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Abstrat. This paper reviews the realization of Beilinson's regulator map

using hermitian di�erential geometry. This onstrution is a generalization

of Chern-Weil theory of harateristi lasses of vetor bundles, to higher K-

theory.

1. Introdution

Chern lasses of omplex vetor bundles an be onstruted using di�erent

tehniques. For instane, in algebrai topology, one an use the Euler lass of an

oriented sphere bundle to de�ne the top Chern lass and then de�ne the other

lasses indutively (see [25℄). Or, in di�erential geometry, we an use Chern-Weil

theory, whih produes Chern lasses in de Rham ohomology by means of the

urvature of a onnetion (see for example [5℄, [34℄ or [16℄). Another aproah,

due to Grothendiek [17℄, starts with the �rst Chern lass of a line bundle, and

then uses an expliit formula for the ohomology of a projetive bundle to de�ne

higher Chern lasses. This approah is very useful in algebrai geometry and an

be used to produe Chern lasses in the Chow ring, in �etale ohomology or in

Deligne-Beilinson ohomology.

The Grothendiek method has been generalized by Gillet [11℄ to produe har-

ateristi lasses from higher K-theory to any arbitrary ohomology satisfying er-

tain axioms. In the partiular ase when the harateristi lass is the Chern har-

ater and the ohomology theory is real Deligne-Beilinson ohomology, the map

obtained is Beilinson's regulator map [2℄. This map is a generalization of Borel's

regulator and it is involved in very deep onjetures in Arithmeti Geometry.

Beilinson's regulator is still a very mysterious map, in part beause higher K-

theory is a rih and omplex world. Thus it is useful to have as many approahes to

Beilinson's regulator as possible. Gillet and Soul�e [13℄ have given a desription of

Beilinson's regulator for K

1

using Bott-Chern forms. This desription an be seen

as a generalization of Chern-Weil theory to K

1

. In the paper [8℄, S. Wang and the

author have extended this desription of Beilinson's regulator to higher K-theory.

The aim of this paper is to review the onstrution of harateristi lasses for

higher K-theory. This paper is meant to be introdutory, and so the fous is plaed
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on the basi ideas of the theory. But referenes are given where the reader an �nd

detailed proofs and general statements.

The main objet of study will be algebrai vetor bundles over smooth omplex

algebrai varieties. These objets an be studied from the point of view of omplex

geometry or from algebrai geometry. Sine our objetive is to give a omplex

geometri onstrution of an objet de�ned in the algebrai geometry setting we

will shift from one point of view to the other in di�erent setions.

The plan of the study is as follows. In setion 2, Grothendiek's onstrution of

Chern lasses is presented in the partiular ase of sheaf ohomology with integer

oeÆients. In setion 3, we reall the Chern-Weil theory of harateristi lasses

of hermitian vetor bundles. Setion 2 is devoted to a simple version of Gillet's

onstrution of harateristi lasses for higher K-theory. In setion 5, we review

real Deligne ohomology. Bott-Chern forms are the topi of setion 6. In setion

7, we introdue the omplex of exat ubes. By a result of R. MCarthy [24℄

the rational homology of this omplex is isomorphi to rational K-theory. Finally,

setion 8 is devoted to the de�nition of harateristi lasses for higher K-theory

using exat ubes of hermitian vetor bundles. For simpliity, we only disuss the

ase of projetive varieties. But note that an important ingredient in the omparison

between this onstrution and Gillet's onstrution, is the extension of this theory

to quasi-projetive varieties.

2. Chern lasses of vetor bundles

There are many di�erent onstrutions of Chern lasses of vetor bundles (see

for example [25℄, [34℄ or [18℄). In this setion we will review a very general one

due to Grothendiek [17℄. In this onstrution, the properties of the ohomology

theory that are needed to de�ne Chern lasses are given as axioms for a ohomology.

These axioms are satis�ed by many theories, for instane, Chow rings of algebrai

varieties. Moreover Grothendiek's onstrution is the basis of Gillet's onstrution

of Chern lasses for higher algebrai K-theory [11℄.

In this setion, we will speialize the onstrution of Chern lasses to the ase

of sheaf ohomology of smooth omplex varieties with integer oeÆients. We will

use the lassial topology. To stress this point we will work with holomorphi

vetor bundles. In setion 4 we will disuss the axiomati approah in the algebrai

geometry ontext.

Let us introdue the �rst Chern lass of a holomorphi line bundle. This will

at as a normalization for the Chern lasses. Let X be a omplex manifold, and let

O

X

be the sheaf of holomorphi funtions on X . Let O

�

X

be the sheaf of invertible

holomorphi funtions. Then there is an isomorphism

8

<

:

Isomorphism lasses

of holomorphi

line bundles

9

=

;

 ! H

1

(X;O

�

X

):

The exponential sequene

0 ����! (2�i)Z ����! O

X

exp

����! O

�

X

����! 0

gives us a long exat sequene in ohomology

H

1

(X;O

X

) ����! H

1

(X;O

�

X

)

Æ

����! H

2

(X;Z(1)) ����! H

2

(X;O

X

);

where we have written Z(1) for (2�i)Z� C .
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Definition 2.1. The �rst Chern lass of a line bundle L, denoted 

1

(L) 2

H

2

(X;Z(1)), is the image of its lass in H

1

(X;O

�

X

) by the onnetion morphism Æ.

One we have de�ned the �rst Chern lass, the main tool to de�ne higher Chern

lasses will be the Dold-Thom isomorphism. Let E be a rank n holomorphi vetor

bundle over X . Let P(E) be the assoiated projetive bundle and let us denote

by p : P(E) �! X the projetion. Then the vetor bundle p

�

E has a tautologial

subbundle, whose �bre at eah point is the line determined by that point. Let us

denote by O

P(E)

(�1) this line bundle and let O

P(E)

(1) be the dual line bundle. Let

� be the �rst Chern lass of O

P(E)

(1). Let us denote by Z(p) the onstant sheaf

(2�i)

p

Z� C .

Theorem 2.2 (Dold-Thom isomorphism). For eah pair of integers i; m, the

map

n�1

X

k=0

p

�

(�) [ �

k

:

n�1

M

k=0

H

m�2k

(X;Z(i� k)) �! H

m

(P(E);Z(i))

is an isomorphism.

Proof. When X is one point, the result is the lassial formula for the o-

homology of the projetive spae. The general ase follows from the fat that

the existene of the global lasses �

k

, implies the triviality of the Leray spetral

sequene of the morphism p : P(E) �! X .

This theorem allows us to de�ne Chern lasses in the following way.

Definition 2.3. The Chern lasses of the vetor bundle E are the lasses



i

(E) 2 H

2i

(X;Z(i)) determined by the equation

p

�

(

n

(E)) + p

�

(

n�1

(E)) [ � + � � �+ p

�

(

1

(E)) [ �

n�1

+ �

n

= 0:(2.1)

The total Chern lass is the sum

(E) = 1 + 

1

(E) + � � �+ 

n

(E):

The Chern lasses are haraterized by the �rst Chern lass and the behaviour

under inverse images and exat sequenes. This property is very useful, for instane,

when omparing di�erent de�nitions of Chern lasses.

Theorem 2.4. There exists a unique way to assign, to eah holomorphi vetor

bundle E, a total Chern lass (E) satisfying the following properties:

1. Normalization: If L is a line bundle then (L) = 1 + 

1

(L), where 

1

(L) is

de�ned in 2.1.

2. Funtoriality: For any morphism of omplex varieties f : X �! Y we have

(f

�

E) = f

�

(E).

3. Whitney sum formula: For any exat sequene of vetor bundles

0 �! S �! E �! Q �! 0(2.2)

we have (E) = (S) [ (Q).

Sketh of proof. Let us start by proving the uniqueness. Assume that there

exists a theory of Chern lasses satisfying onditions 1, 2 and 3. Let E be a vetor

bundle over a smooth omplex manifold X . Let us write Q = p

�

E=O

P(E)

(�1).
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Then Q is a rank n� 1 vetor bundle over P(E). The basi idea is to use the exat

sequene

0 �! O(�1) �! p

�

E �! Q �! 0:

First, using indution and properties 1 and 3 one easily proves that 

i

(E) = 0 for

i > n. Then, sine the �rst Chern lass of O

P(E)

(�1) is ��, properties 1, 2 and 3

imply that

p

�

(E) = (1� �)(Q):

Sine 

n

(Q) = 0 and (1 � �)

�1

= 1 + � + �

2

+ �

3

+ : : : , the Chern lasses should

satisfy the formula (2.1). By the Dold-Thom isomorphism this equation determines

the Chern lasses.

To prove the existene we need to show that Chern lasses, as de�ned in 2.3

satisfy the onditions 1, 2 and 3. The �rst ondition follows from the de�nition.

The seond one is easy. For the third one we need to use the existene and some

properties of the Gysin morphism (see [17℄ for more details).

3. Chern lasses of hermitian vetor bundles

In this setion we will explain the Chern-Weil onstrution of Chern lasses

using omplex di�erential geometry. This theory is explained in many plaes (see

for instane [5℄, [34℄ or [16℄) and we refer the reader to them for details.

Let B be a subring of R. We will write B(p) = (2�i)

p

B. The symmetri group

on n elements, S

n

, ats on B[T

1

; : : : ; T

n

℄ by permuting the variables. Let IP (n)

be the subset of invariant polynomials. Then IP (n) = B[�

1

; : : : ; �

n

℄, where �

i

is

the degree i symmetri elementary funtion in n variables. An analogous result is

true if we replae polynomials by formal power series. We will denote by



IP (n) the

set of invariant power series in n variables and by IP (n)

k

the spae of invariant

homogeneous polynomials of degree k.

Let be M

n

the vetor spae of n � n omplex matries. Let ' : M

n

�! C

be a map suh that '(A) is a homogeneous polynomial of degree k in the entries

of A, with oeÆients in B. We say that ' is invariant if, for all A 2 M

n

and

g 2 GL

n

(C ) we have

'(A) = '(gAg

�1

):

Let us denote by I

k

(M

n

) the spae of invariant homogeneous polynomials of degree

k. There is an isomorphism I

k

(M

n

) �! IP (n)

k

whih sends any ' to its value

in the diagonal matrix with entries T

1

; : : : ; T

n

. Due to this isomorphism we will

identify both spaes.

Let X be a omplex manifold. Let E

�

denote the sheaf of omplex smooth

di�erential forms, E

p;q

the sheaf of (p; q)-forms, E

�

R

the subomplex of real forms

and E

�

R

(p) = (2�i)

p

E

�

R

. Let E

�

(X), E

p;q

(X), E

�

R

(X) and E

�

R

(p)(X) denote the or-

responding groups of global setions. Let E be a holomorphi vetor bundle on X .

Then we will denote by E

�

(E) the sheaf of E-valued smooth di�erential forms and

by E

�

(X;E) the orresponding spae of global setions. E

p;q

(X;E) will denote the

spae of forms of type (p; q) with values in E.

A onnetion on E is a C -linear map

D : E

0

(X;E) �! E

1

(X;E)
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satisfying the Leibnitz rule

D(��) = d�� + �D�;(3.1)

for any � 2 E

0

(X) and � 2 E

0

(X;E).

Given any onnetion D we an extend it to obtain operators

D : E

k

(X;E) �! E

k+1

(X;E)

by imposing the Leibnitz rule. But in general (E

�

(X;E); D) is not a omplex,

beause the operator

K = D

2

: E

0

(X;E) �! E

2

(X;E)

may be non zero. In fat the operator K is E

0

(X)-linear and thus it an be seen

as a setion K 2 E

2

(X;End(E)). This operator is alled the urvature of the

onnetion.

Due to the deomposition E

1

(X;E) = E

0;1

(X;E) � E

1;0

(X;E) we an deom-

pose D = D

0;1

+D

1;0

, with

D

0;1

: E

0

(X;E) �! E

0;1

(X;E)

D

1;0

: E

0

(X;E) �! E

1;0

(X;E):

Sine E is holomorphi, there is a well de�ned �-operator, whih in a loal

frame is given by

�(f

1

; : : : ; f

n

) = (�f

1

; : : : ; �f

n

):

Let us assume that E is provided with a hermitian metri h. Let us denote

by h�; �i the orresponding inner produt. Then there is a unique onnetion that

is ompatible with both the omplex struture and the hermitian metri. That is,

there is a unique onnetion D = D(h) satisfying the following onditions:

1. \Compatibility with the hermitian metri": For any �; � 2 E

0

(X;E)

d h�; �i = hD�; �i+ h�;D�i :

2. \Compatibility with the omplex struture": D

0;1

= �.

Let us write K = K(h) = D

2

, the urvature of the metri h. Let f be a loal

frame, if we denote by h(f) the matrix of the metri h in this frame, then (see [34℄

pag. 82).

K = �(h

�1

(f)�h(f)):(3.2)

From this equation it is lear that K 2 E

1;1

(X;End(E)). Thus in a loal frame it

is given by a matrix of (1; 1) forms.

Let ' 2



IP (n) and let us denote by '

k

its omponent of degree k. The

invariane of '

k

implies that we have a well de�ned element e'

k

(E; h) = '

k

(�K) 2

E

2k

(X). To see this, one �rst de�nes '

k

(�K) in a loal frame, where K is a

matrix of (1; 1) forms and then one uses the invariane to glue together these loal

de�nitions (see for instane [34℄ III.3). Sine I =

L

k�1

E

k

(X) is a nilpotent ideal,

we have also a well de�ned form e'(E; h) =

L

e'

k

(E; h).

Theorem 3.1. Let E �! X be a holomorphi vetor bundle and let h be a

hermitian metri. Then

1. The form e'(E; h) is losed.
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2. The form e'(E; h) satis�es

e'(E; h) 2

M

p�0

E

2p

R

(p)(X):

3. The lass of e'(E; h) in de Rham ohomology is independent of the metri h.

Sine any holomorphi vetor bundle admits a hermitian metri the above the-

orem allows us to use hermitian metris to de�ne harateristi lasses.

Definition 3.2. Let X be a omplex manifold. Let E be a rank n holomorphi

vetor bundle and let ' 2 R[[T

1

; : : : ; T

n

℄℄ be an invariant power series. Let us hoose

any hermitian metri h on E. Then the ohomology lass of e'(E; h), denoted

'

dR

(E) 2

M

p

H

2p

dR

(X;R(p))

will be alled the de Rham Chern lass of E assoiated to the power series '. The

di�erential form e'(E; h) will be alled the Chern form.

Remark 3.3. This distintion between Chern lasses and de Rham Chern

lasses is provisional. We will distinguish between them until we see that they

agree.

Examples 3.4.

1. If ' = �

i

, the i-th elementary symmetri funtion then 

dR

i

(E) = '

dR

(E) is

the i-th de Rham Chern lass of E (see the remark above).

2. If ' = 1 +

P

�

i

then 

dR

(E) = '

dR

(E) is alled the total de Rham Chern

lass. Observe that the total Chern form is given by

e(E; h) = det(1�K):

3. If B ontains the �eld Q, then the Chern harater is de�ned by the power

series

h(T

1

; : : : ; T

n

) =

n

X

i=1

exp(T

i

):

The natural inlusion Z(p)�! E

0

R

(p) indues a morphism  : H

�

(X;Z(p))�!

H

�

dR

(X;R(p)). In order to see that the two de�nitions of Chern lasses are ompat-

ible we have to ompare  ((E)) with 

dR

(E). The key to ompare both de�nitions

of Chern lasses is the theorem 2.4. Thus we only need to show that the de Rham

Chern lasses also satisfy the properties given in theorem 2.4.

Theorem 3.5.

1. Let f : X �! Y be a morphism of omplex manifolds. Let (E; h) be a

hermitian vetor bundle on Y: Then

f

�

e(E; h) = e(fE; f

�

h):

2. Let L be a holomorphi line bundle. Then



dR

1

(L) =  (

1

(L)) :

3. Let

0 �! S �! E �! Q �! 0

be an exat sequene of holomorphi vetor bundles on X. Then

(E) = (S) ^ (Q):
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Proof. The proof of properties 1 and 3 are standard and an be found in any

referene for Chern-Weil theory. For instane, see [34℄. Sine property 2 is more

spei� of the omparison we are making, we will provide a proof. The idea is to

represent 

1

(L) as a

�

Ceh oyle and 

dR

1

(L) as a di�erential form. So we will

use the omparison between

�

Ceh and de Rham ohomologies to ompare the two

lasses.

Let us start representing 

1

(L) using

�

Ceh ohomology. Let us assume that

U = fU

i

g is a good over of X (see for instane [6℄). This means that the open

sets U

i

and all their �nite intersetions are ontratible. This implies that

�

Ceh

ohomology for the onstant sheaf Z(1) agrees with sheaf ohomology. Given a sheaf

of abelian groups F , we will denote by C

�

(U;F) the omplex of

�

Ceh ohains with

respet to the open over U.

Let f(U

i

; s

i

)g be a trivialization of the line bundle L. Thus s

i

is a non vanishing

setion of �(U

i

;L). For eah pair i; j let us write U

i;j

= U

i

\ U

j

. Let g

ij

= s

j

=s

i

be the transition funtions. So g

ij

belongs to �(U

i;j

;O

�

) and fg

ij

g 2 C

1

(U;O

�

)

is a 1-oyle that represents the lass of L in H

1

(X;O

�

). We have to apply the

onnetion morphism to this lass. Sine the open set U

i;j

is ontratible, we an

hoose a determination of the logarithm log g

ij

over U

i;j

. Over U

ijk

= U

i

\U

j

\U

k

let us write t

ijk

= log g

jk

� log g

ik

+ log g

ij

. Then t

ijk

is onstant and it is an

integer multiple of 2�i. The set ft

ijk

g is a

�

Ceh 2-oyle for the sheaf Z(1) that

represents 

1

(L).

Next we want to represent 

dR

1

(L) as an expliit di�erential form. Sine L has

rank one, the urvature K 2 E

1;1

(X;End(L)) = E

1;1

(X) is a di�erential form. By

3.2 this form is given, in eah open U

i

, by

K = �(h(s

i

)

�1

�h(s

i

)) = �� log(h(s

i

)):

Sine this form does not depend on the setion s

i

it is a global di�erential form.

Thus the �rst de Rham Chern lass is represented by the form e

1

(L; h) = �K =

�� log(h(s

i

)).

To ompare the two lasses we will follow the omparison between

�

Ceh and de

Rham ohomologies given in [6℄. The main tool is the double omplex C

�

(U; E

�

).

It has natural morphisms from E

�

(X) and from C

�

(U; C ) and is quasi-isomorphi

to both omplexes. Let

d

0

: C

p

(U; E

q

) �! C

p+1

(U; E

q

)

d

00

: C

p

(U; E

q

) �! C

p

(U; E

q+1

)

denote the di�erentials, where d

0

is the di�erential of

�

Ceh ohains and d

00

is (�1)

p

times the di�erential of forms.

Then ft

ijk

g = d

0

flog g

ij

g, and

d

00

flog g

ij

g = f�d(g

ij

=g

ij

)g = f�s

i

=s

j

d(s

j

=s

i

)g:

therefore the

�

Ceh ohain fs

i

=s

j

d(s

j

=s

i

)g also represents 

1

(L). On the other

hand, �K = �d

00

f� log(h(s

i

))g, and

d

0

f�� log(h(s

i

))g =f�� log (h(s

j

)=h(s

i

))g =

f�� log (s

j

s

j

=s

i

s

i

)g =

f�s

i

=s

j

d(s

j

=s

i

)g:

Therefore �K represents also the lass 

1

(L).
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As a onsequene of this theorem we see that  ((E)) = 

dR

(E). In partiu-

lar this implies that the Chern lass 

i

orresponds to the elementary symmetri

funtion �

i

. This justi�es the following de�nition.

Definition 3.6. Let X be a omplex manifold. Let E be a rank n holomorphi

vetor bundle and let ' 2 B[[T

1

; : : : ; T

n

℄℄ be an invariant power series. Let

'(T

1

; : : : ; T

n

) = �(�

i

; : : : ; �

n

)

be the expression of ' in terms of symmetri elementary funtions. Then the Chern

lass of E assoiated to the power series ' is:

'(E) = �(

1

(E); : : : ; 

n

(E)) 2

M

p

H

2p

(X;B(p)):

Corollary 3.7. Let X be a omplex manifold and let E be a holomorphi

vetor bundle of rank n. Let ' 2 B[[�

1

; : : : ; �

n

℄℄ be an invariant power series. Then

'

dR

(E) =  ('(E)) :

In view of this result we will drop the supersript

dR

from the notation.

The Chern harater (see example 3.4.3) is one of the most interesting power

series of harateristi lasses. The main advantage of the Chern harater lass is

that it behaves very well under exat sequenes and tensor produts. For the proof

of the next proposition we refer also to [34℄.

Proposition 3.8.

1. Let 0 �! S �! E �! Q �! 0 be an exat sequene of vetor bundles.

Then

h(E) = h(S) + h(Q):

2. Let E and F be vetor bunles. Then

h(E 
 F ) = h(E) ^ h(F ):

Unlike the Chern harater lass, the Chern harater form does not need to

behave additively for exat sequenes. Let

0 �! (S; h

0

) �! (E; h) �! (Q; h

00

) �! 0

be an exat sequene of hermitian vetor bundles. Let us write (S; h

0

)� (Q; h

00

) for

the orthogonal diret sum. Then

e

h ((S; h

0

)� (Q; h

00

)) =

e

h(S; h

0

) +

e

h(Q; h

00

):

But in general

e

h(E; h) 6=

e

h ((S; h

0

)� (Q; h

00

)) :

At �rst glane this may seem unfortunate. But, in setion 8, we will see that, as

Shehtmann pointed out ([30℄), the lak of additivity at the level of forms an be

used to onstrut harateristi lasses for higher K-theory.
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4. Chern lasses for higher K theory

In this setion we will review Gillet's onstrution of Chern lasses for higher

K-theory [11℄. We will follow the simpli�ed version given in [31℄. We will assume

that the reader has some familiarity with the language of simpliial objets (see for

instane [23℄ or [14℄).

In this setion we will be in the algebrai geometry ontext. To stress this

fat, instead of working with omplex numbers, let us �x a ground �eld k. Let V

be the ategory of all smooth quasi-projetive shemes, equipped with the Zarisky

topology. Let us denote by D(V) (resp. D

+

(V)) the derived ategory of omplexes

of abelian sheaves on V (resp. whih are bounded below). Let us assume that we

have a �xed graded omplex of sheaves

F

�

(�) =

M

i2Z

F

�

(i); with F

�

(i) 2 D

+

(V):

Thus for eah smooth quasi-projetive sheme X 2 Ob(V) we have the ohomology

groups H

�

(X;F

�

(�)). We need to assume ertain properties of this ohomology

theory in order to mimi the onstrution of Chern lasses of setion 2.

Let us denote by O

�

the sheaf of invertible rational funtions. It de�nes an

element of D

+

(V) assuming that it is a omplex onentrated in degree zero. Then

H

1

(X;O

�

) parameterizes isomorphism lasses of algebrai line bundles overX . The

�rst property we need for our ohomology theory is:

P 1: There is a morphism in D

+

(V)

O

�

[1℄ �! F

�

(1):

In partiular, for eah X 2 Ob(V), we obtain a morphism 

1

: H

1

(X;O

�

) �!

H

2

(X;F

�

(1)) whih allows us to de�ne the �rst Chern lass of a line bundle.

The next property we need is a multipliative struture for the ohomology.

P 2: For eah n; m 2 Z, there are homomorphisms in D

+

(V)

[ : F

�

(n)

L




Z

F

�

(m) �! F

�

(n+m); and e : Z�! F

�

(0)

whih make F

�

(�) an assoiative and graded ommutative (with respet to

the �rst degree) algebra with unit.

The third property we need is a formula for the ohomology of the projetive

spae, in other words, we need the Dold-Thom isomorphism to be satis�ed.

P 3: For X 2 Ob(V), let p : P

n

X

�! X be the n-dimensional projetive spae

over X . Let � be the �rst Chern lass of the line bundle O(1). Then, for

eah pair of integers i; m, the morphism

n�1

X

k=0

p

�

() [ �

k

:

n�1

M

k=0

H

m�2k

(X;F

�

(p� k)) �! H

m

(P

n

X

;F

�

(p))

is an isomorphism.

By a Leray spetral sequene argument, from property P 3 it follows that the

Dold-Thom isomorphism is satis�ed for any projetive bundle.

With properties P 1, P 2 and P 3, we an repeat the proedure of the setion

2 and de�ne, for eah vetor bundle E over X 2 Ob(V), Chern lasses 

i

(E) 2

H

2i

(X;F

�

(i)). But in order to have the Whitney sum formula we need to assume

a Gysin property (see [31℄ and [17℄).
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P 4: Let i : Y ,! X be a losed immersion in V of pure odimension 1 and let

[Y ℄ 2 H

1

(X;O

�

) be the lass of the divisor Y: Then for any x 2 H

2i

(X;F

�

(i))

suh that i

�

x = 0, we have

x [ 

1

([Y ℄) = 0:

The next step is to extend the de�nition of Chern lasses to simpliial shemes.

Let � be the ategory whose objets are the ordered sets [n℄ = f0; : : : ; ng, n � 0

and whose morphisms are ordered maps. Let SV denote the ategory of simpliial

objets in V , that is, the ategory of ontravariant funtors between � and V .

Definition 4.1. Let X

�

2 ObSV be a simpliial sheme. A rank n vetor

bundle over X

�

is an objet of SV , E

�

, together with a morphism of simpliial

shemes �

�

: E

�

�! X

�

satisfying the following onditions

1. For any k � 0 the morphism �

k

: E

k

�! X

k

is a rank n vetor bundle.

2. For any j; k � 0 and any � 2 Mor

�

([j℄; [k℄) the ommutative diagram

E

k

E(�)

����! E

j

?

?

y

�

k

?

?

y

�

k

X

k

X(�)

����! X

j

is a relative morphism of vetor bundles.

Alternatively, following [12℄, we an de�ne a vetor bundle over X

�

as a vetor

bundle E

0

over X

0

, together with an isomorphism � : Æ

�

0

E

0

�! Æ

�

1

E

0

of vetor

bundles over E

1

, suh that Æ

�

2

� Æ Æ

�

0

� = Æ

�

1

�.

If X

�

is a simpliial sheme then again H

1

(X

�

;O

�

) parameterizes isomorphism

lasses of line bundles (see [12℄ ex 1.1). Moreover, the property P 3 implies that the

Dold-Thom isomorphism is satis�ed for arbitrary projetive bundles over simpliial

shemes (see [11℄ Lemma 2.4). Therefore Grothendiek's onstrution of Chern

lasses an be applied to simpliial shemes. In partiular it an be applied in the

universal ase.

Let B

�

GL

n

=k be the lassifying sheme of the group sheme GL

n

over k. The

simpliial sheme B

�

GL

n

=k is provided with a universal rank n vetor bundle,

denoted by E

n

. Let us denote by 

(n)

i

= 

i

(E

n

) 2 H

2i

(B

�

GL

n

=k;F

�

(i)) the i-th

Chern lass of the universal bundle.

The next objetive is to explain how lasses in the ohomology of the lassifying

sheme give rise to maps between K-theory and ohomology of shemes.

Let S

�

be a simpliial set and let X be a sheme. Then we an onstrut the

simpliial sheme S

�

�X suh that

(S

�

�X)

n

=

a

p2S

n

fpg �X;

and the faes and degeneraies are indued by those of S

�

. Let A be a �nitely

generated k-algebra suh that U = SpeA is a smooth sheme. Then B

�

GL

n

(A)

is a simpliial set. Thus we an onstrut the simpliial sheme B

�

GL

n

(A) � U .

Sine an element of B

j

GL

n

(A) is a morphism between U and B

j

GL

n

=k we obtain

a tautologial morphism of simpliial shemes

� : B

�

GL

n

(A) � U �! B

�

GL

n

=k:

Thus, we obtain lasses �

�

(

(n)

i

) 2 H

2i

(B

�

GL

n

(A)� U;F

�

(i)).
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For a simpliial set S

�

, let us denote by ZS

�

the homologial omplex whih,

in degree j is the free abelian group generated by S

j

, and whose di�erential is

d =

P

(�1)

i

Æ

i

.

Lemma 4.2. Let S

�

be a simpliial set and let X be a smooth quasi-projetive

sheme. Then there is a natural short exat sequene

0 �!

Y

p+q=n�1

Ext

1

Z

(H

p

(ZS

�

); H

q

(X;F

�

(i)) �! H

n

(S

�

�X;F

�

(i))

�

�!

Y

p+q=n

Hom(H

p

(ZS

�

); H

q

(X;F

�

)) �! 0:

Proof. This result is the dual of the K�unneth formula (see for instane [29℄

Thm. 11.32).

Thus, from eah lass 

(n)

i

2 H

2i

(B

�

GL

n

=k;F

�

(i)) we obtain a family of mor-

phisms

� Æ �(

(n)

i

)

j

: H

j

(ZB

�

GL

n

(A)) �! H

2i�j

(U;F

�

(i)):

Now we want to go to the limit when n goes to in�nity. For m > n, let us

onsider the inlusion i

n;m

GL

n

=k �! GL

n+1

=k given by

A 7�!

�

A 0

0 I

�

;

where I is the identity m� n�m� n-matrix. Sine

i

�

n;m

E

m

= E

n

� (a trivial vetor bundle);

we have that i

�

n;m



(m)

i

= 

(n)

i

. Therefore, the family of morphisms f Æ'(

(n)

i

)

j

g

n�1

de�nes a morphism



i;j

: H

j

(GL(A);Z) = lim

�!

n

H

j

(ZB

�

GL

n

(A)) �! H

2i�j

(U;F

�

(i)):

The K-theory groups of A are the homotopy groups of the +-onstrution of

B

�

GL(A). Sine the +-onstrution is ayli, we have that

H

�

(B

�

GL(A)

+

;Z) = H

�

(B

�

GL(A);Z) = H

�

(GL(A);Z):

Definition 4.3. Let A be a �nitely generated k-algebra suh that U = SpeA

is a smooth sheme. For eah pair of integers i; j, the i-th Chern lass map in

K

j

(A) is the omposition



i;j

: K

j

(A) = �

j

(B

�

GL(A)

+

)

Hurewiz

�! H

j

(GL(A);Z)



i;j

�! H

2i�j

(U;F

�

(i)):

The following result is an easy onsequene of the de�nition.

Proposition 4.4. Let f

℄

: A �! B be a morphism of �nitely generated k

algebras suh that U = SpeA and V = SpeB are smooth shemes. Let f : V �!

U be the orresponding morphism of k-shemes. Then the following diagram

K

j

(A)



i;j

����! H

2i�j

(U;F

�

(i))

f

�

?

?

y

f

�

?

?

y

K

j

(B)



i;j

����! H

2i�j

(V;F

�

(i))

is ommutative.
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In order to extend the onstrution of Chern lasses to arbitrary smooth quasi-

projetive shemes we will require a property of invariane under homotopy. This

will allow us to use Jouanolou's trik. But stritly speaking this property is not

neessary ( see [11℄).

P 5: For any sheme X 2 Ob(V), the natural map A

1

X

�! X indues an

isomorphism

H

�

(X;F

�

(�)) �! H

�

(A

1

X

;F

�

(�)):

This property implies that, for any �bre bundle p : Y �! X , with �bre A

n

,

(not neessarily a vetor bundle), the map p

�

H

�

(X;F

�

(�)) �! H

�

(Y;F

�

(�)) is an

isomorphism.

For any sheme X 2 V , by Jouanolou's lemma ([20℄ lemma 1.5) there is a �bre

bundle p : Y �! X , with Y aÆne, whih is a torsor over a vetor bundle.

Definition 4.5. Let X be a smooth sheme over k. Let us hoose an aÆne

torsor p : Y �! X . For eah pair of integers i; j, the i-th Chern lass map for

K

j

(X) is the omposition



i;j

: K

j

(X)

p

�

�

=

K

j

(Y )



i;j

�! H

2i�j

(Y;F

�

(i))

p

�

�

=

H

2i�j

(X;F

�

(i)):

Thanks to the naturality of the map 

i;j

in the aÆne ase (proposition 4.4)

and [20℄ proposition 1.6, this de�nition does not depend on the hoie of the aÆne

torsor Y .

So far we have onstruted Chern lasses for higher K-theory. Now we want to

onstrut harateristi lasses for arbitrary power series. Let again B be a subring

of R and assume that F is a sheaf of B-modules. Observe that, replaing T

n+1

by

0, we have a morphism between the ring of invariant power series

B[[T

1

; : : : ; T

n+1

℄℄

S

n+1

�! B[[T

1

; : : : ; T

n

℄℄

S

n

:

In terms of elementary symmetri funtions the above morphism is the morphism

B[[�

1

; : : : ; �

n+1

℄℄ �! B[[�

1

; : : : ; �

n

℄℄

that sends �

n+1

to 0. We will denote by

i

�

n;m

:



IP (m) �!



IP (n)

the indued morphisms. These morphisms make f



IP (n)g

n

an inverse system. Ob-

serve that we have a ommutative diagram

f



IP (m)g

n

����!

Q

i

H

2i

(B

�

GL

m

=k;F

�

(i))

i

�

n;m

?

?

y

i

�

n;m

?

?

y

f



IP (n)g

n

����!

Q

i

H

2i

(B

�

GL

n

=k;F

�

(i))

where the horizontal arrows send the elementary symmetri funtion �

i

to the i-th

Chern lass.

Definition 4.6. A stable invariant power series is an element

f'

(n)

g 2 lim

 �



IP (n):
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Observe that any stable invariant power series is given by an element

' 2 B[[�

1

; : : : ; �

n

; : : : ℄℄:

Proeeding as with the Chern lasses, for any invariant stable power series ',

we obtain harateristi lasses

' : K

j

(X) �!

M

H

2i�j

(X;F(i)):

Example 4.7. Assume that B � Q. Let us denote by h

(n)

the redued Chern

harater of rank n. That is

h

(n)

(T

1

; : : : ; T

n

) = h(T

1

; : : : T

n

)� n:

Sine h

(n+1)

(T

1

; : : : ; T

n

; 0) = h

(n)

(T

1

; : : : ; T

n

), then fh

(n)

g is a stable invariant

power series. Thus it de�nes a redued Chern harater lass, denoted h.

Definition 4.8. The Chern harater is the map

h : K

i

(�) �!

M

j

H

2j�i

(�;F(j));

given by

h =

(

h; if i > 0;

rank+h; if i = 0:

Reall that there is a produt struture ([21℄)

K

i


K

j

�! K

i+j

that extends the multipliative struture indued in K

0

by the tensor produt. The

Chern harater is also ompatible with this produt. For a proof of the following

result see [11℄ or [31℄.

Theorem 4.9. For x 2 K

i

and y 2 K

j

then

h(x � y) = h(x) [ h(y):

5. Real Deligne ohomology

Let us reall the de�nition of real Deligne ohomology and some omplexes

that an be used to ompute it. Again let X be a smooth proper omplex variety.

As in setion 3 let B be a subring of R. Let us write B(p) = (2�i)

p

B � C . We

will denote also by B(p) the onstant sheaf. Let 


�

X

be the sheaf of holomorphi

di�erential forms on X .

Definition 5.1. The (B-)Deligne ohomology of X , denoted H

D

(X;B(p)), is

the hyperohomology of the omplex of sheaves

B(p) �! O

X

�! 


1

X

�! � � � �! 


p�1

X

:

This de�nition has been extended by Beilinson to the ase of smooth omplex

algebrai varieties, not neessarily proper (see [2℄, [1℄, [10℄ and [19℄). This extension

is known as Deligne-Beilinson ohomology. Beilinson also showed that Deligne-

Beilinson ohomology an be written as sheaf ohomology for a sheaf in the Zariski

topology, satisfying the properties 1 to 5 of last setion. Thus we an apply the

onstrution of the last setion and obtain harateristi lasses from higher K-

theory to Deligne-Beilinson ohomology. In partiular, if we take B = R then the
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Chern harater in real Deligne-Beilinson ohomology is alled Beilinson's regulator

and it is a generalization of Borel's regulator (see [4℄, [2℄, [27℄).

Let F denote the Hodge �ltration:

F

p




�

X

=

M

p

0

�p




p

0

X

:

Then real Deligne ohomology an be de�ned also as the hyperohomology of the

simple omplex assoiated to the morphism of omplexes

R(p)� F

p




�

X

�! 


�

X

:

We want to have real Deligne ohomology as the ohomology of an expliit omplex,

as de Rham ohomology is the ohomology of the omplex of di�erential forms. To

this end we will resolve the onstant sheaf and the sheaves of holomorphi forms

using smooth di�erential forms. We will use the same notation as in setion 3 for

the sheaves and omplexes of di�erential forms.

The Hodge �ltration of the omplex E

�

is given by

F

p

E

n

=

M

p

0

�p

E

p

0

;n�p

0

:

The sheaves of di�erential forms are �ne, hene ayli. Sine E

�

R

(p) is a resolution

of the onstant sheaf R(p), and E

�

is a resolution of 


�

X

, ompatible with the Hodge

�ltration, we obtain that real Deligne ohomology of X is the ohomology of the

simple omplex assoiated to the morphism of omplexes

u

p

: E

�

R

(p)(X)� F

p

E

�

(X) �! E

�

(X);

given by u

p

(r; f) = f � r. Let us denote the simple omplex assoiated to u

p

as

s(u

p

) = s(E

�

R

(p)(X)� F

p

E

�

(X) �! E

�

(X)):

An element of s

n

(u

p

) is given by a triple

(r; f; !) 2 E

n

R

(p)(X)� F

p

E

n

(X)� E

n�1

(X);

and the di�erential is given by d(r; f; !) = (dr; df; f � r � d!).

Following Deligne [9℄ we an use a simpler omplex to ompute real Deligne

ohomology.

Definition 5.2. Let D

�

(X; p) denote the omplex given by

D

n

(X; p) =

8

>

>

>

>

>

<

>

>

>

>

>

:

E

n�1

R

(p� 1)(X) \

M

p

0

+q

0

=n�1

p

0

<p; q

0

<p

E

p

0

;q

0

(X); for n � 2p� 1

E

n

R

(p)(X) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

E

p

0

;q

0

(X); for n � 2p:

The di�erential of this omplex, denoted by d

D

, is indued by d in degree greater

or equal than 2p, by �d in degree less or equal than 2p� 2 and is equal to �2��

in degree 2p� 1.

A proof that the ohomology of this omplex is Deligne ohomology an be

found on [7℄. This proof is based in the following fats:
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1. The morphism u : E

n

R

(p)(X)�F

p

E

n

(X) �! E

n

(X) is injetive for n � 2p�1

and the okernel is

E

n�1

R

(p� 1)(X) \

M

p

0

+q

0

=n�1

p

0

<p; q

0

<q

E

p

0

;q

0

(X):

2. The above morphism u is surjetive for n � 2p� 1 and the kernel is

E

n

R

(p)(X) \

M

p

0

+q

0

=n

p

0

�p; q

0

�q

E

p

0

;q

0

(X):

3. In partiular, for n = 2p� 1 the morphism u is an isomorphism. Moreover,

if ! 2 E

2p�2

(X), then du

�1

d! = �2��!.

Example 5.3. Observe that D

2p

(X; p) = E

2p

R

(p)(X) \ E

p;p

(X). Thus if (E; h)

is a hermitian holomorphi vetor bundle of rank n and ' 2 R[[T

1

; : : : ; T

n

℄℄ is a real

invariant power series, then

e'(E; h) 2

M

p

D

2p

(X; p):

In order to write down expliit morphisms between D

�

(X; p) and s(u

p

) we need

to introdue some notations. Given a di�erential form a, we will write a =

P

a

p;q

its deomposition in forms of pure bidegree. Let F

p;p

be the morphism de�ned by

F

p;p

a =

X

p

0

�p

q

0

�p

a

p

0

;q

0

:

Let �

p

be the morphism given by

�

p

a = (a+ (�1)

p

a)=2:

Observe that �

p

is the projetion of E

�

(X) onto E

�

R

(p)(X), and that, for n < 2p,

�

p

= �

p�1

Æ F

n�p+1;n�p+1

is the projetion of E

n

(X) onto the okernel of u

p

.

Let  : s

n

(u

p

) �! D

n

(X; p) and ' : D

n

(X; p) �! s

n

(u

p

) be the morphisms

given by

 (r; f; !) =

(

�

p

(!); for n � 2p� 1;

F

p;p

r + 2�

p

(�!

p�1;q+1

); for n � 2p;

'(x) =

(

(�x

p�1;q

� �x

q;p�1

; 2�x

p�1;q

; x); for n � 2p� 1;

(x; x; 0); for n � 2p;

where q = n � p. Then  and ' are homotopy equivalenes inverse to eah other

(see [7℄).

Real Deligne ohomology has a produt [2℄, [1℄ that an be desribed, in terms

of the omplexes s(u

p

) in the following way. Let 0 � � � 1 be a real number. For

(r; f; !) 2 s

n

(u

p

) and (s; g; �) 2 s

m

(u

q

), let us write

(r; f; !) [

�

(s; g; �) = (r ^ s; f ^ g;

�(! ^ s+ (�1)

n

f ^ �) + (1� �)(! ^ g + (�1)

n

r ^ �)):

This is a family of produts, all of them homotopially equivalent. Moreover, for

� = 1=2 this produt is graded ommutative, whereas for � = 0; 1 this produt is

assoiative. Therefore they indue a graded ommutative, assoiative produt in
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Deligne ohomology. This produt indues a produt in the omplex D

�

(X; p) (see

[7℄). This omplex is only assoiative or graded ommutative up to homotopy.

In order to have a omplex with a graded ommutative and assoiative produt

we will use the Thom-Whitney simple, introdued in [26℄. The Thom-Whitney

simple assoiates, to a strit osimpliial di�erential omplex, a new di�erential

omplex. This new di�erential omplex is homotopially equivalent to the total

omplex of the original osimpliial omplex. The main interest of the Thom-

Whitney simple is that, if we start with a strit osimpliial graded ommutative

assoiative algebra, the omplex that we obtain is again a di�erential graded om-

mutative assoiative algebra.

In our ase, we an onsider the morphism u

p

a strit osimpliial omplex u

�

p

writing

u

0

p

=E

�

R

(p)(X)� F

p

E

�

(X);

u

1

p

=E

�

(X);

u

i

p

=0; for i � 2;

with morphisms given by

Æ

0

(r; f) = f; Æ

1

(r; f) = r;

and the other morphisms equal to zero.

Let us desribe the Thom-Whitney simple in this ase. Let L

�

1

be the omplex

of algebrai forms in the aÆne line A

1

R

. That is, L

0

1

= R[t℄, and L

1

1

= R[t℄dt. Let

Æ

0

; Æ

1

: L

�

1

�! R be the morphisms given by evaluation at 0 and 1 respetively.

That is Æ

0

(f(t) + g(t)dt) = f(0), and Æ

1

(f(t) + g(t)dt) = f(1).

Definition 5.4. The Thom-Whitney simple of u

�

p

, denoted s

TW

(u

�

p

) is the

subomplex of

E

�

R

(p)(X)� F

p

E

�

(X)� L

�

1


 E

�

(X)

formed by the elements (r; f; !) suh that

f =(Æ

0


 Id)(!);

r =(Æ

1


 Id)(!):

The di�erential and the produt of the Thom-Whitney simple are given om-

ponentwise:

d(r; f; !) = (dr; df; d!)

and

(r; f; !) ^ (s; g; �) = (r ^ s; f ^ g; ! ^ �):

With these de�nitions of di�erential and produt, the diret sum

L

p

s

TW

(u

p

) is a

di�erential graded ommutative assoiative algebra.

We an onstrut expliit equivalenes (see [26℄)

s

TW

(u

p

)

I

�!

 �

E

s(u

p

)

given by

E(r; f; !) = (r; f; t
 f + (1� t)
 r + dt
 !);
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and

I(r; f; (h(t) + g(t)dt)
 !) =

�

r; f;

Z

1

0

g(t)dt!

�

:

We will write I

0

=  Æ I : s

TW

(u

p

) �! D

�

(X; p) and E

0

= E Æ' : D

�

(X; p) �!

s

TW

(u

p

). We will later use that I

0

and E

0

is a pair of homotopy equivalenes,

inverse to eah other, between D

�

(X; �) and a omplex with an assoiative and

graded ommutative produt.

6. Bott-Chern forms

For any stable invariant power series ' and any exat sequene

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0

of hermitian vetor bundles, the Whitney sum formula implies that the assoiated

Chern lasses satisfy

'(E) = '(S �Q):(6.1)

But in general this equation is no longer true for the Chern forms. That is, the

form

e'(E; h)� e'((S; h

0

)� (Q; h

00

)) 2

M

D

2p

(X; p)

may be non zero. Nevertheless, equation 6.1 and the ��-lemma ([16℄) imply that

there exists a di�erential form e'

1

suh that

e'(E; h)� e'((S; h

0

)� (Q; h

00

)) = �2�� e'

1

:(6.2)

Sine D

2p

(X; p) = E

2p

R

(p)(X) \ E

p;p

(X) and �2�� is a purely imaginary operator,

bihomogeneous of bidegree (1; 1), we an hoose

e'

1

2

M

p

E

2p�2

R

(p� 1)(X) \ E

p�1;p�1

(X) =

M

p

D

2p�1

(X; p):

In other words, the form e'(E; h) � e'((S; h

0

) � (Q; h

00

)) is exat in the omplex

L

D

�

(X; p) The aim of this setion is to solve the equation 6.2 in a funtorial way.

We will say that the exat sequene � is split if (E; h) is the orthogonal diret

sum (S; h

0

) and (Q; h

00

).

Theorem 6.1 (Gillet and Soul�e [13℄). Let ' be a stable invariant power series.

To eah exat sequene of hermitian vetor bundle

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0

we an assign a di�erential form e'

1

(�) 2

L

p

D

2p�1

(X; p), alled the Bott-Chern

form. satisfying the following properties.

1. �2�� e'

1

= e'(E; h)� e'((S; h

0

)� (Q; h

00

)).

2. If f : X �! Y is a morphism of omplex manifolds then

e'

1

(f

�

�) = f

�

e'

1

(�):

3. If � is a split exat sequene of hermitian bundles, then e'

1

(�) = 0.

Moreover, these properties haraterize e'

1

up to Im � + Im �. That is, up to a

boundary in the omplex

L

p

D

�

(X; p).
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The proof that these properties haraterize Bott-Chern forms an be found in

[3℄. Let us give a onstrution of Bott-Chern forms. The method we will follow is

a modi�ation of the method of Gillet and Soul�e that avoids the need to hoose a

partition of unity. In this way we obtain well de�ned Bott-Chern forms satisfying

the onditions of theorem 6.1 and not only lasses up to Im � + Im �.

A standard proedure to prove that two di�erential forms � and �, de�ned on

a di�erential variety Y , are ohomologous is the following. First, one onstruts

a geometri homotopy between � and �. That is, a di�erential form � de�ned on

Y � R suh that �j

Y�f1g

= � and �j

Y�0

= �. From this homotopy one obtains a

primitive for �� � by integration:

d

Z

1

0

� = �� �:(6.3)

Let us denote by �

1

the urrent

�

1

(�) =

Z

1

0

�:

Then the equation 6.3 an be expressed as the equation in urrents

d�

1

= Æ

1

� Æ

0

;(6.4)

where Æ

0

and Æ

1

are the Dira delta urrents entered at 0 and 1 respetively. We

will adapt the above proedure to Deligne ohomology.

Let us assume for a while that the hermitian metri h

00

on Q is the hermitian

metri indued by the metri h of E. The �rst step is to onstrut a geometri

homotopy between the hermitian vetor bundles (E; h) and (S; h

0

)� (Q; h

00

). This

homotopy will be parametrized by the omplex projetive line instead of by the unit

interval. Let (x : y) be homogeneous oordinates of P

1

= P

1

C

. Then x and y are

setions of the bundle O

P

1

(1). The standard metri of C

2

indues the Fubini-Study

metri on O

P

1

(1). Let us denote by g this metri. Then

g(x) =

xx

xx+ yy

and g(y) =

yy

xx+ yy

:

Let p

1

: X � P

1

�! X and p

2

: X � P

1

�! P

1

denote the projetions. Let

us write E(1) = p

�

1

E 
 p

�

2

O(1) and S(1) = p

�

1

S 
 p

�

2

O(1). Let us onsider the

morphism

 : S �! S(1)�E(1)

s 7�! s
 y + f(s)
 x:

Observe that the vetor bundle S(1)�E(1) has a metri indued by the metris of

S, E and O(1).

Definition 6.2. The transgression bundle assoiated to the exat sequene �

is the hermitian vetor bundle

tr

1

(�) = oker( )

with the hermitian metri indued by the metri of S(1)�E(1).

The restritions of the transgression bundle tr

1

(�) are

tr

1

(�)j

X�(0:1)

= (E; h);(6.5)

tr

1

(�)j

X�(1:0)

= (S; h

0

)� (Q; h

00

):(6.6)
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Thus tr

1

(�) is a geometri homotopy between (S; h

0

) � (Q; h

00

) and (E; h). Note

that to obtain 6.5 we had to assume that h

00

is the indued metri.

The seond step is to obtain a geometri homotopy of di�erential forms. This

homotopy is given by the form e'(tr

1

(�)). Then the funtoriality of the Chern forms

and the equations 6.5 and 6.6 imply that

e'(tr

1

(�))j

X�(0:1)

= e' ((E; h)) ;(6.7)

e'(tr

1

(�))j

X�(1:0)

= e' ((S; h

0

)� (Q; h

00

)) :(6.8)

The third step is to integrate the geometri homotopy to obtain a primitive.

Let t = x=y be an absolute oordinate in P

1

. Let [1=2 log tt℄ denote the urrent

de�ned by

[1=2 log tt℄(�) =

1

2�i

Z

P

1

1

2

log tt�:

The urrent [1=2 log tt℄ will play the role, in Deligne ohomology, that the urrent

�

1

plays in de Rham ohomology. The analogue of equation 6.4 is the Poinar�e-

Lelong equation (see for instane [16℄)

�2��[1=2 log tt℄ = Æ

(0:1)

� Æ

(1:0)

:(6.9)

Definition 6.3. The Bott-Chern form assoiated to the exat sequene � and

the power series ' is the di�erential form

e'

1

(�) = [1=2 log tt℄(tr

1

(�)):(6.10)

Equations 6.7, 6.8 and 6.9 imply the ondition 1 of theorem 6.1. Moreover the

funtoriality (ondition 2) is lear from the onstrution of Bott-Chern forms.

Lemma 6.4. If � is a split exat sequene then e'

1

(�) = 0.

Proof. Let us onsider the morphism � : P

1

�! P

1

given by �(x : y) = (y : x).

The line bundle O(1) with the Fubini-Study metri is invariant under �

�

. Sine �

is split, the map  in the de�nition of the transgression bundle is

 : S �! S(1)� S(1)�Q(1)

s 7�! s
 y + s
 x+ 0:

Therefore, by the invariane of O(1), �

�

tr

1

(�) is the okernel of the morphism

 

0

: S �! S(1)� S(1)�Q(1)

s 7�! s
 x+ s
 y + 0;

whih is isometri to tr

1

(�). Therefore �

�

e'(tr

1

(�)) = e'(tr

1

(�)). Thus it is an

even form. On the other hand, the urrent [1=2 log tt℄ is odd: �

�

[1=2 log tt℄ =

�[1=2 log tt℄. Hene e'

1

(�) = [1=2 log tt℄(tr

1

(�)) = 0.

Let us assume now that the metri h

00

of Q is arbitrary. Let h

000

be the hermitian

metri on Q indued by the metri h. Then from the exat sequene � we an de�ne

two new exat sequenes.

�

1

� : 0 �! (S; h

0

) �! (E; h) �! (Q; h

000

) �! 0

�

2

� : 0 �! (Q; h

00

) �! (Q; h

000

) �! 0 �! 0:

In both exat sequenes the third metri is indued by the seond one.
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Definition 6.5. Let

� : 0 �! (S; h

0

) �! (E; h) �! (Q; h

00

) �! 0

be an exat sequene of hermitian vetor bundles. Let ' be a stable invariant power

series. Then the Bott-Chern form assoiated to ' anf � is

e'

1

(�) = e'

1

(�

1

�) + e'

1

(�

2

�)

Remark 6.6. Sine, by Lemma 6.4 the Bott-Chern of the exat sequene

0 �! (Q; h) �! (Q; h) �! 0 �! 0

is zero, if � is an exat sequene with the third metri indued by the seond one

then de�nition 6.3 gives the same result as de�nition 6.5.

7. Exat ubes

Let X be a smooth quasi-projetive variety over C . Let us �x a small full

subategory E = E(X) of the ategory of algebrai vetor bundles over X , whih is

equivalent to it.

Let h�1; 0; 1i be the ategory assoiated to the ordered set f�1; 0; 1g. Let

h�1; 0; 1i

n

be the n-th artesian power, and let h�1; 0; 1i

0

be the ategory with one

element and one morphism. Following Loday [22℄, we de�ne exat ubes as follows:

Definition 7.1. An exat n-ube of E is a funtor F from h�1; 0; 1i

n

to E suh

that, for all integers 1 � i � n, and all n� 1-tuples (�

1

; : : : ; �

n�1

) 2 h�1; 0; 1i

n�1

the sequene

F

�

1

;:::;�

i�1

;�1;�

i

;:::;�

n�1

�! F

�

1

;:::;�

i�1

;0;�

i

;:::;�

n�1

�! F

�

1

;:::;�

i�1

;1;�

i

;:::;�

n�1

is a short exat sequene. We have written F

�

1

;:::;�

n

for F(�

1

; : : : ; �

n

).

We will denote by C

n

E the ategory of exat n-ubes. It is a small exat

ategory. We will write C

n

E = Ob(C

n

E).

Definition 7.2. Given an exat n-ube F and integers i 2 f1; : : : ; ng, j 2

f�1; 0; 1g, the fae �

j

i

F is the exat n� 1-ube de�ned by

�

�

j

i

F

�

�

1

;:::;�

n�1

= F

�

1

;:::;�

i�1

;j;�

i

;:::;�

n�1

:

Examples 7.3.

1. An exat 0-ube is an element of Ob(E).

2. An exat 1-ube is an exat sequene of objets of E.

3. For eah i 2 f1; : : : ; ng, we an see an exat n-ube F as the exat sequene

of exat n� 1-ubes

0 �! �

�1

i

F �! �

0

i

F �! �

1

i

F �! 0

This exat sequene will be denoted �

�

i

F . Note that F is haraterized by

any of the exat sequenes �

�

i

F .

Let ZC

n

(E) be the free abelian group generated by C

n

(E). Let us de�ne a

di�erential d : ZC

n

(E) �! ZC

n�1

(E) by the formula

d =

n

X

i=1

1

X

j=�1

(�1)

i+j+1

�

j

i

:
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It is easy to see that d

2

= 0; thus we have obtained a homology omplex denoted

ZC

�

(E). Sine we are using a ubi theory, in order to obtain the right homology,

we need to fator out by the degenerate elements.

For eah exat n� 1-ube F , and eah integer i 2 f1; : : : ; ng we will denote by

s

i

�1

F the exat n-ube de�ned by the exat sequene (see example 7.3.3)

�

�

i

(s

i

�1

F) : 0 �! 0 �! F

Id

�! F �! 0:

Analogously we de�ne s

i

1

by the exat sequene

�

�

i

(s

i

1

F) : 0 �! F

Id

�! F �! 0 �! 0:

The exat ubes in the image of s

�1

and s

1

are alled degenerate n-ubes.

Clearly the di�erential d sends a degenerate ube to a linear ombination of de-

generate ubes. Therefore the subgroup generated by all degenerated ubes form a

subomplex of ZC

�

(E) denoted by D

�

.

Definition 7.4. The redued ubial omplex of the ategory E is

e

ZC

�

E = ZC

�

E/D

�

:

The homology of the omplex ZC

red

�

E is losely related to the K-theory of X .

For instane, let S

�

E be the Waldhausen spae assoiated with the ategory E [32℄.

Then

K

i

(X) = �

i+1

jS

�

Ej :

Now, as in [33℄, [8℄ or [24℄, one an onstrut a morphism of omplexes

 : ZS

�

E[1℄ �!

e

ZC

�

E:

Composing with the Hurewiz morphism one obtains a natural map

K

i

E �! H

i

(

e

ZC

�

E):

For the purpose of onstruting harateristi lasses this map is enough (see [8℄).

But R. MCarthy [24℄ has given a preise desription of the homology of

e

ZC

�

E

that makes this omplex muh more interesting.

Theorem 7.5. The homology of

e

ZC

�

E is the homology of the algebrai K-

theory spetrum of the ategory E. In partiular

K

i

(E)
 Q

�

=

H

i

(

e

ZC

�

E)
 Q:

Moreover, the use of ubes makes

e

ZC

�

E very well behaved to study produts.

Definition 7.6. Let F be an exat n-ube and let G be an exat m-ube.

Then F 
 G is the exat n+m-ube given by

(F 
 G)

�

1

;:::;�

n+m

= F

�

1

;:::;�

n


 G

�

n+1

;:::;�

n+m

:

This produt makes

e

ZC

�

E an assoiative di�erential algebra whih is homo-

topially ommutative. Therefore its homology has the struture of an assoiative

and ommutative algebra.

Theorem 7.7 (R. MCarthy [24℄.). The morphism

K

�

(E) �! H

�

(

e

ZC

�

E)

is multipliative.
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We want to introdue hermitian metris in the vetor bundles.

Definition 7.8. Let E = E(X) be the ategory with

ObE =

(

(E; h)

�

�

�

�

�

E 2 ObE

h hermitian metri on E

)

and

Hom

E

((E; h); (F; g)) = Hom

E

(E;F ):

For eah vetor bundle E 2 E let us hoose a hermitian metri h

E

. This gives

us a funtor F : E �! E. Let G : E �! E be the funtor forget the metri.

These funtors are equivalenes inverse to eah other. In partiular, this implies

the following result.

Lemma 7.9. The funtors F and G indue morphisms of omplexes

F :

e

ZC

�

E �!

e

ZC

�

E;

G :

e

ZC

�

E �!

e

ZC

�

E;

whih are homotopy equivalenes, inverse one of the other.

Proof. It is lear that G ÆF = Id. In addition the homotopy h between F ÆG

and the identity is given in the following way. Let F be an element of

e

ZC

n

E. Then

hF is the exat n+ 1 ube de�ned by the exat sequene

�

�

n

(hF) : 0 �! F ÆG(F)

Id

�! F �! 0 �! 0:

To de�ne higher Bott-Chern forms for exat ubes of hermitian vetor bundles,

extending the tehnique of setion 6, we need the third metri in any short exat

sequene to be indued by the middle metri. To this end we introdue the following

notation.

Definition 7.10. Let F = f(E

�

; h

�

)g be an exat n-ube of hermitian vetor

bundles. We say that F is an emi-n-ube, if, for eah n-tuple � = (�

1

; : : : ; �

n

), and

eah i with �

i

= 1, the metri h

�

is indued by the metri h

(�

1

;:::;�

i�1

;0;�

i+1

;:::;�

n

)

.

Let ZC

emi

E be the subomplex of ZCE generated by the the emi-n-ubes, and

let D

emi

be the subomplex generated by the degenerate emi-n-ubes. We will

write

e

ZC

emi

E = ZC

emi

E

Æ

D

emi

�

e

ZCE:

Let us see that the omplexes

e

ZCE and

e

ZC

emi

E are homotopially equivalent.

Let F = f(F

�

; h

�

)g 2 C

n

E. For i = 1; : : : ; n let �

1

i

F be de�ned by

�

1

i

F

�

=

(

(F

�

; h

�

); if �

i

= �1; 0;

(F

�

; h

0

�

); if �

i

= 1;

where h

0

�

is the metri indued by h

(�

1

;:::;�

i�1

;0;�

i+1

;:::;�

n

)

. Thus the operator �

1

i

hanges the metris of the fae �

1

i

F by those indued by the metris of the fae

�

0

i

F .

Let �

2

i

F be the exat n-ube determined by the exat sequene

�

�

i

(�

2

i

F) : 0 �! �

1

i

F �! �

1

i

�

1

i

F �! 0 �! 0:
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This n-ube measures the di�erene between F and �

1

i

F .

Let us write �

i

F = �

1

i

F + �

2

i

F , and let us denote by � the map

� : ZC

n

E �! ZC

n

E

F 7�!

(

�

n

: : : �

1

F ; if n � 1;

F ; if n = 0:

The map � is a morphism of omplexes. Moreover, the image of � lies in the

set of emi-n-ubes and � sends degenerate ubes to degenerate ubes. Therefore

the morphism � indues a morphism of omplexes

e

� :

e

ZCE �!

e

ZC

emi

E:

Proposition 7.11. The morphism

e

� is a homotopy equivalene.

Proof. Let us denote by

� :

e

ZC

emi

E �!

e

ZCE

the inlusion. Observe that, if F is an emi-n-ube then

�F = F + degenerate elements.

Therefore

e

� Æ � = Id. Let F and G be the morphisms of omplexes of lemma 7.9.

Sine F ÆG is homotopially equivalent to the identity, we obtain the equivalene

F ÆG Æ � Æ

e

� � � Æ

e

�:

But, sine the funtor G forgets the metri, G(� Æ �F) � G(F) onsists only in

degenerate ubes. Therefore F ÆG Æ � Æ

e

� = F ÆG: In onsequene � Æ

e

� � Id.

8. Higher Bott-Chern forms

Let X be a smooth omplex projetive variety. The aim of this setion is to

give a morphism between the omplex of emi-ubes and the omplex D

�

(X; �).

This morphism will realize the harateristi lasses from higher K-theory to real

Deligne ohomology.

Observe that, sine we want to realize the harateristi lasses as a morphism

of omplexes of abelian groups, we will obtain a morphism of groups. In partiular

the indued map

K

0

(X) �!

M

p

H

2p

D

(X; p)

will be additive. This fores us to hoose the Chern harater as our harateristi

lass. Nevertheless, sine the Chern lasses an be reovered from the omponents

of the Chern harater form, the formulae we obtain an be applied to any hara-

teristi lass.

The reason we restrit ourselves to projetive varieties is to avoid the tehnial

diÆulties of the logarithmi singularities at in�nity. But note that a main ingre-

dient in the proof that higher Bott-Chern forms give Beilinson's regulator is the

extension to quasi-projetive varieties (see [8℄)

Let us see that Bott-Chern forms are the degree one step of the morphism of

omplexes we are looking for. If

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0
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is an exat sequene of hermitian vetor bundles, then

d� = (E; h)� (Q; h

00

)� (S; h

0

):

Therefore

d

D

e

h

1

(�) = �2��

e

h

1

(�)

=

e

h(E; h)�

e

h(Q; h

00

)�

e

h(S; h

0

)

=

e

h(d�):

To extend this morphism to higher degrees, we will iterate the de�nition of Bott-

Chern forms.

Let F = fF

�

g be an emi-n-ube. The �rst step is to onstrut a geometri n-th

order homotopy between the vertexes of F . The reason for alling it a homotopy

will be lear in proposition 8.3. This homotopy will be a hermitian vetor bundle

de�ned over X� (P

1

)

n

and will be alled the n-th transgression bundle. Moreover,

we want the n-th transgression bundle to be an exat funtor. Let us de�ne it

indutively. If n = 1, an emi-1-ube is a short exat sequene � of hermitian vetor

bundles with the third metri indued by the seond one. Then, the de�nition of

the �rst transgression bundle is given in 6.2. It follows from the de�nition that

tr

1

is an exat funtor. Assume now that we have de�ned the funtor tr

n�1

and

that it is an exat funtor. As in 7.3.3, The emi-n-ube F an be seen as an exat

sequene of emi-n� 1-ubes:

�

�

n

F : �

�

n

(F)0 �! �

�1

n

F �! �

0

n

F �! �

1

n

F �! 0:

Applying the funtor tr

n�1

to this exat sequene of emi-n�1-ubes, we obtain

an exat sequene of hermitian vetor bundles onX�(P

1

)

n�1

, denoted tr

n�1

(�

�

n

F).

Definition 8.1. Let F be an emi-n-ube. Then the n-th transgression bundle

is

tr

n

(F) = tr

1

(tr

n�1

(�

�

n

F)):

Sine tr

1

is an exat funtor, and by indution hypothesis we may assume that

tr

n�1

is also an exat funtor, we obtain that tr

n

is also an exat funtor.

Remark 8.2. An emi-n-ube an be seen as an exat sequene of emi-n � 1-

ubes in n di�erent ways depending on whih faes we take. Thus the above on-

strution may depend, in priniple, on the hoie of an ordering of the subindexes.

Nevertheless, the result is independent of this order. See for instane [8℄ De�ni-

tion 3.8 for a more symmetri de�nition or [28℄ Proposition 2.1 for a proof of the

invariane under permutations.

The basi property of the transgression bundle is the following.

Proposition 8.3 ([8℄ Proposition 3.9). Let F be an emi-n-ube. Let (x

i

: y

i

)

be homogeneous oordinates in the i-th fator of (P

1

)

n

. Then

tr

n

(F)j

fx

i

=0g

�

=

tr

n�1

(�

0

i

F);

tr

n

(F)j

fy

i

=0g

�

=

tr

n�1

(�

�1

i

F)

?

� tr

n�1

(�

1

i

F):

In view of this proposition, the n-th transgression bundle of an emi-n-ube is

a homotopy between the n� 1-transgression bundles of its faes.



HERMITIAN VECTOR BUNDLES AND CHARACTERISTIC CLASSES 25

The seond step is to go from a homotopy of vetor bundles to a homotopy of

di�erential forms. This step is simple; the required homotopy is

e

h(tr

n

(F)) beause

by the funtoriality of the Chern harater form and Proposition 8.3 we obtain that

e

h(tr

n

(F))j

fx

i

=0g

�

=

e

h(tr

n�1

(�

0

i

F));(8.1)

e

h(tr

n

(F))j

fy

i

=0g

�

=

e

h(tr

n�1

(�

�1

i

F)) +

e

h(tr

n�1

(�

1

i

F)):(8.2)

The third step is to integrate the di�erential form

e

h(tr

n

(F)) de�ned on X �

(P

1

)

n

, to obtain a di�erential form,

e

h

n

(F), de�ned on X .

To this end we will introdue some urrents on (P

1

)

n

. Let us introdue the

homologial analogue of the omplex D

�

, where these urrents will live. For any

smooth omplex projetive variety Y , let D

�

(Y ) be the omplex of urrents on

Y . That is, D

n

(Y ) is the topologial dual of E

n

(Y ). We will denote by D

R

�

(Y )

the subomplex of real urrents and by D

p;q

(Y ) the urrents of type p; q (i.e. the

topologial dual of E

p;q

(Y )). We will write D

R

�

(Y )(p) = (2�i)

�p

D

R

�

(Y ).

Definition 8.4. Let D

�

(Y; �) be the omplex de�ned by

D

n

(Y; p) =

8

>

>

>

>

>

<

>

>

>

>

>

:

D

R

n

(p)(Y ) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

D

p

0

;q

0

(Y ); for n � 2p:

D

R

n+1

(p+ 1)(X) \

M

p

0

+q

0

=n+1

p

0

>p; q

0

>q

D

p

0

;q

0

(X); for n � 2p+ 1:

The homology of the above omplex is the Deligne homology of Y . If Y is

equidimensional of dimension n then, for any form ! 2 D

j

(Y; p), we will denote by

[!℄ 2 D

2n�j

(Y; n� p) the urrent de�ned by

[!℄(�) =

1

(2�i)

n

Z

Y

! ^ �:(8.3)

This morphism realizes the Poinar�e duality. If ! is a loally integrable form, we

will use also the notation [!℄ to denote its assoiated urrent.

Let us denote by d

i

j

: (P

1

)

n�1

�! (P

1

)

n

, for i = 1; : : : ; n and j = 0;1 the

inlusions given by

d

i

0

(x

1

; : : : ; x

n

) = (x

1

; : : : ; x

i�1

; (0 : 1); x

i

; : : : ; x

n

)

d

i

1

(x

1

; : : : ; x

n

) = (x

1

; : : : ; x

i�1

; (1 : 0); x

i

; : : : ; x

n

):

The urrents we need in order to integrate the form

e

h(tr

n

(F)) are provided

by the following result.

Theorem 8.5 ([33℄, see also [8℄ and [15℄). There exists a family of urrents

f[W

n

℄g

n�0

with [W

n

℄ 2 D

n

((P

1

)

n

; 0) suh that

1. [W

0

℄ = 1.

2. d

D

[W

n

℄ =

n

X

i=1

(�1)

i

�

(d

i

0

)

�

[W

n�1

℄� (d

i

1

)

�

[W

n�1

℄

�

.

Proof. By equation 6.9, we an write [W

1

℄ = [1=2 log tt℄. Let p

i

: (P

1

)

n

�!

P

1

denote the projetion over the i-th fator. Let us write �

i

= p

�

i

(1=2 log tt).
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Then �

i

is a loally integrable funtion over (P

1

)

n

. Let I

0

and E

0

be the homotopy

equivalenes introdued at the end of setion 5. Then we will write

W

n

= I

0

(E

0

(�

1

) [ � � � [ E

0

(�

n

))(8.4)

whih is a loally integrable form. The urrent [W

n

℄ is the assoiated urrent.

Condition 2 is, formally, onsequene of the equation 6.9 and Leibnitz rule (see [8℄

Proposition 6.7 and [33℄). Expliitly, the formsW

n

are given by (ompare [15℄ 2.2)

W

n

=

(�1)

n

2n!

n

X

i=1

X

�2S

n

(�1)

i�1

(�1)

�

log(t

�(1)

t

�(1)

)

dt

�(2)

t

�(2)

^ � � � ^

dt

�(i)

t

�(i)

^

dt

�(i+1)

t

�(i+1)

^ � � � ^

dt

�(n)

t

�(n)

:

Definition 8.6. Let F be an emi-n-ube. Then the n-th Bott-Chern form of

F is

e

h

n

(F) = [W

n

℄(

e

h(tr

n

(F)))

=

1

(2�i)

n

Z

(P

1

)

n

W

n

^

e

h(tr

n

(F)):

Let E be a small ategory of hermitian vetor bundles over X (see setion 7).

Let us write

e

ZC

n

emi

E =

e

ZC

emi

�n

E. Then

e

ZC

�

emi

E is a ohomologial omplex. The

de�nition of higher Bott-Chern forms indues maps

h :

e

ZC

n

emi

E �!

M

p

D

n

(X; p)[2p℄:

Proposition 8.7. The indued map

h :

e

ZC

�

emi

E �!

M

p

D

�

(X; p)[2p℄:

is a morphism of omplexes.

Proof. This proposition is a diret onsequene of 8.1 and 8.5.

The main result onerning higher Bott-Chern forms is

Theorem 8.8 ([8℄). The omposition map

K

i

(X)

Hurewiz

�! H

�i

(

e

ZC

�

emi

E) �!

M

p

H

2p�i

D

(X;R(p))

agrees with Beilinson's regulator map.

Remark 8.9. The onstrution of higher Bott-Chern an be made working

always with the Thom-Whitney simple. We de�ne the Chern harater form in the

Thom-Whitney omplex as

e

h(F)

TW

= E

0

(

e

h(F)):

The analogues of the forms W

n

are the forms

(W

n

)

TW

= E

0

(�

1

) [ � � � [E

0

(�

n

):
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Then, for any emi-n-ube,F , the higher Bott-Chern form in the Thom-Whitney

omplex is

e

h

n

(F)

TW

=

1

(2�i)

n

Z

(P

1

)

n

(W

n

)

TW

[

e

h(tr

n

(F))

TW

;

where the integral is omputed omponentwise. In this way we obtain a morphism

whih is multipliative at the level of omplexes (see [8℄).
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