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Abstract

In this paper we define the formal and tempered Deligne cohomology groups,
that are obtained by applying the Deligne complex functor to the complexes of
formal differential forms and tempered currents respectively. We then prove the
existence of a duality between them, a vanishing theorem for the former and a
semipurity property for the latter. The motivation of these results comes from
the study of covariant arithmetic Chow groups. The semi-purity property of
tempered Deligne cohomology implies, in particular, that several definitions of
covariant arithmetic Chow groups agree for projective arithmetic varieties.

1. Introduction

The aim of this note is to study some properties of formal and tempered Deligne
cohomology (with real coefficients). These cohomology groups are defined by applying
the Deligne complex functor to the complexes of formal differential forms and tempered
currents respectively.

Let X be a complex projective manifold and let W be a Zariski locally closed
subset of X. Let i : W −→ X denote the inclusion and let i∗, i!, i∗, i! be the induced
functors in the derived category of abelian sheaves. Then the complex of formal dif-
ferential forms of W computes the cohomology of W with compact supports. That
is, it computes the groups H∗(X, i!i∗R). The complex of tempered currents on W
compute the cohomology of X with supports on W , that is, it computes the groups

Partially supported by Grants BFM2003-02914 and MTM2006-14234-C02-01.
Keywords: Deligne cohomology, differential forms and currents, Whitney forms, Tempered cur-

rents, Arithmetic Chow groups.
MSC2000: 14F43, 14G40, 14C30.

79

mmlozano
Collectanea Mathematica



80 Burgos

H∗(X, i∗i!R). Following Deligne, the previous groups have a mixed Hodge structure,
hence a Hodge filtration that we will call the Deligne-Hodge filtration. The complexes
of formal differential forms and tempered currents are examples of Dolbeault com-
plexes (see [6]). Therefore they have a Hodge filtration obtained from the bigrading of
differential forms. In general, this Hodge filtration does not induce the Deligne-Hodge
filtration in cohomology. Moreover, the spectral sequence associated to this Hodge
filtration does not degenerate at the E1-term.

This implies that formal and tempered Deligne cohomology groups with real coef-
ficients will not have, in general, the same properties as Deligne-Beilinson cohomology.
For instance they do not need to be finite dimensional. They have a structure of
topological vector spaces, but they may be non-separated.

Note however that, in the particular case when W = X, the formal and tempered
Deligne cohomology groups with real coefficients, agree with the usual real Deligne
cohomology groups.

In this note we will construct a (Poincaré like) duality between formal Deligne
cohomology and tempered Deligne cohomology, that induce a perfect pairing between
the corresponding separated vector spaces. In particular, applying this duality to the
case W = X we obtain an exceptional duality for real Deligne Beilinson cohomology
(Corollary 2.28) of smooth projective varieties that, to my knowledge, is new. The
shape of this exceptional duality reminds very much the functional equation of L-
functions. It would be interesting to know whether this duality has any arithmetic
meaning.

The second result is a vanishing result for formal Deligne cohomology. Thanks
to the previous duality, the vanishing result of formal Deligne cohomology implies a
semipurity property of tempered Deligne cohomology (Corollary 2.34).

The motivation for these results comes from the study of covariant arithmetic
Chow groups introduced in [3] and [6]. The covariant arithmetic Chow groups are a
variant of the arithmetic Chow groups defined by Gillet and Soulé, that are covariant
for arbitrary proper morphism. By contrast, the groups defined by Gillet and Soulé are
only covariant for proper morphisms between arithmetic varieties that induce smooth
maps between the corresponding complex varieties. The covariant arithmetic Chow
groups do not have a product structure, but they are a module over the contravariant
arithmetic Chow groups (see [6] for more details). Similar definitions of covariant Chow
groups have been given by Kawaguchi and Moriwaki [13] and by Zha [16]. These two
definitions are equivalent except for the fact that Zha neglects the structure of real
manifold induced on the complex manifold associated to an arithmetic variety.

Although not explicitly stated, in the paper [6], the covariant arithmetic Chow
groups are defined by means of tempered Deligne cohomology. The semi-purity prop-
erty of tempered Deligne cohomology was announced and used in [6]. Hence this paper
can be seen as a complement of [6]. A new consequence of the semipurity property is
that, for an arithmetic variety that is generically projective, the covariant Chow groups
introduced in [3] and [6] are isomorphic to the covariant Chow groups introduced by
Kawaguchi and Moriwaki.

Acknowledgments. In the course of preparing this manuscript, I had many stimulat-
ing discussions with many colleagues. We would like to thank them all. In particular, I
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2. Complexes of forms and currents

By a complex algebraic manifold we will mean the analytic manifold associated to a
smooth scheme over C. Let X be a projective complex algebraic manifold. We will
consider the following situation: let Z ⊂ Y be closed subvarieties of X, let U and V
be the open subsets U = X \ Y , V = X \ Z and let W be the locally closed subset
W = Y \ Z.

2.1 Flat forms and Whitney forms

The complex of Whitney forms. Let E ∗X denote the sheaf of smooth differential
forms on X. We will denote by E∗(U) the complex of global differential forms over U
and by E∗c (U) the complex of differential forms with compact support.

Let E ∗X(flatY ) denote the ideal sheaf of differential forms that are flat along Y .
Recall that a differential form on X is called flat along Y if its Taylor expansion
vanishes at all points of Y . We write

E ∗Y∞ = E ∗X/E
∗
X(flatY ).

The sections of this complex of sheaves are called Whitney forms on Y . Whitney’s
extension theorem ([15, IV Theorem 3.1]), gives us a precise description of the space
of Whitney forms in terms of jets over Y . For instance, if Y is the smooth subvariety
of Cn defined by the equations z1 = · · · = zk = 0, then the germ of the sheaf of
Whitney functions on Y at the point x = (0, . . . , 0) is

E 0
Y∞,x = E 0

Y,x

[
[zk+1, . . . , zn, z̄k+1, . . . , z̄n]

]
.

We will write
E ∗Y∞(flatZ) = E ∗X(flatZ)/E ∗X(flatY ).

Observe that E ∗Y∞(flatZ) can also be defined as the kernel of the morphism

E ∗Y∞ −→ E ∗Z∞ .

The sheaf E ∗Y∞(flatZ) agrees with the sheaf denoted CW

W
⊗ C∞X in [12].

The complex E ∗Y∞(flatZ) is a complex of fine sheaves. We will denote the corre-
sponding complex of global sections by E∗

XW (W ) := Γ(X,E ∗Y∞(flatZ)). Note that the
complex E∗

XW (W ) depends only on the locally closed subspace W ⊂ X and not on a
particular choice of closed subsets Y and Z. Observe also that E∗

XW (X) = E∗(X) is
the usual complex of smooth differential forms on X.

We will denote by E∗
XW ,R(W ) the real subcomplex underlying E∗

XW (W ).
By the acyclicity of fine sheaves, there is a diagram of short exact sequences
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0

��
0

��

0

��

E∗
XW (W )

��
0 // E∗

XW (U) //

��

E∗(X) //

��

E∗
XW (Y ) //

��

0

0 // E∗
XW (V ) //

��

E∗(X) //

��

E∗
XW (Z) //

��

0

E∗
XW (W )

��

0 0

0

(2.1)

The complex E∗(X) is a topological vector space with the C∞ topology. With
this topology E∗(X) is a Fréchet topological vector space ([1, III p. 9]). Moreover
E∗

XW (U) is a closed subspace. In fact, by [15, V Corollaire 1.6], it is the closure of
the complex of differential forms that have compact support contained in U , that we
denote E∗c (U). More generally, all the monomorphisms in diagram (2.1) are closed
immersions.

The following result states that, being U an algebraic open subset of X, the
complex E∗

XW (U) does not depend on X but only on U .

Proposition 2.2

Let π : X̃ −→ X be a proper birational morphism with D = π−1(Y ), that induces

an isomorphism between X̃ \D and U , then the natural map

π∗ : E∗(X) −→ E∗(X̃)

induces an isomorphism π∗ : Γ(X,E ∗X(flatY )) −→ Γ(X̃,E ∗
X̃

(flatD)).

Proof. By [14] the morphism

π∗ : E∗(X) −→ E∗(X̃)

is a closed immersion. Since Γ(X,E ∗X(flatY )) and Γ(X̃,E ∗
X̃

(flatD)) are the closure of

E∗c (U) in E∗(X) and E∗(X̃) respectively, then they are identified by π∗. �

The cohomology of the complex of Whitney forms. By [14] (see also [2] for
a more general statement) we have
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Proposition 2.3

The complex E ∗Y∞ is a resolution of the constant sheaf C on Y by fine sheaves.
Therefore

H∗(E∗XW (W )) = H∗c (W,C),

where H∗c denotes cohomology with compact supports. �

2.2 Currents with support in a subvariety

The complex of currents. We first recall the definition of the complex of currents
and we fix the sign convention and some normalizations. We will follow the conventions
of [6, § 5.4] but with the homological grading.

Let DX
n be the sheaf of degree n currents on X. That is, for any open subset V

of X, the group DX
n (V ) is the topological dual of the group of sections with compact

support En
c (V ). The differential

d : DX
n −→ DX

n−1

is defined by
dT (ϕ) = (−1)nT (dϕ);

here T is a current and ϕ a test form. Note that we are using the sign convention of,
for instance [11], instead of the sign convention of [9].

The bigrading E n
X =

⊕
p+q=n E p,q

X induces a bigrading

DX
n =

⊕
p+q=n

DX
p,q,

with DX
p,q(V ) the topological dual of Γc(V,E

p,q
X ).

The real structure of E n
X induces a real structure

DX,R
n ⊂ DX

n .

We will denote
DX,R

n (p) =
1

(2πi)p
DX,R

n ⊂ DX
n .

If X is equidimensional of dimension d we will write

Dn
X = DX

2d−n, Dp,q
X = DX

d−p,d−q, and Dn
X,R(p) = DX,R

2d−n(d− p). (2.4)

We will use all the conventions of [6, § 5.4]. In particular, if y is an algebraic cycle
of X of dimension e, we will write δy ∈ DX

e,e ∩DX,R
2e (e) for the current

δy(η) =
1

(2πi)e

∫
y
η.

Furthermore, there is an action

E n
X ⊗DX

m −→ DX
m−n,

ω ⊗ T 7−→ ω ∧ T
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where the current ω ∧ T is defined by

(ω ∧ T )(η) = T (η ∧ ω).

This action induces actions

E p,q
X ⊗DX

r,s −→ DX
r−p,s−q, and E n

X,R(p)⊗DX,R
m (q) −→ DX,R

m−n(q − p).

Finally, if X is equidimensional of dimension d, there is a fundamental current
δX ∈ DX

d,d ∩DX,R
2d (d), and a morphism

E ∗X −→ DX
2d−∗ = D∗X , ω 7−→ [ω] = ω ∧ δX . (2.5)

This morphism sends E n
XR(p) to DX,R

2d−n(d− p) = Dn
X,R(p).

Currents with support on a subvariety and tempered currents. As in the
previous section let Z ⊂ Y denote two closed subvarieties of X and put U = X \ Y ,
V = X \ Z and W = Y \ Z. We denote by DY∞

∗ the subcomplex of DX
∗ formed by

currents with support on Y . In other words, for any open subset U ′ of X we have

DY∞
n (U ′) = {T ∈ DX

n (U ′) | T (η) = 0, ∀η ∈ Γc(U ′ ∩ U,E n
X)}.

Observe that, by continuity, the sections of DY∞
n (U ′) vanish on the subgroup

Γc(U ′,E ∗X(flatY )).
We write D

X/Y∞
n = DX

n

/
DY∞

n and D
Y∞/Z∞
n = DY∞

n /DZ∞
n .

As in the case of differential forms, the complex D
Y∞/Z∞
n can also be defined as

the kernel of the morphism
DX/Z∞

n −→ DX/Y∞
n .

All the above sheaves inherit a bigrading and a real structure.
Observe that, except for the fact that we are using here the homological grading,

the complex of sheaves D
X/Y∞
n agrees with the complex denoted by T Hom(CW ,DbX)

in [12].
The complex D

Y∞/Z∞
n is a complex of fine sheaves. We will denote the complex

of global sections by DXT
∗ (W∞) = Γ(X,DY∞/Z∞

∗ ). Thus the complex DXT
∗ (W∞) is

defined for any Zariski locally closed subset W ⊂ X. The corresponding real complex
will be denoted by DXT ,R

∗ (W∞).
By [14], the complex DXT

∗ (U) can be identified with the image of the morphism

D∗(X) −→ D∗(U).

That is, it is the complex of currents on U that can be extended to a current on the
whole X. The elements of DXT

∗ (U) will be called tempered currents. In the literature
they are called also moderate, temperate or extendable currents. Moreover, as was the
case with the complex E∗

XW (U), being U a Zariski open subset, the complex DXT
∗ (U)

only depends on U and not on X.

The pairing between forms and currents. We have already introduced an
action

En(X)⊗Dm(X) −→ Dm−n(X), ω ⊗ T 7−→ ω ∧ T, (2.6)
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where the current ω ∧ T is defined by

(ω ∧ T )(η) = T (η ∧ ω).

The subspace DXT
∗ (Y ) is invariant under this action and annihilates the subspace

E∗
XW (U). Therefore we obtain induced actions

En
XW (Y )⊗DXT

m (Y ) −→ DXT
m−n(Y ), En

XW (U)⊗DXT
m (U) −→ DXT

m−n(U) (2.7)

and, more generally, an action

En
XW (W )⊗DXT

m (W ) −→ DXT
m−n(W ). (2.8)

Since X is proper, there is a canonical morphism

deg : D0(X) −→ C

given by deg(T ) = T (1). Observe that deg(DR
0 (X)) ⊂ R.

Combining the degree and the above actions, we recover the pairing

En(X)⊗Dn(X) −→ C,

that identifies Dn(X) with the topological dual of En(X). Under this identification,
the subspace En

XW (U) is the orthogonal to the subspace DXT
n (Y ). Therefore DXT

n (U)
is the topological dual of En

XW (U) and DXT
n (Y ) is the topological dual of En

XW (Y ).
More generally DXT

n (W ) is the topological dual of En
XW (W ). Note that here, the key

point is the fact that En
XW (U) is the closure of Γc(U,E n

X) and hence a closed subspace.
The above pairings induce a pairing

En
R(X)(p)⊗DR

n (X)(p) −→ R,

and similar pairings for the other complexes of forms and currents.
Finally, observe that there is a commutative diagram with exact rows and columns

0

��
0

��

0

��

DXT
∗ (W )

��
0 // DXT

∗ (Z) //

��

D∗(X) //

��

DXT
∗ (V ) //

��

0

0 // DXT
∗ (Y ) //

��

D∗(X) //

��

DXT
∗ (U) //

��

0

DXT
∗ (W )

��

0 0

0

(2.9)

that is the topological dual of the diagram (2.1).
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The homology of the complexes of currents. By [14] we have

Proposition 2.10

The homology of the complexes DXT
∗ (W ) is given by

H∗(DXT
∗ (W )) = HBM

∗ (W,C),

where HBM
∗ denote Borel-Moore homology. In particular, since we are assuming Y

proper,

H∗(DXT
∗ (Y )) = H∗(Y,C). �

2.3 Formal and tempered Deligne cohomology

Formal Deligne cohomology. The complex E∗
XW ,R(W ) is an example of a Dol-

beault algebra (see [6]). Recall that, following Deligne, the cohomology of any complex
variety has a mixed Hodge structure. We will call the Hodge filtration of this mixed
Hodge structure the Deligne-Hodge filtration.

From the structure of Dolbeault algebra of E∗
XW (W ) we can define a Hodge filtra-

tion. It is the filtration associated to the bigrading. In general, this Hodge filtration
does not induce the Deligne-Hodge filtration in cohomology. Moreover, the spectral
sequence associated to this Hodge filtration does not need to degenerate at the E1

term. Therefore, the Dolbeault cohomology groups Hp,q

∂
(E∗(Y∞)) are not, in general,

direct summands of Hp+q(Y,C). In fact, they can be infinite dimensional as can be
seen in the easiest example: Put X = P1

C. Let t be the absolute coordinate and let Y
be the point t = 0. Then H0,0

∂̄
(E∗(Y∞)) = C[[t]], the ring of formal power series in

one variable.
Following [4] and [6], to every Dolbeault algebra we can associate a Deligne al-

gebra. We refer the reader to [4] and [6, § 5] for the definition and properties of
Dolbeault algebras, Dolbeault complexes and the associated Deligne complexes. We
will use freely the notation therein. In particular the Deligne algebra associated to the
above Dolbeault algebra will be denoted D∗(E∗

XW (W ), ∗).

Definition 2.11 The real formal Deligne cohomology of W (with compact supports)
is defined by

H∗Df ,c(W
∞,R(p)) = H∗(D∗(EXW (W ), p)).

When W is proper we will just write H∗Df (W∞,R(p)).

The notation W∞ is a reminder that this cohomology depends, not only on W
but on an infinitesimal neighborhood of infinite order of W in X.

Remark 2.12 Since we are assuming that X is smooth and proper, the formal Deligne
cohomology of X, H∗Df (X∞,R(p)), given in the previous definition, agrees with the
usual Deligne cohomology of X. Nevertheless, by the discussion before the definition,
the formal Deligne cohomology with compact supports of U or the formal Deligne co-
homology of Y , do not agree, in general, with the usual Deligne-Beilinson cohomology.
For instance the groups H∗Df (U,R(p)) can be infinite dimensional.
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Homological Dolbeault complexes and homological Deligne complexes.
In order to define formal Deligne homology we first translate the notions of [6, § 5.2]
to the homological grading.

Definition 2.13 A homological Dolbeault complex A = (AR
∗ ,dA) is a graded complex

of real vector spaces, which is bounded from above and equipped with a bigrading on
AC = AR ⊗R C, i.e.,

AC
n =

⊕
p+q=n

Ap,q,

satisfying the following properties:

(i) The differential dA can be decomposed as the sum dA = ∂ + ∂̄ of operators ∂ of
type (−1, 0), resp. ∂̄ of type (0,−1).

(ii) It satisfies the symmetry property Ap,q = Aq,p, where denotes complex con-
jugation.

Notation 2.14 Given a homological Dolbeault complex A = (AR
∗ ,dA), we will use

the following notations. The Hodge filtration F of A is the increasing filtration of AC
∗

given by
FpAn = FpA

C
n =

⊕
p′≤p

Ap′,n−p′ .

The filtration F of A is the complex conjugate of F , i.e.,

F pAn = F pA
C
n = FpAC

n .

For an element x ∈ AC, we write xi,j for its component in Ai,j . For k, k′ ∈ Z, we define
an operator Fk,k′ : AC −→ AC by the rule

Fk,k′(x) :=
∑

l≤k,l′≤k′

xl,l′ .

We note that the operator Fk,k′ is the projection of A∗C onto the subspace FkA∗∩F k′A∗.
This subspace will be denoted Fk,k′A∗. We will also denote by Fk the operator Fk,∞.

We denote by AR
n(p) the subgroup (2πi)−p ·AR

n ⊆ AC
n , and we define the operator

πp : AC −→ AR(p)

by setting πp(x) := 1
2(x+ (−1)px̄).

To any homological Dolbeault complex we can associate a homological Deligne
complex.

Definition 2.15 Let A be a homological Dolbeault complex. We denote by A∗(p)D

the complex s(AR(p) ⊕ FpA
u−→ AC), where u(a, f) = −a + f and s( ) denotes the

simple complex of a morphism of complexes.
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Definition 2.16 Let A be a homological Dolbeault complex. Then, the (homological)
Deligne complex (D∗(A, ∗),dD) associated to A is the graded complex given by

Dn(A, p) =

{
AR

n+1(p+ 1) ∩ Fn−p,n−pA
C
n+1, if n ≥ 2e+ 1,

AR
n(p) ∩ Fp,pA

C
n , if n ≤ 2p,

with differential given, for x ∈ Dn(A, p), by

dD x =


−Fn−p+1,n−p+1 dA x, if n > 2p+ 1,
−2∂∂̄x, if n = 2p+ 1,
dA x, if n ≤ 2p.

For instance, let A be a Dolbeault complex satisfying Ap,q = 0 for p < 0, q < 0,
p > n, or q > n. Then, for p ≥ n, the complex D(A, p) agrees with the real complex
AR
∗ (p). For 0 ≤ p < n, we have represented D(A, p) in Figure 1, where the upper right

square is shifted by one; this means in particular that An,n sits in degree 2n − 1 and
Ap+1,p+1 sits in degree 2p + 1. For p < 0 the complex D(A, p) agrees with the real
complex AR

∗ (p+ 1)[1].


Ap+1,n ← · · · ← An,n

↓ ↓
...

...
↓ ↓

Ap+1,p+1 ← · · · ← An,p+1


R

(p+ 1)

−2∂∂xxrrrrrrrrrr


A0,p ← · · · ← Ap,p

↓ ↓
...

...
↓ ↓
A0,0 ← · · · ← Ap,0


R

(p)

Figure 1: D(A, p)

Remark 2.17 It is clear from the definition that, for all p ∈ Z, the functor D(·, p) is
exact.

The main property of the Deligne complex is expressed by the following proposi-
tion; for a proof in the cohomological case see [4].

Proposition 2.18

The complexes A∗(p)D and D∗(A, p) are homotopically equivalent. The homotopy
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equivalences ψ : An(p)D −→ Dn(A, p), and ϕ : Dn(A, p) −→ An(p)D are given by

ψ(a, f, ω) =

{
π(ω), if n ≥ 2p+ 1,
Fp,pa+ 2πp(∂ωp+1,n−p−1), if n ≤ 2p,

where π(ω) = πp+1(Fn−p,n−pω), i.e., π is the projection of AC over the cokernel of u,
and

ϕ(x) =

{
(∂xp+1,n−p − ∂̄xn−p,p+1, 2∂xp+1,n−p, x), if n ≥ 2p+ 1,
(x, x, 0), if n ≤ 2p.

Moreover, ψ ◦ ϕ = id, and ϕ ◦ ψ − id = dh + hd, where h : An(p)D −→ An+1(p)D is
given by

h(a, f, ω) =

{
(πp(F pω + Fn−pω),−2Fp(πp+1ω), 0), if n ≥ 2p+ 1,
(2πp(Fn−pω),−Fp,pω − 2Fn−p(πp+1ω), 0), if n ≤ 2p. �

Tempered Deligne homology. Applying the above discussion to the complex of
currents DXT ,R

∗ (W ) we define the homological Deligne complex D∗(DXT
∗ (W ), ∗).

Definition 2.19 The tempered Deligne (Borel-Moore) homology of W is defined by

HD
T
∗ (W∞,R(p)) = H∗(D∗(DXT

∗ (W ), p)).

Remark 2.20

(i) Again, sinceX is smooth and proper, the tempered Deligne homology ofX agrees
with the Deligne homology of X. In particular, the group HDn (X,R(p)) agrees
with the group denoted ′H−n

D (X,R(−p)) in [11]. But, since the Hodge filtration
of the complex of currents with support on Y does not induce the Deligne-Hodge
filtration in the homology of Y , the tempered Deligne homology does not agree
in general with Deligne-Beilinson homology.

(ii) As in the case of formal cohomology, the notation HD
T
∗ (W∞,R(p)) reminds us

that these groups do not depend only on W but on an infinitesimal neighborhood
of W of infinite order.

Equidimensional manifolds. If X is equidimensional of dimension d the mor-
phism (2.5) induces morphisms

Dn(E∗(X), p) −→ D2d−n(D∗(X), d− p), p ∈ Z, (2.21)

that, in turn, induce the Poincaré duality isomorphisms

Hn
D(X,R(p)) −→ HD2d−n(X,R(d− p)), n, p ∈ Z. (2.22)

By analogy, we can define tempered Deligne cohomology groups as follows

Hn
DT (U,R(p)) = HD

T
2d−n(U,R(d− p)),

Hn
DT ,W (V,R(p)) = HD

T
2d−n(W∞,R(d− p)).
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In general, if X is a disjoint union of equidimensional algebraic manifolds, then
we define the tempered Deligne cohomology of X as the direct sum of the tempered
Deligne cohomology of its components.

The module structure of tempered Deligne homology. The notion of Dol-
beault module over a Dolbeault algebra introduced in [6] can be easily modified to
define homological Dolbeault modules over a Dolbeault algebra. The actions (2.6),
(2.7) and (2.8) provide the basic examples. Modifying the construction of [6, 5.17,
5.18] we obtain

Proposition 2.23

There is a pseudo-associative action

Dn(EXW (W ), p)⊗Dm(DXT
∗ (W ), q) −→ Dm−n(DXT

∗ (W ), q − p)

that induces an associative action

Hn
Df ,c(W

∞,R(p))⊗HDTm (W∞,R(q)) −→ HD
T

m−n(W∞,R(q − p)). �

The exceptional duality. In general, Poincaré duality for Deligne cohomology
is not given by a bilinear pairing, but by the isomorphism (2.22) between Deligne
cohomology and Deligne homology (see for instance [11]). Nevertheless, in the case of
real Deligne cohomology, there is an exceptional duality that comes from the symmetry
of the Deligne complex associated with a Dolbeault complex. This duality can be
generalized to a pairing between formal Deligne cohomology and tempered Deligne
homology.

Proposition 2.24

For every pair of integers n, p, there is a pairing

Dn(EXW (W ), p)⊗Dn−1(DXT
(W ), p− 1) −→ R

given by ω ⊗ T 7−→ T (ω). This pairing identifies Dn−1(DXT
(W ), p − 1) with the

topological dual of Dn(EXW (W ), p). Moreover, it is compatible, up to the sign, with
the differential in the Deligne complex:

T (dD ω) =

{
(−1)n+1(dD T )(ω), if n ≤ 2p− 1,
(−1)n(dD T )(ω), if n ≥ 2p.

It is also compatible, up to the sign, with the action of D∗(EXW (W ), ∗). That is,
if the forms ω ∈ Dn(EXW (W∞), p) and η ∈ Dl(EXW (W ), r), and the current T ∈
Dm(DXT

(W ), q), with n−m+ l = 1 and p− q + r = 1 then

(ω • T )(η) =


(−1)nT (η • ω), if m > 2q, l ≥ 2r,
T (η • ω), if m ≤ 2q, l < 2r,
(−1)m−1T (η • ω), if m > 2q, l < 2r,
(−1)lT (η • ω), if m ≤ 2q, l ≥ 2r.
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Proof. Assume that n < 2p. Put q = p− 1 and m = n− 1. Then

Dn(EXW (W ), p)

= En−1
XW ,R(W )(p− 1)

/
(F pEn−1

XW (W ) + F̄ pEn−1
XW (W )) ∩ En−1

XW (W )R(p− 1)

= En−1
XW ,R(W )(p− 1) ∩ F̄n−pEn−1

XW (W )) ∩ Fn−pEn−1
XW (W ),

Dm(DXT
(W ), q)

= DXT ,R
m (W∞)(q) ∩ FqD

XT
m (W ) ∩ F̄qD

XT
m (W ))

= DXT ,R
n−1 (W )(p− 1) ∩ Fp−1D

XT
n−1(W ) ∩ F̄p−1D

XT
n−1(W )).

Therefore, the first statement follows from the duality between EXW (W ) and DXT
(W )

and the fact that, under this duality, DXT ,R
n−1 (W )(p − 1) is identified with the dual of

En−1
XW ,R(W )(p− 1) and Fp−1D

XT
n−1(W ) is identified with the dual of F̄n−pEn−1

XT (W ).
The compatibility with the differential is a straightforward computation us-

ing the formulas for the differential given in [4, Theorem 2.6]. For instance, if
ω ∈ Dn(EXW (W ), p), with n < 2p − 1 and T ∈ Dm(DXT

(W ), q), with m = n and
q = p− 1, then we have

(dD T )(ω) = (dT )(ω)
= (−1)nT (dω)

= (−1)nT (Fn−p+1,n−p+1 dω)
= (−1)nT (−dD ω).

In the third equality we have used that T ∈ Fq ∩ F̄q = Fp−1,p−1, which implies that,
for any form η, we have T (η) = T (Fn−p+1,n−p+1η). The other cases are analogous.

Similarly, the compatibility with the product follows from [4, Theorem 2.6]. For
instance, let ω ∈ Dn(EXW (W ), p), T ∈ Dm(DXT

(W ), q) and η ∈ Dl(EXW (W ), r),
with n−m+ l = 1 and p− q + r = 1. Assume that n < 2p, m > 2q, l ≥ 2r, then

(ω • T )(η) = ((−1)nrp(ω) ∧ T + ω ∧ rq(T ))(η),

where rp(ω) = 2πp(F p dω) and rq(T ) = 2πq(Fq dT ).
But

(−1)nrp(ω) ∧ T (η) = (−1)nT (η ∧ rp(ω)),

and

(ω ∧ rq(T ))(η) = rq(T )(η ∧ ω)
= 2πqFq(dT )(η ∧ ω)
= 2Fq(dT )(η ∧ ω)
= 2∂Tq+1,m−q(η ∧ ω)

= T
(
2(−1)m−1∂(η ∧ ω)q,m−q

)
= T

(
2(−1)n+l∂(η ∧ ω)p+r−1,n+l−p−r

)
.
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On the other hand

T (η • ω) = T
(
η ∧ rp(ω) + (−1)l2∂(ω ∧ η)p+r−1,n+l−p−r

)
.

The other cases are analogous. �

Duality. We summarize in the next proposition the basic properties of formal Deligne
cohomology and tempered Deligne homology that follow from the previous discussions.

Proposition 2.25

For every pair of integers n and p, by applying the exact functors D∗( , p) and
D∗( , p− 1) to the diagrams (2.1) and (2.9) respectively, we obtain the corresponding
diagrams of Deligne complexes that are the topological dual of each other. In particular
we obtain long exact sequences

Hn
Df ,c(W

∞,R(p))→ Hn
Df (Y∞,R(p))→ Hn

Df (Z∞,R(p)) (2.26)

→ Hn+1
Df ,c

(W∞,R(p))

and

← HD
T

n−1(W
∞,R(p− 1))← HD

T
n−1(Y

∞,R(p− 1)) (2.27)

← HD
T

n−1(Z
∞,R(p− 1))← HD

T
n (W∞,R(p− 1))

and pairings

Hn
Df (Y∞,R(p))⊗HDTn−1(Y

∞,R(p− 1)) −→ R,

Hn
Df ,c(W

∞,R(p))⊗HDTn−1(W
∞,R(p− 1)) −→ R,

Hn
Df (Z∞,R(p))⊗HDTn−1(Z

∞, p− 1) −→ R.

that are compatible with the above sequences.
Moreover, the topologies of the space of differential forms and of the space of

currents induce structures of topological vector spaces on the real formal Deligne co-
homology groups and the tempered Deligne homology groups. The above pairings
induce a perfect pairing of the corresponding separated vector spaces.

Proof. This is a direct consequence of the exactness of the functors D∗( , p) and
D∗( , p− 1) and Proposition 2.24. �

The image of dD in the complex D∗(E[(U), p) does not need to be closed. There-
fore the pairing between formal cohomology and tempered homology do not need to
be perfect. Only the induced pairing in the corresponding separated vector spaces
is perfect. Nevertheless, in the case of a proper algebraic complex manifold X, by
Hodge theory, we obtain a perfect pairing between Deligne-Beilinson cohomology and
homology.
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Corollary 2.28 (Exceptional duality for Deligne cohomology)

Let X be a proper complex algebraic manifold, equidimensional of dimension d.
Then there is a perfect duality

Hn
D(X,R(p))⊗H2d−n+1

D (X,R(d− p+ 1)) −→ R

which is compatible, up to a sign, with the product in Deligne cohomology.

Proof. By Poincaré duality in Deligne cohomology (cf. [11, 1.5]) there is a natural
isomorphism

H2d−n+1
D (X,R(d− p+ 1)) ∼= HDn−1(X,R(p− 1)).

By Hodge theory we know that

Hn
D(X,R(p)) =

{
Hn−1(X,R(p− 1)) ∩ Fn−p ∩ Fn−p, if n < 2p,
Hn(X,R(p)) ∩ F p ∩ F p, if n ≥ 2p.

Moreover, the pairing is given, up to a sign, by the wedge product of differential
forms followed by the integral along X. Therefore, by Serre’s duality, the pairing of
Proposition 2.25 is perfect. �

2.4 Semi-purity of tempered Deligne cohomology

Vanishing theorems. The aim of this section is to prove the following result

Theorem 2.29 (Semi-purity of tempered Deligne homology)

Let X be a projective complex algebraic manifold, W a locally closed subvariety,
of dimension at most p. Then

HD
T

n (W∞,R(e)) = 0, for all n > max(e+ p, 2p− 1).

Proof. We will prove the result by ascending induction over p. The result is trivially
true for p < 0. Then, by the exact sequence (2.27) and induction, one is reduced to
the case W closed.

We will deduce the theorem by duality from the following proposition

Proposition 2.30

Let Y be a closed subvariety of a projective complex algebraic manifold. Let p be
the dimension of Y . Then

Hn+1
Df (Y∞,R(e+ 1)) = 0, for all n > max(e+ p, 2p− 1)

Proof. Let IY be the ideal of holomorphic functions on X vanishing at Y . We denote

Ωq
Y∞ = lim←−

k

Ωq
X

/
I k

Y Ωq
X .

By [12, Theorem 5.12] we have

Lemma 2.31

The complex of sheaves E q,∗
Y,R is a fine resolution of Ωq

Y∞ .
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Since, by [14], the sheaf E ∗Y∞,R is an acyclic resolution of the constant sheaf RY ,
from Lemma 2.31 and the techniques of [4], we deduce that H∗Df (Y∞,R(e + 1)) is
isomorphic to the hypercohomology of the complex of sheaves

RDf ,Y∞(e) := RY (f) −→ Ω0
Y∞ −→ . . . −→ Ωe

Y∞ . (2.32)

Lemma 2.33

If n > p then Hn(Y,Ωq
Y∞) = 0.

Proof. By [10, Proposition I.6.1]

Hn(Y,Ωq
Y∞) = Hn(Y alg, Ω̂q

Y ),

where Y alg is the corresponding algebraic variety and Ω̂q
Y is the completion of the

sheaf of algebraic differentials. But now Y alg is a noetherian topological space of
dimensionVp, hence the lemma. �

Using Lemma 2.33 we obtain that the Es,t
1 term of the spectral sequence of the

hypercohomology of the complex (2.32) can be non zero only for s = 0, 0 ≤ t ≤ 2p
and 1 ≤ s ≤ e+ 1, 0 ≤ t ≤ p, which implies Proposition 2.30. �

We finish now the proof of the theorem. By Proposition 2.30, for every n >
max(p+ e, 2p− 1), the morphism

dn
D : Dn(EXW (Y ), e+ 1) −→ Dn+1(EXW (Y ), e+ 1)

satisfies Im(dn
D) = Ker(dn+1

D ), hence the image of dn
D is a closed subspace. Therefore,

by [1, IV. 2 Theorem 1], we have that the dual morphism

dD : Dn(DXT
(Y ), e) −→ Dn−1(DXT

(Y ), e)

has closed image. This implies that, for n ≥ max(p + e, 2p − 1), the vector space
HD

T
n (Y∞,R(e)) is separated. Therefore, by Proposition 2.25, for n > max(p+e, 2p−1)

the pairing
Hn+1
Df (Y∞,R(e+ 1))⊗HDTn (Y∞,R(e)) −→ R

is perfect. Hence by Proposition 2.30 we obtain the theorem. �

semi-purity of tempered Deligne cohomology. The semi-purity theorem can
be stated in terms of tempered Deligne cohomology as follows.

Corollary 2.34

Let X be a complex quasi-projective manifold and Y a closed subvariety of codi-
mension at least p. Then

Hn
DT ,Y (X,R(e)) = 0, for all n < min(e+ p, 2p+ 1),

In particular
Hn
DT ,Y (X,R(p)) = 0, for all n < 2p.

This is the weak purity property used in [6, 6.4].
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3. Arithmetic Intersection Theory

3.1 Definition of Covariant arithmetic Chow groups

In [3], the author introduced a variant of the arithmetic Chow groups that are covariant
with respect to arbitrary proper morphisms. In the paper [6] these groups are further
studied as an example of cohomological arithmetic Chow groups. These groups are
denoted by ĈH

∗
(X,Dcur). The semi-purity property (Corollary 2.34) was announced

in [6] and has consequences in the behavior of the covariant arithmetic Chow groups.
On the other hand, Kawaguchi and Moriwaki [13] have given another definition of
covariant arithmetic Chow groups called D-arithmetic Chow groups. A consequence
of Corollary 2.34 is that, when X is equidimensional and generically projective, both
definitions of covariant arithmetic Chow groups agree. We note that Zha [16] has also
introduced a notion of covariant arithmetic Chow groups that only differs from the
definition of [13] on the fact that he neglects the anti-linear involution F∞.

In this section we will summarize the properties of the covariant arithmetic Chow
groups. We will follow the notations and terminology of [6], but we will use the grading
by dimension that is more natural when dealing with covariant Chow groups.

Arithmetic rings and arithmetic varieties. Let A be an arithmetic ring (see [7])
with fraction field F . In particular A is provided with a non empty set of complex
embeddings Σ and a conjugate linear involution F∞ of CΣ that commutes with the
diagonal embedding of A in CΣ. Since we will be working with dimension of cycles,
following [8] we will further impose that A is equicodimensional and Jacobson. Let
S = SpecA and let e = dimS.

An arithmetic variety X is a flat quasi-projective scheme over A, that has smooth
generic fiber XF . To every arithmetic variety X we can associate a complex algebraic
manifold XΣ and a real algebraic manifold XR = (XΣ, F∞).

The arithmetic complex of tempered Deligne homology. To every pair of
integers n, p, and every open Zariski subset U of XR we assign the group

Dcur,X
n (U, p) = Dn

(
D

XT
Σ∗ (U), p

)σ
,

where σ is the involution that acts as complex conjugation on the space and on the
currents. That is, if T ∈ Dn(XC) then σ(T ) = (F∞)∗T . And ( )σ denote the elements
that are fixed by σ. Then Dcur,X

n ( , p) is a totally acyclic sheaf (in the sense of [6]) for
the real scheme underlying XR. When X is fixed, Dcur,X

∗ will be denoted by Dcur
∗ .

If U is a Zariski open subset of XR and Y = X \ UR we write

HD
T
∗ (U,R(p)) = H∗(Dcur(U, p)), (3.1)

HD
T ,Y
∗ (XR,R(p)) = H∗(s(Dcur(U, p),Dcur(XR, p))), (3.2)

D̃cur
2p−1(XR, p) = Dcur

2p−1(XR, p) /Im dD, (3.3)

ZDcur
2p (XR, p) = Ker(dD : Dcur

2p (XR, p) −→ Dcur
2p+1(XR, p)). (3.4)
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Let Zp = Zp(XR) be the set of dimension p Zariski closed subsets of XR ordered
by inclusion. Then we will write

Dcur
∗ (XR \ Zp, p) = lim−→

Y ∈Zp

Dcur
∗ (XR \ Y, p),

D̃cur
∗ (XR \ Zp, p) = Dcur

∗ (XR \ Zp, p) /Im dD ,

H
DT ,Zp
∗ (XR,R(p)) = H∗(s(Dcur(XR \ Zp, p),Dcur(XR, p))).

Green objects. We recall the definition of Green object for a cycle given in [6]
but adapted to the grading by dimension. Let y be a dimension p algebraic cycle of
XR. Let Y be the support of y. The class of y in HD

T ,Y
2p (XR,R(p)), denoted cl(y), is

represented by the pair (δy, 0) ∈ s(Dcur(XR, p),Dcur(UR, p)). We denote also by cl(y)

the image of this class in HD
T ,Zp

2p (XR,R(p)).
In this setting, the truncated homology classes can be written as

Ĥ
DT ,Zp
∗ (XR,R(p)) =

{
(ωy, g̃y) ∈ ZDcur

2p (X, p)⊕ D̃cur
2p−1(XR \ Zp, p) | dD g̃y = ωy

}
.

There is an obvious class map

cl : ĤD
T ,Zp
∗ (XR,R(p)) −→ H

DT ,Zp
∗ (XR,R(p)).

Then a Green object for y is an element

gy = (ωy, g̃y) ∈ Ĥ
DT ,Zp

2p (XR,R(p))

such that cl(gy) = cl(y).
The following result follows directly from the definition

Lemma 3.5

An element gy = (ωy, g̃y) ∈ Ĥ
DT ,Zp

2p (XR,R(p)) is a Green object for y if and only

if there exists a current γ̃ ∈ D̃cur
2p−1(XR, p) such that

g̃y = γ̃|X\Zp

dD γ̃ + δy = ωy.

Arithmetic Chow groups. Every dimension p algebraic cycle y on X defines a
dimension (p − e) algebraic cycle yR on XR, where e is the dimension of the base
scheme S.

Definition 3.6 The group of arithmetic cycles of dimension p is defined as

Ẑp(X,Dcur) =
{
(y, gy) ∈ Zp(X)⊕ ĤD

T ,Zp−e

2p−2e (XR,R(p− e)) | cl(yR) = cl(gy)
}
.

Let W be a dimension p+ 1 irreducible subvariety of X and f ∈ K(W )∗ be a rational
function. Let W̃R be a resolution of singularities of WR and let ι : W̃R −→ XR be the
induced map. Then we write

d̂iv f =

(
div f,

(
0, ι∗

(
− 1

2
log ff̄

)))
.
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The group of cycles rationally equivalent to zero is the subgroup

R̂atp(X,Dcur) ⊂ Ẑp(X,Dcur)

generated by the elements of the form d̂iv f . The homological arithmetic Chow groups
of X are defined as

ĈHp(X,Dcur) = Ẑp(X,Dcur)
/

R̂atp(X,Dcur).

There are well-defined maps

ζ : ĈHp(X,Dcur) −→ CHp(X), ζ[y, gy] = [y],

ρ : CHp,p+1(X) −→ HD
T

2p−2e+1(X, p− e) ⊆ D̃cur
2p+1(X, p), ρ[f ] = cl(f),

a : D̃2p−2e+1(X, p− e) −→ ĈHp(X,Dcur), a(ã) = [0, a(ã)],

ω : ĈHp(X,Dcur) −→ ZDcur
2p−2e(X, p− e), ω[y, gy] = ω(gy),

h : ZDcur
2p (X, p) −→ HD

T
2p (X, p), h(α) = [α].

3.2 Properties of Covariant arithmetic Chow groups

Basic properties. Recall that in [6], there are defined contravariant arithmetic
Chow groups denoted by ĈH

∗
(X,Dlog). The following result follows from the theory

developed [6] and Corollary 2.34 (semi-purity property).

Theorem 3.7

With the above notations, we have the following statements:

(i) There are exact sequences

CHp,p+1(X)
ρ−→ D̃cur

2p−2e+1(X, p− e)
a−→ ĈHp(X,Dcur)

ζ−→ CHp(X) −→ 0.

CHp,p+1(X)
ρ−→ HD

T
2p−2e+1(XR,R(p− e)) a−→ ĈHp(X,Dcur)

(ζ,−ω)−→

CHp(X)⊕ ZDcur
2p−2e(X, p− e)

cl +h−→ HD
f

2p−2e(XR,R(p− e)) −→ 0.

In particular, if XF is projective, then there is an exact sequence

CHp,p+1(X)
ρ−→ HD2p−2e+1(XR,R(p− e)) a−→ ĈHp(X,Dcur)

(ζ,−ω)−→

CHp(X)⊕ ZDcur
2p−2e(X, p− e)

cl+h−→ HD2p−2e(XR,R(p− e)) −→ 0.

(ii) For any regular arithmetic variety X over A there are defined contravariant

arithmetic Chow groups ĈH
p
(X,Dlog). Furthermore, if X is equidimensional of

dimension d, then there is a morphism of arithmetic Chow groups

ĈH
p
(X,Dlog) −→ ĈHd−p(X,Dcur).

When XF is projective this morphism is a monomorphism. Moreover, if XF has
dimension zero, this morphism is an isomorphism.
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(iii) For any proper morphism f : X −→ Y of arithmetic varieties over A, there is a
morphism of covariant arithmetic Chow groups

f∗ : ĈHp(X,Dcur) −→ ĈHp(Y,Dcur).

If g : Y −→ Z is another such morphism, the equality (g ◦ f)∗ = g∗ ◦ f∗ holds.
Moreover, if X and Y are regular and fF : XF −→ YF is a smooth proper
morphism of projective varieties, then f∗ is compatible with the direct image of
contravariant arithmetic Chow groups.

(iv) If f : X −→ Y is a flat morphism, equidimensional of relative dimension d, and
such that fF is smooth, then there is a pull-back map

f∗ : ĈHp(Y,Dcur) −→ ĈHp+d(X,Dcur).

If X and Y are regular and equidimensional, this map is equivalent with the
pullback map defined in the contravariant Chow groups.

(v) Let f : X −→ Y be a flat map between arithmetic varieties, which is smooth
over F and let g : P −→ Y be a proper map. Let Z be the fiber product of X
and P over Y , with p : Z −→ P and q : Z −→ X the two projections. Thus p is
flat and smooth over F and q is proper. Then for any x ∈ ĈH∗(P,Dcur), it holds

q∗p
∗(x) = f∗g∗(x) ∈ ĈH∗(X,Dcur).

Proof. Part (i) follows from the standard exact sequences of [6, Theorem 4.13] adapted
to the grading by dimension and Corollary 2.34.

For (ii) we first note that, if M is an equidimensional complex algebraic manifold,
D ⊂ X is a normal crossing divisor, ω is a differential form with logarithmic singu-
larities along D and η is a form that is flat along D, then η ∧ ω is flat along D. In
particular, if M is proper and U = M \D, then the associated current [ω] belongs to
Dextd
∗ (U). Therefore, if y is a codimension p cycle on X then, by the assumptions on X

and on the arithmetic ring, y is a dimension d− p algebraic algebraic cycle. Moreover,
if (ωy, g̃y) is a Green form for y (i.e. a Dlog-Green object for y) then, by Lemma 3.5
and [6, Proposition 6.5] we have that ([ωy], [g̃y]) is a Dcur-Green object for y. Thus we
have a well defined map

Ẑ
p
(X,Dlog) −→ Ẑd−p(X,Dcur).

By definition this map is compatible with rational equivalence, hence we obtain a map
at the level of Chow groups.

To prove (iii) we first observe that, if Z ⊂ XΣ is a closed subset, then f∗D
XT

Σ∗ (Z) ⊂
DXT

Σ (f(Z)). Therefore, the push-forward of currents define a covariant f -morphism

f# : f∗Dcur,X
∗ −→ Dcur,Y

∗ .

Here we are using the terminology of [6, 3.67] but adapted to the grading by dimension.
Therefore applying [6, § 4.5] we obtain the push-forward map for covariant arithmetic
Chow groups. More concretely this map is defined as

f∗(y, (ωy, g̃y)) = (f∗y, (f∗ωy, (f∗gy)˜ )).
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It is straightforward to check that it is compatible with the direct image of Dlog-
arithmetic Chow groups when Y is projective and fF smooth.

We now prove (iv). Since fF is smooth, for any Zariski closed subset Z ⊂ YR
equidimensional of dimension p, there is a well defined morphism f∗Dn(YΣ) −→
Dn+2d(XΣ) that sends DY TΣ

n (Z) to DXT
Σ

n+2d(f
−1(Z)). Therefore we obtain well defined

morphisms
f# : Dcur

n (YR, p) −→ Dcur
n+2d(XR, p+ d),

f# : Dcur
n (YR \ Z, p) −→ Dcur

n+2d(XR \ f−1Z, p+ d),

that send T to f∗T/(2πi)d. Then the proof of (iv) is straightforward using the theory
of [6, 4.4] adapted to the grading by dimension.

(v) Follows as [8, Lemma 11]. �

Multiplicative properties. In the next result we state the multiplicative properties
between covariant and contravariant Chow groups. The proofs are simple modification
of [8, Theorem 3]. First, for a form η ∈ D̃2p−1

log (XR, p) and an element x ∈ ĈHq(X,Dcur)
we define

η ∩ x = a(η • ω(x)) = a(η ∧ ω(x)).

Theorem 3.8

Given a map f : X −→ Y of arithmetic varieties, with Y regular, there is a cap
product

ĈH
p
(Y,Dlog)⊗ ĈHq(X,Dcur) −→ ĈHq−p(X,Dcur)Q

y ⊗ x 7−→ y.fx

which is also denoted y ∩X if X = Y . This product satisfies the following properties

(i) ω(y.fx) = f∗ω(y) ∧ ω(x), and, for any η ∈ D̃2p−1
log (YR, p), it holds a(η).fx =

a(f∗(η)) ∩ x.

(ii) ĈH∗(X,Dcur)Q is a graded ĈH
∗
(Y,Dlog)-module.

(iii) If g : Y −→ Y ′ is a map of arithmetic varieties with Y ′ also regular, y′ ∈
ĈH

p
(Y ′,Dlog) and x ∈ ĈHq(X,Dcur), then y′.gfx = g∗(y′).fx.

(iv) If h : X ′ −→ X is a projective morphism, x′ ∈ ĈHq(X ′,Dcur) and y ∈
ĈH

p
(Y,Dlog), then y.f (h∗(x′)) = h∗(y.fhx

′).

(v) If h : X ′ −→ X is flat and smooth over F , x ∈ ĈHq(X,Dcur), y ∈ ĈH
p
(Y,Dlog),

then h∗(y.fx) = y.f (h∗(x)).

(vi) Let f : X −→ Y be a flat map between arithmetic varieties, with Y regular and
projective, and let g : P −→ Y be a proper smooth map of arithmetic varieties
of relative dimension d. Let Z be the fiber product of X and P over Y , with
p : Z −→ P and q : Z −→ X the two projections. Then, for all x ∈ ĈHp(X,Dcur)
and γ ∈ ĈH

q
(P,Dlog), it holds the equality

q∗(γ.pq∗(x)) = g∗γ.fα.
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Proof. To define y.fx we follow closely [8]. We may assume that Y is equidimensional,
that x = (V, gV ) with V a prime algebraic cycle and y = (W, gW ) with each component
of W meeting V properly on the generic fiber XF . As in [8] we can define a cycle
[V ].f [W ] ∈ CHq−p(V ∩ f−1(|W |))Q that gives us a well defined cycle ([V ].f [W ])F ∈
Zq−p(XF ). Our task now is to construct the Green object for this cycle. Let gW =
(ωW , g̃W ) and gV = (ωV , g̃V ). We write UV = XR\|V |, UW = XR\f−1|W | and r = q− p.

We now define, in analogy with [6, Theorem 3.37],

gW ∗f gV = f∗gW ∗ gV

=
(
f∗(ωW ) • ωV , ((f∗(gW ) • ωV , f

∗(ωW ) • gV ),−f∗(gW ) • gV )˜)
= (f∗(ωW ) ∧ ωV , ((f∗(gW ) ∧ ωV , f

∗(ωW ) ∧ gV ),

∂f∗(gW ) ∧ gV − ∂̄f∗(gW ) ∧ gV − f∗(gW ) ∧ ∂gV + f∗(gW ) ∧ ∂̄gV )˜
∈ Ĥ2e(Dcur

∗ (XR, e), s(Dcur
∗ (UW , e)⊕Dcur

∗ (UV , e)→ Dcur
∗ (UW ∩ UV , e)))

∼= Ĥ2e(Dcur
∗ (XR, e),Dcur

∗ (UW ∪ UV , e)).

Now the proof follows as in [8, Theorem 3] and Lemma 12. �

Remark 3.9

(i) The main difference between the arithmetic Chow groups introduced here and
the arithmetic Chow groups used in [8] is that, if x ∈ ĈH∗(X,Dcur) then ω(x)
is an arbitrary current instead of a smooth differential form. This allows us to
define direct images for arbitrary proper morphisms. But the price we have to
pay is that there ire defined inverse images only for morphisms that are smooth
over F .

(ii) The fact that the compatibility of direct images for the covariant Chow groups
and direct images for the contravariant Chow groups in Theorem 3.7 is stated
only for varieties that are generically projective, is due to the fact that the latter
is only defined when the base is proper. There are two ways to overcome this
difficulty. One is to allow arbitrary singularities at infinity in the spirit of [5,
3.5], but then, one will have to allow also arbitrary singularities at infinity for
currents. This means that we will have to consider currents that are tempered
in some components of the boundary but are not tempered in the other. The
second option would be to use a different notion of logarithmic singularities that
has better properties with respect to direct images.

Relationship with other arithmetic Chow groups. Let us assume now that
XF is projective and let ĈH

∗
(X) denote the arithmetic Chow groups introduced in [7]

and ĈH∗(X) denote the arithmetic Chow groups introduced in [8]. In [6] it is shown
that there is an isomorphism

ψ : ĈH
∗
(X,Dlog) −→ ĈH

∗
(X),

that is compatible with products, inverse images with respect to arbitrary morphisms
and direct images with respect to proper morphism that are smooth over F . We shall
state the analogous result for covariant arithmetic Chow groups.
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Proposition 3.10

Let X be an arithmetic variety with XF projective. Then there is a short exact
sequence

0 −→ ĈH∗(X)
φ−→ ĈH∗(X,Dcur)

−→
⊕

p

ZDcur
2p (XR, p)

/
ZDsmooth

2p (XR, p) −→ 0 ,

where Dsmooth
2p (XR, p) denotes the subspace of currents that can be represented by

smooth differential forms. Moreover φ satisfies the following properties

(i) If f : X −→ Y is a proper morphism of arithmetic varieties that is smooth over
F and with YF projective, then f∗ ◦ φ = φ ◦ f∗.

(ii) If f : X −→ Y is a flat morphism of arithmetic varieties that is smooth over F ,
with XF and YF projective, then f∗ ◦ φ = φ ◦ f∗.

(iii) If f : X −→ Y is a morphism of arithmetic varieties, with XF and YF projective

and Y regular then, for y ∈ ĈH
p
(Y,Dlog) and x ∈ ĈHq(Y ), it holds the equality

y.fφ(x) = ψ(y).fx.

Proof. Let y be a dimension p algebraic cycle of X and let gy be a Green current for
y in the sense of [8]. Recall that the normalization used here for the current δy differs
with the normalization used in [8] by a factor 1

(2πi)p . Then, by 3.5, the pair(
1

2(2πi)p+1
gy|XR\Zp

,
1

2(2πi)p+1
(−2∂∂̄)gy + δy

)
is a Dcur-Green object for y. Therefore we obtain a well defined morphism Ẑp(X) −→
Ẑp(X,Dcur). It is straightforward to check that this map preserves rational equivalence,
the exactness of the above exact sequence and properties (i), (ii) and (iii). �

Corollary 3.11

With the hypothesis of the proposition, every element x ∈ ĈHp(X,Dcur) can be
represented as

x = φ(x1) + a(η)

where x1 ∈ ĈHp(X) and η ∈ D̃cur
2p+1(XR, p). Moreover, if

x = φ(x1) + a(η) = φ(x′1) + a(η′)

are two such representations, then η − η′ ∈ D̃smooth
2p+1 (XR, p).

Proof. This follows from the previous proposition and the fact that the map

dD : D̃cur
2p+1(XR, p) −→ ZDcur

2p (XR, p)
/

ZDsmooth
2p (XR, p)

is surjective due to the projectivity of X. The last statement follows from [7, Theo-
rem 1.2.2]. �

The following result follows now easily from the previous corollary.
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Corollary 3.12

Assume furthermore that X is equidimensional of dimension d and let ĈH
∗
D(X)

denote the D-arithmetic Chow groups introduced in [13]. Then there is a natural
isomorphism ⊕

p

ĈH
p

D(X) −→
⊕

p

ĈHd−p(X,Dcur).

Moreover this isomorphism is compatible with push-forwards and the structure of
module over the contravariant arithmetic Chow groups. �
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7. H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72

(1990), 94–174.
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