and the ADR constants,
and a cube Q′ ∈ DQ1 \ B, with `(Q′) ≥ c1`(Q). Since Q′ < B, it therefore enjoys
the c0-exterior Corkscrew condition, and therefore, so does Q, but with c0 replaced
by c′0 = c0c1. Since every surface ball contains a cube of comparable diameter, this
means that there is an exterior Corkscrew point relative to every surface ball on the
boundary, and therefore Ω is NTA, and hence chord-arc.

It remains to prove the lemma.

Proof of Lemma 3.3. We follow a related argument in [HM], which in turn uses an
idea from [DS2]. Let B denote the collection of Q ∈ D for which the c0-exterior
Corkscrew condition (cf. Definition 2.23) fails. We fix a cube Q ∈ B, a point
zQ ∈ ∆Q ⊂ Q, and set B = B(zQ, r/4), with r = rQ ≈ `(Q), and set ∆ = B ∩ ∂Ω.
Let Φ ∈ C∞0 (B), with 0 ≤ Φ ≤ 1, Φ ≡ 1 on (1/2)B, and ‖∇Φ‖∞ . r−1. Let
L := − div ·∇ denote the usual Laplacian in Rn+1, and let S denote the single layer
potential for L, as in (2.5) with E = ∂Ω. Since ∂Ω is ADR,

(3.5) σ(∆) ≈
∫
∂Ω

Φ dσ = 〈LS1,Φ〉 =

"
Rn+1

(∇S1(X) − ~β) · ∇Φ(X) dX

.
1
r

("
B\Ω
|∇S1(X) − ~β |dX +

"
B∩Ω

|∇S1(X) − ~β |dX
)

=:
1
r

(
I + II

)
,

where ~β is a constant vector at our disposal. We let B∗ := κ0B be a concentric dilate
of B with κ0 a large constant (see [HM, (5.12)]), and set ∆∗ := B∗ ∩ ∂Ω. As in the
proof of [HM, Lemma 5.10], we may choose ~β so that the following properties
hold:

(3.6) ‖∇S1∂Ω\∆∗ − ~β ‖L∞(B) ≤ C ,

and
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(3.7) r−1
"

B∩(Ω\ΣB,ε)
|∇S1(X) − ~β |dX

≤ Cε rn/2
("

UB,ε

|∇2S1(X)|2δ(X)dX
)1/2

,

where ΣB,ε is a “border strip” of thickness Cεr, and UB,ε is a Whitney region with
εr . δ(X) ≈ dist(X,∆) . r, for all X ∈ UB,ε, with ε a small positive constant to
be chosen. In the language of [HM, Sections 4 and 5], ΣB,ε = Ω \ ΩF (ε r),Q with
F = Ø, UB,ε = Ωfat

F (ε r),Q and ~β is the average of ∇S1 on ΩF (ε r),Q. We observe
that (3.7) is a consequence of a Poincaré inequality proved in [HM, Section 4].
Moreover, by [HM, Lemma 5.1, Lemma 5.3, and Corollary 5.6], we have

(3.8)
"

B
|∇S1∆∗(X)|qdX ≤ Cq rn+1 , 1 ≤ q < (n + 1)/n ,

(3.9) |ΣB,ε ∩ B| . εrn+1 ,

and

(3.10)
"

B∩ΣB,ε

|∇S1∆∗(X)|dX . εγrn+1 ,

for some fixed γ, with 0 < γ < 1. Combining these facts, we see that

II
r
. εγσ(∆) + Cε σ(∆)1/2

("
UB,ε

|∇2S1(X)|2δ(X)dX
)1/2

.

Furthermore, by [HM, Lemma 5.7], the failure of the c0-exterior Corkscrew prop-
erty implies that

|B \Ω| . c0rn+1 .

Combining the latter fact with (3.6) and (3.8), we find that

I
r
. c1/q′

0 σ(∆) .

If ε and c0 are chosen small enough, then the small terms may be hidden on the left
hand side of (3.5), to obtain that

(3.11) σ(∆) .
"

UB,ε

|∇2S1(X)|2δ(X)dX .

As observed above, the measure dm(X) := |∇2S1(X)|2δ(X)dX is a Carleson mea-
sure in Rn+1 \ ∂Ω, since ∂Ω is UR (see (2.4)). Moreover, for the various balls
B = B(zQ, r/4) under consideration, the Whitney regions UB,ε have bounded over-
laps, since each such region is associated to a cube Q with `(Q) ≈ r, and B∩∂Ω ⊂ Q
(in the language of [HM, Sections 3 and 4], UB,ε is a union of fattened Whitney
boxes meeting B∗ whose side length is of the order of `(Q)). In addition,

σ(Q) . σ(∆) .

Combining these observations with (3.11), we obtain the desired packing condi-
tion. �
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4. The geometric proof of Theorem 1.1

Suppose Ω is a (c,C)-uniform domain with ADR boundary E := ∂Ω. As men-
tioned earlier, this is equivalent to being 1-sided NTA, so in particular, we will
also use the fact that Ω satisfies the corkscrew condition in Definition 2.10. We
can assume, by making numbers smaller if need it, that the constant c in the def-
inition of the corkscrew condition is the same value as the c in our definition of
(c,C)-uniform domains.

Lemma 4.1. There is ε > 0 depending only on c and C such that the following
holds. Suppose x ∈ ∂Ω, r ∈ (0, diam(∂Ω)), and that P is a hyperplane such that
bβE(x, r, P) < ε. Let vP be a unit vector orthogonal to P. Define

B±(x, r) = B(x, r) ∩ {x + y : ±y · vP > εr} ⊆ Rn+1 \ ∂Ω.

Then exactly one of either B±(x, r) is contained in Ωext and the other one is con-
tained in Ω.

We assume Lemma 4.1 for the moment and complete the proof of Theorem 1.1.
Fix ε > 0 as in Lemma 4.1 and B = B(x, r) with x ∈ E and r < diam(∂Ω). Our
aim is to show that B contains an exterior corkscrew. Set (1/2)∆ = ∆(x, r/2). By
Definition 2.6 and Theorem 2.8, there is C1 (depending on ε) so that (2.7) holds. If
we set

ρ = sup
{

s < r/2 : ∃ y ∈ (1/2)∆, (y, s) < B̂ε
}
,

then

C1
rn

2n ≥ σ̂
(
B̂ε ∩ (1/2)∆ × (0, r/2)

)
≥ σ̂

(
(1/2)∆ × (ρ, r/2)

)
= σ

(
(1/2)∆

)
log

r
2ρ
≥ C−1 rn

2n log
r

2ρ
,

where C−1 is the constant from (2.2). Thus ρ ≈ r (with implicit constants de-
pending on ε and n), hence we may find x1 ∈ (1/2)∆ and r . r1 ≤ r/2 so that
B(x1, r1) ⊆ B(x, r) and bβE(x1, r1) < ε. Lemma 4.1 and the fact that r1 ≈ r imply
B has an exterior corkscrew, and this finishes the proof of Theorem 1.1.

Next we prove Lemma 4.1.

Proof of Lemma 4.1. Let k = 1/(2C + 1), X± = x ± krvP/2, and ε < ck/4, so that
X± ∈ Rn+1 \ ∂Ω. We will often use the fact that k < 1.
Claim: At least one of X± is in Ωext. Indeed, assume on the contrary that both
points are contained in Ω. Then there is a good curve γ ⊆ Ω connecting X± such
that

diam(γ) ≤ `(γ) ≤ C|X+ − X−| = Ckr.
By our choice of k, and since X+ ∈ γ, this implies that

γ ⊆ B(X+,Ckr) ⊆ B(x, kr(C + 1/2)) ⊆ B(x, r).

Furthermore, by condition (2) in Definition 2.14 there must exist Z ∈ γ∩P∩B(x, r),
such that

min{|Z − X+|, |Z − X−|} ≤
δ(Z)

c
≤
εr
c
.
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Assume |Z − X+| ≤ |Z − X−| and let x′ denote the orthogonal projection of x onto
P. Then

εr
c
≥ |X+ − Z| ≥ |X+ − x′| ≥ |X+ − x| − |x − x′| ≥

kr
2
− εr >

kr
4
,

which is a contradiction since ε < ck
4 . This proves the claim.

We have proved that either X+ or X− belong to Ωext. Suppose for instance that
X− ∈ Ωext. Note that B−(x, r) ⊆ Ωext since B−(x, r) it is connected, contains X−,
and does not intersect ∂Ω (because bβE(x, r) < ε). Similarly B+(x, r) ∩ ∂Ω = Ø.
To show that B+(x, r) is contained in Ω, we recall that, by the corkscrew condition,
there is X∆ ∈ B(x, r) ∩ Ω such that B(X∆, cr) ⊆ B(x, r) ∩ Ω. Since ε < ck/4 <
c/4, we know that B(X∆, cr) must intersect either B+(x, r) or B−(x, r). Since it is
contained in Ω, it cannot hit B−(x, r), thus it must intersect B+(x, r). Since B+(x, r)
is connected, B+(x, r) must also be contained in Ω and this completes the proof.
Note that, as far as Theorem 1.1 is concerned, what is more relevant to us is that
B−(x, r) ⊆ Ωext, but we have shown B+(x, r) ⊆ Ω for the sake of completeness. A
similar argument appears in the proof of Theorem 1.18 [Dav]. �

Appendix A. Proof of Theorem 2.15

Lemma A.1. Let X, X′ ∈ Ω, ρ := min{δ(X), δ(X′)}, and |X − X′| ≤ Λρ. Let
B1, ..., BN with N ≤ C(Λ) be a Harnack chain with X ∈ B1, X′ ∈ BN , Bk∩Bk+1 , Ø
and C−1

0 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C0 diam(Bk). Then diam(B j) ≈ ρ with con-
stants depending only on Λ and C0. Let γ denote the polygonal curve connecting
X to the center of B1, then the centers of the B j’s in order and then the center of
BN to X′. Then `(γ) ≤ M|X −X′| where M depends only on n, Λ and C0. Moreover
for any Z ∈ γ it follows that δ(Z) ≥ c dist(Z, {X, X′}) for some c that only depends
on n, Λ and C0. Thus γ is a good curve for X and X′.

Proof. Note that if |X − X′| ≤ ρ/2 then the Harnack chain above can be taken to
only have one ball and the segment joining X to X′ is a good curve. Thus we
assume |X − X′| ≥ ρ/2. Since B j ∩ B j+1 , Ø for j < N then

diam(B j) ≤ C0 dist(B j, ∂Ω) ≤ C0(dist(B j+1, ∂Ω) + diam(B j+1))
≤ C0(C0 + 1) diam(B j+1),

and switching the roles diam(B j+1) ≤ C0(C0 + 1) diam(B j). Thus for j = 1, . . . ,N,
diam(B j) ≈ min{diam(B1), diam(BN)} ≈ ρwith comparability constants depending
only on n, Λ and C0. Note that if |X − X′| ≥ ρ/2 then

`(γ) ≤
N∑

i=1

diam(Bi) + diam(B1) + diam(BN) . Nρ ≤ C(Λ) ρ . |X − X′|.

If Z ∈ γ then there is i = 1, . . . ,N such that Z ∈ Bi. Assume for instance that
dist(Z, {X, X′}) = |Z − X|, then

(A.2) dist(Z, {X, X′}) ≤ diam(B1) +

i∑
j=1

diam(B j) . ρ . dist(Bi, ∂Ω) . δ(Z).

This eventually shows that γ is good curve for X and X′ completing the proof. �
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Proof of Theorem 2.15. For X,Y ∈ Ω we need to find a good curve γ connecting
X and Y . Let k ∈ Z satisfy 2k ≤ |X − Y | < 2k+1. Let jX , jY ∈ Z be such that
2 jX ≤ δ(X) < 2 jX+1 and 2 jY ≤ δ(Y) < 2 jY +1. Let qX , qY ∈ ∂Ω denote respectively a
closest point to X and Y in the boundary, that is, δ(X) = |qX−X| and δ(Y) = |qY−Y |.

We consider several cases.
Case 1: |X − Y | ≤ 1/2 min{δ(X), δ(Y)} then the segment joining X to Y is a good

curve.
Case 2: |X −Y | ≥ 1/2 min{δ(X), δ(Y)} and k ≤ min{ jX + 2, jY + 2} then |X −Y | <

2k+1 ≤ 8 min{δ(X), δ(Y)}. By Lemma A.1 there is a good curve γ joining X to Y .
Case 3: |X − Y | ≥ 1/2 min{δ(X), δ(Y)} and k ≥ min{ jX + 2, jY + 2}. Switching

X and Y we may assume that jY + 2 ≥ jX + 2 and therefore k ≥ jX + 2. For all i ∈ Z
with jX + 2 ≤ i ≤ k, let Xi be a corkscrew point relative to B(qX , 2i) ∩ ∂Ω so that
B(Xi, c2i) ⊆ B(qX , 2i). Provided c ≤ 1/4, X jX+2 can be chosen to be X.

Note that |Xi − Xi+1| ≤ 2i+2 while min{δ(Xi), δ(Xi+1)} ≥ c2i, thus there is a
Harnack chain Bi

1, ..., B
i
Ni

with Ni ≤ C(4/c) which joins Xi and Xi+1, and so that
Xi ∈ Bi

1 and Xi+1 ∈ Bi
Ni

. Let γi be the polygonal curve connecting Xi to Xi+1 as
constructed in Lemma A.1. Note that `(γi) . |Xi − Xi+1| . 2i. Let γX = ∪k−1

i= jX+2γi.
Note that γX joins X to Xk and

`(γX) ≤
k−1∑

i= jX+2

`(γi) .
k−1∑

i= jX+2

|Xi − Xi+1| .
k−1∑

i= jX+2

2i . 2k ≤ |X − Y |.

Moreover, note that if Z ∈ γX , then Z ∈ γi for some i = jX + 2, . . . , k − 1. By
Lemma A.1 and the construction of γi we have that δ(Z) ≥ c dist(Z, {Xi, Xi+1}). We
may assume dist(Z, {Xi, Xi+1}) = |Z − Xi| (the other case is treated similarly). Using
the last two inequalities in (A.2) (in this case ρ ≈ 2i) we have that 2i . δ(Z), which
yields

(A.3) |Z − X| ≤ |Z − Xi| + |Xi − qX | + |qX − X| ≤
1
c
δ(Z) + 2i + δ(X)

. δ(Z) + 2 jX+1 . δ(Z).

To proceed we next observe that

2 jY ≤ δ(Y) ≤ |Y − X| + δ(X) ≤ 2k+1 + 2 jX+1 ≤ 2k+1 + 2k−1,

which implies that jY ≤ k+1. Assume first that jY +2 ≤ k (the case k+1 ≤ jY +2 ≤
k + 3 is considered below). Repeating the previous argument we can find a curve
γY joining Y and Yk, where Yk is a corkscrew point relative to B(qY , 2k)∩Ω so that
B(Yk, c2k) ⊆ B(qY , 2k). This construction gives much as before `(γY ) . |X − Y | and
|Z − Y | . δ(Z) for every Z ∈ γY .

We also observe that

|Xk − Yk| ≤ |Xk − qX | + |qX − X| + |X − Y | + |Y − qY | + |qY − Yk|

≤ 2k + 2 jX+1 + 2k+1 + 2 jY +1 + 2k ≤ 2k+3 ≤ 8|X − Y |

and

(A.4) min{δ(Xk), δ(Yk)} ≥ c2k.
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Applying Lemma A.1 there exists a good curve γk joining Xk and Yk. Let γ =

γX ∪ γk ∪ γY , and note that γ joins X and Y . Moreover, since 2k ≤ |X − Y | < 2k+1

then
`(γ) ≤ `(γX) + `(γk) + `(γY ) . |X − Y | + |Xk − Yk| . |X − Y |.

For Z ∈ γX ∪ γY , (A.3) and its corresponding version for Y show that δ(Z) ≥
c dist(Z, {X,Y}). If Z ∈ γk, assume for instance that dist(Z, {Xk,Yk}) = |Xk − Z|.
Using the last two inequalities in (A.2) we have that 2k . δ(Z) since in this case
ρ ≥ c2k by (A.4). Hence,

|Z − X| ≤ |Z − Xk| + |Xk − qX | + |qX − X| ≤
1
c
δ(Z) + 2k + 2 jX+1 . δ(Z).

This proves that γ is a good curve for X and Y and completes the case jY + 2 ≤ k.
Let us finally consider the case k + 1 ≤ jY + 2 ≤ k + 3. Note that in this situation

we clearly have

|Xk − Y | ≤ |Xk − qX | + |qX − X| + |X − Y | ≤ 2k + 2 jX+1 + 2k+1 ≤ 2k+2 ≤ 4|X − Y |

and

(A.5) min{δ(Xk), δ(Y)} ≥ c2k.

Applying Lemma A.1 there exists a good curve γk joining Xk and Y . Let γ =

γX ∪ γk, and note that γ joins X and Y . Moreover, since 2k ≤ |X − Y | < 2k+1 we
have that

`(γ) ≤ `(γX) + `(γk) . |X − Y | + |Xk − Y | . |X − Y |.

For Z ∈ γX , (A.3) yields δ(Z) ≥ c dist(Z, {X,Y}). If Z ∈ γk and dist(Z, {Xk,Y}) =

|Z − Y | we obtain that c|Z − Y | ≤ δ(Z) from the construction of γk. On the other
hand, if dist(Z, {Xk,Y}) = |Xk − Z|, using the last two inequalities in (A.2) we have
that 2k . δ(Z) since now ρ ≥ c2k by (A.5). Thus,

|Z − X| ≤ |Z − Xk| + |Xk − qX | + |qX − X| ≤
1
c
δ(Z) + 2k + 2 jX+1 . δ(Z).

This proves that γ is a good curve for X and Y and concludes the proof of Theorem
2.15. �
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577–654.

[HMM] S. Hofmann, J.M. Martell and S. Mayboroda, Uniform Rectifiability and Harmonic Mea-
sure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided
NTA domains, Int. Math. Res. Not. 2014, no. 10, 2702–2729.

[HMU] S. Hofmann, J.M. Martell and I. Uriarte-Tuero, Uniform rectifiability and harmonic mea-
sure II: Poisson kernels in Lp imply uniform rectifiability, Duke Math. J. 163 (2014), no.
8, 1601–1654.

[HMMM] S. Hofmann, D. Mitrea, M. Mitrea, A. Morris, Lp-Square Function Estimates on Spaces
of Homogeneous Type and on Uniformly Rectifiable Sets, Mem. Amer. Math. Soc. 245
(2017), no. 1159.

[JK] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially
accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147.

[Jo1] P.W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic mea-
sure, Harmonic analysis and partial differential equations (El Escorial, 1987), 24–68,
Lecture Notes in Math., 1384, Springer, Berlin, 1989.

[Jo2] P.W Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41–66.

[Lav] M. Lavrentiev, Boundary problems in the theory of univalent functions (Russian), Math
Sb. 43 (1936), 815-846; AMS Transl. Series 32 (1963), 1–35.

[LN] J.L. Lewis and K. Nyström, Regularity and free boundary regularity for the p-Laplace
operator in Reifenberg flat and Ahlfors regular domains, Journal Amer. Math. Soc. 25
(2012), 827–862.

[NToV] F. Nazarov, X. Tolsa, and A. Volberg, On the uniform rectifiability of AD-regular mea-
sures with bounded Riesz transform operator: The case of codimension 1, Acta Mathe-
matica 213 (2014), no. 2, 237–321.
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