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ABSTRACT. We study the solvability of the regularity problem for degenerate ellip-
tic operators in the block case for data in weighted spaces. More precisely, let L,, be
a degenerate elliptic operator with degeneracy given by a fixed weight w € Ay (dx)
in R™, and consider the associated block second order degenerate elliptic problem in
the upper-half space RT‘l. We obtain non-tangential bounds for the full gradient
of the solution of the block case operator given by the Poisson semigroup in terms
of the gradient of the boundary data. All this is done in the spaces LP(vdw) where
v is a Muckenhoupt weight with respect to the underlying natural weighted space
(R™, wdx). We recover earlier results in the non-degenerate case (when w = 1, and
with or without weight v). Our strategy is also different and more direct thanks in
particular to recent observations on change of angles in weighted square function
estimates and non-tangential maximal functions. Our method gives as a conse-
quence the (unweighted) L?(dx)-solvability of the regularity problem for the block

operator
Lou(z,t) = —|z|*div, (|2|"* A(z)V,u(z,t)) — 0fu(z,t)
for any complex-valued uniformly elliptic matrix A and for all —e < a < nQ—fQ,
where € depends just on the dimension and the ellipticity constants of A.
CONTENTS

1. Introduction 2
2. Preliminaries
2.1.  Weights 6
2.2.  Square functions and non-tangential maximal functions 10
2.3. Off-diagonal estimates 12
2.4. Change of angles 14

Date: June 28, 2021.

2010 Mathematics Subject Classification. 35J25, 35B65, 35B45, 42B37, 42B25, 47A60, 47D06,
35J15.

Key words and phrases. Regularity problem, degenerate elliptic operators in divergence form,
Muckenhoupt weights, singular non-integral operators, square functions, heat and Poisson semi-
groups, a priori estimates, off-diagonal estimates, square roots of elliptic operators, Kato’s
conjecture.

The second, third, and last authors acknowledge that the research leading to these results has
received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013)/ ERC agreement no. 615112 HAPDEGMT. The third author
acknowledges financial support from the Spanish Ministry of Science and Innovation, through the
“Severo Ochoa Programme for Centres of Excellence in R&D” (CEX2019-000904-S). The third and
last authors were partially supported by the Spanish Ministry of Science and Innovation, MTM
PID2019-107914GB-100.

1



2 PASCAL AUSCHER, LI CHEN, JOSE MARfA MARTELL, AND CRUZ PRISUELOS-ARRIBAS

2.5.  Calderén-Zygmund decomposition on Sobolev spaces 15
2.6.  Non-homogeneous vertical square function 16
2.7.  Non-homogeneous conical square function 21
3. Proof of Theorem 1.8 32
3.1.  Non-tangential maximal function estimate for the spatial derivatives 32
3.2.  Non-tangential maximal function estimate for the time derivative 34
4. The regularity problem in unweighted Lebesgue spaces 47
References 51

1. INTRODUCTION

The study of divergence form degenerate elliptic equations was pioneered in the
series of papers [20, 21, 22], where real symmetric elliptic matrices with some de-
generacy expressed in terms of Ay(dx)-weights were considered (here and elsewhere
As(dr) = A(R™, dx)). The goal of this paper is to obtain the solvability of the reg-
ularity problem for second order divergence form degenerate elliptic operators with
complex coefficients and with boundary data in weighted Lebesgue spaces. To set
the stage, let us introduce the class of operators that we consider here. Let A be an
n X n matrix of complex L*-valued coefficients defined on R™, n > 2. We assume
that this matrix satisfies the following uniform ellipticity (or “accretivity”) condition:
there exist 0 < A < A < oo such that

(1.1) AP <ReA(z)€-€ and [A(2) € - ¢ < AJE]1¢],

for all £, € C™ and almost every € R"™. We have used the notation £ - ( =
& G+ -+ &, G, and therefore ¢ - C is the usual inner product in C". Associated with
this matrix and a given weight w € As(dz) (which is fixed from now on, unless stated
otherwise) we define the second order divergence form degenerate elliptic operator

(1.2) Lyu = —w ' div(w A Vu),

which is understood as a maximal-accretive operator on L*(R", wdz) = L?(w) with
domain D(L,,) by means of a sesquilinear form. Note that writing A, = w A, one
has that A, is a degenerate elliptic matrix in the sense that

(13) Mgl w(z) <ReAy(x)&-€ and [Au(@) € - ¢ < Al I¢]w(x),

for all £,¢ € C" and almost every x € R™. Conversely, if A, is degenerate elliptic
matrix satisfying the previous conditions one can trivially see that A := w™! A, is
uniformly elliptic.

The prominent case w = 1 gives the class of uniformly elliptic operators. The
celebrated resolution of the Kato problem in [4] established that if L is a uniformly
divergence form elliptic operator (that is, L = L,, with w = 1) then VLf is compa-
rable to Vf in L?(R",dx) = L*(dz). This led to a new Calderén-Zygmund theory
developed by the first named author in [1] to establish the boundedness in Lebesgue
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spaces of the associated functional calculus, vertical square function, Riesz trans-
forms, reverse inequalities, etc. A key ingredient in that theory is the use of the
so-called off-diagonal or Gaffney estimates satisfied by the associated heat semigroup
and its gradient. This was later extended in [6, 7, 8] where the same operators were
shown to satisfy weighted norm inequalities with Muckenhoupt weights. Conical
square functions have been also considered in [5, 27]. Some of the previous results
in conjunction with the theory of Hardy spaces for uniformly elliptic operators from
[25, 26] led to [29] where the solvability of the regularity problem in the block case for
data in Lebesgue spaces was obtained. This amounted to control non-tangentially the
full gradient of the solution given by the Poisson semigroup in terms of the gradient
of the boundary datum. In turn, using the weighted Hardy space theory developed
in [27, 28, 30], the solvability of the regularity problem in the block case for data in
Lebesgue spaces with Muckenhoupt weights has been recently studied in [11].

Concerning the Kato problem in the general case, where L,, is a degenerate elliptic
operator as above with a generic w € Ay(dz), [18] (see also [16, 17]) showed that
VL f is comparable to Vf in L?*(w). The boundedness of the associated operators
(functional calculus, Riesz transform, reverse inequalities, vertical square functions,
etc.), both in the natural Lebesgue spaces LP(w) and also in weighted spaces L? (v dw)
with v € Ay (w) was considered in [14]. A particular case of interest is that on which
under further assumptions in w one can show equivalence of /L, f and V f in L?(dz)
by simply taking v = w™?, that is, the L?(dxz)-problem Kato problem was solved for
a class of degenerate elliptic operators that goes beyond that of uniformly elliptic —
e.g., one can take L, = —|-|7 div(|-|77A(-)V) where A is a uniformly elliptic matrix,
v € (—¢,2n/(n+2)), and ¢ depends on the dimension and the ellipticity constants of
A. Some work has been also done concerning conical square functions with respect
to the heat or Poisson semigroup (or theirs gradients) generated by L,,. For example,
in [12] the last three authors of the present paper established the boundedness and
the comparability of some conical square functions extending to the degenerate case
the results from [27]. Moreover, in [31], the last named author has made a deeper
study of the vertical and conical square functions and some non-tangential maximal
functions arising from degenerate elliptic operators. On another direction, in [9] the
authors considered L?-boundary value problems for degenerate elliptic equations and
systems. In particular, they initiated the study of Dirichlet and Neumann problems
in the degenerate setting using the so-called first order method.

Our goal in this paper to contribute to this theory studying the solvability of the
regularity problem for degenerate elliptic operators and also propose other meth-
ods. More precisely, consider the degenerate elliptic operator L,, = —w ™! div(w A V)
where w € Ay(dz) and A is an n x n matrix of complex L*>-valued coeflicients de-
fined on R", n > 2, which is uniformly elliptic matrix (see (1.1)). Introduce the

(n+1) x (n+ 1) block matrix
A0
+=(5 1),

which is (n + 1) x (n + 1) uniformly elliptic. This gives rise to a degenerate elliptic
operator in R™H1,

(1.4) Lyu = —w vy (w AV, u) = —w div,(w AV,u) — 0fu = (Ly),u — Ofu.
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Here and elsewhere, V,; denotes the full gradient, while the symbol V refers just
to the spatial derivatives. Note that in the previous equality we have used that w
does not depend on the ¢ variable, hence it is trivial to see that with a slight abuse
of notation if we write w(z,t) := w(x) for every (z,t) € R""! then w € Ay(R"", dx)
since w € Ay(dx).

The operator —L,, generates a C%-semigroup {e }so of contractions on L?(w)
which is called the heat semigroup. This and the subordination formula (see (3.1)
below) yield that {e~®Zw},., is a C°-semigroup of contractions on L?(w). Hence,
whenever f € C®°(R"), one has that u(x,t) := e ™VIw f(z), with (z,1) € R is a
strong solution of L,u = 0 in R’}fl. It is also a weak solution: by this we mean that
u € W2 (R dw dt) satisfies

ocC

—t Ly

(1.5) / [ @) Voo dula) di =0, Ve CE(R)

Also, u(-,t) — f in L*(w) as t — 0T by the semigroup representation. As usual,
dw(z) = w(z)dx.
Consider the L?-non-tangential maximal function N,, defined in [9]:

t>0

(1.6)  Nyh(x) :=sup (]6[ \h(y, s)|2dw(y) ds) . he Ly (RY dwdt).
W (z,t)

where W (z,t) := (cy't, cot) x B(w,cit) is a Whitney region and ¢y > 1, ¢; > 0 are
fixed parameters throughout the paper.

Given 1 < p < oo and v € A (w) (note that our assumption w € As(dz) implies
that w is a doubling measure and hence (R, w, | -|) is a space of homogeneous type),
we say that the weighted regularity problem (RM) L»(vdw) 18 solvable if for every f €

C>(R") the weak solution of L,,u = 0 in R given by u(z,t) := e Vo f(2), (x,t) €
]R’}FH, satisfies the following weighted non-tangential maximal function estimate:

(1.7) HNw(Vx,tu)HLp(ydw) < CHVfHLP(udw)'

Once this estimate is under control, one can extend the semigroup to general data.
However, the status of convergence to the boundary of the solution needs a specific
treatment that is not addressed here.

Asin [1, 8, 14], we denote by (p_(Ly),p+(Ly)) and by (¢_ (L), g4 (Ly)) the max-
imal open intervals on which the heat semigroup {e7*},.o and the gradient of the
heat semigroup {vtVe *w},.q are respectively uniformly bounded on LP(w). That
is,

(L) = int { € (1,00) suplle s < 0
>

p+(Ly) = sup {p € (1.00) : sup e sy o100 < oo} ,
>

(L) = int {1 € (100) s sp IVEVE 2 oy < 6
t>0
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. . —12 Loy
¢+ (Ly) :=sup {p € (1,00) : sup|[VtVe | Lo ()= Lr(w) < oo} :
>0

We need to introduce some extra notation (see Section 2). Set r,, := inf {p Cw e
A,(dz)}, and note that 1 < 7, < 2 since w € Ay(dz). Given 0 < py < go < 00 and
v € Ay (w) = Axo(R™, wdzx) define

Wy (po, qo) = {PE (Po, o) : UEAP (w )QRH(?o)( )}

We are now ready to state our main result:

Theorem 1.8. Let w € Ay(dx) and let L, be a block degenerate elliptic operator in
R as above. Let v € As(w) be such that

(1.9) Wy (max{r, q-(Lw)}, 4+ (Lw)) # O

Then, for every p € WY (max {rw, %} G+ (Ly )) and every f € CX(R™), if
one sets u(x,t) = e Vv f(z), (x,t) € R™, then

(1.10) HNw(Vm,tu)”m(vdw) < CIV I o waw)

and (B™") 1 (paw) is solvable.

Let us compare this result with some previous work. When w = 1 (that is, we
are working with the class of uniformly —or non-degenerate— elliptic operators) and

v = 1 then, clearly, r, = 1, W (max{ry, ¢—(Lw)}, ¢+ (Lw)) = (¢-(Lw), ¢+ (Lw)) # O,

and our result gives (1.10) in the range (max {1, %} ,q+(Lw)), hence we fully

recover [29, Theorem 4.1]. If we still assume that w = 1 and we let v € Ay (w) =
Ao (dzx), then our assumption (1.9) agrees with that in [11, Theorem 1.10] and the
range of p’s here is slightly worse than the one in that result (the lower end-point in
[11, Theorem 1.10] has been pushed down using an extra technical argument that we
have chosen not to follow here).

Our methods to prove Theorem 1.8, in particular the estimate involving 0;u, are
also novel. The above works used advanced technology of Hardy spaces adapted to
operators: developing them in our context is probably a new challenge in itself. In-
stead, we rely on recent change of angle formulas for weighted conical square function
estimates (see Section 2.4) and also the ones we prove for non-tangential weighted
maximal functions (see Lemma 3.7) which allow us to implement more directly stan-
dard tools in the field.

An important consequence of our method is that we can obtain the solvability of
the regularity problem corresponding to data in unweighted Lebesgue spaces. The
main idea consists in taking v = w™! in Theorem 1.8. The following result focuses
in the case of the L2-solvability (more general results are presented in Section 4, see
Corollaries 4.3 and 4.5):

Corollary 1.11. Let w € As(dx) and let L, be a block degenerate elliptic operator
in R as above. Given © > 1 there exists o = €(0,n,A/\) € (0, 5], such that
for every w € Ayi(dzx)N RH (2 14 (146 2 y(dx) with 0 <€ < €g and [w]a,4z) < O,
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then
(1.12) INw(Varll 20y < CUIV Fll L2(any-

for every f € CX(R™) and where u(x,t) = e ™Vl f(z), (z,t) € R™.  Hence
(R™)12(ax) is solvable.
Furthermore, if we set

Lou(z,t) = —|z|*div, (||~ A(z)Vou(z, 1)) — Ffu(x, t)

where A is an n X n matriz of complex L™ -valued coefficients defined on R™, n > 2,
satisfying the uniform ellipticity condition (1.1), then there exists 0 < € < % small
enough (depending only on the dimension and the ratio A/\) such that if —e < a <
nQ—fQ then (1.12) holds in this scenario and (R™)rz2(qy) is solvable.

The plan of the paper is as follows. In Section 2 we introduce notations and
definitions, and we recall some known results. We also obtain estimates for some
inhomogeneous vertical and conical square functions which are interesting on its own
right (see Propositions 2.54 and 2.71). To prove our main result, Theorem 1.8, we
split the main estimate into two independent pieces, one regarding N,,(V,u) and the
other one related to N, (9u), see respectively Propositions 3.2 and 3.5 in Section
3. In Section 4 we study the solvability of the regularity problem in unweighted
Lebesgue spaces and, in particular, we prove Corollary 1.11.

2. PRELIMINARIES

We shall use the following notation: dx denotes the usual Lebesgue measure in R",
dw denotes the measure in R™ given by the weight w, and vdw or d(vw) denotes the
one given by the product weight vw. Besides, throughout the paper n will denote
the dimension of the underlying space R™ and we shall always assume n > 2.

Given a ball B, let rp denote the radius of B. We write AB for the concentric ball
with radius Arg, A > 0. Moreover, we set Cy(B) = 4B and, for j > 2, C;(B) =
27t B\2/ B.

2.1. Weights. We need to introduce some classes of Muckenhoupt weights. Namely,
Ao (dz), on which the underlying measure space is (R", dx), and then fix w € A, (dx)
and consider the class A, (w) where the “weighted” underlying space is (R", dw).

2.1.1. A, (dz) weights. By a weight w we mean a non-negative, locally integrable
function. For brevity, we will often write dw for w dz. In particular, we write w(FE) =
[ dw and LP(w) = LP(R",dw). We will use the following notation for averages:
given a set F such that 0 < w(FE) < oo,

][Efdx:|—£1?|/Efdx.

or, if 0 < |E| < oo,
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Abusing slightly the notation, for j > 1, we set

1
fdw:.—/ fdw.
]é(B) w(27*1B) Je, )

J

We state some definitions and basic properties of Muckenhoupt weights. For further
details, see [19, 23, 24]. Consider the Hardy-Littlewood maximal function

—SUp][ |f(y)|dy.
B>x

It is well-known that given a weight w, M is bounded on LP(w), if and only if,
w € Ap(dr), 1 < p < oo where we say that w € A,(dz), 1 < p < oo, if

wlaao =5 (f wio)de) (f w d) <.

Here and below the sups run over the collection of balls B C R". When p =1, M is
bounded from L'(w) to L»*°(w) if and only if w € A;(dx), that is, if

oo = sup (f we)de ) ((esssup o)) < o

We also introduce the reverse Holder classes. We say that w € RH(dzx), 1 < s < oo

if )
=5 (f o d) (f wieras) <o
fvwrae) " (s o)) <

(W] R, (dz) := SUP (
B

and

It is also well-known that

= |J Adz)= |J RH.(dx).

1<p<oo 1<s<oo

Throughout the paper we shall use in several places the following properties.
Namely, if w € RHy(dx), 1 < s < o0,

w(E) |E|
(2.1) ——= < [w]gH,(da ( , VECB,
w(B) | B|
where B is any ball in R”. Analogously, if w € A,(dz), 1 < p < oo, then
1E[\" w(E)
(22) <— < [w]Ap dx y VE C B.
B] “w(B)
This implies in particular that w is a doubling measure, that is,
(2.3) w(AB) < [w]a,(de) \"Pw(B), VB, VA>1.

We continue by introducing some important notation. Weights in the A,(dz) and
RH,(dx) classes have a self-improving property: if w € A,(dx), there exists € > 0
such that w € A,_.(dx), and similarly if w € RHy(dx), then w € RH,s(dx) for some
0 > 0. Hereafter, given w € A,(dz), let

(2.4) ro =inf {p: w e Ay(dz)}, sw=1inf{q: we RHy(dz)}.
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Note that according to our definition s,, is the conjugated exponent of the one defined
in [7, Lemma 4.1]. Given 0 < py < ¢o < o0 and w € Ay (dx), [7, Lemma 4.1] implies
that

(2.5) Wa(po, @) i= {p € (po.@0) : w € A (dz) N RH sy (da:)} - <p0rw,g—“).

w

If pp = 0 and ¢y < oo it is understood that the only condition that stays is w €
RH (2 )/(dx) Analogously, if 0 < p and gy = oo the only assumptionis w € Ax (da:)
Finalzljy Wi (0, 00) = (0, 00).

Furthermore, given p € (0,00) and a weight w € A, (dz), we define the following
Sobolev exponents with respect to w

NTyP

2.6 wk — ,

(2.6) (P)w, N

and, for kK € N,

(2.7) - iy, > kp,
b o0 otherwise.

We write p := pL*.

2.1.2. Ax(w) weights. Fix now w € Ay (dx). As mentioned above, (2.3) says that w
is a doubling measure, hence (R, dw, | - |) is a space of homogeneous type (here and

elsewhere | - | stands for the ordinary Euclidean distance). One can then introduce
the weighted maximal operator
(2.8) MY f(z) = sup][ |f(y)| dw(y)

B>z

Much as before, M" is bounded on L*(vdw), 1 < p < oo, if and only if, v € A,(w),
which means that

29) s =sup (f vteyaw) (f ot dw)p_l <.

Analogously, we can define the classes RH¢(w) by replacing the Lebesgue measure in
the definitions above with dw: v € RHy(w), 1 < s < oo if

(2.10) ol oy = sup (]{3 o(z) dw)_l (é fu(:c)scm)i < .

From these definitions, it follows at once that there is a “duality” relationship between
the weighted and unweighted A,(dz) and RH,(dzx) conditions: w™' € A,(w) if and
only if w € RHy(dz) and w™' € RHy(w) if and only if w € Ay (dz).

For every measurable set E € R", we write vw(E) = [, d(vw) = [pvdw =
(vdw)(E) and LP(vdw) = LP(R™ v(x)w(x)dz). In this direction, for every w €
A, (dx), v e Ay(w), 1 < p,q< oo, it follows that

e (5) Sl (55) < Wlhwbluwing) YEC< B
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Analogously, if w € RH,(dz) and v € RH,(w) 1 < p,q < 0o, one has

vw(E) w(E)\ ¥ 4 B\ 77
(212) Uw(B) S [U]RHq(w) <m> S [U]RHq(w)[w]RHp(dx) <®) s VE C B.

As before, for a weight v € A (w) (recall that w € Ay (dz) is fixed) we set
(2.13) t,(w):=inf {r: ve A (w)} and s,(w):=inf{s: ve RHy(w)}.

For 0 < py < qo < o0 and v € Ay (w), by a similar argument to that of [7, Lemma
4.1], we have

(2.14)
W) = {1 € (o) s 0 € Ag ()1 Ry (0) ) = (s S 2).

If po = 0 and gy < o0, as before, it is understood that the only condition that stays
isv € RH (0 )/(w). Analogously, if 0 < pg and ¢go = oo the only assumption is

v € Ap (w). Finally W¥(0,00) = (0, 00).
PO

Remark 2.15. The proof of our main result will use the Calderén-Zygmund decom-
position from Lemma 2.47 with respect to the underlying measure v(z)dw(z) =
v(x) w(z)dr where w € Ax(dx) and v € Ay (w). In that scenario it was shown in
[31, Remark 2.15] that wv € Ay (dz) and moreover r,, < 7,t,(w). The converse
inequality is false in general: let w(z) := |z|™ and v := w™!, then one can easily see
that r,t,(w) = ry s = 2 and 74, = 1.

We state some lemma which will be useful in the sequel.

Lemma 2.16. Given 0 < p < q < 00, let B C R"™ be a ball and let j > 1, the
following holds:

(a) Ifv e A%(w) then

2 Pdw(x p< x)|%d(vw)(x
(][cj<3>’f< ) <>> N<]€j(3)rf< (o) >>

(b) Ifv e RH( )/(w) then

q
p

x)|Pd(vw)(x < z)|%dw(z
(ﬁj(3)|f< ) Pd(vw) >> N<]€j(3)|f< ) <>>

Proof. We prove the case p < ¢ (when p = ¢ the proof follows similarly and is left to
the interested reader). Assume first v € Aq(w). We obtain (a) by applying Holder’s

inequality and (2.9)

Q=

=
Q=

1

rd = PyayTad
(ij(B)m w) (][Cj(B)\frvv w)
, l(i,l)
’ 1-(3) )

() (£,

B =

Q=
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< q _%: . q
”(J[cjw)‘f | ”‘“") (£, ) (fcj(B) i d<vw>) .

Next assume v € RH (2 (w), we obtain (b) by applying Hélder’s inequality and (2.10)
1

(]é.MB vdw) B (fcj(B) |f|qdw> % (]éMB U(Z)’dw) :
< (Jé@ |f\qdw>q-

N

2.2. Square functions and non-tangential maximal functions.

In this section, we introduce several auxiliary operators (vertical and conical square
functions, non-tangential maximal functions) which will be needed at various points
along the proofs.

Consider, for x > 1, the non-tangential maximal function N** defined as

217 were = (f, 0l sEts)

We write /¥ when x = 1. We are particularly interested in the non-tangential
maximal functions associated with the heat or Poisson semigroup. For f € L?(w),
define

(2.18) Ny flz) = sup (/B(x’m) e"fQL“ff(y)‘2 Jg(—%); :
i) s (f o) w(dzau}(%)t»)% ‘

Again, when x = 1 we write N}¥ and NV¥. We shall obtain weighted boundedness of
these operators in Section 4.2.

We also consider several invariants of the vertical square functions associated with
the heat semigroup which were studied in [14, Sections 5 and 10]:

(2.20) aifo) = ([ )

(2.21) Glonf(a) = ([ rveLte o s th) ,

t*Lye"" f(2)
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(222 Gife) o= ([ (9L 10 Cff)

Proceeding as in [14, Propositions 5.1 and 10.1], by a standard argument, we have
the following lemma.

Lemma 2.23. Let L, be a degenerate elliptic operator with w € Ay(dx) and let
v € Ax(w). Then

(a) g¥ is bounded on LP(vdw) for all p € W¥ (p_(Ly), p+(Lw));
(0) GYjy and Gij are bounded on LP(vdw) for all p € Wy’ (q-(Lw), ¢+ (Lw))-

Now we recall the following conical square functions studied by the authors in [12].

(2.24) S f( (// 2Ly, ‘tQL“’f()Q ()dt))é7

tw(B(y,t)
where I'*(z) := {(y,t) € R} : |x — y| < at} is the cone with vertex at x and
aperture a > 0. When a = 1 we write I'(x) and S. According to [12, Proposition
3.1], we have that S is bounded on LP(vdw) for all p € WY (p_(L,,), 00).

Finally, we introduce the following “inhomogeneous” vertical and conical square
functions:

(229 Gif )= ([ [VPLue s ‘”) ,

t
(2.26) ( / /F y

1
1 t2 tQwa()Q dw( )dt )2‘
tw(B(y,1))
By non-homogeneity, we mean that the power of ¢ inside the square functions is not in
accordance with the order of the operator L,,, we are modifying respectively G} and
S} by removing one power of ¢. The analogues of the above two square functions in
other settings turn to be very useful in the study of Riesz transform and Hardy space
theory, see for instance [13, 25]. Sections 2.6 and 2.7 below study the boundedness

of Gw and S“’ on weighted Sobolev spaces, which plays an essential role in the proof
of our main results.

We finish this subsection by recalling the results about the reverse inequality of the
Riesz transform associated with the operator L,, proved in [14]. The Riesz transform

_1
VL,?* associated with the operator L,, can be written as

) dt
Vw / tVe e Z
\/_

consider also the following square root representation (see for instance [9, 18]):

g dt
(2.27) VL = 7 / tLue P

Proposition 2.28 ([14, Proposition 6.1]). Let max{ry, (p—(Ly))ws} <P < pi(Ly).

Then for all f € S,
|VZut,, ) S 19y
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Furthermore, if p € WY (max{ry, p—(Ly)}, p+(Ly)). Then for all f € S,

SV

fHLP('wa)'

2.3. Off-diagonal estimates.

Definition 2.29. Let {7}}:~( be a family of sublinear operators and let 1 < p < occ.
Given a doubling measure p we say that {71} }~0 satisfies LP(p)—LP(p) full off-diagonal
estimates, denoted by T, € F(LP(u) — LP(u)), if there exist constants C,c¢ > 0 such
that for all closed sets E and F', all f € LP(R™), and all ¢ > 0 we have

(2.30) (/ T, (15 f)? d,u) < Ce (/ ]f|pdu) ,

where d(E, F) = inf{|lx —y| : x € E,y € F}.

Set Y(s) = max{s, s~ '} for s > 0. Recall that, given a ball B, we use the notation
C;(B) = 27*'B\2/ B for j > 2, and for any doubling measure u

1
o= i fy e £ = gy L e

Definition 2.31. Given 1 < p < ¢ < oo and any doubling measure p, we say that
a family of sublinear operators {7} };~o satisfies LP(u) — L9(u) off-diagonal estimates
on balls, denoted by T; € O(LP(u) — L(p)), if there exist 61,0 > 0 and ¢ > 0 such
that for all ¢ > 0 and for all ball B with radius rp,

(2.32) (f im le)|du> <T(TB) (f \f!pdu) ,

and for j > 2,
a 2rp\? w2 ’
a ; _rp
(2.33) ( |Tt(flcj(3))‘qdu) §2J91T(\[B) e <]l ]f|pd,u),
B t C4(B)
and

(2.34) (fc " ITt(fIB)quu) 1 < oy (2 rB) ( |f|”du)

Let us recall some results about off-diagonal estimates on balls for the heat semi-
group associated with L,,.

Lemma 2.35 ([8, Section 2], [14, Sections 3 and 7]). Let L,, be a degenerate elliptic
operator with w € As(dx).

(@) If p_(Ly) < p < q < py(Ly), then et and (tL,)me v for every m € N,
belong to O(LP(w) — LY(w)).

(b) Let p_(Lw) <p<g< p+<Lw). Ifv e Ap/pf(Lw)(w) N RH(M(LM)/q)/(w), then
e ttv and (tL,)™e | for every m € N, belong to O(LP(vdw) — L (vdw)).
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(¢) There exists an interval K(L,,) such that if p,q € K(Ly), with p < q, then
ViVe e ¢ O(LP(w) — Li(w)). Moreover, denoting by q_(Ly,) and q. (L)
the left and right endpoints of K(Ly,), then q_(Ly) = p—(Ly), 2 < q+(Ly) <
(¢4 (L))t < P4+ (Lu)-

(d) Let q-(Ly) < p < q < q4(Lw). Ifv € Ayg no)y(w) N RHg, (L,)/q (W), then
ViVe e € O(LP(vdw) — L(vdw)).

(e) If p = q and p is a doubling measure then F(LP(u) — LP(n)) and O(LP(u) —

LP(p)) are equivalent.

Remark 2.36. Since off-diagonal estimates on balls are stable under composition (see
[8, Theorem 2.3)), it follows from (b) and (d) that vtVtL,e v € O(LP(vdw) —
Li(vdw)) for q_ (L) <p < q < qi(Ly) and v € Apjq (1) (W) N RH (g, (1,,)/q) (w).

Moreover, in the following result, which is a weighted version of [28, (5.12)] (see
also [25]), we show off-diagonal estimates for the family {77} om0 := {(e7Fv —
e~ (PHs)Lu)MY o for all M e N.

Proposition 2.37. Let p € (p_(Ly),p+(Ly)) and let 0 < t,s < oo. Then, for all
sets By, By C R™ and f € LP(w) such that supp(f) C Ei, we have that {T;s}si>0
satisfies the following LP(w) — LP(w) off-diagonal estimates:

52 M _Cd(ElE )2
239 LTl S (55) € “H 1 m
In particular, there holds
s2\ M
(2.30) I7eeflaren S () Wi
Proof. Note that we have
HlEzﬁ,sfHLp(w)
M 52 M
1E2 <€—t2Lw _ e—(t2+52)Lw> f 1E2 </ are—(r—&-t?)Lw d?“) f
L (w) 0 LP (w)

dry...dry
(M v+ M)

(( % T + le2> Lw)M@_(wal 7"1'+Mt2)wa

- /8?.. /82

__d(Ep,E9)% Eg)2 dr d
1...arp
/ / e 2111 i+ M2 M 2 M ||1E1f||LP(w)
(X Me2)

S _ L d(Eq, Eq)?
5 ( ) e T2 L2 ||]—E1f”LP(w

12
where we have applied the fact that (¢tL,)Me " € F(LP(w) — LP(w)), for all p €
(p—(Ly),p+(Ly)), (see Lemma 2.35). O

We conclude this section by introducing the following off-diagonal estimates on
Sobolev spaces (for non-degenerate elliptic operators see [1]).
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Lemma 2.40. Let ¢ € (¢-(Ly),q+(Ly)) and o« > 0. Assume that p satisfies
max {7, (¢_(Lw))ws} < p < q. Then, for every (x,t) € R, there exists 0 > 0
such that

(2.41) ( ]i »

Proof. For simplicity, we write B := B(z,at) and h := f — fip., where, for every
A > 0, fapw is the average of f in AB with respect to the measure dw. By the
conservation property, that is e #'Zwl = 1,

ot wa‘ dw) < T 926—(;43' <][ |Vf|pdw) '
B(z,2it1at)

7j=1

Ve 'l f = Ve o (f — fip) = Zv—“whﬁ

with h; = hlc,). By Lemma 2.35, for any q(Ly) < qo < q, we have that
VitVe e € O(L%(w) — Li(w)), then

(ffeerfar) <Z(f et
221(01+92 J— <]£ . hqodw>q10.

Jj=1

Using the weighted Poincaré-Sobolev inequality (see [14, Theorem 2.1] and also [22,
Theorem 1.6]), we obtain that for any p > max{r, (¢o)w.},

(f

J

1

a0 q
(B)rm%dw) < ({1 famnaf"au)” +2|f21+13w sl

< QOd B
Z (]é“rlB f21+1B7w| w)
1
<" 2lat < ][ vf pdw) ’
ZZQ QZHB\ |

Hence
> e—c4J J L
(][ ’Ve fwa‘ dw) <Y (a GZ 22% <][ |Vf\”dw)
= = 2+1B
< T(a)f €_C4j<][ prdw>
@2 (4,197
This completes the proof. ([l

2.4. Change of angles. We shall use two change of angles results. The first one is
a version of [27, Proposition 3.30] in the weighted degenerate case.
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Proposition 2.42. [12, Proposition A.2] Let w € Az(dx) and v € RH, (w) with
1<rr<oo. Foreveryl <q<7,0<a<1andt >0, there holds

e [ ([ ) ) " e)duo)

sae [ (f I s " @)du(o).

The second result was proved for the unweighted non-degenerate case in [2] and
for the weighted non-degenerate case in [27, Proposition 3.2]. Consider, for a > 0,
the following operator acting over measurable functions F' defined in R’f“l:

= (07 o T @O ) R

where ['®(z) is the cone of aperture a and vertex at z, I“(x) = {(y,t) € R** :
|z —y| < at}.

Proposition 2.44. [12, Proposition 4.9] Let 0 < a < < 0.
(a) For every w € Ax(dx) andv € A.(w), 1 < 1,7 < 00, there holds

nrr

BN 7 i
(2.45) HAﬁFHLP(vdw) <C (a ||AwF||Lp(wa) forall 0<p<2r,

where C' > 1 depends onn, p, v, 7, [W]a(dz), and [v]a, (w),
of a and f3.

(b) For every w € RHw(dx) and v € RHy(w), 1 < 5,5 < 00, there holds

but it is independent

a 757 2
(2.46) W%HWWMSCQQ [T - forall = <p<oo,

where C > 1 depends onn, p, s, 5, [W]rH, (d), and [V]rE, w), but it is indepen-
dent of a and .

2.5. Calderén-Zygmund decomposition on Sobolev spaces. Our proofs rely
on the following Calderén-Zygmund decomposition on Sobolev spaces.

Lemma 2.47 ([6, Lemma 6.6]). Letn > 1, a >0, w € A (dx), and let 1 < p < o0
be such that w € Ap(dx). Assume that f € S is such that ||V f||1r(w) < 0o. Then,
there exist a collection of balls {B;}; with radii rp,, smooth functions {b;}; and a
function g € L .(w) such that

(2.48) f=g+> b

and the following properties hold:
(2.49) IVg(x)| < Ca, for p-a.e. z,

(2.50) suppb; C B; and / |Vb;|Pdew < CoPw(B;),
B;
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C
(2.51) ;w(Bi) < 5 IV fPdw,

(2.52) > g, <N,

where C' and N depend only on n, p, and w. In addition, for 1 < q < p%, where p%
is defined in (2.7),

(2.53) (][ |bz-|de) "<arg.
B;

2.6. Non-homogeneous vertical square function. In this section, we study the
weighted boundedness of Gjj. Our result is the following.

Theorem 2.54. Let w € As(dz) and let Ly, be a degenerate elliptic operator. Given
v € Ax(w), assume that WY (max{ry, ¢—(Ly)}, ¢+ (Lw)) # O. Then, for every f € S
and p € WY (max{ry, (¢—(Lw))wx}, ¢+ (Lw)), it holds,

(2.55) ICE A oy S IVl o

Before starting with the proof, we make some remarks and prove Lemma 2.62
(stated below). These results not only will be useful in this proof but also in the
remainder of the paper.

Remark 2.56. Given w € As(dx) and v € A (w), let 0 < ¢- < ¢y < oo and
p > t(w) max{ry, (¢-)w.}. Assuming that

(to(w) max{ry, -}, ¢4 /50(w)) = Wy (max{ry, ¢}, ¢4) # O,

we claim that

(2.57) (to(w) max{ry, ¢_}, min{qy /s,(w),p}, }) # O,

where we recall that by Remark 2.15 vw € Ax(dz), and p}, is defined in (2.7).
Indeed, since by hypothesis t,(w) max{r,, ¢-} < ¢4 /s,(w), this can be seen from the
fact that

(2.58) t,(w) max{ry, q_} < pl,.

To prove (2.58), we distinguish two cases. If t,(w) max{r,,¢_} = v,(w)r,, since we
are taking p such that p > t,(w) max{ry, (¢-)w«} and since (¢_)u < q— (see (2.6)),
then

ty(w) max{ry, ¢— } = t,(w) max{ry, (¢-)w+} <D < Pyy-

If now v,(w) max{ry, ¢} = v,(w)q_, we can assume that nr,, > p (otherwise p}, =
oo and the inequality is trivial). Hence, by hypothesis and by (2.7),
11 1 1 1 nre + q_ 1

2.59 =-— < — = —
( ) p;w p NTyw tv (’lU) (q— )w7* Nryw tv (w)Q— nry nryw

N t(w)g- Ny Twte(w) ) = ty(w)q- N t,(w) max{ry,,q_}
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Remark 2.60. Let {B;}; be a collection of balls with Pounded overlap, w € A, (dx),
and v € Ay (w). Besides, consider 1 < p < oo, u € LP' (vdw) such that ull 27 (o) =
1, and M"" the weighted maximal operator defined as

MY f(x —sup][\f )|d(vw)(y),

B>z

then, by Kolmogorov’s inequality, we have that

(2.61) (Z/ Mvw ,u|p vdw)ﬁﬁ (/UB (/\/mv(\ulp))~ wa)ﬁ
< mu(LiJBi) HuHLp (vdw) ™~ vw(UB)

We next state a technical lemma which will be used several times. We notice that
the statement, which may appear slightly clumsy, is written so that it can be easily
invoked in some of our proofs.

Lemma 2.62. Given w € Ay(dz) and v € Ax(w), fit o > 0, 1 < p; < oo, {B;};
a collection of balls in R™ with bounded overlap. Assume that there is a sequence
of positive numbers {Z;;};; (whose significance will become clear when applying the
result) so that

(2.63) T,; < Cavw (21 B;)m27iCM=0) >y

where C,C are fized (harmless) constants, and 2M > C + nryt,(w), then

Y Tllde Lm@dwwavw(UB)

ol =1

Proof. Fix u so that ||ul| , = 1. Note that we can find p > r,, ¢ > t,(w) so

3 (vdw)
that 2M > C + nr with r = pg. In particular, w € A,(dz), v € A,(w) and we have
(2.11) at our disposal. This, together with (2.63) and (2.61) with p = p;, allows us
to show that

SN Tijlluleys,

i j>4

Qo vw( §(2M—~C—nr) w(z)[Prd(vw)(z
Sad > eu(B)2 (][Cj(&)un d(vw)( >>

i j>4

Lpl (vdw)

S

1

S et g (v )

reB,;

<a2/ M”“’ (Jul™) (2 ))Pl v(z)dw(z) gavw(LZJBi)pll

This readily leads to the desired estimate. 0
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Proof of Theorem 2.5/. Throughout the proof fix w € As(dx) and denote ¢ :=
q—(Ly) and g4 1= g4 (Ly)-

If p € WY (max{ry,q-},q+), then (2.55) follows easily from Lemma 2.23 and
Proposition 2.28. Indeed, we have

dt
e [ T
LP(vdw)

SIVLwF ooty S WV lleroauy-

In accordance with (2.14), to go below t,(w) max{r,, ¢_}, we shall show that if p
satisfies

(2.65) t,(w) max {ry, (¢ )w} < p < ty(w) max{r,, ¢_},
then for any @ > 0 and f € S it follows that
- 1
2.66 R" : Gy < — Pud
(2.66) v ({# € R :Glif(0) > a}) S 5 | |V Pvdw

Hence using interpolation between Sobolev spaces (see [10]), we shall conclude the
desired estimate.

In order to prove (2.66), we apply to f the Calderén-Zygmund decomposition in
Lemma 2.47 at height a > 0 for the product weight vw (recall that 7, < r,t,(w) < p,
see Remark 2.15). Thus by (2.48)

vw ({x eR": GUf(x) > a}) < vw ({x eR": Gig(z) > %})
—i—vw({x eR": éﬂ(ZbJ(m) > 2;}) =1+ 11
Note that by Remark 2.56 we can pick ¢ such that

(2.67) t,(w) max{r,, ¢-} < ¢ < min {%,pzw}.

Keeping this choice of ¢, by (2.64) we have ||(§ﬂfHLq(vdw) SV £l Laguaw)- Besides,
since p < ¢ (see (2.65)), properties (2.49)-(2.52) yield

1 1
I<— G g|9vdw < —/ Vyg|tvdw S — |V fPodw.
Rn n &p R

Oﬂ

To estimate term I1, for every k € Z, let r; := 2% if 28 < rp < 2571 Then,

1< Uw(U 1631»)

. 2 i\
+vw<{x e R": (/ t*V Lye™ Lw( Z bi> () ﬂ) > g})
0 v <t ¢ 3

2V Lye e (3 b) 7

—i—vw({xER”\UMBi:(/OOO w | ) <I>2%>2>%}>
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1
< — |Vf]pvdw—|—[[1—i—[[2,

~ aP Rn
where we have used (2.3) and (2.51).

In order to estimate term I, write

(2.68) (/ ‘vﬂ —th<Zb> 2dt>

By <

- ( | lpvaee (F e %) ([ |T,:ft<ac>|2%)é ,

where T := *V L,e "> and fi(x) = %Zi:?"igt bi(z).

Moreover, note that 2 € (max{r,,q_},q.), then, by Remark 2.36, for every v, €
Ao/ max{ru.g_y (W) N RH ., oy (w) we have 12V Lye b € O(LA(vodw) — L2 (vodw)). In
particular, T} is bounded from L?(vydw) to L*(vgdw). Consequently,

112
o dt\? o dt
([ maes) = [ [ insudd
0 0

L2(vodw)

1112
o dt\ 2
< [ it = H 1)
0 Jre

L2 (vpdw)

|—

Now, by extrapolation (see [12, Theorem A.1] and also [15, Theorem 3.31]), we obtain
that for v € Ao (w) and any ¢ € WY (max{ry,q-}, q¢+),

([ sty ([ ety

In particular the above inequality holds for our choices of ¢ and v.

<

~Y

(2.69)

LA (vdw) La(Tdw)

Next, the proof follows much as in [3, p. 543], but we write the details for the sake
of completeness. Consider the following sum:

b
Bk = _27
T
i =2F
and note that
b, = z
5 Z Z o Z b
1 <t k:2k<t = k:2k<t

By Cauchy-Schwartz inequality, for every ¢t > O,
2k 2k 2k 2k
il < ( > 7|5k|2>< > 7) S ) 7\@\2 :Z7|5k|21[2k,oo)(t),
k:2k<t k:2k<t k:2k<t keZ
and hence,

2_ < 002_@ 2 2
/0 |l Z/ [ Bel* =1 Bel.

keZ
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Using the bounded overlap property (2.52), the fact that r; &~ rp,, and also (2.53),
1|9
(D 16)°

we have
o ar\E | b,
2 i
H</ %) < 2 Ty
keZ La(vdw) 7
S of E vw(By) ,Saqp/ |V fPvdw.
i R™

La(vdw)
This estimate, (2.68), and (2.69) with ¢ and v, yield as desired

(ZW)Q

kEZ

1
1L < —
(6]

1119
> dt\ 2
T f,?—

La(vdw)

<L
~ ol

1
< —/ |V fPodw.
P Jgn

La(vdw)

In order to estimate term I/, notice that

= 2 —t2Ly ) 2@ : /Ti
(/O 2V Lye (2;) t)g%j( 0

Then, by duality, we have

12V Ly e

> ZTb

1
<~ ‘ Tbs(x)| v(z)dw(z)
al Jre\J, 16B;
q
: /
< — | T3bi(2)] |u(z)] v(z)dw(x)
o ||u||Lq/(dw) Z U, 16B;
q
1
<~ ZZ/ | T3bi ()] Ju(z)] v(fﬁ)dw@))
||u||Lq/(wa) i >4 C;(By)
q
1
<L 5 Tl (Bi),vdw)> |
@ ”“”LQ’(udw) i >4

To estimate ||T;b;]| L4(Cy (B2 wdw)» Ve pick pg close enough to ¢_, and ¢y close enough
to ¢4 such that

(2.70) G- <pp<2<q<qy, and wve€E Api

L (’(U) N RH(L%O)/(U))

Note that W¥(q_,q.) # © since by assumption WY (max{r,,q_},q+) # O and
WY (max{ry,q-},q+) € W¥(q-,q4+). Notice also that applying Remark 2.36 with
v =1, we have t2V Lye v € O(LP(w) — L% (w)). Then, by Minkowski’s integral
inequality, Lemma 2.16 (a) and (b) (see (2.70)), (2.53) (see (2.67)), and recalling that

T = TB;, for ] 2 2,
1
2dt !
t3) d(vw))

. 1 i
| T b; "LQ(Cj(Bi),vdw) = vw (2" B)s (][ (/
C;(Bi) 0

S vw(21By) ][ (/ |
;) \Jo

3V Ly

1

2t o
t3> dw)

B3V L,e L
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1
2 3
) Ti q q0 dt
va(QJHBZ.)é / ][ ‘t?’VLwe i Odw =
o \Jom t

L T 1 202 477‘ 1
i J

S 2j91vw(2j+13i)% ‘bZ’podw Po / 2 B, o B dt
B; 0 t t3

1

. . q q

5 6—04] 'U1U(2J+1Bl)% (f bz q

B;

d(vw)) <e Yo vw(2j+1Bi)§.
B;
Now we use Lemma 2.62 with p1 = ¢, Zi; = || Tibil| La(c;(B,)wdw), {Bi}i the collection

replacing 2-72M -0) (

c4’

of balls given by Lemma 2.47, and with e~ consequently M

and C' do not play any role here). Therefore, Lemma 2.62 and (2.51) imply

IIg<vw<UB> < ai/ |V fPvdw.

Collecting the above estimates, we get the desired result. 0

2.7. Non-homogeneous conical square function. In this section, we shall prove
weighted boundedness in Sobolev spaces for the inhomogeneous conical square func-
tion Sff defined in (2.26). The analogous result for elliptic operators was studied in
[25] for the Riesz transform characterization of Hardy spaces. See also [30] for the
the Riesz transform characterization of weighted Hardy spaces. Our result is stated
as follows.

Theorem 2.71. Given w € Ay(dx), v € Ax(w), assume that

(2.72) W, (max {rw, ¢-(Lw)} , ¢+ (Lw)) # ©.
Then, for every h € S and p € WY (max {1y, (p—(Lw))wx} P+ (L)), it holds

(2.73) ISERI oy S IV 25

In order to prove this theorem, we shall use Lemma 2.74 and Proposition 2.75.
Lemma 2.74 will be also useful in the proof of Proposition 3.5 (all these results are
stated below).

Lemma 2.74. Let w € Ay(dz) and v € Ax(w) be such that WY (q— (L), g+ (L)) #
@, and let

p € (vo(w) max{ry, (¢-(Luw))w}, to(w) max{ry, ¢ (Lw)})-

Given a > 0 and f € S such that ||V f||irwaw) < 00, let {b;}; be the collection
of smooth functions from Lemma 2.47 (applzed to f, v, a, and w = vw). Write
b= Doy Arg bi, where A, =1~ (1 —e "B, LM and M e N s arbitrarily large.
Then, for p1 € WY (q-(Lw),q+(Ly)) such that 1 < py < pk, (note that following
(2.59) we get that v,(w)q—(Ly) < pi,), there holds

V015 oty S UV

Y
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Proof. First of all denote ¢_ := q_(L,,) and ¢ := ¢, (L,,). By duality and expanding

A, , we have
k3

||Vb| 21 (vdw) = /[R" ‘V<Z§:Ck’Me_kr%iwai> P

p1
—kr2 bz
S krp, Ve FrBitv (—)‘ lujvdw | .
iy Z "B,
(vaw)
Besides, recall that by hypothesis v € Arn (w) N RH<L+>/(w) (see (2.14)) and hence

VTVe ke € O(LP (vdw) — LP*(vdw)). Using this, (2.53), and also (2.3),

bi
/ Virg, Ve bl (—)

<N ww(2B) ][
Z C;(Bi)

1
vdw

|u|vdw

1 1
o

d(vw)) (ﬁj(&)wmd(vw))

Vkrsg, Ve "B, L“’( b )

j>1 "'B;

; b [ z AIRY:1

< Ze—dl vw(B;) (]{3 - d(vw)) x1£f (MW(|U|P1)(x)> 1
j>1 s 17 5 b

< a/ <./\/l”w(|u]p1)) z vdw.
B;

Consequently, (2.61) with p = p; and (2.51) imply

. P
||Vb||LP1 vdw) S o sup (Z/ (Mvw(|U|p/1)> " vdw)
=1\ /B,

Il

S &plvw<UBZ-) < Ozplp/ |V fPodw.
i R™
U

To formulate our next result (proceeding similarly as in [25, 30]), we introduce the
following conical square function

st (], e )

Observe that gﬁf = 83/27H\/wa. Our goal is to see that Si“/ZHf compares with Sff f

(defined in (2.24)) in some weighted spaces (see [31, Proposition 4.5] for a general

version of this result). For the following statement we recall that p, (L,)%* was

defined in (2.7). ’
Proposition 2.75. Given w € Ay(dx), v € A (w), and f € L*(w), there hold
(@) [ISHfllerwaw) S NStouf | Lewaw), for all p € Wi(0,p4(Lw)3");
(0) I87)auf llLrwaw) S ISH Nl raw, for all p € Wir(0,py(Luw)y,)-
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In particular, if p € WY(0,p4(Ly)%), we have
157210 |20 (vaw) = [|SH Il o (waw) -

Proof. We shall use extrapolation to prove both inequalities. Indeed, [12, Theorem
A1, (b)] (or [12, Theorem A.1, (c)], if py(Ly):, = 00) allows us to obtain (a) from

(276) ||ng||%2(vodw) 5 ||S{U/2,Hf||%2(vodw)7 VUO = RH(p+(Lw)ﬁ;*)/(w)
2

and (b) from
(2.77) 1882 10 2 wpaur) S NSHF 2 wpawy: Y00 € RH(p+<Lw>;)’(w)-

2

To set the stage, fix w € Ay(dzr) and vg € RH /(w). Here and below k is

P+(Lw)kul;*
2

cither 1 or 2, depending whether we are proving (2.77) or (2.76) respectively.

Note that we can find 7, g, 7, and M € N such that r, <7 < 2,2 < qo < p1(Ly),
qo/2 < r <00, vy € RHy(w), and
nr nr 1
2.78 k+ —————>0.
( ) + 2r Qo M
Indeed, if nr, > kpy(L,), note that we can take r, < 7 < 2 close enough to
Tw, €0 > 0 small enough, and 2 < gy < p4(Ly), close enough to py(L,) so that for

ro—= Wm we have that ¢o/2 < r < 0o, vy € RH,..(w), and

nr  nr ey, - €0
k+———=—(nr—=kqy) >— (nry, — kpy(Ly,)) > 0.
o w0 @) > ! P+ (Lw))
Then, taking M € N large enough we obtain (2.78).
If now nr, < kpy(L,), our condition on the weight vy becomes vy € A (w). Then,

we take r > 5, (w) and qo satisfying max {2, %} < qo < min{py(Ly),2r} if

P+ (Ly) < 00, or qo = 2r if p, (L,) = 0o. Therefore, we have that 2 < gy < p4(Ly),
q0/2 <1 <00, v € RH.(w), and
NTy NIy

k+———>k—
2r do p+(Lw)
Taking further r,, < 7 < 2 close enough to r, and M € N large enough, we obtain

that

N Ty

0.

v

nr nr 1 -0
2r  q M '

After this observation we show the desired estimate.

k +

We first prove (2.76). Use (2.27), Minkowski’s integral inequality, and also (2.3)
after noticing that B(z,t) C B(y,2t), for all y € B(x,t). Thus,

Sii f(x)

1 2
= ' —82 L4 42 —t2 Ly 2 > @ dt
<\ </ (/ I T F Pty ) BT

D=
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AL

= I+1I.

ol

1 2
2 2d dt
ste_SZL‘” t2 /Lwe—t2wa(y) ’ dUJ(y)) _S) r

s B(z,t))

For I, consider F(y,t) := t\/Lwe_gLWf(y). Using the fact that 7L,e " €
F(L*(w) — L*(w)), we get

I

<</f</oeig(34<s2+§>m<sz+f>LwF<y, o) Sfetem)

Su (/ frn 0 W%)é’

7>1

where in the last inequality we have changed the variable ¢ into v/2¢ and used (2.3).
Then, applying change of angles (Proposition 2.44), we conclude that

HIHL2 vodw) S Z e~ 27, wH81/2 Hf“L2 vodw) S H81/2 HfHLQ(vodw)'
j>1

For the estimate of I1, consider ﬁ(y, s) = (sx/Lw)3e_$2L“’f(y). We apply Cauchy-
Schwartz’s inequality in the integral in s, the fact that e=™tv € F(L*(w) — L*(w)),
Jensen’s inequality in the integral in y, Fubini’s theorem, and (2.3). Hence,

1 2_7 1 2

> CLE\NM [t M ~ 2 d dt

e (] /<—> 8 <f ) )

0 t s S B(z,t) S t

oo M 4_% %
VRO ) e faw )
0 B(z,t) S t

s e (/ / (2) o [F09) 2dw(y)%%>é
)

D=

j>1

2 2
t M w0 dsdt
< —cdd - qod e
<Y ( O (f . P ) S t)

j>1
d © gt ds \°
< —cdd = 90 w(y) S
s ( ( / o B ) s )
i>1 /
B(z,27t1st/s)

Then, for t < s, applying Propositions 2.42 and (2.3),
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/" </B(x,2f+lst/s) |ﬁ(y’ S”qu(B(yd,UZ)J(—%Bst/S))) " vo(z)dw(x)

S (2)71?(’1”2“) L (F o P ) " (e)duts)

~ 2
Denote F(y,s) := sv/Lye~ 21, Since 7L,e ™ € O(L*(w) — L% (w)), then we have
][ s
B(z,2it1s)

(]{B(g;gjﬂt) |F(y, S)Iq“dw(y)) g < ( 2 @ dw(y)) 2

<D e 2]92][ | F(y.s)[fdw(y)

I>1 ,21i+2s)

2

s2

Lw677L“’}/7’\(y’ 8)

Consequently, applying Fubini’s theorem, (2.78) with k& = 2, changing the variable

s into v/2s, and by (2.3) and change of angles (Proposition 2.44), we get, for C =

2 2
4"‘77/7‘(;—(]—0 —

11| 2 ooy
<; —642; —04’2102< / n / / ( ) ][ By, s)’zdw(y)%vo(x)dw(x)j

B(z,2ttit2s)

ST ([ o y,\fswﬁ%(mw@)é

— _eql
< Z c4’ Z c4 (I4+7)0vg,w ”81/2 HfHL2 vodw)

j>1 >1

S HSiU/Q,HfHLQ(UOdw)-
As for proving (2.77), using again (2.3), (2.27), and Minkowski’s integral inequality,

we obtain

Stjouf(x)

1 2
([ 0 g 2 d d
e /0 </0 (/B(x,t) tLe™ Fre™t wa(y)|2dw(y)) f) tw(B(tx,t))
1 2
e e L. oL 5 @ dt
i /0 </t ([g<x,t>’t3L”e ettt (y)‘zdw(y)) s) tw(B(z, 1))

=: f—l—ﬁ

[NIES

N|—
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We first estimate I. Using that s < ¢ and applying the fact that e=™Lv € F (L?(w)—
L*(w)), and (2.3), we have

([T o

N

=

j>1
. i dw(y)dt \?
< cdd / / tQLwe t Lw 2 ) .
S2e L S T B,

Therefore, applying change of angles (Proposition 2.44), we get

71| 2ooduy S € 290 |SH Fll 12(woaw) S ISH FIl22(wodw)-

J=z1

The estimate of ] is very similar to that of /I (in the proof of (2.76)), so we
skip some details. We apply again the fact that e"™2» € F(L*(w) — L?(w)), Cauchy-
Schwartz’s inequality in the integral in s, Jensen’s inequality in the integral in y,
Fubini’s theorem, and (2.3). Hence, we have

1
AL (FC (oo s
< ; - </ / (D (]{%2”%) L0 f (y)|q°dw(y)>q20 %%)é

52(/ °°/<5)M( / S2Lwes%wﬂy)%w(B@sz;’Effst/s)))qo‘i“f)%

B(z,2it1st/s)

Note that, for ¢t < s, Proposition 2.42, and (2.3) imply

s dw(y)  \w
2Lw 8% Ly q0 ‘ J
/” </B(I,2j+lst/s) |S ¢ f<y)’ B(y’QJ-HSt/s) vo(x) w(x)

< (2)"?(%) [ e e smintn ) e,

Besides, since e "Lv € O(L*(w) — L% (w))

( FoIs L pw) gy ><Z oyt e T ) Pduty).

B(z,2i+15) 21 B(z,20+1+25s)
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Hence, applying Fubini’s theorem, (2.78) with £ = 1, changing the variable s into
v/2s, by (2.3) and Proposition 2.44 we have

1] 22 g
1
Cedd _ > _ dw(y) ds 2
s et e ([T e )P e
; 1221 nJo JB(2i+143) sw(B(y, s))
—C . 7Cl 1)0w, v w w
S D e 2 St Fl oty S IS F 22 g
Jj=1 [>1
This and the estimate obtained for ||7]| L2(vodw) ive us (2.77). O

Proof of Theorem 2.71. First of all fix w € Ay(dz), and denote ¢ = p_(L,) =
q—(Ly) (see Lemma 2.35), ¢4 := q4(Ly), and py = pi(Ly).

We claim that for all p € WY (max{r,,q_},p;) and h € S,
(2‘79) Hsﬁ)h”LP(vdw) S ||Vh||LP(vdw)'

Indeed, applying Proposition 2.75, [12, Theorem 3.1], and Proposition 2.28, we have
that

HSﬁthLP(vdw) = HSF/Z,H \% LwhHLf’(vdw) ~ HSﬁ’ V LwhHLP(vdw)
5 H V LwhHLP(vdw) S HVhHLP(vdw)'

Note that W (max{ry,¢_},p;) = (to(w) max{ry, ¢_}, p;/s,(w)). Therefore, for
every p satisfying

(2.80) tp(w) max {7y, (¢ )wx} < p < to(w) max{ry,,q_},
if we show that
(2.81) IS8Rl oo wawy S IVAlo(uaw), VR E S,

then, by interpolation (see [10] and Remark 2.15) we would conclude (2.73).

Now fix p as in (2.80), and note that vw € A,(dx), since 1, < ryt,(w) < p (see
Remark 2.15). Given a > 0, we apply Lemma 2.47 to h € S, «a, the product weight
w = vw and p. Let {B;}; be the collection of balls given by Lemma 2.47. Consider
for M € N arbitrarily large,

M
BT‘B- = ([ - eiréiLw)Ma ATB. =1 BTB. = ch,Meikr%iLw-
1 Z [
Then R
h=g+Y Apbi+Y Bybi=1g+b+b.

It follows that
(2.82) wvw ({x e R": Sih(z) > a}) <ow <{a: eR": S¥g(x) > %})
+ow ({:c cR": gﬁug(x) > %})

+ow ({x e R" : S¥b(z) > %}) = [+ II+III.
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Now, since WY (max{ry, ¢_}, ¢+ ) # O by assumption and p>v,(w) max{ry, (¢—)w}
(see (2.80)), by Remark 2.56 we can pick p; such that

(2.83) t, (w) max{r,, ¢_} < p; < min {gﬁ,pzw} :
Observe that

p1>p, and peW’ (max{rw,q_},q+) :
Note also that in particular t,(w)¢- < p1 < =, that is,

(2.84) ve A (w)N RH(qi)/(w).

q_

Now we are ready to estimate I. Applying Chebyshev’s inequality with py, (2.79),
and properties (2.49)-(2.52), we obtain

1 = 1 1
w - |P1 P p
(2.85) I< e /Rn |Sig|P vdw < o /Rn IVglPlodw < — /Rn |Vh[Pvdw.

In order to estimate I, apply Chebyshev’s inequality, (2.79), and Lemma 2.74
(with f = h). Then

1 -

(2.86) IT < — SH

ab1 R

1
" vdw < — ’Vb|plvdw < —/ |Vh|Podw.
Next, we estimate I11. Note that, by (2.51)
S a

2.87 111 5 vw(|J16B:) +vw({z € R\ J16B:: Sib(x) > 5 })
(2.87) Sww U +ow(qx \Lij () > <

1

S — | |VhPudw + 1114,
Oép R”

where

11, = vw{ (x e R"\ U 165, : S¥b(z) > %})

By Chebyshev’s inequality, duality, splitting the integral in x, and applying Holder’s
inequality:

(2.88)

I < SUb|" vdw
|Sib)

aPbt Rn \Ui 16B;

5%< \\Lpl(d) ZZ(/ ‘SH< )

i >4

1

P p1
p1 1
vdw) kel ))

p1
1
=: vl " (Z ZIIIU HU1C L (vdw)) '
IILpl( dw) i j>4
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Splitting the integral in ¢ (recall that j > 4), we have
(2.89)

2j_2TBi

mz,s( [ ([
CJ(B»L) 0 B(x,t)
Wl
C](Bz) 2j72TBZ. B(Q},t)

= I11;; + 111},

1

Mm )
(Bl ))> <>d<>>

1

t2Lwe—t2Lw<BrBi<rb_;i>>(y) 2%> (@)l ))171

tLye" (B, bi) (1)

Before estimating IIII and III%, we take py close enough to ¢_, and qg close
enough to ¢, so that

pP1

(2.90) g <po<min{2,p1}, max{2,p1} < qo < qe, vE Am(w)N RH(q
PO

70)/(10»
Hence, by Lemma 2.16 (b),
1
(2.91) TIT),
a0 1

J+1 3 Yor v 2 dw(y) di 7w x i
Svw(@TB) (J{Jj(Bi(/o /B(;c,t) tw(B(y,t)))d ( )>'

Besides, note that for z € C;(B;) and 0 < t < 29"?rp we have that B(x,t) C
27t2B; \ 2771 B;. Then, by (2.3), recalling that gy > 2, applying Jensen’s inequality
with respect to dw(y) dt, and Fubini’s theorem, we get

(2.92)
2 dw(y)dt >2dw(x)>q°

(][C-(Bi)< /ozj rBL(a:,t) tw(B(y,t))
< (2rg,) (][C( (f ][ - Jtue (BTBibz-)@)fdw(y)dt)2dw<x>>qo

tLye 0w (B,,Bi bi)(y)

tLye ' Lu <B,,BZ_ bi) (v)

1

w“ 1
2irg N2~ d dt 0
< ][ / ( TB) ][ tLue " (B ) () w W) dt
C;(B;)J0 B(z,t) ' t
1
2] 2 qiofl %
27 d dt
S A e I B o A e s
c;(B:)Jo Ba.t) ‘ tw(B(y,t))

1

90 _q m
5 / <2JTB ) ’ t—QO][ ‘t2Lw€_t2L"’ <Br3.bi> (y) @ dw(y) dt ‘
0 t 2i+2B;\2i-1B; ' t

We estimate the integral in y by using functional calculus. The notation is taken from
[1] and [6, Section 7]. We write ¢ € [0, 7/2) for the supremum of |arg((L f, f) r2(w))|
over all f in the domain of L,. Let 0 < ¥ < § < v < pu < 7/2 and note that,
for a fixed t > 0, ¢(z,t) == e **(1 — e*TQBiZ)M is holomorphic in the open sector
¥, = {z € C\ {0} : |arg(z)| < p} and satisfies |p(z,t)| < |2|M (1 + |2) "M (with
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implicit constant depending on y, t > 0, rg,, and M) for every z € 3,,. Hence, we
can write

(2.93) O(Lyp, t) :/eZL“’n(z,t)dz, where n(z,t) :/ecng(c,t)dc.
r Y

Here I' = 0¥z 4 with positive orientation (although orientation is irrelevant for our
computations) and v = R e?s&mE)v Tt is not difficult to see that for every z € T,

2M

’
< — B
|77(Z= )| ~ (|Z| +t2)M+1

Moreover, observe that 27+2B; \ 2/~ B; = |J;_, Ciy;_2(B;), Vj > 4. Also, our choices
of po and qo in (2.90) yield that zL,e *tv € O(LP(w) — L®(w)). Thus, by these
facts and Minkowski’s integral inequality, we obtain

1
4 a
2j+237;\2j_1Bi ‘
1
o $2 r2M
< 2Lye b, | dw> Y B g,
~ /F (]éjHBi\w‘lB,- | “ Z} 12| (|z] + t2)M+1| |
1 . 92 )
. J 47ri 2 2M
,52391 ][ |bi|p0 dw " /T —2 T?i @70 \z\B t_ TB'L |dZ|
PR 2l (el + )M+
o o ] 02 4j7‘2_ 2M
< 202 (][ bl cz(vw))“ / T(2 ﬁBi) e L
B; 0 52 sM+1 g

00
—1e—1i _ 0o —pg2 ds
5057“31.12 Jj(2M+2 91)t2/ T(S) 2 pC8 32M+2
0 S

5 o Tgl 2_](2M+2_91)t2,

where, to obtain the last inequality, we need to take M € N large enough so that

2M + 2 > 0,. Besides, we use Lemma 2.16 (a) in the third inequality; and the forth
inequality follows from (3.7) (see (3.36)) and the change of variable s into 4%, /s*.

Plugging the above estimate into (2.92) and changing the variable ¢ into 2/rg.t,

allows us to obtain
2 dw(y)dt ) ()

2j727”3i
][C’]-(Bi) /0 /B(m,t) tw(B(y,t))

1
202, j | 20
< 0”’5;3 9—3(2M~+2—01) (/ B; (2J:Bi) 2 tqo%) < 2 I @M +1-01)
0

This and (2.91) yield, for M € N such that 2M + 2 > 65,

tLyet L <BTBZ_ bi) (v)

1

(2.94) TITY S avw(2H B;)m 2 JCM+1-0),
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In order to estimate III?j, we first change the variable ¢ into t0y; := tv M + 1.

Then 1
e (o () i)

(2.95) / /
2i-2rp. J B(at)
> b, 2 dw(y) dt :
S (e (2 (5) 0] 252
2i=2rp, J B(,t) " \TB; t
2 b;
7;,7"31.152Lwe_t L <_) (y)

[o¢]
2)74rg.
0 Bi J B(x0ut) "'B;

M

42 _ t2 2 Luw
where we recall that T;,, = (e7"lv —¢ (s, ) Lw )M

Next, fix x € C;(B;) and t > 2j;i:3i. In this case, B; C B(x,120yt). Thus, by
(2.39) and the fact that 7L,e" ™ € O(LP°(w) — L*(w)), for 7 > 0, we get

_ b;
][ ﬁ,TBitsze tLu (_) (y)
B(z,001) T'B;

L) e L. Jw
b;

T'2 )2M )
< [ 2B 22”1][ t2L,e v (13 1207t ) (y)
( t2 Z Ci(B(z,120,11)) (e 12001),

2

dw(y),

dw(y)

42
t2Lwe Pl (]—B(x,129Mt)

b;
B,
2

dw(y)

>1

2M
r%z) E /‘67041 (][ bz<y>
¢ B(z,12001t) | TB;

>1

2

dw(y)> "

BN wB)  \w ][ " )"
12 w(B(x, 120,t)) B,
P2\ M p1 - 72\ 2M
< ( tf;) <][ d(vw)) < ( tg) ol
B;

Here the next-to-last inequality is due to Lemma 2.16 (a) and the fact that B; C
B(z,120)t), and the last inequality follows from (2.53).

Plugging the above estimate into (2.95) and recalling the definition of III?]- in
(2.89) allows us to obtain

o 72 M dt % ﬁ 1
I7T72 < « - _Bi — vdw < avw (2 By 272M
1]~ 27 =2rpg. tQ t ~
C(Bl) BM 7

By this and (2.94), for M € N such that 2M > 6, — 2, we have

bi

rB;

bi

T‘Bi

TIT,; S cww(2By)rr2 M0,

Then, by Lemma 2.62 with Z;; = Z77,;, C = 601, and {B;}; the collection of
balls given by Lemma 2.47, and by (2.51) and (2.88), for M € N so that 2M >
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max{fy — 2,6, + r,t,(w)n}, we conclude that

1
111 < vw(UBi> < —p/ VhPoduw.
p 6 R™

This, together with (2.85)-(2.87) and (2.82), yields (2.81). O

3. PROOF OF THEOREM 1.8

In this section, we prove Theorem 1.8 for functions f € S, and conclude the result
by a density argument. Fix w € As(dz), v € A(w) and f € S, and note that for
every (z,t) € R™ and u(z,t) := Ve Vv f(z),

[u(z, ) = [Ve e f(2)]P + [0~V f(2)

where we define the Poisson semigroup {e*tm}bo using the classical subordination
formula, or the functional calculus for L, (see [1, 14]):

(3.1) e Vv — C/ e_)‘)\%e_fﬁL“’@.
0 A
Therefore, it suffices to see that if WY (max {ry, ¢—(Ly)}, ¢+ (Lyw)) # O, then

INw (Ve ™5 )| otuan) S IV flloawy  and [N (8™ )| o uan) SNV 1| o (o)

for all p € WY (max {7y, (¢—(Lw))wx} , ¢+ (Lw)). We shall see this in Propositions 3.2
and 3.5 below.

3.1. Non-tangential maximal function estimate for the spatial derivatives.
Proposition 3.2. Given w € As(dx) and v € Ay (w) such that

Wy (max {rw, ¢ (Lw)} , ¢4 (Lw)) # O.
Then, for all f € S and p € WY (max {ry, (¢-(Lw))ws} ¢+ (Lw)), we have

(3.3) WD S U9 ey

Proof. First of all, fix w € Ay(dx) and define q_ := g_(L,,) and ¢4 := g4 (Ly).
In the context of (1.6) we set o := cocy. We claim that

1
2

Ve_tmf(z)rdw(z)) :

t>0

(B4)  Nu(Ve VP f)(a) < sup < ][ -

Indeed, by (2.3),

NV )(a) = sup ( fod
t>0 ¢y Ht<s<cot J B(z,c1t)

2
Ssup  sup (][ Ve’smf(z)’ dw(z)>
t>0 o li<s<cot B(z,as)

< sup ( ][
t>0 B(z,at)

1

Ve Vv f(z) ‘Zdw(z)ds>

1
2

1
2

Ve Vo f(2) ‘2dw(z)> :
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Besides, by the subordination formula (3.1) and Minkowski’s integral inequality,

(][B(z,at)

Ve Vv f(z) ‘de(z)) :

1
S /4 e Az <][
0 B(z,at)
+ / e Az <][
% B(z,at)

Dealing first with term I, note that

T > 2
I g/ A2 (][ Ve L“’f(z)‘ dw(z))
0 B(z,at)
Y
0 B(z,at)

In order to estimate term I, for any p € WY (max {ry, (¢-)w},q+), we pick py in
the interval (max {7y, (¢—)w+},min{2, p}), close enough to max {r.,, (¢_)w..} so that

v € Ar (w) (see (2.13) and (2.14)). Therefore MY (f) := (M;ﬁo(|f|p0))% is bounded
pPo
on LP(vdw). This and Lemma 2.40 yield

sup <][
t>0 B(-,at)

i PO
sup e ¢ Vf(z podwz)
S wiePa

t>0 i>1

S Ze_cyu'/\/l;)o(vfwm(vdw) 5 ”foL”(wa)'

Jj=1

2 %d)\
d _
w)) 'S

2 )\

) 2
Ve’Hwa(z)‘ dw(z)) S I+11.

Ve ke f(2)

=

dA
A

NN
dw(z)) — =1+ L.

(Ve_%L“’ — Ve_tsz)f(z) 3

Ve-t%f@)fdw(z)f

LP(vdw)

S

LP(vdw)

Consequently, by Minkowski’s integral inequality,

i
< / A2 || sup ][
Lr(vdw) Jg t>0 B(-,at)

Now we turn to the estimate of term I5. Write

d\
S S 19 Flisuy

LP(vdw)

Ve’tzL“’f(z)

sup I
>0

2dw(z)>é

2 21, 2 Lye2], L
Ve v — Ve " " =Ve 2 ”(e_(ﬂ_?) v—e 2 ”)

and use again Lemma 2.40 and (2.3). Then,

1
I = / Az (][
0 B(z,at)

o ) i 1 1 1y,2 2 po o d\
< 6041/ A3 <][ V(ef(n*ﬁt Luw _ e*?LM) 2)| dw(z ) —.
~ Z B(z,29+2at) e ) A

J=1 0

ST R
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Since 0 < A < 1/4, there holds

ds

S

§2V Lye " Lv f(2)

o;Ve f(2)lds <

V2 V2

1

S (/OOO ‘SQVLwe_SQL‘”f(Z)‘z%)%<log(2)\)_§>2 < (log A—l)% GUf(z),

where éﬂ is the vertical square function defined in (2.25). Then, we get

1 1
i [ 1 ~ o d\
sup I < 26_04 /4 A2 (log )\_1) 2 sup <][ podw(z)) it
0 B(z,27+2at)

>0 = >0 A

iwf(2)

< M;, (Gif ) (@),
Then, since M} is bounded on L” (vdw), the above computation and Theorem 2.54
imply

sup I
>0

) S HM;;}0<Nﬁf)HLp(vdw) 5 Héﬁf“LP(vdw) 5 ||Vf||LP(wa)'

Lr(vdw

We finally estimate term I1. Applying Lemma 2.40, we have that, for every ¢t > 0,

(f (Ww)\Ve-“wﬂz)r?dw(z))
< T(ﬁﬁée-ﬂ”( / (

Hence,

|Vf(2)|p°dw(Z)) " TR ME (V1) ).

x,29 20/ At)

sup [1
>0

e d\
)S[ e*AT(\/X)f)T||M;;’O(Vf)HLp(vdw) SV Al oo

LP(vdw
Collecting the above estimates, we conclude (3.3). 0J

3.2. Non-tangential maximal function estimate for the time derivative.

Proposition 3.5. Given w € Ay(dx) and v € Ay (w), assume that

Wy (max {ry, ¢ (Lw)} , ¢4 (Lw)) # O.
Then, for all p € WY (max {ry, (p—(Lw))ws} P+ (Lw)) and f € S, we have
(3.6) Wo@e = p|, U9 ey

vdw

To prove this result, we need Theorem 2.71, a change of angles result in L?(vdw) for
the operator defined in (2.17), and the boundedness of the non-tangential maximal
square functions defined in (2.18) and (2.19). We obtain these results in Lemma 3.7,
and Proposition 3.12 below.

Our next result is an extension of [25, Lemma 6.2] (see also [28, Lemma 7.3]).



THE REGULARITY PROBLEM FOR DEGENERATE ELLIPTIC OPERATORS 35

Lemma 3.7. Given w € A,(dzx) and v € Ax(w), 1 < r,7 < o0, let 0 < p < o0 and
k> 1. There hold

r+1 r
(3.8) TN || Lo (i) S 5 n(S+1)
and
n LES W0 w
(3.9) NS F oy S " CE 5 AN F oo

Proof. We will just prove (3.8), the proof of (3.9) follows analogously by writing the
LP(vdw)-norm as an integral of the level sets. Details are left to the interested reader.

Consider, for any A > 0,
O/\ = {l’ e R" NwF(.CE) > )\}7 E, = Rn\O)\,

and, for y=1— W, the set of y-density
ExNB
B o= {xéR”:Vr>0, w(Eh N B(z,r)) }
w(B(z,r))
Note that O; = R" \ E = {CC € R™: Mw(lo)\>($) > W}
We claim that for every A > 0,
(3.10) NP F(z) < [wa@n2® (96) "2\, Vo€ B

Assuming this momentarily, let 0 < p < oo. Since MY : L7 (vdw) — L™ (vdw), as
we are assuming that v € Ax(w), we get

[N F [0 (i) = SUP NMvw({z € R" : N F(z) > A})
A>0

vdw)

n(r+1)

=sup ([l 2 (95) "\ v ({o € B N9UF (@) > ]2 (05) 77 A)

A>0
n(r+1)p

(9x)" 2 sup Now(03) < (54 7) sup NPow(O0y)
A>0 A>0

N F I ey
which would finish the proof.

It remains to show (3.10). First, note that if z € E} and t > 0, for every y €
B(z,2kt) we have B(y,t/2)NE) # . To prove this, suppose by way of contradiction
that B(y,t/2) C O,. Then, by (2.2), since B(y,t/2) C B(x,3kt) and B(z,3kt) C
B(y, 5kt),

B(y,t/2 B(y,t/2 1 1
Mo (10,)() > LBW:2) o w(By:/2) -
w(B(x,3kt)) — w(B(y,5kt)) ~ [w]a, ) (106)™ ~ [w]a, (g (11K)™
This implies that x € Of, which contradicts our assumption.
Fix now = € Ef and t > 0, and note that if y € B(x,2kt) there exists xzy €

B(y,t/2)N Ey, hence N*F(zy) < A. Besides, since B(y,t/2) C B(xg,t) and by (2.2),
for every y € B(z, 2xt),

(3.11) (/B@,,t/z) |F(z,t)|2w(gz”y—(j)/2)))é

pnr
< [wly, (a2 2

(r+1)
:/ﬁ:n(TQ 5
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1
. m dw(z) 2
P r 2 QW)
= [w]Ar(dz) i Sslig </B(aco,s) ‘ (Z, 8)‘ w(B(x(]? S))>
— [w]zr(dx)Q%NwF(ZEo) < [w]zr(d:p)2%>\'

On the other hand, for every x € R" and t > 0, we have that B(x,xt) C
U, B(xi, t/2), where {B(x;,t/2)}; is a collection of at most (9x)™ balls such that, for
every i, we have that x; € B(z,2kt). In particular, B(z;,t/2), B(z,t) C B(z;, 3kt).

Therefore, by the above observations and (2.2), we conclude that

o dw(y) w )T 2 dw(y)
/B(x,m:) )l w(B(x,t)) < [l e (3) ;/B(xi,t/2)|F(y7t)| w(B(x,1/2))

< (9/€)n(r+1) [w]ir(dm)2nr)\2’

where we have used (3.11), since x; € B(x,2xt). Finally, taking the supremum over
all t > 0, we obtain

NEYF ()2 < (W], 2" (95)"FIN Vo € B,
This readily gives (3.10) and the proof is complete. O

Proposition 3.12. Let L,, be a degenerate elliptic operator with w € As(dx) and let
v € Ax(w). Then

(a) N is bounded on LP(vdw) for all p € WY (p_(Ly,), 00).
(b) N¥ is bounded on LP(vdw) for all p € WY (p_(Ly),p+(Ly)).

Proof. We first prove part (a). Fix p € W¥(p—(Ly),o0) and choose py close enough
to p_(Ly) so that

(3.13) p_(Ly) < po <min{2,p} and ve Ar (w).
o
Then e ™5+ € O(LP(w) — L*(w)). This fact and (2.3) yield

1
2 2

e hu (e, f) (2)

Nif@) S sy (][ dw(z))

1

g Supz 2j91T(2j+1)926*C4j (][ \f(z)\podw(z)> S M;fjof(x)
C;(B(z:t))

t>0 >1

Consequently,
”NIzIUfHLP(vdw) 5 ||M;)0f||Lp(vdw) 5 ”f||Lp(vdw)7

since M. is bounded on LP(vdw) by our choice of py.

We now prove part (b). Note that

(e’tm—e’t%w)f(z) ’ilw(zaé::./\/'ﬁ“f(x) +sup I

t>0

t>0

N () SN F () +sup (]i y
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By the subordination formula (3.1) and Minkowski’s integral inequality,

o 1 t2 2 d)\ ?
I = ][ / ez (e mlw — g7t L) f dw
(W 0 ( JF&5| duz)

©° ) 2 2 dA

< e M\z <][ e ~5Dw _ e ) £(2)| dw(z ) —
/o B(z,t) ( ) ( )} () A
% 1 2 2 2 %d)\

= e \2 <][ e~ mlv —e7Le) £()| dw(z > —
/ L )7 ())&

(e Slw _ etQLw)f(z)‘zdw(z)> é%

—l—/ e’\)\é(][
1 B(x,t)

4

= ]1 + .[2.

37

2
In order to estimate I; and I, for each ¢t > 0 consider h; := (e_(ﬁ_%)t%w — e_%Lw)f.

Next fix p € WY (p_(Lw), p+(Ly)), and choose py as in (3.13). Then, applying the

fact that e v € O(LPo(w) — L*(w)), we have
2 )\

% 1 2 2
I S/ A2 (][ e_?Lwht(z)’ dw(Z)) -
0 B(z,t) A
1
4 1
s
0 ; B(z,t)
i 70 d\
4 1 . . ; PO
< A2 i1y (i+1) % p—et? (][ he(2)[P°dw z> —
[rSereter (L mera)
1
, 70 d\
<N e [ he(2)[Pod 2
S / (][ oy I3 w(z)) -

j>1

£2 2 %d)\
6_7Lw (]_Cj(B)ht) (Z)‘ d'lU(Z)) 7

When 0 < A < 1/4, Cauchy-Schwartz inequality implies

where

(3.14) g f(2) = ( / )

Therefore,

.7 d)\ P
LY e / (log A1)} (][ | |gﬁ,tf<z>|mdw<z>)°
by B(x,29+11)

j>1
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1

2 (][ o TG ())

j>1

As for term Iy, note that if A > 1/4, we have that

)(e*%Lw _efmw)f(z)‘ S/tt 2Ly e ()| ds

S

t 2 2ds % 1
< / s2Lye b ()2 (log(an))?.

Then, by (2.3),

vef (L
S L

d\
S [t

s i du(2)ds )
Shue ) <<>>>7

2L G_Swa( )‘ ()dS ) @

w(B(z,5)) ) A

4

where 812{\&’“’ is defined in (2.24).

From the above estimates for I; and Iy, we obtain that, for all z € R”,

19 NI SN S (o)

t>0

o d\
- / e*dséﬁ’wmy
1

4

SN (@) + Mi(eif(e) + [ st @)

4
where g} is defined in (2.20).
To proceed, we first note that My is bounded on LP(vdw), since v € Ar (w),
Po
and so is g}y (see [14]) since p € W¥(p—(Ly),p+(Lyw)). Using this and invoking

Proposition 2.44 and [12, Theorem 3.1], for some 6 > 0 depending on v, w, and n,
we conclude that

d\

82\5,11;
H f LP(vdw) A

HwaHLP (vdw) > < ||wa||Lp vdw) +“M ng HLP vdw) +/ eic)‘

1

8»

w e d)\
S HfHLP(vdw) + HngHLP(vdw) + HfHLp(vdw)[ )\6 A )\ ~ HfHLP (vdw)*

1

This completes the proof. O
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Proof of Proposition 3.5. First of all, fix w € As(dx) and denote
- =p-(Ly) = ¢ (Lw), ¢+ = q-(Lw), Pt = pir(Lu),

and

w(z,t) == e Ve f(z) = —/Lye Ve f(2).

From the definitions of N,, and NV (see (1.6) and (2.19)), proceeding as in the
proof of (3.4) we have that

(3.16) Nopu(z) SNV Lwf)(z), VoeR",
with o = ¢pc;. Consequently, Lemma 3.7, and Propositions 3.12 (b) and 2.28 imply

HquHLP(vdw) 5 HNIZ;%\/ wa)HLP(vdw) 5 H\/ waHLp(’Ud’u)) ,S HVfHLP(vdw)7

for all p € Wy (max{ry, ¢}, py) = (v, (w) max{r,,q_},pi/s,(w)) and f € S.
Our goal is to obtain (3.6) for all
p € W;U<max{7ﬂw7 (Q—)w,*}ap—I—) - (tfu(w) maX{Tun (Q—)w,*}7p+/5v(w))'
Recall that (g_ )y« < g (see (2.6)). Hence, fix p such that
(3.17) ty(w) max {ry, (¢-)w.} < p < ty(w)max {r,,q_}.

Then, in view of inequality (3.16) and Lemma 3.7, if we show that, for all f € S,
(3.18) INVE Vo) ooty S 195t

by interpolation, see [10] and Remark 2.15, we would conclude the desired estimate.

Given a > 0, take a function f € §. We apply Lemma 2.47 to f, «, and the
product weight @w = vw (note that vw € A,(dz) since r,, < rut,(w) < p, see
Remark 2.15). Let {B;}; be the collection of balls given by Lemma 2.47. Consider
for M € N arbitrarily large,

M

B?‘Bi = ([ — e*T%iLw)M’ ATBZ- =1 — BTBi — chyMefkTQBiLw'
k=1
Hence,
(3.19) F=9+> Aubi+> Boybi=g+b+b.

To prove the weak-type estimates for g,g, and E, we need some preparations. On
the one hand, since we assume that WY (max{ry, ¢-},q+) # O, by (3.17) and (2.57)
we can take p; satisfying

. q+
3.20 ty(w) max {7y, ¢ < <m1n{—> :w}
(3.20) (w) max {ry, ¢-} < p1 o)
In particular, t,(w)q_ < p; < %q(—tu), that is, p1 € W¥(q_,qy). This can be written as

(3.21) v e A%(w) N RH<L+)/(w).
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On the other hand, take py satisfying ¢— < po < min{2,p,} close enough to ¢_
and ¢ satisfying max{2,p;} < qo < ¢+ close enough to ¢, so that
v € Ar (W) N RH ,\/(w).
o (32)

(3.22)
Next, by (3.15) and (2.3), we have that for any function h € L*(w)
7o
N¥h(z) SNh(z) + > e sup (][ [SO S dw(y))
>0 \JB(z,2+11)

>1

)+ e Dy h(x) + Dsh(x),

>1

-

+ / —CASM%( ) = N¥h(x

where we recall that gjf , is defined in (3.14). Besides, note that, the fact that e~ €
L*(w)), and (2.3) yield

N h(x) = sup (][
t>0 B(z,t)
<N e gup <][
~ Z >0 \JB(z,21+11)

1>1

oL (w) -
eeny)| o))

o5 e h(y) dw<y>>

") .

sS e ta(f et
>1 t>0 B(z,21+2t)
=: Z 6"341531,1}1(:1:)
1>1

Therefore, for any function h € L?(w), we have that
N¥h(z) < C (Z e Oy ih(z) + ) e M Dy h(x +93h<x>> . VzeR"
I>1 I>1
Using this and (3.19), we get
w({x eR": NP (\/L_wf> () > oz})
<ow ({x eR" : NY (\/L_wg> (x) > %})
+ow ({x eR" : NP (\/L_wg) (x) > %})

£ w({rer 0 e o, (VI > 1)

m=1 >1

+ vw ({x e R": CO;3 (@B) () %}>

2
::I+II+ZIIIm+IV.

m=1
In order to estimate /, first note that p < p; (see (3.17) and (3.20)). Then, apply
Chebyshev’s inequality, Propositions 3.12 (b) and 2.28, and properties (2.48)-(2.52)

(3.23)
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to get
1 1
(3.24) IS 7/ IVE (V Lug) | vdw S —/ IVg|Ptvdw < < — |Vf|pvdw
« R™

Now we estimate I1. To this end, apply Chebyshev’s inequality, Prop081t1ons 3.12
(b) and 2.28, and Lemma 2.74. Then,

1 ~\ |P1 1 ~
< < p1
(3:25) 1S — u (\/wa)’ vdw § — /R V| vduw
|
S |Vf|pvdw
(0%

We next estimate /V. With this aim, we write b = ), b; so that b=0b— b, and
note that

1V <wvw <{:E€]R" C9O3 <\/_b> 10})
+ow ({x eR": O, (\/L_Uj{) (z) > 1%}) — IV, + IVh.

In order to estimate I'V; apply Chebyshev’s inequality, Minkowski’s integral inequal-
ity, and Proposition 2.44, then

i = —cu 2\/ﬂw /_ ‘ au 1 H
" T </}1 ( b) Lr(vdw) U ) SH v b
1/2,H (\/ b) ‘ -
1
S Jzi:/& (Vb [Podw < zi:vw(Bi) < J/Rn IV f[Podw,

where we have used Proposition 2.75 in the third inequality, Theorem 2.71 in the
fourth inequality, and the last two inequalities follow from (2.50) and (2.51).

LP(vdw)

<1

5@ || bHLP vdw)

LP(vdw) Q{p

wb‘

As for the estimate of I'V, apply again Chebyshev’s inequality, Minkowski’s integral
inequality and Proposition 2.44. Then, [12, Theorem 3.1], Proposition 2.28, and

Lemma 2.74 readily give
i\
LP1(vdw) U

1 = —cu u,w
WM@([ i/ (VLab)|
1/ 1
‘Sw b ‘ Hv HLpl(vdw ~ &/Rn‘v]ﬂpvdw

Therefore, we conclude that

LP1 (vdw) apl

1
(3.26) v < — |Vf|pvdw

Now, it remains to estimate 111, for m = 1,2. Note that by (2.51),
(3.27)

11, <vw(U163>+ww({xeR"\u 16B;: O e 0,1 (VLub) (@) %})

>1
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c4!

_/ yvf|Pudw+va<{:v € R"\Uil6B; : O,y (VLub) (2) 602?})

1>1
= —/ IV fPodw + Y " I,
1>1
Applying Chebyshev’s inequality, duality, and Holder’s inequality, it follows that
(3.28)
—c4!

15, <5 / (90 (VIL )| v
R™\U;16B;

o1

1

,c4l Pl P1
e
S am( ZZ( / \ (VL (Bsb))| vdw> o, HLPI(M))
||“||Lp1( oy L0 g4
67041 !
=— < ZZ o lutey sl )) .
[l IILpl( gy L i 024

Then, for m = 1, we have that

ij
Il,l

oz

Cj(B;i) \ 0<t<2i=1=3rpg. \J B(,2!+2t)

-+ / sup <][ eftQLw /Lw (BT‘B. bz) (y)
Cj(Bi) \t>21=1=3rg. \J B(x,2!+2t) ¢

= (’:1 + @2.

1

podw(y)>p0> U(fl?)dlu(ﬂ?)) 1

" dw(y))po> v(x)dw(x))p1

e Loy /T (BTBZ, bi) ()

In order to estimate €;, we use functional calculus as in the proof of Theorem 2.71.
Recall (2.93) and take ¢(z,t) := tzze *(1 — eir%z‘z)M. Then ¢(z,t) is holomorphic
in the open sector ¥, = {z € C\ {0} : |arg(z)| < p} and satisfies |¢(2,t)] <
|2]M (1 + |2])72M (with implicit constant depending on wu, t > 0, rp,, and M) for
every z € X,. We can check that for every z € I' = 0%z _y,

tr2M
n(z,t)] S ——2——
(Jz] + t2)Mt2

Now fix z € Cj(B;), j >4, and 0 < t < 27'3rp., then B(x,2'"2t) C 27+2B;\ 277 B,.
This and Minkowski’s integral inequality imply

(]{B(z,zlwt) e_tsz\/L_“’ (BTBZ- bi) (y)

= (£ a om0 (3) 0|
B(z,2!%2t)

< /F (]{B(x,zuzt) et (%) (y)

1

"auw)”

tuiy)) .

Po t,r.QM

dw(y)) W\ 7|
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» m r2M
S/ (][ L2216 bi(y)| Odw(y)) 2z 47|
I \JB(z,2!+2¢) |z| M2
L T%M
e /M;fo (Lzrappzpe ™ b) (2) — s ld2].
r PG

Recalling that M} on LP(vdw) since v € Awm (w), and applying again Minkowski’s
Po
integral inequality, we get

1
2M

L P1 r )
¢ S / / ’M;”O (12]'+2Bi\2j_13ie_Zwai) (x)’p v(x)dw(z) J\‘iIJr; |dz|
r \Jc;(B) |22

o p2M
—2 Ly P ;
5/ (/ e by (y)] v(y)dw<y>> D).
r 2i1+2B;\29-1B; |Z| 2

Observe that 2/+°B; \ 2/7'B; = U Ciy; o(B;). Then by the fact that e*» ¢

J2

O(LP (vdw) — L' (vdw)), (2.53), and changing the variable s into : ey

52

L o0 ] 92 7.2 2M
' Y 21, Y srp d
€1 < vw(2 By 2 (][ o™ d(vw)) ’ / T ( rle) e T &

sz s

i+1 o\ 9—j(2M+1—6,) = 0 —cs? anri1 48

S avw (277 B;) 27 ! T(s)?e s —
0 s

S avw(2j+1Bi)igfj@Merl),

provided 2M + 1 > 6s.
We continue by estimating €. To this end, first change the variable ¢ into
29—

tvVM +1 =: thy. Next, for any x € C;(B;) and t > zl%;f;’ note that B; C
B(zp,, 002" %t) =: B! C B(z,0,2725t) (xp, denotes the center of B;). Then,

Py 1

0 2
GQ,S/ sup ][ h,TB_\/Lwe’tQL”<1B4bi)(y)‘podw(y) d(vw)(z)
Ci(B\ o ¥ Srp, ) Blafu2+20) ! ‘

M

P1

§</cj(3i)<t sup w(B(, 8M2l+2t))_ZnthBi\/L—we_tQLw(lgfbi)(y)‘?w(y))?(vw)(x)),

j—1—3,.
>2 "B,
- M

M
42 —(t?+r% )L
where T, = (6 Pl _ o= (F475,) w) .
’ 7

In the above setting, (2.39), Proposition 2.28, the fact that v/7Ve "Lve O(LP° (w)—
LP°(w)), (2.3), and Lemma 2.16 (a) (see (3.22)), imply

1
(3.29) (/ 7?,7”31- \/Lwe—t2Lw <1ngi) Podw) 70
Rn k3

7’]23_ M Po PO
<(%) (/ o)

Ve Flw <1B§bi>
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tVe t*Lw <1 34 bi )

1

1

Po o
dw

10 ! —eaN ', " b [*° g
< 2%w(B;) o Z e (t_2> ][Bl. - dw
N>1 L1 B;
2 \ M P1 L
1 ) bz P1
< 2l9w(Bf)Plo ', ][ d(vw)
t2 B; T'Bi

Consequently,

Q:Q ,S 2l906</
C

J

72\ M\ oy .
( sup < Bi) ) wa> < quw (P B;)r 27 IM QUM )
(Bi)

0j—1-3, 2
t>73i
- O

where in the first inequality, we have used that w(B(z,0,27%t))Lw(B!) < C, since
Bl C B(x,0,,2725t).

Collecting the estimates obtained for €; and &€,, we conclude that, for M € N such
that 2M + 1 > 92,

(3.30) 19 < avw(2j+1Bi)ﬁQ—j(QM—Ql)Ql(ZM—kG)'

Next, let us estimate term I;jl. Splitting the supremum in ¢, we have

p1

17 Po PO H
5 ( Lo s (o (vEe (Bab)w) " au) v(x)dw(w))
C](BZ) O<t<2]_l_2’r’3i B({E,Q“rlt)

P 4
i </Cj(Bi) tZ?JSBlp%Bi(]i(%glﬂt)(gﬁt\/L_w (BTBi bz) (y)>p0 dw(y))po ’U(m)dw(gj))
—: DY + DY.
Regarding Dij , we claim that
(3.31) DY < aww(2i1 B;)r 27 9M+1=01),

To this end, first note that for 0 < ¢ < 277""?rp5 and x € C;(B;), then B(xz,2"'t) C
272B; \ 277'B;. Next recall that M is L' (vdw) bounded since v € Am (w) (see
Po

(3.22)). Hence
i w w p1
Dl < ( / ‘Mm (12j+23i\2j_13igH\/Lw <B,,Bibi))’ vdw)
C;(Bi)
< vw(21'+1Bi)i (][ ‘gﬁ\/Lw (BTB_bi)
2i+2B;\2i-1 B, !

1
P1

" d(vw)) .
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In view of (3.22), we apply Lemma 2.16 (b) and Minkowski’s integral inequality to
get

(3.32)

1

y . 1 . o dr\

DY < vw (2B, / (][ ‘err\/Lwe_TQLw (BTB,bi(x)>quw(a7))o—r :
0 20+2B;\2/-1B; ‘ T

In order to estimate the integral in x, we use functional calculus as in the estimate
of €;. Apply the fact that zL,e** € O(LP(w) — L®(w)), Lemma 2.16 (a), and

(2.53). Thus,
1
q0 dw> 2

<£j+2Bi\2j _1Bi
2,.2M

7 Lyry/ Lwe_TQL“’ (B,,Bi bi>
0 Ty, |dz|

. o
,S/ ][ |z Lye 22w b; | dw 3
r \J2i+2B,\2i-1B, (|Z|+7“2)MJr§ ||

_ 00 2,.2M
< 2j01/ T( )02 —cs? "B, < |b |p0dw>
0

(4773, /52 +1?) M+3 s

1
o [P g Bt e
0 (47}, /52 4 1?) M+3 s

< OérB-ngl /00 T (8)52 6_6827“2 TZBM .
- 0 (413 /52 + r2)M+§ s

Plugging this into (3.32) and changing the variable r into 2/rg,r, we obtain, for
M € N such that 2M > 05,

oM 2
DY < arp, 2991vw(23+1B / / T (s 92 e~ 2 "B _ ds)dr
(4972 Js2 +r2)MF2 s | r

2
< avw(2*'B; )’%2 ~J@M+1-0) / r4</ T (8)52 e ! 3 §>@
0

0 (1/s2+r2)M+3 s | r

1
- 1 3 o0 -
< avw(2 B j(QMMl)((/ rﬂ)Q/ T () ¢est 23
0 r 0 S

(Y et
1 r 0 S

N

< avw (2B, >1%2 J2M+1-61)
Now turning to the estimate of D we claim

(3.33) DY < 21 (3MH0) (2741 B,) 1 272
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For any t > 2/71=2rp and f € L*(w), we have that

0 B dr 2 & _ dr 2
gﬁ,tf@:):( / 2 Lye ”wa(x)P—) ( / T PLe 2wa<x>|2—) .
t T QJ_Z_BTB,- T

2
Moreover, recall that py < qo (see (3.22)), this implies the boundedness of the maximal
operator My on L%®(w). This, together with Lemma 2.16 (b) and Minkowski’s
integral inequality, allows us to obtain

(3.34)

DY S vw(2 By) (J[

Cj(B;

B \w
) 1 ) 1 0 2
Svw(2 B w(2MB,) / (/ P Lo (VL ( By, b)) l) "
n 2j71737‘Bi o T

1
2 2
. 1 . 1 o0 q a0 (]
va<2]+13i)p11 w(23+1B¢) ‘110 (/legrB_ </ Odw) 0%) )
7 Rn
O

where in the last inequality we have changed the variable r into rfy, := rv M + 1,

71737,. ) .
used that B; C B(xp,, 024r) =: B, for r > 2 g and j > 4 (rp, denotes the

2Ly e_(T2+T2Bi)Lw)M.

VAN

1

qo W
dw)

40

1808 (s (V= (51,0)

7;,7‘]31. V LwT2Lweir2Lw <1Bl,bi)

center of B;), and we recall that 7:“”"31- = (e

Proceeding as in the estimate of (3.29), but using now the fact that /7V7L,e" ™5 €
O(LPo(w) — L% (w)) instead of \/TVe ™rv € O(LP(w) — LP°(w)), we get

1 9 \ M
q ~ /r ]
([ [/t (1)) 5 ety ()

r

N 2n . 1 2jn T2 Mﬁ%
5 2l<9+%)aw(2]+lBi)%2—W ( Bi)

)
712

j—1-3
On

where in the last inequality we have used that for » > "Bi and j > 4, 27F'B; C

23B!, and (2.2). Plugging this into (3.34) leads to

1
2M—2n 2
. 3. 2n in ) o0 r2 a0
Déj < 21<9+§70)a272;701)w<2]+13i)% (/ (ﬁ) @)
~ Qj—l—3rBi

2 T
QY]
< 2l(2M—|—§)avw<2j+1Bi)ﬁ272jM’
provided 2M > 2—2.
Gather (3.31) and (3.33), then for M € N such that 2M > max{f,, 2n/q},
I;jl < 21(2M+§)avw(2j“Bi)ﬁZ*j(zM*%).
This and (3.30) yield, for 2M > max{fy,2n/qo, 02 — 1},

I:,{l < Clavw(2j+1Bi)ﬁ2_j(2M_C2), m=1,2,
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with Cy 1= max{f,, 51} and O} := 02! Then, in view of (3.28), applying Lemma
2.62 with Z;; = I}, and { B;}; the collection of balls given by Lemma 2.47, and (2.51),
for 2M > max{C'g—i-nrwtv(w), 52, z—’:, 0y — 1}, we get

oP

1
I, < e’C4lvw(UBl-> < 6641—/ |V flPodw, m=1,2.
i R

Therefore, by (3.27)

1 1
111, S g i IV fPodw < — |V fPvdw.
Collecting this estimate and (3.23)-(3.26), the proof is complete. O

4. THE REGULARITY PROBLEM IN UNWEIGHTED LEBESGUE SPACES

Our main result, Theorem 1.8, establishes the solvability of the regularity problem
in LP(v dw) of the block operator L,,. Recall that w € As(dx) is fixed and controls the
degeneracy of the operator and that v € A, (w). This means that we can establish
the solvability of the regularity problem in unweighted Lebesgue spaces by taking
v = w~t. In this section our goal is to explore this idea and study ranges for which
we can solve the regularity problem in terms of the weight w. A particular case of
interest, where we can be more explicit, is that of power weights.

To start fix w € As(dr) and recall the definitions of 7, and s, in (2.4). As just
mentioned, we let v = w™! and observe that from the definitions it is clear that
for every 1 < r < oo one has w™' € A,(w) if and only if w € RH.(dz), and
w™' € RH.(w) if and only if w € A,(dr). Hence, according to (2.13) we have
ty-1(w) = s, and §,-1(w) = r,. Then looking at Theorem 1.8 and using (2.14), we
see that (1.9) is equivalent to

L
(4.1) max{ru, (L)} 5w < L)
T’LU
and if that holds we have (R™) 14y solvability for p so that
UARTN (Lw) Q—i-(Lw)
12 fry, 2retCo) V() arlEe)
(4.2) max-sr e+ 0 (L) Sw < p < -

It is important to note that ¢_(L,) and ¢y (L,) are defined in an abstract way and
depend intrinsically on w. From [14, Propositions 3.1 and 7.1] and recalling that
n > 2, we know that q_(L,) = p_(Ly,) < 712:‘;‘:2, hence we have an estimate for
q—(Ly) in terms of n and r,,. On the other hand ¢, (L,) > 2 and can be arbitrarily
close to 2 (even in the case w = 1), and we do not have an explicit bound in terms
of w (see [14, Proof of Theorem 11.8] in this regard). Taking this into account and

in order to check that (4.1) holds we will replace its right-hand side with %

Our first result for general weights is as follows:

Corollary 4.3. Let w € Ay(dz) and let L, be a block degenerate elliptic operator in
R as in (1.4). Associated with Ly, consider the reqularity problem (R™)po(ay) as

in Section 1. Given f € C=(R") if one sets u(x,t) = e Vv f(z), (z,t) € R™™, then
(4.4) ||Nw(var,tu)||Lp(dz) < CHVJCHLp(dx)
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in any of the following scenarios:
(a) If w € Ay(dz) N RHyyx(dx) and

nq_ (L)
n+ q_(Ly)

in particular, in the range

max {17 }Sw <p< q+(Lw)7

2n
n

max{l, 4}Sw<p§2-

(b) If w € Ay (dx) N RHyo(dx) with 7o := min { Vo 21+%} and

w {4— Lw Lw
max{% 7y g (Luw) }<p< ¢+ ( )’
nry + q-(Ly) w
in particular, in the range
{ 2nry, } cp< 2
max q ry, —————— < —.
nry +4 b Tw
(¢) If w € A;(dx) N RH,(y (dx) with 1 <1 <ro and s(r) = min{3, 22} and
w (Lo Ly,
max{rw, "7 (L) }sw<p<—q+( ),
Ny + qf(Lw) Tw

in particular, in the range

{ 2nry } <p< 2
mMax q Ty, ———— ¢ Su < —.
nry, +4 b Tw
(d) Given © > 1 there exists g = €(0,n,A/X) € (0,55], such that for every

w € Ape(de) N RH,ypq 2 1440 2y(de) with 0 < € < e and [w]ay(a) < O,
then (4.4) holds with p = 2, or equivalently (R™") 124y is solvable.

Proof. We first consider (a). Let w € Ay(dx) N RHyyn(dx) then r,, = 1 and s, <
(1+2) =1+ 2. Using that ¢_(L,) < 2% (since n > 2) we have

n+2
2n 2 Q-l—(Lw)
o0 (L))} 50 {1—} (1 —):2 L) = .
max{ry, ¢—(Ly)} s < max ) + - < q4+(Ly) -

That is, (4.1) holds and according to (4.2) we have (R“")p(4,)-solvability for p so

that (L)
1 q_ (L,
max 1,—}3w< < Ly,
{ n + qf(Lw> p Q+( )
and, in particular, in the range
2n
1, } w<p<2.
max{ ] S p <

To prove (b) and (c) assume that w € A,(dv) N RHy,y(dx) with 1 < r <

8
min{\/i, = 21+"} and s(r) = min{3, 22} and note that the restriction on r

gives s(r) € [1,00). In particular, r,, <7, s, < s(r), and

2nr
w wy 4— Lw w< w { wa—w} w
T Max{Ty, ¢ (Ly)} S0 < 1 maxr nro 12 s
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2 2
< max {1“2, nl 2} s(r) =2 < qy(Ly).

This implies (4.1) and we have (R[L ) Lp(dz)-SOlvability for p in the range given by
(4.2), and in particular for those p’s satlsfylng

2N 71y } cp< 2
——— % Sw < —.
nry +4 P Tw

All these show (b) by taking r = ry so that s(r) = 1 and hence s,, = 1. Also (c)
follows from the case 1 < r < rg.

To deal with (d) we proceed as in [14, pp. 654-655]. There, it is shown that given
© > 1 there exists g = €o(0,n,A/\) € (0,55 such that if w € Ay (dz) with
0 < € < ¢ so that [w]a,) < O then 27, < ¢4 (Ly). That is, 2 < q* (Lw)  On the
other hand, if we additionally assume that w € RH, 2 11102 }(da:) then

2 ! 2 2
s ({2 03)) e )

max {rw,

n(l+e)
: 2 2 2
< min {—, 14 } = ; ,
Tw nry n Ty
max {rw, - +2}
that is,
2nry
max {Tw, —} Sw < 2.

NIy + 2
Altogether we have obtained that max {'r’w, 71213“1“2} Sw < 2 < %5”). This implies
(4.1) and also that p = 2 satisfies (4.2). Consequently, (R")j2(y) is solvable as
desired. ]

Concerning power weights we have the following result:

Corollary 4.5. Consider the power weight ws(x) = |z|*®=Y with 0 < 8 < 2, and
let Ly, be the associated block operator
(4.6) Lysu(,t) = —|x|_"(ﬁ_1)div$(|x|”(ﬂ_1) A(z)Vau(z, t) — Ofu(z,t)
where A is an n X n matriz of compler L>™°-valued coefficients defined on R™, n > 2
satisfying the uniform ellipticity condition (1.1).

Assume that

8
n <ﬁ<m1n{\/§ 1+ 21+n}

n+2 -
then, for every f € C°(R™) if one sets u(x,t) = e~V f(z), (x,t) € R, then
(@ W (e L < I sy
for every p satisfying
ng(Lw) nBq(Lu) -1 ¢+ (L)
max {1, B, S h o (| LA <P < e

In particular, in the non-empty range

max{lﬁ 2n  2np

ESTT n6+4} max{1, 7'} <p <

2
max{1, 5}
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provided

8
%<ﬁ<mm{\/§ %}

Moreover, there exists €, = e1(n, A/A) € (0, 5=) such that if

n
— < <1
o <P<lta

then (4.7) holds with p = 2, or equivalently (R™ 8)L2(dw) 15 solvable.
Proof. Write wg(z) = |z|*®~Y with 0 < 8 < 2 so that ws € Ay(dz). It is not difficult

to see that
Tw, = max{1l, 3} and  s,, =max{l,57'}.

Consider first the case 0 < § < 1 so that wg € Ay(dx), 7y, =1, and s,,, = 371 If
p > -5 then
2n 1 _ _ 41 (Luy)
n+2p8 Tws

Thus (4.1) holds and if 25 < # < 1 we have (R"“#) (4,)-solvability for p such that

maX{rw37 qf<Lw3>} Sw S

max{l,LLw’Q)} ! )

—<p< L,
n o (Lu)S 3P G+ (L,

In particular, if = < § < 1, the solvability holds in the range max{1, -2 — 215 <
p<2.

Let us treat the case 1 < f < 2, so that we have r,, = 0 and s,, = 1. If
/ 8
1 < B8 < min{v?2, %} then

2 2
nﬁnfz} <2 <Q+(Lw,3)'

This implies that (4.1) holds and, as a consequence, (4.2) yields that if 1 < f <
min {\/_ s —5— } then (RLwB) Lr(de) 18 solvable in the range

Twﬁ maX{rw@u q,(Lw5>} S max {627

{ nBq (L) }<p<Q+(BLw).

8
%} one can solve (B™#) 14, for p satisfying

2n 2
nﬁ+4}<p§5'

In particular, if 1 < § < min {\/§

max{ﬁ,

Let us finally focus on the (R™#) p»-solvability. Consider first the case when s <
£ <1 then

2 2 1
max{l b, —— n np

_ 2n 2
n+4’ nﬁ—i—ll} max{1, 57} :max{l,n+4}5 <2= max{1, 5}

Hence what we have proved so far gives the (RH‘ #) 12(az)-solvability. To consider the
case 3 > 1 we first assume that 3 < 22+ so that ws € Ao (dx). Note that one can
easily see that there exists © > 1 dependmg just on n (and independent of () such
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that [ws]a,@e) < ©. Next we repeat the argument given in the proof of Corollary 4.3
to find the corresponding ¢, € (0, ﬁ], which depends only on n and A/\. Set ¢, = ¢
and assume that 1 < S <1+ ¢ < % Pick € >0sothat 1 < <1+¢€ <1+e¢.
Hence wg € Ay (dr) with 0 < € < €1 = € and we can invoke (d) in Corollary 4.4
to conclude the (R]L“’ﬂ) L2(dz)-SOlvability. O

Proof of Corollary 1.11. Tt suffices to observe that the first part is just item (d) in
Corollary 4.3. Regarding power weights, setting o = —n(f — 1) and with a slight
abuse of notation the desired estimate follows at once from Corollary 4.5. OJ
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