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INTRODUCCION



Desde la Matematica griega, Geometria y Teoria de Numeros han estado es-
trechamente vinculadas, proponiéndose mutuamente problemas y soluciones. Ejem-
plos clésicos de esta interrelacién son la irracionalidad de V2 0 la trascendencia de
.

El tema de la presente tesis es la Teoria de Arakelov, que refuerza también la
relaciéon entre Geometria y Teoria de Niimeros, y que abre amplias perspectivas en
lo que modernamente se ha llamado Geometria Aritmética.

Esta memoria se centra, mas concretamente, en el estudio de los anillos de Chow
aritméticos de Gillet y Soulé, con especial atencién en la componente arquime-
diana de los mismos. Nuestro punto de partida es el estudio de las propiedades
cohomoldgicas de las formas diferenciales C* con singularidades logaritmicas. Uti-
lizando estas formas diferenciales, damos una definicién cohomoldgica de las formas
de Green y del producto *, a partir de la cual definimos unos anillos de Chow ar-
itméticos cohomolégicos. En el caso de variedades proyectivas, demostramos que
esta definicion coincide con la definiciéon de anillos de Chow aritméticos debida a
Gillet y Soulé. Pero, en el caso de variedades quasi-proyectivas los anillos de Chow
aritméticos definidos aqui tienen mejores propiedades en relacion con la teoria de
Hodge.

El hecho de que la definicién de formas de Green sea puramente cohomolégica
nos permite construir variantes de los grupos de Chow aritméticos, con buenas
propiedades en funcién de los problemas considerados. En particular, usando cor-
rientes, damos una definicion de grupos de Chow aritméticos homoldgicos, que son
covariantes para morfismos propios no necesariamente lisos en la fibra genérica.
Estos grupos de Chow aritméticos homolégicos son un médulo sobre el anillo de
Chow aritmético cohomoldgico.

Gracias a los grupos de Chow aritméticos homolégicos, damos una variante ar-
itmética de la férmula de Riemann-Hurwitz. Esta formula puede considerarse como
el caso més sencillo de una posible extensién del Teorema de Riemann-Roch ar-
itmético de Gillet y Soulé, a morfismos que no son lisos en la fibra genérica. Sin
embargo, los resultados aqui presentados quedan muy lejos todavia de esta gener-
alizacién.

Lo que queda de esta introduccion esta dividida en dos partes. En la primera de
ellas haremos un resumen de la Teoria de Arakelov, centrandonos, principalmente,
en la parte de esta teoria que tiene relacion directa con esta memoria. Mientras
que en la segunda parte, haremos una descripciéon mas detallada del contenido de
esta tesis.



§1. UNA INTRODUCCION A LA TEORfA DE ARAKELOV.

La analogia entre cuerpos de ntiimeros y cuerpos de funciones.

Una de las ideas fundamentales de la Teoria de Arakelov es la analogia entre las
variedades algebraicas proyectivas complejas, y las variedades definidas sobre un
anillo de enteros algebraicos, “completadas” con alguna estructura adicional en el
“infinito”.

El punto de partida de esta analogia es la similitud, observada por A. Weil
([We]), entre la férmula de los residuos de Cauchy y la férmula del producto de
Artin. Recordemos a continuacién esta similitud. Sea X una curva proyectiva
compleja y sea Div(X) el grupo de divisores de X. Un elemento D € Div(X) es

una suma finita
D= ) mp,
peX(C)

donde los n, son numeros enteros. Como la suma > n, es finita, el entero deg D =
> n, esta bien definido y se denomina el grado de D.

Dada una funcién racional f € C(X) y un punto p € X(C), se define la valoracién
de f en p, v,(f), como el orden de anulacién de f en p. Si f presenta un polo en
p, entonces v, (f) es el orden de anulacién de f~! con signo negativo. Dado que el
nimero de ceros y polos de una funcién racional, asi como sus érdenes, es finito,
tenemos un divisor bien definido:

div(f) = Y v(f)p.
peX(C)

Como la valoracion v, (f) es el residuo de la forma diferencial df / f en p, la férmula
de los residuos de Cauchy implica que

(FR) deg(divf) = Y 5(f)= D Res, (ﬁ>:0.

peX(C) pEX(C) /

Por tanto, si denotamos por Rat(X) el subgrupo de Div(X) generado por los
elementos de la forma div(f), y por CH'(X) = Div(X)/Rat(X) el grupo de clases
de divisores de X, el grado nos determina un morfismo

deg : CH'(X) — Z.

Veamos ahora el analogo aritmético. Sea K un cuerpo de nimeros y sea O su

anillo de enteros. Denotaremos por X = Spec Ok el conjunto de ideales primos
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de Ok. Sip € X es un ideal primo no nulo, entonces el anillo localizado (Ok),
es un anillo de valoracién discreta. Esto implica que, para cada elemento f € K*,
podemos definir su orden en p. Denotaremos este orden por v,(f) y diremos que
vp es la valoracion p-adica.

Si consideramos unicamente estas valoraciones no obtenemos ninguna férmula
similar a la formula de los residuos (FR). Esto es debido a que X = Spec Ok no es
una variedad “completa” sino que es el andlogo de una curva afin.

A partir de una valoracion p-adica podemos obtener un valor absoluto escribiendo

|z, = (10K /p) """

De esta forma obtenemos, salvo equivalencia, los valores absolutos no arquimedianos
de K. Sea MY el conjunto de todos estos valores absolutos no arquimedianos.

Por otro lado, podemos obtener otro tipo de valores absolutos mediante las
distintas inmersiones de K en C. Sea ¢ : K — C una tal inmersiéon. Entonces
escribiremos

lz]lo = llo ()]l

Por este procedimiento obtenemos, también salvo equivalencia, los valores abso-
lutos arquimedianos. Denotaremos por Mg® el conjunto de todas las inmersiones
complejas de K. Notese que dos inmersiones complejas conjugadas dan lugar al
mismo valor absoluto.

Sea ahora My = MY U M3°. Como hemos visto, cada elemento v € Mk define
un valor absoluto || - ||,. Siv € Mg y x € K*, escribiremos

v(z) = log ||z(,

asi, en el caso de una valoracion p-adica se tiene

v(z) = —v(z)log(tOk /).

Con estas notaciones, el analogo de la férmula de los residuos (FR) es la férmula
del producto de Artin que, en su versién aditiva, afirma que para todo x € K*,

(FP) > () =0.

vEME

Gracias a esta férmula, se puede definir un grupo de clases de divisores, CH! (X),
que posee una morfismo con valores reales:

deg : CHY(X) — R,

que denominaremos grado aritmético.

La analogia entre los cuerpos de nimeros y las curvas proyectivas complejas
se puede llevar mucho mas lejos. Asi, uno de los teoremas fundamentales de la
teoria de curvas, el Teorema de Riemann-Roch, tiene un andlogo aritmético que de-
nominaremos el Teorema de Riemann-Roch Aritmético y, por ejemplo, el Teorema
de Dirichlet, sobre la finitud del grupo de clases de ideales del anillo de enteros
de un cuerpo de numeros, se puede interpretar en términos de este Teorema de
Riemann-Roch Aritmético (véase [Sz]).
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De esta analogia se desprende que los valores absolutos arquimedianos de K o,
lo que es lo mismo, las inmersiones complejas de K, juegan el papel de los pun-
tos del infinito de la variedad afin Spec Ok, y nos permiten “completarla”. Asi,
una de las posibles definiciones que se puede dar de variedad aritmética es: un
esquema X regular, de tipo finito y plano sobre el anillo de enteros de un cuerpo
de ntmeros Ok, junto con la variedad algebraica compleja X, obtenida mediante
las distintas inmersiones de K en C. Siempre que definamos un objeto sobre una
variedad aritmética tendremos dos partes, una definida sobre O, que denominare-
mos la componente no arquimediana y otra definida sobre C, que denominaremos
la componente arquimediana.

Las alturas de Welil.

Otra manifestacion de la misma idea puede encontrarse en la teoria de alturas.
Recordemos que, en su tesis, A. Weil generalizé el Teorema de Mordell, sobre la
generacion finita del grupo de puntos racionales de una curva eliptica, a variedades
abelianas de dimension superior. Para ello, introdujo unos conceptos que, mod-
ernamente, se han desarrollado en lo que se conoce como teoria de alturas, y que
vamos a describir a continuacién (véase [Si]).

Sea K, como antes, un cuerpo de ntimeros y Mg = My U M el conjunto
formado por las valoraciones p-adicas y las inmersiones complejas de K. La altura
(logaritmica) de un punto p = (z¢ : - - - : ;) del espacio proyectivo P"(K) se define
por

01+ g 3 B

Gracias a la formula del producto, la altura de un punto es independiente de las
coordenadas homogéneas que lo representan. Ademads, si L es una extension finita
de K, la altura de p, considerado como un punto de P"*(L), coincide con la anterior.
Asi, se obtiene que la aplicacién altura esta definida sobre P"(Q):

h:P"(Q) — R.

Obsérvese que la definicion de altura tiene también una componente arquimediana
y una componente no arquimediana.

La altura de un punto mide su “complejidad aritmética”. Por ejemplo, si p €
P™(Q), podemos encontrar unas coordenadas homogéneas para p, (xg : --- : zp),
con los x; enteros y tal que med(zg,...,z,) = 1. Entonces

h(p) = log(max{ ||z }).

Sea ahora V una variedad proyectiva definida sobre Q. Para definir la altura de
un punto p € V, podemos elegir un morfismo F' : V — P™ y poner

Naturalmente, esta altura depende del morfismo F' y es trivial si F' es constante.
Examinemos la relacion entre alturas y haces inversibles. Un morfismo F' : V —
P™ determina un haz inversible £ = F*O(1), pero el mismo haz inversible puede
provenir de distintos morfismos. Sea G : V. — P™ otro morfismo, con G*O(1)
9



isomorfo a L. En general, las alturas obtenidas mediante F' y G no coinciden.
Sin embargo, un teorema de Weil afirma que su diferencia es una funcion acotada.
Es decir, la altura h,, asociada a un haz inversible £, estd bien definida moédulo
funciones acotadas. Ademads, si notamos

”_ funciones funciones
( )_{f:V%R}/{acotadas}’
se obtiene un morfismo de grupos

PicV — H(V)
L —  hr.

En este punto, cabe preguntarse si dado un haz inversible L, existe una funcién
altura canonica hg, de tal forma que, si extendemos por linealidad hg a Zo(V), el
grupo de cero-ciclos de V', se obtenga una aplicacion bilineal

Pic(V)® Zo(V) — R
L®a — (L ) = he(a).

Por otra parte, en el caso de que exista una aplicacion bilineal como la anterior,
cabe preguntarse si desciende a una apareamiento bilineal entre CHl(V), el grupo
de Chow de divisores de V' y CHgy(V), el grupo de Chow de cero-ciclos de V.

El apareamiento de Néron y Tate.

En el caso de variedades abelianas, y por tanto en el caso de curvas via la jaco-
biana de la curva, Néron ([Ne]) y Tate dan una respuesta a las preguntas anteriores.
Vamos a explicar brevemente sus resultados (véase también [La 1], [La 2] y [Gro]).

Sea A una variedad abeliana definida sobre Q. En este caso, si £ es un haz
inversible, cualquier altura h, asociada a L se puede descomponer, de forma tnica,
como

he =qe + 1+ O(1),

donde ¢ es una funcién cuadrética, { una funcién lineal y O(1) una funcién
acotada. Por tanto, la altura ﬁ,; = qr + l. estda univocamente determinada por £
y se denomina la altura candnica o de Néron-Tate. Esta funcién sélo depende de
la clase de isomorfismo de £. Ademds, la asignacion £ —— /ﬁg es un morfismo de
grupos entre Pic(A) y el conjunto de funciones reales sobre A. Por tanto, tenemos
una respuesta afirmativa a la primera de las preguntas anteriores.

El caracter cuadratico de }\LL indica que la segunda pregunta, tal como esta
planteada, tiene respuesta negativa. Sin embargo, si £ es algebraicamente equiv-
alente a cero, entonces g, = 0, es decir, /ﬁﬁ es una funcion lineal. Por tanto, si
denotamos por Pic’ (A) el grupo de haces inversibles de A algebraicamente equiva-
lentes a cero, se obtiene una aplicacién bilineal:

Pic’(A) x A — R
([,,1') — <£,l‘> = hc(ﬂf),

que se denomina el apareamiento por las alturas global (global height pairing).
10



Si ahora denotamos por CH! (A)p el grupo de Chow de divisores algebraicamente
equivalentes a cero, y por CHp(A)g el grupo de Chow de cero-ciclos de A de grado
cero, el apareamiento por las alturas induce una aplicacién bilineal

CH1 (A)o ® CH()(A)O — R.

Veremos mas adelante que, con ciertas condiciones, este apareamiento se puede
extender a variedades no necesariamente abelianas. Para llegar a esta extension, es
importante recordar la expresién de Néron del apareamiento por las alturas, pues
es aqui donde se realiza la conexion entre el apareamiento global y sus componentes
locales, tanto arquimedianas como no arquimedianas.

Sea £ € Pic’(A), X un divisor en la clase de equivalencia lineal determinada por
L,y a € Zo(A)g un cero-ciclo de A de grado cero, cuyo soporte es disjunto con el de
X. Si K es un cuerpo de ntimeros sobre el que A, o y X estan definidos, entonces
se tiene

1
(L.0) = g U;M:K (X,a),.

Los simbolos (X, a), estdn definidos siempre que X y a sean disjuntos y estdn
univocamente determinados por las siguientes propiedades:

1) (X, a), es bilineal.
2) Si X =div f, es el divisor de una funcién racional entonces

(X, a), =v(f(a)).

3) Es invariante por traslaciones.
4) Cumple una condicién de acotacién que no precisaremos.

Estos simbolos se construyen del siguiente modo. Siv € MY, K, es el completado
de K respecto de || - ||, ¥ Ok, es el anillo de valoracién discreta de K, el stmbolo
(X, ), se construye a partir del producto de interseccién en el modelo de Néron
de A sobre Ok,. Mientras que, si ¢ € Mz, la construccién es la siguiente. A
traves de la inmersién compleja o de K, podemos suponer que A es una variedad
compleja, que £ es un haz inversible sobre A algebraicamente equivalente a cero,
que X = divs, con s una seccion racional de £ y que « es un cero-ciclo de A de
grado cero. Escojamos una métrica hermitica || - || en £ y consideremos la funcién
gy = —log||s||>. La forma diferencial w = 9dgy es C* en todo A, es cerrada y
representa la primera clase de Chern de £. Al ser X algebraicamente equivalente a
cero, la clase de cohomologia de w es cero y asi, por el lema 00, existe una funcién
real f, C* en todo A, tal que 90f = w. Escribamos gx = g — f. Esta funcién
esta univocamente determinada por X salvo una constante. Por tanto, como « es
de grado cero, el nimero real gx(«) no depende de esta constante. La componente
arquimediana correspondiente a o es

(X,a), = gx(a) e R.

A la funcién gx se le denomina funciéon de Green para el divisor X.
La teoria de Arakelov.

Supongamos ahora que V' es una variedad aritmética proyectiva, es decir un
esquema regular, de tipo finito, proyectivo y plano sobre Og. Denotaremos por
11



Vk =V ® K, la correspondiente variedad algebraica definida sobre K, y por V
la variedad compleja definida por las inmersiones de K en C. En este caso, un
morfismo

F:V —Pp,

determina un haz inversible £ = F*O(1), que esta definido, no sélo sobre Vi, sino
en todo V. A su vez, £ induce un haz inversible £, sobre V..

Otro dato que podemos extraer del morfismo F' es una métrica hermitica || - ||
en L, inducida por la métrica estandar de C*t1.

El interés de considerar el haz inversible £ definido sobre toda la variedad ar-
itmética V', junto con la métrica hermitica ||-||, es que la funcién altura hp, asociada
al morfismo F', estd univocamente determinada por el par (L, || - ||)-

Con este punto de vista, la funcién altura se puede interpretar del siguiente modo.
Sea p un punto de V(K). Este punto determina un morfismo ¢ : Spec O —
V. Ademis, el haz inversible metrizado ¢*(L,|| - ||) determina un elemento = €
Gﬁl(Spec Ok). Entonces la altura de p es, esencialmente, el grado aritmético de x.
De este hecho se desprende que, si tuvieramos una nociéon de “divisor aritmético”
X correspondiente al par (L, | -]|), entonces la altura de p se podria interpretar
como una multiplicidad de interseccién. En consecuencia, una teoria de interseccion
aritmética puede proporcionar interesantes resultados, sobre todo si tiene una fuerte
analogia con la teoria de intersecciéon geométrica.

En el caso de superficies aritméticas, S. J. Arakelov ([A]) ha desarrollado una
teoria de interseccién aritmética como la anterior. Para ello considera, junto a
una superficie aritmética V', el dato de una forma de Kéahler w, anti-invariante por
conjugacién compleja, sobre las componentes de V.. El par V = (V, w) se denomina
superficie de Arakelov. Una introduccion a la Teoria de Interseccion de Arakelov
se puede encontrar en [La 3.

Para tener una buena nocién de equivalencia racional, Arakelov tuvo la idea de
definir el grupo de divisores de V' como

Div(V) = Div(V) & Divao (V).

Siendo Div(V) el grupo de divisores de V', y Div, (V) el grupo de divisores en el
infinito, que esta definido por

Dive. (V)= P RV..

oceMz?
Es decir, un divisor en el infinito es una suma formal, con coeficientes reales, de las
variedades complejas V, =V ® C.
g

Sea f € k(V)* una funcién racional. Esta funcién define un divisor div f €
Div(V). Ademds, para cada o € M7?, f determina una funcién f, € k(V,)*.
Designaremos por w,, la restricciéon de w a X, y escribiremos

o(f) = / ~1og [1f, 2w

o

Entonces el divisor de Arakelov de f esta definido por

div(f) =divf+ > (Ve

oceMgp
12



El subgrupo de Div(V) generado por los elementos de la forma div(f) se denotard

como Rat(V), y el grupo de clases de divisores de Arakelov se define por
CH' (V) = Div(V)/Rat(V).

Vamos a dar una idea de como se define un producto de interseccién en este
grupo. El grupo Div(V) se puede descomponer en una suma directa de dos sub-
grupos. El primero, generado por las subvariedades que son planas sobre Of, se
denomina el grupo de divisores horizontales. El segundo, generado por las sub-
variedades contenidas en alguna fibra del morfismo estructural V' — Spec O,
se denomina el grupo de divisores verticales. Tenemos, por tanto, tres tipos de
divisores: divisores en el infinito, horizontales y verticales.

El producto de intersecciéon de un divisor en el infinito por otro divisor en el
infinito, o por un divisor vertical, es cero. Si a es un divisor horizontal, denotaremos
por a, el divisor que determina a en V,. Si AV, € Div(V), con A € R, y a es un
divisor horizontal, entonces se define

(o, \Vy) = Adeg(ay).

Sean ahora «a, § € Div(V') dos divisores horizontales sin componentes comunes. Se
define su producto de interseccién por

(a,8) = deg(a-B)+ Y (a5, 0Bs),, ;

oceMge

donde la componente no arquimediana « -3 es un producto de interseccién en teoria
de esquemas y puede calcularse, por ejemplo, mediante la férmula de los Tores de
Serre.

El dato de la forma de Kéhler w es el que permite definir las componentes
arquimedianas. Sea C' = V, una superficie de Riemann provista de una métrica
de Kahler w = w,. Sea p un punto de C. Se define la funciéon de Green de p con
respecto de w como la funcién real, C* sobre C' — {p}, determinada univocamente
por las condiciones

(G1l) dd°g, = Aw en C — {p}, donde X € R.
(G2) Si z es un parametro local de C alrededor de p, entonces

gp(2) = —log 2Z + ¢,

donde ¢ es una funcién C* en un entorno de p.
(G3) / gpw = 0.
c

Sia =) n,py =) mgqson dos divisores disjuntos de C, se define el producto
de o y 3 como

(a,B), = 9a(8) = anmqu(q).

Se puede demostrar que este producto es conmutativo.
Por dltimo, el producto de dos divisores verticales también queda determinado
por el producto de interseccion en teoria de esquemas.
13



De esta forma se construye un producto de intersecciéon conmutativo
CH'(V)® CHY(V) = R,

que tiene propiedades andlogas al producto de interseccién en superficies proyectivas
complejas. Esta analogia se ha materializado en los trabajos de Arakelov, Faltings
([Fa 2]), Hriljac ([Hr]), etc., obteniéndose los analogos, en este contexto, de la
Foérmula de Adjuncién, del Teorema del Indice de Hodge y del Teorema de Riemann-
Roch.

Veamos ahora que papel juegan los haces inversibles provistos de una métrica
hermitica, en esta teoria. Sea £ un haz inversible sobre V', y sea || - || una métrica
hermitica sobre L. Diremos que la métrica || - | es admisible si su forma de
curvatura es un multiplo de la forma de Kahler w. Es decir, sea s una seccion
racional de £, la métrica || - || es admisible si existe un nimero real A tal que

dd®(—log |s]|*) = Aw.

Dado un haz inversible £, con una métrica admisible || - ||, y una seccién racional
s, pondremos

vals) = [ ~log 5|

o

Entonces, el divisor de Arakelov asociado a la seccién s es

divs = div s + Z Yo (8) Vs

oceMpe

La clase de este divisor en CH'(V) no depende de la seccién s. Esta construccién
induce un isomorfismo entre el grupo de clases de isometria de haces inversibles,
provistos de métricas hermiticas admisibles, y el grupo de clases de divisores de
Arakelov. En particular, el producto de interseccién de Arakelov se puede interpre-
tar como un apareamiento entre haces inversibles provistos de métricas admisibles.

Las alturas se pueden recuperar a partir del producto de interseccién de Arakelov.
Sea (L, - ||) un haz inversible sobre V provisto de una métrica admisible. Sea
x € CHY(V) el divisor aritmético que determina y sea h la funcién altura asociada
a (L,] - |I)- Un punto p € V(K) determina, a su vez, un divisor y € CH'(V).
Entonces, se tiene

h(p) =z -y.

En [De 2] Deligne mostré que el apareamiento de Arakelov se podia extender a
todo el grupo de clases de isometria de haces inversibles hermiticos sobre V', con lo
que se podia eliminar la eleccion a priori de una forma de Kéahler w.

Teoria de Arakelov en dimensiéon superior.

En [Be 2] y [BI 2], Beilinson y Bloch generalizan el apareamiento por las alturas
de Néron y Tate a variedades de dimensién superior. En concreto, sea X una var-
iedad proyectiva y lisa de dimensién N definida sobre K y sea CH" (X ) el subgrupo
del grupo de Chow formado por los ciclos que son homoldgicamente equivalentes a
cero en X,. Entonces, con ciertas condiciones, existe una aplicacion bilineal

CHP (V)o@ CHY PH(X)y — R
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que extiende el apareamiento por las alturas de Néron y Tate. Esta aplicacion
bilineal también se descompone en suma de componentes locales, arquimedianas y
no arquimedianas.

Por otra parte, Gillet y Soulé generalizan, en [G-S 1], los trabajos de Arakelov
a variedades de dimension superior, con una construcciéon que también requiere la
eleccién de una métrica de Kahler en X .

En [G-S 2], los mismos autores, tomando el punto de vista de Deligne, desarrollan
una teoria de interseccién que no requiere la elecciéon de una métrica de Kéahler en
Vs. Vamos a describir brevemente esta teoria.

Sea, como antes, K un cuerpo de ntimeros y O su anillo de enteros. Sea X una
variedad aritmética sobre Spec Ok.

Sea Z un ciclo algebraico de X de codimensién p y sea g una corriente real de
tipo (p— 1,p — 1) en X,. Se dice que g es una corriente de Green para el ciclo Z
si satisface la ecuacion

(CG) dd°g+4, = «,

donde a es una forma diferencial C> en X, y 9, es la corriente de integracion a
lo largo de Z.,. Escribiremos g para denotar la clase de equivalencia de g mdédulo
Imd + Imd. Se define un ciclo aritmético como un par (Z,§), con Z un ciclo
algebraico y g una corriente de Green para Z. Denotaremos por zp (X) al grupo de
ciclos aritméticos de X.

Sea j : W — X una subvariedad de codimensién p + 1y sea f € k(W)* una
funcién racional. Entonces la corriente j.[—log| f||?] es una corriente de Green
para el ciclo div f, pues, por la féormula de Poincaré-Lelong, se tiene:

dd®j.[—log || f|I*] + daiv y = 0.

Se define el divisor aritmético de f como

div f = (div f, ju[—log || f]|*))-

Sea lap(X ) el subgrupo de Zr (X)) generado por los elementos de la forma div f.
Los grupos de Chow aritméticos de Gillet-Soulé de X se definen como

CHP(X) = Z°(X)/Rat?(X).

Recordemos las primeras propiedades de estos grupos. Sea f : X — Y un mor-
fismo propio de variedades aritméticas. Si (Z,g) es un ciclo aritmético, entonces
se tiene un ciclo bien definido f.(Z) y una corriente f.g. Ademads, por la ecuacién
(CG), esta corriente satisface la ecuacién de corrientes

dd°f.g+ 677 = foo.

Pero, a menos que el morfismo inducido fo : Xoo — Y sea liso, no podemos
asegurar que f,a sea una forma C* en todo Y,,. En consecuencia, los grupos de
Chow aritméticos son covariantes con respecto a morfismos propios que son lisos
en la fibra genérica.
Para poder definir imagenes inversas y productos de interseccién, se demuestra
que una corriente de Green g, para el ciclo Z, se puede representar mediante una
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forma diferencial, que también denotaremos con la letra g, que es C* sobre X, —
Zso ¥ que tiene singularidades de tipo logaritmico a lo largo de Z.

Veamos como se define la componente arquimediana del producto de interseccién.
Sean (Y, gy) y (Z,gz) ciclos aritméticos tales que Yo, y Zo se cortan propiamente,
es decir

codim Z,, NY,, = codim Y., + codim Z.

Podemos suponer que gz es una forma diferencial con singularidades logaritmicas.
Entonces la corriente dy A gy esta bien definida. Notese que, en general, el producto
de dos corrientes no esta definido, por tanto, es fundamental que gz se represente
con una forma diferencial. Pondremos oz = dd°gz+95. El producto * de corrientes
de Green se define por

gy *gz =gy Nagz + 0y Ngz.

Se puede demostrar que este producto es conmutativo y asociativo. Ademas, si X es
una variedad aritmética quasi-proyectiva, el producto * proporciona la componente
arquimediana de un producto de interseccion

CHP(X) ® CHY(X) — CHP(X)g = CHT(X) ® Q.

Con este producto de interseccién, CH* (X)o=6p CHP (X)q es un anillo asociativo,
conmutativo y unitario.

Estos grupos de Chow aritméticos se pueden incluir en varias sucesiones exactas.
Por ejemplo:

CHPP~!(X) — AP~2r=1(X) — CHP(X) — CHP(X) — 0y

CHPP~H(X) — HP~HP~H(X) — CHP(X) — CHP(X) & Z7P(X) — HPP(X) — 0,

donde AP~17~1 ¢s un grupo de formas diferenciales médulo Im d + Im 8, ZP»(X)
es un grupo de formas diferenciales cerradas y HP'?(X) denota un cierto grupo de
cohomologia de X (para una definicién precisa de los términos que aparecen en estas
sucesiones exactas se puede consultar [G-S 2] o [S-A-B-K]). La segunda de estas
sucesiones exactas sélo es vélida si X es proyectiva y, debido a esto, Gillet y Soulé
indican en [G-S 2| que la definicién de grupos de Chow aritméticos para variedades
quasi-proyectivas no es la 6ptima posible. Ademds sugieren que, utilizando formas
diferenciales con crecimiento logaritmico, se podria obtener una definicién mejor.

Gillet y Soulé también desarrollan, en [G-S 3], una teoria de clases caracteristicas
para fibrados hermiticos, esto es, fibrados vectoriales sobre una variedad aritmética
X, provistos de una métrica hermitica sobre el fibrado vectorial inducido en la
variedad X . Estas clases caracteristicas satisfacen las propiedades usuales de las
clases de Chern de los fibrados vectoriales. En el mismo articulo se introduce el
grupo de Grothendieck de fibrados vectoriales hermiticos, Ky(X) y se demuestra
que el caracter de Chern induce un isomorfismo

ch: Ko(X) ® Q — CH*(X) ® Q.

Finalmente, mencionaremos que, en [G-S 4], Gillet y Soulé demuestran un ana-
logo aritmético del Teorema de Riemann-Roch-Grothendieck. Sea f: X — Y un
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morfismo propio entre variedades aritméticas quasi-proyectivas sobre Z. Supong-
amos que el morfismo inducido f : X, — Y4 es liso. Sea E = (E,h) un fibrado
hermitico sobre X. El determinante de la cohomologia A(E) = det Rf.(F) es un
fibrado de linea sobre Y. Elijamos una métrica hermitica h¢, invariante por conju-
gacion, en el fibrado tangente relativo T'f, tal que la restriccién de hy a cada fibra
de f sobre Y(C) es una métrica de Kéhler. Entonces el fibrado de linea A(E) puede
ser provisto con la métrica de Quillen hqg (ver [Q 2|, [Bi-G-S] o [S-A-B-K]).
El Teorema de Riemann-Roch Aritmético de Gillet y Soulé afirma que

&(ME). hq) = £. ((E. WTUT . hy) - alch(B)TATf)R(TfC)))

donde a™ designa la componente de grado uno de a € éﬁ(Y)@, C1, ch y Td
denotan la primera clase de Chern aritmética, el caracter de Chern aritmético y la
clase de Todd aritmética de un fibrado hermitico, los simbolos ch y T'd designan la
forma cardcter de Chern y la forma de Todd y R(T fc) es una clase caracteristica
de correccidn, definida por una serie (véanse las definiciones precisas en [G-S 3] y
[G-S 4], una introduccion a esta teoria se puede encontrar en [S-A-B-K]).
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§2. DESCRIPCION DEL CONTENIDO DE LA PRESENTE MEMORIA.

Vamos a dar un resumen por capitulos del contenido de esta tesis.
Capitulo 1.

El punto de partida de este trabajo, es el hecho de que las corrientes de Green,
asociadas a un ciclo algebraico, se pueden representar por formas diferenciales que
tienen singularidades logaritmicas a lo largo del soporte del ciclo. Para estudiar este
tipo de formas, en este capitulo se introduce un complejo de formas diferenciales
con singularidades logaritmicas, el complejo de Dolbeault logaritmico C*>, y se
estudian sus propiedades cohomoldgicas.

Miés explicitamente, sea X una variedad compleja lisa de dimension d, sea D C X
un divisor con cruces normales, es decir, un divisor que en coordenadas locales
(#1,...,24), admite la ecuacién

Zl...Zk:O.

Sea V=X —-Dyseaj:V — X lainclusién. Designemos por Q% (log D) el
complejo de formas holomorfas sobre X con singularidades logaritmicas a lo largo
de D. Recordemos que Q% (log D) es el Q% -dlgebra generada localmente por las
secciones dz;/z;, parai = 1,..., k. Este complejo, junto con su filtraciéon de Hodge,
F| y su filtracién por el peso, W, es una pieza clave en la construcion de Deligne
([De 1]) de las estructuras de Hodge mixtas de la cohomologia de las variedades
algebraicas.

Denotaremos por £% el complejo de haces de formas diferenciales C*° a valores en
Cy por €% g el subcomplejo de formas diferenciales reales. El complejo de formas
diferenciales sobre X con singularidades logaritmicas a lo largo de D, £% (log D),
es la sub-£%-dlgebra de j.&y, generada localmente por las secciones

log 2 Z;, %, ﬁ, siie[l,k] vy
i Zi

dZi, dz’u sii g [17 k];

donde 27 ...z, = 0 es una ecuacién local de D.

Este complejo tiene una estructura real dada por el subcomplejo de formas reales,
EQ’R(log D), una filtraciéon de Hodge, F', y una filtracién por el peso, W, definida
sobre R. El complejo £%(log D) es una variante con estructura real y C* del
complejo Q% (log D). En este sentido, el principal resultado del primer capitulo es
que el morfismo natural
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es un quasi-isomorfismo bifiltrado. Més atn, teniendo en cuenta la estructura real
del complejo £% (log D) obtenemos que el triple

((Exr(logY), W), (Ex (logY), W, F), Id)

es un R-complejo de Hodge mixto cohomolégico que induce en H*(V,R) una es-
tructura de Hodge mixta real.

Tanto la definicion de este complejo, como la demostracion de sus propiedades
cohomolégicas, estan basadas en una construccion analoga introducida por Navarro
Aznar en [N]. En dicho articulo se introduce un complejo de Dolbeault logaritmico
analitico-real sobre X, A% (log D), y se demuestra el mismo resultado para dicho
complejo. Obsérvese que las propiedades cohomolégicas del complejo de Dolbeault
logaritmico C*° y de este complejo de Dolbeault logaritmico analitico-real son las
mismas. En particular, se pueden reemplazar formas C* por formas analitico-reales
en todas la construcciones posteriores, obteniéndose una teoria andloga, que puede
tener consecuencias interesantes gracias a la rigidez de las formas analitico-reales.

En la iltima seccién del primer capitulo, se estudia la relacién entre funciones de
Green sobre una curva y los complejos de Dolbeault logaritmicos, tanto el analitico-
real como el C*>°. Por comodidad del lector, repetiremos la definicién de funcién de
Green. Sea C una curva compleja proyectiva y lisa, sea p un punto de C' y sea w
una (1, 1)-forma diferencial real C* (o analitico-real) sobre C' con la normalizacién

/wzl.
C

Entonces una funcién de Green g para p con respecto a w es una funcion real y C*
(o analitico-real) sobre C' — {p} tal que:

(Gl) ddg = w en C — {p}.

(G2) Si z es un parametro local de C alrededor de p, entonces

9(2) = —log 2z + ¢(2),
donde ¢ es una funcién real C* (o analitica real) definida en un entorno de

p.
(G3) Satisface la condicién de normalizacién

/gw:O.
C

En lo sucesivo, para simplificar la notacién, designaremos los haces mediante
letras maytusculas en cursiva y los grupos de secciones globales mediante la misma
letra en tipografia romana, por ejemplo

E%(log D) = I'(X,E%(log D).

La primera relacion entre funciones de Green y los complejos de Dolbeault
logaritmicos es que la condicién (G2) se puede substituir por la condicién mas
débil:

(G2’) La funcion g pertenece a E2(logp) (o a A% (logp)),
obteniéndose una definicion equivalente.

La otra relacion que se discute es el hecho de que se puede demostrar la existencia
de funciones de Green, a partir de las propiedades cohomolégicas de los complejos
de Dolbeault logaritmicos.

Los resultados de este capitulo apareceran publicados en [Bu 1].
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Capitulo II.

Obsérvese que si g es una funcion de Green para p con respecto a w, entonces
g es una funcién localmente integrable. Sea [g] la corriente asociada. La condicién
(G2) implica la ecuacién de corrientes

dd®[g] + 0p = w.

Por tanto [g] es una corriente de Green para el ciclo p en el sentido de Gillet y
Soulé recordado en el §1. Por otro lado, si queremos que la definiciéon de funcién
de Green sea independiente de la eleccién de la forma w podemos usar la siguiente
definicion alternativa.

Una funcién de Green g para el punto p es una funcién definida sobre C' — {p}
tal que:

(G17) g € Egg(logp) y dd°g € EZ .
(G2”) El par (ddg,d°g) representa la clase de cohomologia del punto p en el grupo
Hg(C, R).

De hecho, toda funcién que cumpla (G1”) y (G2”) es localmente integrable y
su corriente asociada es una corriente de Green para el punto p. Reciprocamente,
toda corriente de Green para el punto p se puede obtener a partir de una funcion
de este tipo. La generalizacion de este hecho a dimensién superior es el objetivo
del este capitulo.

Sea X una variedad compleja, lisa y proyectiva, y sea Y C X un subconjunto
algebraico cerrado. Sea 7 : X — X un morfismo propio de variedades lisas, con
7~ 1(Y) = D un divisor con cruces normales, y tal que n|_,: X —D — X - Y

es un isomorfismo. El par ()A(: , D) se denomina una resolucién de singularidades de
(X,Y).

El grupo de formas de Green sobre X con soporte singular a lo largo de Y se
define como

GExy = {9 € EY (log D) | dd°g € Ej;%} /(Im d + Im )

Estos grupos no dependen de la elecciéon de la resolucion de singularidades ()A(: , D)
y estan provistos de una estructura real natural y de una bigraduacion. Ademas,
existe un morfismo bien definido

cl: GEY y — Hy(X,C).

Mediante el uso de la estructura de Hodge mixta de Hy (X, C) se demuestra que
este morfismo es exhaustivo.
Dados dos subconjuntos cerrados Y y Z se define el producto :

GE% y @ GER 4 X GE;T% -

Este producto es compatible con el cup-producto en cohomologia con soportes, es
asociativo y conmutativo en el sentido graduado.
También se estudian en este capitulo las propiedades functoriales de estos grupos:
Son contravariantes para cualquier morfismo y covariantes para morfismos lisos.
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Ademads el morfismo imagen-inversa respeta el producto y el morfismo imagen-
directa satisface la férmula de proyeccién usual.

Sea ahora y un ciclo algebraico de X de codimension p, cuyo soporte es Y y cuya
clase de cohomologia es {y} € HP(X,C). Se define el espacio de formas de Green
asociadas a y como

g es real y
cl(g) = {y}} '

En la ultima seccion del capitulo II, se demuestra que el espacio de formas de
Green para un ciclo algebraico es naturalmente isomorfo al espacio de corrientes
de Green para dicho ciclo, en el sentido de [G-S 2|. En particular, obtenemos una
nueva demostracién de la existencia de corrientes de Green. Ademas se prueba la
compatibilidad del producto *, y de los morfismos imagen-directa e imagen-inversa
definidos para formas de Green y para corrientes de Green. En la construcién del
anterior isomorfismo, juegan un papel importante las propiedades de la filtracion
por el peso del complejo de Dolbeault logaritmico, ya que permiten encontrar rep-
resentantes adecuados de las formas de Green.

Obsérvese que hemos reemplazado la condicién (CG) de la pédgina 13, en la
definicion de corrientes de Green, por una condicién cohomolégica. Es decir, una
forma de Green es un elemento de un cierto complejo que representa una clase de
cohomologia determinada. De esta construccién se sigue que el complejo que se use
para definir formas de Green es, en cierta forma, secundario. Otro complejo que
calcule la misma cohomologia puede dar lugar a una nocién diferente de formas de
Green con nuevas propiedades.

Los resultados de este capitulo apareceran publicados en [Bu 2].

Capitulo III.

GEx(y) = {9 € GEYY,

La base del capitulo IIT es la observacion, hecha en [G-S 2], de que en el caso de
variedades proyectivas, la teoria de cohomologia que subyace bajo el concepto de
corriente de Green, y por tanto de forma de Green, para un ciclo, es la cohomologia
de Deligne real. Este punto de vista es también la base de la construccién de
Beilinson ([Be 2]), de la componente arquimediana del apareamiento por las alturas.

El objetivo de dicho capitulo es dar una definicién més transparente del espacio
de formas de Green, que ponga de manifiesto el papel de la cohomologia de Deligne
real. Asi mismo, se pretende que la extension del concepto de formas de Green
a variedades algebraicas complejas lisas, no necesariamente proyectivas, tenga en
cuenta la cohomologia de Deligne-Beilinson de la variedad.

Sea X una variedad algebraica compleja lisa. En este capitulo se introduce un
complejo de Dolbeault de formas diferenciales con singularidades logaritmicas en el

infinito, El’;g(X ). Este complejo se construye como limite directo de los complejos

E%(log D), donde X es una compactificacién lisa de X y D = X — X es un divisor
con cruces normales.

A partir de El*og(X ), se construye un nuevo complejo, @(El*og(X ),p), cuya coho-
mologia es la cohomologia de Deligne-Beilinson real de la variedad X. De hecho, se
construyen equivalencias homotopicas explicitas entre dicho complejo y un complejo
de Deligne-Beilinson de X. El interes del complejo D (Ey;,,(X), p) radica en que pro-
porciona representantes mas simples, de las clases de cohomologia de Deligne real,
que el complejo de Deligne-Beilinson.
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El complejo D (Ey,,(X),p) es una generalizacién de un complejo usado por Wang
en [Wal, para construir la cohomologia de Deligne real de una variedad proyectiva
lisa. Una variante de estos complejos ha sido usada por Demailly en [Dem], para es-
tudiar las propiedades de la cohomologia 90 de las variedades complejas compactas,
no necesariamente kahlerianas.

Mediante las equivalencias homotdpicas entre el complejo CD(El*Og(X ),p) y el
complejo de Deligne-Beilinson, se dota al primero de una estructura multiplicativa
que induce en su cohomologia el producto usual en cohomologia de Deligne.

En la siguiente seccion de este capitulo se introduce el concepto de grupos de
cohomologia truncada relativa. Estos grupos, que estan asociados a un morfismo

de complejos f: A* — B*, se denotan por PAI*(A*, B*) y estan definidos por:
A™(A*, B*) = {(a,E) € ZA" @ B"1 | f(a) = db} ,

donde Z A" es el subgrupo de ciclos de A™ y Bn—1 = pn-1 /Imd. Varias definiciones
de clases caracteristicas secundarias se pueden dar en términos de estos grupos. Un
ejemplo clasico es el grupo de caracteres diferenciales de Cheeger-Simons ([C-S]).

Los grupos de cohomologia truncada relativa vienen provistos de un morfismo
exhaustivo

cl: H*(A*, B*) — H*(A*, B*).

Ademas, si los complejos A* y B* poseen algin tipo de estructura multiplicativa,
esta estructura induce una estructura multiplicativa en a* (A*, B*), compatible con
la inducida en H*(A*, B¥).

Sea ahora y un ciclo algebraico de X de codimensién p. Escribimos Y = suppy
e {y} € H%]? v (X,R(p)), su clase en el grupo de cohomologia de Deligne real con
soporte en Y (ver, por ejemplo, [Be 1], [E-V] o [J]). Entonces definimos el espacio
de formas de Green asociadas al ciclo y como el conjunto de elementos

g€ ﬁ2p(®(El*og(X)7p)7Q(El*og<X - Y)vp))

tales que
cl(g) = {y} € Hpy (X, R(p)).

Esta definicién coincide con la definicion dada en el capitulo II en el caso de var-
iedades proyectivas. Esto implica que la existencia de formas de Green asociadas
a un ciclo, es equivalente a la existencia de una clase caracteristica del ciclo en
cohomologia de Deligne real, compatible con la clase caracteristica en cohomologia
a valores reales.

Por 1ltimo recuperamos el producto * como el producto inducido por la estruc-
tura multiplicativa de los complejos D (Ey,,(X),-). En particular, esto relaciona el
producto * con el producto en cohomologia de Deligne.

Capitulo IV.

En este capitulo abordamos la construcciéon de los grupos de Chow aritméticos.
En primer lugar recordamos algunas nociones sobre la homologia de Deligne real y
como se puede construir mediante el uso de corrientes.

En segundo lugar recordamos algunas de las relaciones entre la teoria K alge-
braica y la cohomologia de Deligne. Consideremos una variedad algebraica lisa X
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sobre C de dimensién d. Denotemos por X ®) el conjunto de subvariedades irre-
ducibles de X de codimensién p y sea ZP = ZP(X) el grupo de ciclos algebraicos
de codimensiéon p.
Sean ' _
Ry =R(X) = @ Kpi(bx)

:EGX(Z)

los grupos del término E; de la sucesién espectral de Brown-Gersten-Quillen ([Q
1]). En particular RY(X) = ZP(X). Denotaremos por d : R, — Ri*! la diferencial
de esta sucesién espectral.

Dado que Ki(k(x)) = k(x)* es el grupo de unidades de k(x), todo elemento

fe Rg_l es de la forma
F=> fu

xEX(’L)

con f, € k(x)*. Y como ademsds se tiene df = div f = > div f,, resulta que
RP(X) /dRE~1(X) = CHP(X),

es el grupo de Chow de X de codimension p.

Sea ZP = ZP(X) el conjunto de todos los subconjuntos algebraicos de X de
codimensién > p ordenados por inclusién, y sea ZP/ZP*! el conjunto de todos los
pares (Z,Z') € ZP x ZPT1 tales que Z' C Z, también ordenado por inclusién.

Siguiendo a Bloch y Ogus ([B-O]) escribimos

H%,ZP/ZP+1(X7R(Q)) = hﬂl H%,Z—Z’(X - Z/7R(Q))~
(2,z"yezP/zP~1!

Entonces damos una demostracion del siguiente resultado, que es la pieza clave
en la construccion de los grupos de Chow aritméticos:
Existe un diagrama conmutativo

d

Ry — B By
g g gl
2p—2 0 2p—1 o 2
szjzpﬂ/zpfl(XvR(p)) - le?zpfl/zp(XaR(p)) - H’DI?ZP/ZP‘Fl (X,R(p)),

donde el morfismo vertical de la derecha es la aplicacion ciclo y los morfismos
horizontales inferiores son morfismos de conexidn.

En la tercera seccién de este capitulo damos una definicién alternativa de los
grupos de Chow aritméticos cH* (X). Los grupos definidos de esta forma, en el caso
de variedades proyectivas, son naturalmente isomorfos a los definidos por Gillet y
Soulé en [G-S 2]. Por otro lado, en el caso de las variedades quasi-proyectivas, los
grupos aqui definidos, tienen en cuenta la estructura de Hodge de la cohomologia
de estas variedades. En particular, tenemos la sucesién exacta

CHPP~Y(X) -H?» ' (X,R(p)) — CHP(X) —

CHP(X) & 277 (X) — HZ (X, R(p)) — 0.
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Estos grupos tienen practicamente las mismas propiedades que los definidos en
[G-S 2]: Son contravariantes con respecto a morfismos de variedades aritméticas.
Ademés, CH* (X)o = CH* (X) ® Q tiene una estructura de anillo conmutativo. Sin
embargo, en el caso de variedades quasi-proyectivas, las hipdtesis necesarias para
definir el morfismo imagen-directa son mas fuertes que para los grupos definidos en
[G-S 2].

Para dar un ejemplo de la flexibilidad del proceso de construccion de los grupos
de Chow aritméticos, y para poder definir imagenes directas para morfismos propios
en general, en la siguiente seccion introducimos los grupos de Chow aritméticos ho-
moldgicos, Eﬁ*(X ). Estos grupos se obtienen reemplazando los complejos Ef (X))

log
por unos complejos de corrientes. Las principales propiedades de estos grupos son:

1) Si X tiene dimensién d existe un morfismo natural

CHP(X) — CHy_p(X)

que es un isomorfismo si la dimensiéon relativa del morfismo estructural de

X es cero.
2) Los grupos CH,(X) son covariantes para morfismos propios de variedades
aritméticas.

3) CH,(X)g = CH,(X) ® Q es un CH*(X)g-médulo.

4) Existe una sucesién exacta
CH,,_1(X) — D(Xg) — CH,(X) — CH,(X) — 0,

donde 13(XR) es un grupo definido a partir de las corrientes en X.
5) Dado uE\ciclo algebraico y de X de dimensién p, existe una clase candnica
8(y) € CH,(X).

Sin embargo, senalemos que la construccién de anillos de Chow aritméticos
homoldgicos presentada aqui no es 6ptima, en el sentido de que el complejo de
corrientes utilizado no tiene en cuenta la estructura de Hodge de las variedades
quasi-proyectivas. Serfa interesante encontrar un andlogo al complejo Ej,(X) en
términos de corrientes, y utilizarlo en una definicién mejorada de los anillos de
Chow aritméticos homoldgicos.

En la ultima secciéon de este trabajo se obtiene un andlogo aritmético de la
férmula de Riemann-Hurwitz. Para ello introducimos una nocién de métrica singu-
lar en un fibrado de linea sobre una curva. Sea C' una curva proyectiva y sea £ un
fibrado de linea sobre C. Sea s una secciéon no nula de £ definida en un abierto. El
tipo de métricas singulares que admitimos son aquellas que, localmente alrededor
de cualquier punto p, satisfacen

Il = (22)7h(2),

donde q € Q, z es un parametro local alrededor de p y h es una funcion estrictamente
positiva, que es C> en un entorno de p, salvo en el punto p, donde sdlo exigimos
que sea continua. Este tipo de métricas aparecen de forma natural al considerar
morfismos ramificados de curvas.
Sea f: X — Y un morfismo de curvas complejas ramificado de grado d. Sea L
un fibrado de linea sobre X provisto de una métrica hermitica lisa || - ||. Entonces
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f«L es un fibrado vectorial de rango d, y sobre f.L podemos inducir una métrica

singular poniendo
<s,s’>y = Z e (8,8,
f(z)=y

siendo 7, el indice de ramificaciéon de f en x. Esta métrica induce una métrica del
tipo anterior sobre el fibrado de linea det f, L.

Por otra parte, si TX y TY designan los fibrados tangentes de X e Y y supo-
nemos que 1Y estd provisto de una métrica lisa, el morfismo

df : TX — f*TY

induce una métrica singular sobre T'X que también es del tipo considerado anteri-
ormente.

Sea ahora X una superficie aritmética y £ un fibrado de linea sobre X provisto
de una métrica singular en Lc. Entonces, existe una clase caracteristica ¢ (L) €
CH, (X), que extiende la nocién de primera clase de Chern para un fibrado de linea
hermitico introducida en [G-S 3|.

Por otra parte, si f : X — Y es un morfismo finito de superficies aritméticas,
se puede construir la primera clase de Chern del haz tangente relativo ¢ (T'f). Si

R es el divisor de ramificacion, entonces se tiene
a(Tf)=—-0(R).

La férmula de Riemann-Hurwitz aritmética, que se demuestra en la ultima
seccién de este trabajo, establece que, si £ es un fibrado de linea sobre X, pro-
visto de una métrica hermitica lisa, entonces

¢i(det f.L) = f. (51 (L) + %/C\l (Tf))

en CH; (Y).
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CAPITULO 1

A C* Logarithmic Dolbeault Complex
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§1. PRELIMINARIES

Let X be a complex smooth manifold. Let Y C X be a divisor with normal
crossings (in the sequel DNC). We shall write V= X —Y and denote the inclusion
by j:V — X. Let z € X. We shall say that U is a coordinate neighbourhood of =
adapted to Y if z has coordinates (0,...,0) and Y N U is defined by the equation
Ziy *+ 2iy, = 0. In particular if z € Y, then Y NU = (). When U and Y are fixed
we shall write I = {i1,...,im}.

Let Ox be the structural sheaf of holomorphic functions and let Q% be the
Ox-module of holomorphic forms. Let us recall the definition of the holomorphic
logarithmic complex, denoted Q% (logY’) (cf. [De 1]). The sheaf Q% (logY’) is the
sub-Ox-algebra of 7.}, generated in each coordinate neighbourhood adapted to
Y by the sections dz;/z;, for i € I, and dz;, for i & I.

There are two filtrations defined on Q% (logY’). The Hodge filtration is the
decreasing filtration defined by:

FPO% (logY) = @D 9% (log ).
p'2p

The weight filtration is the multiplicative increasing filtration obtained by giving
weight 0 to the sections of 2% and weight 1 to the sections dz;/z;, for i € I.
Given a complex K™, let 7< be the canonical filtration:
K", if n <p,
T<p(K)" =< Kerd, ifn=p,
0, if n > p.
Deligne has proven in [De 1] the following theorem:

Theorem 1.1. Let X be a proper smooth algebraic variety over C. There is a
filtered quasi-isomorphism

a: (Rj.R, 7<) ® C — (Qx (logY), W).
Moreover, the triple
(RjR, 7<), (2% (logY), W, F), a)

is an R-cohomological mized Hodge complex which induces in H*(V,R) an R-mized
Hodge structure functorial on V. This mixed Hodge structure is independent on X.
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We refer the reader to [De 1] for the definitions and properties of mixed Hodge
structures (MHS), mixed Hodge complexes (MHC) and cohomological mixed Hodge
complexes (CMHC).

Remark. Actually, in [De 1] a stronger theorem is proven involving the rational
and integer structures of H*(V'). Nevertheless in this work we shall deal only with
the real structure.

We shall denote by Ax r (resp. Ex r) the sheaf of real analytic functions (resp.
real C* functions) over X, by A% p (resp. £ ) the Ax g-algebra (resp. Ex r-
algebra) of differential forms. We shall write Ax = Ax g ®C and Ay = A%, @C.
(resp. x = Exr®@C and €% = €5 ® C.) The complex structure of X induces

bigradings:
Ay = P ARS
pt+g=n
and
&= P &
ptq=n

An example of bifiltered acyclic resolution of Q% (logY’) is the following ([De
1]): Let K* be the simple complex associated to the double complex formed by
Q% (logY) ®0 £%*. This complex is filtered by the subcomplexes FP(Q% (logY)) ®
E%* and W, (% (log Y))®E%*. The sheaves Grp Gr'W (K™) are £x-modules, hence
fine and therefore acyclic for the functor I'(X,-). Using the fact that Ex is a flat
Ox-module ([M]) one can prove that

(Qx (logY), W, F) — (K*, W, F)

is a bifiltered quasi-isomorphism. This construction is not symmetrical under con-
jugation. Hence this resolution does not have a real structure.

In [N] Navarro Aznar introduced the analytic logarithmic Dolbeault complex,
denoted A% (log V'), of which we recall the definition. The sheaf A% p(logY) is the
sub-Ax r-algebra of j, v.r generated in each coordinate neighbourhood U adapted
to Y by the sections

dz; dz; .
logz;z;, Re & , Im z , for¢ eI, and
Zi Z

Redz;, Imdz;, fori¢&I.

The weight filtration of this complex, also noted W, is the multiplicative increas-
ing filtration obtained by assigning weight 0 to the sections of A}’R and weight 1
to the sections g p

log z;zZ;, Re ﬁ, Im ﬁ, fori e I.
Zi Zi

Consider the sheaf A% (logY) = A% g(logY) ® C. It has a weight filtration
induced by the weight filtration of A% p(logY) and a bigrading induced by the
bigrading of j..Aj:

Ax(logY) = € AR (logY)
ptg=n
where AR (logY) = A% (logY) N j. AV
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The Hodge filtration of A% (logY’) is defined by

FP Ay (logY) = @D A% "(log Y).

p'2p
It follows easily from the definitions that the inclusion
(% (log V), W, F) — (Ax (logY), W, F)

is a bifiltered morphism.
In [N], the following result is proven:

Theorem 1.2. i) There is a filtered quasi-isomorphism
B (RjR 7<) — (Ax ullog), ).
ii) The inclusion
(Ui (log V), W, F) — (A (log V), W, F)

1$ a bifiltered quasi-isomorphism.
iii) The quasi-isomorphisms v, « and (3 are compatible, i.e. toa =& C

As a consequence of Theorem 1.2 we have

Corollary 1.3. Let X be a smooth proper algebraic variety over C and let' Y be a
DNC. Then the triple

((A},R(log Y)a W)? ('A§( (log Y)a Wa F)? ]d)

is a R-CMHC which induces in H*(V,R) the R-MHS given by Theorem 1.1.
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§2. THE C* LOGARITHMIC DOLBEAULT COMPLEX

Throughout this section we shall use the notations of §1.
Let us consider the sheaves

P;(R(log Y) = EXJR ®-AX,]R A},R(log Y)
and
Px(logY) :=Ex @4, Ax(logY).

There is a natural morphism
p:Px(logY) — &y

given by multiplication: p(f ® w) = f - w, for w € A% (logY) and f € Ex.

Definition 2.1. The C* logarithmic Dolbeault complex, noted £%(logY), is the
image of u:
Ex(logY) = u(Px (logY)) C ji &y

This complex has a real structure given by

Exr(logY) := u(Px r(logY)).

The weight filtration of A% p(logY’) tensored with the trivial filtration of Ex r
defines a weight filtration of P% p(logY’). The weight filtration of £% p(logY’) is
defined by

WoEx(ogY) := u(W,Px(logY)).

The complexes P (logY) and j.&;, have bigradings induced by the complex
structure of X and the morphism p is a bigraded morphism. Hence the complex
&% (logY) has a natural bigrading:

Ex(logY) = B &4 (logY),
ptq=n

where

EV(logY) = Ex(logY) N 4. &0 = u(PR(logY)).
The Hodge filtration of £% (logY) is defined by
FPEX(logY) = @ Sg(l’q(logY).

p'>p
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The sheaves GrrGr'W €% (logY) are acyclic because they are €x-modules, hence
fine.
We have the following diagram of bifiltered complexes and bifiltered morphisms

(% (logY), W, F) —
l /
(€x (logY), W, )

(Ax (logY), W, F)

where the upper arrow is a bifiltered quasi-isomorphism.
The main result of this chapter is

Theorem 2.2. The inclusion
(Qx(logY),W, F) — (Ex(logY), W, F)

s a bifiltered quasi-isomorphism.

Remark. By the notations it may seem that Theorem 2.2 contradicts [N, (8.11)].
However it should be noted that the sheaf called £% (logY') in [N] is called here
Px(logY). And, with our notations, the morphism p : Py (logY) — Ex(logY)
is not an isomorphism (see Corollary 4.2 below).

As a consequence of Theorem 2.2 the morphism

(Ax (logY), W, F') — (Ex (logY), W, F)
is a bifiltered quasi-isomorphism and, C being a faithfully flat R-module,
(Ax r(logY), W) — (Ex r(logY), W)

is a filtered quasi-isomorphism. Thus, we have
Corollary 2.3. Let X be a smooth proper algebraic variety over C and let' Y be a
DNC. Then the triple

((Ex r(logY), W), (Ex (logY), W, F), 1d)

is a R-CMHC which induces in H*(V,R) the R-MHS given by Theorem 1.1.

In the rest of this section, in order to prove Theorem 2.2, we shall follow the
proof of part ii) of Theorem 1.2 given in [N] and point out where some modifications
are needed. The result is that Theorem 2.2 is a consequence of two key lemmas
whose proof will be delayed until §5.

By definition of bifiltered quasi-isomorphism, Theorem 2.1 is equivalent to

Proposition 2.4. The sequence

0 — W, (log V) - W,&2°%(log Y) 2 W, logY) 2 -

is an exact sequence of sheaves.

Proof. Let x € X. Let U be a coordinate neighbourhood of x adapted to Y. Put
I ={iy,...,ip} as in §1. We shall prove the exactness on stalks.
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Let n,p,q > 0. For each J C I we denote by W] the intersection of the
subalgebra W,,E%%(logY), with the algebra generated by
dz; dz;
ﬁ, ﬁ, log z; Z;, fori e J,
Zi %

dz;
%,dii, fori ¢ J, i €I and

dz;, dz;, fori ¢ I.
If there is no danger of confusion we shall omit the superindexes p,q. Let W,, ;5
be the subset of W), ; composed by the elements of W,, ; such that, for at least one
m € J, their weight on dz,,/z,, and log z,, Z, is less than or equal to k.
One has the following relations:

Wn - Wn,]7
Wos = Wa.sk:
(2.5) k>0
Whg0= U Wi k.
KCJ

Let w € W,EP9(logY), be such that dw = 0. We need to prove that w = 9y
with n € W,EP9 1 (logY),. There is J C I and k € Z such that w € W,, ;5. We
shall make the proof by induction over k and over the cardinal of J. If J = () the
result follows from the next lemma.

Lemma 2.6. The sequence
i 0 0
0 — W,0% (logY), — Wf;’g — Wgé — ...
18 exact.
Proof. By definition one has
WPE = W,0% (logY), ® EX%.
The exactness of this sequence has already been discussed after Theorem 1.1.

Let us continue the proof of Proposition 2.4. After Lemma 2.6 and the re-
lations 2.5 it is enough to prove that, if & > 0, then there exists an element
n € W,E%9 1 (logY), such that w — dn € Wy sx_1.

Assume that 1 € J and that the weight of w on dz;/z; and log z1z; is less than
or equal to k. For simplicity we shall write \; = log z1z;. We have a decomposition

e
w:aA’f+5/\A’fdzl+mA’f—1§+p,
1

where a, 8,7 € W, _j s_{13 do not contain dz; and p € W, jr—1 has weight on
dz;/z; and Ap less than or equal to k—1. We must show that, adding to w elements
of OW,,, we can eliminate the first three terms.

For the first step we have that tyA} € W,E%* Y(logY),, and

1 1.
O(AAY) = 2O + ()P Iy AN

! |

21
Hence we can write
w=a' i+ 5 ANz, + p, mod OW,,,

where o/ and (3’ satisfy the same conditions that o and f3.
For the next step we need the following lemma which will be proven in §5:
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Lemma 2.7. Let 3 € W, _y {1y be a form which does not contain dzy, then there
exists a form ¢ € W, _j such that

I(ZeAY) = aAf + B A Nfdz + p,

where o € Wy, 711y does not contain dz1, and p € W, j 1 has weight on dz1 [z
and A\ less than or equal to k — 1.

Using this lemma one has that
w=a"\} +p, mod OW,,,

where o’ and p’ satisfy the same conditions as « and p respectively.
For the last step we need another lemma which will also be proven in §5:

Lemma 2.8. Let w = aA\¥ + p be a form such that a € Wik, 7—f1} does not
contain dzi, p € Wy jk—1 has weight on dz; /21 and A1 less than or equal to k — 1
and Ow =0. Then w € Wy, jr—1.

Clearly this lemma concludes the proof of Theorem 2.2.

Remarks. a) In the case of analytic functions, Lemma 2.7 is proven in [N] solving
the equation

(2.9) %(zm =3,

integrating the power series that defines the components of 3 in a neighbourhood
of x. In general, the equation 2.9 cannot be solved in the case of C* functions.
For example ([N]), let f € C[z] be a non-convergent formal power series. Let
f: C — C be a differentiable function which has f as Taylor series at 0. This
function exists by Borel extension Theorem (see Theorem 3.3 below). Then the
equation 5 5
£(Zg) =57/

does not have any solution: If g were a solution, then f—Zzg would be a holomorphic
function with non-convergent Taylor series.

b) On the other hand, in the real analytic case, Lemma 2.8 can be strengthened
saying that « is actually 0. This is a consequence of the following: Let {f;} be a

finite family of real analytic functions in a neighbourhood of = such that
.10 S o,

then, for all ¢, the functions f; are zero. But this is not true in the case of C*
functions (cf. Corollary 4.2 below).

Roughly speaking, the idea of the proof of Lemma 2.7 and of Lemma 2.8 in the
differentiable case is, first, to obtain a solution of 2.9 up to a flat function using
Borel’s relative extension Theorem; second, to prove that equation 2.10 implies, in
the differentiable case, that the functions f; are flat and finally, to show that the
smoother property of flat functions gives us the proof.
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§3. WHITNEY FUNCTIONS

In this section we recall some results of the theory of Whitney functions that we
shall use throughout this chapter. A complete treatment of this subject, including
the proofs omitted here, can be found in [M] or in [T]. The notations that we shall
use differ slightly from those of these texts. In fact all the constructions given here
depend only on the differentiable structure, thus they can be formulated in terms
of real differentiable manifolds. We state them in a complex setting due to the use
we shall give them in the remainder of the chapter.

The results we shall need are Borel’s relative extension Theorem, Theorem 3.3
below, and Theorem 3.4 which relates the ideal of flat functions on the intersection
of two analytic sets with the ideals of flat functions on each set.

Consider the space C? with complex coordinates (21, ..., zq). We shall use double
multi-index notation. Let a = (a1,...,aq,0],...,0)), o, o) € Z>o, then we shall
note

, o . olel
|| = Zai +a;, 2%= Hz""zo‘i , al= Hai!ai! and 0% = a0
1€0 1€E0 1€E0

Let U C C% be an open set, and let A be a closed subset of U. The space of
(complex) jets of order m over A, J™(A), is defined as the set of all sequences
F = (F)|a|<m, where the F'“ are continuous complex functions over A.

The space of jets over A is defined as

J(A) =lim J™(A).

Let Eca(U) = I'(U, Eca) be the ring of complex C*> functions over U. For each
m € Z>g, there is a morphism

J™Eca(U) — J™(A)

defined by
m o 1 «
)= 0]
Taking limits, they give a morphism
J: Eca(U) — J(A).

If it is necessary to precise the closed set over which the jets are defined we shall
write J4.
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Let x € A and F € J"(A). The Taylor polynomial of F', of degree m, centred
at x is the polynomial

TIF(z) = Z (z —x)*F*(x).

lo|<m
The remainder of F' at = of degree m is the jet over A defined by

R™(F)=F — J™(T™F) € J™(A).

€T

If F € J(A) then there are obvious definitions of Taylor polynomial and remainder
of F of all degrees.

The Taylor approximation Theorem implies that if F' = J™(f) is the jet of a C*°
function then it satisfies the condition:
W. For all compact K C A then

(RIF)*(2) = o]z — ™71,

for z,z € K and |a| < m, when |z — z| — 0.

A jet FF € J"(A) is said to be a Whitney function of order m, denoted F' €
W (A), if it satisfies the condition W.
The space of Whitney functions is defined as

W(A) = Lim W™ (A).

Thus the jet of a C* function is a Whitney function. The interest of the Whitney
functions is given by the following theorem which says that they are exactly the
image of J.

Theorem 3.1. (Whitney’s extension Theorem, see [M] or [T]) The morphism
Ja: Eca(U) — W(A)

1s an eptmorphism.

Given a jet F' € J(A), after Theorem 3.1, to know whether it is the jet of
a differentiable function we must check the conditions W for all m. If A is a
hyperplane, using C* functions over A instead of continuous functions, we can give
a different definition of Whitney functions avoiding the condition W. In this case
Whitney’s extension Theorem specializes in a relative version of Borel’s extension
Theorem.

Let Y7 be the hyperplane of equation z; = 0. We define the morphism

Jl . Scd(U) — (C:yl(Yl ﬁU)[[zl,Zl]]
3 L oHfL
— — 212 s
! » iljl 02107 .

Yy
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and the morphism
0: (c:y1 (Yl N U)[[Zl, 21]] — J(Y1>

ZFi:jz’izg ( 1 aalFal,a’1> ,
. a1! a
Y

where, if @ = (1,...,0q,0),...,a)), then &; = (0,a2,...,aq,0,05,...,0a}).
It follows from the definitions that ¢ is injective and that
Jyl =4do J1.

Hence W(Y: NU) C Im 3.
Using Taylor’s approximation Theorem it is easy to show that an element of Im ¢
satisfies the condition W for all m. And so Im§ C W(Y; NU). Thus we obtain

Proposition 3.2. The morphism § is an isomorphism between Ey, (Y1 NU)[z1, z1]
and W(U NY7).

In this situation Theorem 3.1 can be restated as follows:

Theorem 3.3. (Borel’s relative extension Theorem) The morphism Jy is an epi-
morphism, i.e. if
F=) Fzz
%]

is a formal power series, where the coefficients F*J are complex C* functions over
Y1 NU, then there exists a complex C function f over U, such that

1 9t f

gt oz107 |,
1

= F"I,

Now that we have a characterization of Im J let us look at Ker J. Recall that a
function f on U is said to be flat on A if J4(f) = 0. The flat functions form an
ideal which we denote by m(U).

A useful property of flat functions is the following theorem by Lojasiewicz.

Theorem 3.4. Let A1 and As be two closed analytic subsets of U. Then

m%ol NAs (U) = mzol (U) + m10402 (U)‘

Proof. Usually this result is formulated in other terms which we recall here.
Let B1 C By be two closed subsets of U. There is an obvious restriction mor-
phism W(B3) — W(B1) and a commutative diagram
Eca(U) — W(Bs)
N\ !
W(By).
Theorem 3.1 implies that all such restriction morphisms are epimorphisms.
Let now B; and By be two different closed subsets. We can construct the fol-
lowing sequence

0 — W(B; U Bs) & W(B1) ® W(By) = W(B1 N By) — 0,
where p(F) = (Flp, , Flp,) and 7(F,G) = F|g ~p, — Glg,np,- 1t is clear that p
is injective, 7 is surjective and that m o p = 0. But in general this sequence is not
exact. It is said that By and By are regularly situated if this sequence is exact.

The usual formulation of the Lojasiewicz result is the following.
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Theorem 3.5. (Lojasiewicz, see [M]) If A1 and As are two real analytic closed
sets of U, then they are reqularly situated.

Theorem 3.5 is equivalent to Theorem 3.4 because, by Theorem 3.1,

W(A) = Eca(U)/ mG (U).
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§4. FLAT FUNCTIONS AND LOGARITHMIC SINGULARITIES.

Recall the notations of §1. Let X be a complex manifold of dimension d and let
Y be a DNC. Let z € X. From now on we shall fix a coordinate neighbourhood U
of x adapted to Y, with coordinates (z1,...,24). If Y is defined by the equation
Ziy v Ziy, = 0 set I = {iy...ipr}. For shorthand let us write \; = log z;z;. We
denote by Y; the hyperplane of equation z; = 0.

In this section we shall relate the kernel of the morphism p : Py (logy) —
Ex(logY) with the flat functions. The results we shall need in the sequel are
Proposition 4.1 and Proposition 4.3.

Roughly speaking, the flat functions act as smoothers: let h be a differentiable
function, singular along a closed set A, let f be a function flat on A. If the singu-
larity of h is not “too bad”, then f - h can be extended to a smooth function flat
over A. (cf. for example [T, IV.4.2] for a precise statement.) In particular, we have
the following easy result.

Proposition 4.1. Let f be a complex C function on U, flat on Y;, then for all
k > 0 the function
\E
f v
P(zi, %)’
where P(z;, zZ;) is a monomial, can be extended to a C*° function flat on Y;.

Proposition 4.1 is the reason for the morphism p not being an isomorphism. For
instance, let us consider the function f : C — C defined by

It is a function flat on 0. By Proposition 4.1 the function f(z) -logzz is a C™
function over C. Thus

s=f®logzz— f-logzz® 1

is a nonzero section of P§ (log0) and p(s) = 0. Generalizing this example we obtain
the following result.

Corollary 4.2. The ideal Ker i contains the elements
fRN—f-AN®1,

where © € I and f is flat on Y;.
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Let us introduce some notations. A single multi-index of length d is an ordered
set a = (a1,aq,...,aq), with a; € Z>¢. The set of all single multi-indexes of length
d is Z<,. This is a partially ordered set: Put b > a if b; > a;, Vi. For a € Z%, we

shall write N
A= H ¢, and |a| = Zai.

?

We define the support of a € Zéo as

supp(a) = {i [ a; # 0}

Let A C Z%O be a finite subset. We define the support of A as

supp(A) = [ supp(a) .

a€A

If J={j1,...,jn} is a subset of I we put

;=Y.

jedJ

If a € A let us write

Ya,A — ﬂ szupp(b)-

beA
b>a

Note that if A" C A then Y, A C Yy as, that Yo 4 C Yiupp(a) and that if a is maximal

in A then Y, A = szupp(a)-

Proposition 4.3. Let A C Z%o be a finite set of multi-indexes. Let {f,}acn be a
family of C* functions on U. Then the equation

D faX® =0

acEA
implies that the functions f, are flat on Y, o. In particular, if a is mazimal in A
then fqo 1s flat on Yupp(a)-

Proof. Let us prove first the case # supp(A) = 1. We can assume that supp(A) =
{1}. In this case we have to prove that, if f € Ex(U) and

(4.4) > fr(z1s,za) - M =0,
k

then the functions fj are flat on Y7.
Let y = (0,22,...,24) be a point of Y1 NU. Consider the functions

hi(z) = fr(z,x2,. .., 2q).

We shall write 72 = 212;. If we see that, for all n, hy = O(r™), i.e. that h(z)/r™ is
bounded when » — 0, then the functions fj and all their derivatives with respect
to z1 and z; will be zero in y. Varying the point y, we shall obtain that f; is flat
on Yl.
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Let n,l > 0. Suppose that, for k > [ one has hy = O(r") and, for k < one has
hy, = O(r"~1). This is true for n = 1 and [ large enough. Making the quotient of
4.4 by rn—1 logl r? we obtain

1 1 1 log 72

O=hyg————+—+ -+ hy_ h h
Or"—lloglr2+ + ny 17“”*110gr2+ l + g

Tnfl rnfl

In this equation all terms tend to zero when z tends to zero except perhaps the [-th
term. Therefore it also tends to zero, i.e.

lim Ay = 0.

z—0 pn—l

Thus h; = O(r™). By inverse induction over [ and induction over n we have that
h; = O(r™) for all n and all .

Suppose now that #supp(A) > 1. We shall prove first, by induction over
#supp(A), that the functions f, with a maximal are flat on Yju,pq). Let ' € A
be a maximal element and assume that 1 € supp(a’).

Let us write
D faA =D 0 frad)A =0
a k b

Put V=U — Uie[—{l} Y;. For each k, the functions

> fepA’
b

are C* functions on V. By the case # supp(A) = 1, they are flat on Y3 NV. Hence,
for all p,q € Z>¢
orta

R AP
92007 Zb: T y
1

By induction hypothesis, for b maximal, the functions

=0.

opta
are flat on Yy,ppp). If @’ = (K,b') is maximal in A, then b’ is maximal in the set

{b| (K',b) € A}. Therefore the function f,s is flat on Yyupp(ar) = Ysuppsr) N Y1
Finally let us prove the general statement by induction over max{|a| | a € A}.
Without loss of generality we can assume that if a € A then all the elements b < a
also belong to A.
Set A’ = {a € A | a is not maximal}. Then max{|a| | a € A’} < max{|a| | a €
A}. For each a € A maximal, f, is flat on Yupp(a)- By Theorem 3.4 we can write

fa: Z fa,z'

i€supp(a)
where f,; is flat on Y;. Using Proposition 4.1 and reorganizing terms we obtain
D JX =D gaX" =0,
acA a€eN’
By construction f, — g, is flat on Y, o and by induction hypothesis g, is flat on
Yo D Yy . Hence f, is flat on Y, 4.

Now we can give a precise characterization of Ker pu.
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Proposition 4.5. The ideal Ker p is generated by the elements
fON—f-AM®1,

where v € I and f is flat on Y;.

Proof. We shall denote by J the ideal generated by the elements
fON—f- @1,

with ¢ € I and f flat on V].
Let n € Ker i. We can assume that n € P%(logY),. Let us write

N=) 9a®A"

a€A

We shall do the proof by induction over the weight w of n: w(n) = max{|a| | a € A}.
If w = 0 then n = 0 because u(n) = n.

If w > 0 it is enough to show that adding elements of J we can lower the weight
of n. Let a € A with |a|] = w. Then a is a maximal element of A. Hence, by
Proposition 4.3, g, is flat on Yyu,p(q)- Thus we can write

Ga = Z Ga,is
i€supp(a)

where g, ; is flat on Y;. Let a; = (a1,...,ai-1,0,a;41,...,a4). Then

Ga ® A" = Z Ga,i ® A?

it€supp(a)

= > gai-A"@A, mod J.

i€supp(a)

Repeating this process for each a with |a| = w we have the inductive step.
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§5. PROOF OF LEMMAS 2.7 AND 2.8

In this section we shall end the proof of Theorem 2.1. We follow the notations
of §2 and of §4. We also use the following notation:

dz;
& =2 foriel
Zj

& =dz;, fori ¢ 1.
IfL=({l, .., 0p},{l1,---,1;}) is a pair of ordered subsets of [1,d] we shall note

§L:§l1 /\.../\&p/\gl,l /\---AQ.
Let us recall Lemma 2.7:

Lemma. Let 3 € Wf;fk_b_{l} be a form which does not contain dz,, then there

exists a form ¢ € W,,_i such that

D(ZeA) = a\F + B ANz + p,
where o € Wy, 7113 does not contain dzi, and p € W, j 1 has weight on dz; /Z
and A\ less than or equal to k — 1.

Proof. We shall see first that we can solve the equation

0 ,_
8—21(219) =f
up to a flat function.

Lemma 5.1. Let f : U — C be a C* function, then there exists a C>* function
g : U — C such that the function

0 ,_
f— 8_21(21‘(])
1$ flat on Y.
Proof. The jet of f on Y7 is the formal power series
L aHfl
Ji(f) = ;Z'_J'W 2171

Y1
42



Integrating this series with respect z; and dividing by z; we get the series

. 1 ot f i—j
Z.Zj i+ 1) ozioz| T
) Yl

By Theorem 3.3 there exists a function g on U whose jet on Y; is g. This is the
desired function.

Let us continue the proof of Lemma 2.7. Set
B=>" farX®".
a,L

Applying Lemma 5.1 to the functions f, ; we obtain functions g, . With them we

can write
0= garX:¢.
a,L

Note that ¢ € Wka_(l]f{l} because [ € Wf:fk:_(l]f{l}.

Let [ be the degree of ¢, i.e. | =p+ g — 1. We have

BANdz — (=1)'0(z10AF) = (ﬁ - 8(;90)) A Xedz,
21

_ ((_1)15(51@ - 6%’20) A dzl) Ak

— ko ATz,

By construction § — 9(Z1¢)/0%z is flat on Y;. Hence, by Proposition 4.1, the
weight on \; and dz;/z; of (8 — 9(21p)/0z1) A Midz; is zero.
The weight on A and dz;/z; of kp A A’f‘ldzl is kK — 1. Thus we can write

p= (ﬁ — agz}f) AXVdzZ — ko ANz
On the other hand the form

0zZ1¢
071

a=(-1'o(z1p) — A dz

does not contain dz; and belongs to W,,_j ;_{13. Therefore (—1)p is the form we
are looking for.

Recall now Lemma 2.8:

Lemma. Let w=a\ +pc WP be a form such that o € Wik, g—{1y does not

conta_in dzi, p € Wy jk—1 has weight on dz;/z; and \; less than or equal to k — 1
and Ow =0. Then w € Wy, jr—1.

Proof. Set
=" farr®e.

acN L
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We shall do the proof by induction over max{|a| | a € A}, the weight of a on .
Let V=U — Uie]—{l} Y;. By hypothesis

_ _ dz -
Ow = Neda + (—1)'ka A A’f‘l; +dp=0,
1

where [ = p + ¢ is the degree of a.
For each L, the function

8 a
hy, = 8_21(2 fa, L A?)

a€EN

is C> in V and is the coefficient of A\¥dz; A €% in Ow. So by Proposition 4.3 hy, is
flat on Y1 NV.

Look now at the terms with )\’ffl. Since p has weight on A\ and dz;/Z; less than
or equal to k — 1, the coefficient of )\’f_lfl in Op must be divisible by z;. Applying
Proposition 4.3 to the coefficient of A¥~'dz; A €& we have that

Z fa,L)\a + 519

a€A

is flat on Y; N V. This fact and the corresponding fact for hy implies that

Z fa,LAa

acA

is flat on Y7 N'V. Considering the partial derivatives of this function as in the case
# supp(A) > 1 of the proof of Proposition 4.3, we obtain that the functions f, ,
with a maximal, are flat on Yg,pp(a) N Y1.

By Theorem 3.4 we can write, for ¢ maximal in A,

fa,L = Z fia,r. + fi,0,1,

t€supp(a)

where f; o 1, is flat on Y;. Hence, for i € supp(a) we have
fia,t A" = (fia, L AT )N

and (fi ... A{") is a C* function on U. On the other hand f; , LAfA® € Wh,g—f1y C
Wi, k—1. Therefore we can write « = o + o, where the weight of o’ on A is less
than those of a and o’ € W,, j—1. Thus we have w = o’ + p/, where p’' = p + o
satisfies the same conditions as p and o’ the same as « but with less weight on .
This concludes the inductive step.

If max{|a| | @ € A} = 0 we proceed in the same way but now we obtain o’ = 0,

hence the result.
This finishes the proof of Theorem 2.2.
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§6. GREEN FUNCTIONS AND LOGARITHMIC DOLBEAULT COMPLEXES

Since the fundamental work of Néron and Arakelov in Arithmetic Intersection
Theory, Green functions have been widely used in the study at infinity of arithmetic
divisors.

In this section we shall examine the relationships between Green functions and
logarithmic Dolbeault complexes, suggesting that these complexes may be a useful
tool in the study and generalization of Green functions.

Let X be a complex manifold and let D be an irreducible divisor. We shall
denote by |D| the support of D. Let w be a real (1,1) form which represents the
cohomology class of D. Then a Green function for D with respect to w is a function

9o €T(X —|D],EX )
with logarithmic singularities along |D| and such that
dd°g, = w,

where d€ is the real differential operator defined by d¢ = %(5 —0).

The meaning of the words logarithmic singularities may vary from one work to
another, ranging from logarithmic growth conditions to a more precise description
of the singularity.

A well known method to construct Green functions is the following. Let L be
the line bundle associated to D. Let || - || be a hermitian metric in L and s be a
section of L such that D = (s). Then a Green function for D is

(6.1) 9p = —log|s]*.

It is also well known that w = dd°g,, is the first Chern form of (L, || - ||) and that
w represents the cohomology class of D. To obtain Green functions with respect
to another form in the same cohomology class, say w’, it is enough to apply the
00-Lemma to the exact form w — w'.

From now on, we shall use the following convention. The global sections of a
sheaf will be denoted by the same letter as the sheaf but in roman script instead of
calligraphic, for instance

E%(logY) :=T(X, R (logY)).

Let Y be a divisor with normal crossings, Y = JY) with Yj a smooth divisor
for each k. Set V = X — Y. A first relationship between logarithmic Dolbeault
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complexes and Green forms is that E% (logY’) can be characterized as being the
minimum sub-Ex-algebra of Ej;, closed under d and 0, that contains a Green
function of the type 6.1 for each smooth divisor Y.

Let us examine specifically the case of curves. The general case will be the topic
of the next chapter. Let C be a compact Riemann surface. Choose a point = of
C and assume that w is a differentiable (resp. real analytic) volume form on C'
normalized in such a way that

/ w = 1.
c

By De Rham duality this is equivalent to saying that w represents the cohomology
class of z viewed as a divisor. In this case the usual definition of Green functions
is the following (cf. for example [L 3] or [Gro] ):

A Green function for z with respect to the form w is a differentiable (resp. real
analytic) function

g, :C—{z} —R

such that

Gl. dd°g, = w.
G2. If z is a local parameter for z in a neighbourhood U of x then

9,(2) = —log 2Z + ¢(2),

where ¢ is a real differentiable (resp. real analytic) function defined in the

whole U.
/ g,w=0.
C

G3. It satisfies
It is well known that the conditions G1 and G2 determine g, up to an additive
constant and that this constant is fixed by G3.

The condition G2 obviously implies the condition

G2'. The function g, belongs to E2(log{z}).

In fact, in presence of G1, the statements G2 and G2’ are equivalent, i.e. we have
the following regularity lemma.

Proposition 6.2. Let g € E2(log{x}) be a solution of the differential equation
G1. Then, up to an additive constant, g is a Green function for x with respect to
w.

Proof. We only need to show that g satisfies G2 in a neighbourhood U of x. Let

z be a local parameter for x in U. Put A = logzz. We have a (non-unique)
decomposition
n
g = Z fk/\ka
k=0

where the functions f; are smooth on x. The fact that g satisfies G1 and Proposi-
tion 4.3 implies that the functions fj are flat on = for £ > 1, and that there exists
a constant a such that f; — a is flat on x. Hence, by Proposition 4.1, we can write

g=a\+p,
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where ¢ is a C* function in the whole U.

It only remains to determine the value of the constant a. This constant is
determined by the cohomology class of w. Let us consider in U the standard metric
of C. Let S. be the sphere of centre z and radius . We have, using Stokes’

Theorem, that
1:/w:/ddcg:—lim d°g = —a.
c c e=0Js.

Therefore, a = —1, concluding the proof of the lemma.

In view of Proposition 6.2, to prove the existence of a Green function for z it is
enough to solve the equation G1 in the complex EZ (log{x}). Let us give a proof of
the existence of such solutions which does not depend on the existence of metrics
on line bundles (see also [L 3] and [Gro]).

Proposition 6.3. Let w be a real (1,1) form on C. Then, for each x € C, there
exists a real function g € EX(log{z}) such that dd°g = w. This function is unique
up to an additive constant.

Proof. The uniqueness follows from the fact that g satisfies G1 and G2.

The form w is exact in the complex E} (log{z}) because H*(C — {z},C) = {0}.
Since the spectral sequence of Ef(log{x}) with the filtration F' degenerates at Ey,
the differential d is strictly compatible with F. Hence there exists an element
¢ € F1E} (log{x}) such that dp = w. Then ¢ € Eé:o(logx), dp =0 and Op = w.
Thus we have that % = 0 and, w being real, that 9p = w.

Now the form @ — ¢ is closed and represents an element of H!(C' —{x}, C). Since
C' is smooth the Hodge filtration of this complex satisfies ([De 1]):

HY(C - {2},C) = F! + F".

Therefore there exist forms ¢, € Eé’o(log{x}) and ¥y € Eg’l(log{x}), with diy =
dipo = 0 and a function f € Eg’o(log{x}) such that

df +v1+ Y2 =0 — .

Hence 00f = w. Writing

we have the desired function.

Remarks. a) This proposition is a version of the 9d-Lemma. (Compare for
example with [D-G-M-S]). The properties of elliptic differential operators usually
used to prove the existence of Green functions are hidden here in the mixed Hodge
structure of the cohomology groups of C' and in the degeneracy of the spectral
sequence associated with the filtration F'.

b) All the results of this section remain true if we replace the C*° complexes for
real analytical ones. In particular, if w is a real analytic (1,1) form then there exists
a real analytic Green function with respect to w for any point z € C'. In this case,
by uniqueness, any Green function with respect to w is real analytic.

¢) The definition of Green function has been generalized by Gillet and Soulé

(cf. [G-S 2]) in the concept of Green forms and Green currents associated with
47



arithmetic cycles. They also introduced the star product of Green currents which
corresponds to the intersection product of cycles. The techniques of this section
will be generalized in the next chapter to give alternative definitions of Green forms
for cycles and of the star product between them. They will also be used to prove
the existence of these Green forms.
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CAPITULO I1

Green Forms and Their Product



§1. A FIRST DEFINITION OF GREEN FORMS.

Let X be a complex projective manifold of dimension d, and let D be a divisor
of X with normal crossings (in the sequel DNC). We shall write V = X — D and
denote by j : V — X the inclusion. Let £x be the sheaf of complex C*>° functions
on X and let £% be the Ex-algebra of differential forms. The complex structure
of X induces a bigrading: £% =P, ,—, £x’. Under this bigrading the differential

can be decomposed as d = 9+ 9 with 9 of type (1,0) and O of type (0,1). We shall
denote d° = ;= (0 — 9).

Let us recall the definition of the C*> logarithmic Dolbeault complex given in
the last previous chapter. £%(log D) is the sub-Ex-algebra of j.&; generated, in
each coordinate neighbourhood U in which D has the equation z; ---zp; = 0, by
the sections

log z; Z;, %, d;, fori e [1,M] and

dZZ', dii, for ¢ ¢ [1,M]

This sheaf is a real subsheaf of j.&;,, hence it has a real structure. We shall denote
by €% r(log D) the corresponding subsheaf of real forms.

The weight filtration, W, of this sheaf is the multiplicative increasing filtration
obtained by assigning weight 0 to the sections of £% and weight 1 to the sections
dZi dZZ-

and —
Z4 Zj

log 2;Z;, for e [1,M].

This filtration is defined over R.
The sheaf £% (log D) has a bigrading induced by the bigrading of j.&;:

Ex(logD) = @ £ (log D),

p+q=n

where ER9(log D) = E% (log D) N j.EL%.
The Hodge filtration of £% (log D) is defined by

FPEx(log D) = P £79(log D).
/>p

Let (2% (log D), F, W) be the logarithmic De Rham complex with the usual
Hodge and weight filtrations ([De 1]). The natural inclusion
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is a bifiltered quasi-isomorphism. Thus ((€x g(log D), W), (€x (log D), W, F), Id) is
a R-cohomological mixed Hodge complex which induces in H*(V,R) the R-mixed
Hodge structure defined by Deligne in [De 1].

We refer the reader to [De 1] for the definitions and properties of mixed Hodge
structures, Hodge complexes, mixed Hodge complexes and cohomological mixed
Hodge complexes. For an introduction to mixed Hodge structures see [Du]. Other
references are [Gr-S| and [G-N-P-PJ.

From now on let us fix a closed algebraic subset, ¥ C X and let us denote by
V = X —Y and by j the inclusion V' — X. Following Hironaka ([Hi]), one can
obtain a proper modification X of X:

D —— X

Lok

Y —— X,

where X is smooth, D = 7~ (Y) is a DNC and 7|5 _p is an isomorphism. The

pair (X, D) is called a resolution of singularities of (X,Y).

Let us also fix one such resolution. Then we shall write £% (logY') = m,.£% (log D).
Note that this complex actually depends on the resolution chosen.

In the sequel we shall use the following convention. To denote sheaves we shall
use calligraphic letters whereas to denote the group of global sections we shall use
the same roman letter. For instance E% (logY) :=I'(X,E% (logY)).

The cohomology groups H*(X,C) and H*(V,C) with their real mixed Hodge
structure can be computed by the complexes E% and E% (logY’) respectively, be-
cause the corresponding sheaves are fine. In both cases, if w is a closed form, we
shall denote by {w} the cohomology class it represents.

In addition, the cohomology of X with supports in Y, Hy (X, C), is the coho-
mology of the pair (X, V), and so it can be computed as the cohomology of the
simple of the morphism

j By — Ex(logY).

We shall denote by S’y the simple of j* and by S, the corresponding sheaf.
Let us recall briefly the definition of the simple of j*. The complex is

};Y =EYx ® E;g_l(log Y)

and the differential is
d(w,n) = (dw, j*w — dn).

The complex S% ., can be provided with a natural structure of real mixed Hodge
complex ([De 1, 8.1.15]). It induces in H3 (X, C) a real mixed Hodge structure in
such a way that the cohomology long exact sequence of the pair (X, V') is an exact
sequence of real mixed Hodge structures.

As before, if d(w,n) = 0 we shall denote by {(w,n)} the cohomology class that
it represents.

Let us see that we can represent a class in Hy(X,C) by a single element of
EY?(logY).
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Proposition 1.1. Let x € Hy(X,C) be a cohomology class. Then there exists a
form g € E%?(logY) with dd°g € E% such that x = {(dd°g,d°g)}.

Proof. Since X is smooth, the mixed Hodge structure of H"(X, C) satisfies
Gr'VH™(X,C) =0

for r < n ([De 1, 3.2.15]). Moreover W,,_1H"~1(V,C) = Im j*. (This follows from
[De 1, 3.2.17].) And taking into account that

H"Y(X,C) 2> H"Y(V,C) — HI(X,C) — H"(X,C)

is an exact sequence real mixed Hodge structures we obtain that Gr}¥ H2(X,C) = 0
for r < n. Let us show that this implies that

(1.2) HY(X,C)= Y (FPNFY)H}(X,C).
ptqg=n

Let z € H{(X,C). Then xz € W, 1, H{(X,C). We shall prove 1.2 by induction
over 7.

If z € W, Hy (X,C) = Gr!Y Hy (X, C) then, since the filtrations F and F' induced
in GrlV HZ (X, C) are n-opposite, we have that

ze Y (FPNFI)H}(X,C).
ptqg=n

Assume now that x € W,, . H2(X,C). Since the filtrations F and F induced in
GrV., H}(X,C) are n + r-opposite we have

Grl HP(X,C)= > (FPnF")Gr),, Hy(X,C)

ptg=n+r

C > (FPNF9Gr), Hy(X,C).

ptq=n

Let a € (FP N F9)Gr),  H3(X,C). Then we can represent a by y € FP or by
z € F1 with y — z € Wy, 4,_1. By induction hypothesis we have

y— 2= Z wP
p'Hq'=n
with wP? € FPNFINW,4,—1. Then
Yy — Z wP = 4+ Z wP 4 ¢ FPAFIN Wy,
p'2p q'>q
represents «.. Therefore
re Y (FPNFYHP(X,C)+ Wy HY (X, C).

pt+g=n
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Using again the induction hypothesis we have 1.2.

By 1.2 we can assume that x € FP N F'9. Then x can be represented by a pair
(w1,m) with wy € FPEY and n; € FpE}_l(log Y) or by a pair (we,n2) with wy €
FIEY and g € F qE}_l(log Y'). Since both pairs represent the same cohomology
class, there exists a pair (a,c) such that

(1.3) d(a,c) = (w1,m) — (w2, 72).
Let a =) aP? and ¢ = ) _ ¢?? be the decomposition of a and ¢ in pure forms. Let
us write / /
FPq = Zap’q and FPc= Zcp’q,
p'Zp p'>p

and let g = —2micP~ 191 Then, taking in 1.3 the part which belongs to FP we
obtain

(14)  (im) = d(F?a, FP) + (9a"~17, -9 =1971) + (], 0).
The pair (ws,72) is closed and both forms belong to F9. Hence wb? = 8775_1"1_
From 1.3 we get ng’*l’q = —qP~ 19 4 9cP=29 4 §eP—1:9-1 Thus wh? = —daP—14a 4

00cP~1:94=1  Substituting in 1.4 and reorganizing terms we obtain

Cpflaqfl

(wi,m) = (dd°g,d°g) + d(F"a, FPc) + d(0, 5

).

Therefore (dd°g, d“g) represents x.

Reciprocally, a form g € ESL(_2 (log Y') can be used to represent a cohomology class
in H (X, C) provided that dd°g € E'%. This leads us to the following definition.

Definition 1.5. The space of Green forms over X with singular support on Y is the
C-vector space

GE%y ={9€ Ex?(logY) | dd°g € Ex}/(dEY *(logY) 4+ d°E% > (log Y)).
Note that we are assuming ¥ C X. If Y = X we can define
GEYx x ={w € Ex | dw = d°w = 0}.

We shall leave it to the reader to make explicit the case Y = X in all the definitions
and results below.
The total space of Green forms over X is

* *
GEx = €P GEx,y.
YCX
Y closed

Given that E% (logY) depends on the resolution of singularities chosen, this
definition of Green forms may depend on it. We shall see in Corollary 1.10 that, in
fact, this is not the case.

If g € Ex(logY) satisfies dd°g € £, we shall note by g the element of GEY y-
that it represents.
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Since dd° is a real bigraded operator and dE% (logY') + d°E% (logY’) is a real
bihomogeneous subgroup, then GEY - has a bigrading and a real structure induced
from those of E% (logY’). The weight filtration of E% (logY’) induces a filtration of
GEY y, also called the weight filtration and denoted W.

If a form g € E%(logY') belongs to Imd + Im d® then dd°g = 0 and d°g € Imd.
Thus {(dd°g,d°g)} = 0. Therefore we have a well defined morphism

cl: GEY y — Hy(X,C).

Since d and d¢ are real operators the morphism cl is real and by 1.1 this morphism
is surjective.

Ezample 1.6. Let L be the linear subvariety of P"(C) of equation Xy = --- =
Xp—1 =0, where (X, ..., X,) are homogeneous coordinates. Let us write

7 =log(|Xo|* +...1Xul?), 0 =log(|Xo|* + ... Xp—1]?), a = dd°r and B = dd°o.
Then
p—1
A= (- 0)(2 ¥ AP
v=0

is a well defined differential form on P"(C) — L. It is easy to see that A €
Eg;(%ég’_l(log L) and that dd°A = o € Epf.. Thus A is a Green form. The
form A was introduced by Levine ([Lv], see also [G-S 2]).

Since the morphism H;?(P"(C),C) — H?(P™(C),C) is an isomorphism and
the form a? represents the cohomology class of L in H?P(P"(C), C), we obtain that
cl(A) is the cohomology class of L in H}”(P"(C),C).

Let us write

Bxy ={w e Ex |w=da+dB, o, € Ex(logY)}
GExyo=19 € GExy | dd°g = 0}.

The three groups are real and have a natural bigrading.
We can relate these groups and the space of Green forms with the following

morphisms:

a) The morphism dd° : GEYy — E'v™? given by dd°(g) = dd°g € E%™. By
definition GEx y,o = Kerdd®. It is clear that Im dd® C Z;Lfg

b) The morphism & : E%? — GERY, induced by the inclusion ER? — E%(logY').
Then BYY, = Kera. Thus we have an induced morphism « : EQ?/BYS, —
GEYS,.

¢) The morphism 3 : H"(V,C) — GEY y, given by B({g}) = g, where g €
E%(logY) and dg = 0.

d) The morphism cl restricted to GE% y factorizes through the morphism ¢ :
GE%yo — H"(V,C) given by ¢(g) = {d°g}.
It is easy to show that all these morphisms are well defined.
The following lemma, which includes a version of the dd®-lemma, will be used in

the study of the behavior of the morphisms given above.
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Lemma 1.7.

1) (dd°-lemma) Let w € ER%(logY’) be a d-exact form. Then there exists a form
g € Eﬁ’(_l’q_l(log Y) such that dd°g = w. Moreover if w is real we can choose g
real.

2) Ifw € E% belongs to dE% (logY )+d°E% (logY'), then there exist forms a,b € E%
such that w + da + d°b is d and d° closed. In other words

Biy = Z%y +dE% + d°E%.

3) If w € EX? belongs to dE% (logY)+d°E% (logY) and is closed, then w is d-ezact
in BX (logY). Equivalently, Zg’(’:ly is the space of closed (p, q)-forms « such that
j*{a} =0.

4) If g € ER%(logY) satisfies d°g = dg’ for a form g’ € E% % (logY), then

g€ KerdN ERY 4+ dEY 9 (logY) 4+ d°EXT ' (log V).

Proof. Let us prove 1). Since the spectral sequence associated with the Hodge
filtration F' of E% (logY’) degenerates at E; the morphism d is strictly compatible
with the filtration F. As this complex is symmetrical under complex conjugation,
the differential d is also strictly compatible with the filtration F. Thus, w being
d-exact and of type (p,q), we can write w = da = db, with a € FP and b € F9.
Therefore d(a — b) = 0. Now, since V' is smooth we have, by an argument similar
to the proof of 1.2,

HPYY(V,C) = FPHPT1(V,C) + FIHPT1(V,C).

Hence the class of @ — b is the sum of a class in F? and a class in F'?. Thus
a—b=ay+b; +dcwith a; € FP, by € F? and day = db} = 0. If we take the terms
of type (p,q — 1) we get a?4~1 = a2 71 4 9eP=14~1 4 §eP9=2, Therefore

w = 0aP1™t = —90cP™147 = dd°(2micPT L),
So it is enough to take g = 2micP~ 1971, If w is real of type (p,p) then
g = mi(cP~br=t _gp—lp—l
is real of type (p —1,p — 1) and w = dd°g.

Let us prove 2). Since w € Imd+Imd€ in the complex E% (logY’) then dd‘w =0

in E%. But one of the formulations of the dd°-Lemma for this last complex says
([D_G_M_87 §5])
Kerdd® = Kerd N Kerd® 4+ Imd + Im d°.

To prove 3) we can write, by hypothesis, w = da + 9b = —0a — Ob + d(a + b)
with a and b of type (p — 1,¢q) and (p,q — 1) respectively. Hence

{w} = —{0a} — {0b}.
But

{w} € (Wpy yNFPAFY)HPT(V,C) and —{da}—{0b} € (FIT +FPT)HPT4(V,C).
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Since in a mixed Hodge structure
FPAFIN Wy, N (FPT 4+ FIt) =0,

the form w is d-exact in E% (logY).

Let us now prove 4). We have to show that adding to g elements of the form
da + Ob we can obtain g € Kerd N ER.

Since dg is pure and

1 1
dg = idg —2mid g = d(ig —2mig’),

we can apply part 1) to dg to obtain a form a € EX "?(logY) such that dg = dda.
Analogously we can obtain a form b € E%9 " (log ) such that dg = 99b. Then

d(g + Oa — 9b) = d°(g + Oa — db) = 0.

So we can suppose that dg = 0.
Since V' is smooth, the mixed Hodge structure of H(V,C) satisfies

(FPNF1N Wy, + FPT 4 PO P4V, C) = HPT(V,C).

But W, ,HPT1(V,C) is the image of HPT4(X,C) by j*. Therefore there exist w €
ERY g1 € FPHIER (logY) and gy € FITEX Y (logY), with dw = dg, = dga = 0
such that ¢ = w + g1 + g2 + dn. Taking the part of bidegree (p,q) one obtains

g=w+ 377p—1,q + gnp,q—l.

This concludes the proof the Lemma 1.7.

In the next proposition we shall give some exact sequences which involve the
space of Green forms.

Proposition 1.8. Let p,g € N, put n = p+ q. Then the following sequences are
exact:

1) 0—GE%y,— GEYy 25 2042 0

2) 0 GharWH(V,C) L GRS, & PP A FTT HYTY(V,C) — 0
3)  0— ERY/BYY S GERY S PPN FITUERTA(X,C) — 0

4) 0= E%/Bky 5 WiGE%y < W HY(X,C) — 0

Proof. By the definition of GEY y , to prove 1) it is enough to prove the surjectivity
of the morphism dd®. Let w € Z;}*é Since Z;?L}z is a bihomogeneous subgroup of
E}H we can assume that w is pure of type (p,q). By part 3) of Lemma 1.7 w is
d-exact in E% (logY’) and by part 1) of the same lemma w is dd®-exact. Thus dd®
is surjective.

Let us prove 2). A cohomology class in H"!(V,C) belongs to FP+l N Fatl if
and only if it can be represented by a form 1, € FPF'EL T (logY) and by a form
n2 € FIHLET (logY).
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Let g € GEYY, ), since

1 = 1 ) )

—0g — —dg=——0g+ —

27 g 47 g 2m g+ 4

we obtain {d°g} = {3-0g} = {—5-0g}. But {5509} € F*! and {599} € FPT1.

Therefore (g) € FP*1 N FaH H"T1(V, C). )
Conversely, if z € FPtin FItLH" YV C) let 9 € FPT and ny € FI! be

representatives of x. Then n; — 72 = dc. Let us write g = —2micP? and let FPc be

as in the proof of Proposition 1.1. Then

dcg = d.g7

dcp717q71

m =d°g+ dFPc+ 5

Therefore ¢(g) = {d°g} = = and ¢ is surjective.
To prove the injectivity of 3 recall that

Grh.Gr)V H"(V,C) = Im(Grh H™"(X,C) — Grh.H™(V,C))
>~ {w € B | dw=0}/(dE% *(logY) N ERY).

And that the morphism j is defined by 3({g}) = g, for g € E%? with dg = 0. But
if 5({g}) = 0 then g € dE%(logY) + d°E% (logY') and, by part 3) of Lemma 1.7,
this implies that {g} = 0.

The composition 3 = 0 because if g is pure of type (p,q) and dg = 0 then
d°g = 0.

Finally let g € GEYY, be such that ¢(g) = 0. Then d°%g = dg’ for a ¢’ €
E%"(logY). By part 4) of Lemma 1.8 there exists g; € F%? with dg; = 0, such
that g1 = g. Hence g € Im 3. This concludes the proof of the exactness of 2).

The surjectivity of the morphism cl in 3) has been proved in Proposition 1.1.
The remainder of the proof of the exactness of 3) follows in a way similar to the
proof of 1) and 2) using Lemma 1.7.

In the proof of 4) the only difficulty is the surjectivity of cl, i.e. that any coho-
mology class of Hy"?(X,C) of weight n + 2 can be obtained from a Green form of
weight one. For this we shall use the following Lemma.

Lemma 1.9. Let K* be the simple of the morphism E — W1 E*(logY") with his
natural structure of mixed Hodge complex. Then the induced morphism

W,H"(K*) — W, Hy(X,C)
18 a surjective morphism of real Hodge structures.

Proof. Tt is a morphism of mixed Hodge structures because it is induced by a real
bifiltered morphism between the corresponding complexes. These Hodge structures
are pure because, by construction, in both cases the part of weight n — 1 is zero.

For brevity we shall write W} = W7 E% (logY'). Taking the graded part of weight
n in the cohomology long exact sequence of the pair (X, V') and in the long exact
sequence associated to K* we obtain the following diagram

0 —— GrVH" Y(W}) —— W, H"(K*) —— H™(X) —— W, H"(W7)

l l l

0 —— GrYH" Y(V) —— W,H}(X) —— H"(X) —— W,H™(V).
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The first vertical arrow is an epimorphism by the definition of the weight filtration
in cohomology.

In [De 1, 1.3.2] it is proved that if (K™, d) is a complex povided with a decreasing
filtration F' then the spectral sequence associated to this filtration degenerates at
E; if and only if the differential is strictly compatible with the filtration. That is,
if

ImdnN F?P = dFP?.

It can be shown (using [De 1, 1.3.4]) that the spectral sequence associated to F'
degenerates at E5 if and only if

ImdN FP C dFP~1.

Therefore, since the spectral sequence associated with the filtration W degener-
ates at Fy the last arrow is an isomorphism. Thus the lemma follows from the Five
Lemma.

Let now = be a cohomology class in W, 2 Hi: (X, C), since this group is bi-
graded and in this case cl is a bihomogeneous morphism of bidegree (1,1) we can
assume that x is pure of type (p+1,¢ + 1).

By Lemma 1.9 there exists a cohomology class T € W,.oH""2(K*) of type
(p+1,q+ 1) whose image in W, oHi:"?(X,C) is x. Now z € FPT1 0 Fot! thus
there exist closed pairs (wy,71) and (wg,n9) With wy € FPHEYT? 4y € IR
m € WiFPHEY  (logY) and 1y € W1 FIH E% (log V) such that both represent
7. Hence there exists a pair (a,c) € K™™' such that d(a,c) = (w1,n1) — (w2, n2).
Putting g = 2mic?? € W1 ER?(logY') we have, as in 1.1. cl(g) = x. The remainder
of the proof of the exactness of 4) follows analogously to the other cases.

Corollary 1.10. The space of Green forms does not depend on the resolution of
singularities. More precisely the spaces of Green forms obtained from two different
resolutions are related by a unique natural isomorphism.

Proof. Let ' : (X', D') — (X,Y) be another resolution of singularities. Since,
for each two resolutions of singularities there is always a resolution of singularities
that dominates both, we can assume that (X', D’) dominates (X, D), i.e. there
is a morphism h : (X’,D') — (X, D) which commutes with the projections over
X. Then there is a morphism h* : E% (logD) — E%, (logD'). Let us denote
by GE"% y the space of Green forms obtained with the new resolution. By parts
2) and 3) of Lemma 1.7 the spaces BY?, are independent from the resolution of
singularities, and from Proposition 1.8 we obtain a commutative diagram

0 —— ERY/BYY, —%— GERY, —%— PPl POrTHI(X,C) —— 0

| J H

0 —— BYY/BYS, —"— GE'YY, —S— PP PR (X,C) —— 0

from which the corollary follows.

Let us now study the functoriality of the space of Green forms. The key point is
the functoriality of the logarithmic complex: Let f : X’ — X be a morphism of
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complex manifolds and let D’ and D be divisors with normal crossings of X’ and
X respectively such that f=!(D) C D’. Then the inverse image of forms induces a
morphism

[*: Ex(log D) — E%/(logD").

Let us begin changing the closed set Y. Let Y’ C X be another closed algebraic
subset such that Y C Y’. Let (X', D’) be a resolution of singularities of (X,Y”)
which factorizes through ()Ai; , D). By the functoriality of the logarithmic complex
we have a morphism

pyry : By (log V) — Ei (logY"),
which induces a morphism
LYY - GE;(,Y — GE§<7Y/.

We shall call it the change of support morphism.

Let us construct a pull-back morphism of Green forms. Let f : X' — X
be a morphism of complex projective manifolds. Recall that we have fixed an
algebraic closed subset Y C X and a resolution of singularities (X, D) of (X,Y).
Put Y’ = f~1(Y). Let (X', D) be a resolution of singularities of (X’,Y”) such that

there is a commutative diagram

(X/,D/) _T (X/,Y/)

l7 L

(X,D) —=— (X,Y).

Again by the functoriality of the logarithmic complex, the pull-back morphism
f[*: E% — E%, can be extended to a morphism f*: EX(logY) — E%, (logY’).
This induces a morphism

f* : GE},},Y — GE;(“Y/.

Note that composing with the adequate change of support morphism we can
construct a pull-back morphism f* : GEY ,, — GEY, y, for any closed algebraic
subset Y’ such that f~1(Y) C Y.

Let us also construct a push-forward morphism for Green forms. Let f: X' —
X be a smooth morphism between complex projective manifolds of relative dimen-
sion e. As before, let Y/ = f~1(Y). By [Hi], the resolution of singularities of (X,Y")
is obtained by succesive blowing-ups over smooth centers. Since f is smooth, the in-
verse image of a smooth subvariety is also smooth. Thus we can resolve singularities
of (X,Y) and of (X’,Y”) simultaneously obtaining a diagram

()A(:/,D/) _T (X/,Y/)



where (X, D) and (X', D’) are resolutions of singularities of (X,Y) and (X', Y”).
The morphism f is smooth and each component of D’ is mapped smoothly over
a component of D. Locally we have the following description of ]7 Let A be the
unit disk. Then every point p € X' has a neighbourhood isomorphic to A?*¢ such
that D’ has, in this neighbourhood, equation 2] ...z, = 0, the point f(p) has a
neighbourhood isomorphic to A? such that D has equation z; ...z, = 0, and the
morphism f is the projection over the first d variables.

In these conditions, integrating along the fibres, we obtain a commutative dia-
gram

fx *—2
* e
By, I B

! !

* fe *x—2e
E%,(log D') —=— EZ*(log D).
Hence an induced morphism
f* . GE}/’Y/ — GE;(Tge

If X’ has several components and f has a different relative dimension in each
component we extend this definition by linearity.

Again composing with the adequate change of support morphism we can con-
struct push-forward morphisms f. : GEY, 3/ — GE% ¢ whenever f(Y') CY.

The first properties of these morphisms are summarized in the next proposition.

Proposition 1.11.

1) Let Y and Y' be closed algebraic subsets of X with Y C Y'. Then there is a
change of support morphism py'y : GEY y — GE}‘(yy, compatible with the
change of support morphism in cohomology Hy (X,C) — Hy, (X, C).

2) Let f: X' — X be a morphism of complex projective manifolds and let Y and
Y’ be closed algebraic subsets of X and X' respectively, such that f~1(Y) C Y".
Then there is a pull-back morphism f* : GEY y — GE%, y, compatible with
the pull-back morphism in cohomology with supports and with the pull-back of
differential forms.

3) Let f : X' — X be a smooth morphism of complex projective manifolds and
let Y and Y’ be closed algebraic subsets of X and X' respectively, such that
f(Y') C Y. Then there is a push-forward morphism f. : GEx, y» — GExy.
This morphism is compatible with the push-forward morphism in cohomology with
supports and with the morphism integration along the fibre between differential
forms.

4) If the morphisms are defined they satisfy (fg)* = g* f* and (fg)« = fsgs-
5) Let

7z
.
x L
be a Cartesian square with f smooth. Then f' is also smooth and h* f, = fLh'*.

Proof. Follows easily from the definitions.
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Let A% be the sheaf of real analytic differential forms and let A% (log D) be
the real analytic logarithmic Dolbeault complex introduced in [N]. Let us write
Ax(logY) =T(X, A% (log D).

Using these complexes we can define the space of real analytic Green forms:

GAXy = {9 € Ax(logY)|dd°g € A% }/(dA%(logY’) + d°A% (logY)).

All the results of this section remain true for this group, provided that we substitute
every E%-module by the corresponding A%-module. In particular we have that,
for every cohomology class in Hy (X, C), there exists a real analytic Green form.

Note that the spaces of differentiable Green forms and analytic Green forms
are not isomorphic. In fact the inclusion A% (logY) — E%(logY’) induces an
injective morphism GAY y» — GEY y and an isomorphism GA% y o — GEY% y.
So, whereas the space of Green forms depends on the complex we are using to define
it, the space GE}},Y’O, which has a description purely in terms of cohomology, is a
more intrinsic object.

Ezxample. 1.12. Let y be a Weil divisor of X and denote by Y the support of
y. A real Green form g, such that cl(g,) is the cohomology class of y in HZ (X, C)
will be called a Green function for y. A standard way to obtain a Green function

for y is the following: Let || - || be a hermitian norm on O(y). Let s be a rational
section of O(y) whose associated divisor is y. Then, the Poincaré-Lelong formula
implies that g, = —log ||s]|? is a Green function for y.

Suppose moreover that Y is smooth and irreducible and that y =Y. Let w be
a closed n-form on X. Let x be the cohomology class in H{ﬁ“ (X, C) obtained by
the pull-back of {w} to H"(Y,C) followed by the Gysin morphism H"(Y,C) —
H}"2(X,C). Then g,w is a Green form and cl(g,w) = . See [Gr-S] for a realization
of the Gysin morphism in terms of differential forms from which this example
follows.

Until now we have used the logarithmic Dolbeault complex to obtain Green
forms. Conversely we can use Green functions to give a global construction of the
logarithmic Dolbeault complex. Note that if D is a smooth divisor of X with local
equation z = 0 then a Green form A for D provided by the example 1.12 is a
function that can be written locally as

A=—logzz+ f

with f a smooth function.

Proposition 1.13. Let X be a complex projective manifold, and let D = |JD;
be a DNC. For each i, let \; be a Green function for D; as in the example 1.12.
Then E%(log D) is the sub-E%-algebra of E% _, generated by the sections \;, O\
and O\; for each i. The weight filtration is the multiplicative increasing filtration

obtained by giving weight zero to the sections of E and weight one to the sections
Ai, ON; and O\; for each 1.

Proof. This is a consequence of the fact that the sections \;, O\; and O\, generate
the sheaf £% (log D) locally and that all the £x-modules are fine and thus acyclic.

Note that this result is analogous to the global characterization of Q% (log D)®E%
given in [Gr-S]. This proposition will be used to obtain adequate representatives of
Green forms associated to algebraic cycles.
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§2. THE *-PRODUCT.

Let X be a complex projective manifold and let Y and Z be two closed algebraic
subsets of X. In this section we shall show how to compute the cup-product

H(X,C) ® Hy' (X, C) = Hy 7(X,C)
in terms of logarithmic forms. Then we shall give the definition of a product
GEx 7 @ GEY y = GEEL(+)T0+ZQ
which is compatible with the cup-product:

cl(gy *g,) = cl(g,) Ucl(g, ).

This product is called *-product because, as we shall see, it extends the *-product
defined by Gillet and Soulé in [G-S 2].

In order to compute the cup-product with logarithmic forms we shall need res-
olutions of singularitiesof Y, Z, YN Z and Y U Z in X.

In general, if Z is a closed algebraic subset of X, 7 : X — X is a resolution
of singularities of Z and Y is another algebraic closed subset of X, then the strict
transform of Y, denoted Y, is the adherence of 7YY — Z) in X. Note that the
actual meaning of Y depends on the resolution we are considering.

Using Hironaka’s resolution of singularities ([Hi]) we can construct the following
diagram:

Xyuz —— Xy

vz | |7

Xz —%— Xvnz —— X,
where 7 : )N(yﬂz — X is a resolution of singularities of Y N Z such that YNZ = 0,
the map 7w, (resp. m,) is a resolution of singularities of ¥ (resp. Z) such that
mom, (resp. mom,) is a resolution of singularities of Y (resp. Z) and Xy is the
fibred product of Xy and Xz over Xynz.

Observe that, if we restrict the Cartesian square to XYQ 7 — Y then 7, becomes
an 1somorphlsm hence p, also becomes an isomorphism. In addltlon if we restrict

it to Xyﬁ 7z — 7 then m, and p, become isomorphisms. Since Y and Z do not

meet, then qu 7 is covered by two open sets which are mapped isomorphically to
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Xy — 7 1(Z) and to Xz — 77;1(1?) respectively. This implies, in particular, that
X yuz is smooth and that the morphism )N(YU z — X is a resolution of singularities
of YUZ.

Using the above resolutions, we can define the complexes of sheaves £% (logY N
Z), Ex(logY), £x(logZ) and E%(logY U Z) and the complexes E% (logY N Z),
E%(logY), Ex(log Z) and E% (logY U Z).

Lemma 2.1. The sequence of sheaves on X

0 — Ex(logY NZ) T2, 2 log V) @ €4 (log Z) 2XP%, €3 (log Y U Z) — 0

18 exact.

Proof. All the sheaves involved are the direct image by 7 of a fine sheaf on Xynz.
Since fine sheaves are acyclic for the functor 7, we can reduce the problem to a
local computation in )?yﬂ z. Then the lemma follows easily from the definition of
these sheaves.

The cohomology groups Hy -, (X, C) can be computed as the cohomology of the
complex S% .y (see §1) which is the simple of the morphism EY — E% (log Y NZ).
By Lemma 2.1, these cohomology groups can also be computed as the cohomology
of the simple of the double complex

EYx — Ex(logY) @ EX(log Z) — Ex(logY U Z),

which will be denoted by S%.y 7.y 7. The corresponding sheaf will be denoted
SX.v.z.yuz- Let us recall the definition of this simple. The graded group is

Skivzivuz = Ex @ Bx (logY) ® B ' (log 2) & EY*(logY U 2),
and the differential is given by

d(w7nyanz’7—) = (dw7w—d77y7w_dnz’77y — Ny +d7—)'

We can define a morphism of complexes

. Qx *
Y :Sxivnz — Sxyv.zivuz

by
Y(w,n) = (w,n,n,0),

which, by Lemma 2.1 is a quasi-isomorphism.
In terms of the complex S% .y ;v 7 we can describe the cup-product as follows.

Proposition 2.2. The morphism

n m AN ant+m
Xy ®SX,z — Sy zvuz

given by

(wyvny) A (wz7nz) = (wy NWy, Ny NwWy, (_l)nwy ANy, (_1)n77y /\772)-
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18 a morphism of complexes and induces in cohomology with supports the cup-
product
H(X,C)® HY(X,C) = HIM(X,C).

Proof. Let us check that A is a morphism of complexes.

Ad ((wy 51y ) ® (Wz,1,))
= A(d(wy,ny) @ (wz,m,) + (1) (wy, 1y ) @ d(wy, 1))
= ((dwy,wy —dny ) ANwy,n,) + (1) (wy 0y ) Adw,,w, —dny,))
= (dwy Nw,,w, Nw, —dn, \w,,
(=) dwy Ang, (1) Hwy Ay —diy A1)
+ (=) "wy, Adw,, (=1)"n, Adw,,
wy Aw, —wy Adng,ny Aw, —ny Adn,)
=d(wy Nwy, 1y Awy, (=1)"wy Ay, (=1)"n, Any)
=d((wy,ny) N (wy,m,)) -
Let Cx be the constant sheaf. We can consider Cx a complex concentrated in

degree zero. There is a morphism of complex of sheaves Cx — S%.y given by
a+— (a,0). Then we have a commutative diagram of complexes of sheaves

Cx®Cx —— Cx

l l

ES *k /\ *
Sy ®S8%.z — Sxvzvuz

where the upper arrow is given by multiplication.
By the functoriality of the cup-product there is an induced commutative diagram

Hy(X,Cx)® Hy(X,Cx) —— Hy ,(X,Cx®Cx) — Hy7(X,Cx)

l l !

* * * * * * * A * *
HY<X78X;Y) ®HZ(XaSX;Z) - HYnZ(XaSX;Y®8X;Z) - HYﬂZ(XaSX;Y,Z;YUZ)-

This in turn, by the cohomological properties of the sheaves S, induces a commu-
tative diagram

U

Hy (X,Cx) @ Hz(X,Cx) ——  Hynz(X,Cx)

l l

* * * * /\ * *
H*(Sk.y)®@ H*(Sk.;) —— H*(Sk.y.zvuz)s

where the vertical arrows are isomorphisms.

In order to have a description of the cup-product in terms of S% .y, we need
to obtain an inverse of the homomorphism ¢ : Sk .yn; — Sk.y 7.y 7 for closed
forms.
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Since the sheaves £% (logY N Z) are acyclic, the map

* *

Ex(logY) ® E%(log Z) X%, % (logY U Z)

is an epimorphism. Let ¢ be a section of this map, as a map of graded vector spaces
with real structure. Let us write ¢(7) = (¢, ,(7),—¢,, (7)). Then we have the
relation ¢, , =1— ¢, ,.

Assume now that

_ n
a=(w,ny,1,,7) € Sk.yzyuz

is closed. In particular we have dr = 1, —n, . Hence n, +d¢,. ,(7) =n, —dd, . (7).
But the left hand side of this equation belongs to E}_l(log Y) and the right hand
side to E% '(log Z); hence both belong to E% '(logY N Z). So 8 = (w,n, +
dg, ,(7)) is a well defined element of Sy 5.

Lemma 2.3.. If the element

— n
a=(w,ny,1,,7) € Sk.yzyuz

18 closed, then
ﬁ = (wany + d¢Y,Z(T)> S S};YﬁZ

is also closed, and both represent the same cohomology class in Hy~,(X,C).

Proof. We have that d3 = d(w,n, + d¢, ,(7)) = (dw,w —dn, ) = 0. Hence 3 is
closed. Moreover

¢(ﬁ) = (wa Ny + d¢y,z (7-)’ Ny + dqby,z (T)a 0)
= (w’ Ny + dd)y,z (7—)’ N, — d¢z,y (7—)’ O)
= (wa Ny Ny T) +d (07 _¢Y,Z (T)’ ¢Z,Y (7_)7 O)

€ a+Imd.

Therefore v and (3 represent the same cohomology class.
Summing up Proposition 2.2 and Lemma 2.3 we obtain

Proposition 2.4. Suppose that a = (w,., 7, ) € Sy and B = (w,,n,) € S%.; are

closed. Let {a} and {8} be the cohomology class they represent. Then {a} U {3}

is represented by (wY N Wy Ty N Wy + (_1>nd¢y,z(ny A nz)) < S%TXTOZ

Let us now define the x-product.

Definition 2.5. Let X be a complex projective manifold and let Y and Z be closed
algebraic subsets of X. Let the maps ¢, , and ¢,, be as above. If g, € GE% y
and g, € GEY , are Green forms, then the x-product

GExy ® GEY 4 — GEEL(+YT%+ZQ
is defined by

gy * gz = (d¢y,z(dcgy N gz) + (_1)n+1dc¢z,y(gy A dgz) + (_l)ndcgy A dgz) ~'
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This definition of the *-product can be applied in the case of real analytic Green
forms because the sheaves of A x-modules are also acyclic. This shows, in particular,
that the product of two real analytic Green forms is also real analytic. In 2.7 we
shall give a simpler definition of the *-product in terms of partitions of unity valid
in the C* case.

If there are chosen representatives g, and g, of g, and g, we shall denote

(25) 9y *G9, = d(bY,Z(dch A gz) + (_1)n+1dC¢Z,Y(gY A dgz) + (_1)ndcgy A dgz‘

It is a representative of g, * g, and depends on the choice of ¢. Note that, after
2.7, we shall use other representatives for the x-product.
Extending the *-product by linearity we obtain a product

GE% ® GE% — GE*%.

The rest of this section will be devoted to proving the following result.

Theorem 2.6. Let X be a complex projective manifold and let' Y and Z be closed

algebraic subsets of X. Let g, € GEYy and g, € GEY ; be Green forms with

singular support on'Y and Z respectively. Then:

1) The x-product g, * g, is well defined, i.e. it does not depend on the section ¢
nor on the representatives g, and g, .

2) With this product GE% is a graded-commutative, associative and unitary ring.
The product s compatible with the real structure and the bigrading.

3) The morphism

:GEx — @ Hy(X,C)

YCX
Y closed

s a ring homomorphism.
4) Let Y' and Z' be other closed algebraic subsets of X such that Y C Y’ and
Z C Z'. Then the x-product is compatible with the change of support morphism:

py/yy(gY) * pzl’z(gz) = pY’ﬂZ’,YﬁZ(-gY * gZ)'

5) Let f : X’ — X be a morphism between complex projective manifolds. Then
the pull-back morphism f* : GEY, — GEY%, is a ring homomorphism.

6) Let f: X' — X be a smooth morphism between complex projective manifolds.
Let Y' be a closed algebraic subset of X' such that f(Y') CY and Z' another
closed algebraic subset of X' such that f~(Z) Cc Z'. If g, is a Green form on
X' with singularities along Y’ then the following projection formula holds:

f*(gyl *f*(gz)) = f*(gy/) *§Z'

Proof. Once one knows that it is well defined, the compatibility with the real struc-
ture and the bigrading, and the distributive property are immediate.
We begin showing the independence from the section ¢. Let ¢’ = ( ; 2 —qu’Zy)

be another choice for section ¢. Let A = ¢, , —¢| = ¢, —¢,,. If g €
E%(logY U Z) then

Ag) € Ex(logY)N EX(log Z) = Ex(logY N Z).
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If we denote by %’ the product computed with this new section then

9y *9, — gy ¥ g, = d\(d°gy, Ng,)+ (=1)"d°N(g, Adg,)

which is zero in GEY y -
Once we know the independence from the section ¢ we shall use a particular
type of section obtained by means of partitions of unity. Let {o, ,,0,,} be a

partition of unity on )N(yﬂz subordinate to the open cover {)N(yﬂz — Z, Xyﬂz — }A/},
ie. o, , is a C° function whose value is 1 in a neighbourhood of Y and is 0 in a
neighbourhood of Z, and O,y =1—0,,.

If 7 € EXx(logY U Z) then o, ,7 € EX(logY). Hence the desired section is

¢(T) = (UY,ZTv _UZ,YT)'
This kind of section is simpler to use because we have an explicit formula for the
commutator:

[d’ OY,Z] = dUY,Z'

Lemma 2.7. With the above notations, we have the following formula for the *-
product

gy * gz = (ddc(gy,zgy) NG, + Ozv3y A ddcgz)

Proof. Substituting ¢(7) = (0, ,7,—0,,7) in 2.9.1 we can obtain

v,z !>

d¢y,z(dcgy A gz) + (_1)n+1dc¢z,y (gy A dgz) + (_1)ndcgy A dgz
= ddc(gy,zgy) NG, + Ozv3y A ddcgz + d(dcaz,y NGy A gz)'

But the form d°c, . is zero in a neighbourhood of Y UZ on Xynz. Hence the form
dc,, Ng, Ng, belongs to ET™  (log Y N Z) and we have equality in GE;?’%‘L;

In the sequel, each time we need a representative for g, * g, we shall write

(2.8) 9y %9y = dd*(0y ,9y) NGz + 0559y Nddg,.
Next we shall prove the commutativity in the graded sense, i.e.
9y 9, = (=1)""g, * gy
Using the representatives of the x-product given by 2.8, we have

9y ¥ 9, — (=1)""g, x g,
=dd*(oy ,9,) NG, + 0,9, Ndd°g, — (=1)"" (dd°(0,,9,) N gy + 0y ,9, ANdd°g,)
=dd“(0y,9v) NG, + 0,9y Ndd°g, — g, Ndd“(0,,g,) — 0, ,dd°g, Ng,
=do, , Nd°g, Ng, +d(d°0, , Ng,)Ng, — gy Ndo,, Nd°g, — g, Nd(d°T,, Ng,)
=d(d°oy , Ngy, Ng,) +d(do,y Ngy Ngy).

But, as in the proof of Lemma 2.7, d°o,, , A g, Ng, and do,, A g, N g, belong to
E}J“m“(log Y N Z) concluding the proof of the commutativity.
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Now, by commutativity, to show the independence from the representatives g,
and g, it suffices to show the independence from g,. Suppose that g, = da, with
a € E%(log Z). Then

( ngy) /\da) -
(—1)"d(dd(ay ,9,) Na)
0.

v * 9z

If g, = d°a we proceed analogously.
Let us now see the compatibility with the cup-product. By definition

cl(gy *g,) = {(dd°(gy *g,),d(gy *9,))}-
Writing w,, = ddg, , n, = d°, ,w, = dd°g, and 1, = d°g, we have
ddc(gy * gz) =wy AWy,
and, using again the representatives given by 2.8, we obtain

d(gy *9,) =1y Nw, +(=1)"d(oy .1, An,) + (=1)"d(d(0y ,) N gy AN,)

But d*(oy ,) AN gy An, € Ex(logY N Z). Thus, by Proposition 2.4

cl(gy *x9,) = {{wy Awyymy Aw, +(=1)"d(oy 0y An,)}
= cl(g, ) Ucl(g,).

To prove the associativity we shall use an argument similar to that used in the
proof of commutativity but longer. Let W be another closed algebraic subset of X
and g,, € GE% y,. We have to show that

9y * (95 * 9w ) — (9y *92) * 9y = da + d°D,

where a,b € EX(logY N ZNW).

In order to compute the triple product we need several resolutions of singular-
ities that we shall organize in the followmg way: Let XYﬁ ZOW._ be a resolution of
singularities of Y NZNW such that YNZNW = 0. Recall that Y denotes the strict
transform of Y in the resolutlon of smgularltles we are considering. Let Xyﬂ 7z be
a resolution of singularities of YNZin Xyﬁ znw Wwhich is also a resolution of sin-
gularities of Y N Z in X and such that YNZ= 0 in XyﬂZ Let XZmW and Xme
be varieties with properties analogous to those of Xyﬂ z. Let now X Zn(wuy) be
defined by the Cartesian square

)?ZH(WUY) - )?ZHW

! l

Xynz — Xvnzow.

Let X 7z be a resolution of singularities of Zin X Xznwuy) which is also a resolution

of singularities of Z in X. We define Xy and XW in the same way. Let XYUW be
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tkle product gf )'EY and XW over )N(yﬂw. lgote that there is an induced morphism
Xyuw — Xznyuw)- Finally we define Xyyzuw by the Cartesian square

Xyuzow —— Xyuw

| |

Xz —— )?ZO(WUY)-

Note that all the above spaces exist by Hironaka’s resolution of singularities and
they are smooth.

Let now {0, ,,0,,} (resp. {0y, ,0, }) be a partition of unity of Xynz (resp.
)?me) subordinate to the open cover {)?yﬁz — Z, Xyrg — 1/}} (resp. {)Z'me —
Y, Xway — W1,

The functions o, , can be pulled-back to C*° functions on )Z'YU zuw, denoted

with the same letter. Then suppo,, Nsuppo, ,, is a closed subset of )N(YUZUVV.
Since the morphism

Xyuzow — Xznw

is proper, the image of suppo,, Nsuppo, ,, is a closed set which will be denoted
by K. In Xznw we have that KNW = (). Therefore {Xzqw — W, XZQW - ZUK}
is an open cover of Xznw. Let {0, ,0, ,} be a partition of unity on Xznw
subordinate to this open cover.

With these choices, in Xy zuw, we have
(2'9) O-Z,YO-Y,WO-W,Z = 0'

Let us write

o g

Ozaw,y — 02vOwy

UY,sz =1- UZOW,Y
(2.10) |

Ovrzw — Oz w0y w all

Ow,ynz — 1- Ovazw:
Lemma 2.11.

1) The functions oy, ,, and o, . can be extended to C*° functions on Xyvnzow.

2) The functions {0y, w,Twynzt (€D {040y Oy zow }) form a partition of
unity subordinate to the open cover {XyﬁZmW — /W?, Xynzaw — (i/} N 2)} (resp.
{Xynzaw — Y, Xynzew — (ZNW)}).

3. They satisfy the identity:

zow,y — Ywynz%zy"

Proof. 1) and 2) are direct consequences of the definitions and 3) follows from 2.9.

By Lemma 2.11, we can use these partitions of unity to construct representatives
of the x-products. Now, a long but straightforward computation, using part 3) of
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Lemma 2.11 gives

(gy *gz)*gw — Gy * (gz *gw)
:ddc<(gw,zddc(ay,znwgy) - Wszddc( ngy)) N 9z A gw>
+ (_1)n+m+1d<(O-W,dec(o-y,zmwgy) - WYﬁdeC( ngy)) /\gz A dcgw)

+ (_1)n+mdc((UW,deC(UY,ZngY) - WYﬁdec< ngy)) /\gz A dgw)'

Hence the associativity follows from the following lemma:

Lemma 2.12. The forms

a = (OW,deC(O-Y,ZngY) - WYndeC( ngy)) /\gz A 9w
b= (UW,deC(UY,ZntY) - Wymzddc( ngy)) /\gz A dcgw and
c= (Uw,zddc(ay,zmwgy) - Wymzddc( ngy)) /\gz A di

belong to Ex(logY N Z NW).

Proof. Clearly a, b and ¢ belong to E% (logY U Z U W). Thus it suffices to show
that the form

C =0y ddc(ay megy) - Wszddc( ngY)

is zero in a neighbourhood of YUZu W in XyﬂZmW This can be checked case
by case. For instance, if z € Z-YUW in XyﬁZmW, there is a neighbourhood
of x where ( is zero because this is true for the functions oy, , and o, ,. Or, in a

neighbourhood of = € W-YuU Z we have, using 2.10,

¢= UwzddC(UY,megy) - WYmdec( ngy)
= ddc(ay,zgy) - ddc(ay,zgy)

W,z

The other cases follow similarly.

Let us prove now the compatibility with the change of support morphism. We
have to compare the *-product of g, and g, viewed as Green forms with singular
support on Y and Z respectively with the product of the same forms viewed as
Green forms with singular support on Y’ and Z’. We leave it to the reader to make
explicit the different resolutions of singularities we shall need. Let {ay/ - Y,}
be a partition of unity used to compute the *-product between GEY -, and GE}"(” -
Then, using the representatives of the product given by 2.5, we have

py/’y(gY)*pz/’Z(gZ) - py/mz/’yﬁz(gY * gZ)
- d((o-y,z - O'Y,’Z,)dcgy A gz) + (_1)n+1dc((gy,z - O‘yl’Z/)gY A dgz)'

It is clear that (o, — o, ,,)d°%, Ny, and (o, , — 0., ,)g, A dg, belong to
Ex(logY' N 2Z").
Let us prove the compatibility with the pull-back morphism. Let us write Y’ =
f7YY) and 2’ = f~1(Z). Let Xynz beasin 2.1 and let {0, ,, 0, , } be a partition
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of unity as in formula 2.8. Let us obtain )Nq,,m 4 resolving singularities of the
cartesian product of X’ and )ﬂfyﬁ 7 over X. Then the strict transforms Y’ and Z'
of Y and Z’ in Xéﬂmz' do not meet. Let us denote by f : )Z'{/,ﬂz, — Xynz
the induced morphism. If we write o, , = f*(0, ,) and 0, , = f*(0,, ) then
{UY/,Z/’UZ’,Y’} is a partition of unity subordinated to the open cover {)N(;/,QZ, -
Z', XY,y —Y'}. Thus

F* @Gy %9,) = [*(dd°(0y ,9,) Ng, + 0,9, Ndd°g,)
= (dd(oy., ,, " (9 )) N (92) + 0, 4, f (9y) Ndd®f7(g,))
= 1"(gy) % f7(92)-
Finally let us prove the projection formula. By the definition of the push-forward
morphism and the compatibility with the change of support morphism, it suffices
to prove the case when Y/ = f~1(Y) and Z’ = f~!(Z). Then using the same

notations as in the proof of the compatibility with the pull-back morphism, we
have

f* (gy/ * f*(zjz)) - f*(gyl) * gz :f* (ddc(o-y/’zlgy/) A f*<gz> + O’z/yy/gyl A ddcf*(gz))N
- (ddc(ay,zf* (gy/)) A 9z + UZ,Yf* (gy/) A ddcgz)~7

which is zero by the commutativity of f, and f* with the differential and the
projection formula for differentiable forms.
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§3. LOGARITHMIC FORMS AND CURRENTS.

Throughout this section X will denote a complex irreducible manifold not nec-
essarily projective of dimension d.

Let D% be the sheaf of C-valued currents on X. Its space of sections, I'(U, D% ),
is the topological dual of ', (U, Efcd_”) with the C*°-topology. Recall that the con-
vergence in I'.(U, 5)2;[—") can be checked in coordinate charts and then component
by component. So it is enough to study convergence in T'.(U’, Eca) for U’ an open
set of C.

The norm ||¢||; of a function ¢ € T'.(U’, Eca) is

olly

= su :
el = sup (52(0)
la|<k
where o = (aq,...,aq,0a), ..., ) € N?? is a multi-index, |a| = 3" a; + o/ and
ol*ly _ olly
02% 9 020095 ... 0751

A sequence {p,,} of functions belonging to I'.(U’,Eca) tends to zero in the
topology C* if there is a compact K C U’ such that supp(p,,) C K for all m,
and the sequence {||¢m,||x} tends to zero. The same sequence tends to zero in the
topology C*° if there is a compact K C U’ such that supp(e,,) C K for all m, and,
for all k, the sequence {||¢m ||k} tends to zero.

Let us recall some basic facts about currents. See for example [deR| and [G-H] for
details. A differential is defined on the graded group D% by dT'(w) = (—1)" 1T (dw)
for T € D% and w € £37~ ™. With it D% is a complex. Moreover, it has a bigrading
induced by the complex structure of X, and one can define a Hodge filtration F' by

F'Dy = P DY

p’'Zp

Under this bigrading, the differential can be decomposed as usual in the sum of an
operator of type (1,0) and one operator of type (0,1): d =9 + 0.

For every locally integrable n-form w there is a well defined current [w] € D%
given by

[mwwa/wAg
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This map induces a filtered quasi-isomorphism between (€%, F') and (D%, F).

If w is a differentiable form defined in an open dense subset of X such that w
and dw are locally integrable on X then the residue of w is the current defined by
(see [G-H, 3.1]):

Res(w) = d[w] — [dw].

Let Y be a codimension p reduced subvariety of X. We shall denote by Y, the
set of regular points of Y and by i, the inclusion Y3 — X. The current “integral
along Y”, denoted by ¢, € I'(X, D?f) is defined by

5xmzﬁ;@m

This current was introduced by Lelong. In general if y = Y ¢;Y; is a codimension p
algebraic cycle, we shall write , = _ ¢;d, . This current is closed and represents
the cohomology class of y in H*(X,C).

Let Y be a codimension p reduced subvariety. Let ¥y &% be the complex of
forms which vanish when restricted to Y:

YyEx ={w e &k |ipw = 0}.

For any open set U let D% (Y) (U) be the subcomplex of I'(U, D% ) composed by the
currents which annihilates (U, Ly £37*). Let D% (Y)) denote the corresponding
sheaf. In particular, we have that D% (Y') = {0} for n < 2p. Note that this complex
is nothing more than the complex of currents on Y, D, y, in the sense of Herrera
and Lieberman ([H-L]). More precisely, we have that D37~ * (V) = D,y

Let us denote by DY 5 the quotient D /D% (Y). As a consequence of the Hahn-
Banach theorem, for any open set U, the space I'(U, D% /Y) is the topological dual
of T(U, By £2%7™) with the topology induced by the topology of I'.(U, £3¢~™). The
aim of this section is to relate the complex of sheaves £% (logY’) with D% Iy

Proposition 3.1. Let X be a complex manifold of dimension d and D a DNC.
Then the map [] : £x(log D) — DX, that, to each w € T'(U,E%(log D)) and

p el (U, Zpgfcd_") assigns

[mwwaﬁwA@

is a well defined morphism of double complexes.

Proof. We have to show the following:

(1) The integral is convergent.
(2) The functional [w] is continuous.
(3) It is a morphism of complexes.

Once it is known to be a morphism of complexes it is a morphism of double com-
plexes because it is bigraded.

Since (1) and (2) can be checked locally using a partition of unity and (3) is local
we may assume that U = A% where A = {z € C | zz < 1} and D has the equation
z1---zm = 0. With these coordinates, a section ¢ belongs to Xp€% if and only
if it can be decomposed in a sum of monomials such that, for each i, 1 < i < M,
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each monomial contains at least one of the terms z;, Z;, dz; or dz;. This is a version
in terms of differential forms of the fact that the ideal of differentiable functions
which vanish along D; = {z; = 0} is generated by z; and z;.

Using this local characterization of ¥pE% and the definition of £% (log D) it is
easy to see that

YpEY A E%(log D) C SpEY - EX (log D).

For instance if D is given by the equation z; = 0 then dz; € YpEL A E%(log D)
and we can write

le
Z1
Thus to prove (1) we suppose that ¢ € To.(U,XpES) and w € T(U, £3%(log D)).

Lema 3.2. Let X = A? and let D be the divisor defined by the equation z1 - - - zpr =
0. Let ¢ € To(X,XpEY). Then, for all z € X,

dzy = 21— € LpE% - Ex (log D).

M aMSO
[p(2)] <2 sup - —(O)| |71+ zml-
cex 8Zi1 - 6zilazil+1 e 6ziM
1<I<M
{7,1 ..... ZM}:{l ..... M}
Proof. Restricting ¢ to the slice zpr+1 = cpr41, - - -, 24 = €4, where cpr41, ..., cq are

constants, we can assume that M = d. With this assumption we shall make the
proof by induction over M.

If M =1, then ¢ : A — C is a function such that ¢(0) = 0. Put z = re’. For
each z # 0 there exists a ¢’ with |(’| < |z| such that

But 5 5 9
() =" SE (=) + e (),
Thus
oo | loe o )
(=) gzsup<\a—f<<> |2 ©Olel < 2su( 5200 8—?(0])\ |

This concludes the proof in the case M = 1.

Let us assume that the result is true for M — 1. Let z = (z1,...,2m) € X.
Applying the case M = 1 in the disk {(z1,...,2m-1)} X A there exists a point
¢"=(2z1,---,2m-1,Cn) such that

dp
FEw (<)

(3.3 2] = 2sun(| 72 ")

)|zl

Y

0
14 restricted to the hyperplane z;; = (v,
8zM

we can find a point "' = ((,. .., () such that

Applying the case M —1 to the function

8@ aM—l

(3.4) |5~

< gM-1 sup

Dip (")

6Zi1 .. .827;162““ . GZiMfl 0z

()

|21...ZM_1 y



where the supreme runs over all partitions {i1,...,4} U{ij41,...,ip—1} of the set

{1,..., M — 1}. Substituting 3.4 and the analogous result for in 3.3 we have

0z
the lemma.

Returning to the proof of Proposition 3.1, let us prove (1). Let us write r; = |2;].
By Lemma 3.2 one has

M
|¢’ S Ol H Ti,
i=1

with C; € Rsg. Moreover, since w € T'(U, £2%(log D)), the singularities of w are, at
worst, of the type

ﬁ (log ri)N
. rZ2
=1 ?

Hence we can write w = 1¥dV with dV a differential of volume and

N
M
‘H¢:1 log r;

M )
H¢:1 Ti2

where C5 € Ry and N € N are constants. Therefore

9] < Cy

N
‘Hi\il logr;
pw S/C av,
/U ‘ U Hf\il T

where C = C;C5. Since the integral on the right is convergent the same is true for
the integral on the left.

Let us now prove (2). For this it suffices to show that if (¢,,) is a sequence with
om € T'e(U, Epﬁid_n), such that

TlLIEO pm =0

and w € I'(U, % (log D)), then

lim [w](pm) = lim / wA @ =0.
0 m—0 Jir

m—

By the inclusion of sheaves discussed before Lemma 3.2 we can write w A ¢, =
Yok fmopwi, with fo, 1 € T'e(U, YpEY) and wy, € T(U,E%(log D)). The functions
fm,k can be obtained multiplying the components of ¢,, with factors of the type
z; and z;. Since convergence of forms is checked component by component, we can
choose the functions f,, » such that

nlmlin() fm,k =0.

So we are reduced to the case ¢, € I'.(U, XpEY).
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Now, if (¢.,) tends to zero in the topology C* it also tends to zero in the
topology C™. Thus we can apply Lemma 3.2 again to obtain

M
i=1

av

where the sequence C/, tends to zero. Then, as in the proof of (1) we have
N
M
’Hi:l log 7;
<[ c.
U

Pmw
/U sz\il T

where the sequence (C),) also tends to zero and therefore the integral on the right
tends to zero. Hence the functional [w] is continuous.

Note that we have shown that it is continuous with the C* topology. One can
construct examples with M = 1 where the functional [w] is not continuous with the
C° topology.

Let us prove (3). For w € T(U, % (log D)) and ¢ € T(U, LpE2~""1) we have

d[w]() — [dw](p) = (=1)" " [w](de) — [dw](¢)

= / (=Dt w Adp —dw A @
U

:/U—d(w/\go).

Therefore it is enough to prove the following Lemma.

Lemma 3.5. Ifw € T.(U,Xp&Y% - £3 (log D)) then

/dw:().
U

Proof. By (1) the forms w and dw are locally integrable. Now we have that

dw = — lim w
U e—0 DE

where D, = {z € U | inf1<;<n|2;| = €}. But the domain D, can be decomposed as

DE = UDa,j7
J

where D, ; = {z € D, | |z;| = €}. Therefore

lim w= lim w
e—0 D. p e—0 D

€,j

Since for any form n we have

/ 77/\de/\de:0,
D. ;
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the only monomials that contribute to the integral along D, ; of w are those that
do not contain dz; A dz;. Thus, using Lemma 3.2 once more, we have

[ e

€,j

N | log | _
S Cl|10g7ﬂj| de/\ H — /\ dZZ/\dZZ
D, ; i=1,M Ti i=1,d
i#] i#]

< Cy|log ;N dz;

;=€

For suitable constants N € N and C;,C; € R>g. This last integral tends to zero
when ¢ tends to zero concluding the proof of Lemma 3.5 and of Proposition 3.1.

Let us derive some consequences of Proposition 3.1. Let ¢ : Y — X be a codi-

mension p subvariety, and let 7 : (X, D) — (X,Y) be a resolution of singularities.
Recall that, by definition, £% (logY’) = m.£% (log D).

Corollary 3.6. The map [-] : £x (logY) — DYy that, to each pair of differential
forms w € T(U,E%(logY)) and ¢ € To(U, By EX™") assigns

[w](sm:/wa

is a well defined morphism of double complexes.

Proof. We have that
7 (w) e D(r~'(U), €% (log D)) and 7* () € To(m ' (U), pEL™™).

Moreover, since 7 is an isomorphism out of a set of measure zero

/wazfiw*(w)w(so),

and the corollary follows from Proposition 3.1.

Remark 3.7. The morphism of Proposition 3.1 is not only a morphism of complexes,
but a quasi-isomorphism and even a filtered quasi-isomorphism with respect to the
Hodge filtration. This can be seen using the techniques of [Fuj]. In the next chapter
we shall give a proof of this fact.

On the other hand there are examples with Y singular such that the morphism
of Corollary 3.6 is not a quasi-isomorphism. This is related to the fact that, for
Y singular, the cohomology of the complex of currents on Y is not necessarily
isomorphic to H*(Y, C) ([H-L]). Nevertheless, if Y is smooth or has normal crossings
the morphism of Corollary 3.6 is a quasi-isomorphism.

Corollary 3.8. Let X be a complex manifold and let' Y be a codimension p closed
subvariety. Let w € I'(X,E% (logY)).
1) Ifw and dw are locally integrable then Res(w) € T'(X,DE (V).
2) The form w is locally integrable for n < 2p.
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3) If n < 2p — 1 then Res(w) = 0.

Proof. By 3.6, for each form ¢ € T'.(U, By EX ") we have Res(w)(p) = 0. Thus
Res(w) € T(X, D% (Y)). Statements 2) and 3) follow from Corollary 3.6 and the
fact that for n < 2p the morphism D% — D Iy is an isomorphism.

The forms of weight one are locally integrable. Thus the residue is always defined
and we can obtain an explicit formula for it. See for example [N] for a real analytic
analog.

Proposition 3.9. Let D = D, U---U D, be a DNC, and for each i, let \; be a
Green function for D;. For all i, let us denote by a; : D; — X the inclusion. Let
w € W1 E% (log D). By Proposition 1.13 we can write

w=Zai)\i—’rﬁi/\d)\i-i-%/\dc)\i—Fﬁ,

=1

where oy, Bi, vi and n belong to E%. Then
Res(w) 1)r+t Z ai«la

Proof. Let ¢ be a test form. Since

Res(w)(g) = (~1)"*! /

w/\dgp—/ dw/\gaz—/ d(w A @),
b's X X

we have to show that

d(w A ) = Z T(vi A ).
J, ),

By a partition of unity argument, we can assume that ¢ has compact support
contained in an open coordinate subset U such that, for all ¢, the divisor D; has
equation z; = 0. Then, in U, we have \; = —log 2;Z; + b; with b; smooth.

Now, using the notations of the proof of Lemma 3.5, we have

/Xd(w/\cp _—;LD%Z/ Zozz)\ + B A dAi i AdEN 1) A

531 1

—hmZ/ Bi Ndlog z;Z; N+ v; Nd°log z;Z; N\ @

e—0

-~ dzl dzz V—1 dz; dz
ZZ/ hm/ Bi A AN+ —r1AN(———) Ay

i /D e |z =e Zz Zi 4m Zi Zi

—Z / HCTWNDE

Hence the proposition.
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§4. COMPARISON BETWEEN GREEN FORMS AND GREEN CURRENTS.

In this section we shall compare the notions of Green current introduced by
Gillet and Soulé in [G-S 2] and the notion of Green form. We refer the reader to
[G-S 2] for details about Green currents. For simplicity we shall only deal with
complex manifolds. The case of real manifolds follows the same pattern taking into
account an antilinear involution F..

In this section X will denote a complex projective manifold of dimension d. We
shall write

E% = FE%/(Imd + Im ) and D% = D%/(Imd+Imd).

Both graded spaces have a natural bigrading and a real structure and we shall
denote by E’y g and DY p the corresponding real spaces. Note that by the regularity

Lemma the induced morphism E}k{ — DY is injective.
Let us begin giving the definitions of the spaces we shall compare.

Definition 4.1. (|G-S 2]) Let y be a codimension p algebraic cycle. Then the space
of Green currents associated to y is

GCx(y)={T € ﬁggﬂivp—l | dd°T + 6, € [E%P]},

where ﬁggﬂé’p = ﬁg(_l’p 1n 13}7]1{, dy is the current integration along y (see §3)
and [E%"] is the image of ER in D%.

By a Green current for y we shall mean an element fy € GCx(y) or a current
T, representing it, which is defined up to Im 9 + Im 0.

Let us write Y = suppy.

Definition 4.2. The space of Green forms associated to y is defined by

GEx(y) ={g € GE])D(’?Y | cl(g) = {y} and g is real},

where {y} is the cohomology class of y in HP(X,C).

As for Green currents, by a Green form for y we shall mean an element g, €
GEx(y) or a form representing it.

Let g € E];{l’pfl(log Y). By part 2) of Corollary 3.8 this form is locally inte-
grable. Thus it defines a current [g] € D% P!, Now the aim of this section is to
prove:
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Theorem 4.3. Let y be a codimension p algebraic cycle and let Y = supp(y).

Then:

1) The map § — lg] induces a well defined morphism between GEx(y) and
GCx (y) which is an isomorphism.

2) If z is a codimension q algebraic cycle which intersects with y properly, then the
x-product of Green forms and the x-product of Green currents are compatible.

3) Let f : X' — X be a morphism of complex projective manifolds and assume
that codim(f~1(Y)) = p. Then the pull-back morphisms of Green forms and of
Green currents are compatible.

4) If f: X — X' is a smooth morphism of complex projective manifolds such that

dim(f(Y)) = dim(Y'), then the push-forward morphisms of Green forms and of
Green currents are compatible.

Proof. By part 3) of Corollary 3.8, if a,b € E¥ ?(logY) then [da 4 d°b] = d[a] +

d°[b]. Therefore the map g +— [g] induces a well defined morphism GEx (y) —
D

In fact we can obtain a morphism of this type defined on all the space of Green
forms. Let us write

~ Dr

. X/Y
XY " Imd + Imde’
Then by Corollary 3.6 we have:
Lemma 4.4. The map [] : GEYy — ﬁ}/y which sends § to [g] is a well

defined morphism.

Now we have to show that if g, is a Green form associated to y then [g,] is a
Green current associated to y. For simplicity we shall assume that Y is irreducible
and that y =Y.

To proceed further we need a special kind of representatives of Green forms
provided by the next lemma.

Lemma 4.5. Let (X, D) be a resolution of singularities of (X,Y), with D = Dy U
---UDy a DNC. Let \; be a Green function for D;, i =0,...,k. If g, is a Green

form for y, then there are smooth (p — 1,p — 1)-forms on X, oy, fori=0,...,k,
with a;|p, 0 and O closed, and [ such that

k
Gy = Z%‘)\i + 3
i=0

is a representative of g, .

Proof. Since the cohomology class of y belongs to Gri. W, H 12/’) (X,C), by part 4) of
Proposition 1.8, there is a representative g, of g, of weight one and type (p—1,p—1).
By proposition 1.13 we can write g, as

k
1=0
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where 3 and «; are smooth (p — 1, p — 1)-forms, ~; are smooth (p — 2, p — 1)-forms
and §; are smooth (p — 1,p — 2)-forms. Writing o; = o + 0v; + 09; we have that

k
= Z Ozl')\i + ﬁ
=0

also represents g, because g?’/ — gy €m0 +1Im 0.
To prove that the restriction of oy to D; is @ and O closed recall that, by the
definition of Green forms,

k
85§y = 859y = Z 65062)\1 — 50% A ON; + Oa N 5/\2 + 85B

is a smooth form. But since dA; (resp. O)\; ) has a singularity of the type dz;/z;
(resp. dz;/z;) along D; the form J«; (resp. da;) vanish when restricted to D;.

We shall call basic Green forms for y to the Green forms provided by this lemma.
Note that basic Green forms should not be confused with Green forms of logarithmic
type defined in [G-S 2, 1.3.2]. See 4.12 below.

Notation 4.6. We can obtain a resolution of singularities of (X,Y), say (X, D)
with D a DNC ([Hi]), obtaining first a pair (X', Y U D’) where Y is a resolution of
singularities of Y, D’ is a DNC which is mapped over the singular locus of Y and
Y U D’ has normal crossings. And then we obtain X as the blow up of X' along Y.
Let us now write D' = Dy U--- U Dj, and denote by Dg the exceptional divisor of
this last blow up.

Let us give names to the different morphisms we shall need. Let 7 be the
morphlsm X — X and let m; be the restriction m|p,. Let a; be the inclusion
D; — X. Let ¢ be the induced morphism ¥ — X and finally let us write g, for
the induced morphism Dy — Y.

Let g, € GEx(y) be a Green form for y and let

k
= Z ;i +
i=0

be a basic Green form representing it. By part 3) of Corollary 3.8 d°[g,| = [d°g,].
Thus
[dd®gy] — dd°[g,] = [dd°g,] — d[d°g,] = Res(d°g,).

By Proposition 3.9 we have

Res(d¢ gy Zﬂ—z*[a o).

Given that the forms «; have type (p — 1,p — 1) and, for i = 1,...,k the fibres of
m; have dimension greater or equal than p, we have m;.[a}a;] = 0. Therefore

Res(dgy) = mox[agao] = p.mo,[agoo]-
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But 7, [agao] is a closed current of degree zero on Y, thus it is of the form cd_ for

a constant ¢. Hence
Res(d®gy) = c6,, .

Let us see now that c is determined by the cohomology class of (ddg,,dg,).
There is a commutative diagram

Ey —— E%(logY)

l !

* *
DX DX—Y’

where the vertical arrows are quasi-isomorphisms. In the simple of the morphism
D% — D% _y we have

([dd°gy], [d°g,]) = (Res(d“gy),0) + d([d°g,],0).

Therefore the cohomology class cl(g,) = {(dd°gy,dg,)} € Hy (X,C) is equal to
{(cby,0)}. Given that cl(g,) is the cohomology class of y =Y, then Res(dg,) = d,.
Hence, writing w, = dd°g, € EX*, we have

dd®[gy] + 6y = wy.

So the current [g,] is a Green current for y.
Note that we have also proved that, for n € E;l(_pﬂ’d_p“,

(4.7) / (a0 A1) = | e

This formula also holds for a locally integrable form 7, differentiable in an open
dense subset U, with U N'Y dense and such that its pull-back to Y s locally
integrable.

Once we know that [-] : GEx(y) — GCx(y) is a well defined morphism, let us
show that it is an isomorphism.

It is proved in [G-S 2, 1.2] that the space of Green currents for y is an affine
space over the vector space

Ep—l,p—l
Ep—l,p—l _ X,R
XR Imd+ Imde’

i.e. for every y there exists a Green current and if Ty is a fixed Green current then
GOx(y) =T, + [Exz™']

On the other hand, as a consequence of part 3) of Proposition 1.8 the space
GEx(y) is an affine space over the vector space Eg}fﬂi »~1 /B, where B is the sub-
group

B =E¥ P N (dEx(logY) + d°Ex (logY)).
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Let w € B. By part 2) of Lemma 1.7
w = wq + da + d°b,

with a,b € F%, dw; = 0 and such that j*({w;}) = 0 in H*~?(X —Y,C). But
since j* : H?*?72(X,C) — H?72(X - Y,C) is an isomorphism w; is d-exact in
E%. Therefore

B =E} 7' n(dE% + d°EY).

Hence the space GEx(y) is also an affine space over the vector space Eﬁaé’p -

Since the morphism [-| preserves these structures of affine spaces it is an isomor-
phism.

In order to prove the compatibility of the push-forward morphisms we shall
prove first a preliminary result. Let f : X — X’ be a smooth morphism of
relative dimension e. Let Y a be a closed algebraic subset of X and let us write
Y’ = f(Y). Since f is proper and Y C f~1(Y”) there is and induced morphism

of double complexes f, : D}’;‘Y — D;(_,;’;,_e which induces a morphism f, :

* % Nk—ek—e
DX/Y DX’/Y’ :

Lemma 4.8. The diagram
[]

n An—2
GEY y — » Dy)y

|» |»

n—2e ['] n—2—2e
GEX’,Y’ EE— DX//Y/ .

18 commutative.

Proof. Let g € GEY% y-. Let us compute [f+g]. Recall that to obtain f.g we have to
use first the restriction morphism GEY ,, — GE;L(’ F-1v) and then compute the
direct image.

Let (X, D) be the resolution of singularities used to define g; thus we have
g€ E§_2(log D). Let us construct a cartesian square

(X1, D1) —— (X, f71(Y))

7| /|
(X', D) —— (X,Y"),
where the horizontal arrows are resolutions of singularities and the vertical arrows
are smooth. Finally let (X2, D3) be a resolution of singularities of (X, f~1(Y))

which dominates (X, D) and (X1, D1). Then there are forms a,b € E;%_S(log D)
such that

4.9 g =g+ 0a+0be E% *(logDy).
X1

The push-forward of g is defined by

fg = (f*g,)
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By 4.9, Corollary 3.6 and the compatibility of f. with the differential we have,

. yn—2e
in DX,/Y,,

(fla) = (fld])

Therefore we have
LG = (L) = (Ll =[(f9) ] =/-3)

Let us now prove the compatibility of the push-forward morphism for Green
currents and for Green forms. Let y be a codimension p algebraic cycle on X and
let Y = suppy. For simplicity we shall assume that Y is irreducible, y = Y and
that dim(f(Y)) = dim(Y’). Let g, € GEx(y) C GEY",. By Lemma 4.8 we have in

~p—e—1l,p—e—1
DX’/Y’

(4.10) [fx9y) = filgy)-

Since codim(Y”) = p — e we have an isomorphism

5]}9;671,137671 N 5]}){7//@;/1,]?7671‘
Therefore the equality 4.10 holds in GCx/(f.y).
Observe that if dim(f(Y)) < dim(Y) then f.(y) = 0 but the argument also
works.
Next we shall prove the compatibility with the pull-back morphisms. Both mor-
phisms have formally the same formula (|G-S 2, 2.1.3.1]):

(4.11) [/gy] = [ 94]

Nevertheless we still have to solve a technical problem because Green forms of
logarithmic type are used to define pull-back of Green currents. And, in general
Green forms of logarithmic type are not Green forms with the definition given here.
We shall now discuss the relationship between the two classes of forms.

For the convenience of the reader let us quote the definition of forms of logarith-
mic type.

Definition 4.12. (|G-S 2, 1.3.2]) Let Y C X be a closed algebraic subset. A
smooth form n on X — Y is said to be a form of logarithmic type along Y if there
exist a projective morphism

7: X' — X

and a smooth form ¢ on X’ — 77 1(Y) such that
(i) X’ is smooth, 7=(Y) is a divisor with normal crossings and 7 is smooth over
X-Y.
(ii) n is the direct image of the restriction of ¢ to X’ — 7~ 1(Y).
(iii) For any point z € X’ there is an open neighbourhood U of x, and a system of
holomorphic coordinates (21, . .., z,) of U centred at x such that 7#=1(Y)NU has
equation z; ---z; = 0 for some k < n, and there exist smooth 9 and O-closed

forms a; on U, i = 1,...,k, and a smooth form $ on U with
k
olu = Zai log |z + 3.
i=1
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A Green form of logarithmic type for a cycle y is a form of logarithmic type, g,
such that [g] is a Green current for y.

Note that a Green form of logarithmic type on X is the direct image of a basic
Green form on X', but since the morphism X’ — X cannot be factored in general
by a smooth morphism followed by a birrational morphism it is not a Green form.
On the other hand a basic Green form satisfies all the conditions above except for
the functions «; of (iii) being @ and d-closed. In fact one can construct examples
where, if one imposes X’ being birrational with X, then the condition of being
closed in (iii) cannot be satisfied.

Let g, be a Green form for y and let [g,] the corresponding Green current.
Following the construction of Green forms of logarithmic type ([G-S, 1.3.5]) one
can obtain a diagram

(X', D) ™ (X', V") L (X, D) ™ (X,V),

where (X, D) is a resolution of singularities of (X,Y), with D = Dy U--- U Dy,
The manifold X’ is the disjoint union of X and the varieties D; x X for each i.
The closed subset Y is the graph of the inclusion [[ D; — X’. And (X', D) is a
resolution of singularities of (X’,Y”). Note that f is smooth and f(Y’) = D.

Then there exists a form ¢ on X' satisfying the conditions of Definition 4.12
and, if we write 7 : X’ — X for the composition map, then (m.[¢]) = [gy] in
Di bt

By construction ¢ € E%,(logY’) and dd°p € E%,. So it defines a Green form
¢ € GEY/ y,. Since f is smooth, there is also defined a Green form f.p € GE}’D.

Using Proposition 1.8, it is easy to see that the morphism 77 : GEY y —
GE} p, is injective and its image is the set of those Green forms g such that ddg €
E%. Therefore there is a uniquely determined Green form g, € GEY y such that
71y = f«@. Moreover by Lemma 4.4 we have, in 15}/]3, [71G,] = [f«]-

Using Lemma 4.8 we obtain

1G] = m1a[fe] = T £l = (o)) =[G,

Now by the isomorphism between the space of Green currents for y and the space of
Green forms for y and the fact that 7 is birrational we obtain g;, = g,. Therefore

(4.13) 1.3 =713,

Let h : Z — X be a morphism with Z a complex irreducible projective manifold
such that h(Z) ¢ Y. We can obtain a diagram

A B R SN S S
vl | |
X -~ ,x 1  x_ ™ x

where 7] and 7} are resolutions of singularities of (Z,h=(Y)) and (Z’,h'~1(Y"))
respectively and the centre square is a Cartesian square. Hence f’ is smooth. Let
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us write 7/ for the composition map 2’ — Z. Then we have

W mep] = [R*mep] by [G-S 2, 2.1.3.1]
= [mLh*¢]
=71 [fih* P by Lemma 4.8

=, [ f.d] by 1115
= [ i, by 413
= T [m " "y

= [h*gy]-

Hence we have compatibility of the pull-back morphisms.

Let us now prove the compatibility of the x-product of forms and the *-product
of currents. For simplicity we shall suppose that y =Y and z = Z with Y and Z
irreducible subvarieties.

Let Xyﬂz, Xy, XZ and XYUZ be as in §2. To sunphfy notations we shall write
X = Xyuz and denote by 7 the morphism 7 : X — X. Then 7 1(Y), 7~ 1(2)
and 7YY N Z) are unions of irreducible components of the exceptional divisor.
Thus we can write

7 YY) =DyU---UDy,
Dy =7n"%%Z)=D,U---UDj,
Dynz =7~ 1(YmZ) D,U---UDy and
Dyuz=m"'(YUZ)=DyU---UD,.

Let us assume furthermore that Dy is the only component of D which is mapped
dominantly over Y. We shall also assume that Xy is obtained as in 4.6 and let
Y and QY : Y — X have the same meaning as in 4.6. Note that the morphism ¢
factorizes through a morphism Y — X. This last morphism will also be called
®.

If g, is a basic Green form we can define, analogously to [G-S 2, 2.1.3.2], a current
g Nd, by

9= N\ Oy = pul@"gz].

Lemma 4.14. Let Y and Z be irreducible subvarieties of codimensions p and q,
which intersect properly. Let y =Y and z = Z be the corresponding algebraic
cycles and let g, and g, be basic Green forms for y and z respectively. Let us write
w, = dd®g,. Then we have the equality of currents

[9y * gz] = 0y N gz + [9y Nw:] +d[d°(oy ,9,) N g.] + d[oy 9y A dg.].

. =ptg—1,ptg—1
Thus, in D% 9~ 1PH1 e have

[9y * G=] = (0, N gz + gy Nw2)
Proof. Using the representatives of the *-product given by 2.8 we have

Gy * 9. = dd(0y ,9y) Ng. + 0,9y Ndd°g.

=d(d(oy.,9y) Ng.) +d°(0y 9y Ndg.) + gy Ndd°g..
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Thus the lemma is a consequence of the equalities

(4.15) [d(d*(oy ,9y) N g2)] = d[(d°(oy,,9y) N g2)] + 6y N ge
and
(4.16) [d(oy 9y Ndg2)] = d°[(0y , 9y N dg2)].

Let us prove these equalities. Since g, and g, are basic Green forms we can write
k
9y :Zai)‘i + 06 and
i=1
S
g: =Y i+ 8,
=7
with \; a Green function for D;. Let n € E?(_p_qﬂ’d_p_ﬁl be a test form. Then

d(d(oy ,9y) N g= A1)

[d(d°(oy ,9y) N g2)1(n) — d[(d°(ay ,9y) A g2)](n) = /X

By a partition of unity argument we can assume that n has compact support con-
tained in an open coordinate set and that, for all 7, the divisor D, has equation
z; = 0. Then, with the notations of 3.5, we have

/~ d(d(oy. ,9y) Ng- A1) = — lim/ d(oy ,9y) N g= A1
D

e—0
X =0

€,j

By the argument used in the proof of Proposition 3.9 we obtain

lim dc(ay,zgy)/\gz/\UZ/ (o A gz An)|p,-
e—0 DE,O DO

Now observe that g, is a differentiable form defined on X z — Dyz. Thus ¢*g, is
well defined and locally L!. By 4.6 we obtain

| (@ong. Ao, = 6, A o))
Dy
To prove (4.15) it remains to be shown that, for j =1,...,s,

lim d°(oy ,9y) N gz An=0.
e—0 D.; ’
For j =1,...,7 — 1 is due to the fact that g, A 7*(n) is a (d — p,d — p)-form
defined on Xz and the image of D; in Xz has dimension strictly less than d — p.
Hence the restriction of g, A 7*(n) to D; is zero.
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For j =r,...,k—11is true because the restriction of 7*(n) to D; is zero and the
singularities of d°g, A g, are of the type

de _ dij _
Z_j log z;z; or Z log z;z;.
Finally for j = k,...,s is true because o , is zero in a neighbourhood of Dy U

...UD,.
The proof of (4.16) is similar.

Now the product of Green forms and of Green currents are given by formula
formally by the same formula

gy*gz:((sy Agz+gy/\wz)

In one case with basic Green forms and in the other case with Green forms of loga-
rithmic type. Observe that dy Ag, in this formula is defined using pull-back of Green
forms. Hence the compatibility of the x-product follows from the compatibility of
pull-backs.
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CAPITULO I11

Green Forms and Deligne Cohomology
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§1. REAL DELIGNE COHOMOLOGY.

Let X be a smooth algebraic variety over C. Throughout this chapter we shall
work with smooth algebraic varieties over C, but viewed as complex manifolds
i.e. with the analytic topology. In this section we shall show how to construct
real Deligne-Beilinson cohomology of X in terms of a single complex of differential
forms: ©*(Ej,(X),). In the case of X being a smooth projective variety this
complex has been studied by Wang in [Wa].

A variant of this complex has also been used by Demailly in [Dem]| to study the
properties of 90-cohomology.

Let us recall briefly the definition of Deligne-Beilinson cohomology. See [Be 1],
[E-V] and [J] for details. Let us choose a smooth compactification j : X — X,
with D = X — X a divisor with normal crossings. Let A be a subring of R. We
write A(p) = (2mi)PA C C. We will denote also by A and A(p) the corresponding
constant sheaves in the analytic topology. Let (2% be the sheaf of holomorphic forms
on X and let %-(log D) be the sheaf of holomorphic forms on X with logarithmic
singularities along D [De 1]. Let I'? be the Hodge filtration of {2%-(log D):

FrQ(log D) = (P 0% (log D).
p'2p

Since j is affine, Rj.Q% = j.%. Moreover, in the derived category, there are
natural maps

uy @ RjA(p) — 7. Q% and uz : Q(log D) — j.Q%.

If (A*,d) is a complex we shall write A[k]* for the complex A[k]" = A**" with
differential (—1)*d. If f : A* — B* is a morphism of complexes, the simple of f
is the complex

s(f)* = A" B[-1]",
with differential d(a,b) = (da, f(a) — db).

The Deligne-Beilinson complex of the pair (X, X) is

A(p)p = s(u: Rj.A(p) @ FPQ%(log D) — ji{lx),

where u(a,w) = us(w) — uy(a).
The A-Deligne cohomology groups of X are defined by

Hp(X, A(p)) = H*(X, Alp)p).
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These groups are independent from the compactification X.

If Y C X is a closed algebraic subset, then there are also defined Deligne co-
homology groups of X with supports on Y, denoted Hyp, y (X, A(p)). Moreover,
using simplicial techniques, we can define Deligne cohomology groups for singular
varieties. There is also the dual notion of Deligne homology groups denoted by
HP(X,A(p)). Deligne cohomology and homology groups form a twisted Poincaré
duality theory in the sense of Bloch and Ogus [B-O].

We can compare A-Deligne cohomology with cohomology with coefficients in A
by means of the exact sequence

0 — s(FPQ%(log D) — j. Q%) — A(p)p — Rij.A(p) — 0.

From this sequence we obtain:

Proposition 1.1. Let X be a smooth variety over C and let A a subring of R.
Then there is a cohomology long exact sequence

H" YX,C) /JFPH" *(X,C) — Hp(X,A(p)) — H"(X,A(p)) — .

A-Deligne cohomology studies the relationship between the A-structure and the
Hodge filtration in cohomology. In general, we do not have a complex which gives
us both the A-structure and the Hodge filtration. For this reason, we have to
construct Deligne cohomology from a diagram of complexes. On the other hand, in
the case of real Deligne cohomology we can construct a complex, El*og(X ), which
carries the real structure and the Hodge filtration. Using this, we can give simpler
representatives of real Deligne cohomology classes.

Let X be a complex manifold and let D be a divisor with normal crossings on
X. Let us write V=X — D and let j : V — X be the inclusion. Let £% be the
sheaf of complex C* differential forms on X. The complex of sheaves £% (log D)
(see chapter I) is the sub-E£% algebra of j.£y, generated locally by the sections

dzi dzi

log 2,z;, —, —, fori=1,..., M,
Zi  Zi

where z7...z) = 0 is a local equation of D.

Let us write E (log D) = I'(X, £x (log D)), and let £ g(log D) be the subcom-
plex of real forms.

Let X now be a smooth algebraic variety over C and let X < X be a smooth
compactification. Let us write Y = X — X. Let I be the category of all diagrams

(67
lﬂ.a

%X7

D, — X

v —

where X, is smooth, D, is a divisor with normal crossings, 7, is proper and

Tal% _p 1is an isomorphism over X —Y. Any such diagram is called a resolution
[e7 [e7

of singularities of (X,Y). The morphisms of I are the maps f : (Xa, Do) —
(X, Dg) such that 7, = mgo f.
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Definition 1.2. The complex of differential forms with logarithmic singularities
along infinity is
Bin(X) = lim B, (lox D)
ac

This complex is a subcomplex of E% = I'(X, £%) and it is independent of the choice
of the compactification X. We shall denote by Efs g(X) the corresponding real
subcomplex.

The complex E

*

Jog (X) has a natural bigrading

Ei(X) = D ELI(X).
The Hodge filtration of this complex is defined by
PP B, (X) = €D Bl (X).
p'2p
Moreover, the weight filtration, W, of the complexes E} (log D), induces a weight
filtration on Ey,(X) also denoted by W. By the results of chapter L, if f is a
morphism of I, the morphism
fr: E}a (log D,) — E}B (log Dg)
is a real bifiltered quasi-isomorphism. Moreover, for all o € I, the pair
((E;(Q,R(log Doz)a W)7 (E}k(a (log Doz); VV; F))

is a real mixed Hodge complex which induces in H*(X,R) the mixed Hodge struc-
ture introduced by Deligne in [De 1].
Since [ is directed, all the induced morphisms

E}a (log Do) — Ejoe(X)
are bifiltered quasi-isomorphisms. So, the pair
(Blog g (X), W), (Ejog(X), W, F))

is a real mixed Hodge complex which induces in H*(X,R) the mixed Hodge struc-
ture introduced in [De 1].

Remark 1.3. In the above definition we can use real analytic forms instead of C*°
forms obtaining the complexes A% (log D) and Aj, (X). The first one was intro-
duced by Navarro Aznar in [N]. The cohomological properties of the differentiable
complexes and of the real analytic complexes are the same. Therefore, through-
out the construction of arithmetic Chow groups, C* forms can be replace by real
analytic forms. In particular, this implies the existence of real analytic Green forms.

Let X be a smooth algebraic variety over C, and let X be a smooth compact-
ification with D = X — X a divisor with normal crossings. Write Eﬁ)g,R(X ,p) =
(2mi)P EY, g(X) C Ej,(X). Then there are isomorphisms in the derived category

log
RFRJ*RX (p) - El*og,]R(X7 p)?
RUj.Qx — Ej,(X) and
RUFPQ+(log D) — FPEj,(X).
Let us write
Bl r(X,0)p = s(u : Ejgy p(X,p) © FPER, (X) — B, (X)),

where u(a,b) = b — a. Then we have
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Proposition 1.4. The real Deligne cohomology groups of X can be computed as
the cohomology of the complex Ey,, x(X,p)p. That is

Hp(X,R(p)) = H* (Ejog (X, p)D)-

Our goal now is to give a simpler version of this complex. To this end we shall
relate the simple of a morphism of complexes with the kernel and the cokernel of
the morphism.

Let us recall the construction of the connection morphism of an exact sequence.
Let

0— A5 B* 5 C*—0

be an exact sequence of complexes of vector spaces. Let us choose a linear section
o of m. Then we can obtain a retraction 7 of « by

7(b) = .71 (b — onb).
The connection morphism is induced by the morphism of complexes
Res, : C*[—1] — A*,

defined by
Res, (c) = . Y (odc — doc).

If there is no danger of confusion we will write simply Res instead of Res,. It is
straightforward to check that odc —doc belongs to Im ¢ and that Res is a morphism
of complexes. Moreover, the induced morphism Res : H*(C[1]) — H*(A) is the
composition of the natural morphisms

H*(C[1)) — H*(s(B — C)) — H"(4).
We can also obtain Res from the retraction 7 by the formula
Res(mb) = drb — 7db.

Let now u : A* — B* be a morphism of complexes of vector spaces. We can
decompose u into two exact sequences
0 — Ker(u)” RN Im(u)* — 0
and
0 — Im(u)* % B* = Coker(u)* — 0.

Let o1 and o2 be linear sections of m and u’ respectively. Let 71 and 75 be the
corresponding retractions of ¢ and j. Let us write Res; = Res,, and Ress = Res,,.
We define a complex

S(u)* = Ker(u)* & Coker(u)*[—1]

with differential d(a,b) = (da + Resy Resy b, —db). Then we have maps ¢ : §(u) —
s(u) and ¥ : s(u) — 5(u) given by

v(a,b) = (j(a) — o2 Resy b,01b) and
Y(a,b) = (12a + Resa (1)), 7b)
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Proposition 1.5. The maps ¢ and Y are morphisms of complexes. Moreover they
are homotopy equivalences, one the inverse of the other. More explicitly, we have

Vo = Id and
o — Id = dh + hd,

n—1

where h : s(u)"™ — s(u) is given by h(a,b) = (—o271b,0).

Proof. All the checks are straightforward. For instance let us check that @iy —1Id =
dh + hd. We have

©p(a,b) = @(m2a + Resy 710, b)
- (j7—2a + ] RGSQ le — 09 Resl 7Tb, 0'17Tb).

Therefore
o(a,b) — (a,b) = (jmea — a + jResy 71b — 02 Resy wb, 01w — b).
On the other hand

dh(a,b) + hd(a,b) = d(—oa7m1b,0) + h(da,ua — db)

= (—doaT1b — oamua + o271db, —ucoT1b).
Hence the result follows from the equalities

uooT b = 1tmb = b — o17h,
ooTiua = oou'a = a — jmea and
Ress mboy — Resy b = o911db — 02dm1b + Resy 11

= 0'2T1db — dUQle.

Let us come back to the complex Ef;g,R(X ,p)p. Since the process of simplifi-
cation depends only on the relationship between the real structure, the differential
and the bigrading, we shall work with an abstract Dolbeault complex.

Definition 1.6. A Dolbeault (cochain) complex is a complex of real vector spaces
(Ag,d) provided with a bigrading on Af = A3 ® C:

AL = @ Are,

pt+q=d

such that

DC1. The differential d can be decomposed as a sum of operators d = 9 + 9 of
type (1,0) and (0, 1).

DC2. It satisfies the symmetry property

APq4 = Aqap7
where  denotes complex conjugation.

By DC2 the operator 0 is the complex conjugate of 9.
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Let A be a Dolbeault complex. The Hodge filtration F of A* is
FPA* = (P A",
p'2p
We denote by F the filtration complex conjugate of F. That is
FPA = (P A7
p'2p

Examples of Dolbeault complexes are the complex of C* (or real analytic) dif-
ferential forms on a complex manifold and the complex of C* differential forms
with logarithmic singularities at infinity.

Let A* be a Dolbeault complex. We write Aj(p) = (2mi)P Aj C A and

Ap(p)p = s(Ag(p) & FPAL — A7),

where u(a,b) = b — a. For example, if X is a smooth variety over C and A* =

By (X), then we have seen that

H*(Ag(p)p) = Hp(X,R(p)).
On the other hand, if A* = E% is the complex of C* differential forms on X, then
the groups H*(Ag(p)p) are called analytic Deligne cohomology groups.

Let us apply Proposition 1.5 to the morphism w : Az (p) & FPA;F — Af. The
first step is to compute Ker v and Coker u.

Lemma 1.7. Let A* be a Dolbeault complex. The morphism
u: Ag(p) ® FPAG — AG

is injective for n < 2p—1 and surjective for n > 2p—1. In particular forn = 2p—1
it is an isomorphism. Moreover we have

Coker(u)" = A¢ /(AR (p) + FP A¢ + FP AR)
= Az(p—1) /(Ag(p — 1) N (FPAg + FP AR))
~ap-nn @ A,

p'+q'=n
/ ’
P'<p, d'<p

and

Proof. Since in a Dolbeault complex we have

AR = FPAR+TF'A2 forp+q<n+1, and

{0} = FPARNFAL  forp+q>n+1,
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it is enough to prove the descriptions of Coker(u) and Ker(u).
Clearly B
Imu C Ag(p) + FPAL + FPAE.

Let x € FPAZR. Then T € FPA% and z + (—1)PZ € AZ(p). Therefore
Al (p) + FPAL + FP AR = A% (p) + FP AL,
and B
Coker(u)" = A¢ /(AR (p) + FPAL + FPAR) .

If (a,b) € Keru, then a = b and a € Ag(p) N FPAZ. Therefore a = (—1)Pa €
FPAR. Hence
Ker(u)™ = AR (p) N FP AL N FPAL.

The next step is to choose linear sections of the maps
7 AL — Coker(u)* and ' : Ax(p) & FPAE — Im(u)*.

In order to give explicit expressions of these sections, let us introduce some maps.
Let

mp : Ag — Ag(p)
be the projection obtained from the direct sum decomposition Af = Aj (p) Az (p—

1). Namely, we have

T = %(w +(=1)%7).

Let z = ) aP? € A;. We will denote by
FPy — Z xp',q’
p'2p
the projection over FPAf and by

/ I
FPPy — E :xp 4

p;zp
q'>p

the projection over FPAL N FPAY.
By Lemma 1.7, Coker(u)™ may be identified with the subgroup of Ag

A]Iré(p - 1) N @ Ap/,q' — Fn—p-H an—p-i—l N A]ﬁ(p _ 1).
p'+q'=n
p'<p, ¢'<p

Let us write ¢ = n — p+ 1. Then, with the above identification, the morphism
7 Ag — Coker(u)" is
m(x) = mp_1 (FTx).

This gives us a natural way to choose a section o1 of 7: The inclusion

FIAZ A FIAR N AR (p— 1) — AL
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With this choice of o1 we have

x — mp_1(FPx), for n < 2p — 2,
T1(x) =

x, for n > 2p — 1.

And
Res;(z) = —mp_1(FPdz), for x € Coker(u)" and n < 2p — 2.

Let us look for a section o of /. For n < 2p the map wu is injective. Therefore
the section oy is unique. Let x € Im(u). Then z = —a, + f,, where a, € Ag(p)
and f, € FPAL. We have

fp=2F?(zx — mpx) and ap = fp — .
Hence the section o4 is given by
oex = (2FP(x — mpx) — x, 2FP (x — mp)).

Let now n > 2p. Let us write ¢ =n —p+ 1 > p. Then there are many possible
choices for o2. Nevertheless, we have the following direct sum decompositions

A3(p) = FPOF N AZ(p) & (F7+F7) 1 A3 (p),
FPAR =FPNFPNAR(p) @ FPNFPNAR(p—1) @ F? and
L=FPNFPNAR(p) ® FPNFPNAR(p—1) ® F? & (F?+ F9) N Ag(p).
Thus we can impose the condition
(—z,0), for x € (F?+ F9) N AZ(p),
(1.8) oo(x) = —
(0, ), forc e FPNFPNAR(p—1) & F1.

Note that with this condition we have fixed the image of
Ag(p—1) ® FIAL=(F1+ F)NAR(p) ® FPNFPNAR(p—1) & FLAL.

Now the only ambiguity is how to distribute FP N FP N A% (p) between AZ(p)
and FPAZ. Actually there are two extreme options depending on whether the
equivalence 9 : s(u) — 5(u) is to factorize through s(Ax(p) — AL/FP) or
through s(FPAf — Aj(p—1)). In the first case we have to write o2(x) = (—,0)
for x € FP N FP N AZ(p) and in the second case ao(x) = (0, ).

We fix the section

o9r = (=21, (v — FPx),27m,(FPx) + (—1)P~'7),
which corresponds to the first option. The retraction
T AR(p) @ FPAL — Ker(u) = FPAL N FPAE N Ax(p),
associated to og, is given by

ey f) = {

0, for n < 2p,
FPPq,, for n > 2p.

And the morphism Ress is given by

0, for n < 2p —1,
27, (QxP~Ln—pL) forn > 2p+ 1.

Resy (z) = {
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Definition 1.9. Let A* be a Dolbeault complex. We will call Deligne complex

associated to A the complex
D*(A,p) = 5(Ag(p) © FPAL — AL).

The differential of this complex will be denoted by dxo.
Let us summarize the results of this section.

Theorem 1.10. Let A* be a Dolbeault complex. Then

1)

2)

3)

The complex ©D*(A,p) is given by

( Coker(u)"~' = A" (p—1)N @ AP forn < 2p—1,

p4q=n—1
D"(4,p) = P
Ker(u)™ = Ag(p) N EB AP 1 forn >2p
p'+d'=n
\ p'2p, a'>p

For x € ®" (A, p) the differential do is given by

dx, forn > 2p,
dor =< —n(dz), forn <2p—1 and
Ress Res; & = —200x, forn =2p—1,

*

where w : A* — Coker(u)* is the projection.

The complezes Ak (p)p and D*(A,p) are homotopically equivalent. The homo-
topy equivalences ¢ : Ag(p)p — D™(A,p) and ¢ : D"(A,p) — AR(p)p are
given by

’QD(CLfCU)_{T((W)’ forn <2p—1 and
o FPPq + 2, (QwP~—tm=pTl) forn > 2p,
and
(OzP—bm=P — ggn—PP=1 204P~ 1P ), forn <2p—1 and
ple) = { (z,x,0), forn > 2p.

Moreover 1 = Id and pp — Id = dh + hd, where h : A%(p)p — Ap~'(p)p is
given by
ha, f.0) (mp(F'w+F" Pw), —2F?(r,_1w),0), forn <2p—1 and
a, J,w)= —n— _
2m,(F" Pw), =FPPy — 2F™"P(m,_1w),0), forn > 2p.

The natural morphism H* (A% (p)p) — H*(Ax(p)) is induced by the morphism

of complexes
rp: D% (A,p) — Ar(p)

given by

{ 21, (FPdr) = OxP~1n=P — gpn—pp=1l forn <2p—1 and
rpT =
3 x, forn > 2p.
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Corollary 1.11. Let X be a smooth variety over C. then

Hp(X,R(p)) = H* (D (Ejoy (X)), p))-

The fact that the cohomology of ©*(E%, p) is the Deligne cohomology of X, for
X a projective complex manifold, has been proved in [Wa].

Remark 1.12. Let A be a Dolbeault complex. By construction, the cohomology
groups H?P(D*(A,p)) are

H*(D*(A,p)) = {x € AP? N A (p) | dz = 0} /Im(99)

Therefore they are the R(p)-part of the d9-cohomology of A. In particular we have
a relation between 00 cohomology and real Deligne cohomology. On the other hand
we have

H>Y(D*(A,p)) = {z € A27"1 0 A% 2(p) | 99z = 0} /(Im D + Im D) .

A variant of this complex has been used in [Dem]| to study the properties of 90-
cohomology.

Remark 1.13. The complex ©*(A, p), the maps ¢ and r, and the map 1, for n < 2p,
do not depend on the choice of the section o3. Only the map v for n > 2p depends
on the choice of 5. Moreover the maps ¢, 1) and the homotopy h are natural. That
is, given a morphism A — B between Dolbeault complexes there is a commutative
diagram

D*(4,p) —— Ax(p)p

l l

D*(B,p) —— Bi()p

and analogous diagrams for v and h.
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§2. MULTIPLICATIVE STRUCTURE OF DELIGNE COHOMOLOGY.

Let X be a smooth algebraic variety over C and X a smooth compactification of
X with X — X a divisor with normal crossings. For each real number 0 < a < 1,
there is defined a product U, on the Deligne-Beilinson complex A(p)p (see [Be 1] or
[E-V, 83]). All these products are homotopically equivalent. Moreover the product
obtained for & = 1/2 is commutative and the products obtained for « = 0 and o = 1
are associative. Therefore they induce an associative and commutative product in
Deligne cohomology denoted U. We want to transport this multiplicative structure
to the complex D*(A4, ).

Definition 2.1. Let A be a Dolbeault complex. We say that A is a Dolbeault algebra
if there is a product

An @ A D A

such that Af is a differential associative graded-commutative algebra, and the in-
duced product on Af is compatible with the bigrading. That is

AP A AP T C AptPatd

Let (A,d, A\) be a Dolbeault algebra and let 0 < o < 1 be a real number. The
product U, of the Deligne-Beilinson complex corresponds to the product

AR(p)p © AT (q)p == AZT™(p+ @)

defined by

(ap7fpva) UOc (aCI7 f(pwq) =

(ap A ag, fp N fgyalwp Aag + (=1)" fp Awg) + (1 — a)(wp A fg + (=1)"ap Awy)).

In order to define a product in ®*(A, -) we shall use the following result.

Proposition 2.2. Let A* and B* be complexes of modules over a ring, such that
there are homotopy equivalences ¢ : A* — B* and ¢ : B* — A*, one the inverse
of the other. Assume furthermore that there is defined a product in B*. That is, a
morphism of complexes

* * UB *
B*® B* — B*.
Then
1) The map
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defined by x U, y = ¥(px U, @y) is a morphism of complezes.

2) If the product U, is associative or associative up to homotopy then the product
U, s associative up to homotopy.

3) If the product U, is graded commutative, the same is true for U, . If it is graded
commutative up to homotopy, then U, is graded commutative up to homotopy.

Proof. To prove that U, is a morphism of complexes we use that ¢, ¢ and U, are
morphisms of complexes. The statement about commutativity follows easily from
the definition of U, .
Assume now that U, is associative. Let h be the homotopy between ¢ and Id.
That is
oy —1Id = hd + dh.

Let us define a map
A" @ A™ @ Al Lo, grtmeriot
by
ha(a®b® ¢) =y (h(pa U, ¢b) U, pe) + (1) b(pa U, h(wb Uy ¢c)).
Then we can check easily that
(aU,b)U,c—aU, (bU, ¢) =h,d(a®@b®c)+ dha(a @ bR c).

The case when U, is only associative up to homotopy is analogous.
Applying Proposition 2.2. to Ax(p)p and D(A*,p) we obtain
Theorem 2.3. Let (A,d,N) be a Dolbeault algebra, and let o € [0,1]. Let the map

D" (A,p) @D™(A,q) — DT (A,p+q)

be defined by x -y = (px Uy @y). Then:

1) It is a morphism of complexes and does not depend on «. It is also independent
of the section oo, provided this section satisfies the condition 1.8. Moreover it
induces the product U in real Deligne cohomology.

2) This product is graded commutative and it is associative up to a natural homo-

topy.
3) Let x € " (A,p) andy € D™ (A, q). Let us write l =n+m andr =p+q. Then

(=1)"rp(x) ANy +x Arg(y), for n < 2p and m < 2q,
m(z Ay), forn < 2p, m >2q, 1 <2r,
Ty =
Y Frr(rp(z) Ay) +2m0((x Ay)" "B, forn < 2p, m > 2q, 1> 2r,
TNy, forn > 2p and m > 2q,

where rp(x) = 2m,(FPdz) (see 1.10.3) and 7 is the projection Ay — Cokeru
(see §1).
4) If v € D?(A, p) is a cycle, then for all y, z we have
x-y=y-xr and

y-(z-2)=(y-z)- 2=z (y 2)
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Proof. Let us first check the formulae of 3). If n < 2p and m < 2¢q we have

Y(pr Ua y) = ¥ ((rp(x), 2F7(dx), x) Ua (rq(y), 2F%(dy), y))
= Y (rp(x) Arg(y), 2FP(dz) A 2F9(dy),
alx Arg(y) + (=1)"2FP(dx) ANy) + (1 — a)(x A 2F%(dy) + (—1)"rp(z) A y))
=7m(a(x Ary(y) + (=1)"2FP(dx) ANy) + (1 — a)(z A 2F(dy) + (—1)"rp(z) A y)).

But
m(x Arq(y)) =z Arg(y) and w(x A2F(dy)) =z Ary(y).

The same is true for the other two terms. Therefore

z-y=(=1)"rp(x) Ny+a Ary(y).

Note that this result does not depend on « nor on the choice of o5 because we have
used 1 only for [ < 2r.
If n < 2p, m > 2q and r > 2r, we have

Y(pz Ua y) = ¢ ((rp(x), 2F7(dz), ) Ua (y,9,0))
= (rp(z) Ny, 2FP(dx) Ny, x A\ y)

= F"7(rp(x) Ay) + 21, (0 A y) 1.

This result does not depend on « either. Nor does this formula depend on the choice
of oy satisfying 1.8 because z Ay € AL ' (r — 1) and u(r,(z) Ay, 2FP(dx) A y) €
AL (r —1). The other cases are analogous.

The remainder of the proposition is a consequence of these formulae and of
Proposition 2.2, except for the fact that the homotopy for the associativity is nat-
ural, which follows from the naturality of ¢, ¢ and the homotopy h.

In [Wa], X. Wang constructed higher order arithmetic characteristic classes for
K-theory. A key ingredient in his constructions is a set of differential forms, denoted
B,,. The remainder of this section relates these differential forms with the product
on the Deligne complex and will not be used in the other sections.

Let X be a complex manifold and let £% be the Dolbeault algebra of complex
differential forms. For i = 1,...,n, let u; € D1 (E%,1) = ES)QR.

Let us write

Sit =Y (F1)Tuo()Ouga) A A Dug(iy ABug(iry A+ A Dtig(n),
0'66'n

o

where &,, is the symmetric group of n-elements and (—1)7 is the sign of the per-

mutation o.
Then B,, is defined by

n

Bp(ui,...,un) =Y (—=1)"7'57.

=1

An important property of these forms is the inductive formula (proved in [Wa,
2.2.1])

(2.4) doBn(u1,...,un) =n Y (=1)"7100u; A By _1(us, ..., ;... up).
=1
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The difference of signs between this formula and [Wa, 2.2.1] comes from the fact
that the differential do and the differential of the complex used in [Wa] differ in
the sign for n < 2p — 1.

The definition of B,, and the proof of 2.4 is purely algebraic and can be applied
to any Dolbeault algebra.

The product defined in Theorem 2.3 allows us to give an interpretation of the
forms B,, and of the formula 2.4. Namely, B,, is obtained as a symmetrized product
of the u; and 2.4 is a consequence of the Leibnitz rule.

Proposition 2.5. Let A be a Dolbeault algebra and let u; € D1(A,1),i=1,...,n.
Let us write

Cn(ula ce 7“71) = (_1/2)n_1 Z <_1)Jua(1) ) (u0(2) s (ua(n—l) ) uo(n)) s )

oceS,
Then By (ug, ... un) = Cplug, ... uy).
Proof. Let us see that C), verifies also 2.4.

d@Cn = (_1/2)n—1 Z (—1>0d@ (ug(l) . (UO-(Q) e (ug(n_l) . ug(n)) e ))

ceG,
= (172" ) (D)7 (D) gy - (@) - - (Aol - Ug(n)) - - -)
cEG, =1

= (—1/2)"! Z(—w’—l DY (D) toq) - (o) - (dotiog) - Uo(m)) - - )-

71=1 0c€eS,
o(i)=j

Since dpu; € D2(A,1) and is closed, we can commute it with the other elements.
Therefore

doCp = (—1/2)n_12( )"~ 12 Z ) doujte) (Ue() - (Uo() - - Ug(n)) - -+ )-
1=1

71=1 ce6,
o(i)=j

For each i, j let € = ¢; ; be the unique permutation such that ¢(j) = ¢ and

elqiny—gyy - 1L} —{j} — {1,n} — {i}

is an increasing function. If 0 € &,, with o(i) = j, let 7 be the permutation
7 = oe;j. Then (—1)7 = (—1)7(=1)""7 and 7(j) = j. We can consider 7 as an
element of &,,_1. The correspondence o —— 7 is a bijection between the set of
o €6, with 0(i) = j and &,,_;. Therefore we have

doCp = (=1/2)" 1) (-1 ”Z > (= ) dot; ) - (Ur) - Ur(m) -
=1

J=17€6,_

:ZZ Y O0uy(—1/2)" 7% Y (1)) - (Ur(2) - Ur()) )

=1 TeGn—l
=n (—1)j_185uj/\C’n_l(ui,...,ﬁ},...,un).
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Let us now prove that B,, = C,,. By the definition of the product in the complex
® it can be checked by induction that C), is a linear combination of elements of the
form

uklauk2 VARV 8ukl /\Eukiﬂ AR /\gukn.

Moreover (), is symmetric under the action of the symmetric group. Therefore it
is a linear combination of the elements S, ¢ = 1,...,n. Let us write

n
n
Cn - E CZ,TLSz .
=1

We want to see that c;,, = (—1)""! for all . By the formula 2.4 for C,, we obtain
that doC,, does not contain any term of the form

Qui A -+ AOu; A Owjgr A+ A Ouy,.

This implies that

Cin = —C2.n,
Con = —C3n,
Ch—1,n = —Cnn-

So it is enough to show that ¢; , = 1. Since Fn_lCn = ¢1,,57 we only need to
compare 9S? with aF" C,.
On the one hand we have

55? =0 Z Ua(l)gug(g) VAR gua(n)

ocEeEG,
=nldug A -+ A Ou,.

On the other hand, If a € DP(A,p) and b € DI(A, q) then

OFPTI ™ a-b) = dFPTI7" (a A (069710 — ™97 + (=1)"(9aP ™0 + 0a”P 1) A b)
= 9(—a®P" P AV — (—=1)"daP T A DD
= —20F"'a NOF"'b.

Therefore

OF"'Cy=0F" 1 (=1/2)"" Y o) - (@) - - - o))
eSS,
=nldug A -+ A Ouy,.

Hence ¢; , =1 and B,, = C),.
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§3. TRUNCATED RELATIVE COHOMOLOGY GROUPS.

Generalizing the definitions of differential characters ([C-S]) and of Green cur-
rents ([G-S 2], see also chapter II), in this section we introduce some groups of
secondary cohomology classes associated with a morphism of complexes. These
groups will be called truncated relative cohomology groups.

Definition 3.1. Let R be a ring and let f: A* — B* be a morphism of complexes
of R-modules. Let us denote by ZA* the submodule of cycles of A* and by B* =

B* /Imd. If b € B* we write b for its class in B*. The truncated relative cohomology
groups associated to f are

H™(A*, B*) = {(a,E) € ZA" @ B | f(a) = db}.

These groups are R-modules in a natural way. If the morphism f is injective we
write b instead of (a,b).

Examples 3.2.

1) If B =0 then H"(A*, B*) = ZA™. If A =0 then H"(A*, B*) = H"1(B*).

2) ([C-S]) Let M be a differential manifold. Let A* be the complex of real valued
differential forms on M. Let A C R be a proper subring and let C*(M,R/A) be
the complex of R/A-valued smooth cochains. There is an injective morphism

fi A" — C*(M,R/A)

defined by integration. Then the group H™(A*, C*(M,R/A)) coincides with the

group of differential characters of M, H" (M, R/A).

Let us give another description of the truncated relative cohomology groups
which explains their name. Let o denote the “béte” filtration. That is, given a
complex A*, then

A", if n > p and
oP A" = .
0, if n <p.

Let s(-) denote the simple of a morphism of complexes. Then

H"Y(B*), if n <p,
H"(s(c?A* — B*)) = ﬁ["(A*,B*), if n = p and
H™(A*, B*), if n > p.
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From this description we can obtain exact sequences involving truncated relative
cohomology groups. Let us first define some maps involving these groups:

cl: H"(A*, B*) — H"™(A*, B"), cl(a,b) = {(a,b)},
where {-} denotes cohomology class.

w: H(A*, B*) — ZA™, w(a,b) = a.

a: A"t — H"(A*, BY), a(a@) = (da, f(a) ).

b: H" Y (B*) — H"(A*, B*), b({b}) = (0,b).

We shall also denote by a the induced morphism a : H" " 1(A*) — }AI”(A*, B*).

Proposition 3.3. Let f: A* — B* be a morphism of complexes. Then there are
exact sequences

1) H" (A%, B*) — An=' % Hn(A*, B*) < H"(A*, B*) — 0
2) 0 — H"Y(B*) > H"(A*, B*) % ZA™ — H"(B*)
3) H""'(A*, B*) — H"'(A*) % H"(A*, B*) 922,
H™(A*,B*)® ZA™ — H"(A*) — 0
Proof. These exact sequences follow respectively from the exact sequences of com-
plexes

0 — s(c"A* — B*) — s(A* — B*) — A%/ o" A" — 0,
0 — B*[-1] — s(0"A* — B*) - oc"A* — 0 and
0— s(c"A* — B*) —» s(A* — B*) @ o"A" — A" — 0.

A morphism of complexes will also be called a 2-complex because it can be
considered as a functor from the category 2 to the category of complexes. The
2-complex f: A* — B* will be noted by (A*, B*, f) or simply by f. A morphism
of 2-complexes g : fi — f5 is a commutative diagram

Aj —"— Bj

2 e

A3 L B3.

If ga and gp have degree e, we say that g has degree e. For each n, the n-th
truncated relative cohomology group is a covariant functor from the category of
2-complexes of R-modules to the category of R-modules. If ¢ = (ga,95) is a
morphism of 2-complexes, then there is an induced morphism

g=H"(g): H*(A;,Bf) —  H*(A5,Bj)
(a,b) > (ga(a), (gp(b) ).

If g has degree e, then the induced morphism g is also of degree e.
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Proposition 3.4. Let g = (ga,g9p) be a morphism of 2-complexes. If ga is an
isomorphism and gp is a quasi-isomorphism then g is an isomorphism.

Proof. A direct consequence of 3.3.2.

This proposition reflects the asymmetry between the complexes A* and B*. We
can freely replace the complex B* by a quasi-isomorphic complex without changing
the truncated relative cohomology groups. On the other hand, if we change A* by
a quasi-isomorphic complex, then we can change the properties of these groups.

Let us recall now how to construct a product on relative cohomology groups from
a product at the level of complexes. We shall extend this construction to truncated
relative cohomology groups.

Let f: A* — B* and g : C* — D* be a morphism of complexes. We can
construct the complex

s(f) ©s(g) = s(A" — B*) ® s(C* — D7)
or consider the simple of the diagram

~1d®g+f@Id
_

A* @ o UBIS9) by o % o A* @ D* B* @ D*.

There is an isomorphism of complexes
s(fl®@s(g) — s(A"®C" - B*®@C*"® A*® D" — B*® D*.)
If (a,b) € s(f)™ and (c,d) € s(g)™ then this isomorphism is given by
(a,0) @ (c,d) — (a®@c,b@c+ (—1)"a®d,(—1)"b®d).

Suppose that there is a morphism of commutative diagrams

A*®C* —— A*®@ D* Ef —— Ej3
| | — |
B*Q(C* —— B*® D* £S5 —— LB}

Then there is an induced product
s(f) @ s(g) — s(EY — s(E5 © B3 — Ey)).
Hence a product
H"(A*, B*) @ H™(C*,D*) — H"T™(E{,s(E5 ® E5 — E})).
If {(a,b)} € H"(A*, B*) and {(c¢,d)} € H™(C*, D*), this product is given by
{(a,0)} @ {(c,d)} — {(a-¢c,;b-c+ (=1)"a-d,(—=1)"b-d)}.

Here {-} denotes cohomology class.
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Definition 3.5. With the above hypothesis, the s-product of truncated relative
cohomology groups:

H™(A*, B*) @ H™(C*,D*) = H" "™ (E}, s(E} ® Ei — EJ))

is defined by

(a,b) x (c,d)=(a-¢c,(b-c+ (=1)"a-d,(—=1)"b-d) ).

Proposition 3.5. The x-product of truncated relative cohomology groups is well
defined, i.e. it does not depend on the choice of representatives b and d of b and d.
Moreover there are commutative diagrams

*

H"(A*, B*) @ H™(C*,D*) —*— H"t™(E: s(E} ® B — E3))

v |

AT ® cm ) E{H‘m

and
H™(A*,B*) @ H™(C*,D*) —— H"*"™(E},s(B; ® B — E}))

J{cl@cl lcl

H"(A*, B*) @ H™(C", D*) —— H""™(EY,s(E5 © B3 — EY)).

Proof. Follows from the definitions.
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64. A DEFINITION OF GREEN FORMS USING DELIGNE COHOMOLOGY.

In this section we shall see that the space of Green forms can be obtained as
a truncated relative cohomology group of the Deligne complex. Moreover, the *-
product of Green forms is induced by the product of the Deligne complex.

Let X be a smooth algebraic variety over C. Let ZP = ZP(X) be the set of
algebraic subsets of codimension > p, ordered by inclusion. Let us write

El*og(X\Zp) = ll_H)l El*og(X - Z)
ZeZ?

This complex is a Dolbeault complex and there is a natural injective map
El*og(X) - Elt)g(X\Zp)
We shall write

Hp(X\ZP,R(p)) = H* (D" (Ejog(X\27),p)) and
Hp 20 (X, R(p)) = H" (s(D*(Ejog(X),p) — D (Ejog(X\Z"),p)))-

Since ZP is a directed set we have

Hp(X\2”,R(p)) = lim Hp(X — Z,R(p)) and
ZeZP

Hp z»(X,R(p)) = lim Hp (X, R(p)).
ZeZP

Definition 4.1. The space of Green forms on X with codimension p singular support
is

GEP(X) = H (D" (Ey(X),p). D" (Biog(X\27).p)).
Let (w,9) € GEP(X). Since the map D*(Ey (X),p) — D" (B (X\2P),p) is
injective, w is determined by g. Thus we shall sometimes represent (w,g) by g.

By the definition of the Deligne complex we have

D (B (X),p)/Imde = EL WP (X)NEE 2 (p— 1)/ (Im 0 + Tm 9).
We shall denote this group by Eﬁ;ﬂg{p ~1(X). Analogously we write

BV L (X\2P) = %7 (Ef,(X\27),p)/ Imdy.
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We also have that the subgroup of cycles of QQP(Ef‘Og (X),p) is

{w € EIP(X) N B2 o(X,p) | dw = 0} .

This group will be denoted by ZE}? 5 (X).
Then

GE(X) = {(w,§) € ZERDo(X) @ BL, 5~ (X\27) | 2009 = w}
= {Zf € E{)O;H’gp_l(X\Zp) | 00g is smooth on X} :

If Z7 C X is a codimension p algebraic subset of X, then the space of Green
forms on X with singular support contained on Z is

GEY(X) = H*P(D* (B}, (X),p), D" (B (X — Z),p)).

Since ZP is a directed set and the codimension p algebraic subsets of X is a cofinal
subset of ZP, the group GEP(X) is the direct limit of the groups GE%(X) for Z of
codimension p.

Let g € GEP(X). Then the singular support of g is the intersection of all Z such
that g has a representative in GE (X ). We shall denote the singular support of g

by suppg.
Since GEP(X) are truncated relative cohomology groups we can define maps

cl: GEP(X) — Hip’gp(XaR(p)))
w:GEP(X) — ZEf?O’g,R(X),
B0 — GEY(X) and
b: HY '(X\2?,R(p)) — GE"(X),

¥

as in §3. We shall also denote by a the induced morphism
a: H2X Y (X, R(p)) — GEP(X).

Proposition 4.2. Let X be a smooth variety over C. Then there are exact se-
quences
1) 0 — Ef @77 H(X) 5 GEP(X) % Hy 2, (X, R(p) — 0.
2) 0 — HF ' (X\27,R(p)) = GEP(X) % ZEP o(X) — H (X\Z27,R(p)).
3) 0— H ™' (X,R(p)) > GEP(X) <2

HY -,(X,R(p))® ZELL o (X) — Hy (X, R(p)) — 0.
Proof. This is a translation of Proposition 3.3. taking into account that Deligne

cohomology satisfies
H 21 (X,R(p)) = 0.

This can be proved using the exact sequence of Proposition 1.1. and the fact that,
if Z is a codimension p algebraic subset of X then

HZ(X,R)=0
forn < 2p and R =R or C.

Fixing the singular support we have an analogous result.
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Proposition 4.3. Let X be a smooth variety over C and Z C X a codimension p
algebraic subset. Then there are exact sequences
1) 0 — Bl 3" (X) % GEL(X) = HY ,(X.R(p)) — 0.
2) 0 — HY (X = Z,R(p)) = GEY(X) % ZEDY o(X) — HY (X - Z,R(p)).
3) 0 — HZ Y(X,R(p)) & GEL(X) <22,

HE ,(X,R(p)) ® ZEL? o (X) — HF (X, R(p)) — 0.
Corollary 4.4. The natural map

GEL(X) — GEP(X)

is injective. Moreover, if g € GEP(X) then suppg = suppcl(g).

Proof. The injectivity follows from the injectivity of the morphism
HE 7(X,R(p) — HE z, (X, R(p))

and the Five Lemma. Let us write Y = suppcl(g) and Y/ = suppyg. Clearly Y C Y.
Then we have a morphism of change of support ¢ : GE}.(X) — GEY,(X) and a
commutative diagram

GEL(X) —%— HZ (X,R(p))

d l

GEL,(X) —%— HPy (X, R(p)),

where the horizontal arrows are surjective. Let ¢’ € GEY (X) with cl(g’) = cl(g).
By Proposition 4.3, there is an element o € Eﬁ);ﬂép_l(X) such that a(a) =g — g’

But then ¢’ + a(a) € GEY.(X) and it represents g. Thus Y =Y.

Definition 4.5. Let y be a codimension p algebraic cycle and let Y = suppy. Then
the space of Green forms associated to y is

GEJ(X) ={g € GEP(X) | cl(g) = p(y)},

where p(y) is the class of y in H%ij (X,R(p)) (see [J] or chapter IV).
A direct consequence of Corollary 4.4 is:

Corollary 4.6. Lety be a codimension p algebraic cycle and let Y = suppy. If g,
is a Green form assoctated to y, then the singular support of g, is Y.

Theorem 4.7. Let X be a smooth projective variety over C and y a codimension
p algebraic cycle. Let GEx (y) be the space of Green forms fory as defined in chap.
11, §4. Then there is a natural isomorphism

GE}(X) — GEx(y)

given by
~ 2
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If X has dimension d and GCx(y) is the space of Green currents for y in the
sense of Gillet and Soulé ([|G-S 2|, see also chap II, §4) then there is a natural
1somorphism

GEV(X) — GCx(y).

Proof. Let us write Y = suppy. By definition

p—1,p—1 dd‘g € ERP, _
GEX(y) = g € Elog,]}é (X - Y) | {ddcg dcg} _ {y} (Ima + Im 8),

where {ddg, d°g} is the cohomology class represented by (dd®g,d°g) and {y} is the
cohomology class of y. Both classes are considered in H- f,p (X, R).
On the other hand, by Corollary 4.6, if we write

BT X =Y p-1)=EL "X - Y)NERZ(X -Y,p—1)

we have

—20dg € B2 _
GEZI;(X) =4q9¢€ E{)o_l]l’%p_l(X - Yup - 1) | —g * (Ima + Ima)a
® {—200g, g} = p(y)

where now {—209g,g} and p(y) are cohomology classes in H%’? v(X,R(p)). But
the natural morphism H%’f (X, R(p)) — HP(X,R) is induced by a morphism of
complexes (see 1.10.3)
1 * * * * * *
W% :s(D*(Ex,p),D (Elog(X -Y),p)) — S(EX,R - Elog,R(X -Y)).

Which, in degree 2p, satisfies

1 1 2
G 79 = (e a1 9

Therefore, this morphism sends the class {—200g, g} to the class {dd°g, d°g}. More-
over, by the definition of p(y), this class is mapped to {y}. Hence the map

GEJ(X) — GE2x(y)

g — Wg
is well defined. The inverse of this map is also well defined, because the morphism
Hz'(X,R(p)) — Hy"(X,R) is an isomorphism.

The second part of the Theorem follows from the first part and the comparison
isomorphism between Green forms and Green currents proved in chapter II, §4.

Remark 4.8. By the definition of the space of Green forms as a truncated relative
homology group the morphism

GEY(X) — Hpy (X, R(p))

is an epimorphism. Therefore the existence of Green forms is a direct consequence
of the existence of the cycle class in real Deligne cohomology. Reciprocally, the
existence of Green forms implies the existence of the cycle class.
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Definition 4.9. Let X be a smooth variety over C and let Y and Z be algebraic
subsets of codimension p and g respectively such that Y N Z has codimension p+gq.
Then the x-product

CEY(X) © GEY(X) % GEL ,(X)

is the product in truncated relative cohomology groups induced by the product of

the Deligne complex. That is, let r = p + ¢. Write D*(X,r) = D*(E},,(X),r) and

(XY, Z,r) = s(D(X — Y, 1) @D (X — Z,1) L DX -Y UZ7)),
where j(a,b) = b— a. Then the map

DX -YNZr) — DX:Y,Zr)
g — (9,9,0)

is a quasi-isomorphism. Therefore there is a natural isomorphism
H(@*(X,r),D*(X - Y NZ,r)) — H"(D"(X,r), D (X;Y, Z,1)).

In terms of this last group we have

(w1,01) * (w2, G2) = (w1 - w2, (g1 - wo, w1 - 92,91 - g2) )

= (w1 Awa, (g1 Aw2, w1 A ga, —1p(91) A g2 + 91 ATeg2) )

= (w1 Awa, (g1 Awa,wi A g2, —4mid g1 A g2 + 4migi ANdg2) )

Theorem 4.10. The x-product of Green forms is commutative and associative.
It is compatible with the product in Deligne cohomology and with the cup product
of differential forms. Moreover if X is projective then it is compatible with the
x-product of Green forms defined in chapter II and with the x-product of currents
defined in [G-S 2].

Proof. The compatibility with U and A follows easily from the definitions.
Let Y and Z be closed algebraic subsets of X of codimension p and ¢, and let
g1 € GEY.(X) and g2 € GEL(X). Write r = p+ ¢q. Then

G1% g2 € HY (D*(X,r), D" (XY, Z,1)),

and R
Gox g1 € H* (D" (X,r),D"(X; Z,Y,7)).

Both groups are naturally isomorphic. The isomorphism between them is induced
by an isomorphism of complexes

@n(X’Y, Z,T’) B Qn(X7Z7 Y,T),

given by
(a,b,c) — (b,a,—c).

It is straightforward to check that this isomorphism sends g * gs to g2 * g1.
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Let W, Y and Z be algebraic subsets of X of codimension p, ¢ and r respectively,
such that the codimension of WNY NZ is p+ g+ r and Y intersects properly with
W and Z. Let (w1,91) € GE},(X), (w2,92) € GEL(X) and (w3, g3) € GEL(X).
Let us write s =p+ ¢+ r and
D (X;W,Y, Z,5) = s(D*(X —W,s) @D* (X - Y,s) ®D*(X — Z,5) L

DX -WUY,s) @D (X -WUZs) @D (X -YUZs) 5
DX -WUYULZs)),

where
jla,b,c) =(b—a,c—a,b—c) and k(a,b,c)=a—b+ec.

Both products, §1#(goxg3) and (§1%§2 )33 are defined in H2*(D*(X, s), D*(X; W, Y, Z, 5)).
We have

g1 % (92 ¥ g3) = (wi-(w2 - w3), (91 - (w2 - w3), w1 - (92 - w3),w1 - (w2 - g3),

— g1 (92 w3),—g1 - (w2-93), —w1- (92 93),91 " (92 - g3)) )

and

@1 * §2) * g3 = ((w1'w2) T w3, ((91 'w2) - W3, (wl '92) - w3, (w1 'wz) " 93,
- (91 '92) * w3, —(91 'wz) - g3, —(wl '92) - g3, (91 '92) '93) )
By Theorem 2.3, wq - (w2 - w3) = (w1 - we) - ws. Therefore

g1 * (g2 x g3) — (g1 * g2) * g3 = (0,7),

with z € D 1(X;W,Y, Z,s) Let h, be the homotopy which makes the product
on the Deligne complex associative (see 2.3). That is

a-(b-c)=(a-b)-c=dpha(a®@b®c)+ hadp(a®@b® c).
Let us consider the element y € ©(X; W)Y, Z, s) given by

Y= (ha(g1 @wa @ w3), ha(w1 ® g2 @ w3), ha(w1 ® we ® gs),
ha(g1 ® g2 ® w3), ha(gr ® w2 ® g3), ha(wi ® g2 ® g3), ha(g1 ® g2 ® g3)).

By the naturality of h, we have,
doy =z — (ha(w1 @ wo ®w3), ha(w; ®ws @ w3), ha(w) @ we ®ws),0,0,0,0).

Therefore the associativity follows from the lemma:

Lemma 4.11. Let w; € D%(X — W,p), wy € D?U(X —Y,q), and w3 € D?"(X —
Z,r). Then
ha(wl X wo & w3> =0.

Proof. By definition (see §2)

ha(wi @ we @ w3) = Y(h(pwi U pws) U pws) + ¥ (pwr U h(pws U pws)),
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where ¢ and ¢ are the homotopy equivalences between the Deligne complexes, h is
the homotopy between ¢ and Id and U is the product Ug in the Deligne-Beilinson
complex which is associative.

But

h(pwi U pws) = h((wi,w1,0) U (we,ws,0))
= h(w1 Awa, w1 A ws,0)
=0.
Therefore we obtain the Lemma.

Let us show now that the x-product defined here is compatible with the x-product
defined in chapter II. Let Y and Z be closed algebraic subsets of X of codimension p
and ¢ respectively which intersect properly. Write »r = p+q. Let X be a resolution
of singularities of Y N Z such that the strict transforms of Y and Z do not meet.
Write Y for the strict transform of Y and Z for that of Z. Let Oyz be a smooth

function on X such that takes the value 1 in a neighbourhood of Y and the value
0 in a neighbourhood of Z. Let o, = 1—0, ,. Let us denote by *" the *product
of Green forms defined in chapter II. Then

Go ' Go = Ami(dd®(0y. ,91) AN ga + 0, g1 Addgs)

= (d@(ay’zgl) 92 +0,,01 ~dongs)
The factor 4mi comes from the normalization for Green forms used here which
differs from that used in chap II (see 4.7).
The isomorphism

o H(D*(X,r), D (X =Y N Z,r)) — H"(@*(X,r),D*(X,Y, Z,r))
sends (do(0y.,91) - g2 + 0,91 - doga)  to

(do(0y,01) g2+ 05y g1 dpg2,do(0y ,g1) g2 + 04y g1 - dpg2,0)
Then

o ' 92) =91 % G2 = (do(0y .01 - 92), —do (0, g1 - 92), —01 - 92)

= (df@ (UY,zgl "92, =05y 91" 92, O)) -
=0.

Therefore g; * go and g1 *’ go represents the same Green form.

In chapter II, §4, the compatibility of the s-product of Green currents with the
product *” of Green forms is proved. Therefore the product of Green currents is
also compatible with the product defined here.

Remark 4.12. The key point in the proof of the associativity is Lemma 4.11. We
can even weak its hipothesis assuming that w;, i = 1,2,3, are closed. It may be
convenient to replace the complexes © by other complexes in order to obtain Green
forms with different properties. Then to prove the associativity of the product of
these new Green forms we only need to check Lemma 4.11 in that case.

Remark 4.13. In the proof of Theorem 4.10 we have assumed that the intersections
are proper, because we have defined GE? (X)) only for closed subsets Z of codimen-
sion > p. With the obvious definition of GEY(X) for Z of arbitrary codimension,
the Theorem also holds, except for the comparison between Green forms and Green
currents.
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§1. REAL DELIGNE HOMOLOGY.

We are interested in relating algebraic cycles and algebraic K-theoretic chains
with Deligne cohomology. This can be done using Deligne homology and the
Poincaré Duality homomorphism. In this section we shall review how to use cur-
rents to obtain explicit descriptions of real Deligne homology groups. We shall
follow the conventions of [J], except that we shall use homological notation.

Let us begin with the case of X, a proper smooth algebraic variety over C. Let
DX denote the sheaf of complex valued currents on X. That is, for an open subset
U C X, (U, DY) is the topological dual of T'.(U,ER). This sheaf is denoted in [J]
by "Q3" .

The sheaf DX has a natural bigrading

DX = @ DX,

pt+q=n

and a real structure DX"®. We shall write D;X = I'(X, D).
If X is equidimensional of dimension d, then there is a map

H : E;l( - Dg(d—n
w o — [w],

defined by
1

[w](w') = @)l /Xw'/\w.

More generally, if w is a locally L! form, then we define [w] by the same formula.
Observe that this notation differs from the notation used in chapter II by the
inclusion of the normalization factor.

We can turn DX into a chain complex by writing, for T' € DX,

AT (w) = (—1)"T(dw).

If X is equidimensional of dimension d, we shall also write D% = Dz, . In this
case, by Stokes’ Theorem, the map [-] : E% — D% is a morphism of complexes and
a quasi-isomorphism with respect to the Hodge filtration. Moreover the product

E% @ DX — DX

defined by
WwAT(W) =T(W Aw),
turns DX into a left E%-module.
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Definition 1.1. A Dolbeault chain complez is a complex of real vector spaces (A, d)
provided with a bigrading on A = AR @ C:

Af = @ Ap.g;
pt+q=d

such that _

DC1. The differential d can be decomposed as a sum of operators d = 9 + 0 of
type (—1,0) and (0, —1).

DC2. It satisfies the symmetry property

Apq = Aqp-
The chain complex DX is a Dolbeault chain complex. By analogy with the case

of Dolbeault cochain complexes introduced in chapter III, we define:

Definition 1.2. Let A be a chain Dolbeault complex. The Hodge filtration F' of A,
is the increasing filtration
FA. = P Ap .
p'<p

We denote by F the filtration complex conjugate of F.
We shall write
Al(p) = (2mi) P AL

The Deligne complexes associated to A are
Af(p)p = s(A%(p) ® F AT = AT),
where u(a,b) = b —a. And

((AR(p+1)n @ Ay s for n > 2p+1,
p'+q'=n+1
Du(Ap) =5ulw) =4 c
A, (p)N @ Ap o, for n < 2p.
P +a'=n
\ p'<p, ¢'<p

The differential of this complex will also be denoted by ds and we have,

dx, for n < 2p,
dor =< —n(dz), forn>2p+1 and
—200x, forn=2p+1,

where 7 is the projection A — Coker u.

As in the case of Dolbeault cochain complexes, the complexes A¥(p)p and
9. (A, p) are homotopically equivalent.

Let A* be a Dolbeault cochain algebra an let B, a Dolbeault chain complex
which is a left A*-module. Then, the formules of chapter III, §2 define a product

D"(A,p) ® Dm(B,q) — Dm—n(B,q —Dp).

Which induces in H*(D.(B,-)) a structure of left H*(D*(A4, -))-module.
Let us now see how to construct real Deligne homology in terms of currents in
the case of a smooth and proper complex algebraic variety.
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Theorem 1.3. Let X be a proper smooth variety over C'. Then there is a natural
1somorphism

HE(X,R(p)) - Hn(g*(Dfap»

Proof. Note that the groups HP (X, R(p)) are denoted in [J] by 'Hp"(X,R(—p)).
Therefore the proposition follows from [J, 1.3] and the fact that, if C,(X,R) is the
complex of smooth singular chains on X then the natural map

C.(X,R) — DR

is a quasi-isomorphism.

Let us now study the case of an open smooth variety and of a divisor with
normal crossings. Let X be a proper smooth variety over C, Y a divisor with
normal crossings and V' = X — Y. We shall always assume that a divisor with
normal crossings is the union of its smooth irreducible components.

Let us denote by Yy E% the subcomplex of E5 composed by the forms which
vanish when restricted to each irreducible component of Y. Then the complex of
currents on Y ([H-L]) is defined by:

DY ={T e DX | T(w) =0, Yw € Xy E%}.

This complex only depends on Y and, when Y is smooth, coincides with the usual
complex of currents.

Let us write DX/* = DX /DY

Both complexes, DY and D*X/ Y, have a structure of Dolbeault chain complexes
induced by that of DX.

Theorem 1.4. Let X be an irreducible proper smooth variety over C of dimension
d, Y a divisor with normal crossings on'Y andV = X —Y . Then there are natural
1somorphisms

(1) HP(Y,R(p)) — H.(D.(DY,p))
and
(2) HP(V,R(p)) — H.(D.(DXY p)).

Proof. Let Y = Y7 U---UY, be the decomposition of Y in smooth irreducible
components. For each I = (i1,...,144), an ordered g-tuple with 1 <43 <--- <4, <r

we write |I| = ¢, I; = (i1, ..., %5, -, 1q), Where/z'\j means the absence of this element,
and
Yr =Y.
ieT

We shall denote by

5§:Y1—>qu and br:Y; — Y,
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the natural inclusions. Finally let

Yig) = H Yy, 6= H 531':Y(Q)—>Yq—1 and b = H br:Yg) — Y.
[T1=q [11=q lI]=q
We have that Y{.) is a strict simplicial scheme and that the natural morphism
b: Y. — Y has cohomological descent. Therefore the real Deligne homology
of X can be constructed as follows. Let KX (Y) be the simple of the complex of

complexes

Yay 8% Y & Y(r)

D" «— D,
where 69 = »7(—1)767. Then

. & D,
KX(Y)=Dy"&D!® &...a D"

Since all the morphisms 9 are real and compatible with the Hodge filtration, then

KX (Y) has a real structure, Ki-™ (Y), and a Hodge filtration, F. This filtration
is given by

F,KX(Y)=F,D," @ F,D® &...& F,D}

By the definition of Deligne homology of a singular variety (see [J]) we have

H (Y,R(p)) = Hu(s(KX* (V) (p) ® F, KX (Y) — KX (Y))).

Y<r)

Hence (1) is consequence of the following results.
Lemma 1.5. ([Fuj]) The sequence

Yy 02 [V 0° " Y,

0 — pY 2o p¥o 2 p 2 p

— 0
18 exact.
Corollary 1.6. The natural morphism

(KX (Y),F) — (D), F)

1s a filtered quasi-isomorphism. Moreover it induces a quasi-isomorphism between
the corresponding real subsheaves.

Proof. From Lemma 1.5 and the fact that the morphisms ¢ and b(1) are bihomo-
geneous we have that, for each p, ¢, the sequence

Y(l) 5 pYe

b 6"
0 DY - Dpy < Dpf; &= DY —0

is exact. This implies that the morphism KX (Y) — DY is a filtered quasi-
isomorphism.

The fact that it induces a real quasi-isomorphism is proved in the same way
using that the morphisms §° and b(1) are real.

Now (2) is consequence of (1) and of the definition of DY,

Remark 1.7. Let X be a smooth algebraic variety over C of dimension d. Let
Y C X be a divisor with normal crossings. Let us write D% Iy = DX/ Y . A direct
consequence of Corollary 1.6 is that the morphism of complexes

EXx(logY) — D}/Y

introduced in chapter II, §3 is a filtered quasi-isomorphism with respect to the
Hodge filtration.
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§2. K-CHAINS AND REAL DELIGNE COHOMOLOGY.

Let X be a smooth algebraic variety over C of dimension d. Let us denote by
X @) the set of irreducible subvarieties of codimension p and let ZP = ZP(X) be
the group of algebraic cycles of codimension p.

Let ' '
Ry = B(X) = @ K i(k(x)
xeX (@)

be the groups of the E; term of the Brown-Gersten-Quillen spectral sequence (see
[Q 1], [Gi] [Gr 1] and [Gr 2]). Then RE(X) = ZP(X). The elements of RP™!
will be called K;-chains and the elements of R£_2, Ks-chains. Let us denote by

d: R;, — R;“ the differential of this spectral sequence.
Recall that K;(k(x)) = k(z)* is the group of units of k(x). If f is a K;j-chain

then
f: Z fam

mGX('L)

with f, € k(x)*. And df =div f =) _div f,. Therefore
RE(X) /dRE~H(X) = CHP(X),

is the codimension p Chow group of X.
If fe R; we will denote its support by

supp(f) = | J {«}.

zeXx®
faFl

Note that for i = p we write

supp(f) = | J {«}.

zex®
fa7F#0

because Ky (k(x)) = Z with additive notation.
The first aim of this section is to prove the following theorem.

Theorem 2.1. Let X be a smooth algebraic variety over C and let f € R;;(X) with
t=p,p—1,p—2. Then there is defined a class
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such that:
1) Ifi =p, f is a codimension p algebraic cycle, then

p(f) =c(f) € HE o /(X R(p))

is the cycle class (see for instance [J]).
2) We have p(df) = 0p(f), where

0 HYL oo ar (X —suppdf,R(p)) — HBLEL (X R(p))

1S the connection homomorphism.
3) If h: X — X' is a proper morphism we have hy(pf) = p(h.f)

Proof. The case of a cycle y is well known. Let us recall how we can characterize
p(y) in terms of currents. If Y is a dimension n subvariety of X, Y is a resolution
of singularities of Y, and 7w : Y — X is the induced map, then the current Jy is

defined by 1
Iy (w) = W/?ﬂ*(w)

Note that this definition differs from the definition used in chapter II by the inclu-
sion of the normalization factor. If y is an algebraic cycle we define §,, by linearity.

Let X be smooth and proper of dimension d and let [X] € Z°(X) be the funda-
mental cycle. Then we have a class

{X} € H3)(X,R(d))
which is represented by the current
0x € Dy (d) = D2a(D), d).
Since X is smooth, the morphism
Hp (X, R(0)) — Hyy(X,R(d))
is an isomorphism and p([X]) is the preimage of {X} by this isomorphism. Alter-
natively we can represent p([X]) directly by the function 1 € D(E%,0).
Let Y C X be a codimension p irreducible subvariety, let [Y] be its fundamental

cycle and let 7 : Y — Y be a resolution of singularities. Then we have a class
{Y} e HY,_,,(Y,R(d—p)) and we obtain p([Y]) by the composition of morphisms

HZDd—Zp(i;v R(d - p)) L H2’ii—2p(Y7 R(d - p)) — H%]?Y (X7 R(p))
Or, in other words, p([Y]) is the image of ,0([17]) by the Gysin morphism
Hp(Y, R(0) — Hpy (X, R(p)).

If y is a codimension p algebraic cycle and Y = suppy then p(y) is defined
by linearity. Note that, if Y is a divisor with normal crossings, as a consequence
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of Theorem 1.4, we can represent {y} € HL, ,(Y,R(d — 1)) by the current 6, €
Doq_2(DY,d—1). B
Finally, if X is not proper and y is a codimension p algebraic cycle, let X be a

smooth compactification of X and 5 € ZP(X) any cycle whose restriction to X is
y. Then p(y) is defined as the image of p(y) by the restriction morphism

2 52 2
HDITSUPpﬂ(X’ R(p)) - HD]?SUPP Y

(X, R(p))-

This class is independent of the choice of the compactification X.

Let us now study the case of Ki-chains. Let X be a proper smooth variety of
dimension d and let f € R}(X) = K;(k(X)) = k(X)*, such that Y = supp(div f)
is a divisor with normal crossings. Let us write

-1 _
o5 = —-llog 1] € Dy (d) = Doga (DT, d = 1),
where this current is defined by (see §1)
—1 — 1 —1 —
—l =—— [ —1 .
By the Poincaré-Lelong equation

dody = ~200 " [log {7

= —0div f
But this current belongs to Dag_2(DY ,d — 1). Therefore § ¢ is a cycle in the group
@gd_l(Df/Y, d — 1) and we obtain a class

{07} € Hyy 1 (X = Y,R(d - 1)).
We define p(f) as the preimage of {6;} by the isomorphism
HL(X — Y, R(1)) — HE,_ (X — Y, R(d— 1)).

Alternatively we can represent p(f) by the function
-1 Z _ 0,0 *
- log ff € Elgg g (X —Y,0) = D' (Ejy (X —Y), 1).

In order to prove 2), let us recall that we have a commutative diagram

HD (X -Y,R(d-1)) —2— HP,_,(V,R(d - 1))

l l

HH(X - Y. R(1) —2— H3,(X,R(1)).

Moreover 0{é¢} is represented by Resdy = —dpds = dgiv r. Hence the result.
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Let W C X be an integral codimension p — 1 subvariety and let f € K;(k(W)).
Write Y = supp(div f). Let m : W — W be a resolution of singularities such that

Y = 77 1Y is a divisor with normal crossings. Then we define p(f) as the image of
p(m* f) by the Gysin morphism

Hp(W =Y, R(1)) — HEy'y (X — Y, R(p)).

The fact that dp(f) = p(div f) follows from the covariance of Deligne homology.
Let now f € Rg_l be an arbitrary Ki-chain, f = > f;. Let us write

W = Usupp fi, Y =supp(divf) and Z= Usupp(div fi)-

(3

We have Y C Z. By linearity we obtain a class

p(f) € HEw_4(X — Z,R(p)).
But we have an exact sequence

HZ L (X =Y, R(p)) — HE W (X =Y, R(p)) — Hyw' ,(X — Z,R(p)) —
HY , (X —Y,R(p)) — .

And, since Z — Y has codimension p, then H%fgiY(X —Y,R(p)) = 0. Moreover,
since 0 is linear, dp(f) = p(div f) and this class has support on Y. Therefore we
can lift p(f) to a unique class also denoted p(f) € H%’j;vl_y(X —Y,R(p)).

As before, the case when X is not proper is done by restriction.

Let us prove the covariance of p at the level of K;-chains. By the covariance of
Deligne homology and K;-chains, it is enough to check the case when 7 : X — X’
is a proper surjective morphism and f € k(X)*.

If dim X > dim X’ then 7. f = 0 and 707 = 0.

If dim X = dim X’ then 7, f = N(f), where N is the norm of the field extension
k(X'") — Ek(X). In terms of functions

mf@) = ] f,

m(y)=z

where 7(y) is the ramification index. On the other hand, if ¢ is a L' function on
X then m.[p] = [m.¢], where

mep(r) = Y r(y)ey).

m(y)=x

Therefore 0, f = .05 and p(m, f) = m(pf).

The proof for Ks-chains will follow the same pattern as the proof for K;-chains.
Let X be a proper smooth variety over C. Recall that the group K3(k(X)) can be
described as



where R is the subgroup generated by the elements of the form f ® (1 — f). The
element of Ko(k(X)) represented by f ® g will be denoted by {f,g}.

The differential of the Brown-Gersten-Quillen spectral sequence is given by the
tame symbol. Let Y be a divisor of X, vy the corresponding valuation. Then the
Y-th component of d{ f, g} is given by

(1) Do [ £
pPrEGEe

where {-} denotes the class in k(Y)*.

Assume now that f ® g € k(X)* ® k(X)*, such that Z = div f U divg and
Y = suppd{f, g} are divisors with normal crossings. We have Y C Z. Then we
write

A(f®g)=_7110gf7-_7110gg§
_ 1/ (df _df — . (99 _dg 7
=3 (- (F T )wae (- F ) er7)
S 92(Elt)g(X - Z)72)7

where a - b denotes the product in the Deligne cochain complex @*(El*og(X —27Z),-).
We denote by dfg, the current [A(f ® g)]. That is

6 eg(w) = ﬁ /XwM(f®g)-

Lemma 2.2.

1) The form A(f ® g) is closed in @2(E1*Og(X —7),2).

2) If g=1— f, then the form A(f ® (1 — f)) is ezvact in D*(Ey, (X — Z),2).
8) The current ;g4 € Dag—2(DX,d — 2) satisfies

dodfog = —da{f,g}-
Proof. Let us prove 1). By the Leibnitz rule for the Deligne complex we have
-1 - -1 _ -1 — -1 _
doA(f @ g) = do—-log ff - —-loggg — —-log ff - do—~log gg = 0.
In order to prove 2), we can consider f as a map f : X — P!. Then we have

AMfe=1f)=rn

where 7 is the form

1 dz dx . dzr dzr _
=g ((E—?) log(l—2)(1—7) + <l—f_ 1_m>10g90x)

€ D*(Ey (B! — {0,1,00}), 2).
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We can consider 1) € Ey, 5(P' —{0,1,00},1). Moreover a direct check shows that
dn = 0. Let us prove that 7 is exact in the complex El*og,R(IP)1 —{0,1,00},1). It is
enough to show that the periods of n around 0, 1 and oo are zero. Since the three
cases are analogous we only discuss the period of n around 0.

Let us write x = re®®. Since 7 is closed

/ n = lim 7.
ll||=r =0z =r

But it is easy to show that

lim || n| < limC/” N rlogr?df = 0.

=0 S fef|=r =0
Therefore 7 is d-exact. Now, since
D' (Eg (P — {0,1,00}),2) = By, g (P' = {0,1,00},1),

and for this degree do = —d we have that 7 is do-exact.

We can obtain a primitive of the form 7 by means of the Bloch-Wigner diloga-
rithm. Let us explain the construction of this function (see [Bl 1] and [Z]). Let Liy
be the the holomorphic function given, for ||z|| < 1, by the power series

oo n

Liy = 22—2

n=1
The function Lis can be extended analytically to C — (1,00) and we obtain

v d
Lis = —/ log(1 — u)—u
0 u

The Bloch-Wigner dilogarithm is the real function
D(x) = J(Lig(x)) + arg(1 — ) log [,

where J is the imaginary part and arg is the branch of the argument lying between
—m and 7. This function is real analytic on C except at points 0 and 1, where it
has singularities of the type rlogr. Then, we can check that,

idD(x) = n.

Observe that n € A]%% (log{0,1,00}), the complex of real analytic forms on P{ with
logarithmic singularities on 0, 1 and oco. Therefore, any primitive of 7, which is
determined up to a constant, lies in A[%é (log{0,1,00}). Thus D(z) is real analytic
on C —{0,1} and has logarithmic singularities.

Let us now prove 3). Let us write Z = divfUdivg = Z; U--- U Z,, with
Z; smooth irreducible divisors. Let v; be the valuation associated to Z; and let
a; : Z; — X be the inclusion. We have that

do0fgmy = component of type (d —1,d — 1) of —ddsg,.
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Then

006 s () = w Jx dw ANX(f ® g), if w is of type (d —1,d —1).
7 0, if w is of type (d,d —2) or (d — 2,d),

Let N (e) be a tubular neighbourhood of Z of radius € and let V' (¢) be the boundary
of N(g). Then, by Stokes’ theorem, if w is a (d —1,d — 1) test form

ﬁ/}(deA(f@g)zﬁ/xd(‘ﬂ/\)‘(f@gn
:Eh_r)ngﬁ/x_m)d(wAA(f@M))

= lim —/ WwAANf®g).
e—0 (2mi)? Jy (o

On the other hand, if w is of type (d —2,d) or (d,d — 2), then dq4(¢,4}(w) = 0. And
if w is a test form of type (d —1,d — 1), then

1 . -1 N Vi(g)
s = 2 s [, 5 % (g )

i

Now the equality can be checked locally. So we can assume that w has compact
support on a neighbourhood of 0 € C¢. Since both terms are additive on f and g,

we are reduced to the cases
1) f=21,9=2,
2) f=21,9= 2,
3) f = z1, g an inversible function in a neighbourhood of 0.
In the first case both terms of the equality are zero. The second and third cases

are analogous so we shall write only the second case.

lim—/ wAANf®g)
V(e)

e—s0 (27Ti)d

= lim _—1/ u)/\1 @—% log 29Z9 — @—@ log z1Z
_a—>0 (27Ti)d V(e) 4 Z1 Z1 & 2252 Z9 V) &2141

1 / —11 0wt -1 / —1l _
= — — 102 29029 W T — — 102 2121 W
@ri)iT ),y 2 PR a2 R

= _6d{Z1,Z2} (w) .

This concludes the proof of the lemma.

Let us return to the proof of Theorem 2.1. By part 1) of Lemma 2.2 the form
A(f ® g) defines a class

p(f®g) € Hp(X — Z,R(2)).

By part 2) of the same lemma p(f ® g) only depends on the class {f, g}.
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Now we want to lift this class to a class in H3(X —Y,R(2)). To this end, let us
consider the exact sequence

H? ; (X —Y,R(2)) — H3(X — Y,R(2)) — H3(X — Z,R(2)) 9,

Hp 7y (X = Y,R(2)).
The first group of this exact sequence can be included in another exact sequence:
Hy y(X —=Y.C)/F* — Hp z_y(X ~Y,R(2)) — Hj_y(X ~Y,R(2)) —
H} (X -Y,C)/F>.

Since Z has codimension one, the first group of the last sequence is zero. Moreover
the last map of the same sequence is injective. Therefore Hz, , (X =Y, R(2)) = 0.
By part 3) of the lemma Jp(f ® g) has support on Y. Hence we can lift p(f ® g)
to a unique class in H3(X — Y,R(2)).
The remainder of the proof in the case of Ks-chains follows as in the case of
K;-chains.

Let us write

CHPP(X) = Kerd : R_g;l(X) — R_gl(X) .
Imd: R °(X) — Rb(X)
As a consequence of Theorem 2.1 we have
Corollary 2.3. There are well defined maps
p:CHP(X) — HP(X,R(p)), and
p:CHPP™H(X) — HZ' ™' (X, R(p)).

The first is the class cycle map and the second is, up to a normalization factor, the
Beilinson regulator map (see [G-S 2, 3.5.]). Moreover these maps are covariant for
proper morphisms.

We can write Theorem 2.1 in terms of a partial compatibility between the Brown-
Gersten-Quillen spectral sequence and the Bloch-Ogus spectral sequence for Deligne
cohomology.

Let ZP = ZP(X) denote the set of all closed algebraic subsets of X of codimension
> p ordered by inclusion. Let ZP\ZPT! denote the set of all pairs (Z,2) € ZP x
ZP+1 such that Z' C Z. We consider this set ordered by inclusion.

Following [B-O], let us write

Hp gz zo+1 (X, R(q)) = lim Hp 77X — Z',R(q)).
(z,z")ezP\zP"!
Since ZP\ZP~! is a directed set, we can obtain these groups as the cohomology
groups of the complex
lim  $(D"(Buog(X — 2),0) — D" (Biog(X — 2),0))
(2,Zz"yezP\zP~1
We shall also write
Hp 2»(X,R(q)) = lim Hp z(X,R(¢g))  and
ZeZ?P
H%(X - ZP,R((])) = hi,n H%(X - Z7R(Q))
ZeZP

Then Theorem 2.1 implies:
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Theorem 2.4. There is a commutative diagram
d

Ry~ — Ry~ — Ry
d d d
2p—2 o 2p—1 o] 2
HD]?prz\prl(X>R(p)) - sz?zpfl\zp(XaR(p)) - HD]?zp\sz(XaR(p))?

where the last map is the cycle class map. This diagram s covartant for proper
maps.

Note that Theorem 2.1. is more precise than Theorem 2.4., in the sense that it
specifies where each cohomology class is defined.

The last aim of this section is to study the compatibility of p with inverse images
and intersection products. The case of cycles is well known and we have:

Theorem 2.5.

1) Let f : X! — X be a morphism of smooth algebraic varieties over C and let
Z € ZP(X) be an irreducible algebraic cycle such that f=1(Z) has codimension
p. Then there is defined a cycle f*Z. Moreover we have p(f*Z) = f*p(Z).

2) Let Y and Z be two algebraic cycles of X which intersect properly. Then there
is defined an intersection cycle Y - Z and we have p(Y - Z) = p(Y) U p(Z).

3) The morphism

p: P CH(X) — P HE (X, R(p))

is a natural transformation between covariant functors from the category of
smooth complex varieties to the category of rings.

Proof. Using chapter III, Proposition 1.1 one can see that, for X smooth, the map
o HY (X, R(p)) — H(X,C)
is injective, and the map ¢ o p is, up to a normalization factor, the cycle class

map. Then this theorem follows from the compatibility between Chow rings and
cohomology (see for example [Ful, §19]).

The compatibility of p with inverse images and intersection products at the level
of Ki-chains has been stated in [G-S 2, 4.2]. Let us recall their result.

Let us write Eg_l = Rg_l /Imd. Then the commutative diagram of Theorem
2.4 induces a commutative diagram

RE~1(X) _div ZP(X)

g d
Hy' ™ (X\27,R(p) —"— Hy) 2, (X, R(p)).

Let f =) fw be a Ki-chain and let Z = {Z;,...,Z,} be a collection of closed
algebraic subsets. The Ki-chain h is said to meet Z properly if
1) Each W such that fyr # 1 meet Z properly for all Z € Z
2) div fyy meet Z properly for all W and all Z € Z.

If only condition 2) is satisfied we say that f and Z meet almost properly. Let
h 1Y — X be a morphism of smooth complex varieties. Then h(Y) is a finite
union of locally closed subsets Z;, ¢ = 1,..., N such that the fibres of h have the
same dimension at the points of Z;. The closure of each Z; will be called a stratum
of h.
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2.6. Theorem. (|G-S 2, 4.2])

1) Let h : X' — X be a morphism of smooth complex varieties and let f €
Rgfl(X). If f meets the set of strata of h properly, then there is defined a K-
chain h*(f) € RE~H(X') such that div h*(f) = h*(div f) and ph*(f) = h*p(f).
If h meets the set of strata of h almost properly, then the pull-back Ki-chain
h*(f) is defined in Rg_l with the same properties.

2) Let X be a smooth complex variety, f € Rg_l a Kq-chain and Z a codimension
q algebraic cycle. If f and Z meet properly, then there is defined a product K-

chain f-Z € Rgig_l such that div(f-Z) =div(f)-Z and p(f-Z) = p(f)Up(Z).

If f and Z meet almost properly then the product f-Z is defined in Egigfl with
the same properties.

3) Let h : X' — X be a morphism of smooth quasi-projective complex varieties.
Let }Nzg—l(X)h be the subgroup of }N%g_l generated by the Ki-chains f such that

h=Y(div f) has codimension at least p. Then there is a well defined morphism
h*: RETYX), — RETYH(XD),

compatible with p and div.

4) Let X be a smooth quasi-projective complex variety and Z a codimension q alge-
braic cycle. Let ﬁg_l(X)Z be the subgroup of Eg_l generated by the Ki-chains
f such that div f meets Z properly. Then there is a well defined morphism

Z: RN (X) 7 — RETTN(X),

compatible with p and div.

Sketch of proof. Parts 1) and 2) are a reformulation of [G-S 2, Lemma 4.2.5] and
part 3) and 4) are the consequence of the former and the Moving Lemma for K;-
chains ([G-S 2, Lemma 4.2.6], see the discussion after this Lemma).

Remark 2.7. Let Xr be a smooth real algebraic variety, equivalently Xr is a pair
(X, F), where X is a smooth complex variety and Fi, is an antilinear involution.
Then all the results of this secction remains valid, provided that we substitute
K-chains by real defined K-chains and every complex A(X) by the subcomplex

A(Xr) = {z € A(X) | FL () =T}

See for example [E-V, 2.1].
In particular, If A(X) is a Dolbeault complex, we shall write

{z € D"(A*(Xr),p) | Fox = (-1)P"*z}, ifn<2p—1and

DA Xr)p) = { {x € D"(A*(Xr),p) | Fix = (—1)Pz}, if n > 2p.

We shall also write

Hp (X, R(p)) = H"(D(Ejog (X&), p))-
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§3. COHOMOLOGICAL ARITHMETIC CHOW GROUPS.

Let (A, X, Fo) be an arithmetic ring (See [G-S 2, §3]). That is, A is an excellent
Noetherian domain, ¥ is a nonempty set of monomorphisms ¢ : A — C and F
is a conjugate-linear involution of C-algebras Fi, : C*¥ — C?¥, such that the image
of A in C* is invariant under F,.. Let us denote by K the quotient field of A. The
first examples of such arithmetic rings A are
1) A=7,Q,R, with ¥ containing only the inclusion.

2) A=C, with ¥ = {Id, o}, where Id is the identity and o is the conjugation.
3) A = Ok, the ring of integers of a number field K, with ¥ the set of complex

immersions of K.

Let X be a regular separated flat A-scheme of finite type, with generic fibre X g

regular over K. X is called an arithmetic variety over A, or arithmetic variety if A
is fixed. If 0 € ¥ we write X, = X ® C and Xy, = [[ X,. Let X, be the complex

manifold determined by Xy». We d(énote by F the anti-linear involution of X
induced by F,. Finally we denote by Xg the real manifold (X, Fro).

In this section we shall use Green forms to define cohomological arithmetic Chow
groups of X. In the case when Xy is proper over K then this arithmetic Chow
groups are naturally isomorphic to the arithmetic Chow groups defined in [G-S 2.
If Xk is not proper the groups defined here have better Hodge theoretic properties
than the groups defined in [G-S 2|. In fact the existence of the groups introduced
here was already predicted in [G-S 2].

To take into account the structure of real variety of X, (see Remark 2.7) we
write

GE?(Xz) = {j € GE*(Xo) | Fig =7}

Note that, since g € D?P~1(E}

log(XOO/Zp)ap)a we have g = (_1)p—1g‘

We also write

H (X5, R(p)) = H'(D(Eiyy (i), )
B (Xn) = {g € 9% (Biy(Xao),p) | Fiog = 7}/ (Imdo)
= {9 € BT (Xo) N B2 (Xeop) | Flog = (<1) g} / (1 + i)

and
ZERY 2 (Xg) = {w € D (B (Xa0o),p) | dow =0, Fiw =}

- {w € EIP(Xoo) N EX 4 (Xooup) | dw = 0, Flow = (—1)%;} ‘
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Observe that Proposition 4.2 of chapter III remains valid provided we use the
corresponding groups for Xg.

Let ZP(X) denote the set of codimension p algebraic cycles on X. For each
y € ZP(X) there is a well defined cycle yx € ZP(X k). Hence a cycle yoo € ZP(Xoo).
We shall write p(y) = p(yoo) € H%psuppy(XR, R(p)). Then the space of Green forms
for y is defined by:

GE}(Xr) = {9 € GEP(Xr) | cl(g) = p(y)} -
And the group of codimension p arithmetic cycles is defined by

ZP(X) = {(y.9) € ZP(X) ® GEP(XR) | § € GEL(XR)}
= {(y,9) € Z*(X) ® GE"(Xg) | cl(3) = p(y))} .

That is, a codimension p arithmetic cycle is a pair (y,g), where y is a codimension
p algebraic cycle, and g is the class in D?P~1( B (X\Z2P)r),p)/ Imdp of a form

g € DY B ((X\ZP)r), p), such that
w=dpg=—200g € QQP(Elzg(XR)ap)v

and the pair (w, g) represents the class p(y) € lefzp (Xr,R(p)).

Let us now define rational equivalence in this setting. Let W be a codimension
p — 1 irreducible subvariety of X and let f € k(W)*. Let us write Y = suppdiv f.
We have a well defined subvariety W, of X, (which may be empty) and a function
foo € k(Wao)*. Since f is defined over K, the function f., satisfies % f = f. Hence
the map p (see §2) gives us a class

p(f) = p(fx) € HE (X = Y)r, R(p)).

Therefore we have an element

b(p(f)) € GEg;, ;(Xr),

where b : H2Z71 (X =Y)r, R(p)) — GEY,, ;(Xwr) is the map introduced in chapter
111, after Definition 4.1.
Then we write

div f = (div f,b(p(f))) € Z°(X).
We denote by Rat? the subgroup of zp generated by the elements of the form div f.
Definition. 3.1 The cohomological arithmetic Chow groups of X are

CHP(X) = CHP(X, D (Eioy)) / Rat?.

We shall write CHP (X, D (Flog)) when we want to stress the complex used to define
the Green objects, or when we want to differentiate them from the arithmetic Chow
groups defined by Gillet and Soulé.
We shall write
CH*(X @ CHP(X
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Theorem 3.2. Let X be an arithmetic variety, with Xg proper over K and
dim X = d. Then there is a natural isomorphism

CH (X, D(E},,)) — CH'(X),

where the group on the right hand side is the arithmetic Chow group defined in [G-S
2]. This isomorphism is given by

(v, 9) — (y,2(2mi)*PH[g] ),

where g is a representative of g.

Proof. Any representative g of g is locally integrable in the whole X by chapter II,
Corollary 3.8.2. Recall that [g] means the current on X defined by

1
[g](w>=W/XwAg-

By chapter I1I, Theorem 4.7, the map

(y,9) — (y.2(2mi)* " PH g ),

gives us an isomorphism between the group of arithmetic cycles defined here and
the group of arithmetic cycles in the sense of Gillet and Soulé. Thus we only need
to check that the two concepts of rational equivalence coincide.

Let us recall the definition of rational equivalence in [G-S 2]. Let W be a codi-
mension p — 1 irreducible subvariety of X and let f € k(W)*. Let Was be a
resolution of singularities of W, and let j : WN/OO — X be the induced map. The
function f induces a well defined function, also denoted by f € k(WOO)* Then
div f in the sense of Gillet and Soulé is defined by

div f = (div f, —(2mi) "1, [log 7).

The factor (27i)¢~P comes from the different definition of [-] here and in [G-S 2].
Therefore we are reduced to proving that: there is a representative g of b(pf)
such that, if [g] is the associated current on X, then

2[g] + j«[log ff] € ImO + Im O

in the complex D% . Since this statement only depends on the complex variety
X+ we will assume that X is a complex variety of dimension d.

Let Y = suppdivf. Let m : (X,D) — (X,Y) be a resolution of singulari-
ties, with D = 771(Y) a divisor with normal crossings. Then the class p(f) €
H%p_l(X —Y,R(d — p)) is represented by the current j,[—(1/2)log ff]. Therefore,
in the complex D} p2 e have the equation

2[g] + j«[log ff] = Oa + Ob.

By chapter II, Proposition 1.8 we may assume that g is of weight one. Therefore it

is locally integrable in the whole X. Let us also denote by [g] the associated current
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in the complex D%. Let a’ and b’ be elements of D% which are mapped to a and
b. Then in the complex D} we have

2[g] + ji[log ff] = da’ + OV + ¢,

where ¢ € DY VP71 So e € DYVPT! = {0} because codim Y = p. Hence, in the
complex D% we have

2[g] + j.[log ff] = Om.a’ + Om.b.

This concludes the proof of the theorem.

Our next objective is to fit the groups cH* (X) in some exact sequences. We
shall denote by p the induced morphisms (see 2.3)

p: CHPP™Y(X) — HZ"'(Xg,R(p)) and
p: CHPP=H(X) — EP- 171 Xp).

log

We have maps

¢: CHP(X) — CHP(X), ((y,9) =y,

p: CHP(X) — HZP(Xg,R(p)), see 2.3,
a: B (Xg) — CHP(X), a(@) = (0,9),

w: CHP(X) — ZEfgg(XR), w(y,g) = —200g  and
h: ZERE(Xw) — HY(Xg,R(p)), h(a) ={a},

where {a} is the cohomology class of a.
Let us write

(/Dﬁp(X)o = Ker(w) and
CHP(X)o = {y € CHP(X) | Yoo i~ 0}.

Then the analogue of [G-S 2, Theorem 3.3.5] is

Theorem 3.3. Let X be an arithmetic variety. Then we have exact sequences:

(i) CH»= (X)L ER PN (Xg) < CHP(X) = CHP(X) — 0,
(i) CHP=Y(X) L HZ'™ 1( [R(p)) - CHP(X)
(C —w) p+h

) <
(
H(X) & ZELP(Xg) - HyY (Xg,R(p)) — 0,
(iii) CHPP—Y(X) L H2P~ 1(XR, (p)) % CHP(X)o = CHP(X)o — 0,

Proof. The proof of the exactness of the three sequences is similar. So we shall
write only the first.
The fact that the composition of two consecutive morphisms iz zero, follows
easily from the definitions.
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The surjectivity of ¢ is equivalent to the existence of Green forms for a cycle and
is a consequence of the surjectivity of the map cl proved in chapter III, Proposition
4.2.

Assume now that ((y,g) = 0. Then y = > _div f; and (y,g) — >_div f; = (0,¢").
Then clg’ = 0. By III, Proposition 4.2.1, ¢’ € Ima.

If g € By, P71 (Xg) with a(g) = 0, then (0,g) = >_div f;. Therefore 3" div f; =
0 and f = Y f; determines an element of CHPP~1(X) and § = p(f).

Let us prove that p is well defined. We have to show that, if z € Rb™?(X), then

div(dz) = 0. Let z = {f, g} be an irreducible Ky-chain. Then div(dz) = d2(z) = 0.
Hence it remains to show that b(p(dz)) = 0. By Theorem 2.1, there exists an
element

p{f 9} € HELL o cuppae((X —suppdz)z, R(p))

such that p(dx) = dp(x), where 0 is the connection homomorphism

0:HY2 (X —suppdz)z, R(p)) — HZoo 1o (Xe, R(p)).

D,supp x—supp dx D,supp dzx
Therefore, the image of p(dz) in the group H%p_l(XR,R(p)) is zero. Hence
b(p(dz)) = 0.

Note that p{f,g} is constructed using the product in Deligne cohomology. By
the relationship between the product in Deligne cohomology and the x-product,
this proof is essentially the same as the proof given in [G-S 2]. This concludes the
proof of the theorem.

Ezample 3.4. In [G-S 2, 3.4] there are some examples of explicit arithmetic Chow
groups. Since these examples are given for arithmetic varieties with projective X,
they are also examples for the arithmetic Chow groups introduced here.

Let us give a simple example where the groups obtained here and the groups ob-
tained in [G-S 2] differ. Let X = A} = Spec(Z][t]). Then X is an arithmetic variety
over Z. We have that CH!(X) = 0 and CH»Y(X) = {—1,1}, but p(CH!?(X)) = 0.
Therefore -

CH'(X) = Ep,(Ag).

That is, the space of F.o-invariant, real valued C* functions on A} which have
logarithmic singularities at infinity. Moreover we have

CH'(X)o = Hp(AR,R(1)) =R.
In particular, the morphism
T @*(Spec 7) — CH* (X)o

is an isomorphism.

On the other hand, the groups CH! (X)o as defined in [G-S 2] are isomorphic
to the analytic Deligne cohomology of AL, Hi..(AL,R(1)), which is an infinite
dimensional real vector space.

Let us give a generalization of the above example.
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Theorem 3.5. Let X be an arithmetic variety and let m : M — X be a geometric
vector bundle. Then the induced morphism

* @*(X)O —>6’?]*(M)()

1S an 1somorphism.

Proof. We have a commutative diagram

CHP?~1(X) —— HE™ (Xn,R(p) —— CH/(X)o —— CHP(X)y —— 0

CHPP (M) ——— HY'™'(Mz,R(p)) —— CHV(M)y —— CHP(M)y —— 0.

At the level of CHP and CHP?~! the morphism 7* is an isomorphism by [Gi,
Th 8.3]. At the level of Deligne cohomology, the morphism 7* is an isomorphism
because

T 1 Elg(Xc) — Ejpg(Mc)

is a real filtered quasi-isomorphism with respect to the Hodge filtration. Therefore

7* is also an isomorphism at the level of Gﬁg.

Let us summarize the properties of conomological Chow groups. These properties
can be proved as in [G-S 2] substituting Green currents by Green forms.

Let (y,gy) and (z,g.) be two arithmetic cycles such that y and z intersect prop-
erly. Then the singular support of g, and the singular support of g, intersect
properly. Therefore the product g, * g is defined and is a Green form for y - z. We
can define an intersection product by

(3.6) (¥, 9y) - (2,92) = (Y- 2,9y * J2)-
Let us write - -
CH*(X)q = CH"(X) ® Q.
Then we have (see [G-S 2, Theorem 4.2.3] for a more precise statement):

Theorem 3.7. Let A be an arithmetic ring with fraction field K and let X be an
arithmetic variety with X quasi-projective. Then, for each pair of non-negative
integers p, q, there is an intersection pairing

CHP(X) ® CHY(X) — CH""(X)q,

which is given by formula 3.6. for cycles intersecting properly.
This product induces in CH*(X)q a structure of commutative and associative
ring. Moreover, the induced maps

¢: CH'(X)g — CH*(X)®Q

and

log

BE E’?I*(X)Q — @Ep’p(XR,P)
p
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are morphisms of rings. Therefore the subgroup CH* (X)o,o = Ker(w) is an ideal
of CH*(X)o.

The functorial properties of the cohomological Chow groups are summarized in
the following theorem. For proofs see [G-S 2, Theorem 3.6.1] and [G-S 2, Theorem
4.4.3]. Note that, in the case of arithmetic varieties which are not proper over A, we
have to impose stronger conditions for the existence of a push-forward map. This
is done to ensure that the direct image of a logarithmic form is again a logarithmic
form (see the construction of a push forward of Green forms in chapter II, 1.11).

Theorem 3.8. Let A be an arithmetic ring with fraction field K.
1. Let f : X! — X be a morphism of reqular quasi-projective arithmetic varieties.
Then there is a pull-back morphism

F*: CHP(X) — CHP(X'),

such that, if (y,9,) € ?(X) and f~1(y) is equidimensional of codimension p
then

f*(yagy) = (f*yv f*gy)v
with f*y defined as in [Se|]. If g : X" — X' is another such morphism then
(fg)" = g*f*. Moreover f* induces a ring homomorphism

£ CH (X)g — CH*(X')q.

2. Let f : X! — X be a proper morphism of equidimensional reqular arithmetic
varieties. Assume that there are smooth compactifications 7;0 of X!, and X o of
Xoo, such that foo : X', — X0 can be extended to a smooth map f : Y;O —

Xoo. Let e = dim(X') — dim(X). Then there is a push-forward morphism
fo: CHP(X') — CHP™¢(X),

such that f.(y,qy) = (f«y, fsgy). If g : X" — X' is another such morphism
then (fg)x = f«g«. Moreover, if « € CHP(X') and 8 € CHY(X), then

fola- f*B) = foa- € CHPFI¢(X)q.
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§4. COVARIANT GREEN CURRENTS.

As we have seen, the push-forward morphisms of arithmetic Chow groups are
only defined for maps which are smooth in the generic fibre. This suggests that the
arithmetic Chow groups introduced in the last section are cohomological arithmetic
Chow groups and they should be complemented with a notion of homological Chow
groups. In this section and the next, we shall introduce a notion of homological
Chow groups, which are covariant for arbitrary proper morphisms and are provided
with a cap product with the cohomological Chow groups already defined.

The homological Chow groups are constructed in the same way than cohomo-
logical Chow groups replacing logarithmic forms by a suitable complex of currents.
This section will be devoted to the discussion of the analogue of Green forms in
this setting. These objects will be called Green currents but they should not be
confused with the Green currents in the sense of [G-S 2.

The proofs in this section will be omitted because they are analogous to the
corresponding proofs for Green forms.

Let X be a proper smooth variety over C and let DX be the complex of currents
on X as in §1. Let Y C X be a closed algebraic subset. Let us write

DY= ={T € D} |supp(T) CY}.

Since suppdT’ C suppT these groups form a complex. Note that the complex of
currents on Y, DY (see §1 after Theorem 1.3) is a subcomplex of DY~ but in
general they do not agree. We write

DX = DY /DY~

If X is equidimensional of dimension d we shall write

Dy =DY<  and Yy = Dyl

In this case the morphism of complexes Ef,, (X —Y) — DY ;- (see chapter II, §3)

induces a morphism
Elog(X Y) — DX/Y

By a result of Poly ([P]) this morphism is a quasi-isomorphism. On the other hand

this morphism is not a filtered quasi-isomorphism with respect to the Hodge filtra-

tion. This will be a source of technical problems and indicates that the definition

given here of homological Chow groups may be not optimal. The Hodge filtration
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of the complex D% Yo is related with the formal Hodge filtration studied by Ogus
in [O].

Poly also proves in [P] that the complex DX/Ye only depends on X — Y. Thus,
if V' is a smooth variety over C and X is a smooth compactification of V' with
Y = X — V, we shall write

Dg(V) = DX/ Y=

This definition does not depend, up to a canonical isomorphism, on the compacti-
fication chosen.

Let now X be a smooth algebraic variety over C. Since D}kog(X ) is a Dolbeault
chain complex we can construct the complex D, (D\%(X),p) as in §1. We shall
write

HP™ (X,R(p)) = H.(D(D5(X),p)).

The superindex ' is included to remind us that this homology groups are not

the Deligne homology groups of X. They will be called formal Deligne homology
groups. Nevertheless, if X is a compactification of X with Y = X — X a divisor
with normal crossings, the morphism

DX/Y . pleg(x)
induces a morphism
HP (X, R(p) — HP" (X, R(p)).

Let Z, = Z,(X) be the set of closed algebraic subsets of X of dimension < p
ordered by inclusion, and let Z,\ Z,_1 denote the set of all pairs (Z,Z') € Z,x Z,_4
such that Z' C Z.

Analogously to §2. we define the groups

HZ—b)foraZp\Zp-&-l (X,R(Q)) — h_H)l Hr?for,Z—Z,(X _ Z,,R<Q)),
(Z,Z’)GZP\Zp,l
HP™2»(X,R(q)) = lim HP""?(X,R(g))  and
Zez,

for . for
HY (X\2,,R(g) = lim HY (X = Z,R(q)).
Zez,

If we write
D, (D8(X\2,),q) = lim D.(D(X — Z,),q),
ZeZ,
then .
HY " (X\2,,R(q)) = Ho(D.(D2(X\Z,),q))-

If in the commutative diagram of Theorem 2.4 we replace dimension by codi-
mension and use formal Deligne homology groups instead of Deligne cohomology
groups, we also obtain a commutative diagram. In particular, if y is an algebraic
cycle of dimension p and Y = supp y, then the class

p(y) € HDY (X, R(p)) = Hop(D.(D(X),p), D.(D5(X — V), p))
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is represented by the pair (J,,0). We write Hgor’Y(X, R(p)) instead of HDfor (Y,R(p))
because these groups depend on X.

Let W C X be an irreducible subvariety of dimension p+ 1 and f € k(W)*. Let
W be a resolution of singularities of W and j : W — X be the induced map. Let
us write Y = supp(div f). Then the class

for
p(f) € Hap " 7V (X — Y R(p))
is represented by the pair (j*[—% log ff1,0).

If X is a smooth compactification of X, then it can be shown that D!°8(X) is
the topological dual of the space of differential n-forms on X which are flat along
X — X (see [M] for a proof when n = 0). Let Y and Z be closed algebraic subsets
of X. Since the product of a form with logarithmic singularities along Y by a form
flat along Y is again flat along Y (see [Tu, IV.4.2]), we can define a product

El (X -Y)®DR8(X —Z) = Di? (X — (Y UZ))

by ¢ NT(w) = T(w A ), where ¢ € Ejl (X —Y), T € D%~ and wisam—n
form flat along Y U Z.

Note that this product does not exist if we replace Df/ Yoo by the complex
DY = DX /DY (see §1 for definitions). This is one of the reasons why we choose
D*X/ Y to define homological Chow groups.

This product is compatible with the structures of Dolbeault complexes. That is,
it is real and bigraded. Therefore it induces a product

33n(El*og(‘Xr - Y)vp) ®©m(D}kog(X - Z)?Q) — men(D}kog(X - (Y U Z))vq _p)'

Which is given by the same formulas as those of chap. III, Theorem 2.3. The
product of ¢ and T will be denoted by ¢ - T

Definition 4.1. The space of Green currents on X with singular support on dimen-
ston p is

GDy(X) = Hop(Du(D4(X), p), Du(DE(X/Z,).p)):
That is, an element of GD,(X) is a pair (T,g), where

T €D¥5(X) N Dy#™(X,p) and
Ge DR (X\Z,)N DY (X\Z,,p—1) / (Im @ + Im D).

p—1,p—1

Such that dT' = 0 and —200g = T'|x_z for some Z € Zp.

Note that in this case, if (7, g) € GD,(X), then T is not determined by g. For
instance if Y is a dimension p subvaritey, then the pair (dy,0) is a Green current.
Moreover we shall see that it is a Green current for the cycle Y.

If Z C X is a dimension p algebraic subset of X, then the space of Green currents
on X with singular support contained on Z is

GDJ(X) = Hop(D.(DY5(X),p), D (D(X = Z),p)).
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As in the case of Green forms, GDp(X) is the direct limit of the groups GDZ (X))
for Z of dimension p.

The singular support of (T,g) € GD,(X)) is the intersection of all Z such that
(T,g) has a representative in GD/(X). We shall denote the singular support of

(T, g) by supp(T, g).
Let us write

~lo lo logR 5 pfer z,
D' (X)) = DY, . (X)NDE(X,p+ 1)/ (Im 9+Tm D+Im Hy 727 (X, R(p))).

for
The term Im H;; +1’ZP (X,R(p)) is included in this definition because I do not know
if there is a purity theorem for the formal Deligne cohomology groups. For the
same reason we write

~ 1~for for Dfor’zp
HE' (X R(p)) = HEL (X R(p)) /T i 17 (X, R(p))
for for
= Im(H%?H_l(X,R(p)) - H22;+1(X\Zp7R(p)))'
We also write

ZDER(X) = {T € D&(X) N DEE™(X,p) | dT = 0} .

Then the analogue of chap. III, Proposition 4.2 is:

Proposition 4.2. Let X be a smooth variety over C. Then there are exact se-
quences

~ o a Cl for’ >
1. 0 — DR (X) & GD,(X) S Hy 27 (X,R(p)) — 0.
for b w o for
2. 00— HQDerl(X\Zp,R(p)) — GDp(X) — ZD;,]%JR(X) — H%% (X\ZP,R(p)).
3.0 — HEL (X, R(p) = GDy(X) 255

Dfor,Zp o for
Hy, (X, R(p))®ZDp5"(X) — Hy, (X, R(p)) —

0.
Proposition 4.3. Let X be a smooth variety over C of dimension d. Then there
1s a natural morphism

GEP(X) — GDy_,(X)

given by (w,§) — ([w],[g] ). This morphism is compatible with the ezact sequences
of Proposition 4.2 and chap III, Proposition 4.2. Moreover, if d = 0 this morphism
1$ an 1somorphism.

Proposition 4.4. Let f : X' — X be a proper morphism of smooth varieties
over C. Then there is a push-forward morphism

fv : GDy(X') — GD,(X)
given by f.(T,q) = (fT, [« (g)~). This morphism is compatible with the push-
forward of currents and the push-forward in homology. Moreover, assume that
X and X' are equidimensional and that f can be extended to a smooth morphism
between proper smooth algebraic varieties. Then the push-forward of Green currents

18 compatible with the push-forward of Green forms.
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Our next objective is to define a product between Green forms and Green cur-
rents. We shall give three equivalent definitions for this product. The first is
analogous to chap III, 4.9, the second to [G-S 2, 2.1.3] and the third to chap II, 2.7.

Let Y and Z be two closed algebraic subsets of X, with codimY = p and
dim Z = q. Assume that Y and Z intersect properly. That is dim(Y N Z) = ¢ — p.
Let (w,01) € GEY(X) and (T, g2) € GDZ(X).

Definition 4.5. Let us write r = ¢ — p, D,(X,7) = D, (D%(X),r) and
D.(X;Y, Zr)=s(D.X-Y,r) 0. X —-Z,r) > D.(X-YUZ7r)).
Then there is a natural isomorphism
Hor(D.(X,1), DX =Y NZ1)) — Hoyp(Du(X, 1), D.(X;Y, Z,7)).

The *-product of (w,g1) and (T, g2) is given by

(wagl) * (T7§2) = (wl 'T7 (gl : T7w “ 92,91 '92) )
= (W AT, (g1 NT,w A ga, —47id°g1 N\ g2 + 4migs A dcgg)~).

Definition 4.6. Let us choose a current gh € Daqy1 (D 8(X), ¢) such that its image
in ©2q+1(DLOg(X —7),q) is g2. Let us write

6o =T — dogy =T + 200g5.

Then 65 is a current with support contained on Z. Therefore, there is a well defined
current

g1 Nda € ©2q—2p+1(D>lkog(X -YNZ),q—p).

The *-product between (w,g1) € GEY(X) and (T, g2) € GDqZ(X) is given by

(@.50) % (T,32) = (AT, (@ A gh+91 A 32) )

Definition 4.7. Let now ()Z' , D) be a resolution of singularities of (X,Y N Z) such
that the strict transforms of ¥ and Z do not meet. Write Y for the strict transform
of Y and Z for that of Z. Let o, , be a smooth function on X such that it takes
the value 1 in a neighbourhood of Y and the value 0 in a neighbourhood of Z. Let

Opy = 1 — 0y 4

The *-product of (w,g1) and (T, g2) is given by
(w, 1) * (T,52) = (WA T, (do(0y ,g1) A g2 + 0,91 Adpge) ) € GDYDZ(X).

Proposition 4.8. The three definitions of x-product are equivalent. Consequently,
the second and third definitions are independent of the choices.
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Proposition 4.9. The x-product between Green forms and Green currents is compa-
tible with the x-product of Green forms, with the cap-product between Hy, y (X, R(p))

for
and HY Z(X,R(p)) and with the A-product between forms and currents. More-
over, if (w1,41), (w2, g2) are Green forms and (T,gs) is a Green current, then

(w1, 91) * (w2, 92)) * (T, 93) = (w1, 91) * (w2, g2) * (T, g3)) -

Proposition 4.10. Let f : X’ — X be a proper morphism between smooth va-
rieties over C, Y C X a codimension p algebraic subset of X with f~1(Y) of

codimension p, Z C X' a dimension q algebraic subset which intersects properly
with f~1(Y). If (w, 1) € GEY.(X) and (T,g2) € GDZ(X), then

f*(f*(wagl) * (Ta §2)) = (wvgl) * f*(T7§2)
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65. HOMOLOGICAL ARITHMETIC CHOW GROUPS.

Let A = (A, X, F) be an arithmetic ring and let X be an arithmetic variety. We
shall assume that A is “good” in the sense of [G-S 4]. That is A is equicodimensional
and Jacobson. Let e = dim Spec A. Following the case of cohomological Chow
groups, we write

(T,9) € GDp(Xoo) | FL(T,9) = (1T, (=1)P*g)},

HD""“<XR, R(p)) = H.(D.(D(Xz),p)),

Xr)
)
)
)

~log,R ~log,R % ~ _
Dyt 1 (Xe) = {7 € DEf i (Xoo) | Fig = <_1)p+1g},
D]lgc,)% XR) = {T € ZDlogR Xoo) | ELT l)pT}.

We also write
~ m~for for for
Hy)  (Xe,R(p)) = Im(Hy, . (X, R(p)) — H3), 1 (X\Z,,R(p))).

Let Z,(X) be the group of algebraic cycles of X of dimension p. If y € Z,(X)
is an irreducible divisor, then y N Xx = () or y is flat over Spec A. In the first case
we write Yo, = 0. In the second, y determines a dimension p — e cycle, yo, in X
Then the space of Green currents for y is defined by

GDp_(X) ={(T,9) € GDp—c(Xr) | (T’ 9) = p(y) = p(yso)} -
For instance the pair (d,,0) is a Green current for the cycle y because it repre-
sents p(y). As in the case of Green forms, if (7,¢) is a Green current for y then
supp(T’, g) = Supp Yoo-
The group of dimension p arithmetic cycles is
Zy(X) = {(y.(T.7)) € Z,(X) & GDp—e(Xr) | (T,9) € GD}_.(Xr)}

Let W be a dimension p + 1 irreducible subvariety of X and let f € k(W)*. Let
W be a resolution of singularities of Woo, j : W — X the induced map and
let us denote by fo the induced function in Waso. Then we write

div f = (div £, b(pf))
= (div (0, 5 jullog fouT) € ().

This definition is compatible with the definition given for cohomological Chow
groups.
We denote by E;Gp the subgroup of /Z\p generated by the elements of the form
div f.
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Definition 5.1 The homological arithmetic Chow groups of X are
CH,(X) = CH, (X, D(D'%)) = Z,(X) / Rat,.

We shall write - -
CH.(X) = @ CH,(X).
p

Using the obvious definitions, we have the analogue of Theorem 3.3

Theorem 5.2. Let X be an arithmetic variety. Let us write p’ = p —e. Then we
have exact sequences:

. =lo a 577
(i) CHppi1(X) = Dp/g+1,p/+1(XR) — CHy(X

.. s pfor a 577
(it) CHppi1(X) = H%;’+1(XR7R(19/)) — CH,
7, CHy(X) @ ZDLE ,(Xg) <% HP (Xz, R(p')) — 0,
)

(Cafw)
(iii) CHypr(X) L HP'L (Xp, R(D)) 2 CHy(X)o = CHy(X)g — 0.

Let us summarize the first properties of the homological Chow groups.

Theorem 5.3.
1) Let X be an equidimensional arithmetic variety of dimension d. Then there is a

cap-product morphism

o (x) M e, (x)

given by (y,gy) N [X] = (y, ([dpgy], [gy]N)). If the dimension of Xx, is zero then
this morphism is an isomorphism.

2) Let f : X' — X be a proper morphism of arithmetic varieties. Then there is
defined a push-forward morphism

f.: CHy(X') — CH,(X)

given by fu(y, (Ty,qy)) = (fey, (f<Ty, fi(gy) )). Assume that X and X' are
equidimensional, and that the induced morphism fo : X, — Xo can be ez-
tended to a smooth morphism between proper varieties. Then the push-forward
morphism of homological Chow groups is compatible with the push-forward mor-
phism of cohomological Chow groups.

3) There is a cap-product

CHP(X) @ CHy(X) — CHy—(X)q,

which turns CH, (X)q into an E’T:i’*(X)@ module. When X is equidimensional of
dimension d, there is a commutative diagram

CH @ CH! —— CH'd
@p & E'T‘Id_q —_— ﬁd_q_p.

4) Let f : X' — X be a proper morphism between arithmetic varieties, © €
CHP(X) and y € CHy(X'). Then we have the projection formula

folffx-y) = fuy.

145



Remark 5.4. Observe that, due to the lack of a complex of currents with all the
properties we need, the definition given here of homological Chow groups is not
optimal and should be considered as provisional. Nevertheless, by part 1) of the
above theorem, if O is the ring of integers of a number field K, we have

Eﬁ*(Spec Ok) & éﬁl_*(Spec Ok).

Therefore, the intersection numbers computed with the homological arithmetic
Chow groups are the correct ones.

To end this section we shall give an interpretation of the height of a cycle with
respect to a metrized line bundle in terms of the homological arithmetic Chow
groups. The reader is referred to [Bo-G-S] for a discussion of the different definitions
of the height of a cycle.

Let X be an arithmetic variety of dimension d. Let y be an algebraic cycle of X
of dimension p. Then there exists a Green form for y. Thus there exists an element
ye éﬁd_p(X) which is mapped to the class of y in CH* ?(X). But there is not a
canonical way to choose this Green form. On the other hand, the simplest Green
current for y is the pair (d,,0). Therefore we have a natural way to assign to each

algebraic cycle, an element of (/jﬁp(X ). Thus we have a map

0:7,(X) — CH,(X)
y — (y: (3, 0)).

Let K be a number field and Ok its ring of integers. Then Ok is an arithmetic
ring in a canonical way (see [G-S 2]). Let S = SpecOk and let X be a regular
projective arithmetic variety over Ok of dimension d. Let us denote by 7 : X — §
the structural map.

The key point in the construction of heights in [Bo-G-S] is a biadditive pairing

CHY(X) ® Z,(X) — CHIPt1(9)q.

This pairing is defined in the following way. Let T € CH¢ (X) and y € Z,(X).
Let us choose a Green form g, for y and let us write y for the class of (y,gy) in
CHY~?(X). Then

(T | y) = (@) — a(m(w(@) A gy)) € CH (S)q.

This pairing is independent of the choice of a Green form g,. See [Bo-G-S, 2.3] for
more details.
We shall give another description of this pairing in terms of the map 6.

Proposition 5.4. Let ¥ € E’?Iq(X) andy € Z,(X). Then

(T |y) = m(3 - 0(y)) € CHy—y(S)g = CHIPH(S)q.

Proof. If p — q # 0,1 then both sides of the equation are 0. If p — ¢ = 1 then
both sides are equal to m.(¢(Z) - y) € CH1(S)g = Q, where ((Z) is the cycle of T in
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CH*(X). Finally, if p — ¢ = 0, let us choose a Green form (w,, g,) for y, and let y
be the class of (y, ([wy],[gy])) in CH,(X). Then

y—0(y) = (0, ([wy] = 6y, [gy]))-

Assume that g, is locally integrable on X, and let v be the current [g,] on Xo.
Then

a(y) = (0, (do7,[gy])) =¥ — 0(y).

Therefore

(@ |y) = m(@ -y — alw(z) Algy]))
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§6. AN ARITHMETIC RIEMANN-HURWITZ FORMULA.

Let f: X — Y be a proper morphism between regular quasi-projective arith-
metic varieties over Z. Assume that the induced morphism f : Xgo — Y is
smooth. Let E = (E,h) be a metrized vector bundle over X (see [G-S 2]). The
determinant of cohomology A(E) = det Rf.(F) is an algebraic line bundle over
Y. Let us choose a hermitian metric hy, invariant by conjugation, on the relative
tangent space T'f such that the restriction of hy to each fibre of f over Y(C) is
Kéhler. Then the line bundle A(E) can be equipped with the Quillen metric hg
(see [Q 2], [Bi-G-S] or [S-A-B-K]).

The arithmetic Riemann-Roch theorem of Gillet and Soulé ([G-S 3], see also
[S-A-B-K] and [Fa 3]) states that

&(ME), hq) = f. (h(E. WTUTf. hy) ~ alch(B)TATf)RTfc)))

where a(!) denotes the component of degree one of o € co* (Yo, c, ch and Td
denotes the arithmetic first Chern class, the arithmetic Chern character and the
arithmetic Todd class of a metrized vector bundle, ch and T'd denotes the Chern
character form and the Todd form and R(T fc) is a characteristic class (see [G-S
2], [G-S 3] for definitions.) Note that in [G-S 3] a more general theorem is proved.

We would like to remove the hypothesis of fg : Xg — Ygp being smooth. In
a first step we can restrict ourselves to proper dominant morphisms. The main
obstacles are the following:

1) The push-forward morphism f, : éﬁ*(x ) — éﬁ*(Y) is only defined for a
morphism f with fg smooth.

2) If fo is not smooth, then the metric hg is no longer a smooth metric but has
singularities over the discriminant locus.

3) The relative tangent space T fc is no longer a vector bundle over X (C).

The first difficulty can be overcome by replacing arithmetic Chow groups by
homological arithmetic Chow groups which have defined push-forward morphisms
for arbitrary proper morphisms.

In this section we shall show how to solve the other two difficulties for the simplest
case. Namely, let f : X — Y be a proper morphism between regular arithmetic
surfaces such that fgp : Xg — Yp is a branched covering between nonsingular
curves.

In this case all the technical complexities of the Quillen metric disappear because
we are in the relative dimension zero case. Nevertheless it illustrates some phenom-
ena that might occur in the general case, for instance, that the characteristic classes
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of a vector bundle with a singular metric live in the homological Chow groups, as
well as the characteristic classes of the relative tangent bundle of a morphism which
is not smooth at generic fibre.

For simplicity, instead of working with general singular metrics as in [De 2], we
shall consider only the following type of singular metric.

Definition 6.1. Let C be a compact complex curve, £ a line bundle over C'. A
singular hermitian metric h on L is a smooth hermitian metric on L|y, where
U C C is a dense open Zariski subset, satisfying the following condition. For each
p € C —U, let s be a non-vanishing regular section of £ on a neighbourhood of p
and let z be a local coordinate around p. Then, in an open neighbourhood V of p
we have

h(z) = lIsllZ = (22)*f (=),

where o € Q and f is a real function, smooth on V' — p, continuous on V', with
f(2) > 0, and there exist constants C,e > 0 such that

0f(2) C
0z

12+ ==

C

(22)1—¢

>’ f(2)
020Z

‘ < and H

A metric which is smooth and strictly positive in every point will be called a smooth
metric.

The point p is called a singular point of h and the number « is called the index
of singularity of h at p. Note that this number is independent of the section and

the local coordinate chosen. If h is a singular metric with singular points p1, ..., px
and indexes of singularity ag, ..., ai then the singularity divisor of h is
k
singh =Y " a;p; € Z'(C) @ Q.
i=1

The associated current dging p, Will be called the singularity current of h.

Proposition 6.2. Let C' be a compact complex curve, L a line bundle on C with
a singular metric h = || - ||* and s a rational section of L which is regular and non
vanishing at the singular points of L. Then the pair

9(L;h,s) = ([—do log ||s[|] — sing n, —[log |s]|])
= ([2001og ||s]l] = dsing n, —[log [|s]I])
€ GDl(C)

is a Green current for the cycle div s. Therefore the current c1(L,h) = [—do log ||s||]—
dsing h Tepresents the first Chern class of L and deg L = c¢1(L, h)(1).

Proof. By the definition of singular metric, the norm of the form 9dlog ||s||? is

bounded by the norm of
dz \Ndz

C

for some constants C,e > 0. Therefore the form 9d1log||s||? is locally integrable.
The function log ||s||? is also locally integrable. Hence g(L, h, s) is well defined.
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Let 7 denote the current —[log ||s||] considered as a current on C. Let us assume
that divs = ) k,p and singh = ) «a,q. Let U be a neighbourhood of a singular
point ¢ of h, such that it does not contain any other singular point of h, nor a
zero or a pole of s. Let ¢ be a function with compact support contained on U.
Let C(q,a) denote the circumference of centre p and radius a and let z be a local
parameter for C' around ¢q. Then

1 1 . dz  0f(z)dz

— [ d(pdl 2y _ a4z az

o [ oo sy = ot [ o0, S 4 PHE
= —agp(q).

In the latter equality we have used the bound for df/0z.
Let v denote the current —[log ||s||] considered as a current on C. Then, for any
test function ¢ one has

1 _
dov(p) = ﬁ/C?logHSH@&o

1 _ 1 _
5o [ dloglls200) — 5= [ otogsl* 0y

1 1 _
=0+-— [ d(d] 2 — [ 991 2
+ 5 [ d@oslsle)+ 5 [ oBlogsl

= 57 [ —dnlogllslle = X kele) — Y aela)
= [—do log |[s[[](¢) — daivs(¢) — dsing n()-

Therefore g(L, h, s) represents the same cohomology class as (dgivs,0). Thus it is
a Green current for div s.

Let f: C — C’ be a non constant morphism of compact complex curves, with
deg f = d. Let £ = (L, h) be a metrized line bundle on C with h a smooth metric.
Then f.L is a vector bundle on C’ of rank d. Recall that a local section of f,L,
s € (U, f.L) is a section s € I'(f 71U, £). We can introduce a metric f.h over f,L

by writing
(s,t), = Y rals,t),,
flz)=y
where r, is the ramification index of f at . Note that f.h is a smooth metric
outside the discriminant locus of f.
Let us write det f.h for the metric induced by f.h in det f.L. Let us also write

ML) = (det foL,det foh) and let R be the ramification divisor of f.

Proposition 6.3. The metric det f.h on det f.L is a singular metric in the sense
of Definition 6.1. Moreover

1
sing (det f.h) = §f*R.

Proof. Outside the support of f,R the map f is smooth. Therefore det f.h is a
smooth metric on an open Zariski subset. Let us now look at the ramification
points. Let us consider the map

f: C — C

r — z=2a".
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Let Oc¢ be the trivial bundle on C. A metric || - || on O¢ is determined by the
function
h(z) =[]z

A basis of the vector bundle f,Oc is given by the sections 1,z,...,2"~'. Then for
a point p € C, p # 0, we have

<aci,xj>pzz z’ xj qujh
q"=p q"=p

Let us write a(p); ; = <xi_1,xj_1>p. Then

LAz A A" Y2 = det(a(p)i,)-

Let us write I = {1,...,r}". If 7 € I we shall write 7 = (7(1),...,7(r)). Given a
point p # 0, let {q1,..., ¢} be the set of r-th roots of p. By multilinearity

det(a Zdet ( qT(Z) T(l)qz_(—ﬁ)l) .

Tel

If 7(i) = 7(i') then the i-th file of the matix (h(qT(i))Gizil)qia) is equal to the ¢/-th

file times qi@.")/. Therefore the corresponding determinant is zero. Hence, if &, is
the symmetric group of r elements, we have

1 j—1
det(a Z det(h qg(z) 0(.)(]37(2,))
oceG,.
= h(q1)...h(g;) Y det(@, (@l
oG,
= hia) - h@) D oz Ty detlag)
ceS,
= h(q]_) e h(qT) det(qifl) Z (—1>o—qi(2) _;ZT)
oceG,.
=h(q1)...h(q) det(q. )det(_J 1>
=h(q)...h(g )| det(qi 2.

Finally observe that det(q/~')? is the discriminant D(1,...,2"~!) of the extension
given by the polynomial X" — p. Therefore (see [Sa, 2.7])

1

Idet(q]")II* = 7" () =

and
(6.4) LA A" = det(a(p)ig) =" P (@) - - hlar).
Other way of making the same calculation is to observe that, if || - || is another

metric given by h’ then

_ _ h(q1)-..h(q)
IA-Az2"77 Y =|tA---Az"t
H =1 S T
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and then to do the computations with A = 1.
Now it is clear that k(p) = r"h(q1) ... h(g,) is smooth for p # 0 and continuous
for p = 0. Moreover in a compact neighbourhood of 0,

|2 =+ ST ihtat | a0

i=1 j#i

Jo:]

82
The bound for —

Z0z
It is clear from formula 6.4 that in this case
—1 1
sing (det f.h) = r ) 0] = §f*R'
If f: C — (' is a morphism of curves and p € C’, then there is a neighbourhood
U of p in C’, biholomorphic to a disk, such that f~1(U) = Vi [[---]] V} is a disjoint
union of disks and in each V;, f|y, has ramification index r;. Choosing a basis
{sijyi=1...1,7=1,...,r;} of I'(U, f<£) such that s; ; vanishes on V,,, for m # 1,
we have

is proved in the same way.

l
lsir Ao Asirll = [T llsa A= Asinl.
=1

Therefore the proposition follows from the above computations.

Let T'C denote the tangent bundle of C'. There is a morphism
df : TC — f*TC".
Let h be a metric on TC" and let us denote by df*h the metric on T'C' given by
(s,t) = (df s,dft) .

Proposition 6.5. The metric df*h on TC is a singular metric in the sense of
Definition 6.1 and
sing df*h = R,

where R is the ramification divisor of f.

Proof. Let w be the differential form associated to the metric h. Then the metric
df*h has the associated form f*w. Taking local coordinates we may assume that f

is the morphism
f: C — C

r +— z=2a.
In these local coordinates we have w = h(z)dz A dzZ and
ffw = h(z")dz" Adz" = h(z")(2T)" " 'r?dx A dT.
Hence we have the result.

Let C' be a smooth complex projective curve and £ a line bundle on C. Let hy
and ho be two singular metrics on L. Let us write £ for the sequence

E: 0—0— (L,h1) — (L, hy) — 0.
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Definition 6.6. Let s be a rational section of £ which is regular and non vanishing
over a neighbourhood of sing hy U sing ho. Then we write

El<g) = g([’a hl; S) - g(£7 h’27 S)'

Note that ¢;(£) does not depend on the choice of s. Moreover it is a Green
current for the cycle 0. Therefore it is of the form a(y) for v a current on C. If hy
and hy are smooth metrics, then ¢;(£) is compatible with the definition given in
[G-S 2].

Let X be a regular projective arithmetic surface over Z.

Definition 6.7. A singular metrized line bundle over X is a pair (L, h), where L is
a line bundle on X and h is a singular metric on L., invariant under the action of
Fu. If L = (L, h) is a singular metrized line bundle then the arithmetic first Chern
class of L is

(L) = (divs, g(£,h,s)) € CHy (X),

for s any rational section of £. This definition is independent of the choice of s.
Note that if h is a smooth metric, this class is the image of the arithmetic first
Chern class defined in [G-S 3].

Let f: X — Y be a finite morphism between arithmetic surfaces. Let us choose
a factorization of f

X —P(E) =Y,
i P

where i is a closed embedding and p is a projective bundle over Y. Let NX be the
normal bundle of X in P(F) and i*T’p the restriction to X of the relative tangent
bundle to the projection p. Let us choose smooth hermitian metrics on ¢*T'pc,
NXc, t*TP(E)c, TXc and TYg invariant under the action of Fi,. These metrics
will be denoted respectively by hi, hs, hs, hy and hs. Let us denote by &1, € and
&3 the metrized exact sequences

0 — (T'Xc,hy) — (i"TP(E)c, hs) — (NXc, ha) — 0,

0— (i*Tpc,hl) — (i*TP(E)C, hg) — (f*TY(C,f*hg)) — 0 and
0—0— (T'Xc,h4) — (T'Xc,df*hs) — 0.

| | Cn
o —

w

Let us denote by ¢;(£1) and ¢;(€>) the image in CH, (X) of the classes with the
same name defined in [G-S 3]. In other words, let

£ 0—A—B—(C—0

be an exact sequence of vector bundles with smooth metrics. There is an isomor-
phism ¢ : det A ® det C — det B. Let s; and s3 be sections of det A and det B
and let so = pg(s1®s3). Let us denote by ||-||1, || ]2 and || - ||3 the metrics induced
on det A, det B and det C. Then we have

[s2]l2 ~ log [[s2]l2

, e CH, (X).
Tl llssls Tilhlsals) € G %)

c1 (z) = (07 [dﬁ — log

Let us denote by ¢;(£3) the image in CH, (X) of the class defined in 6.6.
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Definition 6.8. The arithmetic first Chern class of the relative tangent sheaf of f
is
a(Tf)=a("Tp) — & (NX) = e1(&1) +&1(E2) — &1(Es).

The natural morphism *Tp — N X induces a morphism det¢*T'p — det NX
which is an isomorphism in an open Zariski set. It can be viewed as a rational
section s of the line bundle det NX ® (deti*Tp)Y, where (deti*Tp)" is the dual of
det i*T'p. Let us denote by R = divs. This is the ramification divisor of f and is
independent of the factorization chosen for f.

Theorem 6.9. (Riemann-Hurwitz formula) We have the equality
&(Tf) = 0(-R) € CHy(X).

In particular ¢ (T'f) does not depend on the choice of metrics.

Proof. Let us choose a rational section s; of deti*T'p and let s5 be the image of s;
under the natural morphism det:*T’p — det N X. We shall denote also by s; and
so the corresponding sections of det¢*T'pc and det N X¢. Let us choose a section
s3 of det TP(E)c and let s4 be the section of T X¢ determined by s3 ® (s2)~! and
the isomorphism

TXc — deti*TP(E)c @ (det NX¢)".

Finally let s5 be the section of f*TYr determined by s3 ® (s1)~! and the isomor-
phism
f*TYe — det i*TP(E)C X (det i*Tpc)v.

Then we have dfsy = s5.
Using these sections to compute ¢;(7'f) one obtains

c(Tf) = (div sy, [do —log||s1]]1], [~ log ||s1][1])
— (div sg, [do — log ||s2]|2], [~ log ||s2]|2])

l|s3]l3 s3]/3
(0, [do —log —%3ls_) _1g isalls
l|s2%]| 541/ |521]2/54]|4
l|s3][3 |s3]/3
+ (0, [do — log — 15318311
(0:1do = log o 8 o s s
||34||4 ||84||4
— (0, [do —log 1244 1 4 50 110
(0.1do = log 777, 151+ 0m 1108 g 15D
= (—R,—0g,0)
— 0(—R).

Let f : X — Y be a finite morphism between arithmetic surfaces. Let £ be

a line bundle on X provided with a smooth metric h. Let us denote by A(L) the
line bundle det f.L provided with the singular metric det f.,h. Then we have the
following Riemann-Roch theorem:

Theorem 6.10. In 6’?[1(1/)@ it holds the equality

SO = £ (D) + (1))
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Proof. Let us choose a rational section s; of £ and a rational section s, of det f. L.
Assume that both sections are regular and non vanishing on the ramification points.
Let us denote by || - ||; the metric on £ and by || - [|2 the metric on det f. L.

Let Zg be the discriminant locus of fg : Xg — Yg, let Z = 7@ be the adherence
of Zg. Then the morphism

fX—-fY2)—Y-2Z

satisfies the hypothesis of the arithmetic Riemann-Roch theorem of [G-S 4]. There-
fore there exists a rational function ¢ € K(Y) and a rational number « such that

1
(6.11) (div s9 — fodivsy + §f*R> ly_z = adivyly_z and

(6.12) (log [[s213 — f log |s1]1D)lve—ze = @log ¢Ply.—zc-
We have the direct sum decomposition
Z1(Y) = Z1(Y)sn @ Z1(Yg),

where
Zl(Y)ﬁn = {Z c Zl(Y) ‘ zN YQ = @}

Moreover
Zl(Y)ﬁn = Zl(Y - Z)ﬁn

Therefore to prove the equation 6.11 in the whole Y it is enough to prove it in Y.
But divg s1 = div 51|y, is determined by the singularities of log [|s1[|7 and the same
is true for divg s and divg ¢. Namely we have
(6.13)

Odivg s, = [0010g||s1]|1] — 9O[log [s1]1],

_ _ 1
ddivg s = [0010g ||s2]|2] — 00[log ||s2||2] — §5f*RQ7 by Proposition 6.3 and
Odivg ¢ = [001og ||p[l] — 90[log || |]]-
Hence, by 6.12,
1
6div(@ So f*édiVQ S1 + §f*6R@ = Oé(sdiv(@ @
Which implies that equation 6.11 holds in the whole Y.
By Proposition 6.3 we have
N . = 1 —1
cL(A(L)) = (div s, [0010g [|s2]l5] = 5 fudr, [ logls2|3]).

By Theorem 6.9

= 1. . 1 — 1 —1
c1(L) + §cl(Tf) = (divsy — §R, [00log ||31H%] — 553, [710g ||31||%])

Moreover 1
div o = (div , 0, [~ log [l¢]*])-

Therefore, by 6.11, 6.12 and 6.13 we have
. P N PN ™
c1t(ML)) = f (cl(ﬁ) + 501(Tf)> + adive.

This concludes the proof of the Theorem.
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