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VERTICAL VERSUS CONICAL SQUARE FUNCTIONS

PASCAL AUSCHER, STEVE HOFMANN, AND JOSE MARIA MARTELL

ABSTRACT. We study the difference between vertical and conical square functions
in the abstract and also in the specific case where the square functions come from
an elliptic operator.

1. INTRODUCTION

The purpose of this article is to draw attention to differences between vertical and
conical square functions. By vertical square functions, we mean the usual Littlewood-
Paley-Stein functionals. By conical square functions, we mean the area functionals of
Lusin type. Our interest in this subject was triggered by the recent work of Dragicevié
and Volberg [DV]. Let us first describe what they proved.

Let A = A(x) be an n X n matrix of complex, L*> coefficients, defined on R", and
satisfying the

Aél* < Re A - € and | A€ - (| < Af¢[[C],
for £, € C™ and for some A, A such that 0 < A < A < co. We define a second order
divergence form operator
Lf =—div(AVY),

which we interpret in the sense of maximal accretive operators via a sesquilinear form.

Proposition 1.1 ([DV]). If A is real and 1 < p < oo, there is a dimension free
bilinear estimate

an [ @IV vt < Co A gl

Here p' is the conjugate exponent to p.

Set aside the dimension free bound, this result is striking in view of the following
vertical square function estimate.

Proposition 1.2 ([Aus]). If A is real and 1 < p < q4+(L),

o) p/2
(12) [ ([ 1w < conanyis
» \Jo
Furthermore, this estimate fails for p > q (L) (if ¢+ (L) < o0).
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The number ¢ (L) has been introduced in [Aus|, as well as the three other numbers
p—(L), g_(L) and p, (L) as limits of the following intervals. The interval (p_(L), p+ (L))
is the maximal open interval where the heat semigroup {e~'X} ¢ is uniformly bounded
on LP or equivalently the semigroup satisfies LP — L7 off-diagonal estimates when
p—(L) <p<q<pi(L), see below. Analogously, (¢-(L),g4+(L)) is the maximal
open interval where {\/tVe ™ },5 is uniformly bounded on LP or satisfies L? — L off-
diagonal estimates when ¢_(L) < p < ¢ < g+ (L) . These intervals also determine up
to endpoints the range of L? boundedness of the functional calculus, Riesz transform
and vertical square functions. One has p_(L) = ¢_(L), (¢+(L))* < p+(L) —where
q¢* = qn/(n — q) when ¢ < n and ¢* = oo otherwise. Also, p_(L) = ¢_(L) = 1 and
p+(L) =q+(L) = o0 if n = 1. For n = 2, or for n > 3 and L with real coefficients, the
same is true except that one can only say that ¢, (L) > 2 for n > 2 and this is sharp.
Additionally, if n > 3 and A with complex coefficients, then p_(L) < 2n/(n + 2)
and p; (L) > 2n/(n —2). See |Aus| for full details. Also [HMMc| proves the latter
inequalities to be sharp using an example of Freshe [Fre].

Since ¢4 (L) can be arbitrary close to 2, one cannot deduce the bilinear estimate in
Proposition from the vertical square function estimate. So the bilinear estimate
seems to exhibit some special feature that the vertical square function does not have.
Indeed, bilinear integrals as above can also be estimated using conical square functions
thanks to an averaging trick that appears in [ES] and [CMS]:

o=z ([ rwocon(z2) )

with A the indicator function of the unit ball and b,, its volume, so that

J[. P06t
R7H!
_ (/~/< |2dydt)1/2
|z— y|<\f tn/2

Hence, applying this to F(y,t) = V,e " f(y) and G(y,t) = V,e g(y) it becomes
natural to expect the corresponding conical square function estimate holds in a larger
range of p than the one for (1.2]). Indeed, we shall show as part of Theorem

< Cn”ShF”pHShGHp’

with

Proposition 1.3. If A is real and 1 < p < oo,

—tL Qdydt v/ p p
as [ ([ metwPEE)  de < Crna iy
Rn lz—yl<v

Thus holds at least with a dimension dependent bound . We shall also study
for all complex A and show it holds when p_(L) < p < oo and fails when
p < p_(L) (if p—(L) > 1). This is consistent as p_(L) = 1 when A is real. This also
improves [Aus, Corollary 6.10] where was obtained in the range p_(L) < p <
¢+ (L). The bilinear inequality as in Proposition then holds for a restricted range
p—(L) <p <p_(L) = ps(L7).

This leads us to the main point of this article about comparison between vertical and
conical square functions. Propositions and show that the ranges of p below
2 are the same but differ above 2. One may wonder whether there is an abstract
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principle behind this. But this is not the case. Aside from p = 2 for which the
averaging trick yields that they are equivalent, vertical and conical square functions
only compare one way for p # 2 in the sense that one is automatically controlled by
the other and simple examples show the converses fail. More precisely, for p > 2, it
is well-known and we shall recall why in Section [2, that a vertical square function
controls the corresponding conical one. We shall also prove, and it seems this is not in
the literature, that for p < 2, the conical square function controls the corresponding
vertical one. Comparing the ranges for and already furnishes a counter-
example for the converse in the p > 2 range and an example where the converse holds
in the p < 2 range. We note this can be done on a space of homogeneous type. We
shall also study some weigthed comparisons using extrapolation.

We finish this introduction by the following observations. As explained before the
range of p for (I.2) is tight to the range of L? boundedness for v/tVe *r. As the
p < 2 range for is a priori smaller than or equal to the p < 2 range for (1.2), we
obtain the best possible result by showing they are equal. For p > 2 we exhibit a new
phenomenon.

Our results show that the p > 2 range for is linked to the rate of decay in
the L? off-diagonal estimates. If the latter is fast enough then one obtains the full
range (2,00) as it is the case in . In fact this L” estimate amounts to proving
boundedness of some vector-valued operator from LP into the parabolic version of
the tent space T% of Coifman, Meyer, Stein [CMS]. When the L? off-diagonal decay
is fast enough we can prove, basically following the Fefferman-Stein argument, that
|V,e  f(y)|*dydt is a parabolic Carleson measure for f € L, which is nothing
but an L>™ — T5° estimate. One can then interpolate for 2 < p < oo. When the
rate of decay is slow (for example polynomial with small exponent) this argument
does not seem to adapt and one needs other tools. This is the case for the conical
square function based on ¢(t?L) when A is complex and ¢ not smooth as the origin.
An example is the Poisson semigroup since ¢(z) = e in this case. A different
ingredient then comes into play, which is the decay at 0 of ¢ or the order at which
it vanishes, combined with the definition of p, (L). For instance, in Section [3.4] below
we shall prove the following and this is the p > 2 range that is interesting for our
discussion here.

Proposition 1.4. For m a non negative integer and f € LP, then

e dydt\ "
wo ([ et PR ) < iy
n T—y|<t

whenever

np (L)
n—(2m+ L)py(L)

For 2m + 1)py (L) > n then the right hand side in (1.5 becomes oo.

(1.5) p-(L) <p<

If L had been the Laplacian, 2m + 1 would just be the number of vanishing mo-
ments for the kernel of the convolution operator Vy,t(t2L)me*tL1/2 or the number of
derivatives in front of the semigroup. Here we have 2mth order “vanishing” coming
from the exponent of the second order operator L, and +1 comes from the gradient.
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A few comments are in order. We first point out that, since vertical and conical
square functions are equivalent in L2, one may integrate by parts in ¢ and use prop-
erties of the semigroup to pass from any choice of non-negative integer m to another,
in the case p = 2. In fact, one may even take m of the form m = k + 1/2, with k a
non-negative integer. For p > 2, different values of m apparently need no longer be
equivalent; the conclusion of the proposition yields a better range of p for larger m
(up to the critical value with (2m + 1)p, (L) = n).

In particular, the case m = 0 of gives standard area integral estimates for
weak solutions of the equation

(1.6) O*u + div AVu = 0,

When A is real (in which case p_(L) = 1, p;(L) = o0)), such estimates may be
obtained as a special case (the “block matrix” case), of the result of Dahlberg, Jerison,
Kenig in [DJK], using the fact that one has non-tangential estimates for the solutions

u(-,t) = e VL fin every LP,1 < p < oo. The present argument allows for a direct
(and simpler) proof than that in [DJK] in this special case. Moreover, it has the added
virtue of applying to the case of complex coefficients. Of course, we do not address
the question of “full” coefficient matrices (i.e., those that need not be in block form),
as is done in [DJK].

Acknowledgments. This work was started years ago while the authors were all
visiting the Universidad Auténoma in Madrid on the occasion of a special program in
harmonic analysis and, after a latency period, finished this year while the authors were
all visiting the Center for Mathematics and Applications of the Australian National
University. We are very grateful to these institutions for hospitality and financial
support. Also we want to express our thanks to O. Dragicevi¢ and A. Volberg who
showed us their work at an early stage.

2. VERTICAL VERSUS CONICAL

For a locally square integrable function f on RTFI, denote

dydt\"*
st = ( | [P ve) . aewe

1/2
Vf(:v):(/t 0|f<x,t>\2%) seRt

S f is lower semi-continuous hence a measurable function. Measurability on V f follows
from the local square integrability of f.
We remark that

and

1SN = ballV fII3
with b,, the volume of the unit Euclidean ball.

2.1. Comparison in Lebesgue spaces.

Proposition 2.1. Let [ be locally square integrable on Rﬁfl.

(a) For2 < p < oo,
1SFll» < Clo, M)V fllp-
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(b) For 0 <p <2,
V£l < Clo,n) IS fllp-
(¢) The converses fail for all p # 2.

Proof. Part (a) is standard and appears already in [Stl p. 91]. For the sake of self-
containment, we recall the argument. As p > 2, ¢ = p/2 > 1 and we can estimate
ISfll, =l (Sf) ||p/2 by dualizing against a function h € LY. Now, the averaging trick
applies and yields

[ (s ‘b// ft) <|B<@1/, o B(yth“)d“')@

<t [ (VPP dy
< bV B

and one concludes using the boundedness of the maximal operator over balls M in
LY,

Let us now prove Part (b). Fix 0 < p < 2, f with Sf € L? and A > 0. Since
xz — Sf(z) is lower semi-continuous, the set O = {Sf > A} is open. Let F' be the
complement of O in R", R(F ) be the union of the cones [r — y| < t with vertices
z € F. We also set O = {z € R: M(xo)(x) > 1/2} and F =TR'\O. We
note that O C O since O is open, and thus F ¢ F. If y € F and t > 0 we have
|ON B(y,t)|/|B(y,t)| <1/2 and consequently, |F' N B(y,t)|/t" > b,/2. Hence,

/F(Sf)Q(x) dy — /%F //xm 0P dj;iifldt
- / /R(F 'FL,WU@,W@.

> —AQ\{Vf Sy avall

Besides, for 0 < r < p, using the weak type (1,1) for M,

{VF>An0|<[0] <2370 < 2 Sn/(Sf)T(x)dx
A Jo

Hence,

[ war@ds=p [ vy

0

g@ P21 / (Sf)*(x) dzdA
0 Sf<A

n

+2p- 3”/ )\prl/ (Sf) (x) dzdX
0 Sf>A
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-—(méfpy+?;f)/;wﬁ%@dx

We now finish the proof with Part (¢). It is convenient to introduce

Kﬁyq 5k YU@%jLJﬂxm@

Note that Sf = S(|f[>)Y/2 and Vf = V(|f[>)"/2, so that, for a locally integrable
function f on R"+1 we seek to disprove the inequalities

(2.1) ||§f||p <C ||‘~/f||pv 0<p<I;

(2.2) VIl <ClISfllp 1<p<co.

We write the argument so that it is easy to adapt it to a space of homogeneous type,
denoting by v(B) the volume of a ball and using implicitly the doubling property in
the argument. See Remark below.

For we consider fy(x,t) = N1t x(x) xo(t/N) with N > 1 and where y is
the characteristic function of the unit ball B(0,1) and y, denotes the characteristic
function of the interval [0,1]. On the one hand,

Vmuvzlemeﬁ N <yA dt = x(x)

and therefore 3
IV fnllp = v(B(0,1)).
On the other hand, fixed |z| < N/8, if |y| < 1 we have |z —y| < N/4 (provided N > 8)
and then
dydt

Sfy(z)=N"" /I:c e y) Xo(t/N )—(B(y,t))
/|y|<1/|x y|<t<N v( dtdy ))

> N / / dtdy
\y|<1 N/4<t<N v(B(z t))

This implies
IStelp= [ Sprdszc
2| <N/8
Gathering the obtained estimates
1Sl - o v(B(O,N))"~
IVinllp —  v(BO,1)r
Thus (2.1)) cannot hold as v(B(0, N)) increases to oo and 1 —p > 0.
2.2)

For (2.2) we consider fy(z,t) = tv(B(x,1)) xn () xo(t) with N > 1 where xy is
the characteristic function of the ball of radius 1/N. We first calculate V fy:

Vhso) = [ Ifstenl§
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> () / o(B(x, 1)) dt

1/2

> C xw(z)o(B(r, 1))

> C xn(z)v(B(0,1))
and therefore

IV fxllh = Co(B(0,1/N))o(B(0, 1))".

We find an upper bound for ||Sfyl|l,. We notice that if |z[ > 2, [y[ < 1/N and
0<t<1wehave|rt—y|>12>t(if N>1). Thus, Sfy(xz) =0if || > 2. On the
other hand, for all x € R™:

Stv(a [LMQQ y) dydt < v(B(0,1/N)).

Then, we obtain

HS’fNHg = /||<2 Sty (z)P dr < Cv(B(0,1/N))v(B(0,1))

so that ~
ISl _ . o(B(O.1/N)
IVinllp = (B0, 1))
which goes to 0 as N — oo if p > 1. O

Remark 2.2. The reader can notice that this theorem generalizes to spaces of homoge-
neous type X with infinite volume and at least one point that is not an atom (which

plays the role of 0). That is R is changed to X x R and in the definition of Sf(z)

dp(y)dt
the measure has to change to ; By

2.2. Weighted estimates via extrapolation. Let us present a weighted version of
Proposition using extrapolation. That is, L? estimate with suitable Muckenhoupt
weights imply LP comparisons in weighted spaces. Let A,, 1 < p < oo, denote
the classical Muckenhoupt classes of weights and RH,, 1 < p < oo, the class of
reverse Holder weights. See for example [AM]. Again everything extends to a space
of homogeneous type as in the remark above. We stick to the Euclidean space for
simplicity.

Proposition 2.3. Let f be a locally square integrable function on R’ffl.

(a) For2 <p<oo andw € A,

1S fllzow) < Cp, w) |V fllo(w).-
(b) For 0 <p <2 andw € RHgpy

HVfHLp w) < Cp,w) [[SF ] o w)-
Proof. We begin with Part (a). Given any w € A, we easily have

dydt
23) 15130 = / i PO wo) do
R~ |z— y|<t

=0, / rBé/, >f)dytdt'
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We note that if w € Ay, that is, Mw(y) < [w]a, w(y) for a.e. y € R™ then we have
forallt >0

% < Mu(y) < [l w(y),  ae ye R

Then, we obtain

151 < bululas [ [ 1 0P w0 dy = bl IV

Next we invoke the Rubio de Francia extrapolation theorem (see [Rubl, [Gar] for
the original result, and [CMP1], [CMP2] for a statement written in terms of pairs
of functions) for the pairs ((Sf)% (V f)?): the starting estimate in L'(w) for every
w € A, implies that for every 2 < p < oo and w € A/,

1S fllzo(w) < Cpsw) [V fllpr(w)

Strictly speaking, the argument applies whenever the left hand side is finite. This is
the case if f is a priori bounded with compact support in RTI. Monotone convergence
implies that the inequality is valid for all locally square integrable function f.

For the reverse estimate in Part (b), we recall that w € RH, if for every ball B we
have

w(z) < [w|pa, — B / y) dy, a.e. v € B.

Then, using Lebesgue’s differentiation theorem we obtain that for a.e y € R™ and for

all ¢t > 0
w(y) < sup /
0<7<t y , \ y T)

< [w]pm,, sup /
0<r<t |B(y77—)| B(y,T) |B Y, 1 | yt)

- b, 20
= 1By, 1)l

Thus, for every w € RH, by ({2.3] . we have

IV A2y = / | P way

(B(y,t)) dydt
s /n / |B(y, ot
= [w|rm., n1||Sf|IL2(w)

Considering the pairs (F,G) = ((V f)?, (Sf)?) we have obtained that

z)dz dx

/ F@)w(@)dr < ol b [ G@w()dr,  Vw e RH.

Rn
We take an arbitrary py with 0 < pg < 1 and set ¢qo = r = 1. Then the last estimate
holds in particular for every w € A,/,, N RH,ry. We apply the extrapolation
theorem for limited ranges [AM) Theorem 4.9] (see also [CMP2]) to conclude that
for all pg < q < qq

/ F(z)w(z)dx < C, / G(z)?w(z) dx, Vw € Ag/pe N RH gy /gy,
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whenever the left hand side is finite. This is the case when f is bounded with compact
support in R?fl and can be removed by monotone convergence to allow all locally
square integrable function f. Next, we fix 0 < ¢ < 1 and w € RH(/5 . Then,
w € A and there exists 0 < py < ¢ such that w € A,/,,. Thus we can apply the last
estimate since 0 < py < ¢ < 1= qp and w € Ay/p, N RH 4, /gy . Hence we have proved
that for every 0 < p < 2 and w € RHy/py

IV fll ey < Cp,w) [|Sf|l e w)
O

Notice that from the argument one sees that the extrapolations take initial estimates
in L'(w). Indeed, from the beginning one could have worked with the operators S and
V defined above. The argument just presented shows that for every locally integrable
function f on R if 1 < p < 0o and w € A, then

1S Fll Loy < Co,w) IV Il o)
and if 0 < p <1 and w € RH(ypy, then

IV £l trwy < C(pyw) 1Sl 1o (w)

3. SQUARE FUNCTIONS FOR TYPICAL FUNCTIONS OF L

Consider the operator L defined in the Introduction. We introduce the following
conical and vertical square functions

—tL1/2 gdydt
D= ([f, e k)

Gp<f><y>=(/ 19, <>|2‘“) ,

0= ( //| e >r2‘j£/d§) ,

= ([ 1w tswra) "

The P subscript refers to the fact that we are dealing with the Poisson semigroup
e~ for L. The h subscript refers to the heat semigroup e **. The curly letters
are for the conical square functions and the capital letters for the vertical ones. From
our general observations we know that ||Gp(f)|l, S [|Gp(f)|l, for 2 < p < oo and
\Gp(f)ll, S 11Gp(f)]p for 0 < p < 2 and similarly for the heat versions by making a
change of variables in t. Note that these square functions all contain a spatial gradient.
Hence we are not working within the functional calculus of L.

We want to compare the LP norms of each square functions with the L” norm of
the original function f.

For p = 2, a mere integration by parts (see [Aus|) yields that

Ge(Pllz + 1GR(Hl2 = COA D)1l

As seen above, conical square functions behave as the vertical ones in L2.
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We turn to a summary of results on LP. Let p* = n"Tpp if p < n and oo otherwise. Let

us remind the reader that the exponents py (L), q+(L) were defined in the introduction,
in the discussion following the statement of Proposition [1.2]

Theorem 3.1. (1) G}, is bounded on LP for p_(L) < p < q+(L).

(2) Gy, is bounded on LP for p_(L) < p < 0.

(3) Gp is bounded on LP for p_(L) < p < q+(L).

(4) Gp is bounded on LP for p_(L) < p < p4(L)*.

The upper bounds are optimal except maybe for Gp. The lower bounds are all opti-
mal.

The converse estimates || f|l, < |lg(f)|l, are valid for allp € (1,00) and f € LP N L?
and all four square functions. Hence, each defines a new norm on LP for p in the
corresponding range above.

Fix p € (0,7/2) and 1 < p < co. We say, following [Aus|, that a family of linear
operators (7%).es, satisfies LP — L? off-diagonal estimates if there exist constants
¢, C such that for all z € ¥, := {z € C*;|argz| < u}, all Borel sets E, F' and all
f € LP(E), we have

cd(E,F)?
(3.1) IT2(F XE) oy < C L2670 F || fllooey

This holds for p < 7/2 — w with w the type of L, T, = (zL)™e*F with p_(L) <
p<q<py(L)and T, = |2|"?V(2L)"e ! with q_(L) = p_(L) < p < q < q(L), for
any non-negative integer m. See [Aus, Chapter 3.

For 1 < p < oo, we recall that the tent space T4 denotes the space of locally square
integrable functions in R*! such that Sf € LP(R™) with the notation of Section .
The norm in 7% is given by [|Sf]|, as defined in Section [2l Note that changing the
aperture of cones yields equivalent norms. For p = oo, we let T5° be the space of
locally square integrable functions in ]Ri“ such that

dydt
f sup ( // 2 ) < 00,
I/l B oy 7

the supremum being taken above all balls and rg denotes the radius of B. The spaces
TP, 1 < p < oo, form a complex interpolation family. For more see [CMS]. Note that
the LP boundedness of a conical square function reformulates canonically as an L? to
T? boundedness.

We first prove boundedness and sharpness for each square function. We consider
next the converse inequalities globally.

3.1. Proof of Theorem for Gj,. This was treated in [Aus]. There the range of
p is shown to be the largest possible open set.

3.2. Proof of Theorem for G,. For p < 2, it is in [Aus|. For p = oo, we first
obtain the boundedness of f — tVe L f from L™ to T5° by a well-known argument
of Fefferman-Stein [ES]. More precisely, we fix a ball B and write f = fioc + falob
where fioc = f xap. Using the L? boundedness of Gy,

dx dt 1
||th10(3||2 ~

1 2
Ve 1L oe 2 oc 2

\B!
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Next, the off-diagonal decay (3.1]) with p = ¢ = 2 for t'/2Ve~** implies for some
0<e¢C<oo,

j .2
0437‘3

1 2
— tVe P E (@) P de < C e 2 ][ x)|? dz
5 [V @l <o e i)

j>2
which, integrated against dt/t in ¢t € (0,75), yields a bound by || f2-

Then interpolate this estimate with the boundedness from L? to T, to get bound-
edness from LP to T3, which is the same as the L? boundedness of G, by rescaling
t? — t in the integrals.

Note that compared to [Aus], the upper bound improves from ¢, (L) to co and is
of course optimal. As for the lower bounds, we have |G, f|, < ||Gnf]l, when p < 2.
Hence the fact that p_(L) is optimal for G}, (see [Aus]) implies the same for Gj,.

3.3. Proof of Theorem for Gp. We begin with removing the V part in Gp
when ¢_(L) < p < q4(L). We know that VL~'/2 is bounded on L? for p in this range
[Aus]. So by vector-valued (in the Hilbert space H = L*(R*, dt/t)) extension ([Gral,
Proposition 4.5.9]), we have that the

IGpfll, < Cllgpflly, a-(L) <p<q(L)
with

orif)ie) = (/m ‘t“”e‘““f<x>l2%)l/2.

Next, [HM| Lemma 7.2] using the subordination formula

(3.2) = c / s,
o Vs

proves the pointwise inequality gp < C§, with

e = ([ e pd)

0
and the latter is bounded on LP for p_(L) < p < p4(L). This can be proved by
adapting line by line [Aus, Theorem 6.1]. This also follows from Le Merdy’s theorem
[LeM), Theorem 3].

We conclude by noticing that p_ (L) = ¢-(L),q+(L) < p+(L) (when ¢4 (L) < 00).
This finishes the proof.

That the bounds p_(L) and ¢4 (L) are sharp follows by the same argument as for
Step 7 in [Aus, Theorem 6.1].

3.4. Proof of Theorem for Gp. More generally, we shall discuss here the proof
of Proposition [L.4] for which Theorem (4) represents the case m = 0. We shall
treat the case m > 0 explicitly only when p > 2, as the cases m = 0 and m > 0 may
be treated by the same argument when p < 2.

This part of the proof of Theorem (and more generally, the proof of Proposition
is the most involved as it does not follow from other known arguments in a simple
way. For p = 2, this is classical integration by parts. We then present arguments for
p_(L) < p < 2and 2 < p < py(L)". That p_(L) is sharp follows by the same
argument as for Gj,.
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3.4.1. p < 2. We present two proofs. The first one uses the recent theory of Hardy
spaces adapted to L from [HM|, [HMMc| or from [BZ] and the second one adapts
arguments in [Aus| to prove instead weak-type bounds. We remark as above that the
same proofs apply to prove . We shall omit details and stick to m = 0.

Proof 1. Consider the Hardy spaces H? defined in [HM] for p = 1 and [HMM(d] for p >
1. The H} — L' boundedness of Gp is exactly [HM) Theorem 5.6]. Then interpolation
(see [HMMd, Lemma 4.24]) with the p = 2 case, shows H} — L? boundedness of Gp.
Finally, identification of H} with L? if and only if p_(L) < p < p4(L) proved in
[HMMcdl, Proposition 9.1] concludes the argument.

We mention that one can also use the abstract Hardy spaces developed by Bernicot
and Zhao in [BZ] and the interpolation further developed in [Bell]. Namely it suffices
to prove an L' estimate on some abstract atoms (that is an Hp,,,, to L' estimate with
H} 4, as in Section 3.3 of [BZ]) and then interpolate. By checking details and values
(left to readers) from the clear presentation in [Be2|, one exactly finds the range for
L? boundedness when p < 2. This theory, compared to the [HM] theory, has the
advantage of not caring much about the “right” definition of the Hardy spaces as this
is not needed for the purpose of interpolation. O

Proof 2. We proceed as in [Aus, p. 61]. We need to adapt the proof of [Aus, Theorem
1.1] to the present situation. We take A, = I — (I —e " X)N with N > 1 an integer
to be chosen and follow the proof of that result with T'= Gp and p_(L) < p < 2. As
Gp is bounded on L? and A, satisfies off-diagonal estimates in the range (p_(L), 2] it
suffices to show that

(33)  I=|{rer"\UdQ:: gP(Zh> ) > a/3 <_/ F()P da

where h; = (I — A,,)b; and r; is the sidelength of the cube @Q); given by the Calderén-
Zygmund lemma [Aus, Lemma 1.3]. We use Chebichev and Fubini

[<32 gp<2h)

R™\U;i4 Q;

1/2 Qdydt
=— S Ve Ry dz
/]Rn\u,AQz //|:c y|<t p | vt ( )|) tntl
a —tL/2, 2[B(y,t) \ Uid Q| dy dt
S e
_s71/2 2 |B y,t UZ4Q1 dydt
// (X ea®itVue " 1)) L
Y 2[B(y,t) \ Uid Q| dy dt
+ / / (D" o) 1t Vyse # hity) ) . t
+ i

1
- @(Iloc + Iglob)-
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We estimate I),.. Notice that since y € 2Q; we have that B(y,t) C 4Q; fort < cr;.
Then, using that the collection {2 Q;}; has bounded overlapping we obtain

o0 3 2 dy dt

Lioe 5/ / (ZX2Qi(y) [tV e tLl/Zhi(y”) yT
> 47 1/2 dydt
S Z/Qi/ Ve " hz’(y)|27

/ / |tv _+ /2 (>|2dydt

dy dt
S AT

& 12 d dt
SO I N e

where we have used the solution of the Kato conjecture [AHLMCcT] to replace V, by
LY2. Next we use the subordination formula (3.2), Minkowski’s inequality and the
change of variable t — t/ := /4 s,

* _ 1/2 dydt
R
o o t 2L dy dt\1/2
< —s YLV, 2_) d
<[ L oSS a
s (). [ enretnep®) s
0 cr?/s JR™ t

Next we take a = % — 5 and use the square function estimate of McIntosh-Yagi based

on (t L)@tD/2 e=tL,

([ [ 1 meetengp 20y

T t

Rn
o o dy dt\1/2
<) es/ (e Lyt pon e Y g

0 crz/s R t

00 a/2 1/2
/ / / tL (a+1)/2 7tL(L a/Qh )( )]2—dy) ds
0 n

SE a/zhillz S Mhallp = i [0 = Ar)billp,

~ 1

AN

where we have used |Aus, Proposition 5.3] in the last inequality. To conclude we use
that I — A, = (I — e "* )" is uniformly bounded on L? and the CZ lemma

fioe £ i b} S 0 Bor QPP S o B 1

sar [ @l
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Next we estimate Igon. We write C;(Q;) = 2711 Q; \ 27 Q;, 7 > 1. By duality we
can take a function 0 < H € L*(R%™, M) with norm 1 such that

_ 1/2 2dy dt\1/2
i s ( // ZXR% Ve hily)l) =)
4 L1/? dy dt
= [T e )
;i Y0 "\2Q;
= . o dy dt
< 21Q [ Ve P ) ™
Z; o Jeon 7 ¢
> . & 1/2 dydt 1/2
< 2ﬂ”|Qi|</][ |tv,te—t“hi(y)\2—)
o0 dy diy 1/2
([ Hwert)
o Jaitio; t
< 27"(Q;] I essinf M H (y)'/?,
_ZZI Qi Lij ess inf MH (y)

where H(y fo )2dt/t. We estimate I;; by the subordination formula.
Minkowsk1 S mequahty and the change of variable ¢ — t' := {?/4 s,

o0 o0 t 2 2 dy dt\1/2
]z‘jf,/ 6_5</ ][ ‘ Vye_TsLhi(y) y_) ds
0 o Jejy Vs t
&0 &0 t 2 2 dy dt\ 1/2
+/ es(/ ][ ‘—Ll/Qe’TsLhi(y) y_) ds
0 o Jojy ! vis t

* * 2 dy dt\1/2
5/ e_s</ ][ IVt Ve Ehi(y) y_) ds
0 0 Joj@) L
o o 2 dy dt\1/2
+/ 6_S</ ][ ‘(tL)l/Qe_tLhi(y) W ) ds
0 0 Joj@) t

5][ GL<<I—e—T?L>Nbi><y>2dy+][ g (I — e TN (y)? dy
C5(Qi) Cj(Qi)

1

< 9=in/2 4=Njo=i(3-%) ( \bi(y)|pdy)p
Qi
< 9= @N+T)

where in the next-to-last estimate we have used [Aus, pp. 55, 56] and the notation
there for G, g1, (the first one is here the same as GG;,) and in the last one the Calderén-
Zygmund lemma. Choosing N such that 2 N + % —n > 0 we obtain by Kolomogorv’s
lemma

;1/02,3 < 22 j@mtp-n) Z|QZ| essmeH( )12

Sa / M (y)Y dy
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Salu Q" ([ fwdy)”

<alu Qe ( // Hiy.o2 L)
S (@ [ 1 )"

Gathering the estimates we have obtained for Ij,. and Ige, we conclude as desired

C
I'S o *(hoe + Igop) S @ a”F U(Wsz&; |/ ()" de.
Rn

i

3.4.2. p > 2. We shall prove a more general result, namely ((1.4). Let m be a non-
negative integer and set

Gure) = ([ Ienre ) s )

We begin with a series of results that are concerned with functions of L in tent
spaces. Then, we shall deal with G,, p.

Consider the notation of [Aus, p. 10]. Let ¢ be holomorphic in ¥,, 1 € (w, 7/2),
with |¢(¢)| < C(1+4|¢|)~* for some s > 0, C' < oo and all ( € 3,,. Consider for o € C,
with a > 0, p.(¢) = ﬁqﬁ(@. Remark that

¢
(1+Q)
and since ¢ € ¥, implies ("' € ¥, and arg(1+ (') € (—u, p), we have that

=(1+¢ ™

Taar| <

Consider the linear operator, a priori defined for L? functions and valued in T%,

Tof = (¢a(t’L) f)iz0-

In the statements below, constants C' are allowed to depend on the real part of a but
not on its imaginary part.

sup
Ces,

Lemma 3.2. For Ra > 0, T,, maps LP N L? to TY when 2 < p < py(L) with norm
controlled by CetSl for any pu € (w,7/2).

Proof. 1t is enough to consider the boundedness of T, for the vertical norm which
dominates the conical one, see Proposition In this case, this follows from the
bounded holomorphic functional calculus on L? for 2 < p < p; (L) combined with Le
Merdy’s theorem [LeM) Theorem 3. 0

Lemma 3.3. For Ra > ﬁ, T, maps LP to Ty when 2 < p < oo with norm
controlled by CeMSel for any € (w,m/2).



16 PASCAL AUSCHER, STEVE HOFMANN, AND JOSE MARIA MARTELL

Proof. For fixed « it is enough to consider the case p = oo as one can then complex
interpolate from [CMS] between T3 and T5°. We claim that for any 2 < ¢ < p, (L),
and any ball B,

< Certdal 3 9 @Ran/a (][
j=1

27 B

) o) "

We postpone the proof of the claim until the end of this subsection. Now the right
hand side is dominated by the L* norm of f by using Ra > ﬁ(m and choosing
q < p+(L) appropriately. Then the supremum over all B of the left hand side is

precisely the 75° norm of T, f. O

Lemma 3.4. For 0 < Ra < i@y Lo maps LP to T3 when 2 <p < n_’;ﬁj%-

Proof. By a result of Harboure, Torrea, Viviani [HTV], there is a linear map ¢ which
for all 1 < p < oo is an isometry from 73 to a closed subspace of L%, where H =
LR z?ff). Thus, the maps ¢ o T, form an analytic family of linear operators
and they are bounded from L? to L% for (1/p,a) given by the two above lemmas.
Stein’s complex interpolation theorem (see [Gral Theorem 1.3.7]), extended to H-
valued functions (use the linear C-valued maps f +— (toT,(f), h) for any fixed h € H),

applies since the growth is controlled in S« and gives the desired range of p in terms
of Rav. U

We can use the above combined with the following lemma whose proof is postponed
to Section [4]

Lemma 3.5. Let m be a non-negative number. For C' depending only on ellipticity
and dimension, for any function f € L* and any x € R",

Gm,p(f)(z) <mC (//w_ydt (PL)™e L ) (y)‘Q%)m

27 \m _—t?L 2@ v
([, terreorst)

+C (//|xy|<2t (L) (e f(y) — e f) (y)IQ%) v .

We now conclude for Gp = Gy p. Start from the decomposition in the previous
lemma and notice that the first term vanishes since m = 0. The second term is
bounded on L? for 2 < p < oo using G, and rescaling t — ¢1/2 for the part with V,,
and the same argument applies for the J; part because it picks up one more power of
L and one still has good decay in the L? — L? off-diagonal estimates.

For the term with e~Z'"* — e‘tQL, we apply the third lemma concerned with T,, with
B(C) = (140)V2¢Y2(e=¢""* —¢=¢) and o = 1/2, which gives 2 < p < % =pi(L)*
if pr(L)<nor2<p<ooifpi(L)>n.

For m positive integer then the third term of the decomposition is estimated as
above with ¢(¢) = (1 + ¢)™/2¢12(e=<¢""* — ¢=¢) and o = m + 1/2, which gives
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2<p< n_(#mif@m%—l)m([/) <nor2<p<ooif (2m+1)ps(L) > n. The

first term is as good as the second one, i.e., bounded on LP for 2 < p < oo. O

Remark 3.6. It seems that the order (“ for ¢, at 0 governs the p range for boundedness
of the conical square function. But if the decay of the off-diagonal estimate is fast
enough, then this information is not necessary. For example, consider the conical
square function made after (tQL)me_tZL for m a positive real number. When m is an
integer, they are bounded on L? for all 2 < p < oo because the decay is gaussian
(polynomial of some high enough degree would suffice). But when m is a non-integer,
then the decay is polynomial and our method gives a limited range of p for small m
unless p, (L) = oo. In other words, when p, (L) < oo, we obtain a range of p that is a
discontinuous function of m. We do not know whether this discontinuity is a reality
or an artifact of our method. We ask therefore whether G,, p is bounded on L? for
2 < p < oo and all real m > 0.

Proof of (3.4). We write f = fioc + faob Where fioc = fxap. Then, using the L?
boundedness of square functions associated with o, (t*L),

1 // 2 le‘dt 1 /OO ) th
Palt"L) foel @)l == < 157 (L) fuoc(@)* - ) d
B ), o@D u@F == < g | ([ eal D fuclo) )

<o \floc<x>|2dx=c][ (@) de.

~|B| Jge 4B

It is then enough to show

12 o 2R 2 : (o 1/2

2it1 B
Indeed, plugging this estimate in the integral on the Carleson region, we obtain the
claim.

To this end, we set f; = f x¢,;(p) with C;(B) = 2B\ 2/ B so that faon = Y5 f;
and by Minkowski’s and Holder’s inequalities

(imtensssioras) > (f itenisonar)

for any ¢ > 2. Fix j > 2 and use the representations |Aus, (2.6)-(2.7)] to estimate
©o(t*L) f;. For the ny ,(z) given by [Aus, (2.7)] we find with v € (w, p),

Ct2§RO¢
na(2)] < To[Reri

1/q

v|Sal

Next, using (3.1)) in [Aus, (2.6)] for e™** with p =2 and 2 < ¢ < p4 (L), E = C;(B)
and F' = B, we easily obtain

Vi oal 12RO
(][ ’(Pa(tZL)fj(.r)’q d:li‘) < CletlSal e 9~ (2Ra—n/q) <][
B

TB 2i+1 B

) o) "

We see in this last estimate the combined roles of Ra and pi(L): Ra > 0 yields
integrability in ¢ while 2Ra — n/p, (L) > 0 yields the summability in space. O
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3.4.3. Converse inequalities. We basically follow [Aus, Theorem 6.1, Step 8]. What
we have proved so far applies to any operator L in our class, and in particular, to
L = —A. The explicit formula for the heat kernel implies that p_(—A) = 1 and
p+(—A) = ¢4 (—A) = co. Hence, we obtain the well-known estimates

IGp-aflly +1Gh-aflly +Gp-aflly + 1Gn-aflly S Ifllp

for all 1 < p < oo and f € LP, where we have adapted the notation to indicate the
operator.
The converse || fl, < [|Gh.Lfllp is based on the following formula for f,g € L*

Rnf(ﬂf)?(x)dlegg e~ f(x) eBg(x) du — h%ilo ™ f(x) efirg(x) du

/ pr /n (e7L f)(x) (e!Bg)(x) da dt

//no o) + D)(Ve " f)(2) - (Ve g)(@) dadt.

The last equality is obtained by integration by parts in the x variable after computing
the time derivative. Hence, we obtain with obvious notation

[ f@)7() da

< (Al +1) [ GralGr-s(0)
so that
() gla) e

R"

S GhL(Hlpllglly

and it follows

1 llp S NGnL (Pl

For G, 1, the proof is similar. Starting from the equality above, we use the averaging
trick of the Introduction and then Holder’s inequality. Details are left to the reader.

For square functions based on the Poisson semigroup, the idea is the same but one
needs to integrate by parts in t twice:

f( / dt /n tL1/2 (6 t(— A)l/zg)(x) dr dt

e d2 [1/2
/ / - (eit(iA)l/Qg)(x) dx di
dzdt

:t/A; © )@ﬂx>+1>@vge*““fxx)-@vue%vﬂﬂ”gXx>—z—

1/2 3 dxdt
w2 vt ) [V T S
R % (0,00) t

The last line is obtained by distributing the second derivatives in ¢ and integrating by
parts in z using %(e‘tﬂmf)(x) = L(e7"L"? f)(x) and similarly with —A. The two
right hand terms are controlled by both ||Gp 1 f,[|Gp-agl|ly and [|Gprfllpl|Gp—aglly
so that the conclusion follows as above.



VERTICAL VERSUS CONICAL SQUARE FUNCTIONS 19

4. PROOF OF LEMMA [3.5]

If m = 0 we take f € L? and set fy = f. If m > 1, as the domain of L™ is
dense in L*(R"), it suffices to assume f in that space and we set f,,, = L™f. Define

Uy = Lme L2 f = tLV2p 4y = [me=tLf = ¢=’Lf  Notice that
tVy (P ) = 2mt* 0, € + 2mt* " (U, — V)€ + (VY 4ty )

with € = (0,...,0,1). The first and second terms give rise respectively to the first
and third terms on the right hand side of the desired inequality. Therefore it suffices
to control the third term which gives a square function that is pointwise smaller than

the integral
trmdydt
//|vytum y7 |2 2( ) $n— 1

where ¢ is a smooth positive function with ¢ =1 on the unit ball B(0, 1), supported
in the ball B(0,2). To justify the calculations, for 0 < r < R/10 < oo, let ¢, g(t) =
¢(t/r)(1 — ((t/R)) where C is a smooth function that satisfies 0 < ¢ < 1, ((t) = 0 if
t <1/2 and ((t) =1if t > 2 and set

A dydt
//W AU (Y, )] 2( ) 33(75)”—_1'

Let B be the (n+ 1) (n+1) block matrix with A being one block and 1 the other
one. By ellipticity I, g(x) < C(NRZ, r(z) with

- (r—y trmdydt
// y tUm - vy,tum 902 ( t )¢3,R(t) n—1 :
Next, we write

T —y A7 dydt
0= [[ Bt Tyl = v (L )izat0 "
= ofz— tmdydt
([ BTt Tuom (T a0 G = Thate) + T

In the last integral, distribute the product ¢ on each gradient term and use Young’s
inequality with ¢ to obtain a bound

tAm duydt
|Bllweln(x) + C=™ / / 1V, g
|lz—y|<2t t

(Y 4 0m) =tV (P 0) — 2mit* ", €

Using that

we can obtain

Z: p(z) < || Bllwelsr(2)

_ m dydt _ " dydt
westm [[ e, P cet [ wemu) PR
lz—y|<2t |z— y|<2t

Note that the first term can be hidden if € is small enough independently of r, R, x.
For Irl r(z) we integrate by parts using the equation satisfied by u,, to obtain

t4m T —y -
Z, p(x) // ytum~Vyt{tn - ( ; ) 7%R(t)}(um—vm)alydt.
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Note that
tm (T —y\ tm (r—y Oy, )t*"
V@J{#llw ( r )¢MR@) IO PAd ﬁ%R@W}@;ﬁﬁr
where 0: R’}fl — R"™! is a function with support in the cone defined by |z — y| <

2t and is bounded independently of z,r, R. Hence, another application of Young’s
inequality with ¢ yields a bound

_ A dydt
Ziala) < |Blclonle) + O [ [ = P
|lz—y|<2¢

Again, the first term can be hidden if € is small enough independently of r, R, x.
Gathering the obtained estimates we conclude that

dydt dydt
Ia(x) < Cn, A A) (m / / 2my,, P / / 19, (27, P
lx—y|<2t tn |z—y|<2t tn

dydt
" // B~ ) >
lx—y|<2t | ( )| ¢t

Letting » | 0 and R 1 oo, one obtains the desired estimate.
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