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Abstra
t. This paper reviews the realization of Beilinson's regulator map

using hermitian di�erential geometry. This 
onstru
tion is a generalization

of Chern-Weil theory of 
hara
teristi
 
lasses of ve
tor bundles, to higher K-

theory.

1. Introdu
tion

Chern 
lasses of 
omplex ve
tor bundles 
an be 
onstru
ted using di�erent

te
hniques. For instan
e, in algebrai
 topology, one 
an use the Euler 
lass of an

oriented sphere bundle to de�ne the top Chern 
lass and then de�ne the other


lasses indu
tively (see [25℄). Or, in di�erential geometry, we 
an use Chern-Weil

theory, whi
h produ
es Chern 
lasses in de Rham 
ohomology by means of the


urvature of a 
onne
tion (see for example [5℄, [34℄ or [16℄). Another aproa
h,

due to Grothendie
k [17℄, starts with the �rst Chern 
lass of a line bundle, and

then uses an expli
it formula for the 
ohomology of a proje
tive bundle to de�ne

higher Chern 
lasses. This approa
h is very useful in algebrai
 geometry and 
an

be used to produ
e Chern 
lasses in the Chow ring, in �etale 
ohomology or in

Deligne-Beilinson 
ohomology.

The Grothendie
k method has been generalized by Gillet [11℄ to produ
e 
har-

a
teristi
 
lasses from higher K-theory to any arbitrary 
ohomology satisfying 
er-

tain axioms. In the parti
ular 
ase when the 
hara
teristi
 
lass is the Chern 
har-

a
ter and the 
ohomology theory is real Deligne-Beilinson 
ohomology, the map

obtained is Beilinson's regulator map [2℄. This map is a generalization of Borel's

regulator and it is involved in very deep 
onje
tures in Arithmeti
 Geometry.

Beilinson's regulator is still a very mysterious map, in part be
ause higher K-

theory is a ri
h and 
omplex world. Thus it is useful to have as many approa
hes to

Beilinson's regulator as possible. Gillet and Soul�e [13℄ have given a des
ription of

Beilinson's regulator for K

1

using Bott-Chern forms. This des
ription 
an be seen

as a generalization of Chern-Weil theory to K

1

. In the paper [8℄, S. Wang and the

author have extended this des
ription of Beilinson's regulator to higher K-theory.

The aim of this paper is to review the 
onstru
tion of 
hara
teristi
 
lasses for

higher K-theory. This paper is meant to be introdu
tory, and so the fo
us is pla
ed
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on the basi
 ideas of the theory. But referen
es are given where the reader 
an �nd

detailed proofs and general statements.

The main obje
t of study will be algebrai
 ve
tor bundles over smooth 
omplex

algebrai
 varieties. These obje
ts 
an be studied from the point of view of 
omplex

geometry or from algebrai
 geometry. Sin
e our obje
tive is to give a 
omplex

geometri
 
onstru
tion of an obje
t de�ned in the algebrai
 geometry setting we

will shift from one point of view to the other in di�erent se
tions.

The plan of the study is as follows. In se
tion 2, Grothendie
k's 
onstru
tion of

Chern 
lasses is presented in the parti
ular 
ase of sheaf 
ohomology with integer


oeÆ
ients. In se
tion 3, we re
all the Chern-Weil theory of 
hara
teristi
 
lasses

of hermitian ve
tor bundles. Se
tion 2 is devoted to a simple version of Gillet's


onstru
tion of 
hara
teristi
 
lasses for higher K-theory. In se
tion 5, we review

real Deligne 
ohomology. Bott-Chern forms are the topi
 of se
tion 6. In se
tion

7, we introdu
e the 
omplex of exa
t 
ubes. By a result of R. M
Carthy [24℄

the rational homology of this 
omplex is isomorphi
 to rational K-theory. Finally,

se
tion 8 is devoted to the de�nition of 
hara
teristi
 
lasses for higher K-theory

using exa
t 
ubes of hermitian ve
tor bundles. For simpli
ity, we only dis
uss the


ase of proje
tive varieties. But note that an important ingredient in the 
omparison

between this 
onstru
tion and Gillet's 
onstru
tion, is the extension of this theory

to quasi-proje
tive varieties.

2. Chern 
lasses of ve
tor bundles

There are many di�erent 
onstru
tions of Chern 
lasses of ve
tor bundles (see

for example [25℄, [34℄ or [18℄). In this se
tion we will review a very general one

due to Grothendie
k [17℄. In this 
onstru
tion, the properties of the 
ohomology

theory that are needed to de�ne Chern 
lasses are given as axioms for a 
ohomology.

These axioms are satis�ed by many theories, for instan
e, Chow rings of algebrai


varieties. Moreover Grothendie
k's 
onstru
tion is the basis of Gillet's 
onstru
tion

of Chern 
lasses for higher algebrai
 K-theory [11℄.

In this se
tion, we will spe
ialize the 
onstru
tion of Chern 
lasses to the 
ase

of sheaf 
ohomology of smooth 
omplex varieties with integer 
oeÆ
ients. We will

use the 
lassi
al topology. To stress this point we will work with holomorphi


ve
tor bundles. In se
tion 4 we will dis
uss the axiomati
 approa
h in the algebrai


geometry 
ontext.

Let us introdu
e the �rst Chern 
lass of a holomorphi
 line bundle. This will

a
t as a normalization for the Chern 
lasses. Let X be a 
omplex manifold, and let

O

X

be the sheaf of holomorphi
 fun
tions on X . Let O

�

X

be the sheaf of invertible

holomorphi
 fun
tions. Then there is an isomorphism

8

<

:

Isomorphism 
lasses

of holomorphi


line bundles

9

=

;

 ! H

1

(X;O

�

X

):

The exponential sequen
e

0 ����! (2�i)Z ����! O

X

exp

����! O

�

X

����! 0

gives us a long exa
t sequen
e in 
ohomology

H

1

(X;O

X

) ����! H

1

(X;O

�

X

)

Æ

����! H

2

(X;Z(1)) ����! H

2

(X;O

X

);

where we have written Z(1) for (2�i)Z� C .
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Definition 2.1. The �rst Chern 
lass of a line bundle L, denoted 


1

(L) 2

H

2

(X;Z(1)), is the image of its 
lass in H

1

(X;O

�

X

) by the 
onne
tion morphism Æ.

On
e we have de�ned the �rst Chern 
lass, the main tool to de�ne higher Chern


lasses will be the Dold-Thom isomorphism. Let E be a rank n holomorphi
 ve
tor

bundle over X . Let P(E) be the asso
iated proje
tive bundle and let us denote

by p : P(E) �! X the proje
tion. Then the ve
tor bundle p

�

E has a tautologi
al

subbundle, whose �bre at ea
h point is the line determined by that point. Let us

denote by O

P(E)

(�1) this line bundle and let O

P(E)

(1) be the dual line bundle. Let

� be the �rst Chern 
lass of O

P(E)

(1). Let us denote by Z(p) the 
onstant sheaf

(2�i)

p

Z� C .

Theorem 2.2 (Dold-Thom isomorphism). For ea
h pair of integers i; m, the

map

n�1

X

k=0

p

�

(�) [ �

k

:

n�1

M

k=0

H

m�2k

(X;Z(i� k)) �! H

m

(P(E);Z(i))

is an isomorphism.

Proof. When X is one point, the result is the 
lassi
al formula for the 
o-

homology of the proje
tive spa
e. The general 
ase follows from the fa
t that

the existen
e of the global 
lasses �

k

, implies the triviality of the Leray spe
tral

sequen
e of the morphism p : P(E) �! X .

This theorem allows us to de�ne Chern 
lasses in the following way.

Definition 2.3. The Chern 
lasses of the ve
tor bundle E are the 
lasses




i

(E) 2 H

2i

(X;Z(i)) determined by the equation

p

�

(


n

(E)) + p

�

(


n�1

(E)) [ � + � � �+ p

�

(


1

(E)) [ �

n�1

+ �

n

= 0:(2.1)

The total Chern 
lass is the sum


(E) = 1 + 


1

(E) + � � �+ 


n

(E):

The Chern 
lasses are 
hara
terized by the �rst Chern 
lass and the behaviour

under inverse images and exa
t sequen
es. This property is very useful, for instan
e,

when 
omparing di�erent de�nitions of Chern 
lasses.

Theorem 2.4. There exists a unique way to assign, to ea
h holomorphi
 ve
tor

bundle E, a total Chern 
lass 
(E) satisfying the following properties:

1. Normalization: If L is a line bundle then 
(L) = 1 + 


1

(L), where 


1

(L) is

de�ned in 2.1.

2. Fun
toriality: For any morphism of 
omplex varieties f : X �! Y we have


(f

�

E) = f

�


(E).

3. Whitney sum formula: For any exa
t sequen
e of ve
tor bundles

0 �! S �! E �! Q �! 0(2.2)

we have 
(E) = 
(S) [ 
(Q).

Sket
h of proof. Let us start by proving the uniqueness. Assume that there

exists a theory of Chern 
lasses satisfying 
onditions 1, 2 and 3. Let E be a ve
tor

bundle over a smooth 
omplex manifold X . Let us write Q = p

�

E=O

P(E)

(�1).
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Then Q is a rank n� 1 ve
tor bundle over P(E). The basi
 idea is to use the exa
t

sequen
e

0 �! O(�1) �! p

�

E �! Q �! 0:

First, using indu
tion and properties 1 and 3 one easily proves that 


i

(E) = 0 for

i > n. Then, sin
e the �rst Chern 
lass of O

P(E)

(�1) is ��, properties 1, 2 and 3

imply that

p

�


(E) = (1� �)
(Q):

Sin
e 


n

(Q) = 0 and (1 � �)

�1

= 1 + � + �

2

+ �

3

+ : : : , the Chern 
lasses should

satisfy the formula (2.1). By the Dold-Thom isomorphism this equation determines

the Chern 
lasses.

To prove the existen
e we need to show that Chern 
lasses, as de�ned in 2.3

satisfy the 
onditions 1, 2 and 3. The �rst 
ondition follows from the de�nition.

The se
ond one is easy. For the third one we need to use the existen
e and some

properties of the Gysin morphism (see [17℄ for more details).

3. Chern 
lasses of hermitian ve
tor bundles

In this se
tion we will explain the Chern-Weil 
onstru
tion of Chern 
lasses

using 
omplex di�erential geometry. This theory is explained in many pla
es (see

for instan
e [5℄, [34℄ or [16℄) and we refer the reader to them for details.

Let B be a subring of R. We will write B(p) = (2�i)

p

B. The symmetri
 group

on n elements, S

n

, a
ts on B[T

1

; : : : ; T

n

℄ by permuting the variables. Let IP (n)

be the subset of invariant polynomials. Then IP (n) = B[�

1

; : : : ; �

n

℄, where �

i

is

the degree i symmetri
 elementary fun
tion in n variables. An analogous result is

true if we repla
e polynomials by formal power series. We will denote by




IP (n) the

set of invariant power series in n variables and by IP (n)

k

the spa
e of invariant

homogeneous polynomials of degree k.

Let be M

n

the ve
tor spa
e of n � n 
omplex matri
es. Let ' : M

n

�! C

be a map su
h that '(A) is a homogeneous polynomial of degree k in the entries

of A, with 
oeÆ
ients in B. We say that ' is invariant if, for all A 2 M

n

and

g 2 GL

n

(C ) we have

'(A) = '(gAg

�1

):

Let us denote by I

k

(M

n

) the spa
e of invariant homogeneous polynomials of degree

k. There is an isomorphism I

k

(M

n

) �! IP (n)

k

whi
h sends any ' to its value

in the diagonal matrix with entries T

1

; : : : ; T

n

. Due to this isomorphism we will

identify both spa
es.

Let X be a 
omplex manifold. Let E

�

denote the sheaf of 
omplex smooth

di�erential forms, E

p;q

the sheaf of (p; q)-forms, E

�

R

the sub
omplex of real forms

and E

�

R

(p) = (2�i)

p

E

�

R

. Let E

�

(X), E

p;q

(X), E

�

R

(X) and E

�

R

(p)(X) denote the 
or-

responding groups of global se
tions. Let E be a holomorphi
 ve
tor bundle on X .

Then we will denote by E

�

(E) the sheaf of E-valued smooth di�erential forms and

by E

�

(X;E) the 
orresponding spa
e of global se
tions. E

p;q

(X;E) will denote the

spa
e of forms of type (p; q) with values in E.

A 
onne
tion on E is a C -linear map

D : E

0

(X;E) �! E

1

(X;E)
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satisfying the Leibnitz rule

D(��) = d�� + �D�;(3.1)

for any � 2 E

0

(X) and � 2 E

0

(X;E).

Given any 
onne
tion D we 
an extend it to obtain operators

D : E

k

(X;E) �! E

k+1

(X;E)

by imposing the Leibnitz rule. But in general (E

�

(X;E); D) is not a 
omplex,

be
ause the operator

K = D

2

: E

0

(X;E) �! E

2

(X;E)

may be non zero. In fa
t the operator K is E

0

(X)-linear and thus it 
an be seen

as a se
tion K 2 E

2

(X;End(E)). This operator is 
alled the 
urvature of the


onne
tion.

Due to the de
omposition E

1

(X;E) = E

0;1

(X;E) � E

1;0

(X;E) we 
an de
om-

pose D = D

0;1

+D

1;0

, with

D

0;1

: E

0

(X;E) �! E

0;1

(X;E)

D

1;0

: E

0

(X;E) �! E

1;0

(X;E):

Sin
e E is holomorphi
, there is a well de�ned �-operator, whi
h in a lo
al

frame is given by

�(f

1

; : : : ; f

n

) = (�f

1

; : : : ; �f

n

):

Let us assume that E is provided with a hermitian metri
 h. Let us denote

by h�; �i the 
orresponding inner produ
t. Then there is a unique 
onne
tion that

is 
ompatible with both the 
omplex stru
ture and the hermitian metri
. That is,

there is a unique 
onne
tion D = D(h) satisfying the following 
onditions:

1. \Compatibility with the hermitian metri
": For any �; � 2 E

0

(X;E)

d h�; �i = hD�; �i+ h�;D�i :

2. \Compatibility with the 
omplex stru
ture": D

0;1

= �.

Let us write K = K(h) = D

2

, the 
urvature of the metri
 h. Let f be a lo
al

frame, if we denote by h(f) the matrix of the metri
 h in this frame, then (see [34℄

pag. 82).

K = �(h

�1

(f)�h(f)):(3.2)

From this equation it is 
lear that K 2 E

1;1

(X;End(E)). Thus in a lo
al frame it

is given by a matrix of (1; 1) forms.

Let ' 2




IP (n) and let us denote by '

k

its 
omponent of degree k. The

invarian
e of '

k

implies that we have a well de�ned element e'

k

(E; h) = '

k

(�K) 2

E

2k

(X). To see this, one �rst de�nes '

k

(�K) in a lo
al frame, where K is a

matrix of (1; 1) forms and then one uses the invarian
e to glue together these lo
al

de�nitions (see for instan
e [34℄ III.3). Sin
e I =

L

k�1

E

k

(X) is a nilpotent ideal,

we have also a well de�ned form e'(E; h) =

L

e'

k

(E; h).

Theorem 3.1. Let E �! X be a holomorphi
 ve
tor bundle and let h be a

hermitian metri
. Then

1. The form e'(E; h) is 
losed.
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2. The form e'(E; h) satis�es

e'(E; h) 2

M

p�0

E

2p

R

(p)(X):

3. The 
lass of e'(E; h) in de Rham 
ohomology is independent of the metri
 h.

Sin
e any holomorphi
 ve
tor bundle admits a hermitian metri
 the above the-

orem allows us to use hermitian metri
s to de�ne 
hara
teristi
 
lasses.

Definition 3.2. Let X be a 
omplex manifold. Let E be a rank n holomorphi


ve
tor bundle and let ' 2 R[[T

1

; : : : ; T

n

℄℄ be an invariant power series. Let us 
hoose

any hermitian metri
 h on E. Then the 
ohomology 
lass of e'(E; h), denoted

'

dR

(E) 2

M

p

H

2p

dR

(X;R(p))

will be 
alled the de Rham Chern 
lass of E asso
iated to the power series '. The

di�erential form e'(E; h) will be 
alled the Chern form.

Remark 3.3. This distin
tion between Chern 
lasses and de Rham Chern


lasses is provisional. We will distinguish between them until we see that they

agree.

Examples 3.4.

1. If ' = �

i

, the i-th elementary symmetri
 fun
tion then 


dR

i

(E) = '

dR

(E) is

the i-th de Rham Chern 
lass of E (see the remark above).

2. If ' = 1 +

P

�

i

then 


dR

(E) = '

dR

(E) is 
alled the total de Rham Chern


lass. Observe that the total Chern form is given by

e
(E; h) = det(1�K):

3. If B 
ontains the �eld Q, then the Chern 
hara
ter is de�ned by the power

series


h(T

1

; : : : ; T

n

) =

n

X

i=1

exp(T

i

):

The natural in
lusion Z(p)�! E

0

R

(p) indu
es a morphism  : H

�

(X;Z(p))�!

H

�

dR

(X;R(p)). In order to see that the two de�nitions of Chern 
lasses are 
ompat-

ible we have to 
ompare  (
(E)) with 


dR

(E). The key to 
ompare both de�nitions

of Chern 
lasses is the theorem 2.4. Thus we only need to show that the de Rham

Chern 
lasses also satisfy the properties given in theorem 2.4.

Theorem 3.5.

1. Let f : X �! Y be a morphism of 
omplex manifolds. Let (E; h) be a

hermitian ve
tor bundle on Y: Then

f

�

e
(E; h) = e
(fE; f

�

h):

2. Let L be a holomorphi
 line bundle. Then




dR

1

(L) =  (


1

(L)) :

3. Let

0 �! S �! E �! Q �! 0

be an exa
t sequen
e of holomorphi
 ve
tor bundles on X. Then


(E) = 
(S) ^ 
(Q):
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Proof. The proof of properties 1 and 3 are standard and 
an be found in any

referen
e for Chern-Weil theory. For instan
e, see [34℄. Sin
e property 2 is more

spe
i�
 of the 
omparison we are making, we will provide a proof. The idea is to

represent 


1

(L) as a

�

Ce
h 
o
y
le and 


dR

1

(L) as a di�erential form. So we will

use the 
omparison between

�

Ce
h and de Rham 
ohomologies to 
ompare the two


lasses.

Let us start representing 


1

(L) using

�

Ce
h 
ohomology. Let us assume that

U = fU

i

g is a good 
over of X (see for instan
e [6℄). This means that the open

sets U

i

and all their �nite interse
tions are 
ontra
tible. This implies that

�

Ce
h


ohomology for the 
onstant sheaf Z(1) agrees with sheaf 
ohomology. Given a sheaf

of abelian groups F , we will denote by C

�

(U;F) the 
omplex of

�

Ce
h 
o
hains with

respe
t to the open 
over U.

Let f(U

i

; s

i

)g be a trivialization of the line bundle L. Thus s

i

is a non vanishing

se
tion of �(U

i

;L). For ea
h pair i; j let us write U

i;j

= U

i

\ U

j

. Let g

ij

= s

j

=s

i

be the transition fun
tions. So g

ij

belongs to �(U

i;j

;O

�

) and fg

ij

g 2 C

1

(U;O

�

)

is a 1-
o
y
le that represents the 
lass of L in H

1

(X;O

�

). We have to apply the


onne
tion morphism to this 
lass. Sin
e the open set U

i;j

is 
ontra
tible, we 
an


hoose a determination of the logarithm log g

ij

over U

i;j

. Over U

ijk

= U

i

\U

j

\U

k

let us write t

ijk

= log g

jk

� log g

ik

+ log g

ij

. Then t

ijk

is 
onstant and it is an

integer multiple of 2�i. The set ft

ijk

g is a

�

Ce
h 2-
o
y
le for the sheaf Z(1) that

represents 


1

(L).

Next we want to represent 


dR

1

(L) as an expli
it di�erential form. Sin
e L has

rank one, the 
urvature K 2 E

1;1

(X;End(L)) = E

1;1

(X) is a di�erential form. By

3.2 this form is given, in ea
h open U

i

, by

K = �(h(s

i

)

�1

�h(s

i

)) = �� log(h(s

i

)):

Sin
e this form does not depend on the se
tion s

i

it is a global di�erential form.

Thus the �rst de Rham Chern 
lass is represented by the form e


1

(L; h) = �K =

�� log(h(s

i

)).

To 
ompare the two 
lasses we will follow the 
omparison between

�

Ce
h and de

Rham 
ohomologies given in [6℄. The main tool is the double 
omplex C

�

(U; E

�

).

It has natural morphisms from E

�

(X) and from C

�

(U; C ) and is quasi-isomorphi


to both 
omplexes. Let

d

0

: C

p

(U; E

q

) �! C

p+1

(U; E

q

)

d

00

: C

p

(U; E

q

) �! C

p

(U; E

q+1

)

denote the di�erentials, where d

0

is the di�erential of

�

Ce
h 
o
hains and d

00

is (�1)

p

times the di�erential of forms.

Then ft

ijk

g = d

0

flog g

ij

g, and

d

00

flog g

ij

g = f�d(g

ij

=g

ij

)g = f�s

i

=s

j

d(s

j

=s

i

)g:

therefore the

�

Ce
h 
o
hain fs

i

=s

j

d(s

j

=s

i

)g also represents 


1

(L). On the other

hand, �K = �d

00

f� log(h(s

i

))g, and

d

0

f�� log(h(s

i

))g =f�� log (h(s

j

)=h(s

i

))g =

f�� log (s

j

s

j

=s

i

s

i

)g =

f�s

i

=s

j

d(s

j

=s

i

)g:

Therefore �K represents also the 
lass 


1

(L).
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As a 
onsequen
e of this theorem we see that  (
(E)) = 


dR

(E). In parti
u-

lar this implies that the Chern 
lass 


i


orresponds to the elementary symmetri


fun
tion �

i

. This justi�es the following de�nition.

Definition 3.6. Let X be a 
omplex manifold. Let E be a rank n holomorphi


ve
tor bundle and let ' 2 B[[T

1

; : : : ; T

n

℄℄ be an invariant power series. Let

'(T

1

; : : : ; T

n

) = �(�

i

; : : : ; �

n

)

be the expression of ' in terms of symmetri
 elementary fun
tions. Then the Chern


lass of E asso
iated to the power series ' is:

'(E) = �(


1

(E); : : : ; 


n

(E)) 2

M

p

H

2p

(X;B(p)):

Corollary 3.7. Let X be a 
omplex manifold and let E be a holomorphi


ve
tor bundle of rank n. Let ' 2 B[[�

1

; : : : ; �

n

℄℄ be an invariant power series. Then

'

dR

(E) =  ('(E)) :

In view of this result we will drop the supers
ript

dR

from the notation.

The Chern 
hara
ter (see example 3.4.3) is one of the most interesting power

series of 
hara
teristi
 
lasses. The main advantage of the Chern 
hara
ter 
lass is

that it behaves very well under exa
t sequen
es and tensor produ
ts. For the proof

of the next proposition we refer also to [34℄.

Proposition 3.8.

1. Let 0 �! S �! E �! Q �! 0 be an exa
t sequen
e of ve
tor bundles.

Then


h(E) = 
h(S) + 
h(Q):

2. Let E and F be ve
tor bun
les. Then


h(E 
 F ) = 
h(E) ^ 
h(F ):

Unlike the Chern 
hara
ter 
lass, the Chern 
hara
ter form does not need to

behave additively for exa
t sequen
es. Let

0 �! (S; h

0

) �! (E; h) �! (Q; h

00

) �! 0

be an exa
t sequen
e of hermitian ve
tor bundles. Let us write (S; h

0

)� (Q; h

00

) for

the orthogonal dire
t sum. Then

e


h ((S; h

0

)� (Q; h

00

)) =

e


h(S; h

0

) +

e


h(Q; h

00

):

But in general

e


h(E; h) 6=

e


h ((S; h

0

)� (Q; h

00

)) :

At �rst glan
e this may seem unfortunate. But, in se
tion 8, we will see that, as

S
he
htmann pointed out ([30℄), the la
k of additivity at the level of forms 
an be

used to 
onstru
t 
hara
teristi
 
lasses for higher K-theory.
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4. Chern 
lasses for higher K theory

In this se
tion we will review Gillet's 
onstru
tion of Chern 
lasses for higher

K-theory [11℄. We will follow the simpli�ed version given in [31℄. We will assume

that the reader has some familiarity with the language of simpli
ial obje
ts (see for

instan
e [23℄ or [14℄).

In this se
tion we will be in the algebrai
 geometry 
ontext. To stress this

fa
t, instead of working with 
omplex numbers, let us �x a ground �eld k. Let V

be the 
ategory of all smooth quasi-proje
tive s
hemes, equipped with the Zarisky

topology. Let us denote by D(V) (resp. D

+

(V)) the derived 
ategory of 
omplexes

of abelian sheaves on V (resp. whi
h are bounded below). Let us assume that we

have a �xed graded 
omplex of sheaves

F

�

(�) =

M

i2Z

F

�

(i); with F

�

(i) 2 D

+

(V):

Thus for ea
h smooth quasi-proje
tive s
heme X 2 Ob(V) we have the 
ohomology

groups H

�

(X;F

�

(�)). We need to assume 
ertain properties of this 
ohomology

theory in order to mimi
 the 
onstru
tion of Chern 
lasses of se
tion 2.

Let us denote by O

�

the sheaf of invertible rational fun
tions. It de�nes an

element of D

+

(V) assuming that it is a 
omplex 
on
entrated in degree zero. Then

H

1

(X;O

�

) parameterizes isomorphism 
lasses of algebrai
 line bundles overX . The

�rst property we need for our 
ohomology theory is:

P 1: There is a morphism in D

+

(V)

O

�

[1℄ �! F

�

(1):

In parti
ular, for ea
h X 2 Ob(V), we obtain a morphism 


1

: H

1

(X;O

�

) �!

H

2

(X;F

�

(1)) whi
h allows us to de�ne the �rst Chern 
lass of a line bundle.

The next property we need is a multipli
ative stru
ture for the 
ohomology.

P 2: For ea
h n; m 2 Z, there are homomorphisms in D

+

(V)

[ : F

�

(n)

L




Z

F

�

(m) �! F

�

(n+m); and e : Z�! F

�

(0)

whi
h make F

�

(�) an asso
iative and graded 
ommutative (with respe
t to

the �rst degree) algebra with unit.

The third property we need is a formula for the 
ohomology of the proje
tive

spa
e, in other words, we need the Dold-Thom isomorphism to be satis�ed.

P 3: For X 2 Ob(V), let p : P

n

X

�! X be the n-dimensional proje
tive spa
e

over X . Let � be the �rst Chern 
lass of the line bundle O(1). Then, for

ea
h pair of integers i; m, the morphism

n�1

X

k=0

p

�

() [ �

k

:

n�1

M

k=0

H

m�2k

(X;F

�

(p� k)) �! H

m

(P

n

X

;F

�

(p))

is an isomorphism.

By a Leray spe
tral sequen
e argument, from property P 3 it follows that the

Dold-Thom isomorphism is satis�ed for any proje
tive bundle.

With properties P 1, P 2 and P 3, we 
an repeat the pro
edure of the se
tion

2 and de�ne, for ea
h ve
tor bundle E over X 2 Ob(V), Chern 
lasses 


i

(E) 2

H

2i

(X;F

�

(i)). But in order to have the Whitney sum formula we need to assume

a Gysin property (see [31℄ and [17℄).
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P 4: Let i : Y ,! X be a 
losed immersion in V of pure 
odimension 1 and let

[Y ℄ 2 H

1

(X;O

�

) be the 
lass of the divisor Y: Then for any x 2 H

2i

(X;F

�

(i))

su
h that i

�

x = 0, we have

x [ 


1

([Y ℄) = 0:

The next step is to extend the de�nition of Chern 
lasses to simpli
ial s
hemes.

Let � be the 
ategory whose obje
ts are the ordered sets [n℄ = f0; : : : ; ng, n � 0

and whose morphisms are ordered maps. Let SV denote the 
ategory of simpli
ial

obje
ts in V , that is, the 
ategory of 
ontravariant fun
tors between � and V .

Definition 4.1. Let X

�

2 ObSV be a simpli
ial s
heme. A rank n ve
tor

bundle over X

�

is an obje
t of SV , E

�

, together with a morphism of simpli
ial

s
hemes �

�

: E

�

�! X

�

satisfying the following 
onditions

1. For any k � 0 the morphism �

k

: E

k

�! X

k

is a rank n ve
tor bundle.

2. For any j; k � 0 and any � 2 Mor

�

([j℄; [k℄) the 
ommutative diagram

E

k

E(�)

����! E

j

?

?

y

�

k

?

?

y

�

k

X

k

X(�)

����! X

j

is a relative morphism of ve
tor bundles.

Alternatively, following [12℄, we 
an de�ne a ve
tor bundle over X

�

as a ve
tor

bundle E

0

over X

0

, together with an isomorphism � : Æ

�

0

E

0

�! Æ

�

1

E

0

of ve
tor

bundles over E

1

, su
h that Æ

�

2

� Æ Æ

�

0

� = Æ

�

1

�.

If X

�

is a simpli
ial s
heme then again H

1

(X

�

;O

�

) parameterizes isomorphism


lasses of line bundles (see [12℄ ex 1.1). Moreover, the property P 3 implies that the

Dold-Thom isomorphism is satis�ed for arbitrary proje
tive bundles over simpli
ial

s
hemes (see [11℄ Lemma 2.4). Therefore Grothendie
k's 
onstru
tion of Chern


lasses 
an be applied to simpli
ial s
hemes. In parti
ular it 
an be applied in the

universal 
ase.

Let B

�

GL

n

=k be the 
lassifying s
heme of the group s
heme GL

n

over k. The

simpli
ial s
heme B

�

GL

n

=k is provided with a universal rank n ve
tor bundle,

denoted by E

n

. Let us denote by 


(n)

i

= 


i

(E

n

) 2 H

2i

(B

�

GL

n

=k;F

�

(i)) the i-th

Chern 
lass of the universal bundle.

The next obje
tive is to explain how 
lasses in the 
ohomology of the 
lassifying

s
heme give rise to maps between K-theory and 
ohomology of s
hemes.

Let S

�

be a simpli
ial set and let X be a s
heme. Then we 
an 
onstru
t the

simpli
ial s
heme S

�

�X su
h that

(S

�

�X)

n

=

a

p2S

n

fpg �X;

and the fa
es and degenera
ies are indu
ed by those of S

�

. Let A be a �nitely

generated k-algebra su
h that U = Spe
A is a smooth s
heme. Then B

�

GL

n

(A)

is a simpli
ial set. Thus we 
an 
onstru
t the simpli
ial s
heme B

�

GL

n

(A) � U .

Sin
e an element of B

j

GL

n

(A) is a morphism between U and B

j

GL

n

=k we obtain

a tautologi
al morphism of simpli
ial s
hemes

� : B

�

GL

n

(A) � U �! B

�

GL

n

=k:

Thus, we obtain 
lasses �

�

(


(n)

i

) 2 H

2i

(B

�

GL

n

(A)� U;F

�

(i)).
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For a simpli
ial set S

�

, let us denote by ZS

�

the homologi
al 
omplex whi
h,

in degree j is the free abelian group generated by S

j

, and whose di�erential is

d =

P

(�1)

i

Æ

i

.

Lemma 4.2. Let S

�

be a simpli
ial set and let X be a smooth quasi-proje
tive

s
heme. Then there is a natural short exa
t sequen
e

0 �!

Y

p+q=n�1

Ext

1

Z

(H

p

(ZS

�

); H

q

(X;F

�

(i)) �! H

n

(S

�

�X;F

�

(i))

�

�!

Y

p+q=n

Hom(H

p

(ZS

�

); H

q

(X;F

�

)) �! 0:

Proof. This result is the dual of the K�unneth formula (see for instan
e [29℄

Thm. 11.32).

Thus, from ea
h 
lass 


(n)

i

2 H

2i

(B

�

GL

n

=k;F

�

(i)) we obtain a family of mor-

phisms

� Æ �(


(n)

i

)

j

: H

j

(ZB

�

GL

n

(A)) �! H

2i�j

(U;F

�

(i)):

Now we want to go to the limit when n goes to in�nity. For m > n, let us


onsider the in
lusion i

n;m

GL

n

=k �! GL

n+1

=k given by

A 7�!

�

A 0

0 I

�

;

where I is the identity m� n�m� n-matrix. Sin
e

i

�

n;m

E

m

= E

n

� (a trivial ve
tor bundle);

we have that i

�

n;m




(m)

i

= 


(n)

i

. Therefore, the family of morphisms f Æ'(


(n)

i

)

j

g

n�1

de�nes a morphism




i;j

: H

j

(GL(A);Z) = lim

�!

n

H

j

(ZB

�

GL

n

(A)) �! H

2i�j

(U;F

�

(i)):

The K-theory groups of A are the homotopy groups of the +-
onstru
tion of

B

�

GL(A). Sin
e the +-
onstru
tion is a
y
li
, we have that

H

�

(B

�

GL(A)

+

;Z) = H

�

(B

�

GL(A);Z) = H

�

(GL(A);Z):

Definition 4.3. Let A be a �nitely generated k-algebra su
h that U = Spe
A

is a smooth s
heme. For ea
h pair of integers i; j, the i-th Chern 
lass map in

K

j

(A) is the 
omposition




i;j

: K

j

(A) = �

j

(B

�

GL(A)

+

)

Hurewi
z

�! H

j

(GL(A);Z)




i;j

�! H

2i�j

(U;F

�

(i)):

The following result is an easy 
onsequen
e of the de�nition.

Proposition 4.4. Let f

℄

: A �! B be a morphism of �nitely generated k

algebras su
h that U = Spe
A and V = Spe
B are smooth s
hemes. Let f : V �!

U be the 
orresponding morphism of k-s
hemes. Then the following diagram

K

j

(A)




i;j

����! H

2i�j

(U;F

�

(i))

f

�

?

?

y

f

�

?

?

y

K

j

(B)




i;j

����! H

2i�j

(V;F

�

(i))

is 
ommutative.
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In order to extend the 
onstru
tion of Chern 
lasses to arbitrary smooth quasi-

proje
tive s
hemes we will require a property of invarian
e under homotopy. This

will allow us to use Jouanolou's tri
k. But stri
tly speaking this property is not

ne
essary ( see [11℄).

P 5: For any s
heme X 2 Ob(V), the natural map A

1

X

�! X indu
es an

isomorphism

H

�

(X;F

�

(�)) �! H

�

(A

1

X

;F

�

(�)):

This property implies that, for any �bre bundle p : Y �! X , with �bre A

n

,

(not ne
essarily a ve
tor bundle), the map p

�

H

�

(X;F

�

(�)) �! H

�

(Y;F

�

(�)) is an

isomorphism.

For any s
heme X 2 V , by Jouanolou's lemma ([20℄ lemma 1.5) there is a �bre

bundle p : Y �! X , with Y aÆne, whi
h is a torsor over a ve
tor bundle.

Definition 4.5. Let X be a smooth s
heme over k. Let us 
hoose an aÆne

torsor p : Y �! X . For ea
h pair of integers i; j, the i-th Chern 
lass map for

K

j

(X) is the 
omposition




i;j

: K

j

(X)

p

�

�

=

K

j

(Y )




i;j

�! H

2i�j

(Y;F

�

(i))

p

�

�

=

H

2i�j

(X;F

�

(i)):

Thanks to the naturality of the map 


i;j

in the aÆne 
ase (proposition 4.4)

and [20℄ proposition 1.6, this de�nition does not depend on the 
hoi
e of the aÆne

torsor Y .

So far we have 
onstru
ted Chern 
lasses for higher K-theory. Now we want to


onstru
t 
hara
teristi
 
lasses for arbitrary power series. Let again B be a subring

of R and assume that F is a sheaf of B-modules. Observe that, repla
ing T

n+1

by

0, we have a morphism between the ring of invariant power series

B[[T

1

; : : : ; T

n+1

℄℄

S

n+1

�! B[[T

1

; : : : ; T

n

℄℄

S

n

:

In terms of elementary symmetri
 fun
tions the above morphism is the morphism

B[[�

1

; : : : ; �

n+1

℄℄ �! B[[�

1

; : : : ; �

n

℄℄

that sends �

n+1

to 0. We will denote by

i

�

n;m

:




IP (m) �!




IP (n)

the indu
ed morphisms. These morphisms make f




IP (n)g

n

an inverse system. Ob-

serve that we have a 
ommutative diagram

f




IP (m)g

n

����!

Q

i

H

2i

(B

�

GL

m

=k;F

�

(i))

i

�

n;m

?

?

y

i

�

n;m

?

?

y

f




IP (n)g

n

����!

Q

i

H

2i

(B

�

GL

n

=k;F

�

(i))

where the horizontal arrows send the elementary symmetri
 fun
tion �

i

to the i-th

Chern 
lass.

Definition 4.6. A stable invariant power series is an element

f'

(n)

g 2 lim

 �




IP (n):
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Observe that any stable invariant power series is given by an element

' 2 B[[�

1

; : : : ; �

n

; : : : ℄℄:

Pro
eeding as with the Chern 
lasses, for any invariant stable power series ',

we obtain 
hara
teristi
 
lasses

' : K

j

(X) �!

M

H

2i�j

(X;F(i)):

Example 4.7. Assume that B � Q. Let us denote by 
h

(n)

the redu
ed Chern


hara
ter of rank n. That is


h

(n)

(T

1

; : : : ; T

n

) = 
h(T

1

; : : : T

n

)� n:

Sin
e 
h

(n+1)

(T

1

; : : : ; T

n

; 0) = 
h

(n)

(T

1

; : : : ; T

n

), then f
h

(n)

g is a stable invariant

power series. Thus it de�nes a redu
ed Chern 
hara
ter 
lass, denoted 
h.

Definition 4.8. The Chern 
hara
ter is the map


h : K

i

(�) �!

M

j

H

2j�i

(�;F(j));

given by


h =

(


h; if i > 0;

rank+
h; if i = 0:

Re
all that there is a produ
t stru
ture ([21℄)

K

i


K

j

�! K

i+j

that extends the multipli
ative stru
ture indu
ed in K

0

by the tensor produ
t. The

Chern 
hara
ter is also 
ompatible with this produ
t. For a proof of the following

result see [11℄ or [31℄.

Theorem 4.9. For x 2 K

i

and y 2 K

j

then


h(x � y) = 
h(x) [ 
h(y):

5. Real Deligne 
ohomology

Let us re
all the de�nition of real Deligne 
ohomology and some 
omplexes

that 
an be used to 
ompute it. Again let X be a smooth proper 
omplex variety.

As in se
tion 3 let B be a subring of R. Let us write B(p) = (2�i)

p

B � C . We

will denote also by B(p) the 
onstant sheaf. Let 


�

X

be the sheaf of holomorphi


di�erential forms on X .

Definition 5.1. The (B-)Deligne 
ohomology of X , denoted H

D

(X;B(p)), is

the hyper
ohomology of the 
omplex of sheaves

B(p) �! O

X

�! 


1

X

�! � � � �! 


p�1

X

:

This de�nition has been extended by Beilinson to the 
ase of smooth 
omplex

algebrai
 varieties, not ne
essarily proper (see [2℄, [1℄, [10℄ and [19℄). This extension

is known as Deligne-Beilinson 
ohomology. Beilinson also showed that Deligne-

Beilinson 
ohomology 
an be written as sheaf 
ohomology for a sheaf in the Zariski

topology, satisfying the properties 1 to 5 of last se
tion. Thus we 
an apply the


onstru
tion of the last se
tion and obtain 
hara
teristi
 
lasses from higher K-

theory to Deligne-Beilinson 
ohomology. In parti
ular, if we take B = R then the
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Chern 
hara
ter in real Deligne-Beilinson 
ohomology is 
alled Beilinson's regulator

and it is a generalization of Borel's regulator (see [4℄, [2℄, [27℄).

Let F denote the Hodge �ltration:

F

p




�

X

=

M

p

0

�p




p

0

X

:

Then real Deligne 
ohomology 
an be de�ned also as the hyper
ohomology of the

simple 
omplex asso
iated to the morphism of 
omplexes

R(p)� F

p




�

X

�! 


�

X

:

We want to have real Deligne 
ohomology as the 
ohomology of an expli
it 
omplex,

as de Rham 
ohomology is the 
ohomology of the 
omplex of di�erential forms. To

this end we will resolve the 
onstant sheaf and the sheaves of holomorphi
 forms

using smooth di�erential forms. We will use the same notation as in se
tion 3 for

the sheaves and 
omplexes of di�erential forms.

The Hodge �ltration of the 
omplex E

�

is given by

F

p

E

n

=

M

p

0

�p

E

p

0

;n�p

0

:

The sheaves of di�erential forms are �ne, hen
e a
y
li
. Sin
e E

�

R

(p) is a resolution

of the 
onstant sheaf R(p), and E

�

is a resolution of 


�

X

, 
ompatible with the Hodge

�ltration, we obtain that real Deligne 
ohomology of X is the 
ohomology of the

simple 
omplex asso
iated to the morphism of 
omplexes

u

p

: E

�

R

(p)(X)� F

p

E

�

(X) �! E

�

(X);

given by u

p

(r; f) = f � r. Let us denote the simple 
omplex asso
iated to u

p

as

s(u

p

) = s(E

�

R

(p)(X)� F

p

E

�

(X) �! E

�

(X)):

An element of s

n

(u

p

) is given by a triple

(r; f; !) 2 E

n

R

(p)(X)� F

p

E

n

(X)� E

n�1

(X);

and the di�erential is given by d(r; f; !) = (dr; df; f � r � d!).

Following Deligne [9℄ we 
an use a simpler 
omplex to 
ompute real Deligne


ohomology.

Definition 5.2. Let D

�

(X; p) denote the 
omplex given by

D

n

(X; p) =

8

>

>

>

>

>

<

>

>

>

>

>

:

E

n�1

R

(p� 1)(X) \

M

p

0

+q

0

=n�1

p

0

<p; q

0

<p

E

p

0

;q

0

(X); for n � 2p� 1

E

n

R

(p)(X) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

E

p

0

;q

0

(X); for n � 2p:

The di�erential of this 
omplex, denoted by d

D

, is indu
ed by d in degree greater

or equal than 2p, by �d in degree less or equal than 2p� 2 and is equal to �2��

in degree 2p� 1.

A proof that the 
ohomology of this 
omplex is Deligne 
ohomology 
an be

found on [7℄. This proof is based in the following fa
ts:
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1. The morphism u : E

n

R

(p)(X)�F

p

E

n

(X) �! E

n

(X) is inje
tive for n � 2p�1

and the 
okernel is

E

n�1

R

(p� 1)(X) \

M

p

0

+q

0

=n�1

p

0

<p; q

0

<q

E

p

0

;q

0

(X):

2. The above morphism u is surje
tive for n � 2p� 1 and the kernel is

E

n

R

(p)(X) \

M

p

0

+q

0

=n

p

0

�p; q

0

�q

E

p

0

;q

0

(X):

3. In parti
ular, for n = 2p� 1 the morphism u is an isomorphism. Moreover,

if ! 2 E

2p�2

(X), then du

�1

d! = �2��!.

Example 5.3. Observe that D

2p

(X; p) = E

2p

R

(p)(X) \ E

p;p

(X). Thus if (E; h)

is a hermitian holomorphi
 ve
tor bundle of rank n and ' 2 R[[T

1

; : : : ; T

n

℄℄ is a real

invariant power series, then

e'(E; h) 2

M

p

D

2p

(X; p):

In order to write down expli
it morphisms between D

�

(X; p) and s(u

p

) we need

to introdu
e some notations. Given a di�erential form a, we will write a =

P

a

p;q

its de
omposition in forms of pure bidegree. Let F

p;p

be the morphism de�ned by

F

p;p

a =

X

p

0

�p

q

0

�p

a

p

0

;q

0

:

Let �

p

be the morphism given by

�

p

a = (a+ (�1)

p

a)=2:

Observe that �

p

is the proje
tion of E

�

(X) onto E

�

R

(p)(X), and that, for n < 2p,

�

p

= �

p�1

Æ F

n�p+1;n�p+1

is the proje
tion of E

n

(X) onto the 
okernel of u

p

.

Let  : s

n

(u

p

) �! D

n

(X; p) and ' : D

n

(X; p) �! s

n

(u

p

) be the morphisms

given by

 (r; f; !) =

(

�

p

(!); for n � 2p� 1;

F

p;p

r + 2�

p

(�!

p�1;q+1

); for n � 2p;

'(x) =

(

(�x

p�1;q

� �x

q;p�1

; 2�x

p�1;q

; x); for n � 2p� 1;

(x; x; 0); for n � 2p;

where q = n � p. Then  and ' are homotopy equivalen
es inverse to ea
h other

(see [7℄).

Real Deligne 
ohomology has a produ
t [2℄, [1℄ that 
an be des
ribed, in terms

of the 
omplexes s(u

p

) in the following way. Let 0 � � � 1 be a real number. For

(r; f; !) 2 s

n

(u

p

) and (s; g; �) 2 s

m

(u

q

), let us write

(r; f; !) [

�

(s; g; �) = (r ^ s; f ^ g;

�(! ^ s+ (�1)

n

f ^ �) + (1� �)(! ^ g + (�1)

n

r ^ �)):

This is a family of produ
ts, all of them homotopi
ally equivalent. Moreover, for

� = 1=2 this produ
t is graded 
ommutative, whereas for � = 0; 1 this produ
t is

asso
iative. Therefore they indu
e a graded 
ommutative, asso
iative produ
t in
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Deligne 
ohomology. This produ
t indu
es a produ
t in the 
omplex D

�

(X; p) (see

[7℄). This 
omplex is only asso
iative or graded 
ommutative up to homotopy.

In order to have a 
omplex with a graded 
ommutative and asso
iative produ
t

we will use the Thom-Whitney simple, introdu
ed in [26℄. The Thom-Whitney

simple asso
iates, to a stri
t 
osimpli
ial di�erential 
omplex, a new di�erential


omplex. This new di�erential 
omplex is homotopi
ally equivalent to the total


omplex of the original 
osimpli
ial 
omplex. The main interest of the Thom-

Whitney simple is that, if we start with a stri
t 
osimpli
ial graded 
ommutative

asso
iative algebra, the 
omplex that we obtain is again a di�erential graded 
om-

mutative asso
iative algebra.

In our 
ase, we 
an 
onsider the morphism u

p

a stri
t 
osimpli
ial 
omplex u

�

p

writing

u

0

p

=E

�

R

(p)(X)� F

p

E

�

(X);

u

1

p

=E

�

(X);

u

i

p

=0; for i � 2;

with morphisms given by

Æ

0

(r; f) = f; Æ

1

(r; f) = r;

and the other morphisms equal to zero.

Let us des
ribe the Thom-Whitney simple in this 
ase. Let L

�

1

be the 
omplex

of algebrai
 forms in the aÆne line A

1

R

. That is, L

0

1

= R[t℄, and L

1

1

= R[t℄dt. Let

Æ

0

; Æ

1

: L

�

1

�! R be the morphisms given by evaluation at 0 and 1 respe
tively.

That is Æ

0

(f(t) + g(t)dt) = f(0), and Æ

1

(f(t) + g(t)dt) = f(1).

Definition 5.4. The Thom-Whitney simple of u

�

p

, denoted s

TW

(u

�

p

) is the

sub
omplex of

E

�

R

(p)(X)� F

p

E

�

(X)� L

�

1


 E

�

(X)

formed by the elements (r; f; !) su
h that

f =(Æ

0


 Id)(!);

r =(Æ

1


 Id)(!):

The di�erential and the produ
t of the Thom-Whitney simple are given 
om-

ponentwise:

d(r; f; !) = (dr; df; d!)

and

(r; f; !) ^ (s; g; �) = (r ^ s; f ^ g; ! ^ �):

With these de�nitions of di�erential and produ
t, the dire
t sum

L

p

s

TW

(u

p

) is a

di�erential graded 
ommutative asso
iative algebra.

We 
an 
onstru
t expli
it equivalen
es (see [26℄)

s

TW

(u

p

)

I

�!

 �

E

s(u

p

)

given by

E(r; f; !) = (r; f; t
 f + (1� t)
 r + dt
 !);
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and

I(r; f; (h(t) + g(t)dt)
 !) =

�

r; f;

Z

1

0

g(t)dt!

�

:

We will write I

0

=  Æ I : s

TW

(u

p

) �! D

�

(X; p) and E

0

= E Æ' : D

�

(X; p) �!

s

TW

(u

p

). We will later use that I

0

and E

0

is a pair of homotopy equivalen
es,

inverse to ea
h other, between D

�

(X; �) and a 
omplex with an asso
iative and

graded 
ommutative produ
t.

6. Bott-Chern forms

For any stable invariant power series ' and any exa
t sequen
e

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0

of hermitian ve
tor bundles, the Whitney sum formula implies that the asso
iated

Chern 
lasses satisfy

'(E) = '(S �Q):(6.1)

But in general this equation is no longer true for the Chern forms. That is, the

form

e'(E; h)� e'((S; h

0

)� (Q; h

00

)) 2

M

D

2p

(X; p)

may be non zero. Nevertheless, equation 6.1 and the ��-lemma ([16℄) imply that

there exists a di�erential form e'

1

su
h that

e'(E; h)� e'((S; h

0

)� (Q; h

00

)) = �2�� e'

1

:(6.2)

Sin
e D

2p

(X; p) = E

2p

R

(p)(X) \ E

p;p

(X) and �2�� is a purely imaginary operator,

bihomogeneous of bidegree (1; 1), we 
an 
hoose

e'

1

2

M

p

E

2p�2

R

(p� 1)(X) \ E

p�1;p�1

(X) =

M

p

D

2p�1

(X; p):

In other words, the form e'(E; h) � e'((S; h

0

) � (Q; h

00

)) is exa
t in the 
omplex

L

D

�

(X; p) The aim of this se
tion is to solve the equation 6.2 in a fun
torial way.

We will say that the exa
t sequen
e � is split if (E; h) is the orthogonal dire
t

sum (S; h

0

) and (Q; h

00

).

Theorem 6.1 (Gillet and Soul�e [13℄). Let ' be a stable invariant power series.

To ea
h exa
t sequen
e of hermitian ve
tor bundle

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0

we 
an assign a di�erential form e'

1

(�) 2

L

p

D

2p�1

(X; p), 
alled the Bott-Chern

form. satisfying the following properties.

1. �2�� e'

1

= e'(E; h)� e'((S; h

0

)� (Q; h

00

)).

2. If f : X �! Y is a morphism of 
omplex manifolds then

e'

1

(f

�

�) = f

�

e'

1

(�):

3. If � is a split exa
t sequen
e of hermitian bundles, then e'

1

(�) = 0.

Moreover, these properties 
hara
terize e'

1

up to Im � + Im �. That is, up to a

boundary in the 
omplex

L

p

D

�

(X; p).
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The proof that these properties 
hara
terize Bott-Chern forms 
an be found in

[3℄. Let us give a 
onstru
tion of Bott-Chern forms. The method we will follow is

a modi�
ation of the method of Gillet and Soul�e that avoids the need to 
hoose a

partition of unity. In this way we obtain well de�ned Bott-Chern forms satisfying

the 
onditions of theorem 6.1 and not only 
lasses up to Im � + Im �.

A standard pro
edure to prove that two di�erential forms � and �, de�ned on

a di�erential variety Y , are 
ohomologous is the following. First, one 
onstru
ts

a geometri
 homotopy between � and �. That is, a di�erential form � de�ned on

Y � R su
h that �j

Y�f1g

= � and �j

Y�0

= �. From this homotopy one obtains a

primitive for �� � by integration:

d

Z

1

0

� = �� �:(6.3)

Let us denote by �

1

the 
urrent

�

1

(�) =

Z

1

0

�:

Then the equation 6.3 
an be expressed as the equation in 
urrents

d�

1

= Æ

1

� Æ

0

;(6.4)

where Æ

0

and Æ

1

are the Dira
 delta 
urrents 
entered at 0 and 1 respe
tively. We

will adapt the above pro
edure to Deligne 
ohomology.

Let us assume for a while that the hermitian metri
 h

00

on Q is the hermitian

metri
 indu
ed by the metri
 h of E. The �rst step is to 
onstru
t a geometri


homotopy between the hermitian ve
tor bundles (E; h) and (S; h

0

)� (Q; h

00

). This

homotopy will be parametrized by the 
omplex proje
tive line instead of by the unit

interval. Let (x : y) be homogeneous 
oordinates of P

1

= P

1

C

. Then x and y are

se
tions of the bundle O

P

1

(1). The standard metri
 of C

2

indu
es the Fubini-Study

metri
 on O

P

1

(1). Let us denote by g this metri
. Then

g(x) =

xx

xx+ yy

and g(y) =

yy

xx+ yy

:

Let p

1

: X � P

1

�! X and p

2

: X � P

1

�! P

1

denote the proje
tions. Let

us write E(1) = p

�

1

E 
 p

�

2

O(1) and S(1) = p

�

1

S 
 p

�

2

O(1). Let us 
onsider the

morphism

 : S �! S(1)�E(1)

s 7�! s
 y + f(s)
 x:

Observe that the ve
tor bundle S(1)�E(1) has a metri
 indu
ed by the metri
s of

S, E and O(1).

Definition 6.2. The transgression bundle asso
iated to the exa
t sequen
e �

is the hermitian ve
tor bundle

tr

1

(�) = 
oker( )

with the hermitian metri
 indu
ed by the metri
 of S(1)�E(1).

The restri
tions of the transgression bundle tr

1

(�) are

tr

1

(�)j

X�(0:1)

= (E; h);(6.5)

tr

1

(�)j

X�(1:0)

= (S; h

0

)� (Q; h

00

):(6.6)
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Thus tr

1

(�) is a geometri
 homotopy between (S; h

0

) � (Q; h

00

) and (E; h). Note

that to obtain 6.5 we had to assume that h

00

is the indu
ed metri
.

The se
ond step is to obtain a geometri
 homotopy of di�erential forms. This

homotopy is given by the form e'(tr

1

(�)). Then the fun
toriality of the Chern forms

and the equations 6.5 and 6.6 imply that

e'(tr

1

(�))j

X�(0:1)

= e' ((E; h)) ;(6.7)

e'(tr

1

(�))j

X�(1:0)

= e' ((S; h

0

)� (Q; h

00

)) :(6.8)

The third step is to integrate the geometri
 homotopy to obtain a primitive.

Let t = x=y be an absolute 
oordinate in P

1

. Let [1=2 log tt℄ denote the 
urrent

de�ned by

[1=2 log tt℄(�) =

1

2�i

Z

P

1

1

2

log tt�:

The 
urrent [1=2 log tt℄ will play the role, in Deligne 
ohomology, that the 
urrent

�

1

plays in de Rham 
ohomology. The analogue of equation 6.4 is the Poin
ar�e-

Lelong equation (see for instan
e [16℄)

�2��[1=2 log tt℄ = Æ

(0:1)

� Æ

(1:0)

:(6.9)

Definition 6.3. The Bott-Chern form asso
iated to the exa
t sequen
e � and

the power series ' is the di�erential form

e'

1

(�) = [1=2 log tt℄(tr

1

(�)):(6.10)

Equations 6.7, 6.8 and 6.9 imply the 
ondition 1 of theorem 6.1. Moreover the

fun
toriality (
ondition 2) is 
lear from the 
onstru
tion of Bott-Chern forms.

Lemma 6.4. If � is a split exa
t sequen
e then e'

1

(�) = 0.

Proof. Let us 
onsider the morphism � : P

1

�! P

1

given by �(x : y) = (y : x).

The line bundle O(1) with the Fubini-Study metri
 is invariant under �

�

. Sin
e �

is split, the map  in the de�nition of the transgression bundle is

 : S �! S(1)� S(1)�Q(1)

s 7�! s
 y + s
 x+ 0:

Therefore, by the invarian
e of O(1), �

�

tr

1

(�) is the 
okernel of the morphism

 

0

: S �! S(1)� S(1)�Q(1)

s 7�! s
 x+ s
 y + 0;

whi
h is isometri
 to tr

1

(�). Therefore �

�

e'(tr

1

(�)) = e'(tr

1

(�)). Thus it is an

even form. On the other hand, the 
urrent [1=2 log tt℄ is odd: �

�

[1=2 log tt℄ =

�[1=2 log tt℄. Hen
e e'

1

(�) = [1=2 log tt℄(tr

1

(�)) = 0.

Let us assume now that the metri
 h

00

of Q is arbitrary. Let h

000

be the hermitian

metri
 on Q indu
ed by the metri
 h. Then from the exa
t sequen
e � we 
an de�ne

two new exa
t sequen
es.

�

1

� : 0 �! (S; h

0

) �! (E; h) �! (Q; h

000

) �! 0

�

2

� : 0 �! (Q; h

00

) �! (Q; h

000

) �! 0 �! 0:

In both exa
t sequen
es the third metri
 is indu
ed by the se
ond one.
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Definition 6.5. Let

� : 0 �! (S; h

0

) �! (E; h) �! (Q; h

00

) �! 0

be an exa
t sequen
e of hermitian ve
tor bundles. Let ' be a stable invariant power

series. Then the Bott-Chern form asso
iated to ' anf � is

e'

1

(�) = e'

1

(�

1

�) + e'

1

(�

2

�)

Remark 6.6. Sin
e, by Lemma 6.4 the Bott-Chern of the exa
t sequen
e

0 �! (Q; h) �! (Q; h) �! 0 �! 0

is zero, if � is an exa
t sequen
e with the third metri
 indu
ed by the se
ond one

then de�nition 6.3 gives the same result as de�nition 6.5.

7. Exa
t 
ubes

Let X be a smooth quasi-proje
tive variety over C . Let us �x a small full

sub
ategory E = E(X) of the 
ategory of algebrai
 ve
tor bundles over X , whi
h is

equivalent to it.

Let h�1; 0; 1i be the 
ategory asso
iated to the ordered set f�1; 0; 1g. Let

h�1; 0; 1i

n

be the n-th 
artesian power, and let h�1; 0; 1i

0

be the 
ategory with one

element and one morphism. Following Loday [22℄, we de�ne exa
t 
ubes as follows:

Definition 7.1. An exa
t n-
ube of E is a fun
tor F from h�1; 0; 1i

n

to E su
h

that, for all integers 1 � i � n, and all n� 1-tuples (�

1

; : : : ; �

n�1

) 2 h�1; 0; 1i

n�1

the sequen
e

F

�

1

;:::;�

i�1

;�1;�

i

;:::;�

n�1

�! F

�

1

;:::;�

i�1

;0;�

i

;:::;�

n�1

�! F

�

1

;:::;�

i�1

;1;�

i

;:::;�

n�1

is a short exa
t sequen
e. We have written F

�

1

;:::;�

n

for F(�

1

; : : : ; �

n

).

We will denote by C

n

E the 
ategory of exa
t n-
ubes. It is a small exa
t


ategory. We will write C

n

E = Ob(C

n

E).

Definition 7.2. Given an exa
t n-
ube F and integers i 2 f1; : : : ; ng, j 2

f�1; 0; 1g, the fa
e �

j

i

F is the exa
t n� 1-
ube de�ned by

�

�

j

i

F

�

�

1

;:::;�

n�1

= F

�

1

;:::;�

i�1

;j;�

i

;:::;�

n�1

:

Examples 7.3.

1. An exa
t 0-
ube is an element of Ob(E).

2. An exa
t 1-
ube is an exa
t sequen
e of obje
ts of E.

3. For ea
h i 2 f1; : : : ; ng, we 
an see an exa
t n-
ube F as the exa
t sequen
e

of exa
t n� 1-
ubes

0 �! �

�1

i

F �! �

0

i

F �! �

1

i

F �! 0

This exa
t sequen
e will be denoted �

�

i

F . Note that F is 
hara
terized by

any of the exa
t sequen
es �

�

i

F .

Let ZC

n

(E) be the free abelian group generated by C

n

(E). Let us de�ne a

di�erential d : ZC

n

(E) �! ZC

n�1

(E) by the formula

d =

n

X

i=1

1

X

j=�1

(�1)

i+j+1

�

j

i

:
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It is easy to see that d

2

= 0; thus we have obtained a homology 
omplex denoted

ZC

�

(E). Sin
e we are using a 
ubi
 theory, in order to obtain the right homology,

we need to fa
tor out by the degenerate elements.

For ea
h exa
t n� 1-
ube F , and ea
h integer i 2 f1; : : : ; ng we will denote by

s

i

�1

F the exa
t n-
ube de�ned by the exa
t sequen
e (see example 7.3.3)

�

�

i

(s

i

�1

F) : 0 �! 0 �! F

Id

�! F �! 0:

Analogously we de�ne s

i

1

by the exa
t sequen
e

�

�

i

(s

i

1

F) : 0 �! F

Id

�! F �! 0 �! 0:

The exa
t 
ubes in the image of s

�1

and s

1

are 
alled degenerate n-
ubes.

Clearly the di�erential d sends a degenerate 
ube to a linear 
ombination of de-

generate 
ubes. Therefore the subgroup generated by all degenerated 
ubes form a

sub
omplex of ZC

�

(E) denoted by D

�

.

Definition 7.4. The redu
ed 
ubi
al 
omplex of the 
ategory E is

e

ZC

�

E = ZC

�

E/D

�

:

The homology of the 
omplex ZC

red

�

E is 
losely related to the K-theory of X .

For instan
e, let S

�

E be the Waldhausen spa
e asso
iated with the 
ategory E [32℄.

Then

K

i

(X) = �

i+1

jS

�

Ej :

Now, as in [33℄, [8℄ or [24℄, one 
an 
onstru
t a morphism of 
omplexes


 : ZS

�

E[1℄ �!

e

ZC

�

E:

Composing with the Hurewi
z morphism one obtains a natural map

K

i

E �! H

i

(

e

ZC

�

E):

For the purpose of 
onstru
ting 
hara
teristi
 
lasses this map is enough (see [8℄).

But R. M
Carthy [24℄ has given a pre
ise des
ription of the homology of

e

ZC

�

E

that makes this 
omplex mu
h more interesting.

Theorem 7.5. The homology of

e

ZC

�

E is the homology of the algebrai
 K-

theory spe
trum of the 
ategory E. In parti
ular

K

i

(E)
 Q

�

=

H

i

(

e

ZC

�

E)
 Q:

Moreover, the use of 
ubes makes

e

ZC

�

E very well behaved to study produ
ts.

Definition 7.6. Let F be an exa
t n-
ube and let G be an exa
t m-
ube.

Then F 
 G is the exa
t n+m-
ube given by

(F 
 G)

�

1

;:::;�

n+m

= F

�

1

;:::;�

n


 G

�

n+1

;:::;�

n+m

:

This produ
t makes

e

ZC

�

E an asso
iative di�erential algebra whi
h is homo-

topi
ally 
ommutative. Therefore its homology has the stru
ture of an asso
iative

and 
ommutative algebra.

Theorem 7.7 (R. M
Carthy [24℄.). The morphism

K

�

(E) �! H

�

(

e

ZC

�

E)

is multipli
ative.
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We want to introdu
e hermitian metri
s in the ve
tor bundles.

Definition 7.8. Let E = E(X) be the 
ategory with

ObE =

(

(E; h)

�

�

�

�

�

E 2 ObE

h hermitian metri
 on E

)

and

Hom

E

((E; h); (F; g)) = Hom

E

(E;F ):

For ea
h ve
tor bundle E 2 E let us 
hoose a hermitian metri
 h

E

. This gives

us a fun
tor F : E �! E. Let G : E �! E be the fun
tor forget the metri
.

These fun
tors are equivalen
es inverse to ea
h other. In parti
ular, this implies

the following result.

Lemma 7.9. The fun
tors F and G indu
e morphisms of 
omplexes

F :

e

ZC

�

E �!

e

ZC

�

E;

G :

e

ZC

�

E �!

e

ZC

�

E;

whi
h are homotopy equivalen
es, inverse one of the other.

Proof. It is 
lear that G ÆF = Id. In addition the homotopy h between F ÆG

and the identity is given in the following way. Let F be an element of

e

ZC

n

E. Then

hF is the exa
t n+ 1 
ube de�ned by the exa
t sequen
e

�

�

n

(hF) : 0 �! F ÆG(F)

Id

�! F �! 0 �! 0:

To de�ne higher Bott-Chern forms for exa
t 
ubes of hermitian ve
tor bundles,

extending the te
hnique of se
tion 6, we need the third metri
 in any short exa
t

sequen
e to be indu
ed by the middle metri
. To this end we introdu
e the following

notation.

Definition 7.10. Let F = f(E

�

; h

�

)g be an exa
t n-
ube of hermitian ve
tor

bundles. We say that F is an emi-n-
ube, if, for ea
h n-tuple � = (�

1

; : : : ; �

n

), and

ea
h i with �

i

= 1, the metri
 h

�

is indu
ed by the metri
 h

(�

1

;:::;�

i�1

;0;�

i+1

;:::;�

n

)

.

Let ZC

emi

E be the sub
omplex of ZCE generated by the the emi-n-
ubes, and

let D

emi

be the sub
omplex generated by the degenerate emi-n-
ubes. We will

write

e

ZC

emi

E = ZC

emi

E

Æ

D

emi

�

e

ZCE:

Let us see that the 
omplexes

e

ZCE and

e

ZC

emi

E are homotopi
ally equivalent.

Let F = f(F

�

; h

�

)g 2 C

n

E. For i = 1; : : : ; n let �

1

i

F be de�ned by

�

1

i

F

�

=

(

(F

�

; h

�

); if �

i

= �1; 0;

(F

�

; h

0

�

); if �

i

= 1;

where h

0

�

is the metri
 indu
ed by h

(�

1

;:::;�

i�1

;0;�

i+1

;:::;�

n

)

. Thus the operator �

1

i


hanges the metri
s of the fa
e �

1

i

F by those indu
ed by the metri
s of the fa
e

�

0

i

F .

Let �

2

i

F be the exa
t n-
ube determined by the exa
t sequen
e

�

�

i

(�

2

i

F) : 0 �! �

1

i

F �! �

1

i

�

1

i

F �! 0 �! 0:
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This n-
ube measures the di�eren
e between F and �

1

i

F .

Let us write �

i

F = �

1

i

F + �

2

i

F , and let us denote by � the map

� : ZC

n

E �! ZC

n

E

F 7�!

(

�

n

: : : �

1

F ; if n � 1;

F ; if n = 0:

The map � is a morphism of 
omplexes. Moreover, the image of � lies in the

set of emi-n-
ubes and � sends degenerate 
ubes to degenerate 
ubes. Therefore

the morphism � indu
es a morphism of 
omplexes

e

� :

e

ZCE �!

e

ZC

emi

E:

Proposition 7.11. The morphism

e

� is a homotopy equivalen
e.

Proof. Let us denote by

� :

e

ZC

emi

E �!

e

ZCE

the in
lusion. Observe that, if F is an emi-n-
ube then

�F = F + degenerate elements.

Therefore

e

� Æ � = Id. Let F and G be the morphisms of 
omplexes of lemma 7.9.

Sin
e F ÆG is homotopi
ally equivalent to the identity, we obtain the equivalen
e

F ÆG Æ � Æ

e

� � � Æ

e

�:

But, sin
e the fun
tor G forgets the metri
, G(� Æ �F) � G(F) 
onsists only in

degenerate 
ubes. Therefore F ÆG Æ � Æ

e

� = F ÆG: In 
onsequen
e � Æ

e

� � Id.

8. Higher Bott-Chern forms

Let X be a smooth 
omplex proje
tive variety. The aim of this se
tion is to

give a morphism between the 
omplex of emi-
ubes and the 
omplex D

�

(X; �).

This morphism will realize the 
hara
teristi
 
lasses from higher K-theory to real

Deligne 
ohomology.

Observe that, sin
e we want to realize the 
hara
teristi
 
lasses as a morphism

of 
omplexes of abelian groups, we will obtain a morphism of groups. In parti
ular

the indu
ed map

K

0

(X) �!

M

p

H

2p

D

(X; p)

will be additive. This for
es us to 
hoose the Chern 
hara
ter as our 
hara
teristi



lass. Nevertheless, sin
e the Chern 
lasses 
an be re
overed from the 
omponents

of the Chern 
hara
ter form, the formulae we obtain 
an be applied to any 
hara
-

teristi
 
lass.

The reason we restri
t ourselves to proje
tive varieties is to avoid the te
hni
al

diÆ
ulties of the logarithmi
 singularities at in�nity. But note that a main ingre-

dient in the proof that higher Bott-Chern forms give Beilinson's regulator is the

extension to quasi-proje
tive varieties (see [8℄)

Let us see that Bott-Chern forms are the degree one step of the morphism of


omplexes we are looking for. If

� : 0 �! (S; h

0

)

f

�! (E; h) �! (Q; h

00

) �! 0
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is an exa
t sequen
e of hermitian ve
tor bundles, then

d� = (E; h)� (Q; h

00

)� (S; h

0

):

Therefore

d

D

e


h

1

(�) = �2��

e


h

1

(�)

=

e


h(E; h)�

e


h(Q; h

00

)�

e


h(S; h

0

)

=

e


h(d�):

To extend this morphism to higher degrees, we will iterate the de�nition of Bott-

Chern forms.

Let F = fF

�

g be an emi-n-
ube. The �rst step is to 
onstru
t a geometri
 n-th

order homotopy between the vertexes of F . The reason for 
alling it a homotopy

will be 
lear in proposition 8.3. This homotopy will be a hermitian ve
tor bundle

de�ned over X� (P

1

)

n

and will be 
alled the n-th transgression bundle. Moreover,

we want the n-th transgression bundle to be an exa
t fun
tor. Let us de�ne it

indu
tively. If n = 1, an emi-1-
ube is a short exa
t sequen
e � of hermitian ve
tor

bundles with the third metri
 indu
ed by the se
ond one. Then, the de�nition of

the �rst transgression bundle is given in 6.2. It follows from the de�nition that

tr

1

is an exa
t fun
tor. Assume now that we have de�ned the fun
tor tr

n�1

and

that it is an exa
t fun
tor. As in 7.3.3, The emi-n-
ube F 
an be seen as an exa
t

sequen
e of emi-n� 1-
ubes:

�

�

n

F : �

�

n

(F)0 �! �

�1

n

F �! �

0

n

F �! �

1

n

F �! 0:

Applying the fun
tor tr

n�1

to this exa
t sequen
e of emi-n�1-
ubes, we obtain

an exa
t sequen
e of hermitian ve
tor bundles onX�(P

1

)

n�1

, denoted tr

n�1

(�

�

n

F).

Definition 8.1. Let F be an emi-n-
ube. Then the n-th transgression bundle

is

tr

n

(F) = tr

1

(tr

n�1

(�

�

n

F)):

Sin
e tr

1

is an exa
t fun
tor, and by indu
tion hypothesis we may assume that

tr

n�1

is also an exa
t fun
tor, we obtain that tr

n

is also an exa
t fun
tor.

Remark 8.2. An emi-n-
ube 
an be seen as an exa
t sequen
e of emi-n � 1-


ubes in n di�erent ways depending on whi
h fa
es we take. Thus the above 
on-

stru
tion may depend, in prin
iple, on the 
hoi
e of an ordering of the subindexes.

Nevertheless, the result is independent of this order. See for instan
e [8℄ De�ni-

tion 3.8 for a more symmetri
 de�nition or [28℄ Proposition 2.1 for a proof of the

invarian
e under permutations.

The basi
 property of the transgression bundle is the following.

Proposition 8.3 ([8℄ Proposition 3.9). Let F be an emi-n-
ube. Let (x

i

: y

i

)

be homogeneous 
oordinates in the i-th fa
tor of (P

1

)

n

. Then

tr

n

(F)j

fx

i

=0g

�

=

tr

n�1

(�

0

i

F);

tr

n

(F)j

fy

i

=0g

�

=

tr

n�1

(�

�1

i

F)

?

� tr

n�1

(�

1

i

F):

In view of this proposition, the n-th transgression bundle of an emi-n-
ube is

a homotopy between the n� 1-transgression bundles of its fa
es.
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The se
ond step is to go from a homotopy of ve
tor bundles to a homotopy of

di�erential forms. This step is simple; the required homotopy is

e


h(tr

n

(F)) be
ause

by the fun
toriality of the Chern 
hara
ter form and Proposition 8.3 we obtain that

e


h(tr

n

(F))j

fx

i

=0g

�

=

e


h(tr

n�1

(�

0

i

F));(8.1)

e


h(tr

n

(F))j

fy

i

=0g

�

=

e


h(tr

n�1

(�

�1

i

F)) +

e


h(tr

n�1

(�

1

i

F)):(8.2)

The third step is to integrate the di�erential form

e


h(tr

n

(F)) de�ned on X �

(P

1

)

n

, to obtain a di�erential form,

e


h

n

(F), de�ned on X .

To this end we will introdu
e some 
urrents on (P

1

)

n

. Let us introdu
e the

homologi
al analogue of the 
omplex D

�

, where these 
urrents will live. For any

smooth 
omplex proje
tive variety Y , let D

�

(Y ) be the 
omplex of 
urrents on

Y . That is, D

n

(Y ) is the topologi
al dual of E

n

(Y ). We will denote by D

R

�

(Y )

the sub
omplex of real 
urrents and by D

p;q

(Y ) the 
urrents of type p; q (i.e. the

topologi
al dual of E

p;q

(Y )). We will write D

R

�

(Y )(p) = (2�i)

�p

D

R

�

(Y ).

Definition 8.4. Let D

�

(Y; �) be the 
omplex de�ned by

D

n

(Y; p) =

8

>

>

>

>

>

<

>

>

>

>

>

:

D

R

n

(p)(Y ) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

D

p

0

;q

0

(Y ); for n � 2p:

D

R

n+1

(p+ 1)(X) \

M

p

0

+q

0

=n+1

p

0

>p; q

0

>q

D

p

0

;q

0

(X); for n � 2p+ 1:

The homology of the above 
omplex is the Deligne homology of Y . If Y is

equidimensional of dimension n then, for any form ! 2 D

j

(Y; p), we will denote by

[!℄ 2 D

2n�j

(Y; n� p) the 
urrent de�ned by

[!℄(�) =

1

(2�i)

n

Z

Y

! ^ �:(8.3)

This morphism realizes the Poin
ar�e duality. If ! is a lo
ally integrable form, we

will use also the notation [!℄ to denote its asso
iated 
urrent.

Let us denote by d

i

j

: (P

1

)

n�1

�! (P

1

)

n

, for i = 1; : : : ; n and j = 0;1 the

in
lusions given by

d

i

0

(x

1

; : : : ; x

n

) = (x

1

; : : : ; x

i�1

; (0 : 1); x

i

; : : : ; x

n

)

d

i

1

(x

1

; : : : ; x

n

) = (x

1

; : : : ; x

i�1

; (1 : 0); x

i

; : : : ; x

n

):

The 
urrents we need in order to integrate the form

e


h(tr

n

(F)) are provided

by the following result.

Theorem 8.5 ([33℄, see also [8℄ and [15℄). There exists a family of 
urrents

f[W

n

℄g

n�0

with [W

n

℄ 2 D

n

((P

1

)

n

; 0) su
h that

1. [W

0

℄ = 1.

2. d

D

[W

n

℄ =

n

X

i=1

(�1)

i

�

(d

i

0

)

�

[W

n�1

℄� (d

i

1

)

�

[W

n�1

℄

�

.

Proof. By equation 6.9, we 
an write [W

1

℄ = [1=2 log tt℄. Let p

i

: (P

1

)

n

�!

P

1

denote the proje
tion over the i-th fa
tor. Let us write �

i

= p

�

i

(1=2 log tt).
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Then �

i

is a lo
ally integrable fun
tion over (P

1

)

n

. Let I

0

and E

0

be the homotopy

equivalen
es introdu
ed at the end of se
tion 5. Then we will write

W

n

= I

0

(E

0

(�

1

) [ � � � [ E

0

(�

n

))(8.4)

whi
h is a lo
ally integrable form. The 
urrent [W

n

℄ is the asso
iated 
urrent.

Condition 2 is, formally, 
onsequen
e of the equation 6.9 and Leibnitz rule (see [8℄

Proposition 6.7 and [33℄). Expli
itly, the formsW

n

are given by (
ompare [15℄ 2.2)

W

n

=

(�1)

n

2n!

n

X

i=1

X

�2S

n

(�1)

i�1

(�1)

�

log(t

�(1)

t

�(1)

)

dt

�(2)

t

�(2)

^ � � � ^

dt

�(i)

t

�(i)

^

dt

�(i+1)

t

�(i+1)

^ � � � ^

dt

�(n)

t

�(n)

:

Definition 8.6. Let F be an emi-n-
ube. Then the n-th Bott-Chern form of

F is

e


h

n

(F) = [W

n

℄(

e


h(tr

n

(F)))

=

1

(2�i)

n

Z

(P

1

)

n

W

n

^

e


h(tr

n

(F)):

Let E be a small 
ategory of hermitian ve
tor bundles over X (see se
tion 7).

Let us write

e

ZC

n

emi

E =

e

ZC

emi

�n

E. Then

e

ZC

�

emi

E is a 
ohomologi
al 
omplex. The

de�nition of higher Bott-Chern forms indu
es maps


h :

e

ZC

n

emi

E �!

M

p

D

n

(X; p)[2p℄:

Proposition 8.7. The indu
ed map


h :

e

ZC

�

emi

E �!

M

p

D

�

(X; p)[2p℄:

is a morphism of 
omplexes.

Proof. This proposition is a dire
t 
onsequen
e of 8.1 and 8.5.

The main result 
on
erning higher Bott-Chern forms is

Theorem 8.8 ([8℄). The 
omposition map

K

i

(X)

Hurewi
z

�! H

�i

(

e

ZC

�

emi

E) �!

M

p

H

2p�i

D

(X;R(p))

agrees with Beilinson's regulator map.

Remark 8.9. The 
onstru
tion of higher Bott-Chern 
an be made working

always with the Thom-Whitney simple. We de�ne the Chern 
hara
ter form in the

Thom-Whitney 
omplex as

e


h(F)

TW

= E

0

(

e


h(F)):

The analogues of the forms W

n

are the forms

(W

n

)

TW

= E

0

(�

1

) [ � � � [E

0

(�

n

):
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Then, for any emi-n-
ube,F , the higher Bott-Chern form in the Thom-Whitney


omplex is

e


h

n

(F)

TW

=

1

(2�i)

n

Z

(P

1

)

n

(W

n

)

TW

[

e


h(tr

n

(F))

TW

;

where the integral is 
omputed 
omponentwise. In this way we obtain a morphism

whi
h is multipli
ative at the level of 
omplexes (see [8℄).
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