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Introduction.

The arithmetic Chow rings have been introduced by Gillet and Soul�e in [G-S] in order

to generalize to higher dimensions the Arakelov intersection theory. The Archimedean

component of these arithmetic Chow rings is handled by de�ning Green currents associated

with algebraic cycles and, when the cycles intersect properly, by de�ning a �-product

between Green currents. This product corresponds to the intersection product of cycles

and is commutative and associative. In the same paper Gillet and Soul�e extend their

de�nition of arithmetic Chow rings to the quasi-projective case, and, in the projective

case, they relate Green currents with Deligne-Beilinson cohomology. Nevertheless they

suggest that, in the quasi-projective case, the de�nition of arithmetic Chow rings can be

improved by taking into account the Hodge theory of quasi-projective complex varieties.

In this way, the relationship with Deligne-Beilinson cohomology should also be true in the

quasi-projective case.

In a previous paper [Bu 2] the author has introduced some spaces of Green forms and a

�-product between them. These spaces were de�ned only for projective varieties by using

@@-cohomology. With this de�nition, the space of Green forms associated with an algebraic

cycle is naturally isomorphic to the space of Green currents for the same cycle.

The aim of this paper is to extend the de�nition of arithmetic Chow rings to the quasi-

projective case. To this end, we give a new de�nition of the space of Green forms associated

with an algebraic cycle using Deligne-Beilinson cohomology. This de�nition coincides with

the old one for projective varieties. But it has the following advantages: it is easily extended

to the quasi-projective case. The existence of a Green form for an algebraic cycle is a direct

consequence of the existence of the cycle class in Deligne-Beilinson cohomology. The proof

of the commutativity and associativity of the �-product is purely formal and is simpler

than the previous ones. Finally this de�nition is very 
exible. Changing the complexes

used to de�ne Green forms one can construct Green objects with di�erent properties.

The paper is organized as follows:

In x1 we recall the de�nition and some properties of real Deligne-Beilinson cohomology.

In x2 we recall the de�nition of a complex which computes real Deligne-Beilinson cohomol-

ogy. This complex allows us to represent a class in real Deligne-Beilinson cohomology by a

single di�erential form. In x3 we de�ne a multiplicative structure on this complex which is
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associative up to homotopy and commutative. This multiplicative structure gives the usual

product in Deligne-Beilinson cohomology. In x4 we de�ne the truncated relative cohomol-

ogy groups which are the basis for the construction of Green forms. In x5 we de�ne Green

forms and study their properties. In x6 we recall some relationships between K-theory and

Deligne-Beilinson cohomology. Finally in x7 we give a de�nition of arithmetic Chow rings.

In the case of arithmetic projective varieties these arithmetic Chow rings coincide with the

arithmetic Chow rings de�ned by Gillet and Soul�e, whereas in the quasi-projective case

the Chow ring de�ned here satis�es a homotopy property (Theorem 7.5).

Acknowledgement. I am deeply indebted to Prof. V. Navarro Aznar for his guidance

during the preparation of this work. I would also like to aknowledge to Prof. C. Soul�e

for his encouragement and some useful hints and comments. My thanks also to the IHES,

where part of this work was done, for their hospitality.

x1. Real Deligne-Beilinson Cohomology.

Let X be a smooth algebraic variety over C . Throughout this paper we shall always

work with the analytic topology of X. In this section we shall recall the de�nition of real

Deligne-Beilinson cohomology of X. See [Be], [E-V] and [J] for details. Let us choose a

smooth compacti�cation j : X �! X, with D = X � X a divisor with normal crossings.

Let � be a subring of R. We write �(p) = (2�i)

p

� � C . We will denote also by � and

�(p) the corresponding constant sheaves in the analytic topology. Let 


�

X

be the sheaf of

holomorphic forms on X and let 


�

X

(logD) be the sheaf of holomorphic forms on X with

logarithmic singularities along D [De]. Let F

p

be the Hodge �ltration of 


�

X

(logD):

F

p




�

X

(logD) =

M

p

0

�p




p

0

X

(logD):

Since j is a�ne, Rj

�




�

X

= j

�




�

X

. Moreover, in the derived category, there are natural

maps

u

1

: Rj

�

�(p) �! j

�




�

X

and u

2

: 


�

X

(logD) �! j

�




�

X

:

If (A

�

; d) is a complex we shall write A[k]

�

for the complex A[k]

n

= A

k+n

, with dif-

ferential (�1)

k

d. If f : A

�

�! B

�

is a morphism of complexes, the simple of f is the

complex

s(f)

�

= A

�

� B[�1]

�

;

with di�erential d(a; b) = (da; f(a)� db).

The Deligne-Beilinson complex of the pair (X;X) is

�(p)

D

= s(u : Rj

�

�(p)� F

p




�

X

(logD) �! j

�




�

X

);

where u(a; !) = u

2

(!)� u

1

(a).

The �-Deligne-Beilinson cohomology groups of X are de�ned by

H

�

D

(X;�(p)) = H

�

(X;�(p)

D

):

These groups are independent of the compacti�cation X.
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If Y � X is a closed algebraic subset, then there are also de�ned Deligne-Beilinson

cohomology groups of X with supports on Y , denoted by H

�

D;Y

(X;�(p)). Moreover, us-

ing simplicial techniques, we can de�ne Deligne-Beilinson cohomology groups for singular

varieties. There is also the dual notion of Deligne-Beilinson homology groups denoted by

H

D

�

(X;�(p)). Deligne-Beilinson cohomology and homology groups form a twisted Poincar�e

duality theory in the sense of Bloch and Ogus [B-O].

We can compare �-Deligne-Beilinson cohomology with cohomology with coe�cients in

� by means of the exact sequence

0 �! s(F

p




�

X

(logD) �! j

�




�

X

) �! �(p)

D

�! Rj

�

�(p) �! 0:

From this sequence and the degeneracy of the spectral sequence associated to the Hodge

�ltration, we obtain:

1.1. Proposition. Let X be a smooth variety over C and let � a subring of R. Then

there is a cohomology long exact sequence

: : : �! H

n�1

(X; C )

�

F

p

H

n�1

(X; C ) �! H

n

D

(X;�(p)) �! H

n

(X;�(p)) �! : : : :

�-Deligne-Beilinson cohomology studies the relationship between the �-structure and

the Hodge �ltration in cohomology. In general, we do not have a complex which gives

us both the �-structure and the Hodge �ltration. For this reason, we have to construct

Deligne-Beilinson cohomology from a diagram of complexes. On the other hand, in the

case of real Deligne-Beilinson cohomology, we shall see that we can construct a complex,

E

�

log

(X), which carries the real structure and the Hodge �ltration.

Let X now denote a complex manifold and let D be a divisor with normal crossings on

X. Let us write V = X � D and let j : V �! X be the inclusion. Let E

�

X

be the sheaf

of complex C

1

di�erential forms on X. The complex of sheaves E

�

X

(logD) (see [Bu 1]) is

the sub-E

�

X

algebra of j

�

E

�

V

generated locally by the sections

log z

i

z

i

;

dz

i

z

i

;

dz

i

z

i

; for i = 1; : : : ;M;

where z

1

: : : z

M

= 0 is a local equation of D.

Let us write E

�

X

(logD) = �(X; E

�

X

(logD)), and let E

�

X;R

(logD) be the subcomplex of

real forms.

Let X be again a smooth algebraic variety over C and let I be the category of all smooth

compacti�cations of X. That is, an element (

e

X

�

; {

�

) of I is a smooth complex variety

e

X

�

and an immersion {

�

: X ,!

e

X

�

such that D

�

=

e

X

�

� {

�

(X) is a normal crossing divisor.

The morphisms of I are the maps f :

e

X

�

�!

e

X

�

such that f � {

�

= {

�

. The opposed

category, I

o

is directed (see [De]).

1.2. De�nition. The complex of di�erential forms with logarithmic singularities along

in�nity is

E

�

log

(X) = lim

�!

�2I

o

E

�

e

X

�

(logD

�

):
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This complex is a subcomplex of E

�

X

= �(X; E

�

X

). We shall denote by E

�

log;R

(X) the

corresponding real subcomplex.

The complex E

�

log

(X) has a natural bigrading

E

�

log

(X) =

M

E

p;q

log

(X):

The Hodge �ltration of this complex is de�ned by

F

p

E

n

log

(X) =

M

p

0

�p

p

0

+q

0

=n

E

p

0

;q

0

log

(X):

By the results of [Bu 1], if f is a morphism of I, the morphism

f

�

: (E

�

e

X

�

(logD

�

); F ) �! (E

�

e

X

�

(logD

�

); F )

is a real �ltered quasi-isomorphism. Moreover, for all � 2 I

o

, the �ltration F induces in

H

�

(E

�

X

�

(logD

�

)) = H

�

(X � D; C ) the Hodge �ltration of the mixed Hodge structure of

H

�

(X �D;Z) introduced by Deligne in [De].

Since I

o

is directed, all the induced morphisms

(E

�

e

X

�

(logD

�

); F ) �! (E

�

log

(X); F )

are �ltered quasi-isomorphisms.

Choose X to be a smooth compacti�cation of X, with D = X � X a divisor with

normal crossings. We write E

�

log;R

(X; p) = (2�i)

p

E

�

log;R

(X) � E

�

log

(X). Then, in the

derived category of complexes of vector spaces, there are isomorphisms

R�Rj

�

R

X

(p) �! E

�

log;R

(X; p);

R�j

�




�

X

�! E

�

log

(X) and

R�F

p




�

X

(logD) �! F

p

E

�

log

(X):

Let us write

E

�

log;R

(X; p)

D

:= s(u : E

�

log;R

(X; p)� F

p

E

�

log

(X) �! E

�

log

(X));

where u(a; b) = b� a. Then we have:

1.3. Proposition. The real Deligne-Beilinson cohomology groups of X can be computed

as the cohomology of the complex E

�

log;R

(X; p)

D

. That is

H

�

D

(X;R(p)) = H

�

(E

�

log;R

(X; p)

D

):

1.4. Remark. In the above de�nition we can use real analytic forms instead of C

1

forms

obtaining the complexes A

�

X

(logD) and A

�

log

(X). The �rst one was introduced by Navarro

Aznar in [N]. The cohomological properties of the di�erentiable complexes and of the real

analytic complexes are the same. Therefore, throughout the construction of arithmetic

Chow groups, C

1

forms can be replace by real analytic forms. In particular, this implies

the existence of real analytic Green forms.
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x2. A Deligne-Beilinson Complex.

The goal of this section is to obtain a simpler version of the complex E

�

log;R

(X; p)

D

. That

is to construct a complex D

�

(E

�

log

(X); p) which allows us to represent Deligne-Beilinson

cohomology classes by a single di�erential form. This construction has been done by X.

Wang ([Wa]) in the projective case.

Let us recall the construction of the connection morphism of an exact sequence. Let

0 �! A

�

�

�! B

�

�

�! C

�

�! 0

be an exact sequence of complexes of vector spaces. Let us choose a linear section � of �.

Then we can obtain a retraction � of � by

�(b) = �

�1

(b� ��b):

The connection morphism is induced by the morphism of complexes

Res

�

: C

�

[�1] �! A

�

;

de�ned by

Res

�

(c) = �

�1

(�dc� d�c):

If there is no danger of confusion we will write simply Res instead of Res

�

. It is straight-

forward to check that �dc� d�c belongs to Im � and that Res is a morphism of complexes.

Moreover, the induced morphism Res : H

�

(C[�1]) �! H

�

(A) is the composition of the

natural morphisms

H

�

(C[�1]) �! H

�

(s(B �! C))

�

=

�! H

�

(A):

If �

0

is another section then the morphisms Res

�

and Res

�

0

are homotopically equivalent.

We can also obtain Res from the retraction � by the formula

Res(�b) = d�b� �db:

Let now u : A

�

�! B

�

be a morphism of complexes of vector spaces. We can decompose

u into two exact sequences

0 �! Im(u)

�

�

�! B

�

�

�! Coker(u)

�

�! 0:

and

0 �! Ker(u)

�

j

�! A

�

u

0

�! Im(u)

�

�! 0

Let �

1

and �

2

be linear sections of � and u

0

respectively. Let �

1

and �

2

be the corresponding

retractions of � and j. Let us write Res

1

= Res

�

1

and Res

2

= Res

�

2

.

We de�ne a complex

bs(u)

�

= Ker(u)

�

� Coker(u)

�

[�1]

with di�erential d(a; b) = (da+Res

2

Res

1

b;�db).

Observe that the complex bs(u)

�

depends on the choice of the sections �

1

and �

2

, but

a di�erent choice of sections gives a homotopically equivalent complex. The main result

concerning the complex bs(u)

�

is the following.
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2.1. Proposition. Let u : A

�

�! B

�

be a morphism of complexes of vector spaces. Then

the maps ' : bs(u) �! s(u) and  : s(u) �! bs(u) given by

'(a; b) = (j(a)� �

2

Res

1

b; �

1

b) and

 (a; b) = (�

2

a+ Res

2

(�

1

b); �b);

are morphisms of complexes. Moreover, they are homotopy equivalences, one the inverse

of the other. More explicitly, we have  ' = Id and

' � Id = dh+ hd;

where h : s(u)

n

�! s(u)

n�1

is given by h(a; b) = (��

2

�

1

b; 0).

Proof. All the checks are straightforward. For instance let us check that ' �Id = dh+hd.

We have

' (a; b) = '(�

2

a+ Res

2

�

1

b; �b)

= (j�

2

a+ j Res

2

�

1

b� �

2

Res

1

�b; �

1

�b):

Therefore

' (a; b)� (a; b) = (j�

2

a� a+ j Res

2

�

1

b� �

2

Res

1

�b; �

1

�b� b):

On the other hand

dh(a; b) + hd(a; b) = d(��

2

�

1

b; 0) + h(da; ua� db)

= (�d�

2

�

1

b� �

2

�

1

ua+ �

2

�

1

db;�u�

2

�

1

b):

Hence the result follows from the equalities

u�

2

�

1

b = ��

1

b = b� �

1

�b;

�

2

�

1

ua = �

2

u

0

a = a� j�

2

a and

Res

2

�

1

b�

2

� Res

1

�b = �

2

�

1

db� �

2

d�

1

b+ Res

2

�

1

b

= �

2

�

1

db� d�

2

�

1

b:

We want to apply 2.1 to the complex E

�

log;R

(X; p)

D

. Since the process of simpli�ca-

tion depends only on the relationship between the real structure, the di�erential and the

bigrading, we shall work with an abstract Dolbeault complex.

2.2. De�nition. A Dolbeault (cochain) complex is a complex of real vector spaces (A

�

R

; d)

provided with a bigrading on A

�

C

= A

�

R


 C :

A

d

C

=

M

p+q=d

A

p;q

;
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such that

DC1. The di�erential d can be decomposed as a sum of operators d = @ + @ of type

(1; 0) and (0; 1).

DC2. It satis�es the symmetry property

A

p;q

= A

q;p

;

where denotes complex conjugation.

By DC2 the operator @ is the complex conjugate of @.

Let A be a Dolbeault complex. The Hodge �ltration F of A

�

is

F

p

A

n

=

M

p

0

�p

q

0

+p

0

=n

A

p

0

;q

0

:

We denote by F the �ltration complex conjugate of F . That is

F

p

A

n

=

M

p

0

�p

q

0

+p

0

=n

A

q

0

;p

0

:

Examples of Dolbeault complexes are the complex of C

1

(or real analytic) di�erential

forms on a complex manifold and the complex of C

1

di�erential forms with logarithmic

singularities at in�nity.

Let A

�

be a Dolbeault complex. We write A

�

R

(p) = (2�i)

p

A

�

R

� A

�

C

and

A

�

R

(p)

D

= s(A

�

R

(p)� F

p

A

�

C

u

�! A

�

C

);

where u(a; b) = b � a. For example, if X is a smooth variety over C and A

�

= E

�

log

(X),

then we have seen that

H

�

(A

�

R

(p)

D

) = H

�

D

(X;R(p)):

On the other hand, if A

�

= E

�

X

is the complex of C

1

di�erential forms on X, then the

groups H

�

(A

�

R

(p)

D

) are called analytic Deligne cohomology groups.

Let us apply Proposition 2.1 to the morphism u : A

�

R

(p)� F

p

A

�

C

�! A

�

C

. The �rst step

is to compute Keru and Cokeru.

2.3. Lemma. Let A

�

be a Dolbeault complex. The morphism

u : A

n

R

(p)� F

p

A

n

C

�! A

n

C

is injective for n � 2p� 1 and surjective for n � 2p� 1. In particular for n = 2p� 1 it is

an isomorphism. Moreover we have

Coker(u)

n

= A

n

C

�

(A

n

R

(p) + F

p

A

n

C

+ F

p

A

n

C

)

�

=

A

n

R

(p� 1)

�

(A

n

R

(p� 1) \ (F

p

A

n

C

+ F

p

A

n

C

))

�

=

A

n

R

(p� 1) \

M

p

0

+q

0

=n

p

0

<p; q

0

<p

A

p

0

;q

0

;
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and

Ker(u)

n

�

=

A

n

R

(p) \ F

p

A

n

C

\ F

p

A

n

C

= A

n

R

(p) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

A

p

0

;q

0

:

Proof. Since for a Dolbeault complex we have

A

n

C

= F

p

A

n

C

+ F

q

A

n

C

for p+ q � n+ 1; and

f0g = F

p

A

n

C

\ F

q

A

n

C

for p+ q � n+ 1;

it is enough to prove the descriptions of Coker(u) and Ker(u).

Clearly

Imu � A

n

R

(p) + F

p

A

n

C

+ F

p

A

n

C

:

Let x 2 F

p

A

n

C

. Then x 2 F

p

A

n

C

and x+ (�1)

p

x 2 A

n

R

(p). Therefore

A

n

R

(p) + F

p

A

n

C

+ F

p

A

n

C

= A

n

R

(p) + F

p

A

n

C

;

and

Coker(u)

n

= A

n

C

�

(A

n

R

(p) + F

p

A

n

C

+ F

p

A

n

C

) :

If (a; b) 2 Ker u, then a = b and a 2 A

n

R

(p) \ F

p

A

n

C

. Therefore a = (�1)

p

a 2 F

p

A

n

C

.

Hence

Ker(u)

n

�

=

A

n

R

(p) \ F

p

A

n

C

\ F

p

A

n

C

:

The next step is to choose linear sections of the maps

� : A

�

C

�! Coker(u)

�

and u

0

: A

�

R

(p)� F

p

A

�

C

�! Im(u)

�

:

In order to give explicit expressions of these sections, let us introduce some maps. Let

�

p

: A

�

C

�! A

�

R

(p)

be the projection obtained from the direct sum decomposition A

�

C

= A

�

R

(p) � A

�

R

(p � 1).

Namely, we have

�

p

x =

1

2

(x+ (�1)

p

x):

Let x =

P

x

p;q

2 A

�

C

: We will denote by

F

p

x =

X

p

0

�p

x

p

0

;q

;
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the projection over F

p

A

�

C

and by

F

p;p

x =

X

p

0

�p

q

0

�p

x

p

0

;q

0

;

the projection over F

p

A

�

C

\ F

p

A

�

C

:

By Lemma 2.3, Coker(u)

n

may be identi�ed with the subgroup of A

n

C

A

n

R

(p� 1) \

M

p

0

+q

0

=n

p

0

<p; q

0

<p

A

p

0

;q

0

= F

n�p+1

\ F

n�p+1

\ A

n

R

(p� 1):

Let us write q = n� p+ 1. Then, with the above identi�cation, the morphism � : A

n

C

�!

Coker(u)

n

is

�(x) = �

p�1

(F

q;q

x):

This gives us a natural way to choose a section �

1

of �: the inclusion

F

q

A

n

C

\ F

q

A

n

C

\A

n

R

(p� 1) �! A

n

C

:

With this choice of �

1

we have

�

1

(x) =

�

x� �

p�1

(F

q;q

x); for n � 2p� 2;

x; for n � 2p� 1:

And

Res

1

(x) = ��

p�1

(F

p

dx); for x 2 Coker(u)

n

and n � 2p� 2.

Let us look for a section �

2

of u

0

. In this case it is simpler to look for a retraction �

2

of

the map

j : Ker(u)

n

�! A

n

R

(p)� F

p

A

n

C

:

Since for n < 2p the map u is injective, then �

2

(a; f) = 0 in this case.

By lemma 2.3 we have

Ker(u)

n

�

=

A

n

R

(p) \ F

p

A

n

C

\ F

p

A

n

C

:

Let us write q = n� p+ 1. We have the following direct sum decompositions

A

n

R

(p) = F

p

\ F

p

\ A

n

R

(p) � (F

q

+ F

q

) \A

n

R

(p) and

F

p

A

n

C

= F

p

\ F

p

\ A

n

R

(p) � F

p

\ F

p

\ A

n

R

(p� 1) � F

q

:

Thus we can impose the condition

(2.4) �

2

(a; f) = 0; for a 2 (F

q

+ F

q

) \ A

n

R

(p) and f 2 F

p

\ F

p

\A

n

R

(p� 1)� F

q

:

9



There are several choices of retraction �

2

satisfying condition 2.4; among them we choose

�

2

(a; f) = F

p;p

a:

With this choice we obtain

�

2

x = (�2�

p

(x� F

p

x); 2F

p

(�

p+1

x)� (�1)

p�1

F

p;p

x);

and

Res

2

(x) =

�

0; for n < 2p� 1;

2�

p

(@x

p�1;n�p+1

); for n � 2p+ 1:

2.5. De�nition. Let A

�

be a Dolbeault complex. The Deligne-Beilinson complex associ-

ated with A is the complex

D

�

(A; p) = bs(A

�

R

(p)� F

p

A

�

C

u

�! A

�

C

):

The di�erential of this complex will be denoted by d

D

.

Let us summarize the results of this section.

2.6. Theorem. Let A

�

be a Dolbeault complex. Then

1) The complex D

�

(A; p) is given by

D

n

(A; p) =

8

>

>

>

>

>

<

>

>

>

>

>

:

A

n�1

R

(p� 1) \

M

p

0

+q

0

=n�1

p

0

<p; q

0

<p

A

p

0

;q

0

; for n � 2p� 1;

A

n

R

(p) \

M

p

0

+q

0

=n

p

0

�p; q

0

�p

A

p

0

;q

0

; for n � 2p:

For x 2 D

n

(A; p) the di�erential d

D

is given by

d

D

x =

8

>

<

>

:

��(dx); for n < 2p� 1 and

�2@@x; for n = 2p� 1;

dx; for n � 2p;

where � : A

�

�! Coker(u)

�

is the projection.

2) The complexes A

�

R

(p)

D

and D

�

(A; p) are homotopically equivalent. The homotopy equiv-

alences  : A

n

R

(p)

D

�! D

n

(A; p) and ' : D

n

(A; p) �! A

n

R

(p)

D

are given by

 (a; f; !) =

�

�(!); for n � 2p� 1 and

F

p;p

a+ 2�

p

(@!

p�1;n�p+1

); for n � 2p;

and

'(x) =

�

(@x

p�1;n�p

� @x

n�p;p�1

; 2@x

p�1;n�p

; x); for n � 2p� 1 and

(x; x; 0); for n � 2p:

10



Moreover  ' = Id and ' � Id = dh+ hd, where h : A

n

R

(p)

D

�! A

n�1

R

(p)

D

is given by

h(a; f; !) =

(

(�

p

(F

p

! + F

n�p

!);�2F

p

(�

p�1

!); 0); for n � 2p� 1 and

(2�

p

(F

n�p

!);�F

p;p

! � 2F

n�p

(�

p�1

!); 0); for n � 2p:

3) The natural morphism H

�

(A

�

R

(p)

D

) �! H

�

(A

�

R

(p)) is induced by the morphism of com-

plexes

r

p

: D

�

(A; p) �! A

�

R

(p)

given by

r

p

x =

�

2�

p

(F

p

dx) = @x

p�1;n�p

�
@
x

n�p;p�1

; for n � 2p� 1 and

x; for n � 2p:

2.7. Corollary. Let X be a smooth variety over C . then

H

�

D

(X;R(p)) = H

�

(D

�

(E

�

log

(X); p)):

2.8. Remark. Let A be a Dolbeault complex. By construction, the cohomology groups

H

2p

(D

�

(A; p)) are

H

2p

(D

�

(A; p)) = fx 2 A

p;p

\A

2p

R

(p) j dx = 0g

�

Im(@@)

Therefore they are the R(p)-part of the @@-cohomology of A. In particular we have a

relation between @@ cohomology and real Deligne-Beilinson cohomology. On the other

hand we have

H

2p�1

(D

�

(A; p)) = fx 2 A

p�1;p�1

\ A

2p�2

R

(p� 1) j @@x = 0g

�

(Im@ + Im@) :

A variant of this complex has been used in [Dem] to study the properties of @@-cohomology.

2.9. Remark. The complex D

�

(A; p), the maps ' and r

p

and the map  , for n < 2p, do

not depend on the choice of the section �

2

. Only the map  for n � 2p depends on the

choice of �

2

. Moreover the maps ',  and the homotopy h are natural. That is, given a

morphism A �! B between Dolbeault complexes there is a commutative diagram

D

�

(A; p)

'

����! A

�

R

(p)

D

?

?

y

?

?

y

D

�

(B; p)

'

����! B

�

R

(p)

D

and analogous diagrams for  and h.
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x3. Multiplicative Structure of Deligne-Beilinson Cohomology.

Let X be a smooth algebraic variety over C and X a smooth compacti�cation of X

with X � X a divisor with normal crossings. For each real number 0 � � � 1, there is

de�ned a product [

�

on the Deligne-Beilinson complex �(p)

D

(see [Be] or [E-V, x3]). All

these products are homotopically equivalent. Moreover the product obtained for � = 1=2

is graded-commutative and the products obtained for � = 0 and � = 1 are associative.

Therefore they induce an associative and commutative product in Deligne-Beilinson co-

homology denoted [. We want to transport this multiplicative structure to the complex

D

�

(A; �).

3.1. De�nition. Let A be a Dolbeault complex. We say that A is a Dolbeault algebra if

there is a product

A

�

R


A

�

R

^

�! A

�

R

such that A

�

R

is a di�erential associative graded-commutative algebra, and the induced

product on A

�

C

is compatible with the bigrading. That is

A

p;q

^A

p

0

;q

0

� A

p+p

0

;q+q

0

:

Let (A; d;^) be a Dolbeault algebra and let 0 � � � 1 be a real number. The product

[

�

of the Deligne-Beilinson complex corresponds to the product

A

n

R

(p)

D


A

m

R

(q)

D

[

�

��! A

n+m

R

(p+ q)

D

de�ned, for

(a

p

; f

p

; !

p

) 2 A

n

R

(p)

D

= (2�i)

p

A

n

R

� F

p

A

n

�A

n�1

and

(a

q

; f

q

; !

q

) 2 A

m

R

(q)

D

= (2�i)

q

A

m

R

� F

q

A

m

� A

m�1

;

by

(a

p

; f

p

;!

p

) [

�

(a

q

; f

q

; !

q

) =

(a

p

^ a

q

; f

p

^ f

q

; �(!

p

^ a

q

+ (�1)

n

f

p

^ !

q

) + (1� �)(!

p

^ f

q

+ (�1)

n

a

p

^ !

q

)) :

In order to de�ne a product in D

�

(A; �) we shall use the following result.

3.2. Proposition. Let A

�

and B

�

be complexes of modules over a ring, such that there

are homotopy equivalences ' : A

�

�! B

�

and  : B

�

�! A

�

, one the inverse of the

other. Assume furthermore that there is de�ned a product in B

�

. That is, a morphism of

complexes

B

�


B

�

[

B

��! B

�

:

Then

1) The map

A

�


A

�

[

A

��! A

�

;
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de�ned by x [

A

y =  ('x [

B

'y) is a morphism of complexes.

2) If the product [

B

is associative or associative up to homotopy then the product [

A

is

associative up to homotopy.

3) If the product [

B

is graded commutative, the same is true for [

A

. If it is graded com-

mutative up to homotopy, then [

A

is graded commutative up to homotopy.

Proof. To prove that [

A

is a morphism of complexes we use that ',  and [

B

are mor-

phisms of complexes. The statement about commutativity follows easily from the de�nition

of [

A

.

Assume now that [

B

is associative. Let h be the homotopy between ' and Id. That

is

' � Id = hd+ dh:

Let us de�ne a map

A

n


A

m


A

l

h

a

�! A

n+m+l�1

by

h

a

(a
 b
 c) =  (h('a [

B

'b) [

B

'c) + (�1)

n+1

 ('a [

B

h('b [

B

'c)):

Then we can check easily that

(a [

A

b) [

A

c� a [

A

(b [

A

c) = h

a

d(a
 b
 c) + dh

a

(a
 b
 c):

The case when [

B

is only associative up to homotopy is analogous.

Applying Proposition 3.2. to A

�

R

(p)

D

and D(A

�

; p) we obtain

3.3. Theorem. Let (A; d;^) be a Dolbeault algebra, and let � 2 [0; 1]. Let the map

D

n

(A; p)
D

m

(A; q)

�

�! D

n+m

(A; p+ q)

be de�ned by x � y =  ('x [

�

'y). Then:

1) It is a morphism of complexes and does not depend on �. It is also independent of

the section �

2

used to de�ne D

�

(A; �), provided this section satis�es the condition 2.4.

Moreover it induces the product [ in real Deligne-Beilinson cohomology.

2) This product is graded commutative and it is associative up to a natural homotopy.

3) Let x 2 D

n

(A; p) and y 2 D

m

(A; q). Let us write l = n+m and r = p+ q. Then

x � y =

8

>

>

>

<

>

>

>

:

(�1)

n

r

p

(x) ^ y + x ^ r

q

(y); for n < 2p and m < 2q;

�(x ^ y); for n < 2p; m � 2q; l < 2r;

F

r;r

(r

p

(x) ^ y) + 2�

r

@((x ^ y)

r�1;l�r

); for n < 2p; m � 2q; l � 2r;

x ^ y; for n � 2p and m � 2q;

where r

p

(x) = 2�

p

(F

p

dx) (see 2.6.3) and � is the projection A

�

C

�! Cokeru (see x2).

4) If x 2 D

2p

(A; p) is a cocycle, then for all y, z we have

x � y = y � x and

y � (x � z) = (y � x) � z = x � (y � z):
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Proof. Let us �rst check the formulae of 3). If n < 2p and m < 2q we have

 ('x[

�

'y) =  ((r

p

(x); 2F

p

(dx); x) [

�

(r

q

(y); 2F

q

(dy); y))

=  

�

r

p

(x) ^ r

q

(y); 2F

p

(dx) ^ 2F

q

(dy);

�(x ^ r

q

(y) + (�1)

n

2F

p

(dx) ^ y) + (1� �)(x ^ 2F

q

(dy) + (�1)

n

r

p

(x) ^ y)

�

= �(�(x ^ r

q

(y) + (�1)

n

2F

p

(dx) ^ y) + (1� �)(x ^ 2F

q

(dy) + (�1)

n

r

p

(x) ^ y)):

But

�(x ^ r

q

(y)) = x ^ r

q

(y) and �(x ^ 2F

q

(dy)) = x ^ r

q

(y):

The same is true for the other two terms. Therefore

x � y = (�1)

n

r

p

(x) ^ y + x ^ r

q

(y):

Note that this result does not depend on �, nor on the choice of �

2

, because we have used

 only for l < 2r.

If n < 2p, m � 2q and r � 2r, we have

 ('x [

�

'y) =  ((r

p

(x); 2F

p

(dx); x) [

�

(y; y; 0))

= (r

p

(x) ^ y; 2F

p

(dx) ^ y; x ^ y)

= F

r;r

(r

p

(x) ^ y) + 2�

r

(@(x ^ y)

r�1;l�r

):

This result does not depend on � either. Nor does this formula depend on the choice of �

2

satisfying 2.4 because x ^ y 2 A

l�1

R

(r� 1) and u(r

p

(x) ^ y; 2F

p

(dx) ^ y) 2 A

l

R

(r � 1). The

other cases are analogous.

The remainder of the proposition is a consequence of these formulae and of Proposition

3.2, except for the fact that the homotopy for the associativity is natural, which follows

from the naturality of ',  and the homotopy h.

x4. Truncated Relative Cohomology Groups.

In this section, we introduce some groups of secondary cohomology classes associated

with a morphism of complexes. These groups will be called truncated relative cohomology

groups and are a generalization of the group of di�erential characters ([C-S]) and of the

group of Green currents ([G-S], see also [Bu 2]).

4.1. De�nition. Let R be a ring and let f : A

�

�! B

�

be a morphism of complexes of

R-modules. Let us denote by ZA

�

the submodule of cocycles of A

�

and by

e

B

�

= B

�

/Imd .

If b 2 B

�

we write

e

b for its class in

e

B

�

. The truncated relative cohomology groups associated

with f are

b

H

n

(A

�

; B

�

) =

n

(a;

e

b) 2 ZA

n

�

e

B

n�1

j f(a) = db

o

:

These groups are R-modules in a natural way. If the morphism f is injective we write

e

b

instead of (a;

e

b).
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4.2. Examples.

1) If B = 0 then

b

H

n

(A

�

; B

�

) = ZA

n

. If A = 0 then

b

H

n

(A

�

; B

�

) = H

n�1

(B

�

).

2) ([C-S]) Let M be a di�erentiable manifold. Let A

�

be the complex of real valued

di�erential forms on M . Let � � R be a proper subring and let C

�

(M;R=�) be the

complex of R=�-valued smooth cochains. There is an injective morphism

f : A

�

�! C

�

(M;R=�)

de�ned by integration. Then the group

b

H

n

(A

�

; C

�

(M;R=�)) coincides with the group

of di�erential characters of M ,

b

H

n�1

(M;R=�).

Let us give another description of the truncated relative cohomology groups which ex-

plains their name. Let � denote the \bête" �ltration. That is, given a complex A

�

, then

�

p

A

n

=

�

A

n

; if n � p;

0; if n < p:

Let s(�) denote the simple of a morphism of complexes. Then

H

n

(s(�

p

A

�

�! B

�

)) =

8

>

<

>

:

H

n�1

(B

�

); if n < p;

b

H

n

(A

�

; B

�

); if n = p and

H

n

(A

�

; B

�

); if n > p:

From this description we can obtain exact sequences involving truncated relative cohomol-

ogy groups. Let us �rst de�ne some maps involving these groups:

cl :

b

H

n

(A

�

; B

�

) �! H

n

(A

�

; B

�

); cl(a;

e

b) = f(a; b)g;

where f�g denotes cohomology class.

! :

b

H

n

(A

�

; B

�

) �! ZA

n

; !(a;

e

b) = a:

a :

e

A

n�1

�!

b

H

n

(A

�

; B

�

); a(ea) = (da; f(a)

e

):

b : H

n�1

(B

�

) �!

b

H

n

(A

�

; B

�

); b(fbg) = (0;

e

b):

We shall also denote by a the induced morphism a : H

n�1

(A

�

) �!

b

H

n

(A

�

; B

�

).

4.3. Proposition. Let f : A

�

�! B

�

be a morphism of complexes. Then there are exact

sequences

1) H

n�1

(A

�

; B

�

) �!

e

A

n�1

a

�!

b

H

n

(A

�

; B

�

)

cl

�! H

n

(A

�

; B

�

) �! 0

2) 0 �! H

n�1

(B

�

)

b

�!

b

H

n

(A

�

; B

�

)

!

�! ZA

n

�! H

n

(B

�

)

3) H

n�1

(A

�

; B

�

) �! H

n�1

(A

�

)

a

�!

b

H

n

(A

�

; B

�

)

cl�!

���!

H

n

(A

�

; B

�

)� ZA

n

�! H

n

(A

�

) �! 0

Proof. These exact sequences follow respectively from the exact sequences of complexes

0 �! s(�

n

A

�

�! B

�

) �! s(A

�

�! B

�

) �! A

�

/�

n

A

�

�! 0;

0 �! B

�

[�1] �! s(�

n

A

�

�! B

�

) �! �

n

A

�

�! 0 and

0 �! s(�

n

A

�

�! B

�

) �! s(A

�

�! B

�

)� �

n

A

�

�! A

�

�! 0:
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Let 2 denote the category associated to the ordered set f0; 1g. A morphism of complexes

will also be called a 2-complex because it can be considered as a functor from the category

2 to the category of complexes. The 2-complex f : A

�

�! B

�

will be noted by (A

�

; B

�

; f)

or simply by f . A morphism of 2-complexes g : f

1

�! f

2

is a commutative diagram

A

�

1

f

1

����! B

�

1

?

?

y

g

A

?

?

y

g

B

A

�

2

f

2

����! B

�

2

:

If g

A

and g

B

have degree e, we say that g has degree e. For each n, the n-th truncated

relative cohomology group is a covariant functor from the category of 2-complexes of R-

modules to the category of R-modules. If g = (g

A

; g

B

) is a morphism of 2-complexes, then

there is an induced morphism

bg =

b

H

�

(g) :

b

H

�

(A

�

1

; B

�

1

) �!

b

H

�

(A

�

2

; B

�

2

)

(a;

e

b) 7�! (g

A

(a); (g

B

(b))

e

):

If g has degree e, then the induced morphism bg is also of degree e.

4.4. Proposition. Let g = (g

A

; g

B

) be a morphism of 2-complexes. If g

A

is an isomor-

phism and g

B

is a quasi-isomorphism then bg is an isomorphism.

Proof. It is a direct consequence of 4.3.2.

This proposition re
ects the asymmetry between the complexes A

�

and B

�

. We can

freely replace the complex B

�

by a quasi-isomorphic complex without changing the trun-

cated relative cohomology groups. On the other hand, if we change A

�

by a quasi-

isomorphic complex, then we can change the properties of these groups.

Let us recall now how to construct a product on relative cohomology groups from a

product at the level of complexes. We shall extend this construction to truncated relative

cohomology groups.

Let f : A

�

�! B

�

and g : C

�

�! D

�

be a morphism of complexes. We can construct

the complex

s(f)
 s(g) = s(A

�

�! B

�

)
 s(C

�

�! D

�

)

or consider the simple of the diagram

A

�


 C

�

(f
Id;Id
g)

��������! B

�


 C

�

�A

�


D

�

�Id
g+f
Id

��������! B

�


D

�

:

There is an isomorphism of complexes

s(f)
 s(g) �! s(A

�


 C

�

�! B

�


 C

�

� A

�


D

�

�! B

�


D

�

:)

If (a; b) 2 s(f)

n

and (c; d) 2 s(g)

m

then this isomorphism is given by

(a; b)
 (c; d) 7�! (a
 c; b
 c+ (�1)

n

a
 d; (�1)

n

b
 d):
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Suppose that there is a morphism of commutative diagrams

A

�


 C

�

����! A

�


D

�

?

?

y

?

?

y

B

�


 C

�

����! B

�


D

�

�

����!

E

�

1

����! E

�

3

?

?

y

?

?

y

E

�

2

����! E

�

4

:

Then there is an induced product

s(f)
 s(g)

�

�! s(E

�

1

�! s(E

�

2

� E

�

3

�! E

�

4

)):

Hence a product

H

n

(A

�

; B

�

)
H

m

(C

�

; D

�

) �! H

n+m

(E

�

1

; s(E

�

2

�E

�

3

�! E

�

4

)):

If f(a; b)g 2 H

n

(A

�

; B

�

) and f(c; d)g 2 H

m

(C

�

; D

�

), this product is given by

f(a; b)g 
 f(c; d)g 7�! f(a � c; b � c+ (�1)

n

a � d; (�1)

n

b � d)g:

Here f�g denotes cohomology class.

4.5. De�nition. With the above hypothesis, the �-product of truncated relative coho-

mology groups:

b

H

n

(A

�

; B

�

)


b

H

m

(C

�

; D

�

)

�

�!

b

H

n+m

(E

�

1

; s(E

�

2

�E

�

3

�! E

�

4

))

is de�ned by

(a;

e

b) � (c;

e

d) = (a � c; (b � c+ (�1)

n

a � d; (�1)

n

b � d)

e

):

4.6. Proposition. The �-product of truncated relative cohomology groups is well de�ned,

i.e. it does not depend on the choice of representatives b and d of

e

b and

e

d. Moreover there

are commutative diagrams

b

H

n

(A

�

; B

�

)


b

H

m

(C

�

; D

�

)

�

����!

b

H

n+m

(E

�

1

; s(E

�

2

� E

�

3

�! E

�

4

))

?

?

y

!
!

?

?

y

!

A

n


 C

m

�

����! E

n+m

1

;

and

b

H

n

(A

�

; B

�

)


b

H

m

(C

�

; D

�

)

�

����!

b

H

n+m

(E

�

1

; s(E

�

2

� E

�

3

�! E

�

4

))

?

?

y

cl
 cl

?

?

y

cl

H

n

(A

�

; B

�

)
H

m

(C

�

; D

�

)

�

����! H

n+m

(E

�

1

; s(E

�

2

� E

�

3

�! E

�

4

)):

Proof. Follows from the de�nitions.
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x5. A Definition of Green Forms Using Deligne-Beilinson Cohomology.

In this section we shall see that the space of Green forms can be obtained as a truncated

relative cohomology group of the Deligne-Beilinson complex. Moreover, the �-product of

Green forms is induced by the product of the Deligne-Beilinson complex.

Let X be a smooth algebraic variety over C . Let Z

p

= Z

p

(X) be the set of algebraic

subsets of codimension � p, ordered by inclusion. Let us write

E

�

log

(XnZ

p

) = lim

�!

Z2Z

p

E

�

log

(X � Z):

This complex is a Dolbeault complex and there is a natural injective map

E

�

log

(X) �! E

�

log

(XnZ

p

):

We shall write

H

�

D

(XnZ

p

;R(p)) = H

�

(D

�

(E

�

log

(XnZ

p

); p)) and

H

�

D;Z

p

(X;R(p)) = H

�

(s(D

�

(E

�

log

(X); p) �! D

�

(E

�

log

(XnZ

p

); p))):

Since Z

p

is a directed set we have

H

�

D

(XnZ

p

;R(p)) = lim

�!

Z2Z

p

H

�

D

(X � Z;R(p)) and

H

�

D;Z

p

(X;R(p)) = lim

�!

Z2Z

p

H

�

D;Z

(X;R(p)):

5.1. De�nition. The space of Green forms on X with codimension p singular support is

GE

p

(X) =

b

H

2p

(D

�

(E

�

log

(X); p);D

�

(E

�

log

(XnZ

p

); p)):

Let (!; eg) 2 GE

p

(X). Since the map D

�

(E

�

log

(X); p) �! D

�

(E

�

log

(XnZ

p

); p) is injective,

! is determined by eg. Thus we shall sometimes represent (!;eg) by eg.

By the de�nition of the Deligne-Beilinson complex we have

D

2p�1

(E

�

log

(X); p)

�

Im d

D

= E

p�1;p�1

log

(X) \ E

2p�2

log;R

(p� 1)

.

(Im@ + Im @):

We shall denote this group by

e

E

p�1;p�1

log;R

(X). Analogously we write

e

E

p�1;p�1

log;R

(XnZ

p

) = D

2p�1

(E

�

log

(XnZ

p

); p)

�

Imd

D

:

We also have that the subgroup of cocycles of D

2p

(E

�

log

(X); p) is

n

! 2 E

p;p

log

(X) \ E

2p

log;R

(X; p) j d! = 0

o

:
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This group will be denoted by ZE

p;p

log;R

(X).

Then

GE

p

(X) =

n

(!;eg) 2 ZE

p;p

log;R

(X)�

e

E

p�1;p�1

log;R

(XnZ

p

) j �2@@g = !

o

=

n

eg 2

e

E

p�1;p�1

log;R

(XnZ

p

) j @@g is smooth on X

o

:

5.2. De�nition. If Z � X is a codimension p algebraic subset of X, then the space of

Green forms on X with singular support contained on Z is

GE

p

Z

(X) =

b

H

2p

(D

�

(E

�

log

(X); p);D

�

(E

�

log

(X � Z); p)):

Since Z

p

is a directed set and the codimension p algebraic subsets of X is a co�nal subset

of Z

p

, the group GE

p

(X) is the direct limit of the groups GE

p

Z

(X) for Z of codimension

p.

5.3. De�nition. Let eg 2 GE

p

(X). Then the singular support of eg is the intersection

of all Z such that eg has a representative in GE

p

Z

(X). We shall denote the singular support

of eg by supp eg.

Since GE

p

(X) are truncated relative cohomology groups we can de�ne maps

cl : GE

p

(X) �! H

2p

D

;Z

p

(X;R(p));

! : GE

p

(X) �! ZE

p;p

log;R

(X);

a :

e

E

p�1;p�1

log;R

(X) �! GE

p

(X) and

b : H

2p�1

D

(XnZ

p

;R(p)) �! GE

p

(X);

as in x4. We shall also denote by a the induced morphism

a : H

2p�1

D

(X;R(p)) �! GE

p

(X):

5.4. Proposition. Let X be a smooth variety over C . Then there are exact sequences

1) 0 �!

e

E

p�1;p�1

log;R

(X)

a

�! GE

p

(X)

cl

�! H

2p

D;Z

p

(X;R(p)) �! 0:

2) 0 �! H

2p�1

D

(XnZ

p

;R(p))

b

�! GE

p

(X)

!

�! ZE

p;p

log;R

(X) �! H

2p

D

(XnZ

p

;R(p)):

3) 0 �! H

2p�1

D

(X;R(p))

a

�! GE

p

(X)

cl�!

���!

H

2p

D;Z

p

(X;R(p)) � ZE

p;p

log;R

(X) �! H

2p

D

(X;R(p)) �! 0:

Proof. This is a translation of Proposition 4.3. taking into account that Deligne-Beilinson

cohomology satis�es

H

2p�1

D;Z

p

(X;R(p)) = 0:

This can be proved using the exact sequence of Proposition 1.1. and the fact that, if Z is

a codimension p algebraic subset of X then

H

n

Z

(X;R) = 0

for n < 2p and R = R or C .

Fixing the singular support we have an analogous result.
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5.5. Proposition. Let X be a smooth variety over C and Z � X a codimension p

algebraic subset. Then there are exact sequences

1) 0 �!

e

E

p�1;p�1

log;R

(X)

a

�! GE

p

Z

(X)

cl

�! H

2p

D;Z

(X;R(p)) �! 0:

2) 0 �! H

2p�1

D

(X � Z;R(p))

b

�! GE

p

Z

(X)

!

�! ZE

p;p

log;R

(X) �! H

2p

D

(X � Z;R(p)):

3) 0 �! H

2p�1

D

(X;R(p))

a

�! GE

p

Z

(X)

cl�!

���!

H

2p

D;Z

(X;R(p)) � ZE

p;p

log;R

(X) �! H

2p

D

(X;R(p)) �! 0:

5.6. Corollary. The natural map

GE

p

Z

(X) �! GE

p

(X)

is injective. Moreover, if eg 2 GE

p

(X) then supp eg = supp cl(eg).

Proof. The injectivity follows from the injectivity of the morphism

H

2p

D;Z

(X;R(p)) �! H

2p

D;Z

p

(X;R(p))

and the Five Lemma. Let us write Y = supp cl(eg) and Y

0

= supp eg. Clearly Y � Y

0

. Then

we have a morphism of change of support ' : GE

p

Y

(X) �! GE

p

Y

0

(X) and a commutative

diagram

GE

p

Y

(X)

cl

����! H

2p

D;Y

(X;R(p))

'

?

?

y

?

?

y

GE

p

Y

0

(X)

cl

����! H

2p

D;Y

0

(X;R(p));

where the horizontal arrows are surjective. Let eg

0

2 GE

p

Y

(X) with cl(eg

0

) = cl(eg). By

Proposition 5.5, there is an element � 2

e

E

p�1;p�1

log;R

(X) such that a(�) = eg � 'eg

0

. But then

eg

0

+ a(�) 2 GE

p

Y

(X) and it represents eg. Thus Y = Y

0

.

5.7. De�nition. Let y be a codimension p algebraic cycle. Then the space of Green forms

associated with y is

GE

p

y

(X) = feg 2 GE

p

(X) j cl(eg) = �(y)g ;

where �(y) is the class of y in H

2p

D;Z

p

(X;R(p)) (see [J] or x7).

A direct consequence of Corollary 5.6 is:

5.8. Corollary. Let y be a codimension p algebraic cycle and let Y = supp y. If eg

y

is a

Green form associated to y, then the singular support of eg

y

is Y .

5.9. Theorem. Let X be a smooth projective variety over C and y a codimension p

algebraic cycle. Let GE

X

(y) be the space of Green forms for y as de�ned in [Bu 2]. Then

there is a natural isomorphism

GE

p

y

(X) �! GE

X

(y)

given by

eg 7�!

2

(2�i)

p�1

eg:
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If X has dimension d and GC

X

(y) is the space of Green currents for y in the sense of

Gillet and Soul�e ( [G-S], see also [Bu 2]) then there is a natural isomorphism

GE

p

y

(X) �! GC

X

(y):

Proof. Let us write Y = supp y. By de�nition

GE

X

(y) =

(

g 2 E

p�1;p�1

log;R

(X � Y ) j

dd

c

g 2 E

p;p

X

;

fdd

c

g; d

c

gg = fyg

),

(Im@ + Im @);

where fdd

c

g; d

c

gg is the cohomology class represented by (dd

c

g; d

c

g) and fyg is the coho-

mology class of y. Both classes are considered in H

2p

Y

(X;R).

On the other hand, by Corollary 5.8, if we write

E

p�1;p�1

log;R

(X � Y; p� 1) = E

p�1;p�1

log

(X � Y ) \ E

2p�2

log;R

(X � Y; p� 1)

we have

GE

p

y

(X) =

(

g 2 E

p�1;p�1

log;R

(X � Y; p� 1) j

� 2@@g 2 E

2p

X

f�2@@g; gg = �(y)

),

(Im@ + Im @);

where now f�2@@g; gg and �(y) are cohomology classes in H

2p

D;Y

(X;R(p)). But the natural

morphism H

2p

D;Y

(X;R(p)) �! H

2p

Y

(X;R) is induced by a morphism of complexes (see

2.6.3):

1

(2�i)

p

r

p

: s(D

�

(E

�

X

; p);D

�

(E

�

log

(X � Y ); p)) �! s(E

�

X;R

�! E

�

log;R

(X � Y )):

Which, in degree 2p, satis�es

1

(2�i)

p

r

p

(!; g) = (

1

(2�i)

p

!;

2

(2�i)

p�1

d

c

g):

Therefore, this morphism sends the class f�2@@g; gg to the class fdd

c

g; d

c

gg. Moreover,

by the de�nition of �(y), this class is mapped to fyg. Hence the map

GE

p

y

(X) �! GE

X

(y)

eg 7�!

2

(2�i)

p�1

eg

is well de�ned. The inverse of this map is also well de�ned, because the morphism

H

2p

D;Y

(X;R(p)) �! H

2p

Y

(X;R) is an isomorphism.

The second part of the Theorem follows from the �rst part and the comparison isomor-

phism between Green forms and Green currents proved in [Bu 2].
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5.10. Remark. By the de�nition of the space of Green forms as a truncated relative

homology group, the morphism

GE

p

Y

(X) �! H

2p

D;Y

(X;R(p))

is an epimorphism. Therefore the existence of Green forms is a direct consequence of the

existence of the cycle class in real Deligne-Beilinson cohomology.

Now we want to de�ne a product of Green forms. Let X be a smooth variety over C

and let Y and Z be closed algebraic subsets of codimension p and q respectively such that

Y \ Z has codimension p + q. Let r = p + q and let us write D

�

(X; r) = D

�

(E

�

log

(X); r)

and

D

�

(X;Y; Z; r) = s(D

�

(X � Y; r)�D

�

(X � Z; r)

j

�! D

�

(X � Y [ Z; r));

where j(a; b) = b� a. Then, using De�nition 4.5, we obtain a morphism

GE

p

Y


GE

q

Z

(X)

�

�!

b

H

2r

(D

�

(X; r);D

�

(X;Y; Z; r)):

given by

(!

1

; eg

1

) � (!

2

; eg

2

) = (!

1

� !

2

; (g

1

� !

2

; !

1

� g

2

; g

1

� g

2

)

e

)

= (!

1

^ !

2

; (g

1

^ !

2

; !

1

^ g

2

;�r

p

(g

1

) ^ g

2

+ g

1

^ r

q

g

2

)

e

)

= (!

1

^ !

2

; (g

1

^ !

2

; !

1

^ g

2

;�4�id

c

g

1

^ g

2

+ 4�ig

1

^ d

c

g

2

)

e

)

But since the map

D

�

(X � Y \ Z; r) �! D

�

(X;Y; Z; r)

g 7�! (g; g; 0)

is a quasi-isomorphism, therefore there is a natural isomorphism

GE

r

Y \Z

(X) �!

b

H

2r

(D

�

(X; r);D

�

(X;Y; Z; r)):

Hence the following de�nition makes sense.

5.11. De�nition. Let X be a smooth variety over C and let Y and Z be algebraic

subsets of codimension p and q respectively such that Y \Z has codimension p+ q. Then

the �-product

GE

p

Y

(X)
GE

q

Z

(X)

�

�! GE

p

Y \Z

(X)

is the product in truncated relative cohomology groups induced by the product of the

Deligne-Beilinson complex.

5.12. Theorem. The �-product of Green forms is commutative and associative. It is

compatible with the product in Deligne-Beilinson cohomology and with the cup product of

di�erential forms. Moreover if X is projective then it is compatible with the �-product of

Green forms de�ned in [Bu 2] and with the �-product of currents de�ned in [G-S].

Proof. The compatibility with [ and ^ follows easily from the de�nitions.
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Let Y and Z be closed algebraic subsets of X of codimension p and q, and let eg

1

2

GE

p

Y

(X) and eg

2

2 GE

q

Z

(X). Write r = p+ q. Then

eg

1

� eg

2

2

b

H

2r

(D

�

(X; r);D

�

(X;Y; Z; r));

and

eg

2

� eg

1

2

b

H

2r

(D

�

(X; r);D

�

(X;Z; Y; r)):

Both groups are naturally isomorphic. The isomorphism between them is induced by an

isomorphism of complexes

D

n

(X;Y; Z; r)�! D

n

(X;Z; Y; r);

given by

(a; b; c) 7�! (b; a;�c):

It is straightforward to check that this isomorphism sends eg

1

� eg

2

to eg

2

� eg

1

.

Let W , Y and Z be algebraic subsets of X of codimension p, q and r respectively, such

that the codimension of W \ Y \ Z is p + q + r and Y intersects properly with W and

Z. Let (!

1

; eg

1

) 2 GE

p

W

(X), (!

2

; eg

2

) 2 GE

q

Y

(X) and (!

3

; eg

3

) 2 GE

r

Z

(X). Let us write

s = p+ q + r and

D

�

(X;W;Y; Z; s) = s(D

�

(X �W; s)�D

�

(X � Y; s)�D

�

(X � Z; s)

j

�!

D

�

(X �W [ Y; s)�D

�

(X �W [ Z; s)�D

�

(X � Y [ Z; s)

k

�!

D

�

(X �W [ Y [ Z; s));

where

j(a; b; c) = (b� a; c� a; b� c) and k(a; b; c) = a� b+ c:

Both products, eg

1

�(eg

2

�eg

3

) and (eg

1

�eg

2

)�eg

3

are de�ned in

b

H

2s

(D

�

(X; s);D

�

(X;W;Y; Z; s)):

We have

eg

1

� (eg

2

� eg

3

) = (!

1

�(!

2

� !

3

); (g

1

� (!

2

� !

3

); !

1

� (g

2

� !

3

); !

1

� (!

2

� g

3

);

� g

1

� (g

2

� !

3

);�g

1

� (!

2

� g

3

);�!

1

� (g

2

� g

3

); g

1

� (g

2

� g

3

))

e

):

and

(eg

1

� eg

2

) � eg

3

= ((!

1

�!

2

) � !

3

; ((g

1

� !

2

) � !

3

; (!

1

� g

2

) � !

3

; (!

1

� !

2

) � g

3

;

� (g

1

� g

2

) � !

3

;�(g

1

� !

2

) � g

3

;�(!

1

� g

2

) � g

3

; (g

1

� g

2

) � g

3

)

e

):

By Theorem 3.3, !

1

� (!

2

� !

3

) = (!

1

� !

2

) � !

3

. Therefore

eg

1

� (eg

2

� eg

3

)� (eg

1

� eg

2

) � eg

3

= (0; ex);
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with x 2 D

2s�1

(X;W;Y; Z; s) Let h

a

be the homotopy which makes the product on the

Deligne-Beilinson complex associative. That is

a � (b � c)� (a � b) � c = d

D

h

a

(a
 b
 c) + h

a

d

D

(a
 b
 c):

Let us consider the element y 2 D(X;W;Y; Z; s) given by

y = (h

a

(g

1


 !

2


 !

3

); h

a

(!

1


 g

2


 !

3

); h

a

(!

1


 !

2


 g

3

);

h

a

(g

1


 g

2


 !

3

); h

a

(g

1


 !

2


 g

3

); h

a

(!

1


 g

2


 g

3

); h

a

(g

1


 g

2


 g

3

)):

By the naturality of h

a

we have,

d

D

y = x� (h

a

(!

1


 !

2


 !

3

); h

a

(!

1


 !

2


 !

3

); h

a

(!

1


 !

2


 !

3

); 0; 0; 0; 0):

Therefore the associativity follows from the lemma:

5.13. Lemma. Let !

1

2 D

2p

(X �W; p), !

2

2 D

2q

(X � Y; q), and !

3

2 D

2r

(X � Z; r).

Then

h

a

(!

1


 !

2


 !

3

) = 0:

Proof. By de�nition (see x3)

h

a

(!

1


 !

2


 !

3

) =  (h('!

1

[ '!

2

) [ '!

3

) +  ('!

1

[ h('!

2

[ '!

3

));

where  and ' are the homotopy equivalences between the Deligne-Beilinson complexes,

h is the homotopy between ' and Id and [ is the product [

0

in the Deligne-Beilinson

complex which is associative.

But

h('!

1

[ '!

2

) = h((!

1

; !

1

; 0) [ (!

2

; !

2

; 0))

= h(!

1

^ !

2

; !

1

^ !

2

; 0)

= 0:

Therefore we obtain the Lemma.

Let us show now that the �-product de�ned here is compatible with the �-product

de�ned in [Bu 2]. Let Y and Z be closed algebraic subsets of X of codimension p and q

respectively which intersect properly. Write r = p+q. Let

e

X be a resolution of singularities

of Y \ Z such that the strict transforms of Y and Z do not meet. Write

b

Y for the strict

transform of Y and

b

Z for that of Z. Let �

Y;Z

be a smooth function on

e

X such that it

takes the value 1 in a neighbourhood of

b

Y and the value 0 in a neighbourhood of

b

Z. Let

�

Z;Y

= 1��

Y;Z

. Let us denote by �

0

the �-product of Green forms de�ned in [Bu 2]. Then

eg

2

�

0

eg

2

= 4�i(dd

c

(�

Y;Z

g

1

) ^ g

2

+ �

Z;Y

g

1

^ dd

c

g

2

)

e

= (d

D

(�

Y;Z

g

1

) � g

2

+ �

Z;Y

g

1

� d

D

g

2

)

e

:
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The factor 4�i comes from the normalization for Green forms used here which di�ers from

that used in [Bu 2].

The isomorphism

' :

b

H

2r

(D

�

(X; r);D

�

(X � Y \ Z; r)) �!

b

H

2r

(D

�

(X; r);D

�

(X;Y; Z; r))

sends (d

D

(�

Y;Z

g

1

) � g

2

+ �

Z;Y

g

1

� d

D

g

2

)

e

to

(d

D

(�

Y;Z

g

1

) � g

2

+ �

Z;Y

g

1

� d

D

g

2

; d

D

(�

Y;Z

g

1

) � g

2

+ �

Z;Y

g

1

� d

D

g

2

; 0)

e

:

Then

'(eg

1

�

0

eg

2

)� eg

1

� eg

2

= (d

D

(�

Y;Z

g

1

� g

2

);�d

D

(�

Z;Y

g

1

� g

2

);�g

1

� g

2

)

e

=

�

d

D

(�

Y;Z

g

1

� g

2

;��

Z;Y

g

1

� g

2

; 0)

�

e

= 0:

Therefore eg

1

� eg

2

and eg

1

�

0

eg

2

represents the same Green form.

In [Bu 2, x4], the compatibility of the �-product of Green currents with the product �

0

of Green forms is proved. Therefore the product of Green currents is also compatible with

the product de�ned here.

5.15 Remark. The key point in the proof of the associativity is Lemma 5.13. We can

even use a weaker version of this lemma, assuming that !

i

, i = 1; 2; 3, are closed. It may

be convenient to replace the complexes D by other complexes in order to obtain Green

forms with di�erent properties. Then to prove the associativity of the product of these

new Green forms we only need to check Lemma 5.13. in that case.

5.16 Remark. In the proof of Theorem 5.12. we have assumed that the intersections are

proper, because we have de�ned GE

p

Z

(X) only for closed subsets Z of codimension � p.

With the obvious de�nition of GE

p

Z

(X) for Z of arbitrary codimension, the Theorem also

holds, except for the comparison between Green forms and Green currents.

x6. K-Chains and Real Deligne-Beilinson Cohomology.

Our construction of arithmetic Chow groups is based in the relationship between alge-

braic K-theory and Deligne-Beilinson cohomology.

Let X be a smooth algebraic variety over C of dimension d. By [Be] (see also [Gi] and

[Sch]) we have a Chern character

ch : K

j

(X) �!

M

i

H

2i�j

D

(X;R(i)):

Using the techniques of [Gi] one can also de�ne a Chern character map from the Brown-

Gersten-Quillen spectral sequence for the K-theory of X and the Bloch-Ogus spectral

sequence for the Deligne-Beilinson cohomology. The aim of this section is to write down

explicitly the last stages of this map.
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Let us denote by X

(p)

the set of irreducible subvarieties of codimension p. The groups

of the E

1

term of the Brown-Gersten-Quillen spectral sequence (see [Q 1], [Gi] [Gr 1] and

[Gr 2]) are given by:

E

p;q

1

=

M

x2X

(p)

K

x

�p�q

(X);

where

K

x

n

(X) = lim

x2U

K

fxg\U

n

(U):

Whereas the groups of the Bloch-Ogus spectral sequence (see [B-O] and [Gi] ) are

E

p;q

1

=

M

i

M

x2X

(p)

H

2i+p+q

D;x

(X;R(i));

where

H

n

D;x

(X;R(i)) = lim

x2U

H

n

D;fxg\U

(U;R(i)):

Note that this spectral sequence is a direct sum of spectral sequences. One for each i, and

each of them is shifted in order to make

ch :

M

x2X

(p)

K

x

�p�q

(X) �!

M

i

M

x2X

(p)

H

2i+p+q

D;x

(X;R(i))

bihomogeneous.

6.1. Proposition. There is a commutative diagram

L

x2X

(p)

K

x

�p�q

(X)

ch

����!

L

i

L

x2X

(p)

H

2i+p+q

D;x

(X;R(i))

?

?

y

?

?

y

L

x2X

(p)

K

�p�q

(k(x))

ch

����!

L

i

L

x2X

(p)

H

2i�p+q

D

(x;R(i � p));

where the vertical arrows are isomorphisms and the horizontal arrows are morphisms of

spectral sequences.

Proof. The proof is analogous to the proof of [Gi, 3.9]. The fact that the vertical ar-

rows are isomorphism come from the localization and purity theorems for K-theory and

Deligne-Beilinson cohomology. For the commutativity one uses that each x 2 X

(p)

has a

neigborhood U such that

fxg \ U �! U

is a smooth inmersion with trivial normal bundle. In this case, by Riemann-Roch ([Gi]),

the Chern character commutes with direct images. The result is obtained taking the limit

for such neighborhoods.

Let us write

R

i

p

= R

i

p

(X) =

M

x2X

(i)

K

p�i

(k(x)):
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Then R

p

p

(X) = Z

p

(X), the group of codimension p algebraic cycles. The elements of

R

p�1

p

will be called K

1

-chains and the elements of R

p�2

p

, K

2

-chains. Let us denote by

d : R

i

p

�! R

i+1

p

the di�erential of this spectral sequence.

Recall that K

1

(k(x)) = k(x)

�

is the group of units of k(x). If f is a K

1

-chain then

f =

X

x2X

(i)

f

x

;

with f

x

2 k(x)

�

. And df = � div f =

P

� div f

x

. Therefore

R

p

p

(X)

�

dR

p�1

p

(X) = CH

p

(X);

is the codimension p Chow group of X. Note that the sign of df di�ers from [Gi] but d

is a connection homomorphism and its sign depends on the conventions used to de�ne the

simple of a morphism of complexes.

On the other hand, the group K

2

(k(X)) can be described as

K

2

(k(X)) = k(X)

�




Z

k(X)

�

�

R;

where R is the subgroup generated by the elements of the form f 
 (1� f). The element

of K

2

(k(X)) represented by f 
 g will be denoted by ff; gg.

The di�erential is given by the tame symbol. Let Y be a divisor of X, �

Y

the corre-

sponding valuation. Then the Y -th component of dff; gg is

�

(�1)

�

Y

(f)�

Y

(g)

f

�

Y

(g)

g

�

Y

(f)

�

;

where f�g denotes the class in k(Y )

�

.

Let Z

p

= Z

p

(X) denote the set of all closed algebraic subsets of X of codimension � p

ordered by inclusion. Let Z

p

nZ

p+1

denote the set of all pairs (Z;Z

0

) 2 Z

p

� Z

p+1

such

that Z

0

� Z. We consider this set ordered by inclusion.

Following [B-O], let us write

H

n

D;Z

p

nZ

p+1

(X;R(q)) = lim

�!

(Z;Z

0

)2Z

p

nZ

p+1

H

n

D;Z�Z

0

(X � Z

0

;R(q)):

Since Z

p

nZ

p+1

is a directed set, we can obtain these groups as the cohomology groups of

the complex

lim

�!

(Z;Z

0

)2Z

p

nZ

p+1

s(D

�

(E

log

(X � Z

0

); q) �! D

�

(E

log

(X � Z); q)):

Observe that we have

H

n

D;Z

p

nZ

p+1

(X;R(q)) =

M

x2X

(p)

H

n

D;x

(X;R(q)):
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6.2. Theorem. There is a commutative diagram

R

p�2

p

d

����! R

p�1

p

d

����! R

p

p

�

?

?

y

�

?

?

y

�

?

?

y

H

2p�2

D;Z

p�2

nZ

p�1

(X;R(p))

@

����! H

2p�1

D;Z

p�1

nZ

p

(X;R(p))

@

����! H

2p

D;Z

p

nZ

p+1

(X;R(p));

where the map � is the only non zero component of the map ch composed with the Gysin

morphism. This diagram is covariant for equidimensional projective morphisms.

Proof. Let x 2 X

(p)

and let K

(j)

i

(k(x)) be the j-graded part of K

i

(k(x)) with respect to

the 
-�ltration. One knows that ch(K

(j)

i

(k(x))) � H

2j�i

D

(x;R(j)) (see for example [Sch]).

Moreover, being k(x) a �eld, we have K

i

(k(x)) = K

(i)

i

(k(x)) for i � 2 ([Sou]). Therefore

the Chern character induces maps

K

i

(k(x)) �! H

i

D

(x;R(i)); for i � 2:

Composing these maps with the Gysin morphism we obtain the map �.

The commutativity of the diagram is then a direct consequence of Proposition 6.1.

For the covariance for projective morphisms let f : X �! Y be a projetive morphism.

Let x 2 X

(p)

. If dim fxg 6= dim ff(x)g then f

�

(�) = 0 for � 2 K

i

(k(x)) or � 2 H

i

D

(x;R(i)).

On the other hand, if dim fxg = dim ff(x)g then there are neighbourhoods U of x and V

of f(x) such that f induces a morphism f

0

: U �! V which is projective, �etale and �nite.

Therefore the relative tangent bundle is trivial and the Riemann-Roch Theorem implies

that the Chern character commutes with direct images.

Now we want to determine the map �. At the level of cycles, � is the cycle class map.

At the level of K

1

-chains, if x 2 X

(p�1)

, the morphism

� : K

1

(k(x)) �! H

2p�1

x

(X;R(p))

is the composition

K

1

(k(x))

c

1;1

��! H

1

(x;R(1))

j

!

�! H

2p�1

x

(X;R(p));

where j

!

is the Gysin morphism and c

1;1

is the �rst Chern class. On the other hand, we

know ([Be]) that c

1;1

is given by the natural map

c : O

�

[�1] �! R

D

(�):

In terms of the complexes D

�

(E

log

(�); �), we have that, for f 2 O

�

(X), c(f) is represented

by

1

2

log ff 2 D

1

(E

log

(X); 1):
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At the level of K

2

-chains, we can use the multiplicativity of the Chern character and we

have that, if f; g 2 O

�

(X) then chff; gg is represented by

1

2

log ff �

1

2

log gg 2 D

2

(E

log

(X); 2):

With this description of the map �, Theorem 6.2 can be checked directly (see [Bu 3]).

Let us write

CH

p;p�1

(X) =

Ker d : R

p�1

p

(X) �! R

p

p

(X)

Imd : R

p�2

p

(X) �! R

p�1

p

(X)

:

As a consequence of Theorem 6.2 we have

6.3. Corollary. There are well de�ned maps

� :CH

p

(X) �! H

2p

D

(X;R(p)); and

� :CH

p;p�1

(X) �! H

2p�1

D

(X;R(p)):

The �rst is the cycle class map and the second is the Beilinson regulator map (see [G-S,

3.5.]). Moreover these maps are covariant for proper morphisms and contravariant for 
at

morphisms.

Proof. The case of Chow groups is well known.

Let � 2 R

p�1

p

with d� = 0. Then there is an open set U � X and a subvariety Z � U

of codimension p� 1 such that

�(�) 2 H

2p�1

D;Z

(U;R(p)):

Moreover, we can assume that Y = X�U has codimension p. Then �(�) de�nes a class in

H

2p�1

D

(U;R(p)). By the purity of Deligne-Beilinson cohomology, we have an exact sequence

0 �! H

2p�1

D

(X;R(p)) �! H

2p�1

D

(U;R(p))

@

�! H

2p

D;Y

(X;R(p)):

Since d� = 0, by Theorem 6.2 @�(�) = 0. Then we have a well de�ned class, also denoted

by �(�) 2 H

2p�1

D

(X;R(p)).

Assume that � = d�. Let us write V = U � Z. Then �(�) 2 H

2p�2

D

(V;R(p)) and

�(�) = @�(�); where @ is the connection morphism

H

2p�2

D

(V;R(p)) �! H

2p�1

D;Z

(U;R(p)):

Therefore the class �(�) 2 H

2p�1

D

(U;R(p)) is zero. Thus � is well de�ned.

6.4. Remark. The morphism � is also compatible with invere images and intersection

products. See [Fu x19] for the case of cycles and [G-S 4.2] for a precise statement at the

level of K

1

-chains.
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6.5. Remark. Let X

R

be a smooth real algebraic variety, equivalently X

R

is a pair

(X;F

1

), where X is a smooth complex variety and F

1

is an antilinear involution. Then

all the results of this section remain valid, provided that we substitute K-chains by real

de�ned K-chains and every complex A(X) by the subcomplex

A(X

R

) = fx 2 A(X) j F

�

1

(x) = xg:

See for example [E-V, 2.1].

In particular, if A(X) is a Dolbeault complex, we shall write

D

n

(A

�

(X

R

); p) =

�

�

x 2 D

n

(A

�

(X

R

); p) j F

�

1

x = (�1)

p�1

x

	

; if n � 2p� 1 and

fx 2 D

n

(A

�

(X

R

); p) j F

�

1

x = (�1)

p

xg ; if n � 2p:

We shall also write

H

n

D

(X

R

;R(p)) = H

n

(D(E

�

log

(X

R

); p)):

x7. Arithmetic Chow Rings.

Let (A;�; F

1

) be an arithmetic ring (See [G-S, x3]). That is, A is an excellent Noether-

ian domain, � is a nonempty set of monomorphisms � : A �! C and F

1

is a conjugate-

linear involution of C -algebras F

1

: C

�

�! C

�

, such that the image of A in C

�

is invariant

under F

1

. Let us denote byK the quotient �eld of A. The �rst examples of such arithmetic

rings A are

1) A = Z;Q;R , with � containing only the inclusion.

2) A = C , with � = fId; �g, where Id is the identity and � is the conjugation.

3) A = O

K

, the ring of integers of a number �eld K, with � the set of complex immersions

of K.

Let X be a regular separated 
at A-scheme of �nite type, with generic �bre X

K

regular

overK. X is called an arithmetic variety over A, or arithmetic variety if A is �xed. If � 2 �

we write X

�

= X 


�

C and X

�

=

`

X

�

. Let X

1

be the complex manifold determined by

X

�

. We denote by F

1

the anti-linear involution of X

�

induced by F

1

. Finally we denote

by X

R

the real manifold (X

1

; F

1

).

In this section we shall use Green forms to de�ne cohomological arithmetic Chow groups

of X. In the case when X

K

is proper over K then these arithmetic Chow groups are

naturally isomorphic to the arithmetic Chow groups de�ned in [G-S], whereas in the quasi-

projective case the groups de�ned here have better Hodge theoretic properties.

To take into account the structure of real variety of X

1

(see Remark 6.5) we write

GE

p

(X

R

) = feg 2 GE

p

(X

1

) j F

�

1

g = gg :

Note that, since g 2 D

2p�1

(E

�

log

(X

1

=Z

p

); p), we have g = (�1)

p�1

g.
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We also write

H

�

D

(X

R

;R(p)) = H

�

(D(E

�

log

(X

R

); p));

e

E

p�1;p�1

log;R

(X

R

) =

�

g 2 D

2p�1

(E

�

log

(X

1

); p) j F

�

1

g = g

	�

(Im d

D

)

=

n

g 2 E

p�1;p�1

log

(X

1

) \ E

2p�2

log;R

(X

1

; p) j F

�

1

g = (�1)

p�1

g

o.

(Im@ + Im @)

and

ZE

p;p

log;R

(X

R

) =

�

! 2 D

2p

(E

�

log

(X

1

); p) j d

D

! = 0; F

�

1

! = !

	

=

n

! 2 E

p;p

log

(X

1

) \ E

2p

log;R

(X

1

; p) j d! = 0; F

�

1

! = (�1)

p

!

o

:

Observe that Proposition 5.4 remains valid provided we use the corresponding groups for

X

R

.

Let Z

p

(X) denote the set of codimension p algebraic cycles on X. For each y 2 Z

p

(X)

there is a well de�ned cycle y

K

2 Z

p

(X

K

). Hence a cycle y

R

2 Z

p

(X

R

). We shall write

�(y) = �(y

R

) 2 H

2p

D;supp y

(X

R

;R(p)). Then the space of Green forms for y is de�ned by:

GE

p

y

(X

R

) = feg 2 GE

p

(X

R

) j cl(eg) = �(y)g :

And the group of codimension p arithmetic cycles is de�ned by

b

Z

p

(X) =

�

(y;eg) 2 Z

p

(X)�GE

p

(X

R

) j eg 2 GE

p

y

(X

R

)

	

= f(y;eg) 2 Z

p

(X)�GE

p

(X

R

) j cl(eg) = �(y))g :

That is, a codimension p arithmetic cycle is a pair (y;eg), where y is a codimension

p algebraic cycle, and eg is the class in D

2p�1

(E

�

log

((XnZ

p

)

R

); p)= Imd

D

of a form g 2

D

2p�1

(E

�

log

((XnZ

p

)

R

); p), such that

! = d

D

g = �2@@g 2 D

2p

(E

�

log

(X

R

); p);

and the pair (!; g) represents the class �(y) 2 H

2p

D;Z

p

(X

R

;R(p)).

Let us now de�ne rational equivalence in this setting. Let W be a codimension p � 1

irreducible subvariety of X and let f 2 k(W )

�

. Let us write Y = supp div f . We have a

well de�ned subvariety W

1

of X

1

(which may be empty) and a function f

1

2 k(W

1

)

�

.

Since f is de�ned over K, the function f

1

satis�es F

�

1

f = f . Hence the map � (see x2)

gives us a class

�(f) = �(f

1

) 2 H

2p�1

D

((X � Y )

R

;R(p)):

Therefore we have an element

b(�(f)) 2 GE

p

div f

(X

R

);

where b : H

2p�1

D

((X � Y )

R

;R(p)) �! GE

p

div f

(X

R

) is the map introduced after De�nition

5.3.
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Then we write

c

div f = (div f;� b(�(f))):

By Theorem 6.2,

c

div f 2

b

Z

p

(X): We denote by

d

Rat

p

the subgroup of

b

Z

p

generated by the

elements of the form

c

div f .

7.1. De�nition. The arithmetic Chow groups of X are

d

CH

p

(X) =

d

CH

p

(X;D(E

log

)) =

b

Z

p

(X)

.

d

Rat

p

:

We shall write

d

CH

p

(X;D(E

log

)) when we want to stress the complex used to de�ne the

Green objects, or when we want to di�erentiate them from the arithmetic Chow groups

de�ned by Gillet and Soul�e.

We shall write

d

CH

�

(X) =

M

p

d

CH

p

(X):

Before stating the comparison theorem between the Chow groups de�ned here and in

[G-S], let us recall some results about currents.

For X, a complex variety of dimension d, let D

n

X

denote the sheaf of complex valued

currents on X. That is, for an open subset U � X, �(U;D

n

X

) is the topological dual of

�

c

(U; E

2d�n

X

).

The sheaf D

n

X

has a real structure D

n

X;R

and a natural bigrading

D

n

X

=

M

p+q=n

D

p;q

X

:

From this we can de�ne the Hodge �ltration as usual. We shall write D

n

X

= �(X;D

n

X

).

There is a map

[�] : E

n

X

�! D

2d�n

X

! 7�! [!];

de�ned by

[!](!

0

) =

1

(2�i)

d

Z

X

!

0

^ !:

More generally, if ! is a locally L

1

form, then we de�ne [!] by the same formula.

We can turn D

�

X

into a chain complex by writing, for T 2 D

n

X

,

dT (!) = (�1)

n

T (d!):

By Stokes' Theorem, the map [�] : E

�

X

�! D

�

X

is a morphism of complexes. Moreover,

it is a �ltered quasi-isomorphism with respect to the Hodge �ltration.

If Y � X is a subvariety, we shall denote by �

Y

E

�

X

the subcomplex of E

�

X

composed

by the forms which vanish when restricted to each irreducible component of Y . Then the

complex of currents on Y ([H-L]) is de�ned by:

D

n

Y

= fT 2 D

n

X

j T (!) = 0; 8! 2 �

Y

E

n

X

g:
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Up to a shift in the graduation, this complex only depends on Y and, when Y is smooth,

coincides with the usual complex of currents.

Let us write D

�

X=Y

= D

�

X

/D

�

Y

. If Y is a divisor with normal crossings, there is a

morphism

[�] : E

�

X

(logY ) �! D

�

X=Y

which is a �ltered quasi-isomorphism with respect to the Hodge �ltration (see [Bu 2] and

[Bu 3]).

7.2. Theorem. Let X be an arithmetic variety, with X

K

proper over K and dimX

K

= d.

Then there is a natural isomorphism

d

CH

p

(X;D(E

�

log

)) �!

d

CH

p

(X);

where the group on the right hand side is the arithmetic Chow group de�ned in [G-S]. This

isomorphism is given by

(y;eg) 7�! (y; 2(2�i)

d�p+1

[g]

e

);

where g is a representative of eg.

Proof. By [Bu 2, 3.8.2], any representative g of eg is locally integrable in the whole X.

Therefore the current [g] is well de�ned. By Theorem 5.9, the map

(y;eg) 7�! (y; 2(2�i)

d�p+1

[g]

e

);

gives us an isomorphism between the group of arithmetic cycles de�ned here and the group

of arithmetic cycles in the sense of Gillet and Soul�e. Thus we only need to check that the

two concepts of rational equivalence coincide.

Let us recall the de�nition of rational equivalence in [G-S]. LetW be a codimension p�1

irreducible subvariety of X and let f 2 k(W )

�

. Let

f

W

1

be a resolution of singularities of

W

1

and let j :

f

W

1

�! X

1

be the induced map. The function f induces a well de�ned

function, also denoted by f 2 k(

f

W

1

)

�

. Then

c

div f in the sense of Gillet and Soul�e is

de�ned by

c

div f = (div f;�(2�i)

d�p+1

j

�

[log ff ]):

The factor (2�i)

d�p

comes from the di�erent de�nition of [�] here and in [G-S].

Therefore we are reduced to proving that there is a representative g of � b(�f) such

that, if [g] is the associated current on X, then

2[g] + j

�

[log ff ] 2 Im @ + Im @

in the complex D

�

X

1

. Since this statement only depends on the complex variety X

1

we

will assume that X is a complex variety of dimension d.

Let Y = supp div f . Let � : (

e

X;D) �! (X;Y ) be a resolution of singularities, with

D = �

�1

(Y ) a divisor with normal crossings. Then the class �(f) 2 H

2p�1

D

(X�Y;R(d�p))

is represented by the current j

�

[�(1=2) log ff ]. Therefore, in the complex D

�

e

X=D

, we have

the equation

2[g] + j

�

[log ff ] = @a+ @b:
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By [Bu 2, 1.9] we may assume that g is of weight one. Therefore it is locally integrable in

the whole

e

X. Let us also denote by [g] the associated current in the complex D

�

e

X

. Let a

0

and b

0

be elements of D

�

e

X

which are mapped to a and b. Then in the complex D

�

e

X

we have

2[g] + j

�

[log ff ] = @a

0

+ @b

0

+ c;

where c 2 D

p�1;p�1

D

. So �

�

c 2 D

p�1;p�1

Y

= f0g because codimY = p. Hence, in the

complex D

�

X

we have

2[g] + j

�

[log ff ] = @�

�

a

0

+ @�

�

b

0

:

This concludes the proof of the theorem.

Our next objective is to �t the groups

d

CH

�

(X) in some exact sequences. Recall that we

have de�ned a morphism (see 6.3)

� : CH

p;p�1

(X) �! H

2p�1

D

(X

R

;R(p)):

We will also denote by � the composition

� : CH

p;p�1

(X) �! H

2p�1

D

(X

R

;R(p)) �!

e

E

p�1;p�1

log

(X

R

):

We have maps

� :

d

CH

p

(X) �! CH

p

(X); �(y;eg) = y;

� : CH

p

(X) �! H

2p

D

(X

R

;R(p)); see 6.3;

a :

e

E

p�1;p�1

log

(X

R

) �!

d

CH

p

(X); a(eg) = (0; eg);

! :

d

CH

p

(X) �! ZE

p;p

log

(X

R

); !(y;eg) = �2@@g and

h : ZE

p;p

log

(X

R

) �! H

2p

D

(X

R

;R(p)); h(�) = f�g;

where f�g is the cohomology class of �.

Let us write

d

CH

p

(X)

0

= Ker(!) and

CH

p

(X)

0

= fy 2 CH

p

(X) j y

1

�

hom

0g:

Then the analogue of [G-S, Theorem 3.3.5] is:

Theorem 7.3. Let X be an arithmetic variety. Then we have exact sequences:

(i) CH

p;p�1

(X)

�

�!

e

E

p�1;p�1

log

(X

R

)

a

�!

d

CH

p

(X)

�

�! CH

p

(X) �! 0;

(ii) CH

p;p�1

(X)

�

�! H

2p�1

D

(X

R

;R(p))

a

�!

d

CH

p

(X)

(�;�!)

����! CH

p

(X)� ZE

p;p

log

(X

R

)

�+h

��! H

2p

D

(X

R

;R(p)) �! 0;

(iii) CH

p;p�1

(X)

�

�! H

2p�1

D

(X

R

;R(p))

a

�!

d

CH

p

(X)

0

�

�! CH

p

(X)

0

�! 0:
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Proof. The proof of the exactness of the three sequences is similar. So we shall write only

the �rst.

The fact that the composition of two consecutive morphisms is zero follows easily from

the de�nitions.

The surjectivity of � is equivalent to the existence of Green forms for a cycle and is a

consequence of the surjectivity of the map cl ( Proposition 5.4.1.)

Assume now that �(y;eg) = 0. Then y =

P

div f

i

and (y;eg) �

P

c

div f

i

= (0; eg

0

). Then

cl eg

0

= 0. By Proposition 5.4.1, eg

0

2 Im a.

If eg 2

e

E

p�1;p�1

log

(X

R

) with a(eg) = 0, then (0; eg) =

P

c

div f

i

. Therefore

P

div f

i

= 0 and

f =

P

f

i

determines an element of CH

p;p�1

(X) and eg = �(f).

Example 7.4. In [G-S, 3.4] there are some examples of explicit arithmetic Chow groups.

Since these examples are given for arithmetic varieties with projective X

1

, they are also

examples for the arithmetic Chow groups introduced here.

Let us give a simple example where the groups obtained here and the groups obtained

in [G-S] di�er. Let X = A

1

Z

= Spec(Z[t]). Then X is an arithmetic variety over Z. We

have that CH

1

(X) = 0 and CH

1;0

(X) = f�1; 1g, but �(CH

1;0

(X)) = 0. Therefore

d

CH

1

(X;D(E

log

))

�

=

E

0

log

(A

1

R

):

That is, the space of F

1

-invariant, real valued C

1

functions on A

1

C

which have logarithmic

singularities at in�nity. Moreover we have

d

CH

1

(X;D(E

log

))

0

= H

1

D

(A

1

R

;R(1)) = R:

In particular, the morphism

�

�

:

d

CH

�

(SpecZ;D(E

log

))

0

�!

d

CH

�

(X;D(E

log

))

0

is an isomorphism.

On the other hand, the groups

d

CH

1

(X)

0

as de�ned in [G-S] are isomorphic to the

analytic Deligne cohomology of A

1

R

, H

1

D

an

(A

1

R

;R(1)), which is an in�nite dimensional real

vector space.

Let us give a generalization of the above example.

Theorem 7.5. Let X be an arithmetic variety and let � :M �! X be a geometric vector

bundle. Then the induced morphism

�

�

:

d

CH

�

(X;D(E

log

))

0

�!

d

CH

�

(M;D(E

log

))

0

is an isomorphism.

Proof. We have a commutative diagram

CH

p;p�1

(X) ����! H

2p�1

D

(X

R

;R(p)) ����!

d

CH

p

(X)

0

����! CH

p

(X)

0

����! 0

?

?

y

�

�

?

?

y

�

�

?

?

y

�

�

?

?

y

�

�

CH

p;p�1

(M) ����! H

2p�1

D

(M

R

;R(p)) ����!

d

CH

p

(M)

0

����! CH

p

(M)

0

����! 0:
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At the level of CH

p

and CH

p;p�1

, the morphism �

�

is an isomorphism by [Gi, Th 8.3]. At

the level of Deligne-Beilinson cohomology, the morphism �

�

is an isomorphism because

�

�

: E

�

log

(X

C

) �! E

�

log

(M

C

)

is a real �ltered quasi-isomorphism with respect to the Hodge �ltration. Therefore �

�

is

also an isomorphism at the level of

d

CH

p

0

.

Let us summarize the properties of cohomological Chow groups. These properties can

be proved as in [G-S] substituting Green currents by Green forms.

Let (y;eg

y

) and (z; eg

z

) be two arithmetic cycles such that y and z intersect properly. Then

the singular support of eg

y

and the singular support of eg

z

intersect properly. Therefore the

product eg

y

� eg

z

is de�ned and is a Green form for y � z. We can de�ne an intersection

product by

(7.6) (y;eg

y

) � (z; eg

z

) = (y � z; eg

y

� eg

z

):

Let us write

d

CH

�

(X)

Q

=

d

CH

�

(X)
 Q :

Then we have (see [G-S, Theorem 4.2.3] for a more precise statement):

Theorem 7.7. Let A be an arithmetic ring with fraction �eld K and let X be an arithmetic

variety with X

K

quasi-projective. Then, for each pair of non-negative integers p, q, there

is an intersection pairing

d

CH

p

(X)


d

CH

q

(X) �!

d

CH

p+q

(X)

Q

;

which is given by formula 7.6. for cycles intersecting properly.

This product induces in

d

CH

�

(X)

Q

a structure of commutative and associative ring.

Moreover, the induced maps

� :

d

CH

�

(X)

Q

�! CH

�

(X)
 Q

and

! :

d

CH

�

(X)

Q

�!

M

p

E

p;p

log

(X

R

; p)

are morphisms of rings. Therefore the subgroup

d

CH

�

(X)

0;Q

= Ker(!) is an ideal of

d

CH

�

(X)

0

.

The functorial properties of the cohomological Chow groups are summarized in the

following theorem. For proofs see [G-S, Theorem 3.6.1] and [G-S, Theorem 4.4.3]. Note

that, in the case of arithmetic varieties which are not proper over A, we have to impose

stronger conditions for the existence of a push-forward map. This is done to ensure that

the direct image of a logarithmic form is again a logarithmic form (see the construction of

a push forward of Green forms in [Bu 2, 1.14]).
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Theorem 7.8. Let A be an arithmetic ring.

1. Let f : X

0

�! X be a morphism of regular quasi-projective arithmetic varieties. Then

there is a pull-back morphism

f

�

:

d

CH

p

(X) �!

d

CH

p

(X

0

);

such that, if (y;eg

y

) 2

b

Z

p

(X) and f

�1

(y) is equidimensional of codimension p then

f

�

(y;eg

y

) = (f

�

y; f

�

eg

y

);

with f

�

y de�ned as in [Se]. If g : X

00

�! X

0

is another such morphism then (fg)

�

=

g

�

f

�

. Moreover f

�

induces a ring homomorphism

f

�

:

d

CH

�

(X)

Q

�!

d

CH

�

(X

0

)

Q

:

2. Let f : X

0

�! X be a proper morphism of equidimensional regular arithmetic varieties.

Assume that there are smooth compacti�cations X

0

1

of X

0

1

and X

1

of X

1

, such that

f

1

: X

0

1

�! X

1

can be extended to a smooth map f

1

: X

0

1

�! X

1

: Let e =

dim(X

0

)� dim(X). Then there is a push-forward morphism

f

�

:

d

CH

p

(X

0

) �!

d

CH

p�e

(X);

such that f

�

(y; eg

y

) = (f

�

y; f

�

g

y

). If g : X

00

�! X

0

is another such morphism then

(fg)

�

= f

�

g

�

. Moreover, if � 2

d

CH

p

(X

0

) and � 2

d

CH

q

(X), then

f

�

(� � f

�

�) = f

�

� � � 2

d

CH

p+q�e

(X)

Q

:

References.

[Ar] Arakelov, S. J., Intersection theory of divisors on an arithmetic surface, Math.

USSR Izvestija 8 (1974), 1167{1180.

[Be] Beilinson, A. A., Higher regulators and values of L-functions, J. Soviet Math. 30

(1985), 2036{2070.

[B-O] Bloch, S. and Ogus, A., Gersten's conjectures and the homology of schemes, Ann.

Scient. c. Norm. Sup., 4

e

srie 7 (1974), 181{202.

[Bu 1] Burgos J. I., A C

1

logarithmic Dolbeault complex, Compos. Math. 92 (1994),

61{86.

[Bu 2] Burgos J. I., Green forms and their product, Duke Math. J. 75 (1994), 529{574.

[Bu 3] Burgos J. I., Arithmetic Chow rings, Tesis Universidad de Barcelona, 1994.

[C-S] Cheeger, J. and Simons, J., Di�erential characters and geometric invariants,

Geometry and Topology, LNM 1167, Springer-Verlag, 1980, pp. 50-80.

[De] Deligne, P., Th�eorie de Hodge II, Publ. Math. IHES 40 (1972), 5{57; III, Publ.

Math. IHES 44 (1975), 5{77.

[Dem] Demailly J.P., Book in prep.

37



[E-V] Esnault, H. and Viehweg, E., Deligne-Beilinson cohomology, Beilinson's con-

jectures on special values of L-functions (Rappoport, M., Schappacher, N. and

Schneider, P., eds.), Perspectives in Mathematics 4, Academic Press, Inc., 1988,

pp. 43{92.

[Ful] Fulton, W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenz-

gebiete 3, Springer-Verlag, 1984.

[G-S] Gillet, H. and Soul�e, C., Arithmetic intersection theory, Publ. Math. IHES 72

(1990), 93{174.

[Gi] Gillet, H., Riemann-Roch theorem for higher algebraic K-theory, Advances in

Math. 40 (1981), 203{289.

[Gr 1] Grayson, D., The K-theory of hereditary categories, J. Pure Appl. Alg. 11 (1977),

67{74.

[Gr 2] Grayson, D., Localization for 
at modules in algebraic K-theory, J. Algebra 61

(1979), 463{496.

[H-L] Herrera, M. and Lieberman, D., Residues and principal values on complex spaces,

Math. Ann. 194 (1971), 259{294.

[J] Jannsen, U., Deligne homology, Hodge-D-conjecture, and motives, Beilinson's

conjectures on special values of L-functions (Rappoport, M., Schappacher, N.

and Schneider, P., eds.), Perspectives in Mathematics 4, Academic Press, Inc.,

1988, pp. 305{372.

[N] Navarro Aznar, V., Sur la thorie de Hodge-Deligne, Invent. Math. 90 (1987),

11{76.

[Q] Quillen, D., Higher Algebraic K-Theory I, LNM 341, Springer-Verlag, Berlin,

1973.

[Sch] Schneider, P., Introduction to the Beilinson Conjectures,, Beilinson's conjectures

on special values of L-functions (Rappoport, M., Schappacher, N. and Schneider,

P., eds.), Perspectives in Mathematics 4, Academic Press, Inc., 1988, pp. 305{

372.

[Se] Serre, J. P., Algbre locale, 3rd Ed., LNM 11, Springer-Verlag, Berlin, 1975.

[Sou] Soul�e C., Op�erations en K-th�eorie alg�ebrique, Can. J. Math. 37 (1985), 488{550.

[Wa] Wang A., Higher-order characteristic classes in arithmetic geometry, Thesis Har-

vard, 1992.

Departament d'

�

Algebra i Geometria. Universitat de Barcelona, Gran Via 585. 08007

Barcelona, Spain

E-mail address: burgos@ cerber.mat.ub.es

38


