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ABSTRACT. This paper reviews the realization of Beilinson’s regulator map
using hermitian differential geometry. This construction is a generalization
of Chern-Weil theory of characteristic classes of vector bundles, to higher K-
theory.

1. Introduction

Chern classes of complex vector bundles can be constructed using different
techniques. For instance, in algebraic topology, one can use the Euler class of an
oriented sphere bundle to define the top Chern class and then define the other
classes inductively (see [25]). Or, in differential geometry, we can use Chern-Weil
theory, which produces Chern classes in de Rham cohomology by means of the
curvature of a connection (see for example [5], [34] or [16]). Another aproach,
due to Grothendieck [17], starts with the first Chern class of a line bundle, and
then uses an explicit formula for the cohomology of a projective bundle to define
higher Chern classes. This approach is very useful in algebraic geometry and can
be used to produce Chern classes in the Chow ring, in étale cohomology or in
Deligne-Beilinson cohomology.

The Grothendieck method has been generalized by Gillet [11] to produce char-
acteristic classes from higher K-theory to any arbitrary cohomology satisfying cer-
tain axioms. In the particular case when the characteristic class is the Chern char-
acter and the cohomology theory is real Deligne-Beilinson cohomology, the map
obtained is Beilinson’s regulator map [2]. This map is a generalization of Borel’s
regulator and it is involved in very deep conjectures in Arithmetic Geometry.

Beilinson’s regulator is still a very mysterious map, in part because higher K-
theory is a rich and complex world. Thus it is useful to have as many approaches to
Beilinson’s regulator as possible. Gillet and Soulé [13] have given a description of
Beilinson’s regulator for K7 using Bott-Chern forms. This description can be seen
as a generalization of Chern-Weil theory to K. In the paper [8], S. Wang and the
author have extended this description of Beilinson’s regulator to higher K-theory.

The aim of this paper is to review the construction of characteristic classes for
higher K-theory. This paper is meant to be introductory, and so the focus is placed
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on the basic ideas of the theory. But references are given where the reader can find
detailed proofs and general statements.

The main object of study will be algebraic vector bundles over smooth complex
algebraic varieties. These objects can be studied from the point of view of complex
geometry or from algebraic geometry. Since our objective is to give a complex
geometric construction of an object defined in the algebraic geometry setting we
will shift from one point of view to the other in different sections.

The plan of the study is as follows. In section 2, Grothendieck’s construction of
Chern classes is presented in the particular case of sheaf cohomology with integer
coefficients. In section 3, we recall the Chern-Weil theory of characteristic classes
of hermitian vector bundles. Section 2 is devoted to a simple version of Gillet’s
construction of characteristic classes for higher K-theory. In section 5, we review
real Deligne cohomology. Bott-Chern forms are the topic of section 6. In section
7, we introduce the complex of exact cubes. By a result of R. McCarthy [24]
the rational homology of this complex is isomorphic to rational K-theory. Finally,
section 8 is devoted to the definition of characteristic classes for higher K-theory
using exact cubes of hermitian vector bundles. For simplicity, we only discuss the
case of projective varieties. But note that an important ingredient in the comparison
between this construction and Gillet’s construction, is the extension of this theory
to quasi-projective varieties.

2. Chern classes of vector bundles

There are many different constructions of Chern classes of vector bundles (see
for example [25], [34] or [18]). In this section we will review a very general one
due to Grothendieck [17]. In this construction, the properties of the cohomology
theory that are needed to define Chern classes are given as axioms for a cohomology.
These axioms are satisfied by many theories, for instance, Chow rings of algebraic
varieties. Moreover Grothendieck’s construction is the basis of Gillet’s construction
of Chern classes for higher algebraic K-theory [11].

In this section, we will specialize the construction of Chern classes to the case
of sheaf cohomology of smooth complex varieties with integer coeflicients. We will
use the classical topology. To stress this point we will work with holomorphic
vector bundles. In section 4 we will discuss the axiomatic approach in the algebraic
geometry context.

Let us introduce the first Chern class of a holomorphic line bundle. This will
act as a normalization for the Chern classes. Let X be a complex manifold, and let
Ox be the sheaf of holomorphic functions on X. Let O% be the sheaf of invertible
holomorphic functions. Then there is an isomorphism

Isomorphism classes
of holomorphic — HY(X,0%).
line bundles
The exponential sequence

e

0 —— (2mi)Z y Ox —25 0% s 0

gives us a long exact sequence in cohomology
HY(X,0x) —— HY(X,0%) —>— H2(X,Z(1)) —— H%(X,0x),
where we have written Z(1) for (2mi)Z C C.
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DEFINITION 2.1. The first Chern class of a line bundle £, denoted ¢, (L) €
H?(X,Z(1)), is the image of its class in H' (X, O%) by the connection morphism §.

Once we have defined the first Chern class, the main tool to define higher Chern
classes will be the Dold-Thom isomorphism. Let E be a rank n holomorphic vector
bundle over X. Let P(E) be the associated projective bundle and let us denote
by p: P(E) — X the projection. Then the vector bundle p*E has a tautological
subbundle, whose fibre at each point is the line determined by that point. Let us
denote by Op(g)(—1) this line bundle and let Op(g)(1) be the dual line bundle. Let
¢ be the first Chern class of Op(g)(1). Let us denote by Z(p) the constant sheaf
(2mi)PZ C C.

THEOREM 2.2 (Dold-Thom isomorphism). For each pair of integers i, m, the
map

S (U @ H™ (X, L ) — H™(P(E), Z(0))
k=0 k=0

s an tsomorphism.

PrROOF. When X is one point, the result is the classical formula for the co-
homology of the projective space. The general case follows from the fact that
the existence of the global classes &¥, implies the triviality of the Leray spectral
sequence of the morphism p : P(E) — X. O

This theorem allows us to define Chern classes in the following way.

DEFINITION 2.3. The Chern classes of the vector bundle E are the classes
¢i(E) € H*(X,Z(i)) determined by the equation

21) P (ca(B) +p* (cacr(E) UE+ - +p (a(B) UL +£" =0.
The total Chern class is the sum
¢(E)=14ci(E)+ -+ cp(E).

The Chern classes are characterized by the first Chern class and the behaviour
under inverse images and exact sequences. This property is very useful, for instance,
when comparing different definitions of Chern classes.

THEOREM 2.4. There exists a unique way to assign, to each holomorphic vector
bundle E, a total Chern class c¢(E) satisfying the following properties:
1. Normalization: If L is a line bundle then c¢(L) = 1+ ¢1(L), where c1(L) is
defined in 2.1.
2. Functoriality: For any morphism of complex varieties f : X — Y we have

c(f*E) = frc(E).

3. Whitney sum formula: For any ezact sequence of vector bundles
(2.2) 0 —S5S—E—Q—0
we have ¢(E) = ¢(S) U c(Q).

SKETCH OF PROOF. Let us start by proving the uniqueness. Assume that there
exists a theory of Chern classes satisfying conditions 1, 2 and 3. Let E be a vector
bundle over a smooth complex manifold X. Let us write Q@ = p*E/Op(g)(—1).
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Then @ is a rank n — 1 vector bundle over P(E). The basic idea is to use the exact
sequence

0— O(-1) —p'E — @Q — 0.

First, using induction and properties 1 and 3 one easily proves that ¢;(E) = 0 for
i > n. Then, since the first Chern class of Opg)(—1) is —§, properties 1, 2 and 3
imply that

pre(E) = (1-£)c(Q).

Since ¢,(Q) =0 and (1 — &)t =1+ &+ &+ + ..., the Chern classes should
satisfy the formula (2.1). By the Dold-Thom isomorphism this equation determines
the Chern classes.

To prove the existence we need to show that Chern classes, as defined in 2.3
satisfy the conditions 1, 2 and 3. The first condition follows from the definition.
The second one is easy. For the third one we need to use the existence and some
properties of the Gysin morphism (see [17] for more details). O

3. Chern classes of hermitian vector bundles

In this section we will explain the Chern-Weil construction of Chern classes
using complex differential geometry. This theory is explained in many places (see
for instance [5], [34] or [16]) and we refer the reader to them for details.

Let B be a subring of R. We will write B(p) = (27i)? B. The symmetric group
on n elements, &,,, acts on B[T1,...,T,] by permuting the variables. Let IP(n)
be the subset of invariant polynomials. Then IP(n) = B|oy,...,0,], where o; is
the degree i symmetric elementary function in n variables. An analogous result is
true if we replace polynomials by formal power series. We will denote by P (n) the
set of invariant power series in n variables and by IP(n); the space of invariant
homogeneous polynomials of degree k.

Let be 9, the vector space of n x n complex matrices. Let ¢ : M, — C
be a map such that ¢(A) is a homogeneous polynomial of degree k in the entries
of A, with coefficients in B. We say that ¢ is invariant if, for all A € 9, and
g € GL,(C) we have

©(A) = p(gAg™).

Let us denote by I}, (9,,) the space of invariant homogeneous polynomials of degree
k. There is an isomorphism Ij(9,) — IP(n); which sends any ¢ to its value
in the diagonal matrix with entries 7%,...,7,. Due to this isomorphism we will
identify both spaces.

Let X be a complex manifold. Let £* denote the sheaf of complex smooth
differential forms, £77 the sheaf of (p,q)-forms, &} the subcomplex of real forms
and & (p) = (2mi)PEE. Let £%(X), EPU(X), Ex(X) and & (p)(X) denote the cor-
responding groups of global sections. Let E be a holomorphic vector bundle on X.
Then we will denote by £*(E) the sheaf of E-valued smooth differential forms and
by £*(X, E) the corresponding space of global sections. £P'¢(X, E) will denote the
space of forms of type (p,q) with values in E.

A connection on F is a C-linear map

D:&(X,E) — &YX,E)
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satisfying the Leibnitz rule
(3.1) D(¢€) = dos + ¢DE,

for any ¢ € £%(X) and € € E°(X, E).
Given any connection D we can extend it to obtain operators

D:EX(X,E) — EMY(X, E)

by imposing the Leibnitz rule. But in general (£*(X, E), D) is not a complex,
because the operator

K =D?:€°(X,E) — £2(X,E)

may be non zero. In fact the operator K is £°(X)-linear and thus it can be seen
as a section K € £%(X,End(E)). This operator is called the curvature of the
connection.

Due to the decomposition £(X, E) = E%1(X, E) & £19(X, E) we can decom-
pose D = D%! + DO with

D% &%X,E) — E"Y(X,E)
DY %X, E) — EY(X, E).

Since E is holomorphic, there is a well defined d-operator, which in a local
frame is given by

O(fiy-- - fn) = (Of1,-..,0fn).

Let us assume that E is provided with a hermitian metric h. Let us denote
by (-,-) the corresponding inner product. Then there is a unique connection that
is compatible with both the complex structure and the hermitian metric. That is,
there is a unique connection D = D(h) satisfying the following conditions:

1. “Compatibility with the hermitian metric”: For any &,n € £°(X, E)

d(&§,m) = (D&,m) + (&, D) .

2. “Compatibility with the complex structure”: D%! = 9.

Let us write K = K (h) = D?, the curvature of the metric h. Let f be a local
frame, if we denote by h(f) the matrix of the metric h in this frame, then (see [34]
pag. 82).

(3.2) K =9(h™" (f)on(f)).

From this equation it is clear that K € £%'(X,End(E)). Thus in a local frame it
is given by a matrix of (1, 1) forms.

Let ¢ € ﬁD(n) and let us denote by ¢ its component of degree k. The
invariance of py, implies that we have a well defined element ¢ (E,h) = ¢ (—K) €
E%F(X). To see this, one first defines ¢i(—K) in a local frame, where K is a
matrix of (1,1) forms and then one uses the invariance to glue together these local
definitions (see for instance [34] IIL.3). Since I = @,~, £¥(X) is a nilpotent ideal,
we have also a well defined form G(E, h) = @ Gk (E, h).

THEOREM 3.1. Let E — X be a holomorphic vector bundle and let h be a
hermitian metric. Then

1. The form @(E,h) is closed.



6 JOSE I. BURGOS CIL
2. The form @(E,h) satisfies
P(E.h) € D EF 0)(X).
p>0
3. The class of (E, h) in de Rham cohomology is independent of the metric h.

Since any holomorphic vector bundle admits a hermitian metric the above the-
orem allows us to use hermitian metrics to define characteristic classes.

DEFINITION 3.2. Let X be a complex manifold. Let E be a rank n holomorphic
vector bundle and let ¢ € R[[Ty,...,Ty]] be an invariant power series. Let us choose
any hermitian metric h on E. Then the cohomology class of ¢(E,h), denoted

p™(E) € D HIR(X,R(p))
P
will be called the de Rham Chern class of E associated to the power series ¢. The
differential form @(E, h) will be called the Chern form.

REMARK 3.3. This distinction between Chern classes and de Rham Chern
classes is provisional. We will distinguish between them until we see that they
agree.

EXAMPLES 3.4.

1. If ¢ = 0y, the i-th elementary symmetric function then c?%(E) = p*(E) is

the i-th de Rham Chern class of E (see the remark above).

2. If o = 1+ Y 0y then c?B(E) = p?f(E) is called the total de Rham Chern

class. Observe that the total Chern form is given by
¢(E,h) = det(1 — K).

3. If B contains the field Q, then the Chern character is defined by the power
series

ch(Ty,...,Tn) = Y exp(Ty).
i=1

The natural inclusion Z (p) — £2(p) induces a morphism ¢ : H*(X,Z(p)) —
H}p(X,R(p)). In order to see that the two definitions of Chern classes are compat-
ible we have to compare 1)(c(E)) with ¢?%(E). The key to compare both definitions
of Chern classes is the theorem 2.4. Thus we only need to show that the de Rham
Chern classes also satisfy the properties given in theorem 2.4.

THEOREM 3.5.

1. Let f : X — Y be a morphism of complex manifolds. Let (E,h) be a
hermitian vector bundle on'Y. Then

fC(E h) =¢(fE, f*h).
2. Let L be a holomorphic line bundle. Then
AHL) = P (a1 (L))
3. Let
0 —S—FE—Q—0

be an exact sequence of holomorphic vector bundles on X. Then

c(E) = ¢(S) A ce(Q).
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PRrOOF. The proof of properties 1 and 3 are standard and can be found in any
reference for Chern-Weil theory. For instance, see [34]. Since property 2 is more
specific of the comparison we are making, we will provide a proof. The idea is to
represent c;(£) as a Cech cocycle and c{®(£) as a differential form. So we will
use the comparison between Cech and de Rham cohomologies to compare the two
classes.

Let us start representing ¢;(£) using Cech cohomology. Let us assume that
= {U;} is a good cover of X (see for instance [6]). This means that the open
sets U; and all their finite intersections are contractible. This implies that Cech
cohomology for the constant sheaf Z (1) agrees with sheaf cohomology. Given a sheaf
of abelian groups F, we will denote by C*(4, F) the complex of Cech cochains with
respect to the open cover 1.

Let {(U;, s;)} be a trivialization of the line bundle £. Thus s; is a non vanishing
section of I'(U;, £). For each pair 4, j let us write U; ; = U; N Uj. Let g;; = s;/s;
be the transition functions. So g;; belongs to I'(U; ;, 0*) and {g;;} € C'(4,O%)
is a 1-cocycle that represents the class of £ in H'(X,0*). We have to apply the
connection morphism to this class. Since the open set U;; is contractible, we can
choose a determination of the logarithm log g;; over U; ;. Over Usj, = U;NU; NUg
let us write t;;;, = logg;r — loggix + logg;;. Then t;;;, is constant and it is an
integer multiple of 27i. The set {t;;x} is a Cech 2-cocycle for the sheaf Z(1) that
represents c; (L).

Next we want to represent ct?(L) as an explicit differential form. Since £ has
rank one, the curvature K € E41(X,End(L£)) = £11(X) is a differential form. By
3.2 this form is given, in each open U;, by

K = 9(h(s;)"*0h(s;)) = 001og(h(s:)).

Since this form does not depend on the section s; it is a global differential form.
Thus the first de Rham Chern class is represented by the form ¢ (£,h) = —K =
90 log(h(s;)).

To compare the two classes we will follow the comparison between Cech and de
Rham cohomologies given in [6]. The main tool is the double complex C* (4, E*).
It has natural morphisms from £*(X) and from C*(4,C) and is quasi-isomorphic
to both complexes. Let

d : CP(L,ET) — CPT(YU, £9)
d": CP(U,EY) —s CP(U, E1TY)
denote the differentials, where d’ is the differential of Cech cochains and d" is (—1)?

times the differential of forms.
Then {t;jx} = d'{log g;; }, and

d"{log gij} = {—d(gij/9ij)} = {—si/sj d(sj/s:)}-

therefore the Cech cochain {s;/s;d(s;/s;)} also represents c¢;(£). On the other
hand, —K = —d"{01og(h(s;))}, and

d'{—0log(h(si))} ={—0log (h(s;)/h(s:))} =
{—0log (s;5;/si5:)} =
{=si/s;d(s;/s:)}-

Therefore —K represents also the class ¢;(£). O
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As a consequence of this theorem we see that 1 (c(E)) = ¢?®(E). In particu-
lar this implies that the Chern class ¢; corresponds to the elementary symmetric
function o;. This justifies the following definition.

DEFINITION 3.6. Let X be a complex manifold. Let E be a rank n holomorphic
vector bundle and let ¢ € B[[T},...,Ty]] be an invariant power series. Let

o(Th,...,T,) = ¢(oiy...,00)

be the expression of ¢ in terms of symmetric elementary functions. Then the Chern
class of E associated to the power series ¢ is:

e(E) = ¢(c1(E), ..., cu(E)) € €D H? (X, B(p)).

p

COROLLARY 3.7. Let X be a complex manifold and let E be a holomorphic
vector bundle of rank n. Let ¢ € Bl[o1,...,0,]] be an invariant power series. Then

P(E) = ¢ (p(E)) .

In view of this result we will drop the superscript % from the notation.

The Chern character (see example 3.4.3) is one of the most interesting power
series of characteristic classes. The main advantage of the Chern character class is
that it behaves very well under exact sequences and tensor products. For the proof
of the next proposition we refer also to [34].

PROPOSITION 3.8.

1. Let 0 — S — E — @ — 0 be an ezact sequence of vector bundles.
Then

ch(E) = ch(S) + ch(Q).
2. Let E and F' be vector buncles. Then
ch(E ® F) = ch(E) A ch(F).

Unlike the Chern character class, the Chern character form does not need to
behave additively for exact sequences. Let

0— (S,h) — (E,h) — (Q,h") — 0

be an exact sequence of hermitian vector bundles. Let us write (S, h') & (Q, h'") for
the orthogonal direct sum. Then

ch ((S,0) ® (Q,h")) = ch(S, 1) + ch(Q, h").
But in general
ch(E, h) # ch ((S,1') @ (Q,h")).

At first glance this may seem unfortunate. But, in section 8, we will see that, as
Schechtmann pointed out ([30]), the lack of additivity at the level of forms can be
used to construct characteristic classes for higher K-theory.
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4. Chern classes for higher K theory

In this section we will review Gillet’s construction of Chern classes for higher
K-theory [11]. We will follow the simplified version given in [31]. We will assume
that the reader has some familiarity with the language of simplicial objects (see for
instance [23] or [14]).

In this section we will be in the algebraic geometry context. To stress this
fact, instead of working with complex numbers, let us fix a ground field k. Let V
be the category of all smooth quasi-projective schemes, equipped with the Zarisky
topology. Let us denote by D(V) (resp. DT (V)) the derived category of complexes
of abelian sheaves on V (resp. which are bounded below). Let us assume that we
have a fixed graded complex of sheaves

F ) =@ F (), with F (i) e DT (V).
=7/
Thus for each smooth quasi-projective scheme X € Ob(V) we have the cohomology
groups H (X, F (x)). We need to assume certain properties of this cohomology
theory in order to mimic the construction of Chern classes of section 2.

Let us denote by O* the sheaf of invertible rational functions. It defines an
element of DT (V) assuming that it is a complex concentrated in degree zero. Then
H! (X, O*) parameterizes isomorphism classes of algebraic line bundles over X. The
first property we need for our cohomology theory is:

P 1: There is a morphism in D* (V)
O*[1] — F(1).

In particular, for each X € Ob(V), we obtain a morphism ¢; : H! (X, 0*) —
H? (X, F (1)) which allows us to define the first Chern class of a line bundle.
The next property we need is a multiplicative structure for the cohomology.

P 2: For each n, m € Z, there are homomorphisms in D* (V)
L
U:F(n) %f’(m) — F(n+m), ande:Z— F(0)

which make F' (%) an associative and graded commutative (with respect to
the first degree) algebra with unit.
The third property we need is a formula for the cohomology of the projective
space, in other words, we need the Dold-Thom isomorphism to be satisfied.
P 3: For X € Ob(V), let p: P% — X be the n-dimensional projective space
over X. Let ¢ be the first Chern class of the line bundle O(1). Then, for
each pair of integers i, m, the morphism

n—1 n—1

dopruét - PEH(X, F(p - k) — H™ (Py, F (p)
k=0 k=0

is an isomorphism.

By a Leray spectral sequence argument, from property P 3 it follows that the
Dold-Thom isomorphism is satisfied for any projective bundle.

With properties P 1, P 2 and P 3, we can repeat the procedure of the section
2 and define, for each vector bundle E over X € Ob(V), Chern classes ¢;(F) €
H? (X, F (i)). But in order to have the Whitney sum formula we need to assume
a Gysin property (see [31] and [17]).
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P 4: Leti:Y — X be a closed immersion in V of pure codimension 1 and let
[Y] € HY (X, 0*) be the class of the divisor Y. Then for any = € H?* (X, F(i))
such that ¢*x = 0, we have

zUc([Y]) =0.

The next step is to extend the definition of Chern classes to simplicial schemes.
Let A be the category whose objects are the ordered sets [n] = {0,...,n}, n >0
and whose morphisms are ordered maps. Let SV denote the category of simplicial
objects in V), that is, the category of contravariant functors between A and V.

DEFINITION 4.1. Let X. € ObSV be a simplicial scheme. A rank n vector
bundle over X. is an object of SV, E., together with a morphism of simplicial
schemes 7. : E. — X. satisfying the following conditions

1. For any k£ > 0 the morphism ny, : B — X}, is a rank n vector bundle.
2. For any j, k> 0 and any p € Mora ([], [¥]) the commutative diagram

B, 22, B,
N
X(p)

Xy —— X
is a relative morphism of vector bundles.

Alternatively, following [12], we can define a vector bundle over X. as a vector
bundle Ey over Xy, together with an isomorphism « : §5Ey — 67 Ep of vector
bundles over Ej, such that é5a o dja = d7a.

If X. is a simplicial scheme then again H! (X., O*) parameterizes isomorphism
classes of line bundles (see [12] ex 1.1). Moreover, the property P 3 implies that the
Dold-Thom isomorphism is satisfied for arbitrary projective bundles over simplicial
schemes (see [11] Lemma 2.4). Therefore Grothendieck’s construction of Chern
classes can be applied to simplicial schemes. In particular it can be applied in the
universal case.

Let B.GL,,/k be the classifying scheme of the group scheme GL,, over k. The
simplicial scheme B.GL,,/k is provided with a universal rank n vector bundle,
denoted by FE,. Let us denote by cl(-n) = ¢;(E,) € H?"(B.GLy/k,F (i)) the i-th
Chern class of the universal bundle.

The next objective is to explain how classes in the cohomology of the classifying
scheme give rise to maps between K-theory and cohomology of schemes.

Let S. be a simplicial set and let X be a scheme. Then we can construct the
simplicial scheme S. x X such that

(S x X), = [ {p} x X,
PESn
and the faces and degeneracies are induced by those of S.. Let A be a finitely
generated k-algebra such that U = Spec A is a smooth scheme. Then B.GL,(A)
is a simplicial set. Thus we can construct the simplicial scheme B.GL,(A) x U.
Since an element of B;GLx(A) is a morphism between U and B;GLy/k we obtain
a tautological morphism of simplicial schemes

7: B.GLy(A) x U — B.GLy/k.
Thus, we obtain classes 7*(c\™) € H2 (B.GLn(A) x U, F*(i)).
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For a simplicial set S., let us denote by ZS. the homological complex which,
in degree j is the free abelian group generated by S;, and whose differential is

d =Y (-1);.
LEMMA 4.2. Let S. be a simplicial set and let X be a smooth quasi-projective
scheme. Then there is a natural short exact sequence
0— J[ Exty(H,(ZS),H (X,F (i) — H'(S. x X, F (i)
p+g=n—1
< [[ Hom(H,(ZS.),H! (X, F)) — 0.
p+g=n
PROOF. This result is the dual of the Kiinneth formula (see for instance [29]
Thm. 11.32). O

Thus, from each class cgn) € H*(B.GLy/k, F (i)) we obtain a family of mor-
phisms
aor(d™); : Hi(ZB.GLy(A)) — H I (U, F (i)).
Now we want to go to the limit when n goes to infinity. For m > n, let us
consider the inclusion iy, , GLy/k — GLn11/k given by

A0
Ab—)(o I)’

where [ is the identity m —n X m — n-matrix. Since

i, mEm = Ey ® (a trivial vector bundle),
(m) _ (n)

we have that i ;" = ¢;"’. Therefore, the family of morphisms {¢ o<p(c§n))j}n21

n,m-i
defines a morphism

¢ij » Hj(GL(A),Z) = lim H;(Z B.GLyn(A)) — B~ (U, F (i)).

The K-theory groups of A are the homotopy groups of the +-construction of
B.GL(A). Since the +-construction is acyclic, we have that

H.(BGL(A)",7)= H.(B.GL(A),Z) = H.(GL(A), 7).

DEeFINITION 4.3. Let A be a finitely generated k-algebra such that U = Spec A
is a smooth scheme. For each pair of integers i, j, the ¢-th Chern class map in
K;(A) is the composition

¢y Kj(A) = m;(B.GL(A)T) M 1(GL(A), Z) 5 B2 (U, F (i)

The following result is an easy consequence of the definition.

PROPOSITION 4.4. Let f* : A — B be a morphism of finitely generated k
algebras such that U = Spec A and V = Spec B are smooth schemes. Let f : V —»
U be the corresponding morphism of k-schemes. Then the following diagram

K;(A) —2 W2 (U, F.(i))
2 j 2 j
K;(B) —1 BRI (V,F.(i))

18 commutative.
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In order to extend the construction of Chern classes to arbitrary smooth quasi-
projective schemes we will require a property of invariance under homotopy. This
will allow us to use Jouanolou’s trick. But strictly speaking this property is not
necessary ( see [11]).

P 5: For any scheme X € Ob(V), the natural map Ay, — X induces an

isomorphism

H* (X, F () — H* (Ak, F (%)).

This property implies that, for any fibre bundle p : ¥ — X, with fibre A",
(not necessarily a vector bundle), the map p*H* (X, F (x)) — H* (Y, F (%)) is an
isomorphism.

For any scheme X € V, by Jouanolou’s lemma ([20] lemma 1.5) there is a fibre
bundle p: Y — X, with Y affine, which is a torsor over a vector bundle.

DEFINITION 4.5. Let X be a smooth scheme over k. Let us choose an affine
torsor p : Y — X. For each pair of integers ¢, j, the i-th Chern class map for
K;(X) is the composition

cij t Kj(X) 2 K;(Y) S5 BRI (Y, F (i) = B (X, (i),

Thanks to the naturality of the map ¢; ; in the affine case (proposition 4.4)
and [20] proposition 1.6, this definition does not depend on the choice of the affine
torsor Y.

So far we have constructed Chern classes for higher K-theory. Now we want to
construct characteristic classes for arbitrary power series. Let again B be a subring
of R and assume that F is a sheaf of B-modules. Observe that, replacing 7,11 by
0, we have a morphism between the ring of invariant power series

B[[T1,...,Tp1]]%"+ — BJ[[T1,...,T,]]®".
In terms of elementary symmetric functions the above morphism is the morphism
Bllo1,.-.,0n+1]] — Bl[o1,---,04]]
that sends 0,41 to 0. We will denote by
it 2 IP(m) — IP(n)

the induced morphisms. These morphisms make {I/I\D(n)}n an inverse system. Ob-
serve that we have a commutative diagram

{IP(m)}, — 1, (B.GLum/k, F (i)
{IP(n)}, — [I, B (B.GLq/k,F (i)

where the horizontal arrows send the elementary symmetric function o; to the i-th
Chern class.

DEFINITION 4.6. A stable invariant power series is an element

(n) s TP
{p!} € lim IP(n).
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Observe that any stable invariant power series is given by an element

(,OEB[[O'l,...,O'n,...]].

Proceeding as with the Chern classes, for any invariant stable power series ¢,
we obtain characteristic classes

p: Kj(X) — @B (X, F (i)

EXAMPLE 4.7. Assume that B D Q. Let us denote by ™ the reduced Chern
character of rank n. That is
&"(Ty,...,T,) = (Th,...Ty) — n.

Since c_h(n+1)(T1, .y, Ty, 0) = ™ (T1,...,T,), then {c_h(n)} is a stable invariant

power series. Thus it defines a reduced Chern character class, denoted ch.

DEFINITION 4.8. The Chern character is the map

ch: Ki(-) — @ HI(, F(j)),
J
given by

ch, ifi>o0,
ch = —
rank +ch, ifi=0.

Recall that there is a product structure ([21])
K; ® Kj — Ki+j

that extends the multiplicative structure induced in Ky by the tensor product. The
Chern character is also compatible with this product. For a proof of the following
result see [11] or [31].

THEOREM 4.9. For xz € K; and y € K; then
ch(z - y) = ch(z) U ch(y).

5. Real Deligne cohomology

Let us recall the definition of real Deligne cohomology and some complexes
that can be used to compute it. Again let X be a smooth proper complex variety.
As in section 3 let B be a subring of R. Let us write B(p) = (27i)?B C C. We
will denote also by B(p) the constant sheaf. Let Q% be the sheaf of holomorphic
differential forms on X.

DEFINITION 5.1. The (B-)Deligne cohomology of X, denoted Hp(X, B(p)), is
the hypercohomology of the complex of sheaves

B(p) — Ox — Q% — - — Q8"

This definition has been extended by Beilinson to the case of smooth complex
algebraic varieties, not necessarily proper (see [2], [1], [10] and [19]). This extension
is known as Deligne-Beilinson cohomology. Beilinson also showed that Deligne-
Beilinson cohomology can be written as sheaf cohomology for a sheaf in the Zariski
topology, satisfying the properties 1 to 5 of last section. Thus we can apply the
construction of the last section and obtain characteristic classes from higher K-
theory to Deligne-Beilinson cohomology. In particular, if we take B = R then the



14 JOSE 1. BURGOS GIL

Chern character in real Deligne-Beilinson cohomology is called Beilinson’s regulator
and it is a generalization of Borel’s regulator (see [4], [2], [27]).
Let F' denote the Hodge filtration:

Frx = P 0%.
p'2p
Then real Deligne cohomology can be defined also as the hypercohomology of the
simple complex associated to the morphism of complexes
R(p) ® FPQ% — Q%.

We want to have real Deligne cohomology as the cohomology of an explicit complex,
as de Rham cohomology is the cohomology of the complex of differential forms. To
this end we will resolve the constant sheaf and the sheaves of holomorphic forms
using smooth differential forms. We will use the same notation as in section 3 for
the sheaves and complexes of differential forms.

The Hodge filtration of the complex £* is given by

Fren = ey
p'zp

The sheaves of differential forms are fine, hence acyclic. Since &g (p) is a resolution
of the constant sheaf R(p), and £* is a resolution of %, compatible with the Hodge
filtration, we obtain that real Deligne cohomology of X is the cohomology of the
simple complex associated to the morphism of complexes

up : Ep(p)(X) & FPE(X) — £7(X),
given by u,(r, f) = f — r. Let us denote the simple complex associated to u, as
s(up) = s(Ex(p)(X) & FPE*(X) — £7(X)).
An element of s™(u,) is given by a triple
(r, f,w) € &2 (p)(X) & FPE™(X) & " H(X),

and the differential is given by d(r, f,w) = (dr,df, f — r — dw).
Following Deligne [9] we can use a simpler complex to compute real Deligne
cohomology.

DEFINITION 5.2. Let D*(X,p) denote the complex given by

&M p-1)(X)Nn 69 gra(X), forn<2p—1
pl+q'=n—1
D"(X,p) = psp g
(X.p) Ex(p)(X)n @ EP1(X), for n > 2p.
p'+q¢'=n
p'2p, ¢ 2p
The differential of this complex, denoted by dp, is induced by d in degree greater
or equal than 2p, by —d in degree less or equal than 2p — 2 and is equal to —209
in degree 2p — 1.

A proof that the cohomology of this complex is Deligne cohomology can be
found on [7]. This proof is based in the following facts:
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1. The morphism u : EF (p)(X)PFPE™(X) — £™(X) is injective for n < 2p—1
and the cokernel is

glr-nEn @ ).

p'<p, 4'<q
2. The above morphism u is surjective for n > 2p — 1 and the kernel is

gpx)n @ X
p'+d'=n
p'>p, 4'>q

3. In particular, for n = 2p — 1 the morphism w is an isomorphism. Moreover,
if w € £2P72(X), then du~'dw = —200w.

EXAMPLE 5.3. Observe that D?(X,p) = £2F(p)(X) N EPP(X). Thus if (E, h)
is a hermitian holomorphic vector bundle of rank n and ¢ € R[[T1,...,T,]] is a real
invariant power series, then

P(E,h) € DD (X, p).
P
In order to write down explicit morphisms between D* (X, p) and s(u,) we need
to introduce some notations. Given a differential form a, we will write a = ) a??
its decomposition in forms of pure bidegree. Let FPP be the morphism defined by

PP, — p'q
FPPq = a .

p'zp
q¢>p

Let m, be the morphism given by
ma = (a+ (—1)P@)/2.

Observe that 7, is the projection of £*(X) onto & (p)(X), and that, for n < 2p,
pp = Tp_1 o FPTLn=pFl ig the projection of £"(X) onto the cokernel of u,.

Let ¢ : s™(up) — D"(X,p) and ¢ : D"(X,p) — s™(up) be the morphisms
given by

pp(w), for n <2p—1,
Z/J(T;faw) = Y —1,q+1
FPPr 4 2, (QwP~— 141 for n > 2p,
() (0zP~14 — Gg®P~1 202714 1), formn < 2p—1,
Tr) =
’ ($7x70)7 forn22p,
where ¢ = n — p. Then ¢ and ¢ are homotopy equivalences inverse to each other
(see [7]).
Real Deligne cohomology has a product [2], [1] that can be described, in terms

of the complexes s(u,) in the following way. Let 0 < @ < 1 be a real number. For
(r, f,w) € s™(up) and (s, g,n) € s™(uy), let us write

(r, f,w)Ua (s,9,m) = (rAs, fAg,
alwAs+ (=D)"fAnR) + (1 —a)wAg+ (—1)"r An)).

This is a family of products, all of them homotopically equivalent. Moreover, for
a = 1/2 this product is graded commutative, whereas for « = 0,1 this product is
associative. Therefore they induce a graded commutative, associative product in
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Deligne cohomology. This product induces a product in the complex D*(X, p) (see
[7]). This complex is only associative or graded commutative up to homotopy.

In order to have a complex with a graded commutative and associative product
we will use the Thom-Whitney simple, introduced in [26]. The Thom-Whitney
simple associates, to a strict cosimplicial differential complex, a new differential
complex. This new differential complex is homotopically equivalent to the total
complex of the original cosimplicial complex. The main interest of the Thom-
Whitney simple is that, if we start with a strict cosimplicial graded commutative
associative algebra, the complex that we obtain is again a differential graded com-
mutative associative algebra.

In our case, we can consider the morphism u,, a strict cosimplicial complex u

.t- p
writing

up =Ex(p)(X) & FPE*(X),

uzl, =£*(X),

u; =0, for i > 2,

with morphisms given by

& f)=1f o f)=r
and the other morphisms equal to zero.
Let us describe the Thom-Whitney simple in this case. Let L] be the complex
of algebraic forms in the affine line A},. That is, LY = R[t], and L = R[t]dt. Let
00,01 : LT — R be the morphisms given by evaluation at 0 and 1 respectively.

That is do(f(t) + g(t)dt) = f(0), and 9, (f(t) + g(t)dt) = f(1).
DEFINITION 5.4. The Thom-Whitney simple of u,, denoted srw(u,) is the
subcomplex of
Exp)( X))@ FPE (X)) LT ® E7(X)
formed by the elements (r, f,w) such that
[ =(6o ® Id)(w),
r =(6; ® Id)(w).
The differential and the product of the Thom-Whitney simple are given com-
ponentwise:
d(r, f,w) = (dr,df, dw)
and
(r, f,w) A (s,9,m) = (r As, f A g,wAn).
With these definitions of differential and product, the direct sum @, sTw (up) is a

differential graded commutative associative algebra.
We can construct explicit equivalences (see [26])

STW(U’P) 5(“1))

I
—
<_
E
given by
E(r,fw)=rfitof+(1-t)@r+dt®w),
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and
10, .00 + g(0)d0) 90) = (£, | 1 o0yt )

We will write I' = ¢ ol : spw(upy) — D*(X,p) and E' = Eop : D*(X,p) —
stw (up). We will later use that I' and E' is a pair of homotopy equivalences,
inverse to each other, between D*(X, %) and a complex with an associative and
graded commutative product.

6. Bott-Chern forms

For any stable invariant power series ¢ and any exact sequence
€:0 — (S,1) L5 (B,h) — (Q,h") — 0

of hermitian vector bundles, the Whitney sum formula implies that the associated
Chern classes satisfy

(6.1) p(E) =p(S 0 Q)

But in general this equation is no longer true for the Chern forms. That is, the
form

G(E,h) - 3((S,h) & (Q,h")) € P D*(X,p)

may be non zero. Nevertheless, equation 6.1 and the 99-lemma ([16]) imply that
there exists a differential form @, such that

(6.2) P(E,h) = ((8,h') & (Q,h")) = 2005

Since D?P(X,p) = E27(p)(X) N EPP(X) and —203 is a purely imaginary operator,
bihomogeneous of bidegree (1,1), we can choose
B e @Er - D) ner T (X) = P Xp).
P P

In other words, the form @(E,h) — &((S,h') ® (Q,h")) is exact in the complex
& D*(X,p) The aim of this section is to solve the equation 6.2 in a functorial way.

We will say that the exact sequence € is split if (E, ) is the orthogonal direct
sum (S,h') and (Q,h").

THEOREM 6.1 (Gillet and Soulé [13]). Let ¢ be a stable invariant power series.
To each exact sequence of hermitian vector bundle

€:0— (S,1) L (B,h) — (Q,h") — 0

we can assign a differential form $1(€) € @p D?*~L(X,p), called the Bott-Chern
form. satisfying the following properties.

1. —200p1 = §(E,h) — §((S,h') @ (Q,h")).
2. If f : X — Y is a morphism of complex manifolds then
P1(f78) = f*p1(8).
3. If € is a split exact sequence of hermitian bundles, then &, (€) = 0.

Moreover, these properties characterize $, up to Imd + Imd. That is, up to a
boundary in the complex @p D*(X,p).
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The proof that these properties characterize Bott-Chern forms can be found in
[3]. Let us give a construction of Bott-Chern forms. The method we will follow is
a modification of the method of Gillet and Soulé that avoids the need to choose a
partition of unity. In this way we obtain well defined Bott-Chern forms satisfying
the conditions of theorem 6.1 and not only classes up to Im d 4 Im .

A standard procedure to prove that two differential forms « and 3, defined on
a differential variety Y, are cohomologous is the following. First, one constructs
a geometric homotopy between v and 3. That is, a differential form 7 defined on
Y x R such that 7|y «{1} = a and 5]y xo = #. From this homotopy one obtains a
primitive for a — 3 by integration:

(6.3) d/oln:a—ﬁ.

Let us denote by A' the current
1
At = [
0

Then the equation 6.3 can be expressed as the equation in currents
(6.4) dA' =6, — by,

where 0y and d0; are the Dirac delta currents centered at 0 and 1 respectively. We
will adapt the above procedure to Deligne cohomology.

Let us assume for a while that the hermitian metric A" on ) is the hermitian
metric induced by the metric h of E. The first step is to construct a geometric
homotopy between the hermitian vector bundles (E, h) and (S, h') & (Q,h"). This
homotopy will be parametrized by the complex projective line instead of by the unit
interval. Let (z : y) be homogeneous coordinates of P* = PL. Then = and y are
sections of the bundle Op1(1). The standard metric of C? induces the Fubini-Study
metric on Op:(1). Let us denote by ¢ this metric. Then

T Yy
g(x) = oy 9(y) = e

Let p; : X x P! — X and p; : X x P! — P! denote the projections. Let
us write E(1) = pfE ® p3O(1) and S(1) = piS ® p5O(1). Let us consider the
morphism

b S —  S()eEQ)
s — sQu+ f(s)Qu.
Observe that the vector bundle S(1) @ E(1) has a metric induced by the metrics of
S, E and O(1).

DEFINITION 6.2. The transgression bundle associated to the exact sequence &
is the hermitian vector bundle

try (£) = coker(v))
with the hermitian metric induced by the metric of S(1) @ E(1).

The restrictions of the transgression bundle try () are
(6.5) tr1 ()] xx(0:1) = (B, h),
(6.6) tr1 (&) x x(10) = (S, h') & (Q, h").
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Thus try (€) is a geometric homotopy between (S,h') @ (Q,h") and (E,h). Note
that to obtain 6.5 we had to assume that A" is the induced metric.
The second step is to obtain a geometric homotopy of differential forms. This

homotopy is given by the form @(tr;(£)). Then the functoriality of the Chern forms
and the equations 6.5 and 6.6 imply that

(6.7) P(tr1(€)) xx(0:1) = @ ((E, b)),
(6.8) G(tr1(€))x x(1:0) = & ((S,h) & (Q, "))

The third step is to integrate the geometric homotopy to obtain a primitive.
Let t = x/y be an absolute coordinate in P!. Let [1/2 logt] denote the current
defined by

- 1 1 —
1/2 logtt = — — log ttn.
[1/210880(0) = 5 [ S lostin

The current [1/2 log ¢t] will play the role, in Deligne cohomology, that the current
A! plays in de Rham cohomology. The analogue of equation 6.4 is the Poincaré-
Lelong equation (see for instance [16])

DEFINITION 6.3. The Bott-Chern form associated to the exact sequence ¢ and
the power series ¢ is the differential form

(6.10) $1(8) = [1/2 log tt](tr1 (€))-

Equations 6.7, 6.8 and 6.9 imply the condition 1 of theorem 6.1. Moreover the
functoriality (condition 2) is clear from the construction of Bott-Chern forms.

LEMMA 6.4. If € is a split evact sequence then &, (£) = 0.

PROOF. Let us consider the morphism ¢ : P — P given by «(z : y) = (y : @)-
The line bundle O(1) with the Fubini-Study metric is invariant under ¢*. Since £
is split, the map ¢ in the definition of the transgression bundle is

v: S — S1)eS1)e 1)
s — sQyu+s®z+0.

Therefore, by the invariance of O(1), ¢* tr1(€) is the cokernel of the morphism

v S — S1)eSA1) e )
s — s®z+sy+0,

which is isometric to try(£). Therefore *@(tr1(£)) = @(tr1(€)). Thus it is an
even form. On the other hand, the current [1/2 logtt] is odd: .[1/2 logtt] =

—[1/2 log tt]. Hence @1 () = [1/2 log tt](tr1(€)) = 0. O

Let us assume now that the metric " of @ is arbitrary. Let A" be the hermitian
metric on () induced by the metric h. Then from the exact sequence ¢ we can define
two new exact sequences.

ME0— (S,h) — (E,h) — (Q,1h") — 0
A0 — (Q,h) — (Q,h"") — 0 —> 0.

In both exact sequences the third metric is induced by the second one.
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DEFINITION 6.5. Let
£:0— (S,h) — (E,h) — (Q,h") — 0

be an exact sequence of hermitian vector bundles. Let ¢ be a stable invariant power
series. Then the Bott-Chern form associated to ¢ anf ¢ is

g1(6) = 1 (N6 + 21 (\%€)
REMARK 6.6. Since, by Lemma 6.4 the Bott-Chern of the exact sequence
0— (Q,h) — (Q,h) — 0 —0

is zero, if £ is an exact sequence with the third metric induced by the second one
then definition 6.3 gives the same result as definition 6.5.

7. Exact cubes

Let X be a smooth quasi-projective variety over C. Let us fix a small full
subcategory € = &(X) of the category of algebraic vector bundles over X, which is
equivalent to it.

Let (—1,0,1) be the category associated to the ordered set {—1,0,1}. Let
(=1,0,1)" be the n-th cartesian power, and let (—=1,0,1)° be the category with one
element and one morphism. Following Loday [22], we define exact cubes as follows:

DEFINITION 7.1. An exact n-cube of € is a functor F from (—1,0,1)" to € such
that, for all integers 1 < i < n, and all n — 1-tuples (a1, ..., an_1) € (—1,0,1)" "
the sequence

‘7:0/17---7ai—17_17ai7---7an—1 — ‘7:0417---7041'—1707011'7---701%.—1 — ‘7:0417---7041'—1717011'7---701%.—1
is a short exact sequence. We have written Fo, 4, for F(ai,...,an).

We will denote by C,, & the category of exact n-cubes. It is a small exact
category. We will write C,,& = Ob(C,,€).

DEFINITION 7.2. 'Given an exact n-cube F and integers i € {1,...,n}, j €
{-1,0,1}, the face 8] F is the exact n — 1-cube defined by

J _ .
(8i ‘7:) - ‘7:0417~~~,041'71J70tiy---70tn71'
A1ye000yQpn—1

EXAMPLES 7.3.

1. An exact 0-cube is an element of Ob(&).

2. An exact l-cube is an exact sequence of objects of €.

3. For each i € {1,...,n}, we can see an exact n-cube F as the exact sequence
of exact n — 1-cubes

0— 0, 'F —F —0}F —0

This exact sequence will be denoted 0;F. Note that F is characterized by
any of the exact sequences 0;F.

Let ZCy(€) be the free abelian group generated by Cp(€). Let us define a
differential d : ZC,(€) — ZC,,_1(€) by the formula

n 1
d = Z Z (_1)i+j+1azj_
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It is easy to see that d*> = 0; thus we have obtained a homology complex denoted
ZC.(€). Since we are using a cubic theory, in order to obtain the right homology,
we need to factor out by the degenerate elements.
For each exact n — 1-cube F, and each integer ¢ € {1,...,n} we will denote by
st | F the exact n-cube defined by the exact sequence (see example 7.3.3)
Bi(s, F):0—0—F L F 0.
Analogously we define si by the exact sequence
Fi(siF):0— F 1L F—0—0.

The exact cubes in the image of s_; and s; are called degenerate n-cubes.
Clearly the differential d sends a degenerate cube to a linear combination of de-
generate cubes. Therefore the subgroup generated by all degenerated cubes form a
subcomplex of ZC.(€) denoted by D..

DEFINITION 7.4. The reduced cubical complez of the category € is
ZC,¢ = LC,€/ D,.

The homology of the complex ZC7¢?¢ is closely related to the K-theory of X.
For instance, let S, € be the Waldhausen space associated with the category € [32].
Then

Ki(X) =mit1|S«€|.
Now, as in [33], [8] or [24], one can construct a morphism of complexes
v : ZS.€[1] — ZC, €.
Composing with the Hurewicz morphism one obtains a natural map
K;¢ — H;(ZC,¢€).
For the purpose of constructing characteristic classes this map is enough (see [8]).

But R. McCarthy [24] has given a precise description of the homology of ZC\. €&
that makes this complex much more interesting.

THEOREM 7.5. The homology of ZC,€ is the homology of the algebraic K-
theory spectrum of the category €. In particular

Ki(¢) ® Q= H;(ZC, ¢) ® Q.
Moreover, the use of cubes makes ZC, ¢ very well behaved to study products.

DEFINITION 7.6. Let F be an exact n-cube and let G be an exact m-cube.
Then F ® G is the exact n + m-cube given by

(F®G),,

Qg faly---7an ® gan+1y---7an+m'

This product makes iC*G an associative differential algebra which is homo-
topically commutative. Therefore its homology has the structure of an associative
and commutative algebra.

THEOREM 7.7 (R. McCarthy [24].). The morphism
K.(€¢) — H,(ZC,€)

is multiplicative.
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We want to introduce hermitian metrics in the vector bundles.
DEFINITION 7.8. Let € = &(X) be the category with
EeObe }

h hermitian metric on £

Ob€ = {(E,h)

and
HomE((E7h‘)7 (Fag)) = HOHI@(E,F).

For each vector bundle E € € let us choose a hermitian metric hg. This gives
us a functor § : ¢ — €. Let & : € — €& be the functor forget the metric.
These functors are equivalences inverse to each other. In particular, this implies
the following result.

LEMMA 7.9. The functors § and & induce morphisms of complexes
§:2C.¢ — LO,E,
& ZC,€ — LC\,E,
which are homotopy equivalences, inverse one of the other.
PROOF. It is clear that & o § = Id. In addition the homotopy f) between §o &

and the identity is given in the following way. Let F be an element of ZC,,&. Then
hF is the exact n + 1 cube defined by the exact sequence

8, (hF) 10 — Fo&(F) -HF — 0 — 0.
O

To define higher Bott-Chern forms for exact cubes of hermitian vector bundles,
extending the technique of section 6, we need the third metric in any short exact
sequence to be induced by the middle metric. To this end we introduce the following
notation.

DEFINITION 7.10. Let F = {(E,,hq)} be an exact n-cube of hermitian vector
bundles. We say that F is an emi-n-cube, if, for each n-tuple a = («q, ..., ay), and
each ¢ with a; = 1, the metric h, is induced by the metric ha,, . a;1,0,0i41,....0m)"

Let ZC°™¢€ be the subcomplex of ZC € generated by the the emi-n-cubes, and
let D™ be the subcomplex generated by the degenerate emi-n-cubes. We will
write

ZC*™E = Z.C™E| D™ C ZOE.

Let us see that the complexes ZC€ and ZC*™'E are homotopically equivalent.
Let F = {(Fa,ho)} € Cph€. Fori=1,...,nlet A\l F be defined by

AT = {(fa,ha), if 0 = ~1,0,
(Fa, b)), ifa;=1,
where A, is the metric induced by R, . .a;_1,0,ai41,.an)- Lhus the operator A}
changes the metrics of the face 9} F by those induced by the metrics of the face
OF.
Let AZF be the exact n-cube determined by the exact sequence

O;NF): 0 — 0; F — 0N F — 0 — 0.
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This n-cube measures the difference between F and A} F.
Let us write \;F = Al F + A?F, and let us denote by A the map

\: ZC,¢& — 7.C, €&

— n--MF, ifn>1,
T NN {)\ )\1.7: iorn -~

F, if n =0.

The map A is a morphism of complexes. Moreover, the image of A lies in the
set of emi-n-cubes and A sends degenerate cubes to degenerate cubes. Therefore
the morphism )\ induces a morphism of complexes

X : ZC€ —s LO“™E.
ProproSITION 7.11. The morphism Xis a homotopy equivalence.
PrROOF. Let us denote by
L ZCTE — LCE
the inclusion. Observe that, if F is an emi-n-cube then
AF = F + degenerate elements.

Therefore Ao = Id. Let § and & be the morphisms of complexes of lemma 7.9.
Since § o & is homotopically equivalent to the identity, we obtain the equivalence

SOQSOLOXNLOX.

But, since the functor & forgets the metric, &(1 o AF) — &(F) consists only in
degenerate cubes. Therefore Fo®B o0 X = F o ®. In consequence 1o A ~ Id. O

8. Higher Bott-Chern forms

Let X be a smooth complex projective variety. The aim of this section is to
give a morphism between the complex of emi-cubes and the complex D*(X, ).
This morphism will realize the characteristic classes from higher K-theory to real
Deligne cohomology.

Observe that, since we want to realize the characteristic classes as a morphism
of complexes of abelian groups, we will obtain a morphism of groups. In particular
the induced map

Ko(X) — (D HY (X, p)
P
will be additive. This forces us to choose the Chern character as our characteristic
class. Nevertheless, since the Chern classes can be recovered from the components
of the Chern character form, the formulae we obtain can be applied to any charac-
teristic class.

The reason we restrict ourselves to projective varieties is to avoid the technical
difficulties of the logarithmic singularities at infinity. But note that a main ingre-
dient in the proof that higher Bott-Chern forms give Beilinson’s regulator is the
extension to quasi-projective varieties (see [8])

Let us see that Bott-Chern forms are the degree one step of the morphism of
complexes we are looking for. If

€:0 — (S,1) L5 (B,h) — (Q,h") — 0
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is an exact sequence of hermitian vector bundles, then
¢ = (E,h) - (Q,1") — (S, 1).
Therefore
dpchy (€) = —200chy (2)
= ch(E, h) — ch(Q, ") — ch(S, h')
= ch(d¥).

To extend this morphism to higher degrees, we will iterate the definition of Bott-
Chern forms.

Let F = {F4} be an emi-n-cube. The first step is to construct a geometric n-th
order homotopy between the vertexes of F. The reason for calling it a homotopy
will be clear in proposition 8.3. This homotopy will be a hermitian vector bundle
defined over X x (P})" and will be called the n-th transgression bundle. Moreover,
we want the n-th transgression bundle to be an exact functor. Let us define it
inductively. If n = 1, an emi-1-cube is a short exact sequence £ of hermitian vector
bundles with the third metric induced by the second one. Then, the definition of
the first transgression bundle is given in 6.2. It follows from the definition that
tr; is an exact functor. Assume now that we have defined the functor tr,_; and
that it is an exact functor. As in 7.3.3, The emi-n-cube F can be seen as an exact
sequence of emi-n — 1-cubes:

0,F :0,(F)0 — 0, 'F — 0°F — 0. F — 0.
Applying the functor tr,_; to this exact sequence of emi-n —1-cubes, we obtain
an exact sequence of hermitian vector bundles on X x (P1)"~1, denoted tr,,_1(8;,F).
DEFINITION 8.1. Let F be an emi-n-cube. Then the n-th transgression bundle
is
tr,,(F) = try (tr,,—1 (0, F)).

Since try is an exact functor, and by induction hypothesis we may assume that
tr,_1 is also an exact functor, we obtain that tr, is also an exact functor.

REMARK 8.2. An emi-n-cube can be seen as an exact sequence of emi-n — 1-
cubes in n different ways depending on which faces we take. Thus the above con-
struction may depend, in principle, on the choice of an ordering of the subindexes.
Nevertheless, the result is independent of this order. See for instance [8] Defini-
tion 3.8 for a more symmetric definition or [28] Proposition 2.1 for a proof of the
invariance under permutations.

The basic property of the transgression bundle is the following.

PROPOSITION 8.3 ([8] Proposition 3.9). Let F be an emi-n-cube. Let (z; : y;)
be homogeneous coordinates in the i-th factor of (P1)™. Then

trn(‘?)|{$,:0} = trn_l(azo?),
_ o -
0 (F)lgyimop = tra-1 (07 F) & tr—1 (9} F).

In view of this proposition, the n-th transgression bundle of an emi-n-cube is
a homotopy between the n — 1-transgression bundles of its faces.
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The second step is to go from a homotopy of vector bundles to a homotopy of
differential forms. This step is simple; the required homotopy is ch(tr, (F)) because
by the functoriality of the Chern character form and Proposition 8.3 we obtain that

(8.1) ch(trn (F))| (2 —0p 2 ch(tr,_1 (3YF)),
(8.2) ch(tr, (F))|gyi=oy = ch(tru—i (97 F)) + chtrn—1 (8} F)).

The third step is to integrate the differential form ch(tr, (F)) defined on X x
(P1)", to obtain a differential form, chy,(F), defined on X.

To this end we will introduce some currents on (P!)". Let us introduce the
homological analogue of the complex D*, where these currents will live. For any
smooth complex projective variety Y, let D,(Y) be the complex of currents on
Y. That is, D,(Y) is the topological dual of £7(Y). We will denote by DX(Y)
the subcomplex of real currents and by D, ,(Y") the currents of type p,q (i.e. the
topological dual of £74(Y)). We will write DX (Y)(p) = (2mi)"PDR(Y).

DEFINITION 8.4. Let D, (Y, *) be the complex defined by

DEp()N P Dy V), for n < 2p.
e
D, (Y,p) = P <p, ¢ <p
(Y,p) DEL(p+1)(X)N @ Dyy(X), forn>2p+1.
p'+q'=n+1
p'>p, ¢'>q

The homology of the above complex is the Deligne homology of Y. If V is
equidimensional of dimension n then, for any form w € D’ (Y, p), we will denote by
[w] € Dap—;(Y,n — p) the current defined by

1
(33) 1) = e [ @A

This morphism realizes the Poincaré duality. If w is a locally integrable form, we
will use also the notation [w] to denote its associated current.

Let us denote by d; : (P')*~' — (P)", for i = 1,...,n and j = 0,00 the
inclusions given by

di(zy, .. xn) = (21, ., w1, (0: 1), 24, ... 2y)
d (z1,...,mp) = (T, xi_1, (1:0), 24, ..., Tp).

The currents we need in order to integrate the form ch(tr,(F)) are provided
by the following result.

THEOREM 8.5 ([33], see also [8] and [15]). There ezists a family of currents
{Whl}nso with [Wy,] € Dy ((P*)",0) such that

1. Wy = 1.

n

2. dp[ W] = 32 (1) (@) [Wm] — (d20)a[ W)

i=1

PROOF. By equation 6.9, we can write [W;] = [1/2 logtf]. Let p; : (P*)* —
P! denote the projection over the i-th factor. Let us write \; = p}(1/2 logtt).
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Then ); is a locally integrable function over (P!)". Let I' and E’ be the homotopy
equivalences introduced at the end of section 5. Then we will write

(8.4) Wy =T'(E'(M\M)U---UE'(\y))
which is a locally integrable form. The current [W,] is the associated current.

Condition 2 is, formally, consequence of the equation 6.9 and Leibnitz rule (see [8]
Proposition 6.7 and [33]). Explicitly, the forms W, are given by (compare [15] 2.2)

W, = (;,11)'” DY (1)) 10g(te (1) o))

i=10€eB,
dioey oy vy o)
to(2) totiy  To(i+n) fow)

_ DEFINITION 8.6. Let F be an emi-n-cube. Then the n-th Bott-Chern form of
Fis
chn (F) = [Wa](ch(tra(F)))
1 ~ —

= — Wiy, A ch(try, (F)).

T gy W P i ()
Let € be a small category of hermitian vector bundles over X (see section 7).
Let us write ZC?,,;& = ZC®™¢. Then ZC,,;€ is a cohomological complex. The

emt emt
definition of higher Bott-Chern forms induces maps

ch : ZCL,,€ — P D™ (X, p)[2p].

p

ProprosiTION 8.7. The induced map

ch: ZC},,;€ — P D*(X,p)[2p].

emi
p

is a morphism of complezxes.
Proor. This proposition is a direct consequence of 8.1 and 8.5. |

The main result concerning higher Bott-Chern forms is

THEOREM 8.8 ([8]). The composition map

Ki(X) M BT, €) — @D HE (X, R(p))
P
agrees with Beilinson’s requlator map.

REMARK 8.9. The construction of higher Bott-Chern can be made working
always with the Thom-Whitney simple. We define the Chern character form in the
Thom-Whitney complex as

ch(F)rw = E'(ch(F)).
The analogues of the forms W,, are the forms

Wo)rw = E'(AM)U---UE'(\,).
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Then, for any emi-n-cube,F, the higher Bott-Chern form in the Thom-Whitney
complex is

1

%@wzﬁm

/ (W) 2w U eh(ten (F)) 2w,
(Pt

where the integral is computed componentwise. In this way we obtain a morphism
which is multiplicative at the level of complexes (see [8]).
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