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Abstract. In this paper, we prove a Gauss-Bonnet theorem for the higher
algebraic K-theory of smooth complex algebraic varieties. To each exact
n-cube of hermitian vector bundles, we associate a higher Bott-Chen form,
generalizing the Bott-Chern forms associated to exact sequences. These
forms allow us to define characteristic classes from K-theory to absolute
Hodge cohomology. Then we prove that these characteristic classes agree
with Beilinson’s regulator map.

Introduction

The aim of this paper is to generalize the Gauss-Bonnet theorem to the
higher algebraic K-theory of smooth complex algebraic varieties.

The Gauss-Bonnet theorem states that, if X is a compact oriented
2-dimensional riemannian manifold, then

/ /X HdA = 2my(X) |

where " is the gaussian curvature of the riemannian metric and y(X) is the
Euler characteristic of the manifold X. Thus, this theorem relates a global
topological invariant, the Euler characteristic, with a locally defined dif-
ferential geometrical object, the gaussian curvature. The Gauss-Bonnet
theorem may be restated saying that the closed form 2#"/2n represents, in de
Rham cohomology, the Euler class of the tangent bundle.

This result was generalized by Chern ([Ch], see also [Gr], [M-S]). If X is
an almost complex manifold and E is a complex vector bundle, by topolo-
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gical means (for instance obstruction theory), we can define some char-
acteristic classes of the vector bundle, called the Chern classes of E,

¢;(E) € HY (X, (2mi)YZ), j>0 .

In this paper we shall restrict the discussion to the Chern character (see
[M-S]), denoted chy(E), which is a certain power series, with rational coef-
ficients, in the Chern classes. The Chern character is additive for exact
sequences. Nevertheless, since the cohomology groups we shall consider will
be real vector spaces, any result about the Chern character will imply the
analogous result for any power series in the Chern classes.

Let us provide £ with a hermitian metric 4. Let Ex denote the differential
graded commutative algebra of complex valued differential forms on X, and
let Ex r denote the subalgebra of real forms. Let D be the unique connection
of FE satisfying

(1) D preserves h.

(2) If U C X is an open subset and s is a holomorphic section of E|;,, then
Ds is of pure type (1,0).

Let K = D? be the curvature form. Following Chern and Weil, let us write

(1) cho(E, h) = tr exp(—K) € D Q2niy Effy .

Then the form CT]Q(E, h) is closed. The Chern theorem states that the form
chy(E, h) represents, in de Rham cohomology, the Chern character class.

Observe that an oriented riemannian 2 dimensional manifold admits a
canonical structure of complex manifold. Since the Euler class is the top
Chern class, the Gauss-Bonnet theorem is a particular case of Chern’s
theorem.

The additivity of the Chern character implies that it induces a group
homomorphism

cho : Ko(X) — @miYHY (X, Q)

J

where K (X) is the Grothendiek group of X.

Characteristic classes for higher algebraic K-theory were introduced by
Gillet in [Gi]. These classes are defined on any cohomology theory satisfying
certain properties, such as de Rham cohomology. Nevertheless, in this case,
these higher characteristic classes do not give much information. For in-
stance, for a proper smooth complex algebraic variety, the only non zero
classes are the original Chern classes from the K, group. In contrast, if the
cohomology theory is absolute Hodge cohomology, the Chern character
map obtained in this way agrees with the Beilinson regulator map, which is
highly non trivial and is involved in very deep and far reaching conjectures
[Be].
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Recall that, for X a smooth proper algebraic complex variety, we have

H}(X,R(p)) = H'?(X,C) N (2mi)’H” (X, R),
HP™ (X, R(p)) = H7H (X, €) N 2mi)" ' HP (X, R)

Therefore, since, by (1), the Chern character form has the right Hodge type,
the Chern theorem implies that the Chern character form represents, in
absolute Hodge cohomology, the Chern character class. The question of
generalizing the Chern theorem to the characteristic classes from higher K-
theory to absolute Hodge cohomology arises naturally.

In their paper about arithmetic characteristic classes of hermitian vector
bundles [G-S 1], Gillet and Soulé accomplished the first step of this pro-
gram, extending the Chern theorem to the case of K;(X). Let us briefly
explain this result.

The elements of K;(X) may be represented by exact sequences of vector
bundles. Thus, the first step is to understand what is the analogue of the
Chern forms of hermitian vector bundles in the case of exact sequences of
hermitian vector bundles.

Let

E 00— (E,,hl) - (Ea h) - (E”ah”) —0,

be an exact sequence of hermitian vector bundles. Then the Chern character
classes satisfy

Ch()(E) = Cho(E/) + Cho(E//) .

Nevertheless, in general, the Chern character form does not behave addi-
tively:

cho(E, h) # cho(E', ') + cho(E", 1") .

In the case when /' and /" are the metrics induced by 4, Bott and Chern

([B-C]) have defined a differential form, ch; (<), which will be called the Bott-
Chern form of &, such that

(2) —200ch, (&) = cho(E', k') + chy(E", K") — cho(E, 1) .

Note that the normalization factor we use is different from the normal-
ization factor used in the original paper. The forms ch,(¢) are natural and
well defined only up to Im 9 + Im 0.

Bismut, Gillet and Soulé [B-G-S], [G-S 1] have given a different con-
struction of Bott-Chern forms that can be applied to the case when 4’ and 4"
are not the induced metrics. These Bott-Chern forms are also well defined

only up to Im 9 + Im 0.
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Bott-Chern forms are exactly what we were looking for, and, when X is
proper, Gillet and Soulé [G-S 1] have given an explicit description of Bei-
linson’s regulator map for K, (X) in terms of these Bott-Chern forms, thus
extending the Chern theorem to the group K.

As we have seen, the Chern character class on the Kj is additive for exact
sequences. Nevertheless one cannot make a consistent choice of re-
presentatives of the Chern character that behave additively for exact se-
quences. The Bott-Chern forms measure precisely this lack of additivity at
the level of Chern forms, and they are responsible for the Chern character
for the Ki-group. Following Schechtman’s ideas [Sch] the lack of additivity
of the representatives of the Chern character for K; is responsible for the
Chern character for K;, ;. Thus, the lack of additivity of Bott-Chern forms
should allow us to define second order Bott-Chern forms that give a de-
scription of Beilinson’s regulator map for the K,. And we can repeat this
process to obtain Beilinson’s regulator map for all the K groups.

In this direction, when X is proper, the second author [Wan] has defined
higher Bott-Chern forms for exact hermitian n-cubes. These forms may be
thought of as an iteration of Bott-Chern forms. Moreover, he has used them
to define characteristic classes for higher K-theory, proving that, if one can
naturally extend higher Bott-Chern forms to the non proper case, then these
characteristic classes agree with Beilinson’s regulator map.

In this paper we shall give a variant of Wang’s original construction that
can be easily extended to the non-proper case, thus completing the proof of
the Gauss-Bonnet theorem for higher algebraic K-theory. An interesting
feature of the construction given here is that we obtain well defined Bott-
Chern forms and not only modulo Im 8 4 Im d.

Parallel results in the framework of multiplicative K-theory have been
obtained by Karoubi in [K1] and [K2].

Gillet and Soulé [G-S 1] have used Bott-Chern forms to define arithmetic
Ky groups. Soulé has suggested [So], see also [De], that one may define higher
arithmetic K-groups as the homotopy fibre of Beilinson’s regulator map. We
expect that higher Bott-Chern forms, as presented in this paper, will be
useful in giving a more concrete definition of higher arithmetic K-theory and
studying its properties.

Throughout the paper all vector bundles will be algebraic and we shall
use the equivalent notion of locally free sheaf.

The plan of the paper is as follows. In Sect. 1 we recall the definition of
real absolute Hodge cohomology. We shall also show that real absolute
Hodge cohomology can be computed by means of a complex composed by
forms defined on X x (IP')", n > 0. Higher Bott-Chern forms will live in this
complex.

In Sect. 2 we introduce and study some properties of smooth at infinity
hermitian metrics. Over a non proper smooth complex variety, to compute
real absolute Hodge cohomology, one needs to impose logarithmic condi-
tions at infinity to the differential forms. Thus we cannot use arbitrary
hermitian metrics because they will produce differential forms with arbitrary
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singularities at infinity. The use of smooth at infinity hermitian metrics
ensures that Bott-Chern forms have the right behaviour at infinity.

In Sect. 3 we recall the notion of exact metrized n-cubes. To each exact n-
cube, E, we shall attach a vector bundle, tr,(E) over X x (IP')” which may be
thought of as a homotopy between the faces of £. When the hermitian metrics
of E satisfy certain technical condition, we shall define a natural metric on
tr,(E). The Chern character form of the vector bundle tr, (E) will play the role
of higher Bott-Chern forms. Note that these forms live in X x (IP!)".

In Sect. 4 we use higher Bott-Chern forms to define Chern character
classes from higher K-theory to real absolute Hodge cohomology.

In Sect. 5 we prove that the higher Chern character defined in Sect. 4
agrees with Beilinson’s regulator map.

In Sect. 6 we recall several complexes that compute real absolute Hodge
cohomology and homology. Using them we give, for X proper, two different
versions of higher Bott-Chern forms which are defined on X. The first one,
obtained using the Thom-Whitney simple, is multiplicative. The second one
agrees with classical Bott-Chern forms and with the original definition due
to Wang.

Acknowledgement. We would like to thank Prof. C. Soulé who suggested this question to us and
helped us with encouragement and numerous hints. Without him this paper would never have
been produced. We would like to thank Prof. V. Navarro Aznar for his help and ideas; in
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N. Dan, H. Gillet, D. Grayson, P. Guillen, F. Lecomte, C. Naranjo, P. Pascual and D. Roessler.

1 Absolute Hodge cohomology

In this section we shall recall the definition of real absolute Hodge coho-
mology [Be] of a smooth complex algebraic variety X. By a smooth complex
variety we shall mean a smooth separated scheme of finite type over C. We
shall also construct a complex, composed by forms on X x (IP')", n >0,
whose cohomology is the real absolute Hodge cohomology of X.

(1.1) Let X be a smooth proper complex variety. Let Y C X be a normal
crossing divisor and let us write X =X — Y. Let EX be the differential
graded algebra of differential forms on X, and let E*flog Y) be the differ-
ential graded algebra of C* complex differential forms on X with loga-
rithmic singularities along Y (see [Bu 1]). The algebra E)*_((log Y) has a real
structure, E)*_((log Y)r. a weigh filtration W defined over R and a Hodge
filtration F. Moreover the cohomology of this algebra gives us the coho-
mology of X with its real mixed Hodge structure.
Let us denote by W the décalée filtration of W. That is

WEL(log Y) = {x € W yEi(logY) | dv € W, 1 B2 (log Y)} .
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We write

Efpy(X) = limE} (log ¥,)

(X, Yar)

where the limit is taken along all the smooth compactifications X, of X with
Y, = X, — X a normal crossing divisor. Then £y ,(X) is a differential graded
algebra and it has an induced real structure, a weight filtration and a Hodge
filtration. Moreover the map

(Ex(log Vg, ) — (B, )
is a filtered quasi-isomorphism and the map
(E)*—((log Y), V?/F) — (El*og(X), VV,F)

is a bifiltered quasi-isomorphism.

(1.2) Let us write
9 (X, p) = S((zni)p%PEfog<X)R © Wy N FpETog(X) “ WZPEl*og(X)) )

where u(r, f) = f — r and s denotes the simple of a morphism of complexes,
i.e. the cone shifted by one. The differential of this complex will be denoted
by dg.

The real absolute Hodge cohomology of X [Be] is

Hy (X, R(p)) = H'(H(X,p)) -

(1.3) A cubical or cocubical object (see [G-N-P-P]) is an object modeled on
the cube in the same way as a simplicial or cosimplicial object is modeled on
the simplex. Let (IPy.)" be the cocubical scheme which in degree n is (Pg.)",
the n-fold product of the complex projective line. The faces and degen-
eracies

: —>(IP<IE)n+1, i=1,....n+1, j=0,1
s ()" — ()", =1
are given by

dy(xry -y xn) = (s ey xim1, (02 1), x5, 000, Xy)
Aty ) = (1, X1, (1:0),5, 000, X,)

Si(xla"'axn) = (xla"'7xi—17xi+17'~'axn) :
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(1.4) The complexes $*(X x (IP')", p) form a cubical complex. We shall write
— (W xs)
d = (1dxd)

Let us denote by Hp"(X,p) the associated double complex. That is

—n

B (X,p) =9"(X x (P') ",p)

with differentials
d = ds,
d"=> (-1)"d .

(1.5) We want to obtain from $Hp"(X,p), a complex which computes the
absolute Hodge cohomology of X. On the one hand, since we are using a
cubical theory we need to factor out by the degenerate elements (see [Mas]).
On the other hand, we need to kill all cohomology classes coming from the
projective spaces.

Let us denote by py : X x (P')" — X the projection over the first factor
and by p; : X x (P")" — P!, i =1,...,n, the projection over the i-th pro-
jective line.

Let (x : y) be homogeneous coordinates of R'. Let us write

XX +yy
xx

g=log ———

Let o =0ddg € (2751')E§,1,R be a Kihler form over P'. Let w; =piow €

Ej, (X x (PY)"). For an element

x=(rf,n) €9 (X x (P, p),
we shall write
i ANx = (w; ANryw; N f,oi A1)
e 9 (X x (P)' . p+1) .

Definition 1.1. We shall denote by SS**(X ,p) the double complex given by

55r,n<X’p): " Xp Zsz( rn+l ))GB(D,/\SI( r— 2n+1(X’p_1)) .

We shall denote by 55*()( ,p) the associated simple complex. The differential of
this complex will be denoted by d.
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In the definition of $”" (X, p), the first summand of the quotient is meant to
kill the degenerate classes, whereas the second summand should kill the
classes coming from the projective spaces. The next result shows that we
have reached our objective.

Proposition 1.2. The natural morphism of complexes

19 (X,p) = 90X, p) — H(X.p)
is a quasi-isomorphism.

Proof. Since 55*()( ,p) is a simple complex associated to a double complex,
there is a second quadrant spectral sequence with E; term

B = (5.

When this spectral sequence converges, the limit is H*($" (X, p)). The fol-
lowing lemma shows that this spectral sequence converges and implies that 1
is a quasi-isomorphism.

Lemma 1.3. For n < 0 the cohomology of the complex § (X,p) is zero.
Proof. For each j let us write

N J 1 it

$/"(X.p) = 9§ (X.p) [ D s (85 (op)) @ o Asi (95 (X p— 1))

i=1

Let us prove, by induction over j, that for j > 1
H (5;7"()(719)) =0.

For j=1, n < —1, the complex 55?”()(,19) is the cokernel of the mono-
morphism

(X x (P p)od (X x (P) "' p—1)[-2] — $"(X x (P')™",p)
o D B — s1(a) + o1 Asi(p)

But by the Dold-Thom isomorphism for absolute Hodge cohomology, the
above morphism is a quasi-isomorphism. For j > 1, n < —1, $;"(X,p) is
the cokernel of the monomorphism

S ) @ § (K p- D=2 — 97 (X.p)
o D B — si(a) + o Asi(p) .

By induction hypothesis, the source and the target of this morphism have
zero cohomology. Therefore the cokernel also has zero cohomology.
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2 Smooth at infinity hermitian metrics

In this section we introduce smooth at infinity hermitian metrics. For a
smooth complex variety X and a locally free sheaf %, a smooth at infinity
hermitian metric is a metric that can be extended to a smooth metric over
some compactification of #. The interest of smooth at infinity hermitian
metrics is that they provide representatives of Chern classes in absolute
Hodge cohomology.

(2.1) Before defining smooth at infinity hermitian metrics, we shall study
classes of compactifications of locally free sheaves.

Definition 2.1. Let X be a smooth complex variety and let & be a locally free
sheaf over X. A compactification of F is a smooth compactification of X,
X —X,a locally free sheaf 7 over X and an isomorphism ¢ : F — *F .

A compactification of F will be denoted by (i,X,7,0). Usually we shall

identify X with i(X) and & with F |y, and denote a compactification by

(7, X).

Proposition 2.2. Let X be a smooth complex variety and let & be a locally free
sheaf over X. Then there exists a compactification of F

Proof. Let X —>)~(1 be any compactification of X. Then there is a coherent
sheaf 7, on X, such that # Fily =F 7. By [Ro] (see also [Ri] and [N 1]) there
is a proper modification  : X —>X1, which induces an isomorphism
v (X) — X, and such that 7 F =y (F 1)/Tor(y Y (7)) is a locally free
sheaf. Moreover 7 |w is isomorphic to #[y. Thus the induced map
i:X—Xisa compactiﬁcatlon of X, and # is a compactification of #

Definition 2.3. Let X be a smoolh complex variety and let F be a locally free
sheaf over X. Let (ll,Xl, 1 gol) and (12,X2, F, ©,) be two compactifications
of . We say that F | and ¥, are equivalent if there exists a third com-
pactification (i3,)~(3, 5737 ¢©3) and morphisms : X3 — X, and /N Xs— X,
such that

l)lplolé:l']al’ldlﬁzol}:iz. " _ - .

2) There are isomorphisms oy : 3 — Y1 F | and oy : F 3 — Y57 such
that 301 0 @3 = @ and 505 0 3 = @,.
In order to simplify the notation, a class of equivalent compactifications of
Z will be denoted by a single symbol, for instance .%. Moreover, if there is

no danger of confusion, we shall denote by the same symbol the locally free
sheaf which appears in any representative of this class.

(2.2) Let us see that a compactification class induces uniquely determined
compactification classes in quotients and subsheaves.
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Theorem 2.4. Let X be a smooth complex variety and let
00—z Lg%y 0

be an exact sequence of locally free sheaves over X. Then for any compacti-

fication class G of 9, there are uniquely determined compactification classes
F and H of F and H respectively such that & extends to an exact sequence

E: O%QEL?LJ?%O ,
over a compactification X of X.

Proof. Let X| be a compactification of X where & is defined. Let » = rk .

Let Grass }5(?) be the Grassmanian of rank » quotients of & [G-D]. Let us

denote by % the universal bundle on Grass }’l (%). The exact sequence
ti0—7 L9l —o

induces a morphism

10) :X—>Grass3(’il (@) .

By resolution of singularities, there is a proper modification X of X, which
is a compactification of X and such that ¢ extends to a morphism

¢ :)~(—>Grass)~; (9) .

Then # = ¢*(%) is a compactification of #, F = Ker(4 — #) is a
compactification of & and & extends to an exact sequence
~ ~ 7 ~ 7 ~
tE:0—F —9G—H#—0 .
The unicity follows from the fact that, since X is dense in X, the

morphism ¢ is unique.

Definition 2.5. Let X be a smooth complex variety and let

i 0—F gl —0

be an exact sequence of locally free sheaves over X. Let % be a class of
compactifications of 4. Then the classes of compactifications # and H, of F
and A respectively, obtained in theorem 2.4 are called the induced compac-
tifications.

(2.3) Let us introduce smooth at infinity hermitian metrics.
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Definition 2.6. Let X be a smooth complex variely, let F be a locally free
sheaf over X and let h be an hermitian metric on . We say that h is smooth al
infinity if there exist a compactification F of F and a smooth metric h on F
such that h|y = h.

A smooth at infinity hermitian metric determines univocally a compactifi-
cation class.

Proposition 2.7. Let X be a smooth complex variety and let F be a locally free
sheaf on X. Let # and 7' be two ‘compactifications of F and let h and h' be
smooth metrics on F and F'. If hly =W|y, then F and F 7' are equivalent
compactifications.

Proof. We can assume that both compactifications are defined over the same
variety X. Let 5 be the sheaf of rational functions over X.
The identity on % induces morphisms

[ F QM —TF @A,
f-/:g;/®<%/}_>J ®%/X7

which are inverses of each other. By symmetry it is enough to show that
f(F)c T ~ ~

Let U be a Zariski open subset of X. A section s € I'(U, 7' ® #%)
belongs to ['(U,#') if and only if A'(s(x)) < oo for all x € U. But if
s e (U, 7) then iz"(f(s))\)my :Z(s)|)mU. Since UNX is dense in U we
have /' (f(s(x))) = h(s(x)) < oo for all x € U.

Proposition 2.8. Let
E:0—F' —7F —F7"—0

be an exact vequence of locally free sheaves on X and let h be a smooth at
infinity metric on F . Then the metrics W and I induced by h in F' and F" are
smooth at infinity.

Proof. Let F bea compactification of .7 provided with a metric h, such that
h|y = h. By theorem 2.4. there are compactifications ' and # 7" such that 14
can be extended to an exact sequence

E:0—F —F—F'—0 .

Then the metric h induces smooth metrics i and 7" on 7' and Z". But the
restrictions of 4’ and A" to X are &' and A”. Therefore these metrics are
smooth at infinity.
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Proposition 2.9. Let f: X — Y be a morphism between smooth complex
varieties. Let (F,h) be a locally free sheaf over Y with h a smooth at
infinity metric. Then ( f*h) is a smooth at infinity metric on the locally free
sheaf f*F .

Proof. Let (Y, ,/’) be a compactification of (Y, #), such that there exists a
hermitian metric /# with k[, = h. Let X; be any compactification of X. We
shall denote by I the graph of f, and by T the adherence of I' in X; x Y. Let

X be a resolution of singularities of T and let f : X — Y be the induced
morphism. Then ()?J‘*J%) is a compactification of (X, f*%) and 7*% is a
smooth metric such that f*m « = f"h. Therefore f*h is smooth at infinity.

(2.4) Let us see that smooth at infinity hermitian metrics provide re-
presentatives of the Chern character classes in absolute Hodge cohomology.
Let X be a smooth complex varlety, a locally free sheaf and 4 a smooth at

infinity hermitian metric. Let F be the compact1ﬁc~at10n class of 7 de-
termined by £, X a compactification of X where # is defined, and ha
smooth metric on . F extending 4. Let K (resp. K) be the curvature form of
(Z,h) (resp. (F,h)). Let us write

cho(#, h) = Tr exp(—K) ,
cho(Z,h) = Tr exp(—K) .

These forms are closed. Moreover,
N (TF NP DD
cho(Z, h) € P(2ni) E},]R .
Since cho(Z,h)|, = cho(ZF, h),

cho(7,h) € D (WEr, (X)g NFPER(X))
p>0

Since this form is closed,
cho(7, h) € D (WapErty (X)g N FPER (X))

Thus the triple
cho(7,h),, = (chy(F, h),chy(F, h),0)
is a cycle of @pzogzp X,p).

Proposition 2.10. The cycle c~ho(97 ,h) , represents the Chern character of 7
in absolute Hodge cohomology.
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Proof. If X is proper we have
2 .
HY(X,R(p)) = H?(X, 2mif'R) .

Therefore the result follows from the classical description of the Chern
character in terms of curvature forms. In the non proper case it follows from
the functoriality of the Chern character.

3 Exact n-cubes of locally free sheaves

In this section we shall recall the notion of exact n-cube (see [Lo 2], [Wan]).
To each metrized exact n-cube, %, which satisfies certain conditions, we
shall associate a metrized locally free sheaf on X x (IP')", called the n-th
transgression of 7. This transgression can be viewed as a homotopy be-
tween its vertexes. The Chern character form of the transgression will play
the role of higher Bott-Chern forms.

(3.1) First some notations. Let (—1,0, 1) be the category associated to the
ordered set {—1,0,1}. Let (—1,0,1)" be its n-th cartesian power. By con-
vention, the category (—1,0, 1>0 has one element and one morphism.

Let € be an exact category.

Definition 3.1. A n-cube of €, F, is a functor from (—1,0,1)" to €.

Definition 3.2. Given a n-cube 7, and numbers i € {1,...,n}, j € {=1,0,1},
then the n — 1-cube, 0|F defined by

(a;%-)“lw,“nf]: ‘970!1 ----- i1 3Jy 0y Ol—1
is called an face of #. Given a number i € {1,...,n} and a n— l-tuple
o= (01,...,0,1) € {—1,0,1}""", the sequence

T =o' ...00,00 ... 00 F
is called an edge of F .
Explicitly, the edge 0% is

773 1773 g
Joq,...,x,,],—l,ot,,.“,otn,l ’111,4..,%i,1,0,ai,4...a > F

1 O yeresOlim 1y Ly Oliyeney Oy
Definition 3.3. A n-cube is called an exact n-cube if all its edges are short exact
sequences.

We shall denote by C,€ the exact category of exact n-cubes. Observe that,
for all non negative integers n, m, there is a natural isomorphism of categories
C,C,€C—C,. .C. In particular, an exact n-cube can be viewed as an exact
sequence of exact n — l-cubes or as an exact n — 1-cube of exact sequences.
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The maps
d:0bC,E—ObC, €,

are called face maps. The maps
s/:0bC,E—ObC, € for i=1,....n, and j=—1,1,
given by

AP =1 i o =
! Fyeeesintl 9‘73{”...,OC,‘,17OCZ‘+1,...,OC,,+1, if O‘l#‘] 3

are called degeneracy maps. An exact n-cube & € Im s{ is called degenerate.

(3.2) We shall write C,€ = Ob C,€ and C€ = 1IC,C.

Assume that the category € is small. To avoid set theoretical problems,
in the sequel we shall always assume tacitly that we replace any large ca-
tegory by an equivalent small full subcategory. Observe that the diagram CE
behaves like a cubical diagram. We have replaced the category (0, 1) by the
category (—1,0,1). This motivates the following construction.

Let ZC,€ be the free abelian group generated by C,E. And let the
differential d : ZC,€ — ZC,_,€ be given by

n 1
R

i=1 j=—1

Let D, C ZC,€ be the subgroup generated by the degenerate exact n-cubes.
Then dD, C D,_;. Therefore the following definition makes sense.

Definition 3.4. The homology complex associated to CE is
ZC€ = ZCE/D .

(3.3) For the remainder of the section, let us fix a smooth complex variety
X. Let €(X) be the exact category of locally free sheaves on X and let €(X)
be the exact category of pairs (& ,h), where & € ObE(X) and / is a
smooth at infinity hermitian metric on % . The morphisms of this category
are

Hom@()()((g;)h)a ('g;,ah,)) = Hom@(x)(.g'f“g;/) .

Let # be the forgetful functor @(_X) — €(X). By choosing metrics we may
construct a functor G : €(X) — E(X). Then F o G is the identify functor on
the category €(X). Moreover, the identity morphism on the vector bundles
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is a natural transformation between G o F and the identity functor in €(X).
Thus F is an equivalence of categories.

For simplicity we shall write C(X) = CE(X). An element Z € C,(X) is
called a metrized exact n-cube of locally free sheaves.

(3.4) For technical reasons we need to work with metrized exact n-cubes
which have, in all the quotients, the induced metrics.

Definition 3.5. We shall say that a metrized exact n-cube,F = {(F 5, h,)} has
induced quotient metrics (an emi-n-cube for short) if, for each n-tuple
o= (ot1,...,0), and each i with o; = 1, the metric h, is induced by the metric
h(oq,u..,oz,»,],O,a,url‘...,ac,,)'

Let us see that there are enough emi-n-cubes. Let o € {—1,0,1}" be a
n-tuple. We shall write o < 0 if o; < 0 for all i.

Proposition 3.6. Let F be an exact n-cube of locally free sheaves and, for all
o <0, let hy, be a hermitian metric on F . Then there is a unique way to choose
metrics hy for all o £ 0, such that 7 = {(F 4, h,)} is an emi-n-cube.

Proof. The uniqueness is clear. For the existence, we have to see that, in each
F 4, with o £ 0, all the possible induced metrics agree. This is guaranteed by
the following result.

Lemma 3.7. Let {E;;},; = —1,0,1 be an exact 2-cube of complex vector
spaces. Let h be a hermitian metric on Eo o and let hy o and hy | be the hermitian
metrics in Ey o and Ey 1 induced by h. Then the metrics induced by hy o and hy
in Ey agree.

Proof. Let us identify E_;y and Ep_; with their images in Eyo. Then the
metric /o in E} o is induced by the isomorphism E{l_o = F . Therefore we
can identify Ey o with EX ; and the morphism Eyy — E; o with the ortho-
gonal projection. But the image of Ey_; by this orthogonal projection is
(E-10+Eo—1) ﬂEfl‘O. Therefore the metric in E;; induced by A is in-
duced by the isomorphism (E_1p+ EO_,,I)l &~ F; ;. By symmetry, the same is
true for the metric induced by Ay ;.

(3.5) Let ZCeni(X) be the subcomplex of ZC(X) generated by the emi-
n-cubes, and let Dey; be the subcomplex of ZCenmi(X) generated by the
degenerate emi-n-cubes. We shall write

zcemi()() = ZCemi()()/Demi C iC(X) .

To translate results about emi-zn-cubes to all exact metrized n-cubes we
need to construct a morphism of complexes

ZC(X) — ZComi(X) .
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If o« € {~1,0, 1}" with o; > —1, we shall write o — i= (0,01, 0).
Let.7 = {(Fy,h,)} € Co(X). Fori=1,...,nlet A\ be defined by

(F 25 ha)
(7 1,)

where //, is the metric induced by 4,_;. Thus 2/ has the same locally free
sheaves as.Z, but we have replaced the metrics of the locally free sheaves of
the face 9\, by the metrics induced by 9°7 .

Let 227 be the exact n-cube determined by

y ifOC,‘_—l,O,

\Zz _ -
)“i‘/’“—{ oy =1,

This n-cube measures in some sense the difference between 7 and WT.
Let us write 4,7 = .7 + 227, and let us denote by A the map

St ZCy(X) — ZC,(X)
9_7'_>{)tn...119‘77 if n >1,

Z, ifn=0.

Then one can check the following properties:
(1) 4 is a morphism of complexes.
(2) Im A C ZCemi(X).
(3) A(D) C Demi-

Therefore this map induces a morphism of complexes
) ZC(X) — ZComi(X) .

In fact 4 is a homotopy equivalence. The inverse being the inclusion
ZCemi(X) —>ZC(X).

(3.6) Let # be an emi-n-cube of locally free sheaves. We shall associate to it
a locally free sheaf tr,(#) on X x (IP')" which, roughly speaking, is a
homotopy between the vertexes of & .

Let ((x; : 1), ..., (x, : y»)) be homogeneous coordinates of (IP')". Let .#,,
(resp. .#,,) be the sheaf of ideals in X x (IP')" defined by the subvariety
x; =0, (resp. y; =0). Let py:X x (P')" — X and p,: X x (P')" — P!,
i=1,...,n, be the projections. Then the maps

1

‘fxf Lp;‘(gﬂ’l(fl) )

~1
Iy 2 Pl O (1)
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are isomorphisms. The sheaf €1 (—1) has a metric induced by the standard
metric on €>. We put in .7, and .# y, the metrics induced by the above
isomorphisms. By 2.9, these metrics are smooth at infinity.

For each pair of integers i € {l,...,n} and j € {—1,0}, we write
[y, if j=—1,
j"’-"_{fx/, if j=0 .

For each « € (—1,0,1)", with o« <0, and for each k€ {1,...,n}, with
o = —1, we write

7, = Hfifc}i C Ay iy
i=1

Sk = Hf;al CH @ty -
ik

where Ay, piyr 18 the sheaf of rational functions on X x (Ph".

Given an n-tuple « < 0 and an integer k € {1,...,n},with o = —1, we
write o +k = (oq,...,04 + 1,...,2,). We have the inclusions
foc,k C jaa
Foaj C I v -

Let us denote by ¢, : #, —F 54 the morphism 7 (« — o + k). Let ¢ be
the morphism

‘//:@ @ péﬁd®fa‘k_>@p8ﬁ%®jz+k7

a0 kloyx=— «<0
which sends s ® g € piF , ® Sk 10

Y(s®g) =sRg+ @uuls) @9
Ep(*ﬂ?a@ja@p(‘;ﬁ?ﬁk(@/“% :

The locally free sheaf (—B“S w7 4 ® ¥, has a metric induced by the

metrics of .#,, ./, and #,. This metric is smooth at infinity.
Definition 3.8. The n-transgression of F is the hermitian locally free sheaf
tr, (7 ) = Coker(y) ,

with the metric induced by the metric of@KOpafa ® 7, By Proposition 2.8,
this metric is smooth at infinity. -

The following result follows directly from the definition.
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Proposition 3.9. Let Z be an emi-n-cube. Then there are isometries

()| 0y = 1 (01F)
0 (7)o = a1 (07 B 11, (017) .

(3.7) Let us give an inductive construction of the transgressions. If n = 1, an
emi-1-cube, # is a short exact sequence

— f = —
F G —Fo—F ,

where the metric of Z is induced by the metric of #,. Then tr(#) is the
cokernel of the map

Fa— T a09,'eF ® Iy
s — sl &fsel.

Observe that this is a minor modification of the locally free sheaf used by
Bismut, Gillet and Soulé [B-G-S], [G-S 1] to construct Bott-Chern forms. In
the definition given here, we avoid the use of partitions of unity, obtaining a
natural construction. The price is to restrict ourselves to emi-n-cubes.

If # is an emi-n-cube, let tr;(#) be the emi-n — I-cube over X x IP!
defined by:

try (J’)“: try (8,‘; )
Then we write
try (3_7) =1t (trk,1 (ﬁ)) .

The hermitian locally free sheaf tr,(# ) defined in this way coincides with the
earlier definition. Thus the transgressions are simply an iteration of the
construction of Bismut, Gillet and Soulé.

(3.8) For any homology complex 4., we shall denote by 4* the cohomology
complex defined by 4 = A4_;. Let us use the transgressions previously de-
fined, to associate to every emi-n-cube a family of differential forms.

Definition 3.10. Let

ch:ZC: (X (—DSZ) (X, p)[2p]

be the map given by

ch(#) = chy(tr, (%))

H

where c~ho()}¢ is as in (2.4).
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Proposition 3.11. The map ch is a morphism of complexes and factorizes
through a unique morphism

ch: ZChi(X) — P S (X,p)[2p] -

Proof. To see that it is a morphism of complexes, observe that, since the
forms chy(-) - are closed,

|
deh(tr, (7)) ZZ )*d Cho (tra(7))

i=1 j=0
n
+3 (=1)*chy <trn <?’7>)
=0} =1 A H{y=0}

=Y (=1)ichy (trn <77))
i=1 H
{y,-O})yf '

(7)), ), R ()

Therefore, by Proposition 3.9,

I
AM:

13

=

M_

dch(tr, (7)) WCho(tfn i ( z?))ﬂ

_< )

To see the existence of the factorization, we have to show that, for a
degenerate emi-n-cube #, we have ch(#)=0 in P H*(X,p). By
symmetry we may assume that # = /%, with j € {—1,1} and 4 an emi-
n — l-cube.

If j =1, then tr, (¥ ) is the exact sequence

%

C

0— (Id x s")*tr,,,l (@) 1d, (Id x s”)*tr,,,l (g) —0—0.
Therefore tr, () is the cokernel of the map

(Id x s")"tr, 1 (@) — (Id x s")"tr, 1 () ® 7, & (Id x s")"tr, 1 (&) @ S,
X — x®1 D x®1 .

But J and .#_! are both isometric with p?@(1). Hence this cokernel is
isometric with (Id x s")"tr,—1 () ® p;0(2), where (0(2) is provided with the
standard metric. Thus

(;Ilo (tl‘n (9—7)) (Id X ) &10 (tl‘n,1 (@))#—ﬂwn AN (Id X Sn)*alo (tl‘n,1 (@))#

which is zero in @P9* (X, p).
The case j = —1 is analogous.
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Definition 3.12. We shall denote also by ch the composition

ZC*(X) 5 ZC,(X) 2 D §° (X, p)[2p] -

Definition 3.13. Let.7 be a metrized exact n-cube. The form ch(A(F)) will be
called the Bott-Chern form of # and will be denoted by ch,(F) .

4 Higher characteristic classes

The Chern character from K-theory to a suitable cohomology theory, such
as absolute Hodge cohomology, is additive for exact sequences. Never-
theless, given a cochain complex which computes absolute Hodge coho-
mology, we cannot make a consistent choice of representatives of the Chern
character that behaves additively. Following the ideas of Schechtman
([Sch]), the lack of additivity at the level of complexes, of the Chern char-
acter for K, gives us the Chern character for K.

In the previous section we have associated, to each metrized exact n-
cube, a family of differential forms. The differential form associated to an n-
cube measures the lack of additivity of the differential forms associated to its
faces. In this section we shall see that this construction allows us to define
higher Chern character classes from K-theory to absolute Hodge coho-
mology.

(4.1) Let us begin by reviewing the Waldhausen K-theory of a small exact
category. We shall follow [Sch] (See also [Wal] or [Lo 1]).

Forn € N, let Cat(n) denote the category associated with the ordered set
{1,...,n}. Let M, be the category of morphisms of Cat(n). That is

ObM,={(i,j)) ENxN|0<i<;j<n},

and Hom((7, /), (k,I)) contains a unique element if i < k and j </ and is
empty otherwise. The categories M, form a cosimplicial category M.

For any category €, let us denote by M, € the category of functors from
M, to €.

Definition 4.1. Let € be a small exact category and 0 a fixed zero object of €.
Let S,€ be the full subcategory of M,C€, whose objects are the functors
M, — €, such that,

(1) for all i, E;; = 0;

2) foralli <j<k,

Eij— Eix — Ejk

is a short exact sequence.
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Let us write S,& = ObS,E. We shall denote by S€ or S'€ the simplicial
exact category IIS,€, and by S€ or S'€ the simplicial set Ob SE.
In other words we have:

So€ = {0},
S1€=0Db €,

S,€ = {exact sequences of €},
sequences of monomorphisms
Ey1 —Epr— -+ — Eg,
5i€ = with a choice of quotients

E;j = Eo;/Eo,

In particular S€ is a pointed simplicial set. In the sequel we shall sometimes
use the word space to denote simplicial sets.
For a space C, we shall denote by |C]| its geometric realization.

Proposition 4.2. (Cf. [Lo 2].) There is a homotopy equivalence
S€ =~ BOCE

where Q denotes Quillen’s Q-construction and B means classifying space.
Therefore, for all i > 0,

Ki(€) = 111 (|S.€[,0) .

(4.2) Let us recall the notion of spectrum from [Th]. For any pointed space
C, let us write XC for the suspension of C, and QC for the loop space of C.
We shall use the same notation for topological spaces.

Definition 4.3. 4 prespectrum X is a sequence of pointed spaces X, for all non-
negative integers n, together with structure maps 2X, — X,1. These maps
can also be described by their adjoint X, — QX 1. A fibrant spectrum is a
prespectrum such that all X, are fibrant spaces and the structure maps
X, — QX are weak equivalences.

The space S€ is a piece of a prespectrum. To construct the other spaces
that form the prespectrum, we write inductively

im@ — $m7167
S"E = Ss"'E .
Then 8™ is an exact m-simplicial category and S™ is a m-simplicial set. For a

poly-simplicial set C let diag(C) denote its diagonal space. We shall denote by
|C| = |diag(C)| its geometric realization.
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Proposition 4.4. (Schechtman [Sch 1.2].) There are natural maps
@, ZS"E — S"IE |
inducing homotopy equivalences
1S"€| = Q|S"H €| .

As a consequence of this proposition, if we write S'G = QSE, then the
sequence of spaces diag(S™€) is a prespectrum. Moreover, if we replace the
above spaces by weakly equivalent fibrant spaces we shall obtain a fibrant
spectrum. For instance, let us denote by Sing the singular functor (see
[B-K]). Then, if we write

K, (€) = Sing(|5"€]) ,
the spaces K,, form a fibrant spectrum. By Proposition 4.2, the homotopy of
this fibrant spectrum is the K-theory of €.

(4.3) For example, let X be a smooth complex variety, let m > 1 be an integer

and let us write " (X) = S”(€(X)). Then, for i > 0, the i-th K-groups of X is
Ki(X) = mism(|S" (X)],0) .
By Proposition 4.4 this definition does not depend on the choice of m.

(4.4) Let us associate, to each element of S,€, an exact n — 1-cube. We shall
do so inductively. For n = 1, we write

Cub({Ei,j}ogigjgl) =Eo -

Assume that we have defined Cub E for all E € S,,€, with m < n. Let
E € S,€. Then Cub E is the n — 1-cube with

O7'Cub E =s! ... sl(Epy),
dCub E = Cub (9,E),
d7'Cub E = Cub (E) .

For instance, if n = 2, then Cub ({£;,}y<;<;<,) is the short exact sequence
EO‘I —>E0,2 —>E172 .
On the other hand, if » = 3, then Cub (‘{Et}j}ogig;g) is the exact square

Eoyy — Eyp — Eip

l |

Eyy — Eop3 — Ei3

| | |

0 — Ey3 — Ep3

All the faces of the n — I-cube Cub E can be computed explicitly.
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Proposition 4.5. Let E € S,€. Then, for i=1,...,n—1, the faces of the
n — l-cube Cub E are

81.’1Cub E = S;Lz .. .S}Cub Ois1...0,E,
d°Cub E = Cub JiE,
O!Cub E =5 ...s57'Cub dy...0E.

By proposition 4.5 and using induction we have,

Corollary 4.6. The n — 1-cube Cub E is exact.
Therefore we have a map Cub : S,€ — C,_ €.

(4.5) Let ZS€ be the homological complex associated with the simplicial set
S€. That is, ZS,€ is the free abelian group generated by §,€, and the
differential d : ZS,€ — ZS,_€ is given by

d= zn:(—l)"ai .
i=0

The map Cub can be extended by linearity to a map
Cub : ZSC[1] — ZC€ .

Note that this map is not a morphism of complexes. However, the map Cub
induces a map also denoted by Cub :ZS€[l] — ZCE. And, since by
Proposition 4.5,

dCub E = Cub dE + degenerate elements |,
we have:

Corollary 4.8. The map Cub : ZSE[1] — ZCEG is a morphism of complexes.

(4.6) We can obtain analogous maps for all the spaces S €. In particular, we
have maps

Cub:S, ...5,C—Cy_1...Cpm1€C— Cpsoopy,,—mC .

Let us denote by ZS™€ the chain complex that, in degree n, is the free
abelian group generated by

T Su---S.€.

ni+-+ny=n

The differential of this complex is the alternate sum of all the face maps.
Note that this complex is homotopically equivalent to Zdiag (S™€). The
induced map
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Cub : ZS"€[m| — ZCE

is also a morphism of complexes.

(4.7) Let m > 1 be an integer. We shall denote by ZS,(X) the cohomological
complex associated to the homological complex ZS"(X).

Definition 4.9. The Chern character map is the composition

ZS;,(X)[~m] "B ZC* (X) S ZC (X) 2 D S (X, p)[2p] -

This map will also be denoted by ch. The Chern character classes are
obtained by composing with the Hurewick map:

Ki(X) = Tipn(S"(X)) — Hism(ZS™(X)) — DHZ '(X.p) .

Proposition 4.10. The above definition does not depend on the choice of m.
Proof. For a pointed simplicial set S, with base point p, we shall write
Z'S, =17S.]Zp. .
The natural map 8" (X) — S"*!(X) induces a morphism
Z'S™(X)[m] — ZS" ' (X)[m + 1] .

By the proof of Proposition 4.4 in [Sch 1.2] this map is induced by the
natural bijection $”(X) — S;8™(X). Therefore the diagram

7ES"(X)m+1] —  Z'ES"T(X)[m+ 1]

i [

Zs"(X)[m Z'c.(x)

is commutative. By the commutativity of this diagram and proposition 4.4
the Chern character classes are independent of the choice of m

5 Beilinson’s regulator
The aim of this section is to prove that the higher Chern character classes
defined in Sect. 4 agree with Beilinson’s regulator map.

(5.1) Let us begin by extending the definition of the map ch to the case of
simplicial smooth complex varieties. To this end, we first recall the con-
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struction of the absolute Hodge cohomology of X = X. a smooth simplicial
complex variety. For each p, the complexes $"(X,,p) form a cosimplicial
complex as n varies. Let /"H* (X, p) be the associated double complex and
let us denote the simple complex by

9 (X,p) =s(N (X, p)) .
Then

For the definition of the K-theory of simplicial schemes we shall follow
[Sch]. We shall say that a smooth simplicial scheme X = X. has finite di-
mension if there is an integer m such that

X = Skn(X) |

where Sk, (X) is the m-th skeleton of X, that is, the simplicial scheme gen-
erated by Xp, ..., X,.

Let X =X be a simplicial scheme of finite dimension. The family of
prespectrums {S(X,)}, form a cosimplicial prespectrum S(X.). Let K(X') be
a fibrant cosimplicial fibrant spectrum weakly equivalent to S(X.). Then the
K groups of X are defined as

Ki(X) = mi1(Tot K(X)) .
Since X has finite dimension, there is a convergent spectral sequence
BV =K (X)) =K _, 4(X) .

Observe that for a given simplicial scheme X, of finite dimension, it is
not necessary to work with the whole spectrum. Let m be such that
X = Sk,X. Let us choose a positive integer ¢, and let K,(X) be a fibrant
cosimplicial fibrant space, weakly equivalent to S7(X.). If ¢ > m or ¢ > —i,
then

Ki(X) = mi1g(Tot Ky (X)) -
For an arbitrary simplicial scheme we write

K.(X) = lim K.(Sk, (X)) -

m

Let X be a smooth simplicial complex variety of finite dimension. Since
the map ch defined in Sect. 4 gives us a morphism of complexes

ch : sAZS;(X) g — B, 9" (X, p)[2p]
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we can extend the definition of the Chern character to the simplicial case,
obtaining maps:

ch: K;(X) — PHZ(X,R(p)) .

If X does not have finite dimension, taking limits, we have also char-
acteristic classes

ch: Ki(X) — @HZ (X, R(p)) .

Remark. 5.1. All the constructions needed to define the map ch can be
extended to the case of a smooth simplicial scheme X. over C, such that each
X, is a (not necessarily finite) disjoint union of smooth complex varieties.
For instance, by a compactification of X, we shall mean a disjoint union of
compactifications of each component of Xj,.

(5.2) Beilinson [Be] has defined characteristic classes from K-theory to ab-
solute Hodge cohomology. These classes are a particular case of the char-
acteristic classes defined by Gillet [Gi] to any suitable cohomology theory. In
particular, Beilinson’s regulator is the Chern character in this theory. Let us
denote by p the Beilinson’s regulator map.

Then ch and p are natural transformations between contravariant
functors. Both agree with the classical Chern character on the K groups of
smooth complex varieties. The aim of this section is to prove the following
theorem.

Theorem 5.2. Let X be a smooth complex variety. Let o € K;(X). Then
ch(e) = p(0).

Proof. Let W = {U, } be an open covering of X. We shall denote by E(X, )
the full subcategory of €(X) composed by the locally free sheaves on X
whose restrictions to all U, are free. We shall denote by (X, 2) the category
of hermitian vector bundles on X whose restrictions to all U, are free. Let us

write

Ki(X, ) = 11 (SEX, ) = 7y 1 (SE(X, ) .
Then
Kz(X) = h_>mKi(Xa u) .

u

(5.2.1) Following Schechtman ([Sch]) we know that there is a simplicial
scheme ZP, which is a classifying space for algebraic K-theory. More pre-
cisely, Schechtman proves the following result.
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Theorem 5.3. (Schechtman) There is a homotopy equivalence
SE(X,U) =~ Hom(N, BP) ,

where Hom is the function space and NU is the nerve of the covering.
(5.2.2) Let Y =Y. be a smooth simplicial scheme of finite dimension. Let
us denote by Hom(Y,#%P) the cosimplicial simplicial set Hom(Y, #P)
= Hom(Y,, #P,,). Then

Hom(Y, #P) = TotHom(Y, %4P) .

For any scheme X, let o.X be the simplicial scheme with ¢X, = X and all the
faces and degeneracies equal to the identity. Then the simplicial set
Hom(X, #4P) is the function space Hom(oX, 4P). Observe that ¢X is the
nerve of the trivial covering {X}. Thus, by Theorem 5.3 and the comparison
between Tot and Holim (cf. [B-K, XI, 4.4], [Th, 5.25] and [Le, 3.1.2]) we
obtain a natural map

Tot Hom(Y,#4P) — Holim S€(Y,,{Y,}) .
Taking homotopy groups we obtain natural maps
TE,‘HOI’H(Y, QP) — K1 (Y) .

In particular, if f:Y— %P is simplical morphism of simplicial
schemes, then f defines an element of nyHom(Y, #P). Let us denote by e,
the image of this element in K_;(Y).

If Y does not have finite dimension, since any simplicial morphism
f Y — %P induces simplicial morphisms f,, : Sk,,Y — 4P, taking a limit,
we obtain an element e, € K. (Y).

Remark 5.4. The identity of %P defines an eclement, denoted by
e,., € K_1(#P). Moreover, for f as above, e, = f*(e,,).

(5.2.3) The element e, is, in some sense, a universal element in K-theory.
Since e,, € K_i, to exploit the universality of this element, we need to
relate elements in 1?,1 with elements in 1A<_1. This can be done using
spheres.

Let ¢ € K,(X). Then there is an open covering 2 of X, such that
o € K,(X,0) = m,, . (Hom(NW, #P)). Therefore, there exists an integer

d > 0 such that ¢ is represented by an element

7, € Hom(Suby "™ x N, 4P) = Hom(Sub, S""', Hom(N, #P)) ,

where $"*! is the (pointed) simplicial n + 1-dimensional sphere and Suby is
the d-th subdivision. Let us denote by 3" = Sub, "1
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Lemma 5.5. Let Y = Y. be a smooth simplicial complex variety. Then there are
natural decompositions

RO 5y =R @ K1),

n+l1 —n
HP (S )Y R(p)) = HPT (Y R(p) @ HE (Y, R(p)) -
Moreover, the maps ch and p are compatible with these decompositions.

Proof. We may assume that ¥ has finite dimension because the general case
is obtained taking the limit. Then

n+1 n+1
j& (Z xy) = 7o(Tot,(Toty (KD x¥p)))) -
The spectral sequence associated with Tot, has E,-term:

P _ K ,Y), if p=0,n+1,
2 0, if p#0,n+1 .

Let us denote by * the simplicial point. Since the spectral sequence of x x Y
splits the spectral sequence of Z"H x Y, the above spectral sequence de-
generates at the E,-term, and the exact sequence obtained from this spectral
sequence splits in a natural way.

The same argument works for cohomology. Moreover, since ch and p
are natural transformations, they induce morphisms between the K-theo-
retical and the cohomological spectral sequences, proving the compatibility
statement.

Let us denote by pr: K_; (3" xN) — K, (N2) the projection. The
precise meaning of the universality of eyp is given by the following
result.

Lemma 5.6. In the group K,(NW), the equality

pr(y,(esp)) =0
holds.

Proof. By Remark 5.4,
pr(ys(ear)) = pr(e;,) -
On the other hand, by the definition of y,, the map
mo(Hom(y """ <N, #P)) 2 7. (Hom(N Y, 4P))

sends the class of y, to the class of ¢. Therefore, since the diagram
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mo(Hom(S"™ xNW, P))  —  K_ (3" xNU)
Prl pr
T, (Hom(NW, 4P)) — K, (NU) .

is commutative we have that
Per(eﬂP)) =0 .

(5.2.4) By Remark 5.1, the map ch is defined for the simplicial scheme ZP.
Moreover, by the naturality of ch and p and their compatibility with the
map pr, we have

ch(o) = pr(ys(ch(esp))),

p(o) = pr(v,(plesr))) -

Thus, to prove Theorem 5.2, we are led to compare ch(egp) and p(egp). For
this comparison, we need to understand the cohomology of #P. This co-
homology has been computed by Schechtman [Sch]. The simplicial scheme
AP is the classifying space of a simplicial group P., where Py = * and
P, =11,GL(n). Thus it is a bisimplicial scheme #.P. The edge homo-
morphism of the spectral sequence associated to the second index gives us a
morphism

dy - H} (2P, R(p)) — [[HZ(BGL(n), R(p)) .

n>0

Let us denote by 4 = Hj,(Spec C,IR(x)).
For each i,n let us denote by

Ci,n = ci(En) € HE{Z)(BGL(HL IR(Z)) )

the i-th Chern class of the tautological vector bundle over BGL(#n). Then we
have an isomorphism

H,,(BGL(n),R(x)) = A[cin,---+Cnn] -
Let sy, € A[cin,- - -, Cnn) be the k-th Newton polynomial in the ¢;,. That is,

Skq/n! is the degree k term of the Chern character of the tautological vector
bundle E,. Let us write

sk = (k0 5k, ) € [ [H¥ (BGL(n), R(k)) .

n>0

Proposition 5.7. (Schechtman [Sch]) There exist elements s} € Hou'!
(%P, R (k)) such that dy(s}) = s and

Hy(BP,R(x)) = A[sy, s, .| -
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(5.2.5) Since

Hy (SpecC, R (p))

R

R, ifn=p=0,orn=1,p>0,
0, otherwise ,

any element of H2"!(#P,R(k)) can be written as
as; + decomposable elements

with o € R. Moreover, since by the proof of 5.7 [Sch] the decomposable
elements are mapped to 0 by dy, we have

Corollary 5.8. The group Ker dy C @sz“ BP,R(k)) is generated by
decomposable elements.

(5.2.6) Schechtman computes the groups [?*(,@P) in a similar way. In par-
ticular, there is also an edge homomorphism

dy : K_y(#P) — [[Ko(BGL(n)) .

Moreover, by the naturality of ch and p, they are compatible with the edge
homomorphisms. In particular

du(p(esr)) = pldi(esr)), and dy(ch(exr)) = ch(dk(esr)) -

(5.2.7) Our next step will be to compare dy(p(esp)) with dy(ch(egp)). To
this end we shall see that, since the maps ch and p agree for the K, groups
of smooth complex varieties then they also agree for the group
Ko(BGL(n)).

Proposition 5.9. Let o € Ko(BGL(n)). Then

Proof. Let Gr(n,k) be the Grassman manifold of dimension » linear sub-
spaces of C* and let E(n, k) be the rank » tautological vector bundle. Let
U, ={U,} be the standard trivialization of E(n,k). Let us denote by
Y : Ny — Gr(n, k) the natural map and by ¢, : Ny — BGL(n) the
classifying map. Since absolute Hodge cohomology can be computed as the
cohomology of a Zariski sheaf, the map

W2 Hoy (Gr(n, k), R (%)) — Hop (N U, R (%))

is an isomorphism. Moreover, for each iy there is a number kg, such that, for
all k > kg and all i < iy the map
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9} Hly (BGL(n), R(x)) — H'y (N, R(+))
is an isomorphism. But for ¢ € Ko(BGL(n)) we have
@i (ch(a)) = ch(p;(a)) = p(er(0)) = @rp((0)) -

Since this is true for all £ we have ch(o) = p(0).
Combining 5.8 and 5.9 we get:

Corollary 5.10. The element ch(egp) — p(enp) belongs to Ker dy. Therefore it
is a sum of decomposable elements.

(5.2.8) To exploit the fact that ch(egp) — p(egp) is a sum of decomposable
elements, we shall give a description of how a class in A3, (%P, R(x)) de-
termines a map between K-theory and absolute Hodge cohomology.
For any smooth simplicial scheme over C, X, and integers n, p, the
complex _
%*(Xvnap) = TSOSj*(Xap)[n]

is a negatively graded cohomological complex. Let #.(X,n,p) be
the associated homological complex. Let us denote by #'(X,n,p) the
simplicial group obtained by Dold-Puppe from #.(X,n,p). Then, for
i>0,

mA (X,n,p) = Hy (X, R(p))

Let us fix a smooth complex variety X, and Ul an open covering of X. Let
us denote by ¢ the tautological map

¢ : NU x Hom(NW, #P) — AP .
Given any class x € H,(%#P,R(p)), we have a class

9" (x) € H2 (N2 x Hom(N, #P), R (p)) =
Homy;, (Hom (N2, P), # (NU,n,p)) .

For any integer i, let us denote by 7;(x) the induced map
7i(x) : Kot (X, M) = mHom (N2, BP) — m (NW,n, p) = Hiy (X, R(p)) -
Taking the limit over all coverings we obtain morphisms

mi(x) : K1 (X) — HYy (X, R(p)) -

This construction can be extended to the case when X is a simplicial smooth
complex manifold.
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Lemma 5.11. For x € H"' (%P, R(p)) and o € K;_1(X,N) we have
mi(x)(0) = pr(y;(x)) ,
where 7y, is as in (5.2.3).

Proof. Since the map m,(x) is natural, the same argument as for ch and p
shows that

mi(x) () = pr(v;(mo(x)(esr))) -

Let us denote by IA(,-(,@P, 9P) the K-theory groups of #P with respect to
the trivial covering. Then the map

no(x) : K_\(BP, BP) = ngHom(BP, BP) —> mo A (BP, 2k + 1,k)
= H*" (2P, R(K)) ,

sends the class of /' € noHom(#P, #P) to f*(x). Since eyp is represented by
the identity map, we get

mo(x)(egp) = 1d*(x) = x
proving the lemma.

(5.2.9) The product structure in absolute Hodge cohomology is given by a
morphism of complexes

H(X,n,p) @ (X, m,q) — A (X, n+m,p+q)

which induces a map of spaces
A (X n,p) X A (X m,q) = A (X, n+m,p+q) .

The spaces #'(X,n,p) are naturally pointed by the element 0. Moreover
0Ux =xUO0 = 0. Therefore the above map of spaces factors through:

H(X,n,p) x A (X m,q) — A7 (X, n,p) NA(X,m,q)
— A X,n+mp+q) .

Lemma 5.12. Let x € H),(#P,R(p)) and y € H),(#P,R(q)). Then for any
i >0 the map mi(x Uy) = 0.

Proof. Let us write E = Hom (NI, #P). Then the map n(x Uy) can be fac-
tored as

m:(E) ™98 1 (E A E) — (A (N n, p) A A (N, m, q))
— (A (NW,n+m,p+q)) .
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But since §' A S” = §% and for i > 0, ;5% = 0, the map n;(diag) = 0.

(5.2.9) We are ready to prove Theorem 5.2. Leti > 0 and ¢ € K;_;(X, ). By
Lemma 5.11, we have that

ch(o) = mi(ch(ezp))(0),
p(o) = mi(p(esp))(0)

Therefore
ch(a) = p(0) = mi(ch(esr) — plesr))(0) -

By Corollary 5.10, ch(egp) — p(egp) is a sum of decomposable elements.
Therefore by Lemma 5.12.

concluding the proof of the theorem.

(5.3) The same argument shows that, for a smooth simplicial complex
variety X, an integer i > 0, and an element o € K;(X) then ch(a) = p(a). To
prove the same result for i < 0 one can use an analogous argument using
A" P ([Sch)]), with m > —i.

6 Higher Bott-Chern forms

The higher Bott-Chern forms introduced in Sect. 3 are differential forms
defined on X x (IP')*. Nevertheless, the original Bott-Chern forms [B-C] and
the higher Bott-Chern forms introduced by Wang in [Wan] are differential
forms defined on X. The aim of this section is to relate both notions of
higher Bott-Chern forms, in the case when X is a proper smooth complex
variety. The main tool for this comparison will be an explicit quasi-iso-
morphism

(X, p) — 9" (X,p) .

To this end we shall first introduce some complexes which compute absolute
Hodge homology and cohomology.

(6.1) Let us begin by introducing the complex where the simplest Bott-Chern
forms are defined. This complex is a minor modification of the complex used
by Wang in [Wan] (see also [Bu 2]). The use of this complex has been
suggested by Deligne in [De]. Let X be a proper smooth complex variety. We
shall write

ER(X)(p) = Qui)'ER (X) -
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Definition 6.1. The complex W* (X, p) is defined by

Ei'(@)(p-1)n @B FX),  for n<op-1,

P +q'=n—1
P<p.qd<p
W X,p) =4 Ex(X)(p)n P EY(X)NKerd, for n=2p,
P Aq'=n
rzp, q=p
0, for n>2p .

If x € W' (X, p) the differential dyy is given by
—n(dx), forn<2p—1,
dpx = { —200x, forn=2p—1,
0, forn=2p ,

where

nE(X) —Eg(X)p-1)N D E(X),
p+q'=n—1
P<p,d<p
is the projection.

Proposition 6.2. If X is a proper smooth complex variety, then

H* (W (X, p)) = Hy (X, R(p)) -

Proof. Since X is proper,

) H' (X, R ,  for n <2p,
Hy (X, R(p)) = {0”( ) for n>21;

where HZ, (X,IR(p)), denotes real Deligne cohomology of X. Therefore the
result follows from [Bu 2, Sect. 2].
As in [Bu 2], we have morphisms of complexes

Y9 (X, p) —W(X,p)

and
¢ : WX, p) — H"(X,p)
given by
n(w), forn<2p-—1
Y(a,f w) = and

Zﬂ—p ai,n—i + awp—l,n—pH + (_l)pgapfl,nfprl, for n > 2[7 ,

i=p
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and

(x) = (0xp’1’"’p — Ex”’p’p’l,28xp’l=””’,x), for n<2p—1 and
¢ (X,X,O), for n > 2p ,

where, if x € E%, then x = ) x”9 is the decomposition of x in terms of pure
type. The morphisms ¢ and iy are homotopy equivalences inverse to each
other.

(6.2) In order to make the process of comparison clearer, we need an
auxiliary complex to compute absolute Hodge cohomology, which is pro-
vided with a graded commutative and associative product. It can be ob-
tained by means of the Thom-Whitney simple introduced by Navarro Aznar
(see [N 2] for the general definition and properties of the Thom-Whitney
simple).

Let L} be the differential graded commutative IR-algebra of algebraic
forms over Ap. Explicitly L = R¢] and L} = Rlelde. Let & : L} — R
(resp. d1) be the evaluation at 0 morphism (resp. evaluation at 1).

Definition 6.3. Let X be a smooth complex variety. The Thom-Whitney simple
of the absolute Hodge complex, denoted by H1w(X,p), is the subcomplex of

(@m0 iy () & s, 1 PPEy () © (L By ) )

formed by the elements (r, f,®) such that

®(0) = (0 ® Id)(w) =7,
o(l) = (6 @ 1d)(0) =

Let £ and I be the morphisms of complexes

I

StwX,p) _ $(X,p)

E
given by

E(r.f,0)=(rfe0f+(l - @r+de® ),
1

I(r,f,a)): r,f,/w »

0

where the integration symbol means formal integration with respect to the
variable e. These morphisms are homotopy equivalences (see [N 2]).
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We shall denote by I’ the composition
Siw (X, ) 5 97 (X, %) D W (X, %) |
and by E’ the composition
W (X, %) 5 (X, ) 2 Sy (X, ) -

The morphisms I” and E’ are also homotopy equivalences inverse to each
other.
We can define a product

Hiw(X,p) @ i (X, q) — S (X, p+q)

by
(rf,o) U, fl0) =AY fAf oNd) .

This product is associative, graded commutative and satisfies the Leibnitz
rule. Therefore

Hrw (X, %) = D H1w (X, p)
P

is a differential associative graded commutative algebra. Moreover, the R-
algebra structure induced in A, (X, IR( p)) by this product coincides with the
RR-algebra structure introduced by Beilinson [Be].

(6.3) Let us give the homology analogue of the last complex. This is done by
means of currents. For a proper smooth complex variety X, let D, .(X) be
the double chain complex of complex currents over X, let D,(X) be the
associated single complex, and let DR(X) be the real subcomplex. We shall
write

F,D.(X) =@ Dy, .
P

'<p
Let 2D, (X) be the subcomplex

D,(X), if n>2p,
2D, (X) = { Ker(d), if n=2p,
0, if n<2p.

Since X is proper, the filtration t plays the role of the décalée weight
filtration.

Let L! be the chain complex defined by L} = L;* (see 6.2). We shall
denote by d¢ and J; the evaluation at 0 and 1 as in (6.2).
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Definition 6.4. Let $1% (X, p) be the subcomplex of
((2ni)P122PD§(X) O ¥ NE,D.(X)® <L1 ®12%D, (X)))

formed by the elements (r, f, ®) such that

o(0) = (0 ® 1d)(w) =7,
o)=0Id)o=71 .
The homology of the complex SjIW (X, p) is the absolute Hodge homology
of X.

(6.4) The last complex we introduce is an analogue of 55*(X ,p), replacing
$"(X,p) by 1w (X, p). We shall denote by Hp'1w (X, p) the double complex
given by

]rPnTW(X p) = 55?W<X X (]Pl)inap) )
with differentials

d = dg,
d// — Z(_l)l+ldlj )

Then the double complex SS}{,‘V(X ,p) is given by
S (X,p) = Oprw(X.p /ZS Biw (X, p) ) @waSf( baw (X,p— 1))~

Finaly let H1w(X,p) be the associated simple complex. The differential of
this complex will be denoted by d.

Observe that the homotopy equivalences £ and / induce homotopy
equivalences

StwlX,p) 97 (X.p) .

E

(6.5) In order to pull down forms in X x (IP')" to X, we need some differ-
ential forms on X x (IP')" which will play a role similar to the currents
“integration along the standard simplex”.

Let (x:y) be homogeneous coordinates of P!, and let # = x/y be the
absolute coordinate of P'. Let us write €* = Py — {0, 00}. Let
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1 _
Jo= EE’(log 1)
1 (dt di _dt dt dt .
2(1 = t,(8+ ) ® ; +(E-1)® -+ de® Ogtt>
€ Si'>'11“W<(]:*7 1)
Let us consider the open subset (C*)" C X x (IP')". Let us denote by

pi: (C)'"— ", i=1,...,n the projections over the i-th factor. Let us
write J; = p; /.

Definition 6.5. Let W, € H1w ((C)",n) be the form defined by
Wy = 1U--Uly .

(6.6) Since the forms W, will play a central role, let us present a more explicit
description. Let us write W, = (W!, W? W?). Then

1 & [dt; dt;
wh=—N[—-=
=N
ndt,‘
li

Wk =
i=1
1 i dt; dt; _
3 _ i i
VVn —51/\1((64'1)@7"'(6—1)®t_l+d€®10gtlll> .

Let S, denote the symmetric group. Let us write, for i =0,...,n,

P= Y1

geC,

. dt.i:
A-ee A /\7”('“)/\.../\7

I5(1) o) to(i+1) Lo(n)

dtg(l)

and, fori=1,...,n,

N Z et Aloien) o)
I6(2) Io(iy  la(i+1) Lo(n)

S, = Z(_l)(rk)g(ta(l)fo(l))

geS,

Then we have

1 & o1 ,
wh==—N(-1)""———pP!
n 2nz( ) Mn—iy'm

i=0
1 & (€+1)i(6_1)n—i ) 1 (€+1)i—](6_1)n—i .
w3 =_— — ' RP +— de® S .
" 2; in—i ° "+2n; T R

(6.7) We are not as interested in the forms W,, as in their associated
currents. Let o € EzlPl)”' Let us denote by [w] € Dy, ((P')") the current
defined by
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fa®welQF

()" we write

[a® o] =a® o]
€Ll ® Dy, ((PY)") .

In this way we obtain a map

g%w((]Pl)nvp) - 552n r(( )nv”_p)
(r.fow)  — ([ [f],[o])

This definition can be extended to any locally integrable differential
form.

Definition 6.6. We shall denote by [W,] the element of $' ((IP')",0) given
by
) = (], [we]. [w,]) -

13

The following result exhibits the analogy between the currents “in-
tegration along the standard simplex” and the currents [I¥,].

Proposition 6.7. The currents [W,] satisfy the relation

am) =33 (<1 () (]

i=1 j=0,1

Proof. Formally this proposition is the Leibnitz rule. To prove it we can
work component by component. By a standard residue argument:

= i(—l)”’(d})*w_l] ~

By the same argument and taking some care with permutations one sees
ii () 1) - - [P
%

d[si] = [P]+ [P] +ZZ DS () (= D[Si] = (= D[s)]) -

k=1 j=0
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The proposition follows from the above formulas and the explicit descrip-
tion of W! and W? given in (6.6).

n

(6.8) Acting component by component, the currents [I#,] induce morphisms
] Spaw (X, p) = Hrw (X x (P!)",p) — S (X, p) -
Lemma 6.8. The morphisms [W,)] factorize through morphisms

(W] = S (X, p) — (X, p) -

Proof. Let us denote by ¢; the automorphism of (IP')" given by
oi(Ger i)y (i i)y Go i) = (Gersyn)y ey O Xi) - (2 0))
Then (o;),[W,] = —[W,], for i =1,...,n . On the other hand, if
1€ si(SFHW.p)) @ 0 Asi(Spw (X.p—1)
then (o;)*n = 5. Therefore
(Waln = —(03).[Waln = =[W](0:)"n = =[Wln .
Hence [W,]n = 0 proving the result.

Definition 6.9. Let Wrw be the morphism

given, for n € 9w (X, p), by

Wiln, if n>0,
WTW(”I):{,[7 b iszO.

Proposition 6.10. The morphism Wrw is a morphism of complexes. Moreover
it is a quasi-isomorphism.

Proof. The fact that is a morphism of complexes is a consequence of Pro-
position 6.7. Let

U 9w (X, p) — S (X, p)

be the morphism induced by the equality H7y (X, p) — 55;8\, (X,p). We have

that 1 = 7 o ' o E, where 1 is the quasi-imorphism defined in Proposition 1.2.
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Therefore i/ = Id is a quasi-isomorphism. Since Wrw o 1/ = Id we have that
Wrw is also a quasi-isomorphism.

Definition. 6.11. Let us denote by W the morphism
W=lolwoE: S (X,p)— 9 (X.p) .

Observe that W is also a quasi-isomorphism. Summarizing, we have the
following diagram of complexes and quasi-isomorphisms.

S'x,p) 7 9Xp L WX.p
e| 1

(6.9) The diagram above allows us to define different kinds of higher
Bott-Chern forms. For instance let us recover the original definition of
higher Bott-Chern forms due to Wang [Wan] and the classical Bott-Chern
forms.

Definition 6.12. Lel_? be an exact metrized n-cube. We shall also call the
Bott-Chern form of F the form

ch(7),=voW(ch(7),) .

One may compute these forms directly using the following result.

Proposition 6.13. Let & be an emi-n-cube. Then

&ln(ﬁ)wzﬁ/@ly ho (tr, (7)) AT'OW,)

Proof. This result is consequence of the following facts

(1) The morphism [’ is functorial.

(2) For any smooth complex variety Z, if w € Sj%’{,v(Z,p) and n € DTy
(Z*, %), then I'(w U n) = I'(w) AT'(n) (see [Bu 2]).

(3) I' o E' = Id. Therefore

I'(E(cho(trs (7)) ) = I'(E'(cho(tr,(F)))) = cho(tr, (7)) -
Up to a normalization factor, the formula given in Proposition 6.13 is

the original definition due to Wang [Wan]. To see this, let us compute
explicitly 7'(W,) € W'((C*)", n).
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Proposition 6.14.

! ( l)n - i—1 i
Ir'w,) = -H)Ts .
( ) 2n! P ( ) n

Proof. Since W, € H1w((C*)",n), by (6.1) and (6.2), we have
1

I/(VV,,):TC /W: )
0

where the integral symbol means integration with respect to the variable e,
and = is the projection

— an—1 —
T E’(q(EJ)n — (2mi) E?@*l)",m .

This projection is given by n(z) = (z 4 (—1)""'z)/2. Therefore

. 1 & e+ D) He—1)"" . -
I(W"):W;/O : (i—)l)!gn—i))! de(8,+(-1)""'S, ) -

But S, = §"~*!. Then, joining the terms with S', and taking into account
that

pt [T e et )T e— 1)
(=1) ]/0 (- Dl(n—i) de_/,l == 9%

we have that

, 1 ¢ Pe+ D)D"
I(%):lel:(/_l G deSn>.

But

proving the result.
The following result is a direct consequence of the definitions.

Proposition 6.15. Let X be a proper smooth complex variety. Let
E:0—F —G—H—0
be an exact sequence of locally free sheaves over X. Let us denote by &:(E) the

Bott-Chern form of & as defined by Bismut, Gillet and Soulé [B-G-S], [G-S 1]).
Then
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chi(3), = —1/2bc  mod(Imd+Imd) .

(6.10) The use of the Thom-Whitney simple for absolute Hodge cohomol-
ogy, besides giving a way to construct the currents 1, allows us to define a
multiplicative theory of Bott-Chern forms.

Definition 6.16. Let F be an exact metrized n-cube. We shall call the multi-
plicative Bott-Chern form of F the form

(T )y = Waw(E(ch,(F) ) -

In particular, if F is a hermitian locally free sheaf, then

cho(F)rw = E(cho(F) ) -
On the other hand, if # is an emi-n-cube, then

1 _

- .
b, (P = G /(]Pl)n G (11, (7)) oy U T

Definition 6.17.7Let7.9_T be a metrized exact n-cube and let% be a metrized exact
m-cube. Then F @9 is the metrized exact n + m-cube given by

(Ed/-T ®g)l1 44444 Iptm = ('9-7)[1 ,,,,, i ® (g)inAl,...,i,,er
with the obvious morphisms and metrics.

Proposition 6.18. Let 7 (resp. 9) be a metrized exact n-cube (resp. m-cube).
Then

C~hn+m(=/ ®{Z)TW = CNllln(ﬁ)TW U C~hm @)TW :

Proof. We may assume that.# and 4 are emi-cubes.

Let 7 : X x (P — X x (P')" be the projection over the first n-
projective lines and let 7 : X x (IP))"*” — X x (IP')" be the projection
over the last m-projective lines.

Lemma 6.19. Let 7 (resp.9) be an emi-n-cube (resp. emi-m-cube). Then

try (7 @%) = nitr,(7) @ mitr, (@) .

Proof. By Sect. 3, (3.7), it is enough to show that, if m > 1, then
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trl(g'_'@g) =<0/~7®t1”1(g) ,

and if m = 0, then

tr (7 %) =tr|(F7) @9 .

Since tr; is computed in each edge separately, it is enough to prove the case
n =1, m =0, but this case follows directly from the definition.

Using lemma 6.19, the multiplicativity and functoriality of the Chern
character forms and the definition of the forms W, we have:

Chn+n1 (9—'7 ®

l\.)

e

1 — e 17
ﬂl)n+m[ o ChO (mtr,(F) @ mytrn (@) rw U Waem

1 * 1. T * 1. 7 * *
Qi) micho (tr, (7)) rw U mycho (0, (%)) pyy U 1y W, U my Wy

7Tl l)n+m

(P
= ch, T )rw Ychn @)1y -
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