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Abstract. We give a new construction of higher arithmetic Chow groups for quasi-
projective arithmetic varieties over a field. Our definition agrees with the higher arith-
metic Chow groups defined by Goncharov for projective arithmetic varieties over a field.
These groups are the analogue, in the Arakelov context, of the higher algebraic Chow
groups defined by Bloch. The degree zero group agrees, for projective varieties, with the
arithmetic Chow groups defined by Gillet and Soulé and in general, with the arithmetic
Chow groups of Burgos. Our new construction is shown to be a contravariant functor
and is endowed with a product structure, which is commutative and associative.

AMS 2000 Mathematics subject classification: 14G40, 14C15, 14F43

Introduction

Let X be an arithmetic variety, i.e. a regular scheme which is flat and quasi-projective
over an arithmetic ring. In [14], Gillet and Soulé defined the arithmetic Chow groups of
X, denoted as ĈH

p
(X), whose elements are classes of pairs (Z, gZ), with Z a codimension

p subvariety of X and gZ a Green current for Z. Later, in [5], the first author gave an
alternative definition for the arithmetic Chow groups, involving the Deligne complex of
differential forms with logarithmic singularities along infinity, D∗log(X, p), that computes
real Deligne-Beilinson cohomology, H∗D(X,R(p)). When X is proper, the two definitions
are related by a natural isomorphism that takes into account the different normalization
of both definitions. In this paper, we follow the latter definition.

It is shown in [5] that the following properties are satisfied by ĈH
p
(X):

• The groups ĈH
p
(X) fit into an exact sequence:

(1) CHp−1,p(X)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0,

where CHp−1,p(X) is the term Ep−1,−p
2 (X) of the Quillen spectral sequence (see

[23], §7) and ρ is the Beilinson regulator.
• There is a pairing

ĈH
p
(X)⊗ ĈH

q
(X) ·−→ ĈH

p+q
(X)Q

turning
⊕

p≥0 ĈH
p
(X)Q into a commutative graded unitary Q-algebra.

• If f : X → Y is a morphism, there exists a pull-back morphism

f∗ : ĈH
p
(Y )→ ĈH

p
(X).

Assume that X is proper and defined over an arithmetic field. Then the arithmetic
Chow groups have been extended to higher degrees by Goncharov, in [16]. These groups
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are denoted by ĈH
p
(X,n) and are constructed in order to extend the exact sequence (1)

to a long exact sequence of the form

· · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (X,R(p)) a−→ ĈH
p
(X,n− 1)→ · · ·

· · · → CHp(X, 1)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0.

Explicitly, Goncharov defined a regulator morphism

Zp(X, ∗) P−→ D2p−∗
D (X, p),

where
• Zp(X, ∗) is the chain complex given by Bloch in [3], whose homology groups are,

by definition, CHp(X, ∗).
• D∗D(X, ∗) is the Deligne complex of currents.

Then the higher arithmetic Chow groups of a regular complex variety X are defined as
ĈH

p
(X,n) := Hn(s(P ′)), the homology groups of the simple of the induced morphism

P ′ : Zp(X, ∗) P−→ D2p−∗
D (X, p)/D2p(X, p).

For n = 0, these groups agree with the ones given by Gillet and Soulé. However, this
construction leaves the following questions open:
(1) Does the composition of the isomorphism Kn(X)Q ∼=

⊕
p≥0CH

p(X,n)Q with the
morphism induced by P agree with the Beilinson regulator?

(2) Can one define a product structure on
⊕

p,n ĈH
p
(X,n)?

(3) Are there well-defined pull-back morphisms?
The use of the complex of currents in the definition of P is the main obstacle encountered
when trying to answer these questions, since this complex does not behave well under
pull-back or products. Moreover, the usual techniques for the comparison of regulators
apply to morphisms defined for the class of quasi-projective varieties, which is not the
case of P.

In this paper we develop a higher arithmetic intersection theory by giving a new defi-
nition of the higher arithmetic Chow groups, based on a representative of the Beilinson
regulator at the chain complex level. Our strategy has been to use the Deligne complex
of differential forms instead of the Deligne complex of currents in the construction of
the representative of the Beilinson regulator. The obtained regulator turns out to be a
minor modification of the regulator described by Bloch in [4].

The present definition of higher arithmetic Chow groups is valid for quasi-projective
arithmetic varieties over a field, pull-back morphisms are well-defined and can be given a
commutative and associative product structure. Therefore, this construction overcomes
the open questions left by Goncharov’s construction.

The authors, jointly with Takeda, prove in [6] that this definition agrees with Gon-
charov’s definition when the arithmetic variety is projective. Moreover, by a direct com-
parison of our regulator with P, it is also proved that the regulator defined by Goncharov
induces the Beilinson regulator. In this way, the open questions (1)-(3) are answered pos-
itively. Moreover, the question of the covariance of the higher arithmetic Chow groups
with respect to proper morphisms will also be treated elsewhere.

Note that since the theory of higher algebraic Chow groups given by Bloch, CHp(X,n),
is only fully established for schemes over a field, we have to restrict ourselves to arithmetic
varieties over a field. Therefore, the following question remains open:
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(1) Can we extend the definition to arithmetic varieties over an arithmetic ring?

Let us now briefly describe the constructions presented in this paper. First, for the
construction of the higher Chow groups, instead of using the simplicial complex defined
by Bloch in [3], we use its cubical analog, defined by Levine in [19], due to its suitability
for describing the product structure on CH∗(X, ∗). Thus Zp(X,n)0 will denote the
normalized chain complex associated to a cubical abelian group. Let X be a complex
algebraic manifold. For every p ≥ 0, we define two cochain complexes, D∗A,Zp(X, p)0 and
D∗A(X, p)0, constructed out of differential forms on X×�n with logarithmic singularities
along infinity (� = P1 \ {1}). For every p ≥ 0, the following isomorphisms are satisfied:

H2p−n(D∗A,Zp(X, p)0) ∼= CHp(X,n)R, n ≥ 0,
Hr(D∗A(X, p)0) ∼= Hr

D(X,R(p)), r ≤ 2p,

where the first isomorphism is obtained by a explicit quasi-isomorphism

D2p−∗
A,Zp (X, p)0 −→ Zp(X, ∗)0 ⊗ R

(see §2.4 and §2.5).
We show that there is a natural chain morphism (see §3.1)

D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0

which induces, after composition with the isomorphism

Kn(X)Q ∼=
⊕
p≥0

CHp(X,n)Q

described by Bloch in [3], the Beilinson regulator (Theorem 3.5):

Kn(X)Q ∼=
⊕
p≥0

CHp(X,n)Q
ρ−→
⊕
p≥0

H2p−n
D (X,R(p)).

In the second part of this paper we use the morphism ρ to define the higher arith-
metic Chow group ĈH

p
(X,n), for any arithmetic variety X over a field. The formalism

underlying our definition is the theory of diagrams of complexes and their associated
simple complexes, developed by Beilinson in [1]. Let XΣ denote the complex manifold
associated with X and let σ be the involution that acts as complex conjugation on the
space and on the coefficients. As usual σ as superindex will mean the fixed part under
σ. Then one considers the diagram of chain complexes

Ẑp(X, ∗)0 =


Zp(XΣ, ∗)σ0 ⊗ R D2p−∗

A (XΣ, p)σ0

Zp(X, ∗)0

γ1

::uuuuuuuuuu
D2p−∗

A,Zp (XΣ, p)σ0

γ′1
∼

ffLLLLLLLLLL

ρ
99ssssssssss

ZD2p
log(XΣ, p)σ

i

eeKKKKKKKKKK


where ZD2p

log(XΣ, p)σ is the group of closed elements of D2p
log(XΣ, p)σ considered as a

complex concentrated in degree 0. Then, the higher arithmetic Chow groups of X are
given by the homology groups of the simple of the diagram Ẑp(X, ∗)0 (Definition 4.3):

ĈH
p
(X,n) := Hn(s(Ẑp(X, ∗)0)).

The following properties are shown:
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• Theorem 4.8: Let ĈH
p
(X) denote the arithmetic Chow group defined in [5].

Then, there is a natural isomorphism

ĈH
p
(X)

∼=−→ ĈH
p
(X, 0).

It follows that if X is proper, ĈH
p
(X, 0) agrees with the arithmetic Chow group

defined by Gillet and Soulé in [14].
• Proposition 4.4: There is a long exact sequence

· · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (XΣ,R(p))σ a−→ ĈH
p
(X,n− 1)→ · · ·

· · · → CHp(X, 1)
ρ−→ D2p−1

log (XΣ, p)σ/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0,

with ρ the Beilinson regulator.
• Proposition 4.12 (Pull-back): Let f : X → Y be a morphism between two

arithmetic varieties over a field. Then, there is a pull-back morphism

ĈH
p
(Y, n)

f∗−→ ĈH
p
(X,n),

for every p and n, compatible with the pull-back maps on the groups CHp(X,n)
and H2p−n

D (X,R(p)).
• Corollary 4.16 (Homotopy invariance): Let π : X×Am → X be the projection

on X. Then, the pull-back map

π∗ : ĈH
p
(X,n)→ ĈH

p
(X × Am, n), n ≥ 1

is an isomorphism.
• Theorem 5.46 (Product): There exists a product on

ĈH
∗
(X, ∗) :=

⊕
p≥0,n≥0

ĈH
p
(X,n),

which is associative, graded commutative with respect to the degree n.

The paper is organized as follows. The first section is a preliminary section. It is
devoted to fix the notation and state the main facts used in the rest of the paper. It
includes general results on homological algebra, diagrams of complexes, cubical abelian
groups and Deligne-Beilinson cohomology. In the second section we recall the definition
of the higher Chow groups of Bloch and introduce the complexes of differential forms
being the source and target of the regulator map. We proceed in the next section to the
definition of the regulator ρ and we prove that it agrees with Beilinson’s regulator. In
sections 4 and 5, we develop the theory of higher arithmetic Chow groups. Section 4
is devoted to the definition and basic properties of the higher arithmetic Chow groups
and to the comparison with the arithmetic Chow group for n = 0. Finally, in section
5 we define the product structure on ĈH

∗
(X, ∗) and prove that it is commutative and

associative.
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1. Preliminaries

1.1. Notation on (co)chain complexes. We use the standard conventions on (co)chain
complexes. By a (co)chain complex we mean a (co)chain complex over the category of
abelian groups.

The cochain complex associated to a chain complex A∗ is simply denoted by A∗ and
the chain complex associated to a cochain complex A∗ is denoted by A∗. The translation
of a cochain complex (A∗, dA) by an integer m is denoted by A[m]∗. Recall that A[m]n =
Am+n and the differential of A[m]∗ is (−1)mdA. If (A∗, dA) is a chain complex, then the
translation of A∗ by an integer m is denoted by A[m]∗. In this case the differential is
also (−1)mdA but A[m]n = An−m.

The simple complex associated to an iterated chain complex A∗ is denoted by s(A)∗
and the analogous notation is used for the simple complex associated to an iterated
cochain complex (see [9] §2 for definitions).

The simple of a cochain map A∗
f−→ B∗ is the cochain complex (s(f)∗, ds) with s(f)n =

An ⊕ Bn−1, and differential ds(a, b) = (dAa, f(a) − dBb). Note that this complex is the
cone of −f shifted by 1. There is an associated long exact sequence

(1.1) · · · → Hn(s(f)∗)→ Hn(A∗)
f−→ Hn(B∗)→ Hn+1(s(f)∗)→ · · ·

If f is surjective, there is a quasi-isomorphism

(1.2) ker f i−→ s(−f)∗ x 7→ (x, 0),

and if f is injective, there is a quasi-isomorphism

(1.3) s(f)[1]∗ π−→ B∗/A∗ (a, b) 7→ [b].

Analogously, equivalent results and quasi-isomorphisms can be stated for chain com-
plexes.

Following Deligne [10], given a cochain complex A∗ and an integer n, we denote by
τ≤nA

∗ the canonical truncation of A∗ at degree n.

1.2. The simple of a diagram of complexes. We describe here Beilinson’s ideas on
the simple complexes associated to a diagram of complexes (see [1]). A diagram of chain
complexes is a diagram of the form

(1.4) D∗ =


B1
∗ B2

∗ . . . . . . Bn∗

A1
∗

γ1
>>~~~~~~~

A2
∗

γ′1

``@@@@@@@
γ2

>>~~~~~~~
. . . . . . An∗

γn

>>}}}}}}}}
An+1
∗

γ′n

bbDDDDDDDD

 .

Consider the induced chain morphisms

(1.5)
n+1⊕
i=1

Ai∗
ϕ,ϕ1,ϕ2−−−−−→

n⊕
i=1

Bi
∗,

ϕ1(ai) = γi(ai) if ai ∈ Ai∗,
ϕ2(ai) = γ′i−1(ai) if ai ∈ Ai∗,
ϕ(ai) = (ϕ1 − ϕ2)(ai) = (γi − γ′i−1)(ai) if ai ∈ Ai∗.

(where we set γn+1 = γ′0 = 0). The simple complex associated to the diagram D∗ is
defined to be the simple of the morphism ϕ:

(1.6) s(D)∗ := s(ϕ)∗.



6 J. I. BURGOS GIL AND E .FELIU

1.3. Morphisms of diagrams. A morphism between two diagrams D∗ and D′∗ consists
of a collection of morphisms

Ai∗
hAi−−→ A

′i
∗ , Bi

∗
hBi−−→ B

′i
∗ ,

commuting with the morphisms γi and γ′i, for all i. Any morphism of diagrams D∗
h−→ D′∗

induces a morphism on the associated simple complexes s(D)∗
s(h)−−→ s(D′)∗. Observe that

if, for every i, hAi and hBi are quasi-isomorphisms, then s(h) is also a quasi-isomorphism.

1.4. Product structure on the simple of a diagram. LetD∗ andD′∗ be two diagrams
as (1.4). Consider the diagram obtained by the tensor product of complexes:
(1.7)

(D ⊗D′)∗ =


B1
∗ ⊗B

′1
∗ B2

∗ ⊗B
′2
∗
. . . . . . Bn∗ ⊗B

′n
∗

A1
∗ ⊗A

′1
∗

γ1⊗ξ1

AA��������
A2
∗ ⊗A

′2
∗

γ′1⊗ξ
′
1

]]:::::::: γ2⊗ξ2

AA��������
. . . . . .An∗ ⊗A

′n
∗

γn⊗ξn

AA��������
An+1
∗ ⊗A′n+1

∗

γ′n⊗ξ
′
n

``BBBBBBBBB

 .

In [1], Beilinson defined, for every β ∈ Z, a morphism

s(D)∗ ⊗ s(D′)∗
?β−→ s(D ⊗D′)∗

as follows. For a ∈ A, a′ ∈ A′, b ∈ B and b′ ∈ B′, set:

a ?β a
′ = a⊗ a′,

b ?β a
′ = b⊗ ((1− β)ϕ1(a′) + βϕ2(a′)),

a ?β b
′ = (−1)deg a(βϕ1(a) + (1− β)ϕ2(a))⊗ b′,

b ?β b
′ = 0,

where the tensor product between elements in different spaces is defined to be zero.
If B∗, C∗ are chain complexes, let

σ : s(B∗ ⊗ C∗)→ s(C∗ ⊗B∗)
be the map sending b⊗ c ∈ Bn ⊗ Cm to (−1)nmc⊗ b ∈ Cm ⊗Bn.

Lemma 1.8 (Beilinson). (i) The map ?β is a morphism of complexes.
(ii) For every β, β′ ∈ Z, ?β is homotopic to ?β′.

(iii) There is a commutative diagram

s(D)∗ ⊗ s(D′)∗
?β //

σ

��

s(D ⊗D′)∗
σ

��
s(D′)∗ ⊗ s(D)∗

?1−β // s(D′ ⊗D)∗.

(iv) The products ?0 and ?1 are associative.

1.5. A specific type of diagrams. In this work we will use diagrams of the following
form:

(1.9) D∗ =


B1
∗ B2

∗

A1
∗

γ1
>>~~~~~~~

A2
∗

γ′1
∼

``@@@@@@@
γ2

>>~~~~~~~

 ,
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with γ′1 a quasi-isomorphism. For this type of diagrams, since γ′1 is a quasi-isomorphism,
we obtain a long exact sequence equivalent to the long exact sequence related to the
simple of a morphism. Since a diagram like this induces a map A1

∗ −→ B2
∗ in the derived

category, we obtain

Lemma 1.10. Let D∗ be a diagram like (1.9). Then there is a well-defined morphism

Hn(A1
∗)

ρ−→ Hn(B2
∗), [a1] 7→ γ2(γ′1)−1γ1[a1].

Moreover, there is a long exact sequence

(1.11) · · · → Hn(s(D)∗)→ Hn(A1
∗)

ρ−→ Hn(B2
∗)→ Hn−1(s(D)∗)→ · · ·

Consider now a diagram of the form

(1.12) D∗ =


B1
∗ B2

∗

A1
∗

γ1
>>~~~~~~~

A2
∗

γ′1
∼

``@@@@@@@
γ2

>>~~~~~~~
A3
∗

``

γ′2

``@@@@@@@

 ,

with γ′1 a quasi-isomorphism and γ′2 a monomorphism.

Lemma 1.13. Let D be a diagram as (1.12) and let D′ be the diagram

(1.14) D′∗ =


B1
∗ B2

∗/A
3
∗

A1
∗

γ1
>>~~~~~~~

A2
∗

γ′1
∼

``@@@@@@@
γ2

<<yyyyyyyyy

 ,

Then, there is a quasi-isomorphism between the simple complexes associated to D and
to D′:

s(D)∗
∼−→ s(D′)∗.

Proof. It follows directly from the definition that the simple complex associated to D∗ is
quasi-isomorphic to the simple associated to the diagram

(1.15) D′′∗ =


B1
∗ s(A3

∗
γ′2−→ B2

∗)[1]

A1
∗

γ1

??��������
A2
∗.

γ′1
∼

__????????

γ2
99rrrrrrrrrr

 ,

Then, the quasi-isomorphism given in (1.3) induces a quasi-isomorphism

s(D′)∗
∼−→ s(D′′)∗

as desired. �

Corollary 1.16. For any diagram of the form (1.12), there is a long exact sequence

(1.17) · · · → Hn(s(D)∗)→ Hn(A1
∗)

ρ−→ Hn−1(s(γ′2))→ Hn−1(s(D)∗)→ · · ·

Proof. It follows from the previous lemma together with Proposition 1.10. �
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1.6. Cubical abelian groups and chain complexes. Let C· = {Cn}n≥0 be a cubical
abelian group with face maps δji : Cn → Cn−1, for i = 1, . . . , n and j = 0, 1, and
degeneracy maps σi : Cn → Cn+1, for i = 1, . . . , n+ 1. Let Dn ⊂ Cn be the subgroup of
degenerate elements of Cn, and let C̃n = Cn/Dn.

Let C∗ denote the associated chain complex, that is, the chain complex whose n-
th graded piece is Cn and whose differential is given by δ =

∑n
i=1

∑
j=0,1(−1)i+jδji .

Thus D∗ is a subcomplex and C̃∗ is a quotient complex. We fix the normalized chain
complex associated to C·, NC∗, to be the chain complex whose n-th graded group is
NCn :=

⋂n
i=1 ker δ1

i , and whose differential is δ =
∑n

i=1(−1)iδ0
i . It is well-known that

there is a decomposition of chain complexes C∗ ∼= NC∗ ⊕ D∗ giving an isomorphism
NC∗ ∼= C̃∗.

For certain cubical abelian groups, the normalized chain complex can be further sim-
plified, up to homotopy equivalence, by considering the elements which belong to the
kernel of all faces but δ0

1 .

Definition 1.18. Let C· be a cubical abelian group. Let N0C∗ be the complex defined
by

(1.19) N0Cn =
n⋂
i=1

ker δ1
i ∩

n⋂
i=2

ker δ0
i , and differential δ = −δ0

1 .

The proof of the next proposition is analogous to the proof of Theorem 4.4.2 in [2].
The result is proved there only for the cubical abelian group defining the higher Chow
complex (see §2.1 below). We give here the abstract version of the statement, valid for
a certain type of cubical abelian groups.

Proposition 1.20. Let C· be a cubical abelian group. Assume that it comes equipped
with a collection of maps

hj : Cn → Cn+1, j = 1, . . . , n,

such that, for any l = 0, 1, the following identities are satisfied:

δ1
jhj = δ1

j+1hj = sjδ
1
j ,

δ0
jhj = δ0

j+1hj = id,(1.21)

δlihj =
{
hj−1δ

l
i i < j,

hjδ
l
i−1 i > j + 1.

Then, the inclusion of complexes

i : N0C∗ ↪→ NC∗

is a homotopy equivalence.

Proof. Let gj : NCn → NCn+1 be defined as gj = (−1)n−jhn−j if 0 ≤ j ≤ n − 1 and
gj = 0 otherwise. Then there is a well-defined morphism of chain complexes

Hj = (Id +δgj + gjδ) : NC∗ → NC∗.

This morphism is homotopically equivalent to the identity.
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Let x ∈ NCn and 0 ≤ j ≤ n− 1. Then,

δhn−j(x) =
n+1∑
i=1

(−1)iδ0
i hn−j(x)

=
n−j−1∑
i=1

(−1)ihn−j−1δ
0
i (x) +

n+1∑
i=n−j+2

(−1)ihn−jδ0
i−1(x),

hn−j−1δ(x) =
n∑
i=1

(−1)ihn−j−1δ
0
i (x).

Hence,

δgj(x) + gjδ(x) = (−1)n−j
n∑

i=n−j+1

(−1)i−1hn−jδ
0
i (x) + (−1)n−j−1

n∑
i=n−j

(−1)ihn−j−1δ
0
i (x).

We consider the decreasing filtration G∗ of NC∗, given by

(1.22) GjNCn = {x ∈ NCn | δ0
i (x) = 0, i > max(n− j, 1)}.

Then G0NC∗ = NC∗ and for j ≥ n − 1, GjNCn = N0Cn. If x ∈ Gj+1NC∗, then
δgj(x) + gjδ(x) = 0 and thus, Hj(x) = x. Moreover, if x ∈ GjNC∗, then Hj(x) ∈
Gj+1NC∗. Thus, Hj is the projector from GjNC∗ to Gj+1NC∗.

Thus, the morphism ϕ : NC∗ → N0C∗ given, on NCn, by ϕ := Hn−2 ◦ · · · ◦H0 forms
a chain morphism homotopically equivalent to the identity. Moreover ϕ is the projector
from NC∗ to N0C∗. Hence, ϕ ◦ i is the identity of N0C∗ while i ◦ ϕ is homotopically
equivalent to the identity of NC∗. �

Remark 1.23. To every cubical abelian group C· there are associated four chain com-
plexes: C∗, NC∗, N0C∗ and C̃∗. In some situations it will be necessary to consider the
cochain complexes associated to these chain complexes. In this case we will write, re-
spectively, C∗, NC∗, N0C

∗ and C̃∗.

1.7. Cubical cochain complexes. Let X∗· be a cubical cochain complex. Then, for
every m, the cochain complexes NX∗m, N0X

∗
m and X̃∗m are defined.

Proposition 1.24. Let X∗· , Y
∗
· be two cubical cochain complexes and let f : X∗· → Y ∗·

be a morphism. Assume that for every m, the cochain morphism

X∗m
fm−−→ Y ∗m

is a quasi-isomorphism. Then, the induced morphisms

NX∗m
fm−−→ NY ∗m and X̃∗m

fm−−→ Ỹ ∗m

are quasi-isomorphisms.

Proof. The proposition follows from the decompositions

Hr(X∗m) = Hr(NX∗m)⊕Hr(DX∗m),
Hr(Y ∗m) = Hr(NY ∗m)⊕Hr(DY ∗m),

and the fact that fm induces cochain maps

NX∗m
fm−−→ NY ∗m, DX∗m

fm−−→ DY ∗m.

�
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Proposition 1.25. Let X∗· be a cubical cochain complex. Then the natural morphism

Hr(NX∗n)
f−→ NHr(X∗n)

is an isomorphism for all n ≥ 0.

Proof. The cohomology groups Hr(X∗· ) have a cubical abelian group structure. Hence
there is a decomposition

Hr(X∗· ) = NHr(X∗· )⊕DHr(X∗· ).

In addition, there is a decomposition X∗n = NX∗n ⊕DX∗n. Therefore

Hr(X∗· ) = Hr(NX∗· )⊕Hr(DX∗· ).

The lemma follows from the fact that the identity morphism in Hr(X∗· ) maps NHr(X∗· )
to Hr(NX∗· ) and DHr(X∗· ) to Hr(DX∗· ). �

1.8. Deligne-Beilinson cohomology. In this paper we use the definitions and conven-
tions on Deligne-Beilinson cohomology given in [5] and [9], chapter 5.

One denotes R(p) = (2πi)p ·R ⊂ C. Let X be a complex algebraic manifold and denote
by E∗log,R(X)(p) the complex of real differential forms with logarithmic singularities along
infinity, twisted by p. Let (D∗log(X, p), dD) be the Deligne complex of differential forms
with logarithmic singularities, as described in [5]. It computes real Deligne-Beilinson
cohomology of X, that is,

Hn(D∗log(X, p)) = Hn
D(X,R(p)).

This complex is functorial on X.
The product structure in Deligne-Beilinson cohomology can be described by a cochain

morphism on the Deligne complex (see [5]):

Dnlog(X, p)⊗Dmlog(X, q) •−→ Dn+m
log (X, p+ q)

x⊗ y 7→ x • y.

This product satisfies the expected relations:

(1) Graded commutativity: x • y = (−1)nmy • x.
(2) Leibniz rule: dD(x • y) = dDx • y + (−1)nx • dDy.

Proposition 1.26. The Deligne product • is associative up to a natural homotopy, i.e.
there exists

h : Drlog(X, p)⊗Dslog(X, q)⊗Dtlog(X, l)→ Dr+s+tlog (X, p+ q + l)

such that

dDh(ω1 ⊗ ω2 ⊗ ω3) + hdD(ω1 ⊗ ω2 ⊗ ω3) = (ω1 • ω2) • ω3 − ω1 • (ω2 • ω3).

Moreover, if ω1 ∈ D2p
log(X, p), ω2 ∈ D2q

log(X, q) and ω3 ∈ D2l
log(X, l) satisfy dDωi = 0 for

all i, then

(1.27) h(ω1 ⊗ ω2 ⊗ ω3) = 0.

Proof. This is [5], Theorem 3.3. �
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1.9. Cohomology with supports. Let Z be a closed subvariety of a complex algebraic
manifold X. Consider the complex D∗log(X \Z, p), i.e. the Deligne complex of differential
forms in X \ Z with logarithmic singularities along Z and infinity.

Definition 1.28. The Deligne complex with supports in Z is defined to be

D∗log,Z(X, p) = s(D∗log(X, p)→ D∗log(X \ Z, p)).
The Deligne-Beilinson cohomology with supports in Z is defined as the cohomology groups
of the Deligne complex with supports in Z:

Hn
D,Z(X,R(p)) := Hn(D∗log,Z(X, p)).

Lemma 1.29. Let Z,W be two closed subvarieties of a complex algebraic manifold X.
Then there is a short exact sequence of Deligne complexes,

0→ D∗log(X \ Z ∩W,p) i−→ D∗log(X \ Z, p)⊕D∗log(X \W,p) j−→ D∗log(X \ Z ∪W,p)→ 0,

where i(α) = (α, α) and j(α, β) = −α+ β.

Proof. It follows from [7], Theorem 3.6. �

In addition, Deligne-Beilinson cohomology with supports satisfies a semipurity prop-
erty. Namely, let Z be a codimension p subvariety of an equidimensional complex mani-
fold X, and let Z1, . . . , Zr be its codimension p irreducible components. Then

(1.30) Hn
D,Z(X,R(p)) =

{
0 n < 2p,⊕r

i=1 R[Zi] n = 2p.

For the next proposition, let δZ denote the current integration along an irreducible
variety Z. In the sequel we will use the conventions of [9] §5.4 with respect to the current
associated to a locally integrable form and to the current δZ .

Proposition 1.31. Let X be an equidimensional complex algebraic manifold and Z a
codimension p irreducible subvariety of X. Let j : X → X be a smooth compactification
of X (with a normal crossing divisor as its complement) and Z the closure of Z in X.
The isomorphism

cl : R[Z]
∼=−→ H2p

D,Z(X,R(p))

sends [Z] to [(j∗w, j∗g)], for any [(w, g)] ∈ H2p

D,Z(X,R(p)) satisfying the relation of

currents in X

(1.32) − 2∂∂̄[g] = [w]− δZ .

Proof. See [9], Proposition 5.58. �

In particular, assume that Z = div(f) is a principal divisor, where f is a rational
function on X. Then [Z] is represented by the couple

(0,−1
2

log(ff̄)) ∈ H2p
D,Z(X,R(p)).

The definition of the cohomology with support in a subvariety can be extended to
the definition of the cohomology with support in a set of subvarieties of X. We explain
here the case used in the sequel. Let Zp be a subset of the set of codimension p closed
subvarieties of X, that is closed under finite unions. The inclusion of subsets turns Zp
into a directed ordered set. We define the complex

(1.33) D∗log(X \ Zp, p) := lim→
Z∈Zp

D∗log(X \ Z, p),
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which is provided with an injective map

D∗log(X, p) i−→ D∗log(X \ Zp, p).

As above, we define
D∗log,Zp(X, p) := s(i)∗

and the Deligne-Beilinson cohomology with supports in Zp as

Hn
D,Zp(X,R(p)) := Hn(D∗log,Zp(X, p)).

1.10. Real varieties. A real variety X consists of a couple (XC, F∞), withXC a complex
algebraic manifold and F∞ an antilinear involution of XC.

If X = (XC, F∞) is a real variety, we will denote by σ the involution of Dnlog(XC, p)
given by

σ(η) = F ∗∞η.

Then the real Deligne-Beilinson cohomology of X is defined by

Hn
D(X,R(p)) := Hn

D(XC,R(p))σ,

where the superindex σ means the fixed part under σ.
The real cohomology of X is expressed as the cohomology of the real Deligne complex

Dnlog(X, p) := Dnlog(XC, p)σ,

i.e. there is an isomorphism

Hn
D(X,R(p)) ∼= Hn(Dnlog(X, p), dD).

1.11. Truncated Deligne complex. In the rest of the work, we will consider the
Deligne complex (canonically) truncated at degree 2p. For simplicity we will denote
it by

τD∗log(X, p) = τ≤2pD∗log(X, p).

The truncated Deligne complex with supports in a variety Z is denoted by τD∗log,Z(X, p) =
τ≤2pD∗log,Z(X, p) and the truncated Deligne complex with supports in Zp is denoted by
τD∗log,Zp(X, p) = τ≤2pD∗log,Zp(X, p).

Note that, since the truncation is not an exact functor, it is not true that τD∗log,Zp(X, p)
is the simple complex of the map τD∗log(X, p)→ τD∗log(X \ Zp, p).

2. Differential forms and higher Chow groups

In this section we construct a complex of differential forms which is quasi-isomorphic
to the complex Zp(X, ∗)0 ⊗ R. This last complex computes the higher algebraic Chow
groups introduced by Bloch in [3] with real coefficients. The key point of this construction
is the set of isomorphisms given in (1.30).

This complex is very similar to the complex introduced by Bloch in [4] in order to
construct the cycle map for the higher Chow groups. In both constructions one considers
a 2-iterated complex of differential forms on a cubical or simplicial scheme. Since this
leads to a second quadrant spectral sequence, to avoid convergence problems, one has to
truncate the complexes involved. The main difference between both constructions is the
direction of the truncation. We truncate the 2-iterated complex at the degree given by
the differential forms, while in loc. cit. the complex is truncated at the degree given by
the simplicial scheme.
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2.1. The cubical Bloch complex. We recall here the definition and main properties
of the higher Chow groups defined by Bloch in [3]. Initially, they were defined using the
chain complex associated to a simplicial abelian group. However, since we are interested
in the product structure, it is more convenient to use the cubical presentation, as given
by Levine in [19].

Fix a base field k and let P1 be the projective line over k. Let � = P1\{1}(∼= A1). The
cartesian product (P1)· has a cocubical scheme structure. For i = 1, . . . , n, we denote
by ti ∈ (k ∪ {∞}) \ {1} the absolute coordinate of the i-th factor. Then the coface and
codegeneracy maps are defined as

δi0(t1, . . . , tn) = (t1, . . . , ti−1, 0, ti, . . . , tn),

δi1(t1, . . . , tn) = (t1, . . . , ti−1,∞, ti, . . . , tn),

σi(t1, . . . , tn) = (t1, . . . , ti−1, ti+1, . . . , tn).

Then, �· inherits a cocubical scheme structure from that of (P1)·. An r-dimensional face
of �n is any subscheme of the form δi1j1 · · · δ

ir
jr

(�n−r).
We have chosen to represent A1 as P1 \ {1} so that the face maps are represented by

the inclusion at zero and the inclusion at infinity. In this way the cubical structure of
�· is compatible with the cubical structure of (P1)· in [8]. In the literature the usual
representation A1 = P1 \ {∞} is often used. We will translate from one definition to the
other by using the involution

(2.1) x 7−→ x

x− 1
.

This involution has the fixed points {0, 2} and interchanges the points 1 and ∞.
Let X be an equidimensional quasi-projective algebraic scheme of dimension d over

the field k. Let Zp(X,n) be the free abelian group generated by the codimension p
closed irreducible subvarieties of X × �n, which intersect properly all the faces of �n.
The pull-back by the coface and codegeneracy maps of �· endow Zp(X, ·) with a cubical
abelian group structure. Let (Zp(X, ∗), δ) be the associated chain complex (see §1.6) and
consider the normalized chain complex associated to Zp(X, ∗),

Zp(X,n)0 := NZp(X,n) =
n⋂
i=1

ker δ1
i .

Definition 2.2. Let X be a quasi-projective equidimensional algebraic scheme over a
field k. The higher Chow groups defined by Bloch are

CHp(X,n) := Hn(Zp(X, ∗)0).

Let N0 be the refined normalized complex of Definition (1.18). Let Zp(X, ∗)00 be the
complex with

Zp(X,n)00 := N0Z
p(X,n) =

n⋂
i=1

ker δ1
i ∩

n⋂
i=2

ker δ0
i .

Fix n ≥ 0. For every j = 1, . . . , n, we define a map

�n+1 hj−→ �n(2.3)
(t1, . . . , tn+1) 7→ (t1, . . . , tj−1, 1− (tj − 1)(tj+1 − 1), tj+2, . . . , tn+1).

The refined normalized complex of [2] §4.4 is given by considering the elements in the
kernel of all faces but δ1

1 , instead of δ0
1 like here. Taking this into account, together with
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the involution (2.1), the map hj agrees with the map denoted hn−j in [2] §4.4. Therefore,
the maps hj are smooth, hence flat, so they induce pull-back maps

(2.4) hj : Zp(X,n) −→ Zp(X,n+ 1), j = 1, . . . , n+ 1,

that satisfy the conditions of Proposition 1.20. Therefore the inclusion

Zp(X,n)00 := N0Z
p(X,n)→ Zp(X,n)0

is a homotopy equivalence (see [2] §4.4).

2.2. Functoriality. It follows easily from the definition that the complex Zp(X, ∗)0 is
covariant with respect to proper maps (with a shift in the grading) and contravariant for
flat maps.

Let f : X → Y be an arbitrary map between two smooth schemes X,Y . Let
Zpf (Y, n)0 ⊂ Zp(Y, n)0 be the subgroup generated by the codimension p irreducible sub-
varieties Z ⊂ Y ×�n, intersecting properly the faces of �n and such that the pull-back
X × Z intersects properly the graph of f , Γf . Then, Zpf (Y, ∗)0 is a chain complex and
the inclusion of complexes Zpf (Y, ∗)0 ⊆ Zp(Y, ∗)0 is a quasi-isomorphism. Moreover, the
pull-back by f is defined for algebraic cycles in Zpf (Y, ∗)0 and hence there is a well-defined
pull-back morphism

CHp(Y, n)
f∗−→ CHp(X,n).

A proof of this fact can be found in [20], §3.5. See also [18].

2.3. Product structure. Let X and Y be quasi-projective algebraic schemes over k.
Then, there is a chain morphism

s(Zp(X, ∗)0 ⊗ Zq(Y, ∗)0) ∪−→ Zp+q(X × Y, ∗)0

inducing exterior products

CHp(X,n)⊗ CHq(Y,m) ∪−→ CHp+q(X × Y, n+m).

More concretely, let Z be a codimension p irreducible subvariety of X×�n, intersecting
properly the faces of �n and let W be a codimension q irreducible subvariety of Y ×�m,
intersecting properly the faces of �m. Then, the codimension p+ q subvariety

Z ×W ⊆ X ×�n × Y ×�m ∼= X × Y ×�n ×�m ∼= X × Y ×�n+m,

intersects properly the faces of �n+m. By linearity, we obtain a morphism

Zp(X,n)⊗ Zq(Y,m) ∪−→ Zp+q(X × Y, n+m).

It induces a chain morphism on the normalized complexes

s(Zp(X, ∗)0 ⊗ Zq(Y, ∗)0) ∪−→ Zp+q(X × Y, ∗)0,

and hence there is an external product

(2.5) ∪ : CHp(X,n)⊗ CHq(Y,m)→ CHp+q(X × Y, n+m),

for all p, q, n,m.
If X is smooth, then the pull-back by the diagonal map ∆ : X → X ×X is defined on

the higher Chow groups, CHp(X ×X, ∗) ∆∗−−→ CHp(X, ∗). Therefore, for all p, q, n,m, we
obtain an internal product

(2.6) ∪ : CHp(X,n)⊗ CHq(X,m)→ CHp+q(X ×X,n+m) ∆∗−−→ CHp+q(X,n+m).
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In the derived category of chain complexes, the internal product is given by the morphism

s(Zp(X, ∗)0 ⊗ Zq(X, ∗)0) ∪ // Zp+q(X ×X, ∗)0

Zp+q∆ (X ×X, ∗)0

∼

OO

∆∗ // Zp+q(X, ∗)0.

Proposition 2.7. Let X be a quasi-projective algebraic scheme over k. The pairing
(2.6) defines an associative product on CH∗(X, ∗) =

⊕
p,nCH

p(X,n). This product is
graded commutative with respect to the degree given by n.

Proof. See [19], Theorem 5.2. �

2.4. Differential forms and affine lines. For every n, p ≥ 0, let τD∗log(X × �n, p)
be the truncated Deligne complex of differential forms in X × �n, with logarithmic
singularities at infinity. The structural maps of the cocubical scheme �· induce a cubical
structure on τDrlog(X ×�∗, p) for every r and p.

Consider the 2-iterated cochain complex

Dr,−nA (X, p) = τDrlog(X ×�n, p),

with differential (dD, δ =
∑n

i=1(−1)i(δ0
i − δ1

i )). Let

D∗A(X, p) = s(D∗,∗A (X, p))

be the associated simple complex. Hence its differential ds in D∗A(X, p) is given, for every
α ∈ Dr,−nA (X, p), by ds(α) = dD(α) + (−1)rδ(α). Since we are using cubical structures,
this complex does not compute the right cohomology and we have to normalize it.

For every r, n, we write

Dr,−nA (X, p)0 = τDrlog(X ×�n, p)0 := NτDrlog(X ×�n, p).

Hence D∗,∗A (X, p)0 is the normalized 2-iterated complex and we denote by D∗A(X, p)0 the
associated simple complex.

Proposition 2.8. The natural morphism of complexes

τD∗log(X, p) = D∗,0A (X, p)0 → D∗A(X, p)0

is a quasi-isomorphism.

Proof. Consider the second quadrant spectral sequence with E1 term given by

Er,−n1 = Hr(D∗,−nA (X, p)0).

Since
Dr,−nA (X, p)0 = 0, for r < 0 or r > 2p,

this spectral sequence converges to the cohomology groups H∗(D∗A(X, p)0). This is the
main reason why we use the truncated complexes.

If we see that, for all n > 0, the cohomology of the complex D∗,−nA (X, p)0 is zero, the
spectral sequence degenerates and the proposition is proven. By the homotopy invariance
of Deligne-Beilinson cohomology, there is an isomorphism

δ1
1 ◦ · · · ◦ δ1

1 : H∗(τD∗log(X ×�n, p))→ H∗(τD∗log(X, p)).

By definition, the image of H∗(τD∗log(X × �n, p)0) by this isomorphism is zero. Since
H∗(τD∗log(X ×�n, p)0) is a direct summand of H∗(τD∗log(X ×�n, p)), it vanishes for all
n > 0. �
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We define the complexD∗A(X, p)00 to be the simple complex associated to the 2-iterated
complex with

Dr,−nA (X, p)00 = N0τDrlog(X ×�n, p).

Corollary 2.9. The natural morphism of complexes

τD∗log(X, p) = D∗,0A (X, p)00 → D∗A(X, p)00

is a quasi-isomorphism.

Proof. It follows from Proposition 2.8, Proposition 1.20 (using as maps {hj} the ones
induced by the maps hj defined in 2.3) and Proposition 1.24. �

2.5. A complex with differential forms for the higher Chow groups. Let Zpn,X
be the set of all codimension p closed subvarieties of X × �n intersecting properly the
faces of �n. We consider it as a set ordered by the inclusion relation. When there is no
source of confusion, we simply write Zpn or even Zp. Consider the cubical abelian group

(2.10) Hp(X, ∗) := H2p
D,Zp∗

(X ×�∗,R(p)),

with faces and degeneracies induced by those of �·. Let Hp(X, ∗)0 be the associated
normalized complex.

Lemma 2.11. Let X be a complex algebraic manifold. For every p ≥ 0, there is an
isomorphism of chain complexes

γ1 : Zp(X, ∗)0 ⊗ R
∼=−→ Hp(X, ∗)0,

sending z to cl(z).

Proof. It follows from the isomorphism (1.30). �

Remark 2.12. Observe that the complex Hp(X, ∗)0 has the same functorial properties
as Zp(X, ∗)0 ⊗ R.

Let D∗,∗A,Zp(X, p)0 be the 2-iterated cochain complex, whose component of bidegree
(r,−n) is

τDrlog,Zpn(X ×�n, p)0 = NτDrlog,Zpn(X ×�n, p) = Nτ≤2pDrlog,Zpn(X ×�n, p),

and whose differentials are (dD, δ). As usual, we denote by D∗A,Zp(X, p)0 the associated
simple complex and by ds its differential.

Let D2p−∗
A,Zp (X, p)0 be the chain complex whose n-graded piece is D2p−n

A,Zp (X, p)0.

Proposition 2.13. For every p ≥ 0, the family of morphisms

D2p−n
A,Zp (X, p)0

γ′1−→ Hp(X,n)0

((ωn, gn), . . . , (ω0, g0)) 7→ [(ωn, gn)]

defines a quasi-isomorphism of chain complexes between D2p−∗
A,Zp (X, p)0 and H∗(X,n)0.

Proof. The map is well defined because (ωn, gn) ∈ τD2p
log,Zpn

(X × �n, p)0. Therefore, by
definition of the truncated complex (ωn, gn) is closed. To see that it is a morphism of
complexes we compute

γ′1ds((ωn, gn), . . . , (ω0, g0)) = γ′1((−1)2pδ(ωn, gn) + dD(ωn−1, gn−1), . . . )

= [δ(ωn, gn) + dD(ωn−1, gn−1)] = δ[(ωn, gn)].
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Now we consider the second quadrant spectral sequence with E1-term

E−n,r1 = Hr(τD∗log,Zp(X ×�n, p)0).

By construction, E−n,r1 = 0 for all r > 2p. Moreover, for all r < 2p and for all n, the
semipurity property of Deligne-Beilinson cohomology implies that

(2.14) Hr(τD∗log,Zp(X ×�n, p)) = 0.

Hence, by Proposition 1.24, the same is true for the normalized chain complex

Hr(τD∗log,Zp(X ×�n, p)0) = 0, r < 2p.

Therefore, the E1-term of the spectral sequence is

E−n,r1 =
{

0 if r 6= 2p,
H2p(τD∗log,Zp(X ×�n, p)0) if r = 2p.

Finally, from Proposition 1.25, it follows that the natural map

H2p(τD∗log,Zp(X ×�n, p)0)→ Hp(X,n)0

is an isomorphism. Using the explicit description of the spectral sequence associated to
a double complex, it is clear that the morphism induced in cohomology by γ′1 agrees with
the morphism induced by the spectral sequence. Hence the proposition is proved. �

We denote
CHp(X,n)R = CHp(X,n)⊗ R.

Corollary 2.15. Let z ∈ CHp(X,n)R be the class of an algebraic cycle z in X × �n.
By the isomorphisms of Lemma 2.11 and Proposition 2.13, the algebraic cycle z is rep-
resented, in H2p−n(DA,Zp(X, p)0), by any cycle

((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0

such that
cl(z) = [(ωn, gn)].

Remark 2.16. Our construction differs from the construction given by Bloch, in [4], in
two points:

• He considered the 2-iterated complex of differential forms on the simplicial scheme
An, instead of the differential forms on the cubical scheme �n.
• In order to ensure the convergence of the spectral sequence in the proof of last

proposition, he truncated the 2-iterated complex in the direction given by the
affine schemes.

2.6. Functoriality of D∗A,Zp(X, p)0. In many ways, the complex D∗A,Zp(X, p)0 behaves
like the complex Z∗(X, ∗)0.

Lemma 2.17. Let f : X → Y be a flat map between two equidimensional complex
algebraic manifolds. Then there is a pull-back map

f∗ : D∗A,Zp(Y, p)0 → D∗A,Zp(X, p)0.

Proof. We will see that in fact there is a map of iterated complexes

f∗ : Dr,−nA,Zp(Y, p)→ D
r,−n
A,Zp(X, p).

Let Z be a codimension p subvariety of Y × �n intersecting properly the faces of �n.
Since f is flat, there is a well-defined cycle f∗(Z). It is a codimension p cycle of X ×�n
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intersecting properly the faces of �n, and whose support is f−1(Z). Then, by [14] 1.3.3,
the pull-back of differential forms gives a morphism

τD∗log(Y ×�n \ Z, p) f∗−→ τD∗log(X ×�n \ f−1(Z), p).

Hence, there is an induced morphism

τD∗log(Y ×�n \ ZpY , p)
f∗−→ lim→

Z∈ZpY

τD∗log(X ×�n \ f−1(Z), p)→ τD∗log(X ×�n \ ZpX , p),

and thus, there is a pull-back morphism

f∗ : D∗,−nA,Zp(Y, p)→ D
∗,−n
A,Zp(X, p)

compatible with the differential δ. �

Remark 2.18. The pull-back defined here agrees with the pull-back defined by Bloch
under the isomorphisms of Lemma 2.11 and Proposition 2.13. Indeed, let f : X → Y be a
flat map. Then, if Z is an irreducible subvariety of Y and (ω, g) a couple representing the
class of [Z] in the Deligne-Beilinson cohomology with support, then the couple (f∗ω, f∗g)
represents the class of [f∗(Z)] (see [14], Theorem 3.6.1).

Proposition 2.19. Let f : X → Y be a morphism of equidimensional complex algebraic
manifolds. Let Zpf be the subset consisting of the subvarieties Z of Y × �n intersecting
properly the faces of �n and such that X × Z × �n intersects properly the graph of f ,
Γf . Then,

(i) The complex D∗A,Zpf (Y, p)0 is quasi-isomorphic to D∗A,Zp(Y, p)0.

(ii) There is a well-defined pull-back

f∗ : D∗A,Zpf (Y, p)0 → D∗A,Zp(X, p)0.

Proof. Arguing as in the proof of the previous proposition, there is a pull-back map

f∗ : τD∗log(Y ×�n \ Zpf , p)
f∗−→ τD∗log(X ×�n \ Zp, p),

inducing a morphism
f∗ : D∗A,Zpf (Y, p)→ D∗A,Zp(X, p),

and hence a morphism

f∗ : D∗A,Zpf (Y, p)0 → D∗A,Zp(X, p)0.

All that remains to be shown is that the inclusion

D∗A,Zpf (Y, p)0
i−→ D∗A,Zp(Y, p)0

is a quasi-isomorphism. By the quasi-isomorphism mentioned in paragraph 2.2 and the
quasi-isomorphism of Proposition 2.13, there is a commutative diagram

Zpf (Y, ∗)0 ⊗ R //

∼
��

D∗A,Zpf (Y, p)0

i

��
Zp(Y, ∗)0 ⊗ R ∼ // D∗A,Zp(Y, p)0.

The proof that the upper horizontal arrow is a quasi-isomorphism is analogous to the
proof of Proposition 2.13. Thus, we deduce that i is a quasi-isomorphism. �
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3. Algebraic cycles and the Beilinson regulator

In this section we define a chain morphism, in the derived category of chain complexes,
that induces in homology the Beilinson regulator.

The construction is analogous to the definition of the cycle class map given by Bloch
in [4], with the minor modifications mentioned in 2.16. However, in [4] there is no proof
of the fact that the composition of the isomorphism Kn(X)Q ∼=

⊕
p≥0CH

p(X,n)Q with
the cycle class map agrees with the Beilinson regulator.

3.1. Definition of the regulator. Consider the map of iterated cochain complexes
defined by the projection onto the first factor

Dr,−nA,Zp(X, p) = τ≤2ps(D∗log(X ×�n, p)→ D∗log(X ×�n \ Zp, p))r ρ−→ τDrlog(X ×�n, p)
(ω, g) 7→ ω.

It induces a cochain morphism

D∗A,Zp(X, p)0
ρ−→ D∗A(X, p)0,

and hence a chain morphism

(3.1) D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0.

The morphism induced by ρ in homology, together with the isomorphisms of Propositions
2.8, 2.11 and 2.13, induce a morphism

(3.2) ρ : CHp(X,n)→ CHp(X,n)R → H2p−n
D (X,R(p)).

By abuse of notation, it will also be denoted by ρ.
By corollary 2.15, we deduce that, if z ∈ Zp(X,n)0, then

ρ(z) = (ωn, . . . , ω0),

for any cycle ((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0 such that [(ωn, gn)] = cl(z).

Proposition 3.3. (i) The morphism ρ : D2p−∗
A,Zp (X, p)0 → D2p−∗

A (X, p)0 is contravari-
ant for flat maps.

(ii) The induced morphism ρ : CHp(X,n)→ H2p−n
D (X,R(p)) is contravariant for arbi-

trary maps.

Proof. Both assertions are obvious. Let z = ((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0 be a

cycle such that its inverse image by f is defined. This is the case when f is flat or when
z belongs to D2p−∗

A,Zpf
(X, p)0. In both cases

f∗((ωn, gn), . . . , (ω0, g0)) = ((f∗ωn, f∗gn), . . . , (f∗ω0, f
∗g0))

and the claim follows. �

Remark 3.4. Let X be an equidimensional compact complex algebraic manifold. Ob-
serve that, by definition, the morphism

ρ : CHp(X, 0) = CHp(X)→ H2p
D (X,R(p))

agrees with the cycle class map cl.
Now let E be a vector bundle of rank n over X. For every p = 1, . . . , n, there

exists a characteristic class CCHp (E) ∈ CHp(X) (see [17]) and a characteristic class
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CDp (E) ∈ H2p
D (X,R(p)), called the p-th Chern class of the vector bundle E. By definition,

cl(CCHp (E)) = CDp (E). Hence,

ρ(CCHp (E)) = CDp (E),

for all p = 1, . . . , n.

3.2. Comparison with the Beilinson regulator. We prove here that the regulator
defined in (3.2) agrees with the Beilinson regulator.

The comparison is based on the following facts:
• The morphism ρ is compatible with inverse images.
• The morphism ρ is defined for quasi-projective schemes.

In view of these properties, it is enough to prove that the two regulators agree when X
is a Grassmanian manifold, which in turn follows from Remark 3.4.

Theorem 3.5. Let X be an equidimensional complex algebraic scheme. Let ρ′ be the
composition of ρ with the isomorphism given by the Chern character

ρ′ : Kn(X)Q
∼=−→
⊕
p≥0

CHp(X,n)Q
ρ−→
⊕
p≥0

H2p−n
D (X,R(p)).

Then, the morphism ρ′ agrees with the Beilinson regulator.

Proof. The outline of the proof is as follows. We first recall the description of the
Beilinson regulator in terms of homotopy theory of simplicial sheaves as in [15]. Then,
we recall the construction of the Chern character given by Bloch. We proceed reducing
the comparison of the two maps to the case n = 0 and for X a Grassmanian scheme.
We finally prove that at this stage both maps agree. Our site will always be the small
Zariski site over X.

Consider X as a smooth quasi-projective scheme over C. Let B·GLN be the simplicial
version of the classifying space of the group GLN (C) viewed as a simplicial complex
manifold. Recall that all the face morphisms are flat. Let B·GLN,X be the simplicial
sheaf over X given by the sheafification of the presheaf

U 7→ B·GLN (Γ(U,OU ))

for every Zariski open U ⊆ X. This is the same as the simplicial sheaf given by

U 7→ Hom(U,B·GLN ),

where Hom means the simplicial function complex.
Consider the inclusion morphisms B·GLN,X → B·GLN+1,X , for all N ≥ 1, and let

B·GLX = lim
→
B·GLN,X .

Let Z∞B·GLN,X and Z∞B·GLX be the sheaves associated to the respective Bousfield-
Kan completions. Finally, let Z be the constant simplicial sheaf on Z and consider the
following sheaves on X

KX = Z× Z∞B·GLX ,
KN
X = Z× Z∞B·GLN,X .

By [15], Proposition 5, there is a natural isomorphism

Km(X) ∼= H−m(X,KX) = lim→
N

H−m(X,KN
X).
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Here H−∗(·, ∗) denotes the generalized cohomology with coefficients in KX and KN
X , as

described in [15].

The Beilinson regulator is the Chern character taking values in Deligne-Beilinson
cohomology. The regulator can be described in terms of homotopy theory of sheaves as
follows.

Consider the Dold-Puppe functor K·(·) (see [12]), which associates to every cochain
complex of abelian groups concentrated in non-positive degrees, G∗, a simplicial abelian
group K·(G), pointed by zero. It satisfies the property that πi(K·(G), 0) = H−i(G∗).

In [13], Gillet constructs Chern classes

CDp ∈ H2p(B·GLN ,R(p)), N � 0,

which induce morphisms

cDp,X : KN
X,· → K·(D∗X(·, p)[2p]), N � 0

in the homotopy category of simplicial sheaves.
These morphisms are compatible with the morphisms KN

X,· → KN+1
X,· . Therefore, we

obtain a morphism

Km(X) = lim→
N

H−m(X,KN
X)

CDp,X−−−→ H2p−m
D (X,R(p)).

Using the standard formula for the Chern character in terms of the Chern classes, we
obtain a morphism

Km(X) chD−−→ H2p−m
D (X,R(p)),

which is the Beilinson regulator.
The Chern character for higher Chow groups. The description of the isomorphism

Kn(X)Q
∼=−→
⊕

p≥0CH
p(X,n)Q given by Bloch follows the same pattern as the descrip-

tion of the Beilinson regulator. However, since the complexes that define the higher
Chow groups are not sheaves (in fact not even functors) on the big Zariski site, a few
modifications are necessary. We give here a sketch of the construction. For details see
[3].

If Y· is a simplicial scheme whose face maps are flat, then there is a well-defined
2-iterated cochain complex Zp(Y·, ∗)0, whose (n,m)-bigraded group is

Zp(Y−n,m)0,

and induced differentials. The higher algebraic Chow groups of Y· are then defined as

CHp(Y·, n) = Hn(Zp(Y·, ∗)0).

Since the face maps of the simplicial schemeB·GLN are flat, the group CHp(B·GLN , n)
is well defined for every p and n.

First, Bloch constructs universal Chern classes

CCHp ∈ CHp(B·GLN , 0),

following the ideas of Gillet. These classes are represented by elements

CCH,ip ∈ Zp(BiGLN , i)0.

Because at the level of complexes the pull-back morphism is not defined for arbitrary
maps, one cannot consider the pull-back of these classes CCH,ip to X, as was the case
for the Beilinson regulator. However, by [3] §7, there exists a purely transcendental
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extension L of C, and classes CCH,ip defined over L, such that the pull-back f∗CCH,ip is
defined for every C-morphism f : V → BiGLN .

Then, there is a map of simplicial Zariski sheaves on X

B·GLN,X → KX(g∗Z
p
XL

(−, ∗)0),

where g : XL → X is the natural map obtained by extension to L.
There is a specialization process described in [3], which, in the homotopy category of

simplicial sheaves over X, gives a well-defined map

KX(g∗Z
p
XL

(−, ∗)0)→ KX(ZpX(−, ∗)0).

Therefore, there are maps CCHp,X ∈ [B·GLN,X ,KX(Z∗X(·, p))], where [·, ·] denotes the set
of arrows in the homotopy category. Proceeding as above, we obtain the Chern character
morphism

Km(X)→
⊕
p≥0

CHp(X,m)Q.

For m = 0, this is the usual Chern character.
End of the proof. Since, at the level of complexes, ρ is functorial for flat maps, there

is a sheaf map
ρ : KX(Z∗X(·, p))→ K·(Dlog(X, p))

in the small Zariski site of X.
It follows that the composition ρ ◦ CCHp is obtained by the same procedure as the

Beilinson regulator, but starting with the characteristic classes ρ(CCHp ) ∈ H2p
D (X,R(p))

instead of the classes CDp . Therefore, it remains to see that

(3.6) ρ(CCHp ) = CDp .

For integers N, k ≥ 0 let Gr(N, k) be the complex Grassmanian scheme of N -planes in
Ck. It is a smooth complex projective scheme. Let EN,k be the rankN universal bundle of
Gr(N, k) and Uk = (Uk,α)α its standard trivialization. Let N·Uk denote the nerve of this
cover. It is a hypercover of Gr(N, k), N·Uk

π−→ Gr(N, k). Consider the classifying map of
the vector bundle EN,k, ϕk : N·Uk → B·GLN , which satisfies π∗(EN,k) = ϕ∗k(E

N
· ), for EN·

the universal vector bundle over B·GLN . Observe that all the faces and degeneracy maps
of the simplicial scheme N·Uk are flat, as well as the inclusion maps NlUk → Gr(N, k).
Therefore, CHp(N·Uk,m) is defined and there is a pull-back map CHp(Gr(N, k),m) π∗−→
CHp(N·Uk,m).

Since ρ is defined onN·Uk and is a functorial map, we obtain the following commutative
diagram

CHp(B·GLN , 0)
ρ //

ϕ∗k
��

H2p
D (B·GLN ,R(p))

ϕ∗k
��

CHp(N·Uk, 0)
ρ // H2p

D (N·Uk,R(p))

K0(Gr(N, k))
CCHp //

CDp

33
CHp(Gr(N, k), 0)

ρ //

π∗

OO

H2p
D (Gr(N, k),R(p))

π∗

OO
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By construction, CCHp (EN,k) is the standard p-th Chern class in the classical Chow group
of Gr(N, k), and CDp (EN,k) is the p-th Chern class in Deligne-Beilinson cohomology. It
then follows from Remark 3.4 that

(3.7) ρ(CCHp (EN,k)) = CDp (EN,k).

The vector bundle EN,k ∈ K0(Gr(N, k)) = lim→
M

[Gr(N, k),KM
· ] is represented, in the

homotopy category of simplicial sheaves, by the diagram

Gr(N, k) π←− N·Uk
ϕk−→ B·GLN ,

where the map π is a weak equivalence of sheaves because N·Uk is a hypercover of
Gr(N, k). This means that

(3.8) ϕ∗k(C
CH
p (EN· )) = π∗(CCHp (EN,k)).

Also, since π is an hypercover, π∗ is an isomorphism in Deligne-Belinson cohomology.
Moreover, for each m0, there exists k0 such that, if m ≤ m0 and k ≥ k0, ϕ∗k is an isomor-
phism on the cohomology group H2m

D ( ,R(m)). To see this, we first use the computation
of the mixed Hodge structure of the cohomology of the classifying space given in [11] and
the well known mixed Hodge structure of the cohomology of the Grassmanian manifolds
to reduce it to a comparison at the level of singular cohomology. Then we use that the
infinite Grassmanian is homotopically equivalent to the classifying space. Finally we use
the cellular decomposition of the infinite Grassmanian to compare its cohomology with
the cohomology of the finite Grassmanian (see for instance [22]).

Under these isomorphisms, we obtain the equality

(3.9) CDp (EN,k) = (π∗)−1ϕ∗k(C
D
p (EN· )).

Hence,

ρ(CCHp (EN· )) = CDp (EN· ) ⇔ ϕ∗kρ(CCHp (EN· )) = ϕ∗kC
D
p (EN· )

⇔ ρϕ∗k(C
CH
p (EN· )) = ϕ∗kC

D
p (EN· ).

The last equality follows directly from (3.7), (3.8) and (3.9). Therefore, the theorem is
proved. �

4. Higher arithmetic Chow groups

Let X be an arithmetic variety over a field. Using the description of the Beilinson
regulator given in section 3, we define the higher arithmetic Chow groups, ĈH

n
(X, p).

The definition is analogous to the definition given by Goncharov, in [16], but using
differential forms instead of currents.

We need to restrict ourselves to arithmetic varieties over a field, because the theory
of higher algebraic Chow groups by Bloch is only well established for schemes over a
field. That is, we can define the higher arithmetic Chow groups for arbitrary arithmetic
varieties, but since the functoriality properties and the product structure of the higher
algebraic Chow groups are described only for schemes over a field, we cannot give a prod-
uct structure or define functoriality for the higher arithmetic Chow groups of arithmetic
varieties over a ring. Note however that, using work by Levine [21], it should be possible
to extend the constructions here to smooth varieties over a Dedekind domain, at least
after tensoring with Q. In fact, when extending the definition to arithmetic varieties over
a ring, it might be better to use the point of view of motivic homology à la Voevodsky
or any of its more recent variants.
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4.1. Higher arithmetic Chow groups. Following [14], an arithmetic field is a triple
(K,Σ, F∞), where K is a field, Σ is a nonempty set of complex immersions K ↪→ C and
F∞ is a conjugate-linear C-algebra automorphism of CΣ that leaves invariant the image
of K under the diagonal immersion. By an arithmetic variety X over the arithmetic ring
K we mean a regular quasi-projective K-scheme X.

To the arithmetic variety X we associate a complex variety XC =
∐
ι∈ΣXι, and a real

variety XR = (XC, F∞). The Deligne complex of differential forms on X is defined from
the real variety XR as

Dnlog(X, p) := Dnlog(XC, p)σ=id,

where σ is the involution as in paragraph 1.10. We define analogously the chain complexes

D2p−∗
A (X, p)0, D2p−∗

A (X, p)00, D2p−∗
A,Zp (X, p)0, and D2p−∗

A,Zp (X, p)00.

Let γ1 be the composition

γ1 : Zp(X,n)0
⊗R−−→ Zp(X,n)0 ⊗ R ×FR−−−→ Zp(XR, n)0 ⊗ R ∼= Hp(X,n)0.

We consider the diagram of complexes of the type of (1.12)

(4.1) Ẑp(X, ∗)0 =


Hp(X, ∗)0 D2p−∗

A (X, p)0

Zp(X, ∗)0

γ1

=={{{{{{{{{
D2p−∗

A,Zp (X, p)0

γ′1
∼

ccGGGGGGGGG

ρ
::uuuuuuuuu

ZD2p
log(X, p)∗

i

ddIIIIIIIII


where ZD2p

log(X, p)∗ is the chain complex which is zero in all degrees except in degree
zero, where it consists of the vector subspace of cycles in D2p

log(X, p). Note that it agrees
with ZEp,plog,R(X)(p), the subspace of Ep,plog,R(X)(p) consisting of differential forms with
logarithmic singularities that are real up to a product by (2πi)p, of type (p, p) and that
vanish under ∂ and ∂. The morphism i is the inclusion of chain complexes.

Definition 4.2. The higher arithmetic Chow complex is the simple complex associated
to the diagram Ẑp(X, ∗)0, as defined in (1.6):

Ẑp(X, ∗)0 := s(Ẑp(X, ∗)0).

Recall that, by definition, Ẑp(X,n)0 consists of 5-tuples

(Z,α0, α1, α2, α3) ∈ Zp(X,n)0⊕D2p−n
A,Zp (X, p)0⊕ZD2p

log(X, p)n⊕Hp(X,n+1)0⊕D2p−n−1
A (X, p)0,

and the differential is given by

Ẑp(X,n)0
d−→ Ẑp(X,n− 1)0

(Z,α0, α1, α2, α3) 7→ (δ(Z), ds(α0), 0, γ1(Z)− γ′1(α0)− δ(α2), ρ(α0)− α1 − ds(α3)).

Note that α1 will be zero unless n = 0. Its differential, however, is always zero.

Definition 4.3. Let X be an arithmetic variety over an arithmetic field. The (p, n)-th
higher arithmetic Chow group of X is defined by

ĈH
p
(X,n) := Hn(Ẑp(X, ∗)0), p, n ≥ 0.
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By its definition as the cohomology of a simple of a diagram of complexes it comes
equipped with the following morphisms

ζ : ĈH
p
(X,n) −→ CHp(X,n), ζ[(Z,α0, . . . , α3)] = [Z],

a : H2p−n
D (X,R(p)) −→ ĈH

p
(X,n), a([a]) = [(0, 0, 0, 0,−a)],

a : D2p−1
log (X, p) −→ ĈH

p
(X, 0), a(ã) = [(0, 0,−dDa, 0,−a)],

ω : ĈH
p
(X, 0) −→ ZD2p

log(X, p), ω([(Z,α0, . . . , α3)]) = α1.

Proposition 4.4. There is a long exact sequence

(4.5) · · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (X,R(p)) a−→ ĈH
p
(X,n− 1)→ · · ·

→ CHp(X, 1)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X, 0)

ζ−→ CHp(X, 0)→ 0,

where ρ is the Beilinson regulator.

Proof. It follows from Theorem 3.5, Lemma 1.16 and the fact that the homology groups
of the complex

s(ZD2p
log(X, p)∗

i−→ D2p−∗
A (X, p)0)

are H2p−n
D (X,R(p)) in degree n 6= 0 and D2p−1

log (X, p)/ im dD in degree 0. �

Remark 4.6. Let D̂∗,∗A (X, p)0 be the 2-iterated cochain complex given by the quotient
D∗,∗A (X, p)0/D2p,0(X, p). That is, for all r, n,

D̂r,−nA (X, p)0 =
{

0 if r = 2p and n = 0,
Dr,−nA (X, p)0 otherwise.

Let D̂∗A(X, p)0 denote the simple complex associated to D̂∗,∗A (X, p)0. Consider the com-
position of ρ with the projection map

ρ : D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0 → D̂2p−∗

A (X, p)0.

Then, there is a diagram of chain complexes of the type of (1.9)

(4.7)


Hp(X, ∗)0 D̂2p−∗

A (X, p)0

Zp(X, ∗)0

γ1

=={{{{{{{{{
D2p−∗

A,Zp (X, p)0

γ′1
∼

ccGGGGGGGGG

ρ
::uuuuuuuuu

 .

By Proposition 1.13, the simple complex associated to the diagram (4.7) is quasi-
isomorphic to the complex Ẑp(X, ∗)0 and hence, its homology groups are isomorphic
ĈH

p
(X, ∗). Nevertheless, in order to define a product structure in ĈH

∗
(X, ∗) it is bet-

ter to work with the diagram (4.1).

4.2. Agreement with the arithmetic Chow groups. Let X be an arithmetic variety
and let ĈH

p
(X) denote the p-th arithmetic Chow group of X as defined by Burgos in

[5]. We recall here its definition.
For every p, let Zp(X) = Zp(X, 0) and let ZD2p

log(X, p) denote the subgroup of cycles
of D2p

log(X, p). Let

Ẑp(X) =

{
(Z, (ω, g̃)) ∈ Zp(X)⊕ ZD2p

log(X, p)⊕
D2p−1

log (X \ Zp, p)
im dD

∣∣∣∣ ω = dDg̃,
cl(Z) = [(ω, g)]

}
.
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If Z ∈ Zp(X), a Green form for Z is a couple (ω, g̃) as before such that cl(Z) = [(ω, g)],
where g is any representative of g̃.

Let Y be a codimension p− 1 subvariety of X and let f ∈ k∗(Y ). As shown in [5], §7,
there is a canonical Green form attached to div f . It is denoted by g(f) and it is of the
form (0, g̃(f)) for some class g̃(f).

One defines the following subgroup of Ẑp(X):

R̂at
p
(X) = {(div f, g(f))| f ∈ k∗(Y ), Y ⊂ X a codimension p− 1 subvariety}.

For every p ≥ 0, the arithmetic Chow group of X is defined by

ĈH
p
(X) = Ẑp(X)/R̂at

p
(X).

It is proved in [14], Theorem 3.3.5 and [5], Theorem 7.3, that these groups fit into
exact sequences

CHp−1,p(X)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0

where:
• CHp−1,p(X) is the term Ep−1,−p

2 in the Quillen spectral sequence (see [23], §7).
• The map ρ is the cycle class map and is the Beilinson regulator after composition

with the isomorphism K1(X)Q ∼=
⊕

p≥0CH
p−1,p(X)Q.

• The map ζ is the projection on the first component.
• The map a sends α to (0, (−dDα,−α)).

Theorem 4.8. The morphism

ĈH
p
(X) Φ−→ ĈH

p
(X, 0)

[(Z, (ω, g̃))] 7→ [(Z, (ω, g), 0, 0, 0)],

where g is any representative of g̃ ∈ D2p−1
log (X, p)/ im dD, is an isomorphism.

Proof. We first prove that Φ is well defined. Afterwards, we will prove that the diagram

CHp−1,p(X)
ρ //

∼=
��

D2p−1
log (X, p)/ im dD

a //

=

��

ĈH
p
(X)

ζ //

Φ

��

CHp(X) //

∼=
��

0

CHp(X, 1)
ρ // D2p−1

log (X, p)/ im dD
a // ĈH

p
(X, 0)

ζ // CHp(X, 0) // 0

is commutative. The statement then follows from the five lemma.
The proof is a consequence of Lemmas 4.9, 4.10 and 4.11 below.

Lemma 4.9. The map Φ is well defined.

Proof. We have to prove that:

(i) The elements in the image of Φ are indeed cycles in Ẑp(X, 0)0.
(ii) The map Φ does not depend on the choice of a representative of g.
(iii) The map Φ is zero on R̂at

p
(X).

Let [(Z, (ω, g̃))] ∈ ĈH
p
(X). The claim (i) follows from the equality cl(Z) = [(ω, g̃)] =

[(ω, g)]. Indeed, since ds(ω, g) = 0,

d(Z, (ω, g), 0, 0, 0) = (0, 0, 0, cl(Z)− cl(ω, g), 0) = 0.
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To see (ii), assume that g1, g2 ∈ D2p−1
log (X, p) are representatives of g̃, i.e. there exists

h ∈ D2p−2
log (X, p) such that dDh = g1 − g2. Then

d(0, (0, h), 0, 0, 0) = (0, (0, g1 − g2), 0, 0, 0) = (Z, (ω, g1), 0, 0, 0)− (Z, (ω, g2), 0, 0, 0)

and therefore we have [(Z, (ω, g1), 0, 0, 0)] = [(Z, (ω, g2), 0, 0, 0)].
Finally, to prove (iii), we have to see that, if Y is a codimension p− 1 subvariety and

f ∈ k∗(Y ), then
Φ(div f, g(f)) = 0 ∈ ĈH

p
(X, 0),

i.e. that
[(div f, (0, g(f)), 0, 0, 0)] = 0,

for any fixed representative g(f) of g̃(f).
Let f̂ be the function of Y × �1 given by (y, (t1 : t2)) 7→ t1−t2f(y)

t1−t2 . Its divisor defines
a codimension p subvariety of X ×�1. Moreover, it intersects properly X × (0 : 1) and
X × (1 : 0). Fix g(f̂) to be any representative of g̃(f̂). Since δ(g̃(f̂)) = g̃(f), there exists
h ∈ D2p−1

log (X \ div f, p) with dDh = δ(g(f̂))− g(f). Then,

d(div f̂ , (0, g(f̂), (0, h)), 0, 0, 0) = (div f, (0, g(f)), 0, 0, 0)

as desired. �

Lemma 4.10. There are isomorphisms

CHp(X)
ϕ1−→ CHp(X, 0),

CHp−1,p(X)
ϕ2−→ CHp(X, 1),

making the following diagrams commutative

CHp−1,p(X)
ρ //

ϕ2

��

D2p−1
log (X, p)/ im dD

=

��

CHp(X, 1)
ρ // D2p−1

log (X, p)/ im dD

ĈH
p
(X)

ζ //

Φ
��

CHp(X)

ϕ1

��
ĈH

p
(X, 0)

ζ // CHp(X, 0).

Proof. Both isomorphisms are well known. The morphism ϕ1 is the isomorphism between
the classical Chow group CHp(X) and the Bloch Chow group CHp(X, 0). The diagram
is obviously commutative, since ϕ1([Z]) = [Z].

The isomorphism ϕ2 is defined as follows. Let f ∈ CHp−1,p(X). It can be represented
by a linear combination

∑
i[fi], where fi ∈ k∗(Wi), Wi is a codimension p-1 subvariety

of X and
∑

div fi = 0. Let Γfi be the restriction of the graph of fi in ⊂ X × P1, to
X ×�1. That is, Γfi is the codimension p subvariety of X ×�1 given by

{(y, fi(y))| y ∈Wi, fi(y) 6= 1}.
Then ϕ2(f) is represented by the image in

Zp(X, 1)/DZp(X, 1) ∼= Zp(X, 1)0

of
∑

Γfi , where DZp(X, 1) are the degenerate elements.
We want to see that ρϕ2 = ρ, i.e., ρ(

∑
i Γfi) = ρ(

∑
[fi]). See [5] or [9] for more details

on the definition of ρ on the right hand side.
Let f =

∑
i[fi] ∈ CHp−1,p(X) be as above. For every i, we can choose:

• a rational function f̃i ∈ k∗(X) whose restriction to Wi is fi,
• a Green form for Wi, g(Wi) = (ωi, gi).
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The form

g(f̃i) := (0,−1
2

log f̃if̃ i)

is a Green form for the divisor div f̃i on X.
Let ? denote the ?-product of Green forms as described by Burgos in [5]. Then, we

write
(ωρ, g̃ρ) =

∑
g(f̃i) ? g(Wi).

Since the first component of g(f̃i) is zero, we have that ωρ = 0 as well. Moreover, since
(0, g̃ρ) is a Green form for

∑
i div f̃i∩Wi =

∑
i div fi = 0, we can obtain a representative

gρ of g̃ρ that is a closed smooth form. Then gρ is a representative of ρ(
∑

[fi]).
Let us show now that gρ is a representative of ρ(ϕ2(f)) as well. By the results of

the previous sections, the form ρ(
∑

i Γfi) is obtained as follows. Let Z ∈ Zp(X, 1)0 be
a cycle in the normalized group that differs from

∑
Γfi by a degenerate element. We

consider a representative (ωZ , gZ) ∈ τD2p
Zp(X ×�1, p)0 of Z. Since

β = δ0
1(ωZ , gZ)− δ1

1(ωZ , gZ)

represents the class of
∑

i div fi = 0, the class of β is zero and hence there exists (ω, g)
such that dD(ω, g) = β. Moreover, since dDωZ = 0 and the complex τD∗log(X×�1, p)0 is
acyclic (see the proof of Proposition 2.8), there exists α ∈ D2p−1

log (X ×�1, p)0 such that
dD(α) = ωZ . Then, ρ(

∑
i Γfi) is represented by ω + δ(α).

Therefore, we start by constructing the cycle Z and suitable forms (ωZ , gZ) represent-
ing the class of Z. Consider the rational function hi ∈ k∗(X ×�1) given by

(y, (t1 : t2)) 7→ t1 − t2f̃i(y)
t1 − t2

.

If we write div fi = (div fi)0 − (div fi)∞ where (div fi)0 is the divisor of zeroes and
(div fi)∞ is the divisor of poles, the intersection of the divisor of hi with Wi, div hi∩Wi,
is exactly Γfi − (div fi)∞. Observe that (div fi)∞ is a codimension p degenerate cycle.
Moreover div hi ∩Wi belongs to Zp(X, 1)0. Hence

Z =
∑

div hi ∩Wi

is the cycle we need. Let g(hi) = (0,−1
2 log hihi) be the canonical Green form for div hi.

Then, as above, a Green form for Z is given by∑
g(hi) ? g(Wi) = (0, g̃Z).

Now, observe that

δ(0, g̃Z) =
∑
i

δ0
1(g(hi)) ? g(Wi) =

∑
i

g(f̃i) ? g(Wi) = (0, g̃ρ).

Since we can assume that gρ is a smooth representative of g̃ρ, we have that ds(gρ, 0) =
(0, gρ), and hence by the above description of ρ we see that

ρ(
∑
i

Γfi) = gρ.

This finishes the proof of the lemma. �
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Lemma 4.11. The following diagram is commutative:

ĈH
p
(X)

Φ

��
D2p−1

log (X, p)/ im dD

a 33fffffff

a ++XXXXXX

ĈH
p
(X, 0)

Proof. Let α̃ ∈ D2p−1
log (X, p)/ im dD. Then, the lemma follows from the equality

d(0, (α, 0), 0, 0, 0) = (0, (dDα, α), 0, 0, 0) + (0, 0, 0, 0, α)

in ĈH
p
(X, 0). �

This finishes the proof of Theorem 4.8. �

4.3. Functoriality of the higher arithmetic Chow groups.

Proposition 4.12 (Pull-back). Let f : X → Y be a morphism between two arithmetic
varieties. Then, for all p ≥ 0, there exists a chain complex, Ẑpf (Y, ∗)0 such that:

(i) There is a quasi-isomorphism

Ẑpf (Y, ∗)0
∼−→ Ẑp(Y, ∗)0.

(ii) There is a pull-back morphism

f∗ : Ẑpf (Y, ∗)0 → Ẑp(X, ∗)0,

inducing a pull-back morphism of higher arithmetic Chow groups

ĈH
p
(Y, n)

f∗−→ ĈH
p
(X,n),

for every p, n ≥ 0.
(iii) The pull-back is compatible with the morphisms a and ζ. That is, there are com-

mutative diagrams

(4.13) · · · // H2p−n−1
D (Y,R(p))

a //

f∗

��

ĈH
p
(Y, n)

ζ //

f∗

��

CHp(Y, n) //

f∗

��

· · ·

· · · // H2p−n−1
D (X,R(p)) a

// ĈH
p
(X,n)

ζ
// CHp(X,n) // · · ·

Proof. Recall that there are inclusions of complexes

Zpf (Y, ∗)0 ⊆ Zp(Y, ∗)0,

Hpf (Y, ∗)0 ⊆ Hp(Y, ∗)0,

D∗A,Zpf (Y, p)0 ⊆ D∗A,Zp(Y, p)0,
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which are quasi-isomorphisms. The pull-back by f is defined for any α in Zpf (Y, ∗)0, in
Hpf (Y, ∗)0 or in D∗A,Zpf (Y, p)0. Moreover, by construction, there is a commutative diagram

Zpf (Y, ∗)0

f∗

��

γ1 // Hpf (Y, ∗)0

f∗

��

D∗A,Zpf (Y, p)0

f∗

��

γ′1
∼

oo ρ // D∗A(Y, p)0

f∗

��

ZD2p
log(X, p)∗

ioo

f∗

��

Zp(X, ∗)0 γ1
// Hp(X, ∗)0 D∗A,Zp(X, p)0

γ′1

∼oo
ρ

// D∗A(X, p)0 ZD2p
log(Y, p)∗.

ioo

Let Ẑpf (Y, ∗)0 denote the simple associated to the first row diagram. Then, there is a
pull-back morphism

f∗ : Ẑpf (Y, ∗)0 → Ẑp(X, ∗)0.

Moreover, as noticed in §1.3, the natural map

Ẑpf (Y, ∗)0 → Ẑp(Y, ∗)0

is a quasi-isomorphism. Therefore, (i) and (ii) are proved. Statement (iii) follows from
the construction. �

Remark 4.14. If the map is flat, then the pull-back is already defined at the level of
the chain complexes Ẑp(Y, ∗)0 and Ẑp(X, ∗)0.

Proposition 4.15 (Functoriality of pull-back). Let f : X → Y and g : Y → Z be two
morphisms of arithmetic varieties. Then,

f∗ ◦ g∗ = (g ◦ f)∗ : ĈH
p
(Z, n)→ ĈH

p
(X,n).

Proof. Let Ẑpgf∪g(Z, n)0 be the subgroup of Ẑp(Z, n)0 obtained considering, at each of the

complexes of the diagram Ẑp(Z, ∗)0, the subvarieties W of Z ×�n intersecting properly
the faces of �n and such that

• X ×W ×�n intersects properly the graph of g ◦ f ,
• Y ×W ×�n intersects properly the graph of g.

That is,
Ẑpgf∪g(Z, n)0 = Ẑpgf (Z, n)0 ∩ Ẑpg (Z, n)0.

Then, the proposition follows from the commutative diagram

Ẑp(X, ∗)0

Ẑpgf∪g(Z, ∗)0

(g◦f)∗ 44iiiiii

g∗ **UUUUUU

Ẑpf (Y, ∗)0.

f∗

OO

�

Corollary 4.16 (Homotopy invariance). Let π : X × Am → X be the projection on X.
Then, the pull-back map

π∗ : ĈH
p
(X,n)→ ĈH

p
(X × Am, n)

is an isomorphism for all n ≥ 1.

Proof. It follows from the five lemma in the diagram (4.13), using the fact that both
the higher Chow groups and the Deligne-Beilinson cohomology groups are homotopy
invariant. �
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5. Product structure

Let X,Y be arithmetic varieties over an arithmetic field K. In this section, we define
an external product, ĈH

∗
(X, ∗)⊗ ĈH

∗
(Y, ∗)→ ĈH

∗
(X×Y, ∗), and an internal product

ĈH
∗
(X, ∗) ⊗ ĈH

∗
(X, ∗) → ĈH

∗
(X, ∗), for the higher arithmetic Chow groups. The

internal product endows ĈH
∗
(X, ∗) with a ring structure. It will be shown that this

product is commutative and associative. There are two main technical difficulties. The
first one is that we are representing a cohomology class with support in a cycle by a pair
of forms, the first one smooth on the whole variety and the second one with singularities
along the cycle. The product of two singular forms has singularities along the union of
the singular locus. Therefore, in order to define a cohomology class with support on
the intersection of two cycles we need a little bit of homological algebra. To this end
we adapt the technique used in [5]. The second difficulty is that the external product
in higher Chow groups is not graded commutative at the level of complexes, but only
graded commutative up to homotopy. To have explicit homotopies we will adapt the
techniques of [19].

Recall that the higher arithmetic Chow groups are the homology groups of the simple
complex associated to a diagram of complexes. Therefore, in order to define a product,
we use the general procedure developed by Beilinson, as recalled in §1.4. To this end,
we need to define a product for each of the complexes in the diagram Ẑp(X, ∗)0 (4.1),
commuting with the morphisms γ1, γ′1, ρ and i. The pattern for the external product
construction is analogous to the pattern followed to define the external product for the
cubical higher Chow groups, described in §2.3.

For the complex Zp(X, ∗)0 we already have an external product recalled in §2.3. Since
the complex Hp(X, ∗)0 is isomorphic to ZpR(XR, ∗)0, the external product on the complex
H∗(X, ∗)0 can be defined by means of this isomorphism. We will now construct the
product for the remaining complexes.

5.1. Product structure on the complexes D∗A(X, p) and ZD2p
log(X, p)∗. We start by

defining a product structure on D∗A(X, p). Let

X × Y ×�n ×�m p13−−→ X ×�n, X × Y ×�n ×�m p24−−→ Y ×�m

be the projections indicated by the subindices. For every ω1 ∈ τDrlog(X × �n, p) and
ω2 ∈ τDslog(Y ×�m, q), we define

ω1 •A ω2 := (−1)nsp∗13ω1 • p∗24ω2 ∈ τDr+slog (X × Y ×�n+m, p+ q).

This gives a map

Dr1A (X, p)⊗Dr2A (Y, q) •A−→ Dr1+r2
A (X × Y, p+ q)

(ω1, ω2) 7→ ω1 •A ω2,

where • in the right hand side is the product in the Deligne complex (see §1.8).

Lemma 5.1. The map •A satisfies the Leibniz rule. Therefore, there is a cochain mor-
phism

s(D∗A(X, p)⊗D∗A(Y, q)) •A−→ D∗A(X × Y, p+ q).

Proof. Let ω1 ∈ τDrlog(X,n) and ω2 ∈ τDslog(Y,m). By definition of δ, the following
equality holds

δ(p∗13ω1 • p∗24ω2) = p∗13(δω1) • p∗24ω2 + (−1)np∗13ω1 • p∗24(δω2).
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Then,

ds(ω1 •A ω2) = (−1)nsds(p∗13ω1 • p∗24ω2)
= (−1)nsdD(p∗13ω1 • p∗24ω2) + (−1)r+s+nsδ(p∗13ω1 • p∗24ω2)
= (−1)nsdD(p∗13ω1) • p∗24ω2 + (−1)r+nsp∗13ω1 • dD(p∗24ω2) +

+(−1)r+s+nsp∗13(δω1) • p∗24ω2 + (−1)r+s+n+nsp∗13ω1 • p∗24(δω2)
= dDω1 •A ω2 + (−1)r+nω1 •A dD(ω2) +

+(−1)rδω1 •A ω2 + (−1)r+n+sω1 •A δ(ω2)
= ds(ω1) •A ω2 + (−1)r+nω1 •A ds(ω2),

as desired. �

Definition 5.2. Let τD∗log(X × Y × �∗ × �∗, p)0 be the 3-iterated cochain complex
whose (r,−n,−m)-th graded piece is the group τDrlog(X × Y ×�n ×�m, p)0 and whose
differentials are (dD, δ, δ). Let

(5.3) D∗A×A(X × Y, p)0 := s
(
τD∗log(X × Y ×�∗ ×�∗, p)0

)
be the associated simple complex.

Remark 5.4. Observe that there is a cochain morphism

D∗A×A(X × Y, p)0
κ−→ D∗A(X × Y, p)0

sending α ∈ τDrlog(X × Y × �n × �m, p) to α ∈ τDrlog(X × Y × �n+m, p) under the
identification

�n+m ∼=−→ �n ×�m

(x1, . . . , xn+m) 7→ ((x1, . . . , xn), (xn+1, . . . , xn+m)).

Moreover, the product •A that we have defined previously, factors through the morphism
κ and a product, also denoted by •A,

D∗A(X, p)⊗D∗A(Y, q) •A−→ D∗A×A(X × Y, p+ q).

In order to define the product on the complex ZD2p
log(X, p)∗, recall that we have an

isomorphism (see [5])
ZD2p

log(X, p) ∼= ZEp,plog,R(X)(p)

and that the restriction of the product • to this subspace is given by the product ∧.
The inclusion i is compatible with the product •A and the product ∧. That is, consider

the projections pX : X × Y → X and pY : X × Y → Y . Then, if α ∈ ZEp,plog,R(X)(p) and
β ∈ ZEq,qlog,R(Y )(q), we put

α ∧ β = p∗X(α) ∧ p∗Y (β) ∈ ZEp+q,p+qlog,R (X × Y )(p+ q).

We have a commutative diagram

ZEp,plog,R(X)(p)⊗ ZEq,qlog,R(Y )(q) ∧ //

i⊗i
��

ZEp+q,p+qlog,R (X × Y )(p+ q)

i

��
s(D∗A(X, p)0 ⊗D∗A(Y, q)0) •A

// D∗A(X × Y, p+ q)0.
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5.2. Product structure on the complex D∗A,Zp(X, p). We define here a product on
the complex D∗A,Zp(X, p). It will be compatible with the product on D∗A(X, p), under the
morphism ρ, and with the product on Hp(X, ∗)0 under γ′1.

Let X,Y be two real varieties. For every p, let ZpX,n be the subset of codimension p
subvarieties of X ×�n intersecting properly the faces of �n. Let

Zp,qX,Y,n,m ⊆ Z
p+q
X×Y,n+m

be the subset of the set of codimension p+ q subvarieties of X × Y ×�n+m, intersecting
properly the faces of �n+m, which are obtained as the cartesian product Z ×W with
Z ∈ ZpX,n and W ∈ ZqY,m.

For shorthand, we make the following identifications:

ZqY,m = {X × Z | Z ∈ ZqY,m} ⊆ ZqX×Y,n+m,

ZpX,n = {W × Y |W ∈ ZpX,m} ⊆ ZpX×Y,n+m.

To ease the notation, we write temporarily

�n,mX,Y := X × Y ×�n ×�m.

For every n,m, p, q, let jp,qX,Y (n,m) be the morphism

D∗log(�n,mX,Y \ Z
p
X,n, p+ q)⊕D∗log(�n,mX,Y \ Z

q
Y,m, p+ q)

jp,qX,Y (n,m)
−−−−−−−→ D∗log(�n,mX,Y \ Z

p
X,n ∪ Z

q
Y,m, p+ q)

induced on the limit complexes by the morphism j in Lemma 1.29.

Lemma 5.5. There is a short exact sequence

0→ D∗log(�n,mX,Y \ Z
p,q
X,Y,n,m, p+ q)→ D∗log(�n,mX,Y \ Z

p
X,n, p+ q)⊕D∗log(�n,mX,Y \ Z

q
Y,m, p+ q)

jp,qX,Y (n,m)
−−−−−−−→ D∗log(�n,mX,Y \ Z

p
X,n ∪ Z

q
Y,m, p+ q)→ 0.

Proof. It follows from Lemma 1.29. �

By the quasi-isomorphism between the simple complex and the kernel of an epimor-
phism (see (1.2)), for every n,m, there is a quasi-isomorphism

D∗log(�n,mX,Y \ Z
p,q
X,Y,n,m, p+ q) ∼−→ s(−jp,qX,Y (n,m))∗

ω 7→ (ω, ω, 0).

It induces a quasi-isomorphism

(5.6) D∗log,Zp,qX,Y,n,m
(�n,mX,Y , p+ q) ∼−→ s

(
D∗log(�n,mX,Y , p+ q)∗

ip,qX,Y (n,m)
−−−−−−→ s(−jp,qX,Y (n,m))

)∗
,

where ip,qX,Y (n,m) is defined by

D∗log(�n,mX,Y , p+ q)
ip,qX,Y (n,m)
−−−−−−→ s(−jp,qX,Y (n,m))∗

ω 7→ (ω, ω, 0).

Remark 5.7. Observe that there is an induced bicubical cochain complex structure on
s(ip,qX,Y (·, ·))∗. For every r, let s(ip,qX,Y (∗, ∗))r0 denote the 2-iterated complex obtained by
taking the normalized complex functor to both cubical structures. Consider the 3-iterated
complex s(ip,qX,Y (∗, ∗))∗0 whose piece of degree (r,−n,−m) is the group τr≤2p+2qs(i

p,q
X,Y (n,m))r0,
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and whose differential is (ds, δ, δ). Denote by s(ip,qX,Y )∗0 the associated simple complex.
Observe that the differential of α = (α0, (α1, α2), α3) ∈ s(ip,qX,Y )r0 is given by

d′s(α0, (α1, α2), α3) = (dDα0, (α0 − dDα1, α0 − dDα2),−α1 + α2 + dDα3).

Definition 5.8. Let •A be the map

Drlog,Zp(X ×�n, p)0 ⊗Dslog,Zq(Y ×�m, q)0
•A−→ s(ip,qX,Y (n,m))r+s0

defined by sending (ω, g)⊗ (ω′, g′) to

(−1)ns(ω • ω′, (g • ω′, (−1)rω • g′), (−1)r−1g • g′).

Lemma 5.9. The map •A defines a pairing of complexes

s
(
D∗A,Zp(X, p)0 ⊗D∗A,Zq(Y, q)0

) •A−→ s(ip,qX,Y )∗0.

Proof. Let (ω, g) ∈ Drlog,Zp(X × �n, p)0 and (ω′, g′) ∈ Dslog,Zq(Y × �m, q)0. Then, we
have to see that

d′s((ω, g) •A (ω′, g′)) = d′s(ω, g) •A (ω′, g′) + (−1)r−n(ω, g) •A d′s(ω′, g′).
That is, we have to show that the following two equalities hold:

ds((ω, g) •A (ω′, g′)) = ds(ω, g) •A (ω′, g′) + (−1)r−n(ω, g) •A ds(ω′, g′)
δ((ω, g) •A (ω′, g′)) = (−1)sδ(ω, g) •A (ω′, g′) + (−1)n(ω, g) •A δ(ω′, g′).

The proof of the second equality is analogous to the proof of Lemma 5.1. The first
equality is a direct computation. �

We define a complex D∗A×A,Zp,qX,Y
(X × Y, p + q)0 that is analogous to the complex

D∗A×A(X, p)0 of Definition 5.2.

Definition 5.10. Let D∗A×A,Zp,qX,Y
(X × Y, p + q)0 be the simple complex associated to

the 3-iterated complex whose (r,−n,−m) graded piece is τDr
log,Zp,qX,Y,n,m

(X × Y × �n ×
�m, p+ q)0.

As in Remark 5.4, we will denote by κ the morphisms obtained by identifying �n×�m
with �n+m.

D∗A×A,Zp+q(X × Y, p+ q)0
κ−→ D∗A,Zp+q(X × Y, p+ q)0.

We will denote by ρ the morphisms obtained by forgetting the support

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0

ρ−→ D∗A×A(X × Y, p)0,

s(ip,qX,Y )∗0
ρ−→ D∗A×A(X × Y, p)0.

There are also natural morphisms, whose definitions are obvious,

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → D∗A×A,Zp+q(X × Y, p+ q)0,

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → s(ip,qX,Y )∗0.

Lemma 5.11. The natural map

(5.12) D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → s(ip,qX,Y )∗0

is a quasi-isomorphism. Moreover, it commutes with ρ.

Proof. It follows from the quasi-isomorphism (5.6). �
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The external product on D∗A,Z∗(·, ∗)0 is given, in the derived category of complexes,
by

DrA,ZpX (X, p)0 ⊗DsA,ZqY (Y, q)0
•A // s(ip,qX,Y )r+s0

Dr+sA×A,Zp,qX,Y
(X × Y, p+ q)0

∼

OO

κ // Dr+s
A,Zp+qX×Y

(X × Y, p+ q)0.

The fact that to define the product in this complex we need to invert a quasi-isomorphism
is the main reason of the complexity of the definition of the product on the higher
arithmetic Chow groups.

By definition, it is clear that this morphism commutes with the morphism defined
on the complex D∗A(X, p). It remains to be seen that the product on D2p−n

A,Zp (X, p)0 is
compatible with the product on Hp(X,n)0, under the quasi-isomorphism γ′1.

Let ω ∈ s(ip,qX×Y )2p+2q−l
0 and let

(ω0
l , . . . , ω

l
l) ∈

l⊕
j=0

τ≤2p+2qs(i
p,q
X,Y (j, l − j))2p+2q

0

be the components of ω corresponding to the degree (2p + 2q,−j, j − l). These are the
components that have maximal degree as differential forms and, by the definition of the
truncated complex they satisfy dsω

j
l = 0. Thus, the form ωjl defines a cohomology class

[ωjl ] in the complex s(ip,qX,Y (j, l − j))∗0. Since there is a quasi-isomorphism

D∗log,Zp,qX,Y
(X × Y ×�l, p+ q)0

∼−→ s(ip,qX,Y (j, l − j))∗0,

we obtain a cohomology class in H∗(D∗
log,Zp,qX,Y

(X×Y ×�l, p+q)0). Hence, a cohomology

class [ωjl ] ∈ H
p+q(X × Y, l)0. This procedure defines a chain morphism, denoted γ′1,

s(ip,qX,Y )2p+2q−l
0

γ′1−→ Hp+q(X × Y, l)0

ω 7−→
∑
j

[ωjl ].

By composition, we can define a morphism, also denoted γ′1,

D∗A×A,Zp,qX,Y (X × Y, p+ q)0
γ′1−→ Hp+q(X × Y, ∗)0.

Moreover there is a commutative diagram

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0

κ

��

γ′1

**TTTTTTTTTTTTTTT

Hp+q(X × Y, ∗)0

D∗A,Zp+q(X × Y, p+ q)0

γ′1

44jjjjjjjjjjjjjjjj
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Proposition 5.13. Let Z ∈ ZpX,n and T ∈ ZqY,m. Let [(ωZ , gZ)] ∈ Hp(X,n)0 represent
the class of a cycle z ∈ Zp(X,n)0 with support on Z and [(ωT , gT )] ∈ Hq(Y,m)0 represent
the class of a cycle t ∈ Zq(Y,m)0 with support on T . Then,

[(ωZ , gZ) •A (ωT , gT )] ∈ Hp+q(X × Y, n+m)0

represents the class of the cycle z × t in Zp+q(X × Y, n+m)0.

Proof. It follows from [14], Theorem 4.2.3 and [5], Theorem 7.7. �

Corollary 5.14. For every p, q, n,m, the following diagram is commutative:

D2p−n
A,Zp (X, p)0 ⊗D2q−m

A,Zq (Y, q)0

γ′1 //

•A
��

Hp(X,n)0 ⊗Hq(Y,m)0

×
��

s(ip,qX,Y )2p+2q−n−m
0 γ′1

// Hp+q(X × Y, n+m)0

�

5.3. Product structure on the higher arithmetic Chow groups. Once we have
defined a compatible product on each of the complexes involved, the product on the
higher arithmetic Chow groups is given by the following diagram.

Hp(X, n)0 ⊗Hq(Y, m)0

×

��

D2p−n
A (X, p)0 ⊗D2q−m

A (Y, q)0

•A

��

Zp(X, n)0 ⊗ Zq(Y, m)0

×

��

γ1

99tttttttttt
D2p−n

A,Zp (X, p)0 ⊗D2q−m
A,Zq (Y, q)0

γ′1
∼

ffNNNNNNNNNNN

ρ

66nnnnnnnnnnnn

•A

��

ZD2p
log(X, p)n ⊗ ZD2q

log(Y, q)m

i

hhPPPPPPPPPPPP

∧

��

Hp+q(X × Y, n + m)0 D2(p+q)−n−m
A×A (X × Y, p + q)0

Zp+q(X × Y, n + m)0

γ1

::tttttttttt
s(ip,qX,Y )2p+2q−n−m

0

γ′1

ffMMMMMMMMMMM

ρ

77nnnnnnnnnnnn
ZD

2(p+q)
log (X × Y, p + q)n+m

i

ggPPPPPPPPPPPP

Hp+q(X × Y, n + m)0 D2(p+q)−n−m
A×A (X × Y, p + q)0

κ

��

Zp+q(X × Y, n + m)0

γ1

::uuuuuuuuuu
D2(p+q)−n−m

A×A,Zp,q
X,Y

(X × Y, p + q)0

γ′1

ffMMMMMMMMMMM
ρ

77ooooooooooo

κ

��

∼

OO

ZD
2(p+q)
log (X × Y, p + q)n+m

i

ggOOOOOOOOOOOO

Hp+q(X × Y, n + m)0 D2(p+q)−n−m
A (X × Y, p + q)0

Zp+q(X × Y, n + m)0

γ1

::tttttttttt
D2(p+q)−n−m

A,Zp+q (X × Y, p + q)0

γ′1
∼

ffMMMMMMMMMMM
ρ

77nnnnnnnnnnnn
ZD

2(p+q)
log (X × Y, p + q)n+m

i

ggPPPPPPPPPPPP

Observe that, in the first set of vertical arrows is where the product is defined, in the
second set of vertical arrows we are just inverting the quasi-isomorphism (5.12), finally
in the last set of vertical arrows we are applying the morphism κ.
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The above diagram induces a morphism in the derived category of chain complexes

s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

) ∪−→ s
(
Ẑp+q(X × Y, ∗)0

)
= Ẑp+q(X × Y, ∗)0.

Recall here the notation we are using, the symbol Ẑp(X, ∗)0 denotes the diagram where
the symbol Ẑp(X, ∗)0 denotes the associated simple complex.

By §1.4, for any β ∈ Z there is a morphism ?β

Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0
?β−→ s

(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

)
.

The composition of ?β with ∪ induces a product

ĈH
p
(X,n)⊗ ĈH

q
(Y,m) ∪−→ ĈH

p+q
(X × Y, n+m),

independent of β.
Finally the pull-back by the diagonal map X

∆−→ X ×X gives an internal product on
ĈH

p
(X, ∗):

ĈH
p
(X,n)⊗ ĈH

q
(X,m) ∪−→ ĈH

p+q
(X ×X,n+m) ∆∗−−→ ĈH

p+q
(X,n+m).

Thus, in the derived category of complexes, the product is given by the composition

Ẑp(X,n)0 ⊗ Ẑq(X,m)0

?β

��
s
(
Ẑp(X,n)0 ⊗ Ẑq(X,m)0

) ∪ // Ẑp+q(X ×X,n+m)0

Ẑp+q∆ (X ×X,n+m)0

∼

OO

∆∗ // Ẑp+q(X,n+m)0.

Remark 5.15. It follows from the definition that, for n = 0, the product ∪ agrees with
the product on the arithmetic Chow group ĈH

p
(X) defined in [5].

5.4. Commutativity of the product. Let X,Y be arithmetic varieties over a field
K. We prove here that the pairing defined in the previous subsection on the higher
arithmetic Chow groups is commutative, in the sense detailed below.

We first introduce some notation:
• If B∗, C∗ are chain complexes, let

σ : s(B∗ ⊗ C∗)→ s(C∗ ⊗B∗)
be the map sending b⊗ c ∈ Bn ⊗ Cm to (−1)nmc⊗ b ∈ Cm ⊗Bn.
• Let σX,Y be the morphism

σX,Y : Y ×X → X × Y
interchanging X with Y .

We will prove that there is a commutative diagram

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

∪ //

σ

��

ĈH
p+q

(X × Y, n+m)

σ∗X,Y
��

ĈH
q
(Y,m)⊗ ĈH

p
(X,n)

∪ // ĈH
p+q

(Y ×X,n+m)
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In particular, the internal product on the higher arithmetic Chow groups will be graded
commutative with respect to the degree n. That is, if W ∈ ĈH

p
(X,n) and Z ∈

ĈH
q
(X,m), then

W ∪ Z = (−1)nmZ ∪W.
Recall that, by definition, the product factorizes as

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

?β−→ Hn+m(s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0)) ∪−→ ĈH
p+q

(X × Y, n+m).

By Lemma 1.8, this factorization is independent on the integer β. Moreover, there is
a commutative diagram

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

?β //

σ

��

Hn+m(s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0))

σ

��

ĈH
q
(Y,m)⊗ ĈH

p
(X,n)

?1−β // Hn+m(s(Ẑp(Y, ∗)0 ⊗ Ẑq(X, ∗)0))

Therefore, all that remains is to check the commutativity for

(5.16) s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

) ∪
99K Ẑp+q(X × Y, ∗)0.

Hence, we want to see that, in the derived category of chain complexes, there is a
commutative diagram

s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

)
σ

��

∪ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

s
(
Ẑq(Y, ∗)0 ⊗ Ẑp(X, ∗)0

)
∪

// Ẑp+q(Y ×X, ∗)0.

The obstruction to strict commutativity comes from the change of coordinates

�n+m = �m ×�n σn,m−−−→ �n ×�m = �n+m(5.17)
(y1, . . . , ym, x1, . . . , xn) 7→ (x1, . . . , xn, y1, . . . , ym).

Recall that the product is described by the big diagram in §5.3. In order to prove the
commutativity, we change the second and third row diagrams of this big diagram, by
more suitable diagrams. These changes do not modify the definition of the product, but
ease the study of the commutativity.

We define a complex ZpA×A(X,n)0 analogously to the definition complex D∗A×A(X, p)0

(see §5.2). Let
Zp(X,n,m)0 := Zp(X,n+m)0,

and let δ′ =
∑n

i=1(−1)iδ0
i and δ

′′
=
∑n+m

i=n+1(−1)i−nδ0
i . Then, (Zp(X, ∗, ∗)0, δ

′, δ
′′
) is a

2-iterated chain complex. For the sake of simplicity, we denote both δ′ and δ
′′

by δ.
Denote by ZpA×A(X, ∗)0 the associated simple complex. The complex HpA×A(X, ∗)0 is

defined analogously.
Let Ẑp,qA×A(X × Y, ∗)0 be the diagram

Hp+qA×A(X × Y, ∗)0 D2(p+q)−∗
A×A (X × Y, p+ q)0.

Zp+qA×A(X × Y, ∗)0

γ1

99ssssssssss
s(ip,qX,Y )2(p+q)−∗

0

ρ
77ppppppppppp

γ′1
∼

ddJJJJJJJJJ

ZD2p+q
log (X × Y, p+ q)∗

i

hhQQQQQQQQQQQQQ



HIGHER ARITHMETIC CHOW GROUPS 39

This diagram will fit in the second row of the new big diagram. Denote by Ẑp,qA×A(X ×
Y, ∗)0 the simple complex associated to this diagram.

The third row of the new big diagram corresponds to a diagram whose complexes are
obtained from the refined normalized complex of Definition 1.18. The fact that, in these
complexes, most of the face maps vanish is the key point to construct explicit homotopies
for the commutativity of the product. So, consider the following complexes:

• Let Zq(X, ∗, ∗)00 be the 2-iterated chain complex with

Zq(X,n,m)00 :=
⋂

i 6=0,n+1

ker δ0
i ⊂ Zq(X,n+m)0,

and with differentials (δ′, δ′′) = (−δ0
1 ,−δ0

n+1). Denote by ZqA×A(X, ∗)00 the asso-
ciated simple complex.
• Let τD∗log(X×�∗×�∗, p)00 be the 3-iterated complex whose (r,−n,−m)-graded

piece is

τDrlog(X ×�n ×�m, p)00 =
⋂

i 6=0,n+1

ker δ0
i ⊂ τDrlog(X ×�n+m, p)0,

and with differentials (dD,−δ0
1 ,−δ0

n+1). Let D∗A×A(X, p)00 be the associated sim-
ple complex.
• Let τD∗

log,Zp,qX,Y,∗,∗
(X × Y ×�∗ ×�∗, p+ q)00 be the 3-iterated complex with

τDrlog,Zp,qX,Y,n,m
(X × Y ×�n ×�m, p+ q)00 =

⋂
i 6=0,n+1

ker δ0
i

as a subset of τDr
log,Zp,qX,Y,n,m

(X×Y ×�n+m, p+q)0. The differentials are given by

(dD,−δ0
1 ,−δ0

n+1). Let D∗A×A,Zp,qX,Y
(X × Y, p)00 be the associated simple complex.

Remark 5.18. Observe that there are induced morphisms

Zp+qA×A(X × Y, ∗)00
γ1−→ Hp+qA×A(X × Y, ∗)00,

D2(p+q)−∗
A×A,Zp,qX,Y

(X × Y, p+ q)00
γ′1−→ Hp+qA×A(X × Y, ∗)00,

D2(p+q)−∗
A×A,Zp,qX,Y

(X × Y, p+ q)00
ρ−→ D2(p+q)−∗

A×A (X × Y, p+ q)00.

Let Ẑp,qA×A(X × Y, ∗)00 be the diagram

Hp+qA×A(X × Y, ∗)00 D2(p+q)−∗
A×A (X × Y, p + q)00.

Zp+q
A×A(X × Y, ∗)00

γ1

::vvvvvvvvvv
D2(p+q)−∗

A×A,Zp,q
X,Y

(X × Y, p + q)00

ρ

66mmmmmmmmmmmm

γ′1
∼

ffNNNNNNNNNNN

ZD2p+q
log (X × Y, p + q)∗

i

ggPPPPPPPPPPPPP

This is the diagram fitting in the third row of the new diagram. Let Ẑp,qA×A(X × Y, ∗)00

be the simple complex associated to this diagram.

Lemma 5.19. Let X be an arithmetic variety over a field.
(i) The natural chain morphisms

ZqA×A(X, ∗)00
i−→ ZqA×A(X, ∗)0,(5.20)

ZqA×A(X, ∗)0
κ−→ Zq(X, ∗)0,(5.21)
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are quasi-isomorphisms.
(ii) The natural cochain morphisms

D∗A×A(X, p)00
i−→ D∗A×A(X, p)0,(5.22)

D∗A×A,Zp,qX,Y
(X × Y, p+ q)00

i−→ D∗A×A,Zp,qX,Y
(X × Y, p+ q)0,(5.23)

D∗A×A(X, p)0
κ−→ D∗A(X, p)0,(5.24)

are quasi-isomorphisms.

Proof. The proofs of the facts that the morphisms i are quasi-isomorphisms are analogous
for the three cases. For every n,m, let B(n,m) denote either Zp(X,n,m), τDrlog(X ×
�n×�m, p) or τDr

log,Zp,qX,Y,n,m
(X×Y ×�n×�m, p+ q), for some r. The groups B(n,m)0

and B(n,m)00 are defined analogously.
Observe that for every n,m, B(·,m) and B(n, ·) are cubical abelian groups. We want

to see that there is a quasi-isomorphism

(5.25) s(N2
0N

1
0B(∗, ∗)) i−→ s(N2N1B(∗, ∗)),

where superindex 1 refers to the cubical structure given by the first index n and su-
perindex 2 to the cubical structure given by the second index m. An spectral sequence
argument together with Lemma 1.20 and Proposition 1.24 show that there is a quasi-
isomorphism s(N2N1

0B(∗, ∗)) ∼−→ s(N2N1B(∗, ∗)). By Lemma 1.20 and an spectral se-
quence argument again, we obtain that there is a quasi-isomorphism s(N2

0N
1
0B(∗, ∗)) i−→

s(N2N1
0B(∗, ∗)). Therefore, (5.25) is a quasi-isomorphism.

The proofs of the facts that the morphisms in (5.21) and (5.24) are quasi-isomorphisms
are analogous to each other. Therefore, we just prove the statement for the morphism
(5.21). Consider the composition morphism

j : Zq(X,m)0 → Zq(X, 0,m)0 → ZqA×A(X,m)0.

The composition of morphisms Zq(X,m)0
j−→ ZqA×A(X,m)0

κ−→ Zq(X,m)0 is the identity.
Hence, it is enough to see that j is a quasi-isomorphism. Consider the 1st quadrant
spectral sequence with

E1
n,m = Hm(Zq(X,n, ∗)0).

We will see that if n ≥ 1, E1
n,m = 0. By the homotopy invariance of higher Chow groups,

the map

f : Zq(X ×�n, ∗)0
δ11 ···δ11−−−−→ Zq(X, ∗)0

is a quasi-isomorphism. By Proposition 1.24, it induces a quasi-isomorphism

f : Zq(X ×�n, ∗)0 = NZq(X ×�n, ∗)0 → NZq(X, ∗)0

where the cubical structure on Zq(X, ∗)0 is the trivial one. Since for a trivial cubical
abelian group NZq(X, ∗)0 = 0, we see that

Hm(Zq(X,n, ∗)0) = 0, n > 0,

and hence

E1
n,m =

{
0 if n > 0,
CHq(X,m) if n = 0.

�
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It follows from the lemma that the product on the higher arithmetic Chow groups is
also represented by the following diagram of complexes

Hp(X, n)0 ⊗Hq(Y, m)0

×

��

D2p−n
A (X, p)0 ⊗D2q−m

A (Y, q)0

•A

��

Zp(X, n)0 ⊗ Zq(Y, m)0

×

��

γ1

::tttttttttt
D2p−n

A,Zp (X, p)0 ⊗D2q−m
A,Zq (Y, q)0

γ′1
∼

ffNNNNNNNNNNN

ρ

77nnnnnnnnnnnn

•p,q

��

ZD2p
log(X, p)n ⊗ ZD2q

log(X, q)m

i

hhPPPPPPPPPPPP

∧

��

Hp+qA×A(X × Y, n + m)0 D2(p+q)−n−m
A×A (X × Y, p + q)0

Zp+q
A×A(X × Y, n + m)0

γ1

::uuuuuuuuuu
s(ip,qX,Y )2p+2q−n−m

0

γ′1

ffMMMMMMMMMMM

ρ

77oooooooooooo
ZD

2(p+q)
log (X × Y, p + q)n+m

i

ggPPPPPPPPPPPP

Hp+qA×A(X × Y, n + m)00

i∼

OO

D2(p+q)−n−m
A×A (X × Y, p + q)00

i∼

OO

Zp+q
A×A(X × Y, n + m)00

i∼

OO

γ1

::vvvvvvvvvv
D2(p+q)−n−m

A×A,Zp,q
X,Y

(X × Y, p + q)00

γ′1

ffLLLLLLLLLLL
ρ

77oooooooooooo

η

��

i∼

OO

ZD
2(p+q)
log (X × Y, p + q)n+m

i

ggOOOOOOOOOOOO

Hp+qA×A(X × Y, n + m)00

κ

��

D2(p+q)−n−m
A×A (X × Y, p + q)00

κ

��

Zp+q
A×A(X × Y, n + m)00

κ

��

γ1

::uuuuuuuuuu
D2(p+q)−n−m

A×A,Zp+q (X × Y, p + q)00

γ′1
∼

ffMMMMMMMMMMM

ρ

77oooooooooooo

κ

��

ZD
2(p+q)
log (X × Y, p + q)n+m

i

ggOOOOOOOOOOOO

Hp+q(X × Y, n + m)0 D2(p+q)−n−m
A (X × Y, p + q)0

Zp+q(X × Y, n + m)0

γ1

::uuuuuuuuuu
D2(p+q)−n−m

A,Zp+q (X × Y, p + q)0

γ′1
∼

ffMMMMMMMMMMM

ρ

77oooooooooooo
ZD

2(p+q)
log (X × Y, p + q)n+m

i

ggPPPPPPPPPPPP

In the first set of vertical arrows of this diagram is where the product is defined. In
the second set of vertical rows we invert the quasi-isomorphisms that relate the nor-
malized complex and the refined normalized complex. Moreover, we also invert the
quasi-isomorphism analogous to (5.12). In the third set of vertical arrows we just con-
sider the change of supports Zp,qX,Y ⊂ Zp+q. We will denote the map induced by this
change of support by η. Finally in the last set of vertical arrows we apply the morphisms
κ induced by the identification �n ×�m = �n+m.
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Let Ẑp+qA×A(X × Y, ∗)00 denote the simple of the diagram of the fourth row. Hence, in
the derived category of complexes, this product is described by the composition

s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0)
∪ // Ẑp,qA×A(X × Y, ∗)0

Ẑp,qA×A(X × Y, ∗)00

i

OO�
�
�

η // Ẑp+qA×A(X × Y, ∗)00

κ

��

Ẑp+q(X × Y, ∗)0.

Note that the difference between the complexes Ẑp,qA×A(X ×Y, ∗)00 and Ẑp+qA×A(X ×Y, ∗)00

lies on the change of supports Zp,qX,Y ⊂ Zp+q. This is indicated by either two codimension
superindices p, q in the first one or a unique codimension superindex p+ q in the second.

We next use this description of the product in the higher arithmetic Chow groups in
order to prove its commutativity.

Recall that the map σn,m is defined by

�n+m = �m ×�n σn,m−−−→ �n ×�m = �n+m

(y1, . . . , ym, x1, . . . , xn) 7→ (x1, . . . , xn, y1, . . . , ym).

Let
σX,Y,n,m : Y ×X ×�m ×�n → X × Y ×�n ×�m

be the map σX,Y × σn,m.
We define a morphism of diagrams

Ẑp,qA×A(X × Y, ∗)0

σ∗
X,Y,�−−−−→ Ẑq,pA×A(Y ×X, ∗)0

as follows:

• Let σ∗X,Y,� : Zp+qA×A(X × Y, ∗)0 → Zp+qA×A(Y ×X, ∗)0 be the map sending

Z ∈ Zp+q(X × Y, n,m)0 to (−1)nmσ∗X,Y,n,m(Z) ∈ Zp+q(Y ×X,m, n)0.

The morphism σ∗X,Y,� : Hp+qA×A(X × Y, ∗)0 → Hp+qA×A(Y × X, ∗)0 is defined analo-
gously.
• Let σ∗X,Y,� : D∗A×A(X × Y, p + q)0 → D∗A×A(Y × X, p + q)0 be the map that, at

the (∗,−n,−m) component, is

(−1)nmσ∗X,Y,n,m : τD∗log(X × Y ×�n ×�m, p+ q)0 → τD∗log(Y ×X ×�m ×�n, p+ q)0.

Observe that it is a cochain morphism.
• We define analogously the morphism σ∗X,Y,� : s(ip,qX,Y )∗0 → s(iq,pY,X)∗0.

These morphisms commute with the morphisms γ1, γ
′
1 and ρ. Hence, they induce a

morphism of diagrams and therefore a morphism on the associated simple complexes:

Ẑp,qA×A(X × Y, ∗)0

σ∗
X,Y,�−−−−→ Ẑq,pA×A(Y ×X, ∗)0.

Note that the morphism σ∗X,Y,� restricts to Ẑp,qA×A(X×Y, ∗)00 and to Ẑp+qA×A(X×Y, ∗)00.
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Lemma 5.26. The following diagram is commutative:

Ẑp,qA×A(X × Y, ∗)0

σ∗
X,Y,�

��

Ẑp,qA×A(X × Y, ∗)00
ioo η //

σ∗
X,Y,�

��

Ẑp+qA×A(X × Y, ∗)00

σ∗
X,Y,�

��

Ẑq,pA×A(Y ×X, ∗)0 Ẑq,pA×A(Y ×X, ∗)00
ioo η // Ẑp+qA×A(Y ×X, ∗)00.

Proof. The statement follows from the definitions. �

Lemma 5.27. The following diagram is commutative

s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0)

σ

��

∪ // Ẑp,qA×A(X × Y, ∗)0

σ∗
X,Y,�

��

s(Ẑq(Y, ∗)0 ⊗ Ẑp(X, ∗)0)
∪ // Ẑq,pA×A(Y ×X, ∗)0.

Proof. It follows from the definition that the morphism σ∗X,Y,� commutes with the prod-
uct × in Z∗(X, ∗)0 and in H∗(X, ∗)0. The fact that it commutes with •A and •p,q is an
easy computation. �

By Lemmas 5.26 and 5.27, we are left to see that the diagram

(5.28) Ẑp+qA×A(X × Y, ∗)00

σ∗
X,Y,�

��

κ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

Ẑp+qA×A(Y ×X, ∗)00
κ // Ẑp+q(Y ×X, ∗)0

is commutative up to homotopy. We follow the ideas used by Levine, in [19], §4, in order
to prove the commutativity of the product on the higher algebraic Chow groups. We
will end up with an explicit homotopy for the commutativity of diagram 5.28.

Remark 5.29. For any scheme X, consider the morphism

ẐpA×A(X, ∗)00

σ∗�−−→ ẐpA×A(X, ∗)00

induced by (−1)nmσ∗n,m at each component. Then, σ∗X,Y,� = σ∗X,Y σ
∗
� and hence, the com-

mutativity of the diagram (5.28) will follow from the commutativity (up to homotopy)
of the diagram

ẐpA×A(X, ∗)00

σ∗�
��

κ
,,XXXXXXXXXXXX

Ẑp(X, ∗)0.

ẐpA×A(X, ∗)00

κ

22ffffffffffff

Let Wn be the closed subvariety of �n+1 × P1 defined by the equation

(5.30) t1(1− x1)(1− xn+1) = t1 − t0,

where (t0 : t1) are the coordinates in P1 and (x1, . . . , xn+1) are the coordinates in �n+1.
Recall that we have identified �1 with the subset t0 6= t1 of P1, with coordinate x = t0/t1.
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Then, there is an isomorphism Wn
∼= �n ×�1. The inverse of this isomorphism is given

by

�n+1 ϕn−−→ Wn

(x1, . . . , xn+1) 7→ (x1, . . . , xn+1, x1 + xn+1 − x1xn+1).

Consider the projection

πn : Wn → �n, (x1, . . . , xn+1, t) 7→ (x2, . . . , xn, t).

Let τ be the permutation

�n
τ−→ �n, (x1, . . . , xn) 7→ (x2, . . . , xn, x1).

Remark 5.31. Let σn,m be the map defined in (5.17). Observe that it is decomposed
as σn,m = τ◦ m. . . ◦τ. Therefore, σ∗n,m = τ∗◦ m. . . ◦τ∗.

It is easy to check that the following identities are satisfied:

πnϕnδ
i
0 =


id if i = 1,
δi−1

0 πn−1ϕn−1 if i = 2, . . . , n,
τ if i = n+ 1.

(5.32)

πnϕnδ
i
1 =


δn1σ

n if i = 1,
δi−1

1 πn−1ϕn−1 if i = 2, . . . , n,
δn1σ

nτ if i = n+ 1.

Let WX
n be the pull-back of Wn to X ×�n. Then, the maps

πn : WX
n → X ×�n, and ϕn : X ×�n+1 →WX

n

are defined accordingly.

Proposition 5.33. Let X be a quasi-projective regular scheme over a field k.
(i) The scheme Wn is a flat regular scheme over �n.

(ii) There is a well-defined map

Zp(X,n) hn−→ Zp(X,n+ 1), Y 7→ ϕ∗nπ
∗
n(Y ).

Proof. See [19], Lemma 4.1. �

For every n ≥ 1, we define the morphisms

Hp(X,n) hn−→ Hp(X,n+ 1),

τD∗log(X ×�n, p) hn−→ τD∗log(X ×�n+1, p),

τD∗log,Zp(X ×�n, p)
hn−→ τD∗log,Zp(X ×�n+1, p),

by hn = ϕ∗nπ
∗
n. By Proposition 5.33, (ii), these morphisms are well defined.

Lemma 5.34. Let α be an element of Zq(X,n)0, Hp(X,n)0, τD∗log,Zp(X × �n, p)0 or
τD∗log(X ×�n, p)0. Then, the following equality is satisfied

δhn(α) +
n−1∑
i=1

(−1)ihn−1δ
0
i (α) = −α+ (−1)n+1τ∗(α).
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Proof. By hypothesis, δ1
i (α) = 0 for all i = 1, . . . , n. Then, by the pull-back of the

equalities (5.32), we see that δ1
i ϕ
∗
nπ
∗
n(α) = 0. Therefore, using (5.32),

δhn(α) =
n+1∑
i=1

∑
j=0,1

(−1)i+jδjiϕ
∗
nπ
∗
n(α) =

n+1∑
i=1

(−1)iδ0
i ϕ
∗
nπ
∗
n(α)

= −α+
n∑
i=2

(−1)iϕ∗nπ
∗
n−1δ

0
i−1(α) + (−1)n−1τ∗(α)

= −α−
n−1∑
i=1

(−1)ihn−1δ
0
i (α) + (−1)n+1τ∗(α),

as desired. �

Proposition 5.35. Let X be an arithmetic variety over a field. Then the following
diagram is commutative up to homotopy.

ẐpA×A(X,n)00 κ

,,YYYYYYYYYYY

σ∗�
��

Ẑp(X,n)0.

ẐpA×A(X,n)00

κ

22eeeeeeeeeee

Proof. We start by defining maps

Zp(X,n,m)00
Hn,m−−−→ Zp(X,n+m+ 1)0,

Hp(X,n,m)00
Hn,m−−−→ Hp(X,n+m+ 1)0,

τD∗log(X ×�n ×�m, p)00
Hn,m−−−→ τD∗log(X ×�n+m+1, p)0,

τD∗log,Zp(X ×�n ×�m, p)00
Hn,m−−−→ τD∗log,Zp(X ×�n+m+1, p)0.

By construction, these maps will commute with γ1, γ
′
1 and ρ. This will allow us to define

the homotopy for the commutativity of the diagram in the statement.
All the maps Hn,m will be defined in the same way. Thus, let B(X,n,m)00 denote

either Zp(X,n,m)00, Hp(X,n,m)00, τD∗log(X × �n × �m, p)00, or τD∗log,Zp(X × �n ×
�m, p)00. For the last two cases, B(X,n,m)00 is a cochain complex, while for the first
two cases, it is a group. Analogously, denote by B(X,n+m+ 1)0 the groups/complexes
that are the target of Hn,m. The map Hn,m will be a cochain complex for the last two
cases.

Let α ∈ B(X,n,m)00. Then, let Hn,m(α) ∈ B(X,n+m+ 1)0 be defined by

(5.36) Hn,m(α) =
{ ∑n−1

i=0 (−1)(m+i)(n+m−1)hn+m+1((τ∗)m+i(α)), n 6= 0,
0 n = 0.

From the definition it follows that:

B If B(X,n,m)00 is τD∗log(X ×�n×�m, p)00, or τD∗log,Zp(X ×�n×�m, p)00, then

dDHn,m(α) = Hn,mdD(α),

i.e. Hn,m is a cochain morphism.
B γ1Hn,m = Hn,mγ1, γ′1Hn,m = Hn,mγ

′
1 and ρHn,m = Hn,mρ.
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Recall that in all these complexes,

δ′(α) = −δ0
1(α) ∈ B(X,n− 1,m)00,

δ′′(α) = −δ0
n+1(α) ∈ B(X,n,m− 1)00.

Lemma 5.37. For every α ∈ B(X,n,m)00 we have

δHn,m(α)−Hn−1,mδ
0
1(α)− (−1)nHn,m−1δ

0
n+1(α) = α− (−1)nmσ∗n,m(α).

Proof. If n = 0, since α = σ0,m(α) and H0,m(α) = 0 the equality is satisfied. For
simplicity, for every i = 0, . . . , n− 1, we denote

H i
n,m(α) = (−1)(m+i)(n+m−1)hn+m+1((τ∗)m+i(α)) ∈ B(X,n+m+ 1)0.

An easy computation shows that

δ0
j τ
∗(α) =

{
τ∗δ0

j−1(α) if j 6= 1,
δ0
n(α) if j = 1,

and hence,

δ0
j (τ
∗)i(α) =


(τ∗)iδ0

j−i(α) if j > i,

(τ∗)i−1δ0
n(α) if j = i,

(τ∗)i−1δ0
n−i+j(α) if j < i.

Therefore,

δH i
n,m(α) =

n+m+1∑
j=1

(−1)j+(m+i)(n+m−1)δ0
jhn+m+1((τ∗)m+i(α))

= (−1)1+(m+i)(n+m−1)(τ∗)m+i(α) + (−1)(m+i+1)(n+m−1)(τ∗)m+i+1(α)

+
n+m∑
j=2

(−1)j+(m+i)(n+m−1)hn+m(δ0
j−1(τ∗)m+i(α)).

Recall that the only non-zero faces of α are δ0
1 and δ0

n+1. Therefore, from the equalities
(5.32), we see that the only non-zero faces are the faces corresponding to the indices
j = m + i + 2 and j = i + 2. In these cases, they take the values (τ∗)m+iδ0

1 and
(τ∗)m+i−1δ0

n+1 respectively. Therefore, if i 6= n− 1, we obtain

δH i
n,m(α) = −(−1)(m+i)(n+m−1)(τ∗)m+i(Z)

+(−1)(m+i+1)(n+m−1)(τ∗)m+i+1(α)

+(−1)(m+i)(n+m−2)hn+m((τ∗)m+iδ0
1(α))

+(−1)i+(m+i)(n+m−1)hn+m((τ∗)m−1+iδ0
n+1(α)).

Observe that (−1)i+(m+i)(n+m−1) = (−1)(m+i−1)(n+m)+n. Therefore, the last summand
in the previous equality is exactly

H i
n−1,m(δ0

1(α)) + (−1)nH i
n,m−1(δ0

n+1(α)).
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If i = n− 1, then δ0
j−1(τ∗)m+i(α) = 0, for j = 2, . . . , n−m. Therefore,

δHn−1
n,m (α) = (−1)1+(m+n−1)(n+m−1)(τ∗)m+n−1(α)

+(−1)(m+n)(n+m−1)(τ∗)m+n(α)

+(−1)n−1+(m+n−1)(n+m−1)hn+m((τ∗)m−1+iδ0
n+1(α))

= −(−1)(m+n−1)(n+m−1)(τ∗)m+n−1(α) + α

+(−1)n+(m+n−2)(n+m)hn+m((τ∗)m−1+iδ0
n+1(α)).

Finally, we have seen that

δHn,m(α) = −(−1)m(n+m−1)(τ∗)m(α) +
n−2∑
i=0

H i
n−1,m(δ0

1(α))

+
n−1∑
i=0

(−1)nH i
n,m−1(δ0

n+1(α)) + α,

and since (−1)m(n+m−1) = (−1)nm, we obtain the equality

δHn,m(α)−Hn−1,m(δ0
1(α))− (−1)nHn,m−1(δ0

n+1(α)) = α− (−1)nmσ∗n,m(α).

�

Let

ZpA×A(X, ∗)00
H−→ Zp(X, ∗+ 1)0, HpA×A(X, ∗)00

H−→ Hp(X, ∗+ 1)0,

be the maps which are Hn,m on the (n,m)-component. Let

D2p−∗
A×A,Zp(X, p)00

H−→ D2p−∗−1
A,Zp (X, p)0,

be the maps which are (−1)rHn,m on the (r,−n,−m)-component. Observe that now

dDH = −HdD.
Let

H : ẐpA×A(X,n)00 → Ẑp(X,n+ 1)0

be defined by

H(Z,α0, α1, α2, α3) = (H(Z), H(α0), α1,−H(α2),−H(α3)).

Let x = (Z,α0, α1, α2, α3) ∈ ẐpA×A(X,n)00. Then,

dH(x) = (δH(Z), dsH(α0), dD(α1), γ1H(Z)− γ′1H(α0) + δH(α2), ρH(α0) + dsH(α3)− α1)

Hd(x) = (Hδ(Z), Hds(α0), dD(α1),−Hγ1(Z) +Hγ′1(α0) +Hδ(α2),

−Hρ(α0) +Hds(α3) +H(α1)).

Observe that for α0 ∈ τDrlog,Zp(X ×�n ×�m, p)00, we have

Hds(α0) = HdD(α0) + (−1)rHδ(α0) = −dDH(α0) + (−1)rHδ(α0),
dsH(α0) = dDH(α0) + (−1)rδH(α0).

The same remark applies to α3 ∈ τDrlog(X × �n × �m, p)00. Moreover, since α1 equals
zero in all degrees but 0 and H is the identity in degree zero, we have, by Lemma 5.37,

dH(x) +Hd(x) = x− σ∗�(x).

�
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Corollary 5.38. The following diagram is commutative up to homotopy

Ẑp+qA×A(X × Y, ∗)00

σ∗
X,Y,�

��

κ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

Ẑp+qA×A(Y ×X, ∗)00
κ // Ẑp+q(Y ×X, ∗)0

Proof. It follows from Proposition 5.35. �

Corollary 5.39. Let X,Y be arithmetic varieties.
(i) Under the canonical isomorphism X × Y ∼= Y ×X, the pairing

ĈH
p
(X,n)⊗ ĈH

q
(Y,m) ∪−→ ĈH

p+q
(X × Y, n+m),

is graded commutative with respect to the degree n.
(ii) The internal pairing

ĈH
p
(X,n)⊗ ĈH

q
(X,m) ∪−→ ĈH

p+q
(X,n+m),

is graded commutative with respect to the degree n.

5.5. Associativity. We prove here that the product for the higher arithmetic Chow
groups is associative. First of all, observe that the product on Z∗(X, ∗)0 is strictly
associative. Hence, all that remains is to study the associativity of the product in the
complexes with differential forms, except for ZD2p

log(X, p)∗, where it is already associative.
The key point will be Proposition 1.26.

Denote by h the homotopy for the associativity of the product in the Deligne complex
of differential forms of Proposition 1.26. Let X,Y, Z be complex algebraic manifolds.
Then, the external product •A is associative, in the sense that there is a commutative
diagram up to homotopy:

(5.40) DrA(X, p)0 ⊗DsA(Y, q)0 ⊗DtA(Z, l)0

•A⊗id

uujjjjjjjjjjjjjjj
id⊗•A

))TTTTTTTTTTTTTTT

Dr+sA (X × Y, p+ q)0 ⊗DtA(Z, l)0

•A ))TTTTTTTTTTTTTTT
DrA(X, p)0 ⊗Ds+tA (Y × Z, q + l)0

•Auujjjjjjjjjjjjjjj

Dr+s+tA (X × Y × Z, p+ q + l)0

This follows from the fact that the homotopy h is functorial (see [5]).

Proposition 5.41. Let X,Y, Z be complex algebraic manifolds. Then, there is a com-
mutative diagram, up to homotopy:

DrA,Zp(X, p)0 ⊗DsA,Zq (Y, q)0 ⊗DtA,Zl(Z, l)0

•A⊗id

vvmmmmmmmmmmmmm
id⊗•A

((RRRRRRRRRRRRR

Dr+sA,Zp+q (X × Y, p+ q)0 ⊗DtA,Zl(Z, l)0

•A ((QQQQQQQQQQQQQ
DrA,Zp(X, p)0 ⊗Ds+tA,Zq+l(Y × Z, q + l)0

•Avvmmmmmmmmmmmmm

Dr+s+tA,Zp+q+l(X × Y × Z, p+ q + l)0
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Proof. In order to prove the proposition, we need to introduce some new complexes, which
are analogous to s(ip,qX,Y )∗, but with the three varieties X,Y, Z. Due to the similarity, we
will leave the details to the reader.

We write �n,m,dX,Y,Z = X × Y × Z ×�n+m+d. Let

A∗ = D∗log(�n,m,dX,Y,Z \ Z
p
X,n, k)⊕D∗log(�n,m,dX,Y,Z \ Z

q
Y,m, k)⊕D∗log(�n,m,dX,Y,Z \ Z

l
Z,d, k),

and

B∗ = D∗log(�n,m,dX,Y,Z \ Z
p,q
X,Y,n,m, k)⊕D∗log(�n,m,dX,Y,Z \ Z

p,l
X,Z,n,d, k)⊕D∗log(�n,m,dX,Y,Z \ Z

q,l
Y,Z,m,d, k),

and consider the sequence of morphisms of complexes

A∗
i−→ B∗

j−→ D∗log(�n,m,d \ Zp,q,lX,Y,Z , k).

By analogy with the definition of s(−jp,qX,Y (n,m))∗, denote by s(−jp,q,lX,Y,Z(n,m, d))∗ the
simple complex associated to this sequence of morphisms. Consider the morphism

D∗log(�n,m,dX,Y,Z , k)
ip,q,lX,Y,Z(n,m,d)
−−−−−−−−→ s(−jp,q,lX,Y,Z(n,m, d))∗

ω 7→ (ω, ω, ω, 0, 0, 0, 0).

Observe that for every n,m, d, the simple of this morphism is a cochain complex. More-
over, considering the normalized complex associated to the cubical structure at every
component of s(ip,q,lX,Y,Z(·, ·, ·))∗, we obtain the cochain complex s(ip,q,lX,Y,Z)∗0 (analogous to
the construction of s(ip,qX,Y )∗0 in Remark 5.7).

Let D∗
A×A×A,Zp,q,lX,Y,Z

(X×Y ×Z, p+q+ l)0 be the complex analogous to D∗A×A,Zp,qX,Y
(X×

Y, p+q)0, but with the cartesian product of 3 varieties. It is the simple complex associated
to the analogous 4-iterated complex (see Remark 5.7).

Observe that there is a quasi-isomorphism

D∗A×A×A,Zp,q,lX,Y,Z

(X × Y × Z, p+ q + l)0
∼−→ s(ip,q,lX,Y,Z)∗0.

We define a pairing

s(ip,qX,Y (n,m))r0 ⊗D
s,d
A,Zl(Z, l)0

•−→ s(ip,q,lX,Y,Z(n,m, d))r+s0

by

(a, (b, c), d) • (a′, b′) = (−1)(n+m)s(a • a′, (b • a′, c • a′, (−1)ra • b′),
(d • a′, (−1)r−1b • b′, (−1)r−1c • b′), (−1)r−2d • b′).

Define analogously a pairing

Dr,nA,Zp(X, p)0 ⊗ s(iq,lY,Z(m, d))s0
•−→ s(ip,q,lX,Y,Z(n,m, d))r+s0

by

(a, b) • (a′, (b′, c′), d′) = (−1)ns(a • a′, (b • a′, (−1)ra • b′, (−1)ra • c′),
((−1)r−1b • b′, (−1)r−1b • c′, a • d′), b • d′).

It is easy to check that these two morphisms are chain morphisms.
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Lemma 5.42. The diagram

(5.43) DrA,Zp(X, p)0 ⊗DsA,Zq (Y, q)0 ⊗DtA,Zl(Z, l)0

•p,q⊗id

uukkkkkkkkkkkkkkk
id⊗•A

))SSSSSSSSSSSSSSS

s(ip,qX,Y )r+s0 ⊗DtA,Zl(Z, l)0

•
))SSSSSSSSSSSSSSS

DrA,Zp(X, p)0 ⊗ s(iq,lY,Z)s+t0

•
uukkkkkkkkkkkkkkk

s(ip,q,lX,Y,Z)r+s+t0

is commutative up to homotopy.

Proof. Let (ω1, g1) ∈ τDrlog,Zp(X×�n, p)0, (ω2, g2) ∈ τDslog,Zq(Y ×�m, q)0, and (ω3, g3) ∈
τDt

log,Zl(Z × �
d, l)0. Then, the composition of the morphisms on the left side of the

diagram is

(−1)(n+m)t+ns((ω1 • ω2) • ω3, ((g1 • ω2) • ω3, (−1)r(ω1 • g2) • ω3,

(−1)r+s(ω1 • ω2) • g3), ((−1)r−1(g1 • g2) • ω3, (−1)r+s−1(g1 • ω2) • g3,

(−1)s−1(ω1 • g2) • g3), (−1)s−1(g1 • g2) • g3).

The composition of the morphisms on the right side of the diagram is

(−1)(n+m)t+ns(ω1 • (ω2 • ω3), (g1 • (ω2 • ω3), (−1)rω1 • (g2 • ω3),
(−1)r+sω1 • (ω2 • g3)), ((−1)r−1g1 • (g2 • ω3), (−1)r+s−1g1 • (ω2 • g3),

(−1)s−1ω1 • (g2 • g3)), (−1)s−1g1 • (g2 • g3)).

Then, the homotopy for the commutativity of the diagram is given by

Hn,m,d = (−1)(n+m)t+ns((h(ω1 ⊗ ω2 ⊗ ω3), h(g1 ⊗ ω2 ⊗ ω3),

(−1)rh(ω1 ⊗ g2 ⊗ ω3), (−1)r+sh(ω1 ⊗ ω2 ⊗ g3)),
((−1)r−1h(g1 ⊗ g2 ⊗ ω3), (−1)r+s−1h(g1 ⊗ ω2 ⊗ g3),
(−1)s−1h(ω1 ⊗ g2 ⊗ g3)), (−1)s−1h(g1 ⊗ g2 ⊗ g3)).

Observe that it gives indeed a homotopy, since H and δ commute. �
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Finally, the claim of Proposition 5.41 follows from the commutative diagram (all
squares and triangles, apart from the one marked with # are strictly commutative),

DrA,Zp(X, p)0 ⊗DsA,Zq (Y, q)0 ⊗DtA,Zl(Z, l)0

•p,q⊗idttiiiiiiiii
id⊗•q,l**UUUUUUUUU

s(ip,qX,Y )r+s0 ⊗DtA,Zl(Z, l)0

• **UUUUUUUUU
# DrA,Zp(X, p)0 ⊗ s(iq,lY,Z)s+t0

•ttiiiiiiiii

s(ip,q,lX,Y,Z)r+s+t0

Dr+sA×A,Zp,q (X × Y, p+ q)0 ⊗DtA,Zl(Z, l)0

∼

OO

��

DrA,Zp(X, p)0 ⊗Ds+lA×A,Zq,t(Y × Z, q + l)0

∼

OO

��

s(ip,q,lX,Y,Z)r+s+t0

**UUUUUUUUU
ttiiiiiiii

s(ip+q,lX×Y,Z)r+s+t0 s(ip,q+lX,Y×Z)r+s+t0

Dr+s+tA×A×A,Zp,q,l(X × Y × Z, p+ q + l)0

44iiiiiiiii
jjUUUUUUUU

∼

OO

κ

��

κ

**UUUUUUUUUκ

ttiiiiiiiii

Dr+s+tA×A,Zp+q,l(X × Y × Z, p+ q + l)0

κ

**UUUUUUUUU

∼

OO

Dr+s+tA×A,Zp,q+l(X × Y × Z, p+ q + l)0

κttiiiiiiiii

∼

OO

Dr+s+tA,Zp+q+l(X × Y × Z, p+ q + l)0.

�

Remark 5.44. Observe that the homotopy constructed in the proof of Proposition 5.41
has no component in maximal degree, that is, in D2p+2q+2l

A,Zp+q+l (X × Y × Z, p+ q + l)0.

Corollary 5.45. Let X,Y, Z be arithmetic varieties.
(i) Under the canonical isomorphism (X×Y )×Z ∼= X× (Y ×Z), the external pairing

ĈH
p
(∗, n)⊗ ĈH

q
(∗,m)⊗ ∪−→ ĈH

p+q
(∗ × ∗, n+m),

is associative.
(ii) The internal pairing

ĈH
p
(X,n)⊗ ĈH

q
(X,m) ∪−→ ĈH

p+q
(X,n+m),

is associative.

Proof. It follows from (5.40) and Proposition 5.41, together with Remark 5.44 and the
compatibility of the homotopies in (5.40) and Proposition 5.41. For n = m = l = 0, the
associativity follows from equality (1.27). �

Finally, we have proved the following theorem.

Theorem 5.46. Let X be an arithmetic variety over an arithmetic field K. Then,

ĈH
∗
(X, ∗) :=

⊕
p≥0,n≥0

ĈH
p
(X,n)

is a commutative and associative ring with unity (graded commutative with respect to
the degree n and commutative with respect to the degree p). Moreover, the morphism

ĈH
∗
(X, ∗) ζ−→ CH∗(X, ∗), of Proposition 4.4, is a ring morphism.
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[11] Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5–77.
[12] A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier

Grenoble 11 (1961), 201–312.
[13] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981), no. 3,

203–289.
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