
The Regulators of Beilinson and Borel
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Abstract. In this book we give a complete proof of the fact that Borel’s
regulator map is twice Beilinson’s regulator map. The strategy of the
proof follows the argument sketched in Beilinson’s original paper and
relies on very similar descriptions of the Chern–Weil morphisms and the
van Est isomorphism.

The book also reviews some material from Algebraic Topology and
Lie Group Theory needed in the comparison theorem.
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CHAPTER 1

Introduction

The aim of this book is to give a complete proof of the fact that Borel’s
regulator map is twice Beilinson’s regulator map (Theorem 10.9). The key
ingredient in the proof is that the Chern–Weil morphism and the van Est
isomorphism can be described explicitly in a very similar way (see Theo-
rem 8.12 and Theorem 8.15).

Let us start recalling Dirichlet’s regulator. Let k be a number field, let
v be its ring of integers and let v∗ be the group of units of v. Let r1 (resp.
2r2) be the number of real (resp. complex) immersions of k. In his study of
v∗, Dirichlet introduced a map

ρ : v∗ → Rr1+r2 .

The image of this map is contained in a hyper-plane H. Moreover ρ(v∗) is
a lattice of H. That is

ρ⊗ R : v∗ ⊗ R→ H.

is an isomorphism. In particular the rank of v∗ is r1 + r2 − 1. Let RD =
Vol

(
H/ρ(v∗)

)
be the covolume of this lattice. This number is called Dirich-

let’s regulator. The most interesting fact about this regulator is the class
number formula:

(1.1) RD = −w
h

lim
s→0

ζk(s)s−(r1+r2−1),

where ζk is Dedekind’s zeta function of the field k, w is the number of roots
of unity and h is the class number. Since Dedekind’s zeta function is defined
using local data at the primes of v, this formula can be seen as a highly non
trivial local to global principle.

Recall that v∗ is the K-theory group K1(v). In order to generalize
formula (1.1) to higher K-theory, Borel [5] has introduced, for all p ≥ 2,
morphisms

r′Bo : K2p−1(v)→ Vp,

where Vp is a real vector space of dimension

dimR Vp = dp =

{
r1 + r2, if p is odd,
r2, if p is even.

These morphisms will be called Borel’s regulator maps. Moreover Borel has
proved that r′Bo

(
K2p−1(v)

)
is a lattice of Vp. As a consequence he obtains

that the rank of the group K2p−1(v) is dp.

1



2 1. INTRODUCTION

Lichtenbaum in [42] asked that, if one chooses a natural lattice L′ in Vp,
and defines

R′Bo,p = CoVol
(
r′Bo

(
K2p−1(v)

)
, L′

)
,

whether it is true that

(1.2) R′Bo,p = ± ]K2p−2(v)
]K2p−1(v)tor

lim
s→−p+1

ζk(s)(s+ p− 1)−dp .

Lichtenbaum gave a concrete choice of lattice L′, but pointed out that, due
to the lack of examples at that time, it might be necessary to adjust the
formula by some power of π and some rational number.

In [8] Borel proved that

R′Bo,p ∼ π−dp lim
s→−p+1

ζk(s)(s+ p− 1)−dp ,

where a ∼ b means that there exists an element q ∈ Q∗ such that qa = b.
The number R′Bo,p is called Borel’s regulator.

Remark 1.1. The subindexes used here do not agree with the convention
used in [8]. In particular the regulator R′Bo,p is Rp−1 in the notation of [8].

The factor π−dp means that the original choice of lattice was not the best
one. Moreover, the original definition of Borel does not factorize through
the K-theory of the field C. For these reasons it is convenient to renormalize
Borel’s regulator map. This renormalized regulator usually appears in the
literature instead of the original definition. We will denote the renormalized
Borel regulator map as rBo.

The relationship between values of zeta functions, or more generally, L-
functions and regulators is a very active field with many open conjectures.
Beilinson has generalized the definition of regulators and stated very general
conjectures relating values of L functions and regulators associated with
algebraic motives.

One can see Borel’s theorem as the Beilinson conjecture in the case of
number fields as follows. Let us write X = Spec v. Then, for p ≥ 0,

K2p−1(v)⊗Q = H1
A

(
X,Q(p)

)
where the right hand side is called absolute cohomology. In general, rational
absolute cohomology is a graded piece for a certain filtration of rational K-
theory. But in the case of number fields there is only one non zero piece.

The Chern character for higher K-theory induces a morphism

rBe : H1
A

(
X,Q(p)

)
→ H1

D
(
XR,R(p)

)
,

such that rBe⊗R is an isomorphism. The morphism rBe is called Beilinson’s
regulator map. The Deligne–Beilinson cohomology group H1

D
(
XR,R(p)

)
,

has a natural rational structure and Beilinson’s regulator is the determinant
of Im(rBe) with respect to this rational structure. We will denote it as RBe,p.
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Observe that, in this setting, Beilinson’s regulator is defined only up to a
rational number. For number fields, Beilinson’s conjectures state that

RBe,p ∼ lim
s→−p+1

ζk(s)(s+ p− 1)−dp .

In order to see Borel’s theorem as a particular case of Beilinson’s conjectures
we have to compare the two regulators.

To this end, we consider Beilinson’s regulator map as a morphism

rBe : K2p−1(O)→ H1
D

(
XR,R(p)

)
.

Moreover, H1
D

(
XR,R(p)

)
contains a natural lattice L and we can write

RBe,p = CoVol
(
rBe

(
K2p−1(v)

)
, L

)
.

This is a well defined real number.
In [2], Beilinson claims that rBo = rBe and gave the sketch of a proof

of this fact. Rapoport [55] completed most of Beilinson’s proof and showed
that rBo and rBe agree up to a rational number. In [25], Dupont, Hain and
Zucker gave a completely different strategy to try to compare the regulators.
Moreover they conjectured that the precise comparison is rBo = 2rBe. In this
book we will use Beilinson’s original argument to show that indeed rBo =
2rBe. Except for the precise comparison, there is very little original in this
book: the original argument is due to Beilinson and we follow Rapoport’s
paper in several points.

One of the difficulties a beginner may have in studying this topic is
the maze of cohomology theories used and the different results from alge-
braic topology and Lie group theory needed. For the convenience of the
reader we have included an introduction to different topics, such as simpli-
cial techniques, Hopf algebras, Chern–Weil theory, Lie algebra cohomology
and continuous group cohomology. A complete treatment of each of these
areas would merit a book on his own and there are many of them available.
Therefore in these introductions only the results directly related with the
definition and comparison of the regulators are stated and most of them
without proof. With this idea, the book can be divided in two parts. The
first one, from Chapter 2 to Chapter 6, is a collection of classical results. The
main purpose of this part is to aid understanding of both regulator maps
and to fix the notations. So a reader may skip some of these chapters and
refer to them if needed. The second part, from Chapter 7 to Chapter 10, is
the heart of the work. It contains the definition of the regulator maps and
the specific tools needed for the comparison.

Let us give a more detailed account of the contents of each chapter.
In Chapter 2 we recall the definition and some properties of simplicial and
cosimplicial objects. We also give the definition of sheaves and principal bun-
dles over simplicial spaces and we recall Dupont’s definition of the de Rham
algebra of a simplicial differentiable manifold. Chapter 3 is devoted to H-
spaces and Hopf algebras. The main results are the structure theorems of
Hopf algebras and the relationship between the homotopy and the primitive
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part of the homology of an H-space. In Chapter 4 we compute the singular
cohomology of the general linear group and of its classifying space. The
cohomology of these spaces is related by the suspension, or its inverse, the
transgression. This map is one of the ingredients of the comparison between
the regulators. We also recall Bott’s Periodicity Theorem that character-
izes the stable homotopy of the classical groups. In Chapter 5 we review
the de Rham cohomology of Lie groups and its relationship with Lie alge-
bra cohomology. We also recall the definition of the Weil algebra and the
Chern–Weil theory of characteristic classes from the de Rham point of view.
We show that the suspension can be computed using the Weil algebra. We
also give explicit representatives of the generators of the cohomology of the
Lie algebra un. We end the chapter recalling the definition of relative Lie
algebra cohomology. In Chapter 6 we give an introduction to continuous
group cohomology. We also recall the construction of the the van Est iso-
morphism relating continuous group cohomology and relative Lie algebra
cohomology. We will see how the van Est isomorphism allows us to com-
pute the continuous cohomology of the classical groups. Both regulators
are determined by classes in continuous group cohomology. To compare
the regulators we will compare these classes. Chapter 7 is devoted to the
theory of small cosimplicial algebras and small differential graded algebras.
This theory was introduced by Beilinson to compare the regulators. In this
chapter we will follow Rapoport’s paper closely. In Chapter 8 we give a de-
scription of the sheaf of differential forms as the sheaf of functions on certain
simplicial scheme modulo a sheaf of ideals. This description is a generaliza-
tion of the fact that the sheaf of 1-forms can be written as the ideal of the
diagonal modulo its square. This description is the main ingredient for the
comparison and it is implicit in Guichardet’s description of the van Est iso-
morphism [35]. In Chapter 9 we recall the definition of algebraic K-theory
and the definition of Borel’s regulator. We also discuss the renormalization
of Borel’s regulator and we give an explicit representative of the cohomology
class of Borel’s regulator in Lie algebra cohomology. Finally in Chapter 10
we recall the definition of Beilinson’s regulator and we prove the comparison
theorem.



CHAPTER 2

Simplicial and Cosimplicial Objects

2.1. Basic Definitions and Examples

In this section we will recall the definition and properties of simplicial
and cosimplicial objects and give some examples. The main purpose is to
fix the notation. For more details, the reader is referred to [12,28,31,44].

Let ∆ be the category whose objects are the ordinal numbers

[n] = {0, . . . , n},

and whose morphisms are the increasing maps between them. The mor-
phisms of the category ∆ are generated by the morphisms

δi : [n− 1]→ [n], for n ≥ 1, i = 0, . . . , n,

σi : [n+ 1]→ [n], for n ≥ 0, i = 0, . . . , n,

where

δi(k) =

{
k, if k < i,
k + 1, if k ≥ i,

σi(k) =

{
k, if k ≤ i,
k − 1, if k > i.

The morphism δi are called faces and the morphisms σi are called degen-
eracies. These morphisms satisfy the following commutation rules

(2.1)

δjδi = δiδj−1, for i < j,

σjσi = σiσj+1, for i ≤ j,
σjδi = δiσj−1, for i < j,

σjδi = Id, for i = j, j + 1,

σjδi = δi−1σj , for i > j + 1.

We will denote the opposite category of ∆ by ∆op: that is, the category
with the same objects but reversed arrows.

Definition 2.1. Let C be a category. A simplicial object of C is a
functor ∆op → C. A cosimplicial object of C is a functor ∆ → C. The
category of simplicial objects of C will be denoted by S(C) and the category
of cosimplicial objects by CS(C).

5



6 2. SIMPLICIAL AND COSIMPLICIAL OBJECTS

In other words, a simplicial object of C is a family of objects of C,
{Xn}n≥0, together with morphisms

δi : Xn → Xn−1, for n ≥ 1, i = 0, . . . , n,
σi : Xn → Xn+1, for n ≥ 0, i = 0, . . . , n,

satisfying the commutation rules

(2.2)

δiδj = δj−1δi, for i < j,
σiσj = σj+1σi, for i ≤ j,
δiσj = σj−1δi, for i < j,
δiσj = Id, for i = j, j + 1,
δiσj = σjδi−1, for i > j + 1.

The morphisms δi are also called faces and the morphisms σi degeneracies.
Sometimes, it will be usefull to use the functorial notation. That is, if

τ : [n]→ [m]

is an increasing map, we denote by

X(τ) : Xm → Xn

the corresponding morphism. In particular δi = X(δi) and σi = X(σi).
Analogously, a cosimplicial object of C is a family of objects of C,

{Xn}n≥0, together with morphisms

δi : Xn → Xn+1, for n ≥ 0, i = 0, . . . , n+ 1,

σi : Xn → Xn−1, for n ≥ 1, i = 0, . . . , n− 1,

satisfying the commutation rules (2.1). Observe that we use the convention
that simplicial objects are indexed using subscripts and cosimplicial objects
are indexed by superscripts.

Example 2.2. The geometric simplex, denoted ∆·, is the cosimplicial
topological space defined by

∆n = {(t0, . . . , tn) ∈ Rn+1 | t0 + · · ·+ tn = 1, ti ≥ 0},
with faces and degeneracies given by

(2.3)
δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn),

σi(t0, . . . , tn) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn).

Example 2.3. Let X be a topological space. Then the simplicial set of
singular simplexes of X is given by

Sn(X) = HomTop(∆n, X),

where Top denotes the category of topological spaces. If f ∈ Sn(X) then

δif = f ◦ δi,
σif = f ◦ σi.
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S· is a functor between Top and the category of simplicial sets, S(Set).
This functor will be called the singular functor. If G is an abelian group we
will denote by Sn(X,G) the free G module generated by Sn(X) and by

Sn(X,G) = HomAb(Sn(X,Z), G).

Then S·(X,G) is the simplicial abelian group of singular chains and S·(X,G)
is the cosimplicial abelian group of singular cochains.

Example 2.4. Let ∆[k] be the simplicial set such that ∆[k]n consists
of all the increasing maps from [n] to [k]. In other words, ∆[k]n is the set
of all sequences (j0, . . . , jn), with 0 ≤ j0 ≤ · · · ≤ jn ≤ k. The faces and
degeneracies are given by

δi(j0, . . . , jn) = (j0, . . . , ĵi, . . . , jn), for i = 0, . . . , n,

σi(j0, . . . , jn) = (j1, . . . , ji, ji, . . . , jn), for i = 0, . . . , n,

where the symbol ĵi, means that the element ji is omitted. For instance
∆[0] is the simplicial set with one element in each degree. The only element
that is non degenerate is the element in degree 0. The simplicial set ∆[1] has
three non degenerate elements: one in degree one and two in degree zero.

The increasing maps between [k] and [k′] induce maps between ∆[k] and
∆[k′]. For instance the maps δ0, δ1 : [0] → [1] induce maps δ0, δ1 : ∆[0] →
∆[1]. Thus ∆[·] is a cosimplicial simplicial set. The simplicial set ∆[k] plays
the role of the geometric k-dimensional simplex. In this analogy, the above
maps from ∆[0] to ∆[1] correspond to the inclusions of a point as each of
the vertexes of the unit interval.

Example 2.5. Let X be a topological space. Let E·X be the simplicial
topological space defined by

EnX =

n+1︷ ︸︸ ︷
X × · · · ×X

δi(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn), for i = 0, . . . , n,

σi(x0, . . . , xn) = (x1, . . . , xi, xi, . . . , xn), for i = 0, . . . , n.

Observe that we can define in an analogous way E·X for X a differ-
entiable manifold, a scheme over a base scheme, or more generally in any
category with finite products.

If C is a category with products then the categories S(C) and CS(C) also
have products. For instance, the product of two simplicial objects X and Y
is given explicitly by

(X × Y )n = Xn × Yn,

with faces and degeneracies defined componentwise.
We will be also interested in the following construction. Let C be a

category that admits coproducts. If X is an object of S(C) and K is a
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simplicial set, we may define an object of S(C), X ×K by

(X ×K)n = Xn ×Kn =
∐
p∈Kn

Xn,

where the faces and degeneracies are given componentwise. In particular this
applies when X is an object of C. Then we denote also by X the constant
simplicial object, with Xn = X and all faces and degeneracies equal to the
identity. In this case

(X ×K)n =
∐
p∈Kn

X.

Let X and Y be two simplicial objects of C. Let f, g : X → Y be two
simplicial morphisms. A simplicial homotopy between f and g is a simplicial
morphism

H : X ×∆[1]→ Y,

such that H ◦ Id× δ0 = f and H ◦ Id× δ1 = g.

Remark 2.6. The homotopy relation is not, in general, an equivalence
relation (see [31, I.6]). For instance, in the case of simplicial sets we need
the condition of Y being fibrant.

Proposition 2.7. Let X be a topological space and let e ∈ X be a point.
Then the identity map Id : E·X → E·X is homotopically equivalent to the
constant map that sends EnX to the point (e, . . . , e).

Sketch of proof. We have to construct a morphism of simplicial
topological spaces H : E·X × ∆[1] → E·X such that H ◦ (Id × δ0) = Id
and H ◦ (Id× δ1) is the constant map e. This morphism H is:

H
(
(x0, . . . , xn), (i0, . . . , in)

)
=

(
fi0(x0), . . . , fin(xn)

)
,

where f0(x) = x and f1(x) = e. �

2.2. Simplicial Abelian Groups

Let A be an abelian category. Let us denote by C+(A) the category
of non negatively graded cochain complexes of A. By the Dold–Kan cor-
respondence (cf. [31, III.2]) there is an equivalence of categories between
C+(A) and CS(A). Analogously, there is also an equivalence between the
category S(A) and the category of non negatively graded chain complexes,
C+(A). Let us recall this theory.

Definition 2.8. Let X be an object of CS(A). Then (CX, d) is the
object of C+(A) given by

CXn = Xn

dx =
n+1∑
i=0

(−1)iδix, for x ∈ CXn.
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The normalization of X, denoted by NX is the subcomplex of CX defined
by

NXn =
n−1⋂
i=0

Kerσi.

Let us write

DXn =
n−1∑
i=0

Im δi.

By the commutation rules (2.1), it is clear that DX =
⊕
DXn, is a sub-

complex of CXn. For a proof of the following result see, for instance, [31,
Chap. III].

Proposition 2.9. Let X ∈ Ob
(
CS(A)

)
. Let i : NX → CX be the

inclusion, and let p : CX → CX/DX be the projection. Then the composition

NX i−→ CX p−→ CX/DX

is an isomorphism. Moreover the composition i ◦ (p ◦ i)−1 ◦ p is homotopi-
cally equivalent to the identity of CX. In consequence CX and NX are
homotopically equivalent complexes.

Corollary 2.10. Let X be a cosimplicial abelian group. Then there is
a direct sum decomposition

Xp = NXp ⊕DXp.

Example 2.11. Let X be a topological space and let G be an abelian
group. We will write

C∗(X,G) = CS∗(X,G).

This is the complex of singular G-cochains on X. The singular cohomology
groups of X, with coefficients in G, are the cohomology groups of the com-
plex C∗(X,G). By Proposition 2.9 the cohomology groups of X are also the
cohomology groups of the complex NS∗(X,G).

Example 2.12. We can also use the normalization functor to define the
singular cohomology of a simplicial topological space. Let X· be a simplicial
topological space. Then the complexes C∗(Xn, G) form a cosimplicial com-
plex. The normalization NC∗(X·, G) can be turned into a double complex,
and the singular cohomology groups of X· are the cohomology groups of the
simple complex associated to this double complex.

Now let Y ∈ Ob
(
C+(A)

)
. We want to construct an object of CS(A),

KY , such that NKY is naturally isomorphic to Y . The basic idea behind
the construction is that we have to add enough degenerate elements in order
to be able to define all faces and degeneracies.
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Definition 2.13. The Dold–Kan functor is the functor that associates,
to each complex (Y, d), the cosimplicial object KY . This cosimplicial object
has components

(KY )n =
⊕

f : [n]→[p]

Y p
f ,

where the sum runs over all surjective increasing maps f , and Y p
f = Y p. The

structure morphisms of KY are constructed as follows. Let u : [n]→ [m] be
an increasing map. Then the morphism

KY (u) : (KY )n → (KY )m

can be decomposed in components

KY (u)f,g : Y p
f → Y q

g ,

for all pair of surjective increasing morphism f : [n]→ [p] and g : [m]→ [q].
Then we write KY (u)f,g = Id if p = q and there exists a commutative
diagram

[n] u //

f
��

[m]

g

��
[p]

j // [q].

with j the identity. We write KY (u)f,g = d if [q] = [p+ 1] and there exists
a diagram as above with j = δ0. Finally we write KY (u)f,g = 0 in all other
cases.

For a proof of the following result see for instance [31, III.2]

Theorem 2.14 (Dold–Kan correspondence). The functors N and K es-
tablish an equivalence of categories between C+(A) and CS(A).

2.3. The Geometric Realization

The main link between simplicial sets and topological spaces is the geo-
metric realization. This functor, together with the singular functor of Ex-
ample 2.3, establishes an equivalence between the homotopy categories of
simplicial sets and of topological spaces. Thus, up to homotopy, both cate-
gories are equivalent. The geometric realization functor can be extended to
the case of simplicial topological spaces.

Definition 2.15. Let X· be a simplicial topological space. The geomet-
ric realization is the topological space

|X·| =
∐
n≥0

Xn ×∆n

/
∼,

where ∼ is the equivalence relation generated by

(σi(x), y) ∼
(
x, σi(y)

)
and (δi(x), y) ∼

(
x, δi(y)

)
.
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2.4. Sheaves on Simplicial Topological Spaces

Let us discuss sheaf cohomology for simplicial topological spaces. For
more details the reader is referred to [20, §5] and [30].

Definition 2.16. Let X· be a simplicial topological space. A sheaf of
abelian groups on X· is the data of a sheaf Fn over each Xn together with
morphisms

δi : Fn−1 → (δi)∗Fn and σi : Fn+1 → (σi)∗Fn

satisfying the commutation rules (2.1).

A morphism between two sheaves F · and G· is a family of morphisms of
sheaves {fn}n≥0 commuting with the faces and degeneracies.

For instance, if X· is a simplicial scheme, the family of structural sheaves
{OXn}n≥0 is a sheaf on X·. The category of sheaves of abelian groups on a
simplicial topological space is an abelian category.

Definition 2.17. Let X· be a simplicial topological space. Let F · be
a sheaf of abelian groups on X·. Then the group of global sections of F ,
denoted by Γ(F), is the group

Γ(F) = {s ∈ Γ(X0,F0) | δ0s = δ1s}.
The cohomology groups of F ·, denoted by H∗(X·,F ·) are the right derived
functors of the functor Γ.

The sheaf cohomology groups can be computed using resolutions in the
following way. For each sheaf Fn, let in : Fn → An,∗ be a resolution by
acyclic sheaves, such that A·,∗ is a complex of sheaves on X· and the mor-
phism i = {in} is a morphism of sheaves on X·. For instance we can use the
canonical flasque resolution of each sheaf Fn. Then the cohomology groups
of F · are the cohomology groups of the simple complex associated to the
complex of complexes NΓ(X·,A·,∗):

NA = s
(
NΓ(X·,A·,∗)

)
.

Or, equivalently, to the cohomology of the complex

CA = s
(
CΓ(X·,A·,∗)

)
.

In the complex CA we can introduce a filtration associated with the
simplicial degree

F pCA =
⊕
n≥p
m

Γ(Xn,An,m).

This filtration determines an spectral sequence (cf. [20, §5] and [30]).

Proposition 2.18. Let X· be a simplicial topological space, and let F ·
be a sheaf over X. Then there is a first quadrant spectral sequence

Ep,q1 = Hq(Xp,Fp) =⇒ Hp+q(X·,F ·).
This section can be easily generalized to cover the case of complexes of

sheaves on simplicial topological spaces.
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2.5. Principal Bundles on Simplicial Manifolds

Let G be a Lie group. Recall that a principal G-bundle is a four-tuple
(r, E, π,B), where E and B are differentiable manifolds, π : E → B is a
morphism of differentiable manifolds and r : E × G → E is a differentiable
right action of G on E, such that there exists an open covering U of B
and, for every open subset U ∈ U , there is an isomorphism of differentiable
manifolds

φU : U ×G→ π−1(U)
satisfying

(1) π
(
φU (x, g)

)
= x.

(2) φU (x, gs) = r(φU (x, g), s).
The manifold E is called the total space and B is called the base space.
Usually we will denote a principal G bundle by its total space E and the
right action r will be denoted by r(p, s) = ps.

Observe that the definition of a principal G-bundle implies that G acts
freely on E and transitively on the fibres of π.

Let (r, E, π,B) be a principalG-bundle and let f : B̂ → B be a morphism
of differentiable manifolds; then we can define in an obvious way a principal
G-bundle f∗E.

A morphism of principal G bundles,

f : (r̂, Ê, π̂, B̂)→ (r, E, π,B),

is a commutative diagram

(2.4)
Ê

fE //

bπ
��

E

π

��
B̂

fB // B

such that fE(pg) = fE(p)g for all p ∈ Ê and g ∈ G. Clearly, for a fixed fB,
to give a morphism of principal G bundles as above is equivalent to give an
isomorphism Ê ∼= f∗BE. We will denote this isomorphism also by fE .

Definition 2.19. A simplicial principal G bundle is a four-tuple
(r, E·, π, B·), where E· andB· are simplicial differentiable manifolds, π : E· →
B· is a morphism of simplicial manifolds and r is a right action of G on E·
such that, for all n, (r, En, π, Bn) is a principal G bundle and all faces and
degeneracies are morphisms of principal G-bundles.

Proposition 2.20. Let G be a Lie group and let B· be a simplicial dif-
ferentiable manifold. Then there is an equivalence of categories between the
category of simplicial principal G-bundles and the category of pairs (E,α),
where E is a principal G-bundle over B0 and

α : δ∗0E → δ∗1E

is an isomorphism of principal G-bundles over B1.
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Proof. Let us exhibit functors between the two categories. Let E· be a
principal G-bundle over B·. There are isomorphisms of principal G-bundles
over B1

E(δ0) : E1 → δ∗0E0,

E(δ1) : E1 → δ∗1E0.

The functor in one direction sends E· to the pair (E0, E(δ1) ◦ E(δ0)−1).
Let us construct the functor in the other direction. Let (E,α) be a pair

as in the proposition. Then we write

En =
(
(δ0)n

)∗
E.

Let
τ : [n]→ [m]

be an increasing map. We have to construct a principal G-bundle morphism
E(τ) : Em → En. Or, equivalently, an isomorphism, also denoted E(τ)

E(τ) : B
(
(δ0)m

)∗
E → B(τ ◦ (δ0)n)∗E.

The composition
τ ◦ (δ0)n : [0]→ [m]

is the map that sends 0 to τ(n). If τ(n) = m, then τ ◦ (δ0)n = (δ0)m. Thus
we can write E(τ) = Id. If τ(n) < m then we have the equalities

τ ◦ (δ0)n = (δ0)τ(n) ◦ (δ1)m−τ(n),

and
(δ0)m = (δ0)τ(n) ◦ (δ1)m−τ(n)−1 ◦ δ0.

In this case we write

E(τ) = B
(
(δ0)τ(n) ◦ (δ1)m−τ(n)−1

)∗
α.

It is easy to see that E· is a simplicial principalG-bundle, that both construc-
tions are functorial and that they determine an equivalence of categories. �

Remark 2.21. We can make the same definition of principal bundle in
the case of topological groups and algebraic groups. Moreover we can give
an analogous definition of vector bundle over a simplicial manifold. In the
case of simplicial vector bundles, the analogue of Proposition 2.20 also holds.

2.6. The de Rham Algebra of a Simplicial Manifold

The main reference for this section is [24, §6]. For a differentiable mani-
fold M , let us denote by E∗(M,R) the de Rham algebra of global differential
forms. It is a graded commutative and associative differential algebra. We
want to have an analogous object for simplicial differentiable manifolds. Let
M· be a simplicial differentiable manifold. Then E∗(M·,R) is a simplicial
graded commutative associative differential algebra. To this simplicial alge-
bra we can associate a double complex, CE∗(M·,R), and a simple complex



14 2. SIMPLICIAL AND COSIMPLICIAL OBJECTS

denoted by sCE∗(M·,R). In this complex we can introduce a multiplicative
structure which is associative but only commutative up to homotopy (see
Section 7). To remedy this situation, we can construct a differential graded
commutative associative algebra that will be called the simplicial de Rham
algebra (see [23,24]. See also [54] for an algebraic analogue).

Let us denote by Hn the hyperplane

Hn = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1}.
Then H · is a cosimplicial differentiable manifold with faces and degeneracies
given by equation (2.3).

Definition 2.22. Let M· be a simplicial differentiable manifold. A
simplicial n-form over M is a sequence ϕ = {ϕp}p, where ϕp is a n-form on
Hp ×Mp, such that, for all p ≥ 0 and i = 0, . . . , p,

(δi × Id)∗ϕp = (Id× δi)∗ϕp−1,

on Hp−1 × Mp. We will denote by Ensimp(M·,R) the space of all simpli-
cial n-forms. The exterior derivative and the exterior product of forms on
Hp×Xp induce a differential and a commutative and associative product on
E∗simp(M·,R) =

⊕
nE

n
simp(M·,R) (see [24]). We will call E∗simp(M·,R) the

simplicial de Rham algebra of M·.

The complex E∗simp(M·,R) is a bigraded complex, where a p-form ϕ is
said to be of type k, l with k + l = p if ϕ|Hp×Xp can be written locally as

ϕ =
∑

aI,Jdti1 ∧ · · · ∧ dtik ∧ dxj1 ∧ · · · ∧ dxjl ,

where t0, . . . , tp are baricentric coordinates of Hp and x1, . . . xn are local
coordinates of Xp.

The complexes E∗simp(M·,R) and sCE∗(M·,R) are homotopically equiv-
alent (see [24]). In particular the morphism Ek,lsimp(M·,R) → El(Mk,R) is
obtained by restricting a (k, l)-form to Hk ×Xk and then integrating along
the standard simplex ∆k ⊂ Hk.



CHAPTER 3

H-Spaces and Hopf Algebras

In the next chapter we will be interested in the homology and coho-
mology of the general linear group. The product structure of a topological
group, or more generally of a H-space, induces a product in homology and a
coproduct in cohomology, turning both into Hopf algebras. In this chapter
we will review the definition of H-spaces and Hopf algebras and their basic
properties. All the results stated are classical and can be found, for instance,
in [46] or in [16].

3.1. Definitions

Definition 3.1. Let (X, e) be a pointed topological space. We say that
X is an H-space if there is a continuous map µ : X ×X → X, such that, for
all x ∈ X, µ(x, e) = µ(e, x) = x. We say that X is an associative H-space if
the maps µ◦(Id×µ) and µ◦(µ×Id) from X×X×X to X are homotopically
equivalent.

Clearly any topological group is an H-space.
Let us fix a commutative ring k. By a graded module we will mean

graded by non-negative integers. For any pair of graded k-modules A and
B, let T : A⊗B → B ⊗A, be the morphism defined by

T (x⊗ y) = (−1)deg x deg yy ⊗ x.

Definition 3.2. A graded k-algebra is a graded k-module A together
with a unit element ε : k → A and a product µ : A ⊗ A → A such that the
compositions

A
∼=−→ A⊗ k Id⊗ε−−−→ A⊗A µ−→ A

A
∼=−→ k ⊗A ε⊗Id−−−→ A⊗A µ−→ A

are the identity. A graded k-algebra is associative if the diagram

A⊗A⊗A
Id⊗µ //

µ⊗Id
��

A⊗A
µ

��
A⊗A

µ // A

15
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is commutative. A graded k-algebra is commutative if the diagram

A⊗A

##FF
FF

FF
FF

F

T

��

A

A⊗A

;;xxxxxxxxx

is commutative.

A coalgebra is the dual notion of an algebra.

Definition 3.3. A graded k-coalgebra is a graded k-module, A, together
with a counit η : A → k and a coproduct ∆: A → A ⊗ A such that the
compositions

(3.1)
A

∆−→ A⊗A Id⊗η−−−→ A⊗ k
∼=−→ A

A
∆−→ A⊗A η⊗Id−−−→ k ⊗A

∼=−→ A

are the identity. A graded k-coalgebra is associative if the diagram

A
∆ //

∆
��

A⊗A
Id⊗∆

��
A⊗A ∆⊗Id// A⊗A⊗A

is commutative. A graded k-coalgebra is commutative if the diagram

A⊗A

T

��

A

;;xxxxxxxxx

##FF
FF

FF
FF

F

A⊗A
is commutative.

The coproduct is usually called the diagonal map.
Observe that k has a natural structure of k-coalgebra given by the iso-

morphism k → k ⊗ k. Moreover, if A and B are k-coalgebras, there is a
natural k-coalgebra structure in A⊗B with coproduct given by the compo-
sition

A⊗B ∆⊗∆−−−→ A⊗A⊗B ⊗B Id⊗T⊗Id−−−−−−→ A⊗B ⊗A⊗B.

Definition 3.4. A graded k-module A, together with a unit ε, a counit
η, a product µ and a coproduct ∆, is a Hopf algebra if

(1) (A,µ, ε) is an associative algebra,
(2) (A,∆, η) is an associative coalgebra,
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(3) µ and ε are morphisms of coalgebras and
(4) ∆ and η are morphisms of algebras.

Observe that once ε and η are morphisms of coalgebras and algebras
respectively, the fact that ∆ is a morphism of algebras and the fact that µ
is a morphism of coalgebras are both equivalent to the commutativity of the
following diagram:

A⊗A A⊗A⊗A⊗A
µ⊗µoo

A

∆
::uuuuuuuuuu

A⊗A
µ

ddIIIIIIIIII

∆⊗∆
// A⊗A⊗A⊗A.

Id⊗T⊗Id

OO

A Hopf algebra A is called connected if ε : k → A0 is an isomorphisms.
Equivalently A is connected if η : A0 → k is an isomorphism.

Example 3.5. Let (X, e) be an associative H-space and let k be a field.
Then the diagonal ∆: X → X × X and the product structure µ induce a
coproduct ∆∗ and a product µ∗ in the singular homology H∗(X, k). The
inclusion e → X and the projection X → e induce a unit and a counit
respectively. With this structure, H∗(X, k) is a Hopf algebra. Moreover,
the coproduct is always commutative. By duality, the singular cohomology
is the dual Hopf algebra. Analogously, if we denote by H∗(X) the quotient
of H∗(X,Z) by its torsion subgroup, then H∗(X) is a Z-Hopf algebra with
commutative coproduct, and H∗(X) is the dual Hopf algebra.

Let us write I(A) = Ker η. If A is connected then I(A) =
⊕

i>0Ai.
Observe that, since η ◦ ε = IdK , we have A = k ⊕ I(A) and I(A) ∼= Coker ε.
Seeing I(A) as a quotient, the coproduct ∆ induces a morphism

δ : I(A)→ I(A)⊗ I(A).

Definition 3.6. Let A be a Hopf algebra. Then the space of indecom-
posable elements, denoted Q(A), is the cokernel of the morphisms

µ : I(A)⊗ I(A)→ I(A).

The space of primitive elements, denoted P (A), is the kernel of the mor-
phism

δ : I(A)→ I(A)⊗ I(A).

Observe that, since (A,∆, η) is a coalgebra, by (3.1), for any element
a ∈ I(A), we have

∆(a) = 1⊗ a+ δ(a) + a⊗ 1.

Thus, a ∈ I(A) is primitive if and only if ∆(a) = 1⊗ a+ a⊗ 1.
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3.2. Some Examples

Let us give some examples of coalgebras and Hopf algebras over Z.

Example 3.7. Let
∧

(x1, . . . , xn) be the exterior algebra generated by
the elements x1, . . . , xn of odd degree. We can define a Hopf algebra struc-
ture imposing that the elements xi are primitive elements. The dual of
this Hopf algebra is again the exterior algebra generated by the primitive
elements y1, . . . , yn, where (yi) is the dual basis of (xi).

By the Samelson–Leray theorem (see Theorem 3.15) any torsion free
commutative Z-Hopf algebra generated by elements of odd degree is iso-
morphic (as Hopf algebra) to an exterior algebra generated by primitive
elements.

Let us give a pair of examples of evenly generated Hopf algebras.

Example 3.8. Let A = Z[x] be the polynomial ring in one variable of
degree 2. Then its dual coalgebra is, as graded abelian group

A∗ =
⊕
i≥0

Zγi,

where γi has degree 2i and is the dual of xi. The coproduct is given by

∆γi =
∑
j+k=i

γj ⊗ γk.

For instance, we can define a Hopf algebra structure in A by imposing that
x is primitive; then the algebra structure of A∗ satisfies

γi =
γi1
i!
.

Thus it is isomorphic to the divided power polynomial algebra Γ[γ1], with
γ1 primitive. Observe that A and A∗ are not isomorphic. The former is
generated by its primitive part and the latter is not.

The following example of self-dual Hopf algebra (see [51]) is more inter-
esting.

Example 3.9. Let B be the Hopf algebra such that, as an algebra it is
the polynomial ring Z[b1, b2, . . . ], with bi of degree 2i. And with a coproduct
given by

(3.2) ∆bi =
∑
j+k=i

bj ⊗ bk.

The dual Hopf algebra, B∨ has the algebra structure of the polynomial ring
Z[y1, y2, . . . ], where yi is the dual of bi1. Moreover, the coproduct structure
is also given by

∆yi =
∑
j+k=i

yj ⊗ yk.

Thus this Hopf algebra is self dual.
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In this example we can obtain an inductive formula for the primitive
elements of the coalgebra algebra B∨ (see [51]). Let us write

(3.3)
pr1 = y1,

prn= (−1)n+1nyn +
n−1∑
j=1

(−1)j+1yjprn−j , for n > 1.

Proposition 3.10. The elements pri form a basis of P (B). Moreover,

〈pri, bi〉 = 1.

3.3. The Structure of Hopf Algebras

The presence of two compatible operations imposes many restrictions on
the structure of Hopf algebras. We will recall some classical results in this
direction. For simplicity, we will state most of the results for Hopf algebras
over a field of characteristic zero or for torsion free Hopf algebras over the
ring of integers.

The first result in the study of the structure of Hopf algebras is the
following.

Proposition 3.11. Let A be a connected Hopf algebra over a field of
characteristic zero.

(1) The product is commutative if and only if the natural morphism

P (A)→ Q(A)

is a monomorphism.
(2) The coproduct is commutative if and only if the natural morphism

P (A)→ Q(A)

is an epimorphism. In particular, a connected Hopf algebra with
commutative coproduct is generated, as an algebra, by the space of
primitive elements.

The first statement remains valid if A is a torsion free Z-Hopf algebra.
But as Example 3.8 shows, the second statement does not remain true in
this case.

From now on, we fix a field k of characteristic zero and a connected Hopf
k-algebra A with commutative coproduct.

We can define a structure of graded Lie algebra on A writing

[x, y] = xy − (−1)deg x deg yyx.

It is easy to see that the space of primitive elements, P (A), is a Lie subal-
gebra of A. Let us denote by U

(
P (A)

)
the universal enveloping algebra of

P (A). Since the inclusion P (A)→ A is a morphism of the Lie algebra P (A)
into an associative algebra A, there is a unique extension to a morphism
U

(
P (A)

)
→ A. Moreover, there is a natural structure of Hopf algebra on

U
(
P (A)

)
(see [46] for details). Then the main structure theorem is
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Theorem 3.12. Let A be a connected Hopf algebra with commutative co-
product over a field of characteristic zero. Then the natural map U

(
P (A)

)
→

A is an isomorphism of Hopf algebras.

From this theorem and the Poincaré–Birkhoff–Witt Theorem we can
completely determine the structure of k-module of A.

For a graded k-module B, let us denote by
∧

(B) the free graded commu-
tative and associative algebra generated by B. This is the exterior algebra
over the odd subspace of B tensored with the symmetric algebra over the
even subspace. Let L be a graded Lie algebra. Let us denote by L] the Lie
algebra with the same underlying module as L but with abelian Lie product.
Then Λ(L) = U(L]).

Using the Lie bracket, we can define a filtration F on U(L) and on∧
(L) = U(L]). This filtration is called the Lie filtration.

Theorem 3.13 (Poincaré–Birkhoff–Witt). Let L be a graded Lie k-
algebra. Then there is a natural isomorphism of bigraded Hopf algebras

GrF
(
U(L])

)
→ GrF

(
U(L)

)
.

Corollary 3.14. Let L be a graded Lie k-algebra. Then there is a
(nonnatural) isomorphism of k-modules between

∧
(L) and U(L).

In the case when a Hopf algebra is generated by its odd part we have a
more precise statement, the Samelson-Leray theorem.

Theorem 3.15 (Samelson–Leray). Let A be a torsion free, connected
Hopf algebra over Z, such that the product is commutative and Qn(A) is
torsion for n even. Then

(1) Q(A) is torsion free.
(2) The morphism P (A)→ Q(A) is an isomorphism.
(3) The coproduct is commutative.
(4) The natural morphism

∧(
P (A)

)
→ A is an isomorphism of Hopf

algebras.

We can apply the structure theorems to the homology and cohomol-
ogy of compact H-spaces. The compacity implies that the homology alge-
bra H∗(X,Q) is finite dimensional. Thus by Theorem 3.13 we obtain that
Pn

(
H∗(X,Q)

)
= 0 for n even. In consequence Qn

(
H
∗(X)

)
is torsion for n

even. Thus the Samelson–Leray theorem implies

Proposition 3.16. Let X be a compact H-space. Then H
∗(X) and

H∗(X) are, as Hopf algebras, isomorphic to an exterior algebra generated
by primitive elements of odd degree.

3.4. Rational Homotopy of H-Spaces

As we noted above, the main example of connected Hopf algebra with
commutative coproduct is the singular homology of a connected H-space.
In this case we want to give a more geometric interpretation of the space of
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primitive elements. Let (X, e) be a connected associative H-space. Let us
write Pn(X,Q) = Pn

(
H∗(X,Q)

)
.

Let Sn be the n-dimensional sphere. Observe that the elements of the
cohomology of the sphere are necessarily primitive elements. This implies
that the Hurewicz morphism factorizes as

πn(X, e)
λ−→ Pn(X,Q)→ Hn(X,Q).

Moreover, one can define a Lie product in π∗(X, e), called the Samelson
product, such that λ is a morphism of Lie algebras. For the proof of the
following result see for instance [49].

Theorem 3.17 (Cartan–Serre). Let (X, e) be a path-wise connected as-
sociative H-space. Then the Hurewicz map induces an isomorphism of Lie
algebras

λ : π∗(X, e)⊗Q→ P∗(X,Q).
Therefore we obtain an isomorphism of Hopf algebras

U(λ) : U(π∗(X, e)⊗Q)→ H∗(X,Q).





CHAPTER 4

The Cohomology of the General Linear Group

4.1. The General Linear Group and the Stiefel Manifolds

In this section we shall compute the singular cohomology of the complex
general linear group, GLn(C) with integral coefficients. Since GLn(C) is
homotopically equivalent to the unitary group Un it is enough to compute
the cohomology ring of this latter group. From the last section we know
that H∗(Un) is an exterior algebra generated by elements of odd degree.
Our objective now is to show that H∗(Un,Z) is torsion free and obtain a
set of canonical generators. These cohomology groups will be computed by
induction using Stiefel manifolds. The computations are classical and can
be found, for instance, in [60].

We will consider the set of groups {Un}n as a directed system with
morphisms ϕn,m : Um → Un, for m ≤ n, given by

ϕn,m(A) =
(
A 0
0 I

)
.

Usually, we will identify Um with its image in any of the groups Un, for
n ≥ m.

Definition 4.1. For any pair of integers 0 ≤ l ≤ n, the Stiefel manifold ,
Vn,l, is defined as

Vn,l = Un

/
Un−l .

Geometrically Vn,l can be interpreted as the set of sequences of l orthonormal
vectors in Cn.

Observe that

Vn,n = Un, and Vn,1 = S2n−1,

the 2n− 1 dimensional sphere. Moreover the natural map Vn,l+1 → Vn,l is a
fibre bundle with fibres Un−l /Un−l−1

∼= S2n−1−2l.

Theorem 4.2. The ring H∗(Vn,l,Z) is an exterior algebra generated by
elements xj in degree 2j − 1, for n− l < j ≤ n.

Proof. The proof of the theorem is done by induction over l. For l = 1
it is true because we have Vn,1 = S2n−1. By the induction hypothesis we may
assume that it is true for Vn,l. Let us consider the fibre bundle Vn,l+1 → Vn,l
with fibre F = S2n−1−2l.

23
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Lemma 4.3. The Leray spectral sequence of the fibre bundle

Vn,l+1 → Vn,l

has E2 term
Ep,q2 = Hp(Vn,l,Z)⊗Hq(S2n−1−2l,Z).

Proof. Let us write F , E and B for the fibre, the total space and the
base of the fibre bundle respectively. Let us choose a point b ∈ B. The E2

term of the Leray spectral sequence is given by

Ep,q2 = Hp
(
B,Hq(F,Z)

)
.

The fibre bundle Vn,l+1 → Vn,l is the quotient of the principal Un−l-bundle
Un → Vn,l by the closed subgroup Un−l−1. Therefore, the group Un−l acts
continuously on the fibre, and the transition functions have values in this
group. Hence, the monodromy of an element γ ∈ π1(B, b), is given by an
element of fγ ∈ Un−l. But since this group is connected, this action is
homotopically equivalent to the identity. Thus the local system H∗(F,Z) is
trivial. Moreover, since by the induction hypothesis the cohomology of the
base is a finitely generated free abelian group, we obtain the result. �

As a consequence of the above lemma, Ep,q2 is zero for q 6= 0, 2n− 1− 2l.
Hence the only differential that may be different from zero is d2n−2l. Since
E2n−2l is an algebra and d2n−2l is a derivation, this differential is determined
by

d2n−2l : E
0,2n−2l−1
2n−2l = H2n−2l−1(F,Z)→ E2n−2l,0

2n−2l = H2n−2l(B,Z).

But by the induction hypothesis this last group is zero. Therefore E∞ = E2.
Using again the induction hypothesis and Lemma 4.3 we obtain that E∞ is
an exterior algebra generated by elements vj in degree 2j−1, for n− l−1 <
j ≤ n. Therefore Theorem 4.2 is a consequence of the following result.

Lemma 4.4. Let A be a finitely generated graded commutative algebra
over Z and let F be a homogeneous decreasing filtration such that F i · F j ⊂
F i+j. Let GA be the associated bigraded algebra:

GAk,l = F kAk+l/F k+1Ak+l.

If GA is an exterior algebra generated by r bi-homogeneous elements of odd
total degree, then A is an exterior algebra generated by r elements of the
same total degree.

Proof. Let {v1, . . . , vr} be a set of generators of GA with vj ∈ GAkj ,lj .
For each vj let us choose a representative xj ∈ F kjAkj+lj . Let B be the
exterior algebra generated by symbols uj . By the universality of the exterior
algebra there is a natural morphism ϕ : B → A that sends uj to xj , for
j = 1, . . . , r. Moreover, the filtration F induces a multiplicative filtration
on B and ϕ becomes a filtered morphism. Since the graded morphism Grϕ
is an isomorphism, then ϕ is also an isomorphism. This completes the proof
of the Lemma and of Theorem 4.2. �
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Let us choose a set of distinguished generators of H∗(Un,Z). To this
end we choose a square root of −1. Thus an orientation of Cn. Let σ2n−1 ∈
H2n−1(S2n−1,Z) be the class determined by this orientation. Let us denote
by πn : Un → Un /Un−1 = S2n−1 the morphism that sends a unitary matrix
to its last column.

Definition 4.5. Let αn,2p−1 ∈ H2p−1(Un,Z) be the elements deter-
mined inductively as follows

(1) αn,2n−1 = π∗n(σ2n−1).
(2) ϕ∗n,n−1(αn,2p−1) = αn−1,2p−1, for 1 ≤ p < n.

Observe that in this definition we are using the fact that

ϕ∗n,n−1 : Hj(Un,Z)→ Hj(Un−1,Z)

is an isomorphism for j < 2n − 1. Usually we will denote the generators
αn,2p−1 for n ≥ p simply by α2p−1.

Remark 4.6. The elements α2p−1 are primitive for the Hopf algebra
structure of H∗(Un,Z) (see Section 4.2). Since P 2p−1(Un,Z) is a free abelian
group of rank one, this determines α2p−1 up to the sign.

Remark 4.7. By duality, the homology algebra of Un is also an exte-
rior algebra generated by one element in each degree 2p−1 for p = 1, . . . , n.
Moreover the generators α2p−1 determine a set of generators β2p−1 ∈
H2p−1(Un,Z) which are also primitive elements.

4.2. Classifying Spaces and Characteristic Classes

Let G be a Lie group. A universal principal G-bundle is a principal
G-bundle (r, E, π,B), such that the total space E, is contractible. The base
is called a classifying space for the group G (see, for instance, [52]). Any
two classifying spaces for a given group G are homotopically equivalent. The
universality is given by the following property: For any topological principal
G-bundle (r, F, π,X), with X paracompact, there is a continuous function
f : X → B such that F = f∗E. Moreover, the function f is determined up
to homotopy.

It is easy to construct B as a topological space. But if we want more
structure (differentiable, algebraic, . . . ) it is more interesting to use simpli-
cial objects. Recall that in Example 2.5 we defined a contractible simplicial
topological space E·G. We can define a right action of G on E·G by

(g0, . . . , gk)g = (g0g, . . . , gkg).

This action is called the diagonal right action and it commutes with the faces
and degeneracies. Thus the quotient is a simplicial differentiable manifold.

Definition 4.8. Let G be a Lie group. The classifying space B·G of G
is the quotient of E·G by the diagonal right action. Thus it is the simplicial
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differentiable manifold given by

BGk =

k︷ ︸︸ ︷
G× · · · ×G,

δ0(g1, . . . , gk) = (g2, . . . , gk),

δi(g1, . . . , gk) = (g1, . . . , gigi+1, . . . , gk), for i = 1, . . . , k − 1,

δk(g1, . . . , gk) = (g1, . . . , gk−1),

σi(g1, . . . , gk) = (g1, . . . , gi, 1, gi+1, . . . , gk), for i = 0, . . . , k.

Then E·G is an universal principal G-bundle over B·G and the morphism
E·G→ B·G is given by

(g0, . . . , gk) 7→ (g0g−1
1 , . . . , gk−1g

−1
k ).

The main objective of this section is to recall the structure of the co-
homology of the classifying space B·GLn(C). The Chern classes of complex
vector bundles and the cohomology of the classifying space B·GLn(C), are
two topics intimately related. One can, as in [24], compute the cohomology
of the classifying space and use it to define characteristic classes or, as in
[47], one can introduce first characteristic classes and use them to study
the cohomology of the classifying space. We will follow the second line of
thought. As in the previous section, we can use the compact group Un

instead of the group GLn(C).
Let us recall a definition of Chern classes. Let X be a differentiable

manifold (simplicial or not) and let π : F → X be a complex vector bundle
of rank n. Let πS : S → X be the associated S2n−1-bundle. Let Ep,qr be
the Leray spectral sequence of the bundle S. Since it is a S2n−1-bundle,
then Ep,qr = 0 for q 6= 0, 2n − 1. Thus the only nonzero differential is d2n.
As in the previous section, the standard orientation of F as complex vector
bundle defines a class σ2n+1 ∈ H2n−1(S2n−1,Z) = E0,2n−1

2 . The Euler class
of F is the class e(F ) = d2nσ2n−1 ∈ E2n,0 = H2n(X,Z).

To give an inductive definition of Chern classes we need two more facts.
First, observe that, for j < 2n− 1, the morphism

π∗S : Hj(X,Z)→ Hj(S,Z)

is an isomorphism. The other fact is that the vector bundle π∗SF has a
canonical rank one trivial subbundle L. The fibre of L over a point v is the
line spanned by v. Let us write F0 = π∗SF/L.

Definition 4.9. Let F be a rank n vector bundle over X. The integer
valued Chern classes of F , bp(F ) ∈ H2p(X,Z) are determined inductively
by the following conditions:

(1) bn(F ) = e(F ).
(2) For p < n,

π∗Sbp(F ) = bp(F0).
(3) For p > n, bp(F ) = 0.
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For our purposes, it will be convenient to define also the twisted Chern
classes, which differ from the integer valued Chern classes by a normalization
factor. For any subgroup Λ of C we will write

Λ(p) = (2πi)pΛ ⊂ C.

Definition 4.10. The twisted Chern classes are

cp(F ) = (2πi)pbp(F ) ∈ H2p
(
X,Z(p)

)
.

From the universal principal G-bundle E·Un → B·Un we can define a
universal vector bundle. Let us denote by ∼ the equivalence relation on
E·Un×Cn given by

(xg, v)∼(x, gv), for all x ∈ E·Un, v ∈ Cn and g ∈ Un.

Definition 4.11. The universal rank n vector bundle, is the vector bun-
dle Fn → B·Un defined by

Fn = E·Un ×
Un

Cn = E·Un×Cn
/
∼

For the proof of the following theorem see [47].

Theorem 4.12. The ring H∗(BUn,Z) is a polynomial ring generated
by the elements bp(Fn), p = 1, . . . , n, with bp(Fn) of degree 2p.

4.3. The Suspension

In Section 4.1 we described a set of canonical generators of H∗(Un,Z)
and in Section 4.2 we recalled that a set of canonical generators of
H∗(B·Un,Z) are given by the Chern classes of the universal bundle. The aim
of this section is to show the relationship between the two sets of generators.
This relationship is given by the suspension map. The main references for
this section are [5,53].

Let (E, π,B) be a fibre bundle with B connected. Let us choose a
point x ∈ B, let F be the fibre at the point x, and let i : F → E be the
inclusion. Let j > 0 be an integer and let [α] ∈ Hj(B,Z) be a class such
that π∗[α] = 0. Let α ∈ Cj(B,Z) be a representative of [α]. By hypothesis,
the cochain π∗(α) is exact. Let us choose any cochain β ∈ Cj−1(E,Z) such
that dβ = π∗(α). Since the morphism π ◦ i : F → B factorizes through the
point x, the cochain i∗π∗(α) = 0. Thus i∗(β) is closed. Moreover it is easy
to see that the cohomology class [i∗(β)] only depends on the class [α].

Definition 4.13. The suspension of [α] is the class s[α] = [i∗(β)].

Thus the suspension is a morphism from Kerπ∗ to H∗(F,Z).
Let us denote by T ∗(F,Z) the image of s. The elements of this group

are called transgressive. Let L∗(B,Z) denote the kernel of s. Thus the
suspension gives us an isomorphism

s :
Kerπ∗

L∗(B,Z)
→ T ∗(F,Z).
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The inverse of this isomorphism is called the transgression. Observe that,
composing with the inclusion Kerπ∗ ⊂ H∗(B,Z) we may assume that the
transgression is a morphism

t : T j−1(F,Z)→ Hj(B,Z)
Lj(B,Z)

.

We recall another description of the transgression (for a proof and more
details see [5, §5] and [45, §6.1]). Let Ep,qr be the Leray spectral sequence for
the fibre bundle π : E → B. Let us assume that the local systems Hj(F,Z),
j ≥ 0, are trivial. This hypothesis will be satisfied in all the examples. Then
we may identify Hj(F,Z) with E0,j

2 by the morphism i∗. Let us identify
also Hj+1(B,Z) with Ej+1,0

2 by the morphism π∗. Let us denote by κ2
j+1

the projection Ej+1,0
2 → Ej+1,0

j+1 .

Proposition 4.14. There is a commutative diagram

T j(F,Z) t // Hj+1(B,Z)
Lj+1(B,Z)

π∗

��

Hj+1(B,Z)oo

π∗

��
E0,j
j+1

dj+1 //

i∗

OO

Ej+1,0
j+1 Ej+1,0

2 ,
κ2

j+1oo

where the vertical arrows are isomorphisms. In particular, the transgressive
elements, T j(F,Z), are those in the successive kernels of the morphisms
d2, . . . , dj and Lj+1(B,Z) is the kernel of κ2

j+1.

Remark 4.15. If Ep,qr is a first quadrant spectral sequence, then E0,j
j+1

is a subobject of E0,j
2 , and Ej+1,0

j+1 is a quotient of Ej+1,0
2 . The morphism

dj+1 : E0,j
j+1 → Ej+1,0

j+1

is called the transgression of this spectral sequence. Thus the meaning of
Proposition 4.14 is that the transgression we have defined as the inverse of
the suspension agrees with the transgression for the Leray spectral sequence
of the fibre bundle.

Example 4.16. Let G be a connected Lie group and let (r, E, π,B) be a
principal G-bundle, with fibre F . Then, for all j, the local systems Hj(F,Z)
are trivial, and we may identify Hj(F,Z) with Hj(G,Z). If E is a universal
principal G-bundle, then it is contractible. Therefore the suspension gives
us a morphism

Hj(B,Z)→ Hj−1(G,Z).

Proposition 4.14 has the following consequence.



4.4. THE STABILITY OF HOMOLOGY AND COHOMOLOGY 29

Proposition 4.17. Let α1, α3, . . . , α2n−1 be the generators of the group
H∗(Un,Z) introduced in Definition 4.5. Then the elements α2p−1 are trans-
gressive in the universal principal Un-bundle. Moreover, if s is the suspen-
sion, Fn is the universal rank n vector bundle, and bp(Fn) are the integer
valued Chern classes, then s

(
bp(Fn)

)
= α2p−1.

Proof. Since the generators α2p−1, the Chern classes of the universal
bundle and the transgression are natural for the morphisms ϕn,m : Um →
Un, it is enough to show that α2n−1 is transgressive and that t(α2n−1) is
equal to bn(Fn) modulo elements of L2n(B·Un,Z). Let us denote by Sn the
sphere bundle over B·Un associated to the universal vector bundle Fn. Let
v0 = (0, . . . , 0, 1)t ∈ Cn. Let ε : E·Un → Fn be the morphism that sends
a point x ∈ E·Un to the class of (x, v0). Clearly the image of ε lies in Sn.
Moreover, if we restrict ε to E0 Un = Un, we obtain the morphism πn : Un →
S2n−1. Let σ2n−1 ∈ H2n−1(S2n−1,Z) be the generator determined by the
orientation of Cn. By definition σ2n−1 is transgressive in the fibration Sn
and t(σ2n−1) = bn(Fn). Since ε∗(σ2n−1) = α2n−1 and ε∗ induces a morphism
of spectral sequences we obtain the result. �

The next fact we will recall is the relationship between the suspension
and the spaces of primitive and indecomposable elements. Proofs of the
following results can be found in [50,53].

Theorem 4.18. Let (r, E, π,B) be a principal G-bundle with E acyclic.
Then the suspension has the following properties.

(1) T ∗(G,Z) ⊂ P ∗(G,Z)
(2) The kernel of the morphism H∗(B,Z) → Q∗(B,Z) is contained in

L∗(B,Z)
Therefore the suspension induces a morphism

s : Q∗(B,Z)→ P ∗−1(G,Z).

In the case of the universal bundle for GLn(C) we can apply a more
precise result due to A. Borel.

Theorem 4.19. Let (r, E, π,B) be a principal G-bundle with E acyclic
and such that H∗(G,Z) =

∧
(V ), where V is an odd graded module. Then

the suspension induces an isomorphism Qj(B,Z) → P j−1(G,Z). Moreover
H∗(B,Z) =

∧
(E[−1]).

Observe that, as a corollary of Theorem 4.19 and of Proposition 4.17 we
obtain that the generators {α2p−1}p=1,...,n of H∗(GLn(C),Z) are primitive.

4.4. The Stability of Homology and Cohomology

The groups GLn(C) form a directed system as in Section 4.1. Let us
write

GL(C) = lim−→GLn(C).
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Then GL(C) is a topological group with the limit topology. Moreover, since
any compact subset of GL(C) is contained in some GLn(C) we have that

Hj(GL(C),Z) = lim−→Hj(GLn(C),Z),

Hj(GL(C),Z) = lim←−H
j(GLn(C),Z).

If m < n, the morphisms

(ϕn,m)∗ : Hj(GLm(C),Z)→ Hj(GLn(C),Z),

(ϕn,m)∗ : Hj(GLn(C),Z)→ Hj(GLm(C),Z)

are isomorphisms for j ≤ 2m. Therefore, for j ≤ 2m, the morphisms

(ϕm)∗ : Hj(GLm(C),Z)→ Hj(GL(C),Z),

(ϕm)∗ : Hj(GL(C),Z)→ Hj(GLm(C),Z)

are isomorphisms. This result is called the stability of the homology and
cohomology of the general linear group. All the classical series of Lie groups
enjoy a similar property.

By the results of Section 4.1 we obtain that, as Hopf algebras,

H∗(GL(C),Z) =
∧

(α1, α3, . . . ),(4.1)

H∗(GL(C),Z) =
∧

(β1, β3, . . . ),(4.2)

where the elements α2p−1, β2p−1, p = 1, 2, . . . are primitive of degree 2p− 1.
There is also a similar stability result for the homology and cohomology

of the classifying space B·GL(C). For the cohomology we obtain

(4.3) H∗(B·GL(C),Z) = Z[b1, b2, . . . ],

where the bi are the Chern classes of the universal bundle. By duality, the
homology is

(4.4) H∗(B·GL(C),Z) = Z[y1, y2, . . . ],

where yi has degree 2i and is the dual of bi1. The coalgebra structure of the
homology is given by

∆(yi) =
∑
j+k=i

yj ⊗ yk.

As in Example 3.9 a basis of the primitive elements in homology is given by
pr1 = y1,

prn= (−1)n+1nyn +
n−1∑
j=1

(−1)j+1yjprn−j , for n > 1.

By Proposition 4.17 we have

Proposition 4.20. (1) The suspension

s : H2p(B·GL(C),Z)→ H2p−1(GL(C),Z)

is given by
s(bp) = α2p−1.
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(2) The suspension map in homology :

s∨ : H∗(GL(C),Z)→ H∗(B·GL(C),Z),

is given by
s∨(β2p−1) = prp.

It is clear that the space B·GLn(C) cannot have a structure of H-space,
because its cohomology ring is finite dimensional and evenly generated. On
the other hand, the infinite classifying space B·GL(C) has a structure of
H-space (see [22]). This implies that the homology and cohomology of
B·GL(C) have a structure of Hopf algebras. Moreover these Hopf algebras
are isomorphic to the Hopf algebra of Example 3.9. That is, the coproduct
in cohomology is given by

∆bi =
∑
j+k=i

bj ⊗ bk,

and the product in homology is determined by the equality (4.4) being an
algebra isomorphism. Therefore, as in Example 3.9, a basis of the primitive
elements of the cohomology is determined inductively by

pr1 = b1,

prn= (−1)n+1nbn +
n−1∑
j=1

(−1)j+1bjprn−j , for n > 1.

Definition 4.21. The (rational valued) reduced Chern character is the
series in the Chern classes ⊕

p>1

1
p!

prp.

The twisted reduced Chern character is the series

ch+ =
⊕
p

chp =
⊕
p

(2πi)p

p!
prp

In particular, we write

chp =
(2πi)p

p!
prp ∈ H2p

(
B·GL(C),Q(p)

)
for the component of degree 2p of the twisted reduced Chern character.

For other equivalent definitions of the Chern character and his properties
the reader is referred to [38, §10].

4.5. The Stable Homotopy of the General Linear Group

We know from Section 3.4 that the Hurewicz morphism

πj(GLn(C), e)→ Pj(GLn(C),Z).

is an isomorphism after tensoring with Q. The aim of this section is to
describe the exact behaviour of the above morphisms when n goes to infinity.
For proofs the reader is referred to [22] and to [48].
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As in the case of the homology, we have

π∗(GL(C), e) = lim
n→∞

π∗(GLn(C), e).

The structure of the homotopy groups of GL(C) is completely deter-
mined by the Bott Periodicity Theorem [10]. For any topological space X,
let us denote by ΩX the loop space of X. As in the case of the group GL,
we will denote by SL(C) the limit of the groups SLn(C).

Theorem 4.22 (Bott’s Periodicity Theorem). There is a weak homotopy
equivalence h : |B·GL(C)| → Ω SL(C).

Since GL(C) is homeomorphic to SL(C)×C∗, we have that πj(GL(C), e)
= πj+2(GL(C), e), for j ≥ 0. By induction this implies:

Corollary 4.23. The homotopy groups of the infinite general linear
group are given, for j ≥ 0, by

πj(GL(C), e) =

{
0, if j is even,
Z, if j is odd.

Moreover Bott’s Periodicity Theorem allows us to inductively determine
the Hurewicz morphism (see [22]).

Theorem 4.24. Let ε2p−1 be a generator of the group π2p−1(GL(C), e),
and let Hur be the Hurewicz morphism. Then

Hur(ε2p−1) = ±(p− 1)!β2p−1.

Remark 4.25. For each p ≥ 1, the component of degree 2p of the twisted
Chern character satisfies

chp =
(2πi)p

(p− 1)!
bp + decomposable elements ∈ H2p

(
B·GL(C),Q(p)

)
.

Thus, if s is the suspension, then s(chp) = (2πi)pα2p−1/(p− 1)!. Therefore

s(chp)
(
Hur(ε2p−1)

)
= ±(2πi)p.

4.6. Other Consequences of Bott’s Periodicity Theorem

In the previous section we recalled a particular case of Bott’s Period-
icity Theorem for the unitary group, whose stable homotopy is periodic of
period 2. But Bott’s Periodicity Theorem ([10], see [15, 48]) is more gen-
eral and establishes that the stable homotopy of other classical Lie groups
and homogeneous spaces is periodic of period 8. Let us write U = lim−→Un,
O = lim−→On(R) and Sp = lim−→Spn. Then SU and SO will have the obvious
meaning. The inclusions Un ⊂ O2n, Spn ⊂ U2n and On ⊂ Un induce inclu-
sions U ⊂ O, Sp ⊂ U and O ⊂ U. Then the Bott’s Periodicity Theorem
imply
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Theorem 4.26. The homotopy groups of the spaces Sp, U /Sp, O /U,
O, U /O are periodic of period 8. Moreover, these groups are given by the
following table

X 0 1 2 3 4 5 6 7
Sp 0 0 0 Z Z/2Z Z/2Z 0 Z

U /Sp 0 Z 0 0 0 Z Z/2Z Z/2Z
O /U Z/2Z 0 Z 0 0 0 Z Z/2Z

O Z/2Z Z/2Z 0 Z 0 0 0 Z
U /O 0 Z Z/2Z Z/2Z 0 Z 0 0

where the groups listed in the ith column are the groups πj(X,x) for j ≡
i mod 8.

Unlike their finite dimensional counterpart, the infinite dimensional ho-
mogeneous spaces U /Sp, O /U and U /O have a structure of H-spaces
([15]). Therefore the above theorem and Cartan–Serre Theorem 3.17 allow
us to compute the rank of the primitive part of its homology groups.

Corollary 4.27. The dimension of the group Pm(U /O,R) is one if
m ≡ 1 mod 4 and zero otherwise.





CHAPTER 5

Lie Algebra Cohomology and the Weil Algebra

5.1. de Rham Cohomology of a Lie Group

Let G be a real Lie group. Let E∗(G,R) be the complex of global real
valued differential forms on G. For any element g ∈ G, let lg (resp. rg) be the
map given by the left action (resp. the right action) of g onG. That is lg(x) =
gx and rg(x) = xg. A differential form ω is called left invariant if l∗gω = ω for
all g ∈ G. The subspace of left invariant forms is a subcomplex of E∗(G,R)
denoted by E∗(G,R)L. We define right invariant forms analogously. The
complex of right invariant forms will be denoted E∗(G,R)R. A differential
form is called invariant if it is left and right invariant. We will denote
by E∗(G,R)I the subspace of invariant differential forms. Any invariant
differential form is closed (see for instance [32, 4.9]).

The cohomology of the complex E∗(G,R) is the de Rham cohomology
of G. It is naturally isomorphic to the singular cohomology, H∗(G,R).
In the sequel we will identify both spaces. The cohomology of the com-
plex E∗(G,R)L is called left invariant cohomology and will be denoted by
H∗

L(G,R). We have morphisms of algebras

E∗(G,R)I → H∗
L(G,R)→ H∗(G,R).

Let us denote by g the Lie algebra of G, and let g∨ be the dual real
vector space. In the exterior algebra Λ∗g∨ there is a unique derivation such
that

d : g∨ → g∨ ∧ g∨

is the dual of the Lie bracket. Explicitly this derivation is given by

dω(h0, . . . , hp) =
∑
i<j

(−1)i+jω([hi, hj ], h0, . . . , ĥi, . . . , ĥj , . . . , hp).

Since d has square zero, (Λ∗g∨, d) is a differential graded algebra. We will
denote the differential graded algebra (Λ∗g∨, d) by E∗(g,R), or by E∗(g) if
there is no danger of confusion with the coefficients.

Definition 5.1. The cohomology algebra of the Lie algebra g, denoted
by H∗(g,R), is the cohomology of the graded differential algebra E∗(g).

The group G acts on itself by conjugation. This induces an action of G
on g, called the adjoint action and denoted by Ad. The derivative of Ad
is an action of g over itself that we will denote by θ. This action is the

35
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Lie bracket: θ(h)(x) = [h, x]. Both actions, Ad and θ, can be extended to
actions on E∗(g). The last one is given explicitly by

(5.1) θ(h)(Φ)(h1, . . . , hp) = −
p∑
i=1

Φ(h1, . . . , [h, hi], . . . , hp).

Let us denote by
(
E∗(g)

)Ad the subalgebra of invariant elements and let
us write (

E∗(g,R)
)
θ=0

= {Φ ∈ E∗(g,R) | θ(h)(Φ) = 0,∀h}

Clearly there is an inclusion
(
E∗(g)

)Ad →
(
E∗(g)

)
θ=0

. Moreover, if G
is connected, both subspaces agree.

Evaluation at the unit element determines an isomorphism of differential
graded algebras

E∗(G,R)L → E∗(g).

This isomorphism induces an isomorphism

E∗(G,R)I →
(
E∗(g)

)Ad
.

Thus we obtain a commutative diagram, where the vertical arrows are iso-
morphisms.

E∗(G,R)I //

��

H∗
L(G,R) //

��

H∗(G,R)

(
E∗(g)

)Ad // H∗(g).

In general, the horizontal arrows of this diagram are not isomorphisms. But
in the case of compact connected groups we have the following result:

Proposition 5.2. Let G be a compact connected Lie group. Then the
inclusions

i : E∗(G,R)L → E∗(G,R) and j : E∗(G,R)I → E∗(G,R)

are homotopy equivalences. In particular the induced maps

E∗(g)θ=0 → H∗(g,R)→ H∗(G,R)

are isomorphisms.

Sketch of proof. Let dg be a normalized Haar measure on G, that
is, a normalized invariant measure. Since G is compact, we can use this
measure to average any differential form with respect to the left action of G
over itself. Namely we define a morphism

ρ : E∗(G,R)→ E∗(G,R)L

by

ρ(ω) =
∫
G
g∗ω dg.
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Then ρ is an homotopy equivalence quasi-inverse of i (see for instance [32,
4.3]). To prove that j is a homotopy equivalence we can consider the action
T of G×G on G given by

Ta,b(x) = axb−1

and also use an averaging argument. �

From this result on compact real Lie groups we can obtain an analogous
result for complex reductive groups. A complex reductive group is a complex
analytic group that has a faithful analytical representation and such that ev-
ery finite dimensional analytical representation is semisimple. Examples of
reductive groups are the semisimple complex analytical groups and the gen-
eral linear group GLn(C). The main structure theorem of complex reductive
groups is the following (see [39, XV Theorem 3.1 and XVII Theorems 5.1
and 5.3])

Theorem 5.3. Let G be a complex analytic reductive Lie group. Then
there is a real maximal compact Lie subgroup U of G such that G is isomor-
phic, as real analytical manifold, to the product U × E, where E is a real
vector space. Moreover, if g is the complex Lie algebra of G and u is the real
Lie algebra of U , then

g = u⊗ C.

Let G be a closed analytic subgroup of GLn(C) that is connected and
reductive. Let us denote by Ω∗(G) the complex of global holomorphic differ-
ential forms. Since G is a Stein manifold, the sheaves of holomorphic forms
are acyclic. Therefore there is a natural isomorphism

H∗(Ω∗(G)
)
→ H∗(G,C).

Let g denote the complex Lie algebra of G, and let us denote by g∨ the
complex dual. As in the case of real Lie groups, we can define a complex
graded differential algebra E∗(g,C) = Λ∗g∨, and we can identify E∗(g,C)
with the subspace of left invariant holomorphic differential forms, Ω∗(G)L.

Corollary 5.4. The natural morphism

H∗(E∗(g,C)
)
→ H∗(Ω∗(G)

)
is an isomorphism.

Proof. Let U be a real maximal compact Lie subgroup of G. Let u be
its real Lie algebra. By Theorem 5.3 we have that

H∗(U,C) = H∗(G,C), and E∗(g,C) = E∗(u,R)⊗ C.

Therefore the corollary is a direct consequence of Proposition 5.2. �
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5.2. Reductive Lie Algebras

In this section we will review some results on the cohomology of re-
ductive Lie algebras. The main references are [11, 33]. Let us fix a field
of characteristic zero, k. Through this section Lie algebra will mean finite
dimensional Lie algebra over k.

Let g be a Lie algebra. A (finite dimensional) representation of g is a
Lie algebra homomorphism

ρ : g→ gl(V ),

where V is a finite dimensional vector space.

Definition 5.5. Let g be a Lie algebra and ρ a representation. The
trace form associated to ρ is the bilinear form

〈X,Y 〉ρ = Tr
(
ρ(X) ◦ ρ(Y )

)
.

The basic property of the trace form is:

(5.2) 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0, X, Y, Z ∈ g.

Definition 5.6. A Lie algebra g is called reductive if

g = Zg ⊕ g′,

where Zg is the center of g and g′ is a semisimple Lie algebra.

Theorem 5.7. Let g be a finite dimensional Lie algebra. The following
conditions are equivalent

• g is reductive.
• g admits a faithful, finite-dimensional representation with nonde-

generate trace form.
• g admits a faithful, finite-dimensional semisimple representation.

Example 5.8. If G is a compact Lie group then its Lie algebra is a real
reductive Lie algebra. Analogously, if G is a complex reductive group then
its Lie algebra is a complex reductive Lie algebra.

For any representation ρ of g in a vector space V we will denote by ρ(V )
the subspace of V generated by the vectors ρ(X)v, for X ∈ g, and v ∈ V .

The adjoint action of g on itself induces a representation, θ, of g on the
graded vector space E∗(g). Moreover this representation is compatible with
the differential. Therefore we have induced representations in the subspace
of cycles, denoted Z∗(g), the subspace of boundaries, denoted B∗(g) and the
cohomology, H∗(g). The representation θ is semisimple, therefore there is a
direct sum decomposition

E∗(g) = E∗(g)θ=0 ⊕ θ
(
E∗(g)

)
.

The relationship between invariant forms and Lie algebra cohomology is
given by the following result.
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Lemma 5.9. Let g be a reductive Lie algebra. Then

Z∗(g) = E∗(g)θ=0 ⊕B∗(g), B∗(g) = θ
(
Z∗(g)

)
= Z∗(g) ∩ θ

(
E∗(g)

)
.

As a direct consequence we have:

Theorem 5.10. Let g be a reductive Lie algebra. Then the projection

Z∗(g)→ H∗(g)

induces an isomorphism

E∗(g)θ=0 → H∗(g).

We can introduce in E∗(g)θ=0 (hence in H∗(g)) a structure of Hopf
algebra. Let µ : g ⊕ g → g be the linear map given by µ(X,Y ) = X + Y .
Then µ induces a linear morphism

µ∗ : E∗(g)→ E∗(g⊕ g).

Let
η : E∗(g⊕ g)→ E∗(g)θ=0 ⊗ E∗(g)θ=0

be the projection with kernel θ
(
E∗(g⊕ g)

)
. Let us write

∆ = η ◦ µ∗|E∗(g) : E∗(g)θ=0 → E∗(g)θ=0 ⊗ E∗(g)θ=0.

Theorem 5.11. The space E∗(g)θ=0 provided with the wedge product, ∧,
the coproduct, ∆, and the unit and counit determined by the isomorphism
E0(g) = k, is a Hopf algebra.

Corollary 5.12. Let P ∗(g) be the subspace of primitive elements of
E∗(g)θ=0. Then, the inclusion P ∗(g) ⊂ E∗(g)θ=0 induces an isomorphism∧
P ∗(g) ∼= E∗(g)θ=0.

The structure of Hopf algebra and the subspace of primitive elements is
functorial.

Proposition 5.13. Let f : h→ g be a morphism of Lie algebras. Then
the induced morphism

f∗ : E∗(g)→ E∗(h),
restricts to a morphism of Hopf algebras

f∗ : E∗(g)θ=0 → E∗(h)θ=0.

In particular f∗
(
P ∗(g)

)
= P ∗(h).

Let G be a compact Lie group, and let g be its Lie algebra. The cohomol-
ogy H∗(G,R) has a structure of Hopf algebra induced by the multiplicative
structure of G. On the other hand, by Proposition 5.2 there is a natural
isomorphism H∗(G,R)→ H∗(g,R).

Proposition 5.14. Let G be a compact Lie group, and let g be its Lie
algebra. Then the natural isomorphism

H∗(G,R)→ H∗(g,R)

is a Hopf algebra isomorphism.
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5.3. Characteristic Classes in de Rham Cohomology

In this section we will review the construction of characteristic classes in
de Rham cohomology by means of a connection. We will work in the general
case of a principal bundle. The basic references for this chapter are [18,24].

Given a differentiable manifold M and a vector space V , we will denote
by E∗(M,V ) the space of differential forms on M with values in V .

Let (r, E, π,B) be a G-principal bundle with base B and total space E.
Since G acts on E on the right by r, we obtain a left action, r∗ of G on
E∗(E, V ).

Let g be the Lie algebra of G and let h ∈ g. We can make h to act on
E∗(E, V ) in two different ways. For each x ∈ E, the map g 7→ xg induces a
morphism νx : g→ TxE. Let Xh be the fundamental vector field generated
by h. This vector field is determined by the condition

(Xh)x = νx(h).

We will denote by i(h) the substitution operator by the vector field Xh and
by θ(h) the Lie derivative with respect to the vector field Xh. Explicitly, if
Φ ∈ Ep(E, V ),

i(h)Φ(X2, . . . , Xp) = Φ(Xh, X2, . . . , Xp),

θ(h)Φ(X1, . . . , Xp)= XhΦ(X1, . . . , Xp)−
p∑
i=1

Φ(X1, . . . , [Xh, Xi], . . . , Xp).

The operators i(h) and θ(h) are derivations (in the graded sense) of degree
−1 and 0. They satisfy the following properties

(5.3)

i([h, k]) = θ(h) ◦ i(k)− i(h) ◦ θ(k),
θ([h, k]) = θ(h) ◦ θ(k)− θ(h) ◦ θ(k),

θ(h) = i(h) ◦ d+ d ◦ i(h),
d ◦ θ(h) = θ(h) ◦ d.

In particular, when the base is a point and E = G, we have operators
i(h) and θ(h) defined in E∗(G,R). We may restrict these operators to the
subalgebra E∗(G,R)L, that is, to E∗(g,R). In this case the operator θ(h)
agrees with the operator of the same name defined in Section 5.1 ([33, 4.8]).

A differential form Φ ∈ E∗(E, V ) is called horizontal if i(h)Φ = 0 for all
h ∈ g. The subset of horizontal differential forms is a subalgebra denoted
E∗(E, V )i=0. A differential form is called invariant if it is invariant under
r∗. A differential form is called basic if it is both horizontal and invariant.

The induced morphism

π∗ : E∗(B, V )→ E∗(E, V )

is injective and we may identify E∗(B, V ) with the subset of basic forms
([32, 6.3]). Moreover, if G is connected the subset of invariant forms agrees
with the subset E∗(E, V )θ=0. For simplicity, in the sequel we will assume
that G is connected.
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The key concept in the theory of characteristic classes in de Rham co-
homology is the concept of a connection.

Definition 5.15. Let E = (r, E, π,B) be a principal G-bundle. A
connection in E is a 1-form ∇ ∈ E1(E, g) such that

(1) i(h)∇ = h.
(2) r(g)∗∇ = Ad(g−1) ◦ ∇.

A connection ∇ induces a morphism

f∇ : E1(g)→ E1(E,R),

given by f∇(x) = x ◦ ∇. We can extend this morphism multiplicatively to
obtain a morphism of algebras.

f∇ : E∗(g)→ E∗(E,R).

Example 5.16. Let us consider the principal bundle G→ {∗} with the
usual right action rgg

′ = g′g. Let lg denote the usual left action. The
Maurer–Cartan connection is the 1-form ∇MC ∈ E1(G, g) defined by

(5.4) ∇MC
g = (lg−1)∗.

Then the morphism f∇MC : E∗(g)→ E∗(G,R) sends an element of E∗(g) to
the corresponding left invariant form.

In general the morphism f∇ is not a morphism of complexes. The map
φ : E1(g)→ E2(E,R) given by φ(x) = df∇(x)− f∇(dx) measures how far is
f∇ from being a morphism of complexes. It is called the curvature tensor
of the connection.

Let us denote by S∗(g,R) or by S∗(g) the symmetric algebra over g∨.
We view S∗(g) as a graded module by saying that the piece Sp(g) has degree
2p.

Definition 5.17. Let G be a Lie group and let g be its Lie algebra. The
Weil algebra of G is the bigraded algebra W (G) defined by

W p,q(G) = W p,q(G,R) = Sp(g)⊗ Eq−p(g).

Initially we will consider the Weil algebra only as a graded algebra with
the total degree.

The map f∇ : E∗(g) → E∗(E,R) can be extended to a map defined on
W (G). To this end, for x ∈ S1(g) = g∨, we write f∇(x) = φ(x) and we
extend f∇ multiplicatively. By definition f∇ is a morphism of algebras.

We want to define in W (G) a differential, d, and operators i(h) and θ(h),
for h ∈ g, which are derivations of degree 1, −1 and 0 and that satisfy the
conditions (5.3).

We first define the operator i(h). It is already defined in E∗(g). We put
i(h) = 0 in S∗(g). Thus there is a unique derivation i(h) extending these
data.

To define θ(h) in W (G), it is enough to define it for S1(g) = g∨. Here
we may use the natural action θ of g on g∨ (see formula (5.1)).
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Now we want to introduce the differential in W (G). Let us denote by
dE the differential in the complex E∗(g). And let

h : E1(g) = g∨ → S1(g) = g∨

be the identity map.
If x ∈ E1(g) we write

dx = dEx+ h(x).

Let x1, . . . , xp be a basis of g. Let x′1, . . . , x
′
p be the dual basis. If

x ∈ S1(g), we write

dx =
p∑

k=1

θ(xk)x⊗ x′k.

Then d can be extended uniquely to a derivation of degree one in W (G).
For a proof of the following result see [18]

Theorem 5.18. Let (r, E, π,B) be a principal G-bundle and let ∇ be a
connection. Then the map

f∇ : W (G)→ E∗(E,R)

is a morphism of differential graded algebras compatible with the operators
θ(h) and i(h) for all h ∈ g.

Let W 2p(G)i=0,θ=0 be the subspace of basic elements of degree 2p of
W (G). It agrees with the subalgebra of invariant elements Sp(g)θ=0. We
will denote it by I2p

G . The morphism f∇ : W (G) → E∗(E,R) sends I∗G
to the subalgebra of basic elements of E∗(E,R) which has been identified
with E∗(B,R). Therefore, since the elements of I∗G are closed we obtain a
morphism of graded algebras

ωE : I∗G → H∗(B,R).

Definition 5.19. The Chern-Weil morphism is the morphism

ωE : I∗G → H∗(B,R).

The next result is the heart of the de Rham realization of characteristic
classes (cf. for instance [17])

Theorem 5.20. The Chern–Weil morphism is independent of the con-
nection.

As a consequence of this theorem, the image ωE(IG) is a subalgebra of
H∗(B,R) which is characteristic of the principal G-bundle E.

Remark 5.21. Since the Weil algebra and the subspace of invariant
elements only depend on the Lie algebra g we will sometimes write W (g)
and I(g) for W (G) and IG. Moreover, observe that we can define the Weil
algebra and the subspace of invariant elements for a Lie algebra over any
field.
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We can think of the algebra W (G) as an algebraic analogue of the
de Rham algebra of the total space of the universal principal G-bundle.
For instance, in the next section, we will see that the Weil algebra can be
used to compute the suspension map. The first ingredient of this analogy
is that the Weil algebra also has trivial cohomology. For a proof see [17,
Theorem 1].

Theorem 5.22. The cohomology of W (G) is

H+
(
W (G)

)
= 0 and H0

(
W (G)

)
= R.

To fully develop the relationship between W (G) and E∗(E·G,R) we
have to introduce connections in simplicial principal G-bundles. We will
use the complex of simplicial differential forms, E∗simp(E·G,R), because it
is a commutative and associative algebra. Let π : E· → B· be a simplicial
principal bundle. A connection for π is a differential form ∇ ∈ E1

simp(E·, g),
such that its restriction to Hp ×Ep is a connection for the principal bundle
Hp × Ep → Hp ×Bp.

Let us choose a connection∇ for the universal bundle E·G→ B·G. Since
E∗simp(E·G,R) is a differential graded commutative and associative algebra,
we have a morphism

f∇ : W (G)→ E∗simp(E·G,R)

and a Chern–Weil morphism

ωE·G : I∗G → H∗(B·G,R).

Observe that this Chern–Weil morphism is functorial on the group G. More-
over, if G is compact we have the following result (cf. [24]).

Theorem 5.23. Let G be a connected compact Lie group. Then the
Chern–Weil morphism for the universal bundle

ωE·G : I∗G → H∗(B·G,R)

is an isomorphism.

Example 5.24. Let V be a complex vector space of dimension n. For
any endomorphism φ ∈ gl(V ) we will write ∧pφ the morphism induced in∧p V . We define bilinear maps

� : gl(
∧pV )× gl(

∧qV )→ gl(
∧p+qV ),

writing

(φ� ψ)(x1 ∧ · · · ∧ xp+q) =
1
p!q!

∑
σ∈Sp+q

(−1)σφ(xσ(1) ∧ · · · ∧ xσ(p)) ∧ ψ(xσ(p+1) ∧ · · · ∧ xσ(p+q)).

In particular
φ� · · ·� φ︸ ︷︷ ︸

p

= p! ∧p φ.
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Definition 5.25. Let V be an n-dimensional complex vector space. The
pth characteristic coefficient is the element

Cp ∈ I2p
(
gl(V )

)
,

given by C0 = 1, and

Cp(φ1, . . . , φp) = Tr(φ1 � · · ·� φp).

Observe that the homogeneous polynomials

Cp(φ) =
1
p!
Cp(φ, . . . , φ) = Tr(∧pφ)

are the coefficients of the characteristic polynomial of the endomorphism φ.

Definition 5.26. The trace coefficients of the complex vector space V
are the elements Trp ∈ I2p

(
gl(V )

)
defined by

Tr0 = dimV

and
Trp(φ1, . . . , φp) =

∑
σ∈Sp

Tr(φσ(1) ◦ · · · ◦ φσ(p)).

The trace coefficients and the characteristic coefficients are related by
(see [33, A.3])

Tr1 = C1,

Trn= (−1)n+1nCn +
n−1∑
j=1

(−1)j+1Cj Trn−j , for n > 1.

Proposition 5.27. Let Un be the unitary group. Then the elements
Cp, p = 0, . . . , n generate I∗Un

⊗ C as an algebra. Moreover, the class
ωE· Un(Cp) = cp agrees with the twisted Chern class of the universal rank
n vector bundle. The elements Trp, p = 0, . . . , n also generate I∗Un

⊗ C
as an algebra, and the class ωE· Un(Trp)/p! agrees with chp, the component
of degree 2p of the twisted Chern character of the universal rank n vector
bundle.

Remark 5.28. Let G be a compact Lie group, and T be a maximal
torus. Then T = S1× · · · ×S1. Let w be the Weyl group. Thus I∗G = (I∗T )w

and I∗T = I∗S1 ⊗ · · · ⊗ I∗S1 . Therefore by functoriality and multiplicativity,
the Chern–Weil morphism for any compact group G, ωE·G, is completely
determined by the Chern-Weil morphism for the group S1, ωE·S1 . This
result is a version of the splitting principle.

The universal principal bundle has a canonical connection which allows
us to obtain canonical representatives of the characteristic classes. This
connection is defined using the Maurer–Cartan connection, ∇MC, (see Ex-
ample 5.16).

Let qi : Hp × EpG → G, i = 0, . . . p, denote the projection over the ith
factor of EpG. Let us write ∇i = q∗i∇MC and let

(5.5) ∇E·G = t0∇0 + · · ·+ tp∇p,
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where t0, . . . , tp are baricentric coordinates of Hp. Since
∑
ti = 1, the form

∇E·G ∈ E1
simp(E·G,R)

is a connection, and it is called the canonical connection of the universal
principal bundle.

Let ϕ : H → G be a morphism of Lie groups. Then we have that

(5.6) (E·ϕ)∗∇E·G = ϕ∗ ◦ ∇E·H .

From the canonical connection we obtain a morphism

f∇E·G : I∗G → E∗simp(B·G,R).

A direct consequence of the equation (5.6) is that this morphism is func-
torial on the Lie group G.

Remark 5.29. Composing with the integration morphism

E∗simp(B·G,R)→ sCE∗(B·G,R)

we obtain also a well defined morphism

f∇E·G : I∗G → sCE∗(B·G,R),

which is also determined by the case G = S1. It is easy to show that the
image of this morphism is included in NE∗(B·G,R).

Changing the ground field from R to C, the definition of the Weil algebra
and the Weil homomorphism carries over to the case of complex analytical
groups. Moreover, using Theorem 5.3, as in Corollary 5.4, we obtain the
analogue of Theorem 5.23 for connected complex reductive groups:

Theorem 5.30. Let G be a complex connected analytic reductive Lie
group. Then the complex valued Chern–Weil morphism for the universal
bundle

ωE·G : I∗G → H∗(B·G,C)

is an isomorphism.

5.4. The Suspension in the Weil Algebra

Recall that to define the suspension map in a principal G-bundle
(r, E, π,B) we choose a point x ∈ B and an inclusion i : G → E of G
as the fibre over x. Let us start by describing the simplicial analogue of this
situation.

The classifying space B·G has B0G = {e}. Therefore it is naturally a
pointed space. Let e· denote the simplicial point given by en = (e, . . . , e).
The fibre of the universal principal G-bundle at this point is the simplicial
manifold G·, which has Gn = G and all faces and degeneracies equal to the
identity. Let ∆ denote the inclusion

∆: G· → E·G
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as the diagonal. There is a homotopy equivalence

ε : E∗simp(G·,R)→ E∗(G,R),

which sends a sequence of forms {η(n)}n to the form η(0). The composition
ε ◦∆∗ sends a sequence of forms {η(n)}n, with

η(n) ∈ E∗(Hn × EnG,R),

to the form
η(0) ∈ E∗(E0G,R) = E∗(G,R).

The morphism ε ◦∆∗ is the simplicial analogue of the morphism i∗.
Let us denote also by

ε : W (G)→ W (G)
S+(g)⊗ E∗(g)

= E∗(g)

the natural projection. Then there is a commutative diagram

I∗G //

f∇E·G
��

W (G) ε //

f∇E·G
��

E∗(g)

f∇MC

��
E∗simp(B·G,R) // E∗simp(E·G,R) ε◦∆∗

// E∗(G,R).

If G is a compact connected Lie group, then the vertical arrows are quasi-
isomorphisms. Thus, in this case we can compute the suspension map as
follows (compare with Section 4.3). Let α ∈ I+

G . Since α is closed and W (G)
is acyclic, there exists an element β such that dβ = α. Then

(5.7) s
(
ωE·G(α)

)
= [ε(β)].

Let us give another description of the suspension morphism. We can
give it in a purely algebraic setting. So let k a field of characteristic zero
and let g any Lie algebra over k.

Let us denote by F the filtration of the Weil algebra associated with the
first degree.

F pW (g) =
⊕
p′≥p

W p′,∗(g).

We will call this filtration the Hodge filtration. By the definition of the Weil
algebra, it is clear that

H2p
(
F pW (g)

)
= I2p(g).

Let us denote by

δ : H2p−1
(
E∗(g)

)
= H2p−1

(
W ∗(g)/F 1W ∗(g)

)
→ H2p

(
F 1W ∗(g)

)
,

the connecting morphism for the exact sequence

0→ F 1W (g)→W (g)→W (g)/F 1W (g)→ 0.

Since W (g) is acyclic, δ is an isomorphism.
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Definition 5.31. Let g be a Lie algebra. Then the suspension sg, is the
composite map

I2p(g) H2p
(
F pW (g)

)
// H2p

(
F 1W (g)

)
δ−1

// H2p−1
(
W (g)/F 1W (g)

)
H2p−1(g).

This definition is equivalent to the definition given at the beginning of the
section. Thus the suspension just defined for the Lie algebra is compatible
with the suspension in a compact Lie group or a complex reductive group.
More concretely we have the following results.

Proposition 5.32. Let G be a compact connected Lie group, and let g
be its Lie algebra. Then the suspension can be factored as

H2p(B·G,R)
ω−1

E·G−−−→ I2p
G

sg−→ H2p−1(g) = H2p−1(G,R).

Proposition 5.33. Let G be a connected complex reductive Lie group,
and let g be its Lie algebra. Then the suspension can be factored as

H2p(B·G,C)
ω−1

E·G−−−→ I2p
G

sg−→ H2p−1(g) = H2p−1(G,C).

Moreover, the suspension computed using real linear algebra and the
suspension computed using complex linear algebra are compatible.

Proposition 5.34. Let gR be a real Lie algebra and let us write g =
gR ⊗ C. Then there is a commutative diagram

I2p(gR) //

sgR
��

I2p(g)

sg

��
H2p−1(gR,R) // H2p−1(g,C).

The relationship between the suspension and the subspaces of primitive
and indecomposable elements of Theorem 4.18 has a complete parallelism
in the case of Lie algebras (see [33, §6.14]).

Theorem 5.35. Let g be a reductive Lie algebra. Then

Im(sg) = P ∗(g),

Ker(sg) = I+(g) · I+(g).

The suspension in the Lie algebra can be realized as an explicit linear
morphism I2p(g) 7→ E2p−1(g)θ=0 (see [33, §6.8]).
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Proposition 5.36. Let Ψ ∈ I2p(g). Then sg(Ψ) is represented by the
form

sg(Ψ)(x1, . . . , xp) =
(−1)p−1(p− 1)!
2p−1(2p− 1)!

×
∑

σ∈S2p−1

(−1)σΨ(xσ(1), [xσ(2), xσ(3)], . . . , [xσ(2p−2), xσ(2p−1)]).

Example 5.37. By Proposition 5.27, chp, the component of degree 2p of
the twisted Chern character, is represented by Trp /p! ∈ I2p

Un
, where the trace

coefficients Trp is defined in Definition 5.26. Therefore s(chp) is represented,
in H2p−1(un,C) by the form Φ2p−1 = s(Trp)/p! given by

Φ2p−1(x1, . . . , x2p−1)

=
(−1)p−1(p− 1)!

(2p− 1)!

∑
σ∈S2p−1

(−1)σ Tr(xσ(1) ◦ · · · ◦ xσ(2p−1)).

5.5. Relative Lie Algebra Cohomology

Let g be a Lie algebra over a field of characteristic zero k, and let h be a
subalgebra. Let us denote by θh the restriction of the action θ to h. Since h
is a subalgebra, we have an induced action of h on the quotient vector space
g/h. Let us write

En(g, h) = Homh(Λn(g/h), k),
where we consider k as a trivial g module. Then En(g, h) is a subgroup of
En(g). Moreover, since

d
(
En(g, h)

)
⊂ En+1(g, h),

we have that E∗(g, h) is a subcomplex of E∗(g).

Definition 5.38. The relative Lie algebra cohomology groups are the
cohomology groups of the complex E∗(g, h). These groups will be denoted
by H∗(g, h).

Example 5.39. LetG be a connected Lie group and letH be a subgroup.
Let us write M = H\G. Then E∗(g, h) is naturally isomorphic to the
complex of G-invariant differential forms on M , E∗(M,R)G. Moreover, if G
is compact, an averaging argument as in Proposition 5.2 shows that there is
an isomorphism

H∗(g, h)→ H∗(M,R).

Definition 5.40. Let g be a Lie algebra and let j : h→ g be a subalge-
bra. We say that h is reductive in g if the representation θh is semisimple.
We will say that h is noncohomologous to zero if it is reductive in g and the
morphism

j∗ : H∗(g)→ H∗(h)
is surjective.
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Our interest in the noncohomologous to zero subalgebras is the following
result ([33, §10.18])

Proposition 5.41. Let h be a noncohomologous to zero subalgebra of g.
Then the morphism

H∗(g, h)→ H∗(g)
is injective.





CHAPTER 6

Group Cohomology and the van Est Isomorphism

In this section we will recall the notions of group cohomology and of con-
tinuous group cohomology. Moreover we will recall the van Est isomorphism
that relates continuous cohomology with relative Lie algebra cohomology.
We will follow [35]. For more details the reader may consult [9].

6.1. Group Homology and Cohomology

Let G be an abstract group. The homology and cohomology groups of
G can be defined in many equivalent ways. One of them is the following.
Let X be a contractible topological space, where G acts freely and properly
discontinuously on the right; this means that the stabilizer of each point is
trivial and that, for each point x ∈ X, there exists a neighbourhood U of
x such that xG ∩ U = {x}. Then the topological space X/G is a K(G, 1)
space. That is, the fundamental group of X/G is G and the other homotopy
groups are zero. For any abelian group A we put

H∗(G,A) = H∗(X/G,A) and H∗(G,A) = H∗(X/G,A).

In particular, the topological space |E·G| is contractible and the right action
of G on E·G is free and properly discontinuous. Therefore

(6.1) H∗(G,A) = H∗(|B·G|, A) and H∗(G,A) = H∗(|B·G|, A).

In order to distinguish between group homology and singular homology,
if G is a topological group, we will denote H∗

group(G,A) and Hgroup
∗ (G,A) for

the cohomology and homology of G as an abstract group. This distinction
will not be necessary when G is a discrete group or an abstract group.
Thus, in this case we will denote the group cohomology groups and the
group homology groups by H∗(G,A) and H∗(G,A) respectively.

Let us recall another way to define the cohomology groups of G. A
G-module is an abelian group E provided with a left action of G by au-
tomorphisms. A G-morphism is a morphism of abelian groups compatible
with the action of G. An injective G-morphism is called strong if it has a
left inverse as a morphism of abelian groups. A G-morphism f : E → F is
called strong if the injective G-morphisms Ker f → E and E/Ker f → F
are strong.

The group cohomology groups are derived functors in the framework
of relative homological algebra. This means that we will consider mainly
strong morphisms. This amounts to considering only exact sequences which

51
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are split as sequences of abelian groups. Examples of this point of view are
the notions of strong resolution and of relatively injective G-modules.

Definition 6.1. Let E be a G-module. A strong resolution of E is a
long exact sequence

0→ E → E0 → E1 → · · ·
such that all morphisms are strong morphisms.

Definition 6.2. A G-module I is called relatively injective if, for any
strong injective G-morphism f : E → F and any G-morphism u : E → I,
there exists a G-morphism v : F → I such that v ◦ f = u.

Definition 6.3. Let ΓG be the functor from the category of G-modules
to the category of abelian groups, that sends anyG-module E to its subgroup
of invariant elements ΓG(E) = EG. The functor ΓG is left exact. The group
cohomology groups of a G-module E are the relative right derived functors
of ΓG

H i(G,E) = RiΓG(E).

The adjective relative in this definition means that, to compute the
cohomology groups of a G-module E, we need a strong resolution

0→ E → E0 → E1 → · · · ,

with all the G-modules Ei being relatively injective. Then the cohomology
groups of E are the cohomology groups of the complex (E∗)G.

Let A be an abelian group. We will consider A as a G module with the
trivial action. Let us denote by F(EnG,A) the group of maps from EnG to
A. Then F(E·G,A) is a cosimplicial abelian group and let CF(E·G,A) be
the associated complex. Since the group G acts on E·G on the right, there
is an induced left action on CF(E·G,A). Observe that

F(EnG,A)G = F(BnG,A).

For a proof of the following result see [35].

Proposition 6.4. The G-modules F(EnG,A) are relatively injective
and the complex

0→ A→ CF(E0G,A)→ CF(E1G,A)→ · · ·

is a strong resolution. The same is true if we replace the complex CF(E·G,A)
by the normalization NF(E·G,A).

As a consequence of Proposition 6.4 we recover equation (6.1):

H∗(G,A) = H∗(|B·G|, A).

As in the case of singular homology, there is a stability result for the
homology of the series of classical groups. In particular we will use the
following result established in [41,59].
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Theorem 6.5. Let A be a local ring. Let us write

GL(A) = lim−→GLn(A).

Then the natural morphism

Hk(GLn(A),Z)→ Hk(GL(A),Z)

is an isomorphism for k ≤ (n− 1)/2.

6.2. Continuous Group Cohomology

Let now G be a connected Lie group. The theory of group cohomology
carries over to the category of continuous (or differentiable) G-modules and
we obtain the theory of continuous group cohomology. See [35, Chapter III]
for the details. The continuous cohomology groups of a continuousG-module
E will be denoted by H∗

cont(G,E). We are interested in the continuous G-
module R with the usual topology and the trivial G action. Let E0(EnG,R)
denote the space of differentiable functions. The differentiable analogue of
Proposition 6.4 is:

Proposition 6.6. The complexes

CE0(E·G,R) and NE0(E·G,R)

are strong resolutions of the continuous G-module R by relatively injective
continuous G-modules. In consequence the continuous cohomology groups of
R are the cohomology groups of either complex

CE0(B·G,R) or NE0(B·G,R).

Let us construct another resolution of the G-module R. Let U be a
maximal compact subgroup of G. Let M be the homogeneous space M =
U\G. Then M is diffeomorphic to a real vector space. Thus it is contractible
([39, XV, Theorem 3.1]). There is a right action of G on M defined, for
p = Ux, by rg(p) = Uxg. This right action induces a left action of G on the
complex of differential forms E∗(M,R).

Proposition 6.7. The complex

0→ R→ E0(M,R)→ E1(M,R)→ · · ·
is a strong resolution by relatively injective G-modules. Therefore the con-
tinuous cohomology groups of the G-module R are the cohomology groups of
the complex E∗(M,R)G.

By this proposition and Example 5.39 we can relate continuous coho-
mology and relative Lie algebra cohomology.

Proposition 6.8. Let G be a connected Lie group, U a maximal compact
subgroup and M = U\G. Let g and u be the Lie algebras of G and U . The
isomorphism E∗(G,R)R → E∗(g,R) induces an isomorphism

E∗(M,R)G → E∗(g, u,R).
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From this proposition we obtain the van Est isomorphism:

Theorem 6.9 (van Est). With the hypotheses of the above proposition,
there is a natural isomorphism

H∗
cont(G,R)→ H∗(g, u,R).

6.3. Computation of Continuous Cohomology

The van Est isomorphism can be used to compute the continuous coho-
mology of Lie groups. Let G be an algebraic reductive group defined over
R. Let us assume that G(R) is a connected Lie group. Then G(C) is a com-
plex connected reductive group. Let gR be the Lie algebra of G(R). Then
gC = g⊗ C is the Lie algebra of G(C).

Let K be a maximal compact subgroup of G(R), let k be the Lie algebra
of K and let

gR = k⊕ p

be the Cartan decomposition of gR with respect to k. Then

gu = k⊕ ip ⊆ gC

is a compact form of gR. Thus, the corresponding Lie group Gu is a maximal
compact subgroup of G(C) that contains K.

Let us write X = K\G(R) and Xu = K\Gu. Strictly speaking, Xu

is the compact twin of the symmetric space X and is determined by the
pair (G(R),K). But since it is determined up to isomorphism by the group
G(R), and in all the applications the compact subgroup K will be fixed,
we will denote Xu by CT

(
G(R)

)
and call it the compact twin of G(R).

We consider the right actions of G(R) on X and of Gu on Xu given by
rg(p) := pg. As in Proposition 6.8, the complex E∗(gR, k,R) is isomorphic
to the complex of G(R)-invariant forms onX and E∗(gu, k,R) to the complex
of Gu-invariant forms onXu. SinceXu is compact, an averaging argument as
in Proposition 5.2, shows that the last isomorphism induces an isomorphism

α : H∗(Xu,R)→ H∗(gu, k,R).

Let now
ι : E∗(gu, k,R)→ E∗(gR, k,R)

be the isomorphism that sends ω ∈ Ej(gu, k,R) = Homk(
∧j ip,R) to ι(ω) =

ijω ∈ Ej(gR, k,R) = Homk(
∧j p,R). Let us denote by γ′ the composition

(6.2) H∗(Xu,R) α−→ H∗(gu, k,R) ι−→ H∗(gR, k,R)
β−→ H∗

cont(G(R),R),

where β is the inverse of the van Est isomorphism.
Since α, β and ι are isomorphisms, γ′ is an isomorphism. Therefore

we can use the fact that the cohomology groups of the classical Lie groups
and their associated homogeneous spaces are well known, to compute the
continuous cohomology groups of the classical Lie groups.
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Example 6.10. Let us consider the group

G = ResR/C GLn,C .

That is, G(R) is the Lie group GLn(C) but viewed as a real Lie group. Then
the maximal compact subgroup of G(R) is Un. The complexification G(C)
is GLn(C)×GLn(C), with the inclusion

GLn(C)→ GLn(C)×GLn(C)

M 7→ (M,M)

The complex conjugation τ : GLn(C) × GLn(C) → GLn(C) × GLn(C) is
given by τ(M,N) = (N,M). Therefore the compact subgroup of the com-
plexification is Un×Un and the compact twin of G(R) is homeomorphic to
Un.

Thus, in this case, gR is gln(C), but viewed as a real vector space. The Lie
algebra of the compact subgroup is k = un. The subspace p is the subspace
of Hermitian matrices. The other Lie algebras are gC = gln(C)⊕gln(C) and
gu = un⊕un. With these identifications, the inclusions gR → gC and k→ gu
are both given by M 7→ (M,M). Therefore gu/k ∼= un, with the projection
(M,N) 7→ N −M . We have that E∗(gu, k,R) is naturally isomorphic to
E∗(un,R)θ=0.

Proposition 6.11. The continuous cohomology groups of GLn(C) are

H∗
cont(GLn(C),R) ∼= H∗(Un,R) =

∧
(α1, α3, . . . , α2n−1).

By the naturality of the construction and the stability of the singular
cohomology of the groups Un, we obtain:

Corollary 6.12. Let n ≤ n′ and m < 2n be positive integers. Then
the morphism

ϕ∗n′,n : Hm
cont(GLn′(C),R)→ Hm

cont(GLn(C),R)

is an isomorphism.





CHAPTER 7

Small Cosimplicial Algebras

In this section we will recall briefly the notion of cosimplicial algebras
and we will review the theory of small cosimplicial algebras and small dif-
ferential graded algebras. This theory was introduced by Beilinson in order
to compare his regulator with Borel’s regulator. We will follow [55].

7.1. Cosimplicial Algebras

Let k be a field of characteristic zero, and let A be a k-linear tensorial
category with unit 1, such that End(1) = k. During this section the category
A will be fixed, and all objects will belong to this category. For simplicity,
we will work as if A were a category of vector spaces, that is, we will work
with elements.

The fact that A is a k-linear tensorial category with unity implies that
the category of cosimplicial objects of A, CS(A), is also a k-linear tensorial
category with unit. Explicitly, the tensor product in the category CS(A) is
given by

(X ⊗ Y )n = Xn ⊗ Y n,

with
τ(x⊗ y) = τ(x)⊗ τ(y),

for any increasing map τ : [n] → [m]. The unit element, that we will also
denote by 1 is the constant cosimplicial object

1
p = 1,

with all the structure morphisms equal to the identity.
Let X,Y ∈ CS(A). The relationship between the tensor product of

simplicial objects and the tensor product of complexes is given by the
Alexander–Whitney morphism and the shuffle morphism (see for instance
[21, Chapter VI, §12] or [43, Chapter VIII, §8]):

CX ⊗ CY AW−−→ C(X ⊗ Y ),

C(X ⊗ Y ) S−→ CX ⊗ CY.
The morphism AW is given componentwise, for each pair of integers p, q,

with p+ q = n, by
Xp ⊗ Y q → Xn ⊗ Y n

x⊗ y 7→ δn ◦ · · · ◦ δp+1(x)⊗ δ0 ◦ · · · ◦ δ0(y).
57
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Let us explain the definition of the shuffle morphism. Let p, q be non
negative integers. A (p, q) shuffle, (µ, ν), is a pair of disjoint sets of integers

1 ≤ µ1 < µ2 < · · · < µp ≤ p+ q, 1 ≤ ν1 < ν2 < · · · < νq ≤ p+ q.

The sign of the shuffle, ε(µ, ν), is the sign of the permutation

(µ1, . . . , µp, ν1, . . . , νq).

If p+ q = n, the shuffle map is given componentwise by
S : Xn ⊗ Y n → Xp ⊗ Y q

x⊗ y 7→
∑
(µ,ν)

ε(µ, ν)σν1−1 · · ·σνq−1x⊗ σµ1−1 · · ·σµp−1y,

where the sum runs over all shuffles.
Both the Alexander–Whitney morphism and the shuffle morphism re-

spect the normalized complexes. Thus they induce morphisms

NX ⊗NY AW−−→ N (X ⊗ Y ),

N (X ⊗ Y ) S−→ NX ⊗NY.
Moreover, at the level of normalized complexes they satisfy S ◦ AW = Id
(see [26, Theorem 2.1a]).

Definition 7.1. An (associative) cosimplicial algebra (with unit) in A,
is an associative and unitary algebra object of the category CS(A). That
is, it consists of an object X ∈ Ob(CS(A)), together with morphisms

1
e−→ X

X ⊗X µ−→ X

satisfying the axioms of an associative algebra (see Section 3.1).

In this section all algebras will be associative and unitary, thus we will
use the word algebra to refer to associative unitary algebra.

It is easy to see that the above definition is equivalent to saying that a
cosimplicial algebra is a cosimplicial object X, such that each Xn, n ≥ 0, is
an algebra, and each structure morphism is a morphism of algebras.

The Alexander–Whitney morphism and the shuffle morphism allow us
to transport the multiplicative structure of a cosimplicial algebra to its as-
sociated complex, and the multiplicative structure of a differential graded
algebra (DGA for short) to its associated cosimplicial object.

Let X be a cosimplicial (associative) algebra. Then the morphisms

1 = C1 Ce−→ CX,

∪ : CX ⊗ CX AW−−→ C(X ⊗X)
C(µ)−−−→ CX,

provide CX with a structure of DGA. Explicitly, if x ∈ Xp, y ∈ Xq, then

x ∪ y = δp+q ◦ · · · ◦ δp+1(x) · δ0 ◦ · · · ◦ δ0(y).
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By the properties of the Alexander–Whitney morphism, the associa-
tivity of X implies the associativity of CX. On the other hand, if X is
commutative, then CX does not need to be (graded) commutative, but only
commutative up to homotopy.

Let us see that the complex of degenerate elements, DX, is a left ideal
of CX. Let x ∈ Xp and y ∈ Xq−1. Then

x ∪ δi(y) = δp+q ◦ · · · ◦ δp+1(x) · (δ0)p ◦ δi(y)
= δi+p ◦ δp+q−1 ◦ · · · ◦ δp+1(x) · δi+p ◦ (δ0)p(y)

= δi+p(x ∪ y).

(7.1)

Analogously one can see that DX is also a right ideal. Moreover, we have
that NX is a subalgebra: let x ∈ NXp and y ∈ NXq. Then, if i ≤ p− 1,

σi(x ∪ y) = σi(δp+q ◦ · · · ◦ δp+1(x) · (δ0)p(y))
= σi(δp+q ◦ · · · ◦ δp+1(x)) · σi((δ0)p(y))
= δp+q−1 ◦ · · · ◦ δp ◦ σi(x) · (δ0)p−1(y)
= 0,

whereas, if i ≥ p,

σi(x ∪ y) = σi(δp+q ◦ · · · ◦ δp+1(x) · (δ0)p(y))
= σi(δp+q ◦ · · · ◦ δp+1(x)) · σi((δ0)p(y))
= δp+q−1 ◦ · · · ◦ δp+1(x) · (δ0)p ◦ σi(y)
= 0.

As in the case of CX, the commutativity of X does not imply the commu-
tativity of NX.

Let now Y be a DGA. We want to induce in KY a structure of cosim-
plicial algebra. Since K1 is the constant cosimplicial unit object, which we
have denoted also by 1, we can take as the unit of KY the morphism

K1 Ke−−→ KY.

Let µ : Y ⊗ Y → Y be the product of Y . Let us consider the composition

N (KY ⊗KY ) S−→ NKY ⊗NKY = Y ⊗ Y µ−→ Y = NKY.

Since N is an equivalence of categories, we obtain a morphism

KY ⊗KY → KY.

The associativity of Y implies the associativity of KY . But in contrast
with the Alexander–Whitney morphism, by the properties of the shuffle
morphism (see for instance [21, Chapter VI, §12]) the commutativity of Y
implies the commutativity of KY .
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7.2. Small Algebras

The fact that, if X is a commutative cosimplicial algebra, NX does not
need to be commutative, leads to the following definition.

Definition 7.2 (Beilinson). (1) A cosimplicial associative algebra
X is called small if it is commutative, it is generated by X0 and
X1 under the cup-product and, if I = NX1 = Kerσ0 ⊂ X1 then
I2 = 0.

(2) A differential graded associative algebra Y is called small if it is
commutative and it is generated, as an algebra, by Y 0 and Y 1.

For simplicity we will consider only reduced cosimplicial algebras and
reduced DGA. A reduced cosimplicial algebra is a cosimplicial algebra X,
such that X0 = 1. Therefore δ0 = δ1 : X0 → X1 are the unit morphism,
and, by Corollary 2.10, there is a canonical decomposition

(7.2) X1 = 1⊕NX1.

A reduced DGA is a DGA Y with Y 0 = 1. Therefore the differential d0 = 0.
The main result about small algebras is the following one.

Theorem 7.3. The functors N and K induce an equivalence of cate-
gories between the category of reduced small cosimplicial algebras and the
category of small differential graded algebras.

Proof. For the proof of this result we will follow [55].

Lemma 7.4. Let X be a reduced commutative cosimplicial algebra. Then
X is generated (in the sense of the cup-product) by X1 if and only if NX
is generated by NX1.

Proof. Let us denote by m the morphism

m : X1 ⊗ · · · ⊗X1 → Xp

x1 ⊗ · · · ⊗ xp 7→ x1 ∪ · · · ∪ xp.

The decomposition (7.2), X1 = 1 ⊕ NX1, induces a decomposition of
(X1)⊗p. A typical summand being NX1 ⊗ . . .1 · · · ⊗ NX1, with the factor
1 in the positions i1 < · · · < ir. By the same argument as in (7.1), the
restriction of m to one of such summands is given by

(7.3) m(x1 ⊗ · · · 1 · · · ⊗ xp) = δir−1 ◦ · · · ◦ δi1−1(x1 ∪ · · · ∪ xp).

Therefore m sends the summand NX1 ⊗ · · · ⊗NX1 to NXp and the other
summands to DXp. Hence, if X is generated by X1, then NX is generated
by NX1. Assume now that NX is generated by NX1. Since DX is gen-
erated, as an abelian group, by elements of the form δir ◦ · · · ◦ δi1(x), with
x ∈ NX, equation (7.3) implies that X is generated by X1. �

Lemma 7.5. (1) If X is a reduced small cosimplicial algebra, then
NX is a reduced small DGA.
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(2) If Y is a reduced small DGA, then KY is a reduced small cosim-
plicial algebra, and the natural isomorphism Y ∼= NKY is an iso-
morphism of algebras.

Proof. (1) Clearly NX is reduced, and by Lemma 7.4 it is gener-
ated by NX1. It remains to show the commutativity. Since NX1 generates
NX, it suffices to show that x ∪ x = 0 for x ∈ NX1. Since

dx = δ0x− δ1x+ δ2x ∈ NX2,

and using again the fact that NX1 generates NX we have

δ1x = δ0x+ δ2x+
∑
i

αi ∪ βi = δ0x+ δ2x+
∑
i

δ2αiδ
0βi,

for some elements αi, βi ∈ NX1. Using the fact that X1 is a commutative
algebra, that NX1 is a square zero ideal and that the faces δj are morphisms
of algebras we obtain

(δ1x)2 = δ2xδ0x+ δ0xδ2x = 2x ∪ x.

Therefore
2x ∪ x = (δ1x)2 = δ1x2 = 0.

(2) That KY is reduced is obvious. That it is commutative follows
from the properties of the shuffle morphism. That KY is generated by KY 1

follows from Lemma 7.4. Let us show that NKY 1 is a square zero ideal.
Let x, y ∈ NKY 1. Then x⊗ y ∈ N (KY ⊗KY ). Therefore

x · y = µ(S(x⊗ y)) = µ(σ0x⊗ y + x⊗ σ0y) = 0,

where µ is the product in Y . Hence KY is a small cosimplicial algebra. To
prove that the multiplicative structures of Y and NKY agree, let us consider
the following commutative diagram

Y ⊗ Y // Y

NKY ⊗NKY

AW
��

// NKY

N (KY ⊗KY ) //

S

��

NKY

Y ⊗ Y // Y,

where the fourth horizontal arrow defines the multiplicative structure of
Y , and the first arrow is induced by the second one. Thus the first arrow
corresponds to the multiplicative structure of NKY . Since at the level
of normalized cochains S ◦ AW = Id we obtain that both multiplicative
structures agree. �
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To prove the theorem it only remains to show that the functor K is
essentially surjective. This will be a consequence of the next result.

Lemma 7.6. Let X be an object of CS(A), provided with two structures
of small reduced cosimplicial algebras, (e, µ) and (e′, µ′). If these structures
induce the same multiplicative structure on NX then they agree.

Proof. That the unit morphisms e and e′ agree is obvious. Since X is
small and reduced for both algebra structures, in the decomposition X1 =
1⊕NX1, the summand NX1 is an ideal of square zero for both structures.
Therefore µ and µ′ agree on X1. Let us denote by ∪ and ∪′ the cup-product
induced in CX by µ and µ′ respectively. Let us show that they agree. To
this end, we only have to show that the two linear maps

m,m′ : X1 ⊗ · · · ⊗X1 → Xp,

induced by ∪ and ∪′, agree. This follows from equation (7.3) and the fact
that ∪ and ∪′ agree on NX.

Since the morphism m is surjective, to show that µ and µ′ agree, we have
to show that the morphisms µ◦(m⊗m) and µ′ ◦(m⊗m) agree. Since µ and
µ′ agree on X1, this is a consequence of the bimultiplicativity of the cup-
product, which holds by the commutativity of either algebra structure. �

Let now X be a small cosimplicial algebra, and let ψ : X → KNX be
the isomorphism provided by the Dold–Kan correspondence. Since N (ψ)
is an isomorphism of algebras, by Lemma 7.6, ψ is also an isomorphism of
algebras. �

From now on we will focus our attention on two tensor categories.
(1) The category Veck of vector spaces over k. In this case the concepts

of cosimplicial algebra and differential graded algebra are the usual ones. We
will call them c-algebras and d-algebras respectively.

(2) The category C+(Veck) of cochain complexes of vector spaces in non-
negative degrees. In this case we will call a cosimplicial algebra a cd-algebra
and a DGA a dd-algebra. Thus a cd-algebra is a cosimplicial differential
graded algebra. By convention we will assume that the differential degree is
the first one and that the cosimplicial degree is the second one. The concepts
of reduced and small will refer to the cosimplicial degree. A dd-algebra is a
bigraded algebra with two differentials, d′ and d′′, of degree (1, 0) and (0, 1)
respectively, with d′d′′ = d′′d′ and which are graded derivations with respect
to the first and the second degree respectively. To be consistent with the
corresponding concepts in the cosimplicial case, the concepts of small and
reduced dd-algebras are not symmetrical with respect to the two degrees. A
small dd-algebra will be a commutative dd-algebra, X∗,· generated by X∗,0

and X∗,1. The dd-algebra X∗,· will be reduced if X0,0 = k and Xp,0 = 0, for
p ≥ 1.
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The functor {d-algebras} → {k-algebras} that send a DGA to its zeroth
component has a left adjoint: the algebra of differentials Ω∗ that sends a k-
algebra R to the DGA Ω∗(R) = Ω∗R/k. Therefore Ω∗(R) solves the following
universal problem. Given a k-algebra R, a DGA X∗ and a morphism of
algebras f : R → X0, there is a unique morphism of DGAs Ω∗(R) → X∗

extending f .
Analogously we have functors

{cd-algebras} → {c-algebras},
{dd-algebras} → {d-algebras}

whose left adjoint is also denoted by Ω∗. Finally we may consider the func-
tors

{reduced small cd-algebras} → {reduced small c-algebras},
{reduced small dd-algebras} → {reduced small d-algebras}.

They also have a left adjoint which we will denote by Ω∗. If X is a reduced
small d-algebra then Ω∗(X) is reduced and small. Therefore in this case
Ω∗ = Ω∗. On the other hand, if X is a reduced small c-algebra, then Ω∗(X)
is reduced but not necessarily small. In this case

Ω∗(X) = Ω∗(X)
/{

cd-ideal spanned by [Kerσ0 : Ω∗(X1)→ Ω∗(X0)]2
}
.

The fact that N is an equivalence of categories, between the category of
small reduced c-algebras and the category of small reduced d-algebras, and
also between the category of small reduced cd-algebras and the category of
small reduced dd-algebras, implies the following result (see [2, Apendix A]
and [55, §2]).

Proposition 7.7. Let X be a small reduced c-algebra. Then

Ω(NX) = NΩ(X).





CHAPTER 8

Higher Diagonals and Differential Forms

8.1. The Sheaf of Differential Forms

Let X be a scheme over a field k. Let us denote by ∆: X → X ×X the
diagonal morphism, and by I∆ the sheaf of ideals of the subscheme ∆(X).
Then there is a canonical isomorphism ([37, II.8])

(8.1) Ω1
X → ∆−1(I∆/I2

∆).

For instance, in the affine case, if X = Spec(A), the diagonal morphism
is induced by the morphism of algebras

µ : A⊗A→ A

f ⊗ g 7→ fg.

Therefore the ideal of the diagonal is Ker(µ). The isomorphism (8.1) is given
by the morphism

ϕ : Ω1
A/k → Ker(µ)/Ker(µ)2

df 7→ 1⊗ f − f ⊗ 1.
The inverse is induced by the morphism

ψ : A⊗A→ Ω1
A/k

f ⊗ g 7→ f dg.

The aim of this section is to generalize this description of Ω1
X to the

sheaves Ωn
X .

Definition 8.1. Let X· be a simplicial scheme. A sheaf of ideals J · ⊂
OX· is a family of sheaves of ideals {J n}n, with J n a sheaf of ideals on Xn,
such that

σ∗i (J n) ⊂ J n−1, i = 0, . . . , n− 1,
and

δ∗i (J n) ⊂ J n+1, i = 0, . . . , n+ 1.

Let X be a scheme over a field k. Let E·X be the simplicial scheme
defined in Example 2.5. Observe that the degeneracy maps σi : EnX →
En+1X are given by

σi = Idi ×∆× Idn−i, i = 0, . . . , n,

and the face maps δi : EnX → En−1X by

δi = Idi × ε× Idn−i, i = 0, . . . , n,

65
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where ε : X → Spec(k) is the structural morphism.
Let us write I∆ = Ker(σ∗0) ⊂ OE1X = OX×X . Let J ·∆ be the ideal

generated by I2
∆.

For each pair of integers 0 ≤ i < j ≤ n let us denote by

δbı : EnX → E1X

the morphism
δbı = εi × Id× εj−i−1 × Id× εn−j .

Lemma 8.2. The sheaf of ideals J ·∆ is given by

J n∆ =
n∑

i,j=0
i<j

δ∗bıI2
∆

Proof. Let us write J n =
∑
δ∗bıI2

∆. The ideal J ·∆ is the smallest ideal
that contains I2

∆. Thus it is closed under the face and degeneracy mor-
phisms. Therefore it contains J ·. On the other hand, using the commuta-
tion rules between faces and degeneracies and the fact that I∆ = Kerσ∗0, it
is easy to see that J · is closed under the face and the degeneracy morphisms.
Therefore, since it is an ideal that contains I2

∆, it also contains J ·∆. �

Let us denote by E
(1)
· X the simplicial subscheme of E·X defined by

the ideal J∆. Let ∆n : X → Xn+1 be the diagonal morphism, ∆n(x) =
(x, . . . , x). The following result is a direct consequence of Lemma 8.2.

Proposition 8.3. The reduced scheme (E(1)
· X)red is the diagonal sub-

scheme ∆·(X).

Since the simplicial scheme ∆·(X) is the constant simplicial scheme with
∆n(X) = X, and all the faces and degeneracies equal to the identity, we
may think of O

E
(1)
· X

as a sheaf of cosimplicial algebras over X. Let us give
another description of this sheaf.

The family ∆−1
· OE·X = {∆−1

n OEnX}n∈N is a cosimplicial sheaf of alge-
bras over X. Explicitly we have

∆−1
n OEnX =

n+1︷ ︸︸ ︷
OX ⊗

k
· · · ⊗

k
OX ,

σi(f0 ⊗ · · · ⊗ fn) = f0 ⊗ · · · ⊗ fi−1 ⊗ fifi+1 ⊗ fi+2 ⊗ · · · ⊗ fn,
δi(f0 ⊗ · · · ⊗ fn) = f0 ⊗ · · · ⊗ fi−1 ⊗ 1⊗ fi ⊗ · · · ⊗ fn.

The sheaf ∆−1
· J ·∆ is a cosimplicial sheaf of ideals of ∆−1

· OE·X . Then

O
E

(1)
· X

= ∆−1
· OE·X/∆−1

· J ·∆.

By construction O
E

(1)
· X

is a sheaf of small cosimplicial associative and
commutative algebras. Although O

E
(1)
· X

is not reduced, the proof of
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Lemma 7.5 can be applied to show that N (O
E

(1)
· X

) is a sheaf of differential
graded commutative associative algebras.

Theorem 8.4. Let X be a regular scheme over a field k. The sequence
of morphisms

ψn0 : ∆−1
n OEnX → Ωn

X/k

f0 ⊗ f1 ⊗ · · · ⊗ fn 7→ f0 df1 ∧ · · · ∧ dfn
induces a natural morphism of sheaves of differential algebras

ψ : N (∆−1
· OE·X)→ Ω·X/k,

and an isomorphism of sheaves of differential algebras

ψ : N (O
E

(1)
· X

) ∼= Ω·X/k.

Proof. Since the morphisms of sheaves ψn are defined globally, to prove
that they are zero on J ·∆, and that they induce the desired isomorphism, is
a local question. Thus we may assume that X = Spec(A), with A a local
regular k-algebra. Let us denote by A· the cosimplicial ring of sections of
∆−1
· OE·X , by J ·∆ the cosimplicial ideal of sections of J ·∆, by I∆ the ideal of

sections of I∆, by N∗ the complex of sections of N∆−1
· OE·X and by N∗ the

complex of sections of N (∆−1
· OE·X/∆−1

· J ·∆). An easy computation shows
that ψn(Jn∆) = 0. Thus we have well defined morphisms ψn : Nn → Ωn

A/k.
By definition,

N
n =

n−1⋂
i=0

Kerσi,

where σi : An/Jn∆ → An−1/Jn−1
∆ is the morphism induced by σi. Let us give

a more pleasant presentation of Nn.

Lemma 8.5. Let A· be a cosimplicial ring and let J · be a cosimplicial
ideal. Then

n−1⋂
i=0

(σi)−1(Jn−1) =
n−1⋂
i=0

Kerσi + Jn.

Proof. The fact that the right term is included in the left term is clear.
To see the inclusion in the opposite direction, let

x ∈
⋂

(σi)−1(Jn−1).

Let us define inductively

x0 = x− δ0σ0x, xi = xi−1 − δiσixi−1.

Then, using the commutation rules between faces and degeneracies, and the
fact that J is a cosimplicial ideal, we obtain that

xn−1 ∈
n−1⋂
i=0

Kerσi and x− xn−1 ∈ Jn. �
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This lemma implies that

N
n =

n−1⋂
i=0

Kerσi =
⋂n−1
i=0 Kerσi⋂n−1

i=0 Kerσi ∩ Jn
=

Nn

Nn ∩ Jn∆
.

Using the regularity of A, and the fact that the ideals Kerσi correspond
to regular subschemes that intersect properly, it follows that

⋂
Kerσi =∏

Kerσi. Thus

N
n =

∏n−1
i=0 Kerσi∏n−1

i=0 Kerσi ∩ Jn∆
.

Let us write B = A⊗
k
A. Then there is a natural isomorphism

n︷ ︸︸ ︷
B ⊗

A
· · · ⊗

A
B ∼=

n+1︷ ︸︸ ︷
A⊗

k
· · · ⊗

k
A .

Observe that I∆ is an ideal of B and that

Kerσi = B ⊗ · · · ⊗ I∆
i+1
⊗ · · · ⊗B.

Therefore

Nn =
n−1∏
i=0

Kerσi =

n︷ ︸︸ ︷
I∆ ⊗

A
. . .⊗

A
I∆ .

The following result follows from a direct computation.

Lemma 8.6. The restriction of ψn to Nn can be factored as

Nn = I⊗n∆

n︷ ︸︸ ︷
ψ1⊗···⊗ψ1−−−−−−→ (Ω1

A/k)
⊗n → Ωn

A/k.

Now we want to identify Jn∆ ∩ Nn. First observe that the ideals of the
form

I∆ ⊗ · · · ⊗ I2
∆
i
⊗ · · · ⊗ I∆

are contained in Jn∆. Therefore N
n can be identified with a quotient of

(I∆/I2
∆)⊗n. In addition we have the following result.

Lemma 8.7. Let x1, . . . , xn be elements of I∆, and let 1 ≤ i < n. Then

x1 ⊗
A
· · · ⊗

A
(xi ⊗

A
xi+1 + xi+1 ⊗

A
xi)⊗

A
· · · ⊗

A
xn ∈ Jn∆.

Proof. It is enough to treat the case n = 2, i = 1. Since x1, x2 ∈ I∆,
we can write

x1 =
∑
i

fi ⊗
k
gi and x2 =

∑
j

sj ⊗
k
tj ,

with ∑
i

figi =
∑
j

sjtj = 0.
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But then∑
i,j

(fi ⊗
k
gi)⊗

A
(sj ⊗

k
tj) +

∑
i,j

(sj ⊗
k
tj)⊗

A
(fi ⊗

k
gi)

=
∑
i,j

fi ⊗
k
gisj ⊗

k
tj + sj ⊗

k
tjfi ⊗

k
gi

=
∑
ij

(fi ⊗ 1⊗ 1− 1⊗ fi ⊗ 1)(1⊗ sj ⊗ 1− sj ⊗ 1⊗ 1)(1⊗ gi ⊗ tj)

+
∑
ij

(fi ⊗ 1⊗ gi)(sj ⊗ 1⊗ tj) +
∑
ij

(fi ⊗ gi ⊗ 1)(sj ⊗ tj ⊗ 1)

+
∑
ij

(1⊗ fi ⊗ 1− fi ⊗ 1⊗ 1)(sj ⊗ tj ⊗ 1)(1⊗ 1⊗ gi).

Since all the terms on the right hand side belong to J2
∆ we have proved the

lemma. �

As a consequence of this lemma, we have that N
n is a quotient of∧n(I∆/I2

∆). But since the composition

∧n(I∆/I2
∆)→ N

n ψ
n

−−→ Ωn
A/k

is an isomorphism, we obtain that ψn is an isomorphism.
The fact that ψ is compatible with the differential is immediate.
Let us end the proof of the theorem discussing the compatibility with

the product. Let us consider A· a graded algebra with the cup-product.
Then

An =

n+1︷ ︸︸ ︷
A⊗

k
· · · ⊗

k
A

and

f0 ⊗ · · · ⊗ fn ∪ g0 ⊗ · · · ⊗ gm = f0 ⊗ · · · ⊗ fng0 ⊗ · · · ⊗ gm.

Thus it is clear that ψ· is not a morphism of algebras. On the other hand,
if we consider the presentation

An =

n︷ ︸︸ ︷
B ⊗

A
. . .⊗

A
B,

then, if n,m > 0,

f1 ⊗ · · · ⊗ fn ∪ g1 ⊗ · · · ⊗ gm = f1 ⊗ · · · ⊗ fn ⊗ g1 ⊗ · · · ⊗ gm.

Therefore, the fact that ψ restricted to N · is a morphism of algebras follows
from Lemma 8.6. �



70 8. HIGHER DIAGONALS AND DIFFERENTIAL FORMS

8.2. The Weil Algebra Revisited

In this section we will apply Theorem 8.4 to the case of a complex
algebraic reductive group and show that we can obtain the Chern–Weil
morphism from the morphism ψ.

Let G be a connected complex reductive group. Let Ie be the ideal of
OB1G = OG defined by the unit point e. Let us denote by Je the cosimplicial
ideal generated by I2

e . Let B(1)
· G be the subscheme defined by Je. The right

action of G over E·G induces a left action on the algebra of global sections
O(E·G). The ideal J∆(E·G) is invariant for this action. Therefore, there is
an induced action of G in O(E(1)

· G). We have that

O(E·G)G = O(B·G),

J∆(E·G)G = Je(B·G).

Therefore, G being reductive,

(8.2) O(E(1)
· G)G = O(B(1)

· G).

Remark 8.8. Indeed, it is not necessary to appeal to the reductivity of
G to prove equation (8.2). The natural morphism

(8.3) O(EnG)G/J∆(EnG)G →
(
O(EnG)/J∆(EnG)

)G
is always injective. Thus, to prove equation (8.2), we only need to show
the surjectivity of morphism (8.3). For each n, the principal G-bundle
π : EnG → BnG is trivial. Therefore we can choose a section s : BnG →
EnG. But, if f ∈ O(EnG) has its class f̄ ∈

(
O(EnG)/J∆(E·G)

)G, then
π∗s∗(f) ∈ O(EnG)G and π∗s∗(f) = f . Therefore the morphism (8.3) is
surjective.

Let g be the Lie algebra of G. By Theorem 8.4, there is a natural
isomorphism

ψ : N
(
O(E(1)

· G)
)
→ Ω·(G),

where Ω·(G) is the space of algebraic differentials. By construction, this
isomorphism is compatible with the right actions of G on E

(1)
· G and G.

Therefore we obtain ([2, A 4.1]):

Proposition 8.9. There is a natural isomorphism

N
(
O(B(1)

· G)
)

= N
(
O(E(1)

· G)
)G → Ω·(G)R = E·(g,C).

Recall that the Weil algebra has a bigrading given by

W p,q(G) = Sp(g)⊗ Eq−p(g).

By construction, it is clear thatW ∗,·(G) satisfies the universal condition that
defines Ω∗

(
E·(g)

)
. Thus both algebras are naturally isomorphic. Therefore,

by Proposition 8.9, there is a natural isomorphism

Ω∗
(
N

(
O(B(1)

· G)
))
→W ∗,·(G).
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Hence, using Proposition 7.7 we obtain:

Proposition 8.10. There is a natural isomorphism

ψ : N
(
Ω∗(B(1)

· G)
)

= N
(
Ω∗

(
O(B(1)

· G)
))
→W ∗,·(G).

The isomorphism ψ induces a morphism

ψ : N
(
Ω∗(B·G)

)
→W ∗,·(G).

Since the canonical connection is algebraic, the image f∇E·G(I∗G) lies in
N

(
Ω∗(B·G)

)
.

Lemma 8.11. The diagram

NΩ∗(B·G)

ψ

��

I∗G

f∇E·G
::tttttttttt

$$JJJJJJJJJJ

W ∗,·(G)

is commutative.

Proof. By the splitting principle (see Remark 5.28) it is enough to
check the case G = Gm. This case follows easily from the definitions. �

Let us denote by F the filtration by the first degree of N
(
Ω∗(B·G)

)
.

That is
F pN

(
Ω∗(B·G)

)
=

⊕
p′≥p
N

(
Ωp′(B·G)

)
.

Since ψ : N
(
Ω∗(B·G)

)
→ W ∗,·(G) is a bigraded morphism, it is a filtered

morphism with respect to the filtration F .
Since B·G is a simplicial quasi-projective variety over C, the cohomology

of B·G has a natural mixed Hodge structure. In particular there is a Hodge
filtration F of H∗(B·G,C). Moreover, it is known [20] that the mixed Hodge
structure of H2p(B·G) is pure of type (p, p). Therefore

F p
(
H2p(B·G,C)

)
= H2p(B·G,C).

There is a natural map (that in general is not an isomorphism)

F pH2p(B·G,C)→ H2p
(
F pNΩ∗(B·G)

)
.

Composing this morphism with the morphism ψ, we obtain a morphism

H2p(B·G,C)
ψ′−→ H2p

(
F pW (g)

)
= I2p

G .

From Lemma 8.11 it follows:

Theorem 8.12. The morphism ψ′ is the inverse of the Chern–Weil mor-
phism.
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8.3. A Description of the van Est Isomorphism

Let us begin this section by stating the analogue of Theorem 8.4 in the
differentiable case. The proof is similar and will be omitted. Let X be a
differentiable manifold. Then E·X is a simplicial differentiable manifold and
E0(E·X,R) is a cosimplicial algebra. We have that

E0(EnX,R) =

n+1︷ ︸︸ ︷
E0(X,R) ⊗̂

R
· · · ⊗̂

R
E0(X,R) .

Let us write I = I∆ = Ker(σ0) ⊂ E0(E1X,R) and let J = J∆ be the
cosimplicial ideal generated by I2. The morphism

ψn0 : E0(X,R)⊗ · · · ⊗ E0(X,R)→ En(X,R)
f0 ⊗ f1 ⊗ · · · ⊗ fn 7→ f0 df1 ∧ · · · ∧ dfn

extends to a unique continuous linear morphism

ψn0 : E0(EnX,R)→ En(X,R).

Theorem 8.13. The sequence of morphisms ψn0 induces a morphism of
differential graded algebras

ψ : NE0(E·X,R)→ E·(X,R)

and an isomorphism of differential graded algebras

ψ : N (E0(E·X,R)/J)→ E·(X,R).

Let nowX = G be a connected Lie group. The right action r ofG on E·G
induces a left action of G on NE0(E·G,R). The subcomplex of invariant
elements is NE0(E·G,R)G = NE0(B·G,R). The ideal J is invariant under
this action and Je = JG is the cosimplicial ideal generated by Ker(σ0)2 ⊂
E0(B1G,R). Therefore, as in Remark 8.8,

N (E0(E·G,R)/J)G = N (E0(B·G,R)/Je).

We also consider the left action of G on E∗(G,R) induced by the right
action r. The subcomplex of invariant elements is the subalgebra of right in-
variant forms E∗(G,R)R. With these actions the morphism ψ is a morphism
of G-modules. Thus, if we restrict this morphism to the subcomplexes of
invariant elements, we obtain:

Proposition 8.14. Let G be a connected Lie group, with Lie algebra g.
Then the morphism ψ induces a natural isomorphism

N (E0(B·G,R)/Je)→ E·(g,R)

Now we can use the morphism ψ to give an explicit description of the
van Est morphism ([35, III 7.3], [2, proof of Corollary A 5.2], [55, §3]).
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Theorem 8.15. Let G be a connected Lie group, U a maximal compact
subgroup of G and g and u the Lie algebras of G and U respectively. Then
the induced morphism

H∗
cont(G,R) = H∗(N

(
E0(E·G,R)

)G)
H∗(ψ)−−−−→ H∗(E∗(G,R)G) = H∗(g,R)

can be factored as

H∗
cont(G,R) ν−→ H∗(g, u,R) ι−→ H∗(g,R),

where ν is the van Est isomorphism and ι is the obvious natural morphism.

Proof. Let us write M = U\G and let π : G → M be the projection.
There is a commutative diagram of G-modules

R //

��

N
(
E0(E·G,R)

)
ψ

��
E·(M,R) π∗ // E·(G,R).

The theorem follows from this commutative diagram taking continuous
group cohomology. �





CHAPTER 9

Borel’s Regulator

9.1. Algebraic K-Theory of Rings

In this section we will recall the definition of the algebraic K-theory of
a ring. This section is based on [58]. In order to define Borel’s regulator
and to compare it with Beilinson’s regulator for number fields, there is very
little about K-theory that is needed. Only the relationship between K-
theory and group homology that follows from the definition of K-theory
as homotopy groups. Note however that, for the general construction of
Beilinson’s regulator map, and to establish its properties, it is useful to see
algebraic K-theory as generalized sheaf cohomology ([13], cf. [29]). For
more details about higher K-theory and Beilinson’s regulator, the reader is
referred to the appendixes of [40] and the bibliography thereof.

Let A be a commutative ring with unit. The groups GLn(A) form a
directed system as in Section 4.1. Let us write

GL(A) = lim−→GLn(A).

The topological space BGL(A) = |B·GL(A)| is a K(GL(A), 1) space.
The plus construction of BGL(A), denoted by BGL(A)+, is a topological
space provided with a morphism

f : BGL(A)→ BGL(A)+.

The space BGL(A)+ is characterized up to homotopy by the following prop-
erties:

(1) The map f is an acyclic cofibration. In particular H∗(f) is an
isomorphism.

(2) π1(BGL(A)+) = GL(A)/[GL(A),GL(A)].

The space BGL(A)+ has a natural structure of H-space. In fact one can
think of BGL(A)+ as a universal H-space associated to BGL(A).

Definition 9.1. Let A be a commutative ring with unity. The algebraic
K groups of A are the homotopy groups of the topological space BGL(A)+:

Km(A) = πm(BGL(A)+).

Remark 9.2. Using the Hurewicz morphism and the fact that f is an
acyclic morphism, we obtain a morphism

75
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Km(A) = πm(BGL(A)+, e)
Hur−−→ Hm(BGL(A)+,Z) = Hm(BGL(A),Z) = Hm(GL(A),Z),

where the last group is group homology.

Since BGL(A)+ is an H-space, the results recalled in Chapter 3 imply
that H∗(BGL(A)+,Z) has a structure of Hopf algebra. Moreover, if we
denote by Pm(BGL(A)+,Q) the subspace of primitive elements, by Cartan–
Serre Theorem (Theorem 3.17), the Hurewicz map induces an isomorphism

Km(A)⊗Q→ Pm(BGL(A)+,Q) = Pm(GL(A),Q).

Therefore, a good knowledge of the homology of the group GL(A) will allow
us to obtain information about the K-groups.

9.2. Definition of Borel’s Regulator

For more details on the topics of this section and the next two sections,
the reader is referred to the original paper of Borel [8] and the Bloch notes
[3].

Let k be a number field and let v be its ring of integers. For each m ≥ 2,
Borel’s regulator map is a morphism

Km(v)→ Vm,

from the K-theory of the ring v to a certain real vector space. This map
can be factored through the Hurewicz morphism

Km(v) Hur−−→ Pm(GL(v),Q).

The group GLn is reductive but not semisimple. In order to apply Theo-
rem 9.6 below, Borel defined the regulator using the group SLn instead of
GLn. The use of SLn is justified (see [4, 3.3]) by the fact that the inclusion
SLn(v)→ GLn(v) induces isomorphisms, for m ≥ 2,

Pm(SLn(v),Q)→ Pm(GLn(v),Q).

Therefore the Hurewicz morphism also induces isomorphisms

Km(v)⊗Q→ Pm(SL(v),Q), for m ≥ 2.

Let G be an algebraic group defined over Q. Let us assume thatG(R) is a
connected Lie group. Let Γ be a discrete group. Any group homomorphism
ϕ : Γ→ G(R) induces a morphism

ϕ∗ : H∗
cont(G(R),R)→ H∗(Γ,R).

Recall that in Section 6.3 we constructed an isomorphism

γ′ : H∗(CT
(
G(R)

)
,R

)
→ H∗

cont(G(R),R).

Thus, we obtain a morphism

j = ϕ∗ ◦ γ′ : H∗(CT
(
G(R)

)
,R

)
→ H∗(Γ,R).
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It is clear from the construction using differential forms that this morphism
is a morphism of algebras.

Let us denote by j∨ the dual morphism

j∨ : H∗(Γ,R)→ H∗
(
CT

(
G(R)

)
,R

)
.

Since j is a morphism of algebras, j∨ is a morphism of coalgebras. Therefore
it induces a morphism, also denoted j∨, between the primitive subspaces in
homology

j∨ : P∗(Γ,R)→ P∗
(
CT

(
G(R)

)
,R

)
.

For each n ≥ 1 let us write Gn = ResQ/k SLn,k. That is, we view SLn,k
as an algebraic group over Q. The subgroup SLn(v) is a discrete subgroup
of Gn(R). Let

j∨n : H∗(SLn(v),R)→ H∗
(
CT

(
Gn(R)

)
,R

)
be as before. Let us denote

G(R) = lim
n→∞

Gn(R),

CT
(
G(R)

)
= lim

n→∞
CT

(
Gn(R)

)
.

Taking the limit as n goes to infinity, we obtain a morphism

j∨ : H∗(SL(v),R)→ H∗(CT
(
G(R)

)
,R).

Definition 9.3. Let m ≥ 2. The mth Borel regulator map is the com-
position

r′Bo : Km(v) Hur−−→ Pm(SL(v),R)
j∨−→ Pm

(
CT

(
G(R)

)
,R

)
.

For the statements we will often need this process of taking the limit as
n goes to infinity. But usually the proofs will be done for a fixed finite n.
Since all the homology and cohomology theories that will appear satisfy a
stability property, it is useful to have the following definition.

Definition 9.4. Let n and m be positive integers. We will say that
n,m are in the stable range if n is odd and m ≤ (n− 1)/2.

Observe that the condition m ≤ (n− 1)/2 ensures that the morphisms

Hm(SLn(v),Q)→ Hm(SL(v),Q),

Hm(SL(C),R)→ Hm(SLn(C),R),

and the corresponding morphism for SLn(R) are isomorphisms. The condi-
tion n odd implies that the inclusion son(R) → un is noncohomologous to
zero. Therefore the morphism

H∗(un, son(R)
)
→ H∗(un)

is injective.
In order to know the behavior of Borel’s regulator map, we need more

information about the morphism j∨. This is provided by Borel’s theory of
arithmetic groups. Let G be a closed subgroup of GL(V ), for V a finite
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dimensional Q-vector space. Let L be a lattice of V . Let us write GL for
the subgroup of G(Q) that leaves L fixed:

GL = {g ∈ G(Q) | g(L) = L}.

Definition 9.5. A subgroup Γ of G(Q) is called arithmetic if it is com-
mensurable with GL. That is, if Γ ∩GL has finite index in Γ and in GL.

For the properties of arithmetic subgroups the reader is referred to [6].
For our purposes the main result of the theory is the following.

Theorem 9.6 (Borel [7]). Let G be a semisimple algebraic group defined
over Q and let Γ be an arithmetic subgroup of G(R), with ϕ : Γ→ G(R) the
inclusion. Let CT

(
G(R)

)
be the compact twin of G(R) and j as before. Then

there exists a number ρ(G) such that

j : Hm
(
CT

(
G(R)

)
,R

)
→ Hm(Γ,R)

is an isomorphism for m ≤ ρ(G). This number ρ(G) is computable from the
algebraic structure of G.

Remark 9.7. For any given Lie group G, the number ρ(G) may be
small. For instance ρ(SLn) = n/4. But, as the rank of G goes to infinity, the
number ρ(SLn) also goes to infinity. Thus this result allows us to compute
the stable real cohomology groups of the arithmetic groups.

Corollary 9.8. Let m ≥ 2 be an integer. Then the Borel regulator
map induces an isomorphism

Km(v)⊗ R→ Pm
(
CT

(
G(R)

)
,R

)
.

9.3. The Rank of the Groups Km(v)

Let k and v be as in the last section. Let Σ be the set of complex
immersions of k, and let V be the set of Archimedean places of k. We will
use VR to refer to the set of places corresponding to the real immersions and
VC to refer to the set of places corresponding to the complex immersions.
Let d = [k : Q] be the degree of k. As usual, we write r1 = ]VR and r2 = ]VC.
Then d = r1 + 2r2. For a fixed m let us choose an integer n such that n,m
are in the stable range.

As in the previous section, let us write Gn = ResQ/k SLn,k. Then the
Lie group Gn(R) is

Gn(R) =
∏
ν∈VR

SLn(R)×
∏
ν∈VC

SLn(C).

In order to construct the compact twin of this group we can work component-
wise. For the group SLn(R) we have that the maximal compact subgroup
is SOn(R). The complexification is SLn(C). The compact subgroup of the
complexification is SUn. Therefore the compact twin is CT(SLn(R)) =
SOn(R)\SUn.
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For the group SLn(C) the maximal compact subgroup is SUn. The
complexification is SLn(C)× SLn(C), with the inclusion

SLn(C)→ SLn(C)× SLn(C)

M 7→ (M,M)

The complex conjugation τ : SLn(C)× SLn(C)→ SLn(C)× SLn(C) is given
by τ(M,N) = (N,M). Thus the compact subgroup of the complexification
is SUn×SUn and the compact twin is homeomorphic to SUn.

Therefore, after taking the limit when n goes to infinity, the compact
twin CT

(
G(R)

)
is homeomorphic to (SO \SU)r1 × SUr2 . Hence, Theo-

rem 9.6, Corollary 4.27 and Corollary 4.23 imply

Theorem 9.9 (Borel). The rank of the groups Km(v), m ≥ 2, are

rk
(
Km(v)

)
=


0, if m is even,
r1 + r2, if m ≡ 1 mod 4,
r2, if m ≡ 3 mod 4.

9.4. The Values of the Zeta Functions

In this section we will recall Borel’s Theorem relating the regulator with
the values of zeta functions.

The main reason for using P2p−1

(
CT

(
G(R)

)
,R

)
as the target for the

regulator map is that it has a natural integral structure. Since K-theory is
defined using homotopy, Lichtenbaum [42] proposed to use the lattice given
by the image of π2p−1(CT

(
G(R)

)
, e) under the Hurewicz morphism. Let us

denote by L′2p−1 this lattice. This is also the lattice used in [8, §6.4] to define
the regulator number.

Definition 9.10. The Borel regulator , R′Bo,p, is the covolume of the
lattice

r′Bo

(
K2p−1(v)

)
⊂ P2p−1

(
CT

(
G(R)

)
,R

)
with respect to the lattice L′2p−1.

Let us write

dp = rk
(
K2p−1(v)

)
= dim

(
P2p−1

(
CT

(
G(R)

)
,R

))
.

Let ζk(s) be the Dedekind zeta function of the number field k.
Lichtenbaum ([42]) proposed the following question, which is known as

Lichtenbaum’s conjecture.

Question 9.11. When is it true that

R′Bo,p = ±]K2p−1(v)torsion
]K2p−2(v)

lim
s→−p+1

ζk(s)(s+ p− 1)−dp?
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When asking this question, Lichtenbaum remarked that, due to the lack
of known examples at that time, the normalization may not be the correct
one and that the formula might need to be adjusted by some power of π and
some rational number.

Later Borel ([8], see also [3]) proved the transcendental part of Lichten-
baum question. Given two real numbers a and b we will write a ∼ b if there
is a non zero rational number q with a = qb.

Theorem 9.12 (Borel). Let k be a number field. Then

(9.1) R′Bo,p ∼ π−dp lim
s→−p+1

ζk(s)(s+ p− 1)−dp .

Observe that the factor π−dp implies that the lattice chosen is not the
best one. This will be one of the reasons for renormalizing Borel’s regulator.

Remark 9.13. The value of Borel’s regulator is determined by the inte-
gral structure given by the lattice L′2p−1. Therefore, for any real vector space
V , any lattice L of V and any isomorphism f : P2p−1

(
CT

(
G(R)

)
,R

)
→ V

with f(L′2p−1) = L, we will say that the composition f ◦ r′Bo is equivalent to
the Borel regulator map.

9.5. A Renormalization of Borel’s Regulator

The definition of Borel’s regulator given in Section 9.2 is the original def-
inition which appears in the paper [8]. Nevertheless, in the literature there
appears a slightly different morphism with the name of Borel’s regulator
([2, 23, 25, 34, 55]). The aim of this section is fill the gap between the two
definitions. The first difference is obvious and the reason for it is to avoid
the factor π−dp in equation (9.1). The second difference is related with the
choice of the lattice L′ and the reason for it is the different behavior of the
homotopy groups of the compact twins of SL(R) and SL(C). As we will see,
this behavior implies that Borel’s regulator, as defined, does not factorize in
a uniform way through the K-theory of the field C.

A key ingredient in the definition of Borel’s regulator is the isomorphism

γ′ : H∗(CT
(
Gn(R)

)
,R

)
→ H∗

cont(Gn(R),R).

We have used this isomorphism only for odd degrees. Let us denote by
gR, k and gu the Lie algebras of the group Gn(R), of the maximal compact
subgroup K ⊂ Gn(R) and of the compact subgroup Gn,u =

(
Gn(R)

)
u
⊂

Gn(C) respectively. Recall that the isomorphism γ′ is the composition

H2p−1
(
CT

(
Gn(R)

)
,R

) α // H2p−1(gu, k,R)
ι // H2p−1(gR, k,R)
β // H2p−1

cont (Gn(R),R),

where β is the inverse of the van Est isomorphism, the isomorphism α is
constructed by means of invariant differential forms and ι is the isomorphism
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given by multiplication with i2p−1. The first change we will make to the
regulator is to keep a twist and replace the isomorphism ι by the identity

E2p−1
(
gR, k,R(p− 1)

)
= E2p−1

(
gu, k,R(p)

)
,

where R(p) is the subgroup (2πi)pR ⊂ C. Let γ be the composition

H2p−1
(
CT

(
Gn(R)

)
,R(p)

) α // H2p−1
(
gu, k,R(p)

)
H2p−1

(
gR, k,R(p− 1)

)
β // H2p−1

cont

(
Gn(R),R(p− 1)

)
,

Twisting the source and the target of γ by R(1− p) and composing with ϕ∗

as in Section 9.2 we obtain a morphism

j′′ : H2p−1
(
CT

(
Gn(R)

)
,R(1)

)
→ H2p−1(SLn(v),R).

Taking duals and restricting to the primitive subspaces we get a morphism

(j′′)∨ : P2p−1(SLn(v),R)→ P2p−1

(
CT

(
Gn(R)

)
,R(−1)

)
.

Taking the limit as n goes to infinity and composing with the Hurewicz
morphism we obtain a morphism

r′′Bo : K2p−1(v)→ P2p−1

(
CT

(
G(R)

)
,R(−1)

)
.

In P2p−1(CT
(
G(R)

)
,R(−1)) we put the lattice

L′′2p−1 = π2p−1

(
CT

(
G(R)

)
, e

)
(−1) = (2πi)−1π2p−1

(
CT

(
G(R)

)
, e

)
.

Remark 9.14. With this lattice, the morphism r′′Bo is not equivalent
to r′Bo but to 2πr′Bo. Thus this change will take care of the factor π−dp in
Theorem 9.12.

In order to try to factor r′′Bo through the K-theory of C, let us consider
Gn(C) as a real Lie group. Its compact twin is homeomorphic to SUΣ

n . As
before, the morphisms SLn(v)→ Gn(C), for all n, induce morphisms

ρ : K2p−1(v)→ P2p−1

(
SUΣ,R(−1)

)
.

Let F be the involution of P2p−1

(
SUΣ,R(−1)

)
that acts as complex

conjugation on the space SUΣ and on the coefficients at the same time. Note
that complex conjugation on the space SUΣ means complex conjugation in
each factor SU, and complex conjugation in the set of complex immersions Σ.
Let us denote by P2p−1

(
SUΣ,R(−1)

)F the subspace of invariant elements.
We will use the same letter F in any circumstance when such an involution
can be constructed.

The morphism of real Lie groups Gn(R) → Gn(C) induces a morphism
of compact twins

ψ : CT
(
G(R)

)
= (SO \SU)r1 × SUr2 → CT

(
G(C)

)
= SUΣ .
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Proposition 9.15. The morphism

ψ∗ : H2p−1

(
CT

(
G(R)

)
,R(−1)

)
→ H2p−1

(
CT

(
G(C)

)
,R(−1)

)
induces an isomorphism

ψ∗ : P2p−1

(
CT

(
G(R)

)
,R(−1)

) ∼=−→ P2p−1

(
CT

(
G(C)

)
,R(−1)

)F
.

Proof. It is enough to treat the cases r1 = 1, r2 = 0 and r1 = 0, r2 = 1.
Let us prove the first case. If r1 = 1 and r2 = 0 then G(R) = SL(R)

and G(C) = SL(C). The inclusion SL(R) → SL(C) induces a commutative
diagram of compact subgroups and compact twins

(9.2)

SO //

��

SU //

α

��

SO \SU

ψ

��
SU

β // SU×SU
ϕ // SU,

where α(M) = (M,M), whereas β(M) = (M,M). Thus

ϕ(M,N) = M
−1
N = M tN

and ψ(M) = M tM . Since the rows are fibrations, the homotopy long exact
sequence of a fibration gives rise to a morphism of exact sequences

P∗
(
SO,R(−1)

)
//

��

P∗
(
SU,R(−1)

)
//

��

P∗
(
SO \SU,R(−1)

)
��

P∗
(
SU,R(−1)

)
// P∗

(
SU×SU,R(−1)

)
// P∗

(
SU,R(−1)

)
,

By Theorem 4.26 we know that Pm
(
SO,R(−1)

)
= R(−1) if m ≡ 3 mod 4

and zero otherwise, and that Pm
(
SO \SU,R(−1)

)
= R(−1) if m ≡ 1 mod 4

and zero otherwise.

Lemma 9.16. Let s : SU → SU be the morphism given by complex con-
jugation. Then the induced morphism

s2p−1 : P2p−1

(
SU,R(−1)

)
→ P2p−1

(
SU,R(−1)

)
is equal to (−1)p.

Proof. This follows from the explicit description of the generators of
the group P2p−1

(
SU,R(−1)

)
given in Definition 4.5 and the fact that com-

plex conjugation reverses the orientation of Cp if p is odd and preserves the
orientation if p is even. �

Observe that in this lemma the morphism s acts as complex conjugation
on the space and not on the coefficients. Thus it does not agree with F ,
in fact, since the coefficients are R(−1), F = −s. Therefore, if p is even
P2p−1

(
SU,R(−1)

)F = 0, proving the proposition in this case.
Let p be an odd number. We can identify P2p−1(SU,R)⊕ P2p−1(SU,R)

with P2p−1(SU×SU,R), by the isomorphism defined by the two projections
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of SU×SU. By Lemma 9.16 we have that, for x ∈ P2p−1(SU,R), β∗(x) =
(−x, x), whereas α∗(x) = (x, x). Therefore, if x 6= 0, ϕ∗

(
α∗(x)

)
6= 0. Hence

ψ∗ is injective. But by Lemma 9.16, Pm
(
SU,R(−1)

)F = Pm
(
SU,R(−1)

)
has dimension one. This proves the case p odd.

If r1 = 0 and r2 = 1, we have that G(R) = SL(C) and G(C) = SL(C)×
SL(C). Thus in this case the analogue of diagram (9.2) is

(9.3)

SU //

��

SU×SU //

α

��

SU

ψ
��

SU×SU
β // SU×SU×SU×SU

ϕ // SU×SU,

with

α(M,N) = (M,N,M,N),

β(M,N) = (N,M,M,N),

ϕ(A,B,M,N) = (BtM,AtN)

and

ψ(M) = (M t,M).

The result follows as in the previous case. �

Corollary 9.17. The image ρ
(
K2p−1(v)

)
lies in the subgroup of F -

invariant elements P2p−1

(
CT

(
G(C)

)
,R(−1)

)F . Moreover there is a com-
mutative diagram with the vertical arrow being an isomorphism,

P2p−1

(
CT

(
G(R)

)
,R(−1)

)

ψ∗

��

K2p−1(v)

r′′Bo

55kkkkkkkkkkkkkkk

ρ ))SSSSSSSSSSSSSS

P2p−1

(
CT

(
G(C)

)
,R(−1)

)F
This corollary means that, for computing the rank, it is the same to use

ρ or r′′Bo.
Let us see what happens to the integral structure. The natural lattice

to consider in the real vector space P2p−1

(
SUΣ,R(−1)

)F is

L2p−1 =
(
π2p−1(SUΣ, e)(−1)

)F
.

In order to compare the lattices L′′2p−1 and L2p−1, we have to study the
effect in homotopy of the morphism CT

(
G(R)

)
→ CT

(
G(C)

)
. It is enough

to treat the cases r1 = 1, r2 = 0 and r1 = 0, r2 = 1.



84 9. BOREL’S REGULATOR

Lemma 9.18. (1) The morphism CT
(
SL(R)

)
→ CT

(
SL(C)

)
sends

a generator of the group π8k+1(SO \SU, e) to a generator of π8k+1(SU, e) and
sends a generator of π8k+5(SO \SU, e) to twice a generator of π8k+5(SU, e).

(2) For each p let us denote by ε2p−1 a generator of π2p−1(SU, e). Then
the morphism CT

(
SL(C)

)
→ CT

(
SL(C)×SL(C)

)
sends ε2p−1 to the element

((−1)p+1ε2p−1, ε2p−1).

Proof. Using Bott’s Periodicity Theorem (Theorem 4.26), and the ho-
motopy long exact sequence of the fibration

SO→ SU→ SO \SU,

one can see that the morphism πm(SU, e) → πm(SU /SO, e) is surjective
if m ≡ 5 mod 8 and has cokernel Z/2Z if m ≡ 1 mod 8. Thus case (1)
follows from this and from the morphism of homotopy long exact sequences
associated to diagram (9.2).

Case (2) follows from the morphism of homotopy long exact sequences
associated to diagram (9.3). �

Definition 9.19. The (renormalized) Borel regulator map is the map

K2p−1(v)
ρ−→ P2p−1

(
CT

(
G(C)

)
,R(−1)

)F
,

where the space in the right hand side is provided with the lattice

L2p−1 =
(
π2p−1

(
CT

(
G(C)

)
, e

)
(−1)

)F
.

This map will be denoted by rBo. We denote by RBo,p the covolume of the
lattice rBo

(
K2p−1(v)

)
with respect to the lattice L2p−1.

Remark 9.20. If the field k does not have real immersions, Lemma 9.18
implies that rBo and r′′Bo are equivalent. Therefore the factor 2π is the
only discrepancy between the two definitions of Borel’s regulator. On the
other hand, if the field has real immersions, by Lemma 9.18 there is also
a difference by a factor of 2 in the component corresponding with the real
immersions, when p ≡ 3 mod 4. Therefore, we have

RBo,p = (2π)dpR′Bo,p, if p 6≡ 3 mod 4,(9.4)

RBo,p = (2π)dp2r1R′Bo,p if p ≡ 3 mod 4.(9.5)

Let us see that the renormalized Borel regulator map can be factored
throughK(C). The group SLn(C) with the discrete topology will be denoted
by SLn(C)δ. Applying the process that defines the renormalized Borel reg-
ulator map to the natural morphism

SLn(C)δ → SLn(C)

induces, for p ≥ 2, a map

K2p−1(C)→ P2p−1

(
SU,R(−1)

)
denoted by rBo,C. The following result is clear.
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Proposition 9.21. Let k be a number field, v its ring of integers and Σ
the set of complex immersions of k. For each σ ∈ Σ, let us also denote by
σ the induced morphism σ : K2p−1(v) → K2p−1(C). Then the renormalized
Borel regulator map can be factored as

K2p−1(v)
Q

Σ σ−−−→
(∏

Σ

K2p−1(C)
)F Q

rBo,C−−−−−→
(∏

Σ

P2p−1

(
SU,R(−1)

))F

.

The last objective of this section is to give an equivalent definition of
the renormalized Borel regulator that hides the fact that the integral lattice
we are considering is given by the homotopy of the compact twin. The key
ingredient for this alternative definition is the Chern character.

A class α ∈ H2p−1
(
SU,R(p)

)
determines a morphism

α : H2p−1

(
SU,R(−1)

)
→ R(p− 1).

Hence, by restriction, it determines a morphism

α : P2p−1

(
SU,R(−1)

)
→ R(p− 1).

Moreover, if the class α is invariant under F , then we obtain a morphism

α : P2p−1

(
SUΣ,R(−1)

)F → (∏
σ∈Σ

R(p− 1)
)F

.

Let chp be the component in H2p
(
BSU,R(p)

)
of the twisted Chern char-

acter of the universal bundle. Let s denote the suspension. By Remark 4.25
we know that, if ε2p−1 is a generator of π2p−1(SU, e) and Hur denotes the
Hurewicz morphism then s(chp)

(
Hur(ε2p−1)

)
is a generator of Z(p) ⊂ R(p).

Moreover, s(chp) is invariant under F . Thus if we add to the real vector
space

(∏
R(p−1)

)F the integral structure given by
(∏

Z(p−1)
)F , we have:

Proposition 9.22. The morphism∏
Σ

s(chp) : π2p−1(SUΣ, e)⊗ R(−1)→
∏
Σ

R(p− 1)

is an isomorphism. Moreover it is compatible with the integral structure and
with the involution F .

Corollary 9.23. The composition

K2p−1(v)
Q

Σ σ //

(∏
Σ

K2p−1(C)
)F

Q
Σ rBo,C //

(∏
Σ

P2p−1

(
SU,R(−1)

))F

Q
Σ s(chp)

//

(∏
Σ

R(p− 1)
)F

.

is equivalent to the renormalized Borel regulator map.
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9.6. Borel Elements

Recall that we have defined algebraic K-theory using the general linear
group GL. But in the definition of the Borel regulator we shifted to the
special linear group SL in order to apply Theorem 9.6. Since the inclusion
SLn → GLn induces isomorphisms, for m ≥ 2

Pm(SLn(v),R) ∼= Pm(GLn(v),R),

πm(SUn, e) ∼= πm(Un, e),

we can replace, in the definition of the renormalized Borel regulator, the
group SLn with the group GLn.

By Proposition 9.21 Borel’s regulator for number fields is determined by
Borel’s regulator for the complex field. By Corollary 9.23 Borel’s regulator
for the complex field is equivalent to the composition

K2p−1(C) Hur−−→ P group
2p−1 (GL(C),R)→ R(p− 1),

where P group
2p−1 denote the primitive part of group homology. Therefore,

Borel’s regulator is determined by a map between the primitive part of
the homology groups P group

2p−1 (GL(C),R) and the real vector space R(p− 1).
For the sake of comparison, it is useful to work, not with the map from
homology, but with the corresponding element in cohomology. By construc-
tion, we know that this element comes from continuous cohomology. The
Borel element will be this element in continuous cohomology. Let us choose
n such that n, 2p are in the stable range.

Definition 9.24. Let chp ∈ H2p
(
B·GLn(C),R(p)

)
be the p-th compo-

nent of the twisted Chern character. Then the Borel element , Bop is the
image of chp under the composition

H2p
(
B·GLn(C),R(p)

) s // H2p−1
(
GLn(C),R(p)

)
H2p−1

(
Un,R(p)

)
α // H2p−1

(
un ⊕ un, un,R(p)

)
Id // H2p−1

(
gln(C), un,R(p− 1)

)
β // H2p−1

cont

(
GLn(C),R(p− 1)

)
.

The isomorphism α is defined using invariant forms in the homogeneous
space Un ∼= Un \(Un ⊕ Un) . The isomorphism Id is obtained by identifying
both spaces with the same subspace of H2p−1(gln(C), un,C). And β is the
inverse of the van Est isomorphism. In these groups gln(C) is viewed as a
real Lie algebra.

We will also denote by Bop the corresponding element in the group
H2p−1

(
gln(C), un,R(p−1)

)
. Moreover, since un is noncohomologous to zero
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in gln(C) (see Definition 5.40) the morphism

H2p−1
(
gln(C), un,R(p− 1)

)
→ H2p−1

(
gln(C),R(p− 1)

)
is injective. Therefore the element Bop is determined by its image in the
group H2p−1

(
gln(C),R(p− 1)

)
. We will also denote this element by Bop.

9.7. Explicit Representatives of the Borel Element

Let us determine explicitly a representative of Bop in the group
H2p−1

(
gln(C), un,R(p− 1)

)
. For explicit representatives of the Borel ele-

ment in continuous cohomology, the reader is referred to [23,36].
By Example 5.37, the class of s(chp) is represented in the group

H2p−1
(
un,R(p)

)
, by the form Φ2p−1 given by

Φ2p−1

(2p−1∧
j=1

xj

)
=

(−1)p−1(p− 1)!
(2p− 1)!

∑
σ∈S2p−1

(−1)σ Tr(xσ(1) ◦ · · · ◦ xσ(2p−1)).

The isomorphism α : H2p−1
(
Un,R(p)

)
→ H2p−1

(
un ⊕ un, un,R(p)

)
is

obtained viewing Un as the homogeneous space Un \Un×Un, where the
inclusion Un → Un×Un is given by M 7→ (M,M). Therefore the projection
ϕ : Un×Un → Un is given by ϕ(M,N) 7→M tN . The induced map ϕ∗ : un⊕
un → un is given by (x, y) 7→ xt + y. Therefore α

(
s(chp)

)
is represented by

the form ω given by

ω

(2p−1∧
j=1

(xj , yj)
)

= Φ2p−1

(2p−1∧
j=1

xtj + yj

)
.

This form extends to a C-linear form

ωC ∈ E2p−1(gln(C)⊕ gln(C),C) = E2p−1(gln(C)⊗
R

C,C)

given by the same formula. The inclusion

gln(C)→ gln(C)⊗ C→ gln(C)⊕ gln(C)

is given by x 7→ (x̄, x). Thus we obtain:

Proposition 9.25. The Borel element Bop is represented by the form

2p−1∧
j=1

xj 7→ Φ2p−1

(2p−1∧
j=1

x̄tj + xj

)
,

which is an element of E2p−1
(
gln(C), un,R(p− 1)

)
.

The image of the representative we have obtained in the group
E2p−1

(
gln(C),R(p− 1)

)
is not invariant under the action θ of gln(C). For

comparison with Beilinson’s regulator we will need a representative of Bop in
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the group E2p−1
(
gln(C),R(p− 1)

)
θ=0

. To obtain it we will use that s(chp)
is primitive. Let us denote by µ the product in the group Un:

µ : Un×Un → Un

(M,N) 7→MN.

The fact that s(chp) is primitive implies that

µ∗
(
s(chp)

)
= s(chp)⊗ 1 + 1⊗ s(chp).

Since there is a commutative diagram

Un⊗Un

ϕ

$$IIIIIIIII

t

��

Un

Un⊗Un

µ
::uuuuuuuuu

with t(M,N) = (M t, N) we obtain that α
(
s(chp)

)
is represented, in the

group H2p−1
(
un ⊕ un,R(p)

)
by the form

ω′
(2p−1∧
j=1

(xj , yj)
)

= Φ2p−1

(2p−1∧
j=1

xtj

)
+ Φ2p−1

(2p−1∧
j=1

yj

)
.

Observe that this form is not an element of E2p−1
(
un⊕un, un,R(p)

)
. Apply-

ing to ω′ the same process applied to ω, we obtain that Bop in represented
by the form

2p−1∧
j=1

xj 7→ Φ2p−1

(2p−1∧
j=1

x̄tj

)
+ Φ2p−1

(2p−1∧
j=1

xtj

)
By the properties of the trace of a matrix is easy to see that

Φ2p−1

(2p−1∧
j=1

x̄tj

)
= (−1)p−1Φ2p−1

(2p−1∧
j=1

xj

)−
.

Let us denote by πp−1 : C→ R(p− 1) the projection given by

πp−1(x) =
1
2
(x+ (−1)p−1x).

Then

Proposition 9.26. The image of the Borel element Bop in the group
H2p−1

(
gln(C),R(p− 1)

)
is represented by the form 2πp−1 ◦ Φ2p−1.



CHAPTER 10

Beilinson’s Regulator

10.1. Deligne–Beilinson Cohomology

In this section we will recall the definition and some properties of Deligne-
Beilinson cohomology. For more details the reader is referred to [1,2, 27].

Let X be a proper smooth algebraic variety over C. Let D ⊂ X be a
normal crossings divisor and let X = X −D. We will consider X and X as
complex analytical manifolds. Then Ω∗X will denote the sheaf of holomorphic
forms on X. Let us denote by j : X → X the inclusion. Let z1 · · · zk = 0
be a local equation for D. Then the sheaf of holomorphic forms on X with
logarithmic poles along D, denoted Ω∗

X
(logD), is the subalgebra of j∗Ω∗X

generated locally by Ω∗
X

and the sections

dzi
zi
, for i = 1, . . . , k.

Since j is affine Rj∗Ω∗X = j∗Ω∗X . In the derived category of sheaves over
X there are quasi-isomorphisms

(10.1) Rj∗C→ Rj∗Ω∗X = j∗Ω∗X ← Ω∗
X

(logD).

On the complex Ω∗
X

(logD) there is defined a Hodge filtration

F pΩ∗
X

(logD) =
⊕
p′≥p

Ωp′

X
(logD).

In view of the quasi-isomorphisms (10.1), this filtration provides the coho-
mology of X, H∗(X,C) with a Hodge filtration. This is the Hodge filtration
of the mixed Hodge structure of H∗(X,C) [19].

Let Λ be a subring of C and let us denote by Λ(p) the subgroup (2πi)pΛ ⊂
C. Let us consider the complex of sheaves on X

(10.2) Λ(p)D = s(Rj∗Λ(p)⊕ F pΩ∗
X

(logD) u−→ j∗Ω∗X),

where s( ) means the simple complex of a morphism of complexes (i.e., the
cône shifted by one) and u(r, f) = r − f . In other words,

Λ(p)nD = Rj∗Λ(p)n ⊕ F pΩn
X

(logD)⊕ j∗Ωn−1
X ,

with

(10.3) d(r, f, ω) = (dr, df, r − f − dω).

89
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Definition 10.1. The Deligne–Beilinson cohomology groups of X are
the hypercohomology of the complex of sheaves Λ(p)D. These cohomology
groups will be denoted by Hm

D
(
X,Λ(p)

)
.

There are obvious morphisms of complexes

u1 : Λ(p)D → Rj∗Λ(p),

u2 : Λ(p)D → F pΩ∗(logD),

that induce morphisms

u∗1 : H∗
D

(
X,Λ(p)

)
→ H∗(X,Λ(p)

)
,

u∗2 : H∗
D

(
X,Λ(p)

)
→ F pH∗(X,C).

Lemma 10.2. The diagram

H∗
D

(
X,Λ(p)

) u∗1 //

u∗2
��

H∗(X,Λ(p)
)

��
F pH∗(X,C) // H∗(X,C)

is commutative.

Proof. Let (r, f, ω) ∈ Λ(p)mD be a closed representative of a class x ∈
Hm
D

(
X,Λ(p)

)
. By (10.3), r and f are closed. Moreover r represents u∗1(x)

and f represents u2(x). But, since dω = r − f , both elements represent the
same class in Hm(X,C). �

Alternatively we may represent Deligne–Beilinson cohomology by the
complexes

Λ(p)D ∼= s
(
Rj∗Λ(p)→ cône(F pΩ∗

X
(logD)→ j∗Ω∗X)

)
,(10.4)

Λ(p)D ∼= s
(
F pΩ∗

X
(logD)→ cône(Rj∗Λ(p)→ j∗Ω∗X)

)
.(10.5)

From the presentations (10.2), (10.4) and (10.5), and the fact that the spec-
tral sequence associated with the Hodge filtration degenerates in the term
E1, we obtain the exact sequences

Hq−1(X,C)→Hq
D

(
X,Λ(p)

)
→Hq

(
X,Λ(p)

)
⊕ F pHq(X,C)→ · · · ,(10.6)

Hq−1(X,C)
F pHq−1(X,C)

→Hq
D

(
X,Λ(p)

)
→Hq

(
X,Λ(p)

)
→ · · · ,(10.7)

Hq−1(X,C)
Hq−1

(
X,Λ(p)

)→Hq
D

(
X,Λ(p)

)
→F pHq(X,C)→ · · · .(10.8)

For instance, if Λ = Z and q = 2p we obtain a short exact sequence

0→ H2p−1(X,C)
F pH2p−1(X,C) +H2p−1

(
X,Z(p)

)
→ H2p

D
(
X,Z(p)

)
→ H2p

(
X,Z(p)

)
∩ F pH2p(X,C)→ 0
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Therefore, if X is projective, the group H2p
D

(
X,Z(p)

)
is an extension be-

tween the intermediate Jacobian, Jp(X), and the group of Hodge classes
Hp,p

(
X,Z(p)

)
.

We will be interested in the real Deligne–Beilinson cohomology groups of
X, Hq

D
(
X,R(p)

)
. These groups can be represented using smooth differential

forms. Let E∗ be the complex of sheaves of C-valued smooth differential
forms on X, E∗R be the subcomplex of real valued forms and E∗

X
(logD) be

the sheaf of smooth differential forms with logarithmic singularities along D
([14]). We will denote by E∗(X), E∗R(X) and E∗

X
(logD) the corresponding

complexes of global sections. If the compactification X and the divisor D
are fixed, for simplicity, we will write E∗log(X) = E∗

X
(logD). Let us denote

E∗R(X, p) = (2πi)pE∗R(X). Since E∗R is a resolution of R, E∗
X

(logD) is a
resolution of Ω∗

X
(logD) and E∗ is a resolution of Ω∗, then real Deligne–

Beilinson cohomology is the cohomology of the complex

D∗(X, p) = s
(
E∗R(X, p)⊕ F pE∗log(X) u−→ E∗(X)

)
.

Let us denote by πp : C→ R(p) the projection

πp(x) = (x+ (−1)px)/2.

In analogy with (10.5), the complex D∗(X, p) is quasi-isomorphic to the
complex

D∗
0(X, p) = s

(
F pE∗log(X)

πp−1−−−→ E∗R(X, p− 1)
)
.

The definition of Deligne–Beilinson cohomology can be extended to real
varieties. A smooth real variety XR, is a pair (X,σ), where X is a smooth
complex variety and σ is an antilinear involution. Thus if XR is a smooth
real variety, we can define an involution F on Hq

D
(
X,R(p)

)
, acting as σ on

the space and as complex conjugation on the coefficients.

Definition 10.3. Let XR be a smooth real variety. Then the real
Deligne–Beilinson cohomology groups of XR are

Hq
D

(
XR,R(p)

)
= Hq

D
(
X,R(p)

)F
,

the subspace of invariant elements under F .

Example 10.4. Let us consider the variety X = Spec(C). From the
exact sequence (10.7) it is clear that

(10.9) Hn
D

(
X,R(p)

)
=


R, if n = 0, p = 0,
R(p− 1), if n = 1, p > 0,
0, otherwise.

Example 10.5. Let k be a number field. Let X = Spec(k)⊗ C and let
XR be its natural structure of real variety. Then, for p > 0,

H1
D

(
XR,R(p)

)
=

(∏
Σ

R(p− 1)
)F

.
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Remark 10.6. In general it is not obvious how to put an integral or
even a rational structure on Deligne–Beilinson cohomology. Nevertheless, if
X is defined over k, using the natural k-structures of Betti cohomology and
of algebraic de Rham cohomology over k, one can define a k-structure on
Hn
D

(
X,R(p)

)
, for certain values of n and p. See [2] for the details. In the case

of Example 10.5, since all the contributions to Deligne–Beilinson cohomology
come from Betti cohomology, H1

D
(
XR,R(p)

)
has a natural integral structure

given by
(∏

Σ Z(p− 1)
)F .

10.2. Deligne–Beilinson Cohomology of B·GLn(C)

In this section we will compute the groups H2p
D

(
B·GLn(C),R(p)

)
and

relate them with the continuous cohomology groups of GLn(C).
If X· is a simplicial smooth complex variety then D∗(X·, p) is a cosim-

plicial complex and we may define

H∗
D

(
X·,R(p)

)
= H∗

(
sN

(
D(X·, p)

))
.

In particular, the exact sequences (10.6), (10.7) and (10.8) are also valid for
simplicial varieties.

Since the group H2p(B·GLn(C),C) is pure of type (p, p) (see [20]), then

H2p(B·GLn(C),C)
F pH2p(B·GLn(C),C)

= 0.

Moreover H2p−1(B·GLn(C),C) = 0. Therefore by the exact sequence (10.7),
the morphism

(10.10) u∗1 : H2p
D

(
B·GLn(C),R(p)

)
→ H2p

(
B·GLn(C),R(p)

)
.

is an isomorphism.
From the stability of the de Rham cohomology of B·GLn(C) we obtain

also a stability theorem for the Deligne–Beilinson cohomology of B·GLn(C).
We will write

Hm
D

(
B·GL(C),R(p)

)
= lim←−

n

Hm
D

(
B·GLn(C),R(p)

)
.

If n,m are in the stable range, then, for all p, the natural morphisms

Hm
D

(
B·GL(C),R(p)

)
→ Hm

D
(
B·GLn(C),R(p)

)
are isomorphisms.

For any complex manifold X, and for p ≥ 1, let us define a morphism of
complexes

η : D∗(X, p)→ E0
R(X, p− 1)[−1],

given, for (r, f, ω) ∈ Dj(X, p), by

η(r, f, ω) =

{
πp−1(ω), if j = 1,
0, if j 6= 1.
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Here we consider E0
R
(
X,R(p− 1)

)
[−1] as a complex concentrated in degree

one. In particular, if X = Spec C, this morphism induces the isomorphism

H1
D

(
X,R(p)

)
→ R(p− 1).

For the classifying space we obtain a morphism of complexes

ND∗(B·GLn(C), p)→ NE0
R(B·GLn(C), p− 1)[−1],

which induces a map

η∗ : Hq
D

(
B·GLn(C),R(p)

)
→ Hq−1

cont

(
GLn(C),R(p− 1)

)
.

10.3. The Definition of Beilinson’s Regulator

In Section 10.1 we have defined Deligne–Beilinson cohomology as the
hypercohomology of certain complex of sheaves on the analytic topology of
a compactification X of X. Nevertheless Deligne–Beilinson cohomology can
also be defined as the hypercohomology of certain complex of sheaves over
the Zariski topology of X (see [2, 27]). Therefore we can apply Gillet’s
construction of characteristic classes for higher K-theory [29]. Beilinson’s
regulator map is the Chern character map between higher K theory and real
Deligne–Beilinson cohomology.

For simplicity, instead of giving the general definition of Beilinson’s reg-
ulator map, we will give an ad hoc definition in the case of number fields.
The reader is referred to [2] for the general definition. Note that the defi-
nition presented here is simply a down to earth version of the definition in
[56] (see also [57]).

Let us fix an integer p and let n be such that n, 2p are in the stable range.
Let us denote by B·GLn(C)s the simplicial set underlying B·GLn(C). We
can consider Spec(C) as a complex manifold with only one point. Let us
write

B·GLn(C)δ = Spec(C)×B·GLn(C)s.

There is a natural morphism of simplicial complex manifolds

ev : B·GLn(C)δ → B·GLn(C),

that induces a morphism

ev∗ : H2p
D

(
B·GLn(C),R(p)

)
→ H2p

D
(
B·GLn(C)δ,R(p)

)
.

Using equation (10.9), and Proposition 2.18, we can compute the
Deligne–Beilinson cohomology of B·GLn(C)δ and we obtain, for p ≥ 1,

H2p
D

(
B·GLn(C)δ,R(p)

)
= H2p−1

(
B·GLn(C)δ,H1

D
(
Spec(C),R(p)

))
= Hom

(
H2p−1(B·GLn(C)δ,R),R(p− 1)

)
= Hom

(
Hgroup

2p−1 (GLn(C),R),R(p− 1)
)
.
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By the stability of group homology (Theorem 6.5) we obtain a stability
result for H2p

D
(
B·GLn(C)δ,R(p)

)
. As usual we write

B·GL(C)δ = lim−→B·GLn(C)δ,

and we define H2p
D

(
B·GL(C)δ,R(p)

)
accordingly. The map ev∗ induces a

map

ev∗ : H2p
D

(
B·GL(C),R(p)

)
→ H2p

D
(
B·GL(C)δ,R(p)

)
.

Therefore, to each class α ∈ H2p
D

(
B·GL(C),R(p)

)
, we can associate a mor-

phism

H2p−1(B·GL(C)δ,R)
ev∗(α)−−−−→ R(p− 1).

If chp ∈ H2p
(
B·GL(C),R(p)

)
is the component of degree 2p of the

twisted Chern character, we will also denote by chp its image in the group
H2p
D

(
B·GL(C),R(p)

)
by the isomorphism (u∗1)

−1 (see (10.10)).

Definition 10.7. Beilinson’s regulator map, for the field of complex
numbers, is the composition

K2p−1(C) Hur−−→ H2p−1(B·GL(C)δ,R)
ev∗(chp)−−−−−→ R(p− 1).

This map will be denoted as rBe,C.

Definition 10.8. Let k be a number field, v its ring of integers and Σ
the set of complex immersions of k. Then the Beilinson’s regulator map for
the ring v is the composition

K2p−1(v)
Q

Σ σ−−−→
(∏

Σ

K2p−1(C)
)F Q

Σ rBe,C−−−−−→
(∏

Σ

R(p− 1)
)F

.

Let us see that Beilinson’s regulator map is also determined by an ele-
ment in continuous cohomology. Since B·GLn(C)δ is discrete,

Eq(B·GLn(C)δ) = 0, for q > 0,

E0
R(B·GLn(C)δ, p− 1) = F

(
B·GLn(C)δ,R(p− 1)

)
,

where F
(
Bm GL(C)δ,R(p − 1)

)
is the space of functions from Bm GL(C)δ

to R(p − 1). Therefore the morphisms ev∗ is represented at the level of
complexes by the morphism

NDj
0

(
B·GLn(C),R(p)

)
→ NF

(
B·GLn(C)δ,R(p− 1)

)
[−1],

(f, r) 7→

{
r, if j = 1,
0, otherwise,
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Moreover, by the commutativity of the diagram

H2p
D

(
B·GLn(C),R(p)

) ev∗ //

η∗

��

H2p
D

(
B·GLn(C)δ,R(p)

)
��

H2p−1
cont

(
GLn(C),R(p− 1)

)
// H2p−1

group

(
GLn(C),R(p− 1)

)
we obtain that Beilinson’s regulator map is determined by the elements

η∗(chp) ∈ H2p−1
cont

(
GLn(C),R(p− 1)

)
.

These elements will be called Beilinson elements and denoted by Bep.

10.4. The Comparison Between the Regulators

In this section we will compare Beilinson’s regulator, rBe, and the renor-
malized Borel’s regulator, rBo. Observe that, in view of Proposition 9.21 and
Definition 10.8 it is enough to treat the case of Spec(C). Clearly, to com-
pare the morphisms we can compare the elements Bop and Bep in the group
H2p−1

cont

(
GLn(C),R(p− 1)

)
, for n, 2p in the stable range (see Definition 9.4).

Theorem 10.9.

Bop = 2Bep.

Proof. Since we have an explicit representative of Bop in the group
E2p−1

(
gln(C),R(p − 1)

)
, the strategy will be to look for an explicit repre-

sentative of Bep in the same group.
Let us choose a compactification B·GLn(C) of B·GLn(C) with the divisor

at infinity D· a simplicial normal crossing divisor. Let

j : B·GLn(C)→ B·GLn(C)

be the inclusion. Let us denote by Ω∗log the sheaf of holomorphic forms on
B·GLn(C) with logarithmic poles along D·. Let E0

R be the sheaf of real C∞

functions on B·GLn(C) and E0
R(p) = (2πi)pE0

R.
Let I ⊂ OB1GLn(C) = OGLn(C) be the ideal Kerσ∗0. It is the ideal of the

point e. Let J be the ideal of OB·GLn
(C) generated by I2. Let B(1)

· GLn(C)
be the subscheme defined by the ideal J . We will consider it with the
analytical topology. Observe that B(1)

· GLn(C) is concentrated on one point
in each degree. Let us denote by

i : B(1)
· GLn(C)→ B·GLn(C)

the inclusion.
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For p ≥ 1, we have the following commutative diagram of sheaves

F pΩ∗log

��

s(Rj∗R(p)⊕ F pΩ∗log → j∗Ω∗)
η //

��

u∗2oo j∗E0
R(p− 1)[−1]

��
i∗F pΩ∗log i∗s(Rj∗R(p)⊕ F pΩ∗log → j∗Ω∗)

η //

��

oo i∗E0
R(p− 1)[−1]

i∗(Rj∗R(p)→ j∗O)
η′

44iiiiiiiiiiiiiiiii

where the morphism η′ is induced by η. The fact that B(1)
· GLn(C) has

support on only one point has several consequences. First, the sheaves of
the second and third row are, in fact, cosimplicial abelian groups. Moreover
i∗Ω∗log = i∗Ω∗ = Ω∗(B(1)

· G). Finally i∗(Rj∗R) = R.
Let us compute the normalization of the cosimplicial abelian groups of

the second and third row.

N
(
i∗(Rj∗R)

)
= N (R) = R,

a complex concentrated in degree zero. Therefore for computing the coho-
mology in degree greater than zero we can ignore it. By Proposition 8.9,

N i∗O = E∗(gln(C),C).

By Proposition 8.10,
N i∗Ω∗ = W ∗,·(gln(C)

)
.

Hence we also have

N i∗F pΩ∗log = F pW ∗,·(gln(C)
)
.

Note that, in the above equalities, gln(C) is considered a complex Lie alge-
bra. Finally, by Proposition 8.14

N i∗E0
R(p− 1) = E∗

(
gln(C),R(p− 1)

)
.

In the last equality, gln(C) is viewed as a real Lie algebra. Therefore, taking
cohomology, we obtain the diagram

H2p(B·G,C)

��

GF

@A
(2) //

H2p
D

(
B·G,R(p)

) η∗ //

��

(1)oo H2p−1
cont

(
G,R(p− 1)

)
(3)

��
H2p(F pW ) H2p

(
s(F pW →W )

)
//

��

∼=oo H2p−1
(
gR,R(p− 1)

)

H2p−1(g,C)

πp−1

44jjjjjjjjjjjjjjjj

where we have written G for GLn(C), g for the complex Lie algebra gln(C),
gR for the Lie algebra gln(C) viewed as a real Lie algebra, and W for
W

(
gln(C)

)
.
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By Lemma 10.2, the morphism (1) is the isomorphism u∗1 (10.10), fol-
lowed by the inclusion

H2p
(
B·GLn(C),R(p)

)
→ H2p(B·GLn(C),C).

By Theorem 8.12 and Proposition 5.33, the morphism (2) is the suspension
followed by the identification

H2p−1(GLn(C),C) = H2p−1(gln(C),C).

By Theorem 8.15 the morphism (3) is the van Est isomorphism followed by
the inclusion

H2m−1
(
gln(C), un,R(m− 1)

)
→ H2m−1

(
gln(C),R(m− 1)

)
.

Therefore we have proved the following result

Lemma 10.10. The image of the Beilinson element under the composi-
tion

H2p−1
cont

(
GLn(C),R(p− 1)

) vEst // H2p−1
(
gln(C), un,R(p− 1)

)
// H2p−1

(
gln(C),R(p− 1)

)
agrees with the image of chp under the composition

H2p
(
B·GLn(C),R(p)

)
// H2p(B·GLn(C),C)

s // H2p−1(GLn(C),C)

H2p−1(gln(C),C)
πp−1 // H2p−1

(
gln(C),R(p− 1)

)
.

Let Φ2p−1 be the forms used in Section 9.7 to obtain an explicit repre-
sentative of Borel’s element. Then, by Proposition 5.34, Example 5.37 and
Lemma 10.10 we obtain:

Proposition 10.11. The image of Bep in H2p−1
(
gln(C),R(p − 1)

)
is

represented by the form πp−1 ◦ Φ2p−1.

This proposition and Proposition 9.26 conclude the proof of the theorem.
�





Bibliography

1. A. A. Beilinson, Notes on absolute Hodge cohomology, Applications of Algebraic K-
Theory to Algebraic Geometry and Number Theory (S. J. Bloch, ed.), Contemp.
Math., vol. 55, Amer. Math. Soc., Providence, RI, 1983, pp. 35–68.

2. , Higher regulators and values of L-functions, J. Soviet Math. 30 (1985), 2036–
2070.

3. S. J. Bloch, Higher regulators, algebraic K-theory and zeta functions of elliptic curves,
CRM Monogr. Ser., vol. 11, Amer. Math. Soc., Providence, RI, 2000.

4. A. Borel, Values of zeta-functions at integers, cohomology and polylogarithms, Current
Trends in Mathematics and Physics (S. D. Adhikari, ed.), Narosa, New Delhi, 1995,
pp. 1–44.

5. , Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de
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tique, Paris, 1961.
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année: 1959/60, École Normale Supérieure, Secrétariat mathématique, Paris, 1961.


