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ABSTRACT. In the present paper we sketch the proof of the fact that for any open connected set
Ω ⊂ Rn+1, n ≥ 1, and any E ⊂ ∂Ω with 0 < Hn(E) < ∞, absolute continuity of the harmonic
measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable.

1. INTRODUCTION AND NOTATION

In what follows, Ω will denote a connected open set. As usual, using the Perron method and Riesz
Representation Theorem, we can define the harmonic measure of Ω with a pole at p ∈ Ω (denote it
by ωp) for any bounded domain and use a limiting procedure to extend this definition to unbounded
domains (see, e.g., [HM1, Section 3]).

We call a Radon measure σ on Rn+1 n-rectifiable if its (any) Borel support can be covered
by countably many (rotated) graphs of scalar Lipschitz functions on Rn up to zero σ measure (in
particular any pure point measure is rectifiable in this definition, but we will apply it to harmonic
measures, such measures never have point masses.)

The main result that we announce here is the following

Theorem 1.1. Let Ω be any open connected set in Rn+1, n ≥ 1 and let ω = ωp, for some p ∈ Ω, be
the harmonic measure on Ω. Let E be a Borel set, and let ω|E � Hn|E . Then ω|E is n-rectifiable.

A simple corollary is that if ω|E and Hn|E are mutually absolutely continuous then Hn|E is
n-rectifiable. In Besicovitch theory such sets are called n-rectifiable.

The structure of harmonic measures was a focus of attention of many mathematicians starting
with Carleson’s article [C], which proved that harmonic measure on any continuum in the plane has
dimension at least 1/2 + ε for universal positive ε. Without an ε the result was known for a long
time and was nothing but a re-interpretation of Köbe distortion theorem. Carleson’s result had a very
difficult proof, but Makarov found a novel approach that also established that harmonic measure on
any continuum on the plane has dimension exactly 1. Carleson’s and Makarov’s works generated
a fantastic amount of very difficult and revealing results about the structure of harmonic measure.
Topological restrictions (like being a continuum) and dimension played an important part from the
start. Let us mention that 1) for any planar domain any harmonic measure has dimension at most 1
(Jones–Wolff, [JW]); 2) there are no analogs of Makarov’s or Jones–Wolff’s results in dimension 3
and higher (Bourgain, [Bo], Wolff, [W]); 3) in dimension 2 (planar domains) if harmonic measure
on a continuum dwells on a good set (meaning that its Borel support can be covered by countably
many (rotated) Lipschitz graphs) then harmonic measure is absolutely continuous with respect to the
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surface measureH1 (Bishop–Jones, [BJ]). It is also shown in [BJ] that some topological restrictions
are necessary, for there is a 1-rectifiable set in a plane for which harmonic measure is positive and
Hausdorff measure is zero.

Notice that Theorem 1.1 establishes the converse to Bishop–Jones result: they claim that in R2

and with topological restriction (continuum) 1-rectifiable harmonic measure must be absolutely con-
tinuous with respect to measure H1. We claim that without any restrictions whatsoever and in any
Rn+1 the converse is true: if harmonic measure is absolutely continuous with respect to Hn, then
it is n-rectifiable. Moreover, our result is very local, one can start with harmonic measure restricted
to an arbitrary Borel set E, and again its absolute continuity with respect to Hn|E implies that
harmonic measure restricted to E is n-rectifiable.

In this respect, let us recall that two natural directions were considered in [HM1], [HM2], [HMU]:
1) geometry-to-analysis, when some sort of (say, scalar invariant) rectifiability of the boundary im-
plies quantitative claims on the density of harmonic measure with respect to Hn, 2) analysis-to-
geometry, when the absolute continuity of harmonic measure and Hn in a scale invariant fashion
implies the quantitative rectifiability of the boundary. As mentioned above, in geometry-to-analysis
direction Bishop–Jones in [BJ] found that certain additional topological properties are necessary.
But Theorem 1.1 shows that no such obstacles exist in the direction analysis-to-geometry.

This paper is a short announcement of the results in [AHM3TV], which in turn arises from the
union of two separate works, [AMT] and [HMMTV]. In [AMT], a version of Theorem 1.1 was
proved under the additional assumption that the boundary of Ω is porous in E (a certain topological
restriction). In [HMMTV] the porosity assumption was removed. Both [AMT] and [HMMTV] exist
only as preprints on ArXiv.

We finish this section with some notation and preliminaries. Given a signed Radon measure ν in
Rn+1 we consider the n-dimensional Riesz transform

Rν(x) =

∫
x− y

|x− y|n+1
dν(y),

whenever the integral makes sense. For ε > 0, its ε-truncated version is given by

Rεν(x) =

∫
|x−y|>ε

x− y
|x− y|n+1

dν(y), R∗,δν(x) = sup
ε>δ
|Rεν(x)|.

We also consider the maximal operator

Mn
δ ν(x) = sup

r>δ

|ν|(B(x, r))

rn
,

In the case δ = 0 we writeR∗ν(x) := R∗,0ν(x) andMnν(x) :=Mn
0ν(x).

Next, letHs∞ denote the Hausdorff content of order s. We recall a result of Bourgain from [Bo].

Lemma 1.2 (Bourgain’s Lemma). There is δ0 > 0 depending only on n ≥ 1 so that the following
holds for δ ∈ (0, δ0). Let Ω ( Rn+1 be a bounded domain, n+ 1 ≥ s > n− 1, ξ ∈ ∂Ω, r > 0, and
B = B(ξ, r). Then

ωx(B) &n,s
Hs∞(∂Ω ∩ δB)

(δr)s
for all x ∈ δB ∩ Ω.

Let us point out that it is not difficult to prove that if Theorem 1.1 holds on bounded domains,
then it remains valid for any open set Ω ⊂ Rn+1. We shall restrict our discussion here to the case
when Ω is bounded. Also, for brevity, we consider the case n ≥ 2 only. For details on these and
other issues we refer the reader to [AHM3TV].
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2. DAVID–MATTILA CELLS, DOUBLING CELLS

What follows is the sketch of the proof of our main result. The details should be found in
[AHM3TV]. To start, we consider the dyadic lattice of cubes with small boundaries of David-
Mattila associated with ωp. It has been constructed in [DM, Theorem 3.2] (with ωp replaced by a
general Radon measure).

Lemma 2.1 (David, Mattila [DM]). Consider two constants C0 > 1 and A0 > 5000C0 and denote
W = suppωp. Then there exists a sequence of partitions of W into Borel subsets Q, Q ∈ Dk,
with the following properties: 1) For each integer k ≥ 0, W is the disjoint union of the “cubes” Q,
Q ∈ Dk, and if k < l, Q ∈ Dl, and R ∈ Dk, then either Q ∩ R = ∅ or else Q ⊂ R. 2) For each
k ≥ 0 and each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈W, A−k0 ≤ r(Q) ≤ C0A
−k
0 , W ∩B(Q) ⊂ Q ⊂W ∩28B(Q) = W ∩B(zQ, 28r(Q)),

and the balls 5B(Q), Q ∈ Dk, are disjoint. 3) The cubes Q ∈ Dk have “small boundaries” – see
[DM] for a precise definition. 4) Denote by Ddbk the family of cubes Q ∈ Dk for which

(1) ωp(100B(Q)) ≤ C0 ω
p(B(Q)).

We have that r(Q) = A−k0 when Q ∈ Dk \ Ddbk and ωp(100B(Q)) ≤ C−l0 ωp(100l+1B(Q)) for all
l ≥ 1 such that 100l ≤ C0 and Q ∈ Dk \ Ddbk .

We use the notation D =
⋃
k≥0Dk. Observe that the families Dk are only defined for k ≥ 0. So

the diameters of the cubes from D are uniformly bounded from above. Given Q ∈ Dk, we denote
J(Q) = k. We call `(Q) = 56C0A

−k
0 the side length of Q. Observe that r(Q) ∼ diam(B(Q)) ∼

`(Q). Also, we call zQ the center of Q, and the cube Q′ ∈ Dk−1 such that Q′ ⊃ Q the parent of Q.
We set BQ = 28B(Q) = B(zQ, 28 r(Q)).

We denote Ddb =
⋃
k≥0Ddbk . Note that, in particular, from (1) it follows that

(2) ωp(3BQ) ≤ ωp(100B(Q)) ≤ C0 ω
p(Q) if Q ∈ Ddb.

For this reason we will refer to the cubes from Ddb doubling. As shown in [DM, Lemma 5.28],
every cube R ∈ D can be covered ωp-a.e. by a family of doubling cubes.

3. GOOD AND BAD CELLS. THE ESTIMATE OF R ON GOOD DOUBLING CELLS

We introduce the notions of bad and good David–Mattila cells. First we need the n-dimensional
Frostman measure. Let g ∈ L1(ωp) be such that ωp|E = gHn|∂Ω. Given M > 0, let

EM = {x ∈ ∂Ω : M−1 ≤ g(x) ≤M}.

TakeM big enough so that ωp(EM ) ≥ ωp(E)/2, say. Consider an arbitrary compact set FM ⊂ EM
with ωp(FM ) > 0. We will show that there existsG0 ⊂ FM with ωp(G0) > 0 which is n-rectifiable.
Clearly, this suffices to prove that ωp|EM

is n-rectifiable, and letting M → ∞ we get the full n-
rectifiability of ωp|E .

Let µ be an n-dimensional Frostman measure for FM . That is, µ is a non-zero Radon measure
supported on FM such that µ(B(x, r)) ≤ C rn for all x ∈ Rn+1. Further, by renormalizing µ,
we can assume that ‖µ‖ = 1. Of course the constant C above will depend on Hn∞(FM ), and
the same may happen for all the constants C to appear, but this will not bother us. Notice that
µ� Hn|FM

� ωp. In fact, for any set H ⊂ FM ,

(3) µ(H) ≤ CHn∞(H) ≤ CHn(H) ≤ CM ωp(H).

The cell Q ∈ D is called bad if it is a maximal cube satisfying one of the conditions below:
– high density (HD): ωp(3BQ) ≥ A`(Q)n, where A is a suitably large number,
– or low µ (LM): µ(B(Q)) ≤ τωp(Q), where τ is a suitably small number.
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Any cube which is not contained in a bad cell will be called good.
Notice that

∑
Q−bad,Q∈LM µ(Q) ≤ τ

∑
Q−bad,Q∈LM ω

p(Q) ≤ τ ‖ω‖ = τ = τ µ(FM ). There-
fore, taking into account that τ is small, that µ is dominated by Hn and that ωp|FM

and Hn|FM

are boundedly equivalent, we conclude that ωp(FM \
⋃
Q−bad,Q∈LM Q) > 0. Also, taking into

account that upper density of ωp, θ∗ωp(x) = lim supr→0
ωp(B(x,r)

rn , is finite ωp|E-a.e. (again because
ωp|E � Hn|E), for A large enough, we can dispose of (HD) cubes as well. Ultimately, a little more
careful consideration shows that ωp(FM ∩

⋃
Q∈Ddb

0
Q\
⋃
Q−badQ) > 0 1. Notice also that the (HD)

condition on bad cubes implies that

(4) Mnωp(x) . A for ωp-a.e. x ∈ FM \
⋃
Q−badQ.

It remains to concentrate on good cells contained in some cube from Ddb0 . We start with

Lemma 3.1. For any good doubling cell R one has the estimate∣∣Rr(BR)ω
p(x)

∣∣ . C(A,M, τ, dist(p, ∂Ω)) for any x ∈ R.

The idea is to reduce the desired bound to certain estimates on the Green function of Ω, which
can be written as

G(x, y) = E(x− y)−
∫
∂Ω

E(x− z) dωy(z) for m-a.e. x ∈ Rn+1,

where E is the fundamental solution for the Laplacian. Since the kernel of the Riesz transform is
K(x) = cn∇E(x), essentially differentiating the expression above and using a trivial estimate on
∇E(x) in terms of distance from p to ∂Ω, we are left with considering the gradient of the Green
function 2. In fact, all we need is the bound 1

r |G(y, p)| . 1 for all y ∈ B(x, r) ∩ Ω, r ≈ r(BQ).
To this end, take δ > 0 from Bourgain’s Lemma and fix a point xR such that µ(B(xR, δr(R)))

is maximal (or almost maximal) possible. Denote BR := B(xR, δr(R)). Then automatically,
δnµ(R) . µ(BR). Thus, by Bourgain’s lemma and by (3) we have infz∈∂(2BR) ω

z(3BR) ≥
c µ(R)
r(R)n . This very easily implies (for n ≥ 2 at least) that for every z ∈ ∂(2BR) and every y ∈ BR

one has 1
r(R)G(z, y) . ωz(3BR)

µ(R) . Now the maximal principle yields (we also use that R is good and
doubling in the last inequality)

(5) ∀y ∈ BR, 1

r(R)
G(y, p) .

ωp(3BR)

µ(R)
. τ−1 ,

as desired. The similar inequality can be proved for n = 1 but requires more work.
Consider now the case when Q is good and non-doubling, Q /∈ Ddb, such that, in addition,

Q ⊂ R0, where R0 ∈ Ddb0 . Let R ⊃ Q be the cube from Ddb with minimal side length containing
Q. Then for all y ∈ BQ we have

|Rr(BQ)ω
p(y)| ≤ |Rr(BR)ω

p(y)|+ C
∑

P∈D:Q⊂P⊂R
θωp(2BP ),

where θωp(B) := ωp(B)
r(B)n . The first term is bounded by some constant as above since R is good and

doubling. The sum is bounded by θωp(4BR) as for all such cubes

ωp(100B(P )) ≤ A−10n(J(P )−J(R)−1)
0 ωp(100B(R))

see [DM, Lemma 5.31]. Finally, θωp(4BR) is bounded by A as R is not high density – see (HD).
This combines with Lemma 3.1 to yield the key theorem:

1. Here we start working with a slightly enlarged collection of doubling cubes, but let us disregard these details in the
present brief sketch.

2. In a careful argument, one has to utilize a smooth truncation of the kernel of the Riesz transform. The difference
between the latter andRr(BR)ω

p(xR) is fairly directly controlled by theMnωp which is in turn controlled by (4).
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Theorem 3.2. Let GM := FM ∩
⋃
Q∈Ddb

0
Q \

⋃
Q−badQ. Then ωp(GM ) > 0 and

R∗ωp(x) . C(A,M, τ, dist(p, ∂Ω)) for ωp-a.e. x ∈ GM .

4. HARMONIC MEASURE: ITS SINGULAR INTEGRAL AND ITS RECTIFIABILITY

Theorem 4.1. Let σ be a Radon measure with compact support on Rn+1 and consider a σ-measura-
ble set G with σ(G) > 0 such that

G ⊂ {x ∈ Rd :Mnσ(x) <∞ and R∗σ(x) <∞}.

Then there exists a Borel subset G0 ⊂ G with σ(G0) > 0 such that supx∈G0
Mnσ|G0

(x) <∞ and
Rσ|G0

is bounded in L2(σ|G0).

This result follows from the non-homogeneous Tb theorem of Nazarov, Treil and Volberg in
[NTrV] (see also [Vo]) in combination with the methods in [To1]. For the detailed proof in the case of
the Cauchy transform, see [To2, Theorem 8.13]. The same arguments with very minor modifications
work for the Riesz transform. This result applies to quite general antisymmetric Calderon-Zygmund
operators. However, the next theorem uses very prominently that we work with the Riesz transform,
and that its singularity is precisely n. It is the main result in [NToV2], which is based in its turn
on the solution of (co-dimension 1) David–Semmes conjecture in [NToV1] (see also [HMM] in the
context of uniform domains).

Theorem 4.2. Let σ be Radon measure on Rn+1 and σ � Hn. If the vector n-dimensional Riesz
transformR is a bounded operator on L2(σ), then σ is rectifiable.

By the latter theorem (or the David–Léger theorem [Lé] for n = 1), we deduce that ωp|G0
is

n-rectifiable.
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