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Abstract. In this paper, we prove a Gauss-Bonnet theorem for the higher
algebraic K-theory of smooth complex algebraic varieties. To each exact
n-cube of hermitian vector bundles, we associate a higher Bott-Chen form,
generalizing the Bott-Chern forms associated to exact sequences. These
forms allow us to de®ne characteristic classes from K-theory to absolute
Hodge cohomology. Then we prove that these characteristic classes agree
with Beilinson's regulator map.

Introduction

The aim of this paper is to generalize the Gauss-Bonnet theorem to the
higher algebraic K-theory of smooth complex algebraic varieties.

The Gauss-Bonnet theorem states that, if X is a compact oriented
2-dimensional riemannian manifold, thenZZ

X
KdA � 2pv�X � ;

whereK is the gaussian curvature of the riemannian metric and v�X � is the
Euler characteristic of the manifold X . Thus, this theorem relates a global
topological invariant, the Euler characteristic, with a locally de®ned dif-
ferential geometrical object, the gaussian curvature. The Gauss-Bonnet
theorem may be restated saying that the closed formK=2p represents, in de
Rham cohomology, the Euler class of the tangent bundle.

This result was generalized by Chern ([Ch], see also [Gr], [M-S]). If X is
an almost complex manifold and E is a complex vector bundle, by topolo-
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gical means (for instance obstruction theory), we can de®ne some char-
acteristic classes of the vector bundle, called the Chern classes of E,

cj�E� 2 H2j�X ; �2pi�jZ�; j � 0 :

In this paper we shall restrict the discussion to the Chern character (see
[M-S]), denoted ch0�E�, which is a certain power series, with rational coef-
®cients, in the Chern classes. The Chern character is additive for exact
sequences. Nevertheless, since the cohomology groups we shall consider will
be real vector spaces, any result about the Chern character will imply the
analogous result for any power series in the Chern classes.

Let us provide E with a hermitian metric h. Let EX denote the di�erential
graded commutative algebra of complex valued di�erential forms on X , and
let EX ;R denote the subalgebra of real forms. Let D be the unique connection
of E satisfying

(1) D preserves h.
(2) If U � X is an open subset and s is a holomorphic section of EjU , then

Ds is of pure type �1; 0�.
Let K � D2 be the curvature form. Following Chern and Weil, let us write

ech0�E; h� � tr exp�ÿK� 2a
p
�2pi�pEp;p

X ;R :�1�

Then the form ech0�E; h� is closed. The Chern theorem states that the formech0�E; h� represents, in de Rham cohomology, the Chern character class.
Observe that an oriented riemannian 2 dimensional manifold admits a

canonical structure of complex manifold. Since the Euler class is the top
Chern class, the Gauss-Bonnet theorem is a particular case of Chern's
theorem.

The additivity of the Chern character implies that it induces a group
homomorphism

ch0 : K0�X �ÿ! a
j
�2pi�jH 2j�X ;Q� ;

where K0�X � is the Grothendiek group of X .
Characteristic classes for higher algebraic K-theory were introduced by

Gillet in [Gi]. These classes are de®ned on any cohomology theory satisfying
certain properties, such as de Rham cohomology. Nevertheless, in this case,
these higher characteristic classes do not give much information. For in-
stance, for a proper smooth complex algebraic variety, the only non zero
classes are the original Chern classes from the K0 group. In contrast, if the
cohomology theory is absolute Hodge cohomology, the Chern character
map obtained in this way agrees with the Beilinson regulator map, which is
highly non trivial and is involved in very deep and far reaching conjectures
[Be].
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Recall that, for X a smooth proper algebraic complex variety, we have

H 2p
H�X ;R� p�� � H p;p�X ;C� \ �2pi�pH 2p�X ;R�;

H2pÿ1
H �X ;R� p�� � H pÿ1;pÿ1�X ;C� \ �2pi�pÿ1H 2pÿ2�X ;R� :

Therefore, since, by (1), the Chern character form has the right Hodge type,
the Chern theorem implies that the Chern character form represents, in
absolute Hodge cohomology, the Chern character class. The question of
generalizing the Chern theorem to the characteristic classes from higher K-
theory to absolute Hodge cohomology arises naturally.

In their paper about arithmetic characteristic classes of hermitian vector
bundles [G-S 1], Gillet and SouleÂ accomplished the ®rst step of this pro-
gram, extending the Chern theorem to the case of K1�X �. Let us brie¯y
explain this result.

The elements of K1�X � may be represented by exact sequences of vector
bundles. Thus, the ®rst step is to understand what is the analogue of the
Chern forms of hermitian vector bundles in the case of exact sequences of
hermitian vector bundles.

Let

n : 0ÿ!�E0; h0� ÿ!�E; h�ÿ!�E00; h00� ÿ! 0 ;

be an exact sequence of hermitian vector bundles. Then the Chern character
classes satisfy

ch0�E� � ch0�E0� � ch0�E00� :

Nevertheless, in general, the Chern character form does not behave addi-
tively:

ech0�E; h� 6� ech0�E0; h0� � ech0�E00; h00� :
In the case when h0 and h00 are the metrics induced by h, Bott and Chern
([B-C]) have de®ned a di�erential form, ech1�n�, which will be called the Bott-
Chern form of n, such that

ÿ2@@ ech1�n� � ech0�E0; h0� � ech0�E00; h00� ÿ ech0�E; h� :�2�

Note that the normalization factor we use is di�erent from the normal-
ization factor used in the original paper. The forms ech1�n� are natural and
well de®ned only up to Im @ � Im @.

Bismut, Gillet and SouleÂ [B-G-S], [G-S 1] have given a di�erent con-
struction of Bott-Chern forms that can be applied to the case when h0 and h00

are not the induced metrics. These Bott-Chern forms are also well de®ned
only up to Im @ � Im @.
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Bott-Chern forms are exactly what we were looking for, and, when X is
proper, Gillet and SouleÂ [G-S 1] have given an explicit description of Bei-
linson's regulator map for K1�X � in terms of these Bott-Chern forms, thus
extending the Chern theorem to the group K1.

As we have seen, the Chern character class on the K0 is additive for exact
sequences. Nevertheless one cannot make a consistent choice of re-
presentatives of the Chern character that behave additively for exact se-
quences. The Bott-Chern forms measure precisely this lack of additivity at
the level of Chern forms, and they are responsible for the Chern character
for the K1-group. Following Schechtman's ideas [Sch] the lack of additivity
of the representatives of the Chern character for Ki is responsible for the
Chern character for Ki�1. Thus, the lack of additivity of Bott-Chern forms
should allow us to de®ne second order Bott-Chern forms that give a de-
scription of Beilinson's regulator map for the K2. And we can repeat this
process to obtain Beilinson's regulator map for all the K groups.

In this direction, when X is proper, the second author [Wan] has de®ned
higher Bott-Chern forms for exact hermitian n-cubes. These forms may be
thought of as an iteration of Bott-Chern forms. Moreover, he has used them
to de®ne characteristic classes for higher K-theory, proving that, if one can
naturally extend higher Bott-Chern forms to the non proper case, then these
characteristic classes agree with Beilinson's regulator map.

In this paper we shall give a variant of Wang's original construction that
can be easily extended to the non-proper case, thus completing the proof of
the Gauss-Bonnet theorem for higher algebraic K-theory. An interesting
feature of the construction given here is that we obtain well de®ned Bott-
Chern forms and not only modulo Im @ � Im @.

Parallel results in the framework of multiplicative K-theory have been
obtained by Karoubi in [K1] and [K2].

Gillet and SouleÂ [G-S 1] have used Bott-Chern forms to de®ne arithmetic
K0 groups. SouleÂ has suggested [So], see also [De], that one may de®ne higher
arithmetic K-groups as the homotopy ®bre of Beilinson's regulator map. We
expect that higher Bott-Chern forms, as presented in this paper, will be
useful in giving a more concrete de®nition of higher arithmetic K-theory and
studying its properties.

Throughout the paper all vector bundles will be algebraic and we shall
use the equivalent notion of locally free sheaf.

The plan of the paper is as follows. In Sect. 1 we recall the de®nition of
real absolute Hodge cohomology. We shall also show that real absolute
Hodge cohomology can be computed by means of a complex composed by
forms de®ned on X � �P1�n, n � 0. Higher Bott-Chern forms will live in this
complex.

In Sect. 2 we introduce and study some properties of smooth at in®nity
hermitian metrics. Over a non proper smooth complex variety, to compute
real absolute Hodge cohomology, one needs to impose logarithmic condi-
tions at in®nity to the di�erential forms. Thus we cannot use arbitrary
hermitian metrics because they will produce di�erential forms with arbitrary
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singularities at in®nity. The use of smooth at in®nity hermitian metrics
ensures that Bott-Chern forms have the right behaviour at in®nity.

In Sect. 3 we recall the notion of exact metrized n-cubes. To each exact n-
cube, E, we shall attach a vector bundle, trn�E� over X � �P1�n which may be
thought of as a homotopy between the faces of E. When the hermitian metrics
of E satisfy certain technical condition, we shall de®ne a natural metric on
trn�E�. The Chern character form of the vector bundle trn�E�will play the role
of higher Bott-Chern forms. Note that these forms live in X � �P1�n.

In Sect. 4 we use higher Bott-Chern forms to de®ne Chern character
classes from higher K-theory to real absolute Hodge cohomology.

In Sect. 5 we prove that the higher Chern character de®ned in Sect. 4
agrees with Beilinson's regulator map.

In Sect. 6 we recall several complexes that compute real absolute Hodge
cohomology and homology. Using them we give, for X proper, two di�erent
versions of higher Bott-Chern forms which are de®ned on X . The ®rst one,
obtained using the Thom-Whitney simple, is multiplicative. The second one
agrees with classical Bott-Chern forms and with the original de®nition due
to Wang.

Acknowledgement.We would like to thank Prof. C. SouleÂ who suggested this question to us and
helped us with encouragement and numerous hints. Without him this paper would never have
been produced. We would like to thank Prof. V. Navarro Aznar for his help and ideas; in
particular, the ®nal de®nition of Bott-Chern forms is due to a conversation with him. Moreover,
he proposed some shortcuts in Sect. 2. We would also like to thank Prof. B. Mazur for his
support and guidance. We acknowledge the help of many colleagues for useful conversations
which have helped us to understand a number of aspects of the subject. Our thanks to J.B. Bost,
N. Dan, H. Gillet, D. Grayson, P. Guillen, F. Lecomte, C. Naranjo, P. Pascual and D. Roessler.

1 Absolute Hodge cohomology

In this section we shall recall the de®nition of real absolute Hodge coho-
mology [Be] of a smooth complex algebraic variety X . By a smooth complex
variety we shall mean a smooth separated scheme of ®nite type over C. We
shall also construct a complex, composed by forms on X � �P1�n, n � 0,
whose cohomology is the real absolute Hodge cohomology of X .

(1.1) Let X be a smooth proper complex variety. Let Y � X be a normal
crossing divisor and let us write X � X ÿ Y . Let E�

X
be the di�erential

graded algebra of di�erential forms on X , and let E�
X
�log Y � be the di�er-

ential graded algebra of C1 complex di�erential forms on X with loga-
rithmic singularities along Y (see [Bu 1]). The algebra E�

X
�log Y � has a real

structure, E�
X
�log Y �R, a weigh ®ltration W de®ned over R and a Hodge

®ltration F . Moreover the cohomology of this algebra gives us the coho-
mology of X with its real mixed Hodge structure.

Let us denote by bW the deÂ caleÂ e ®ltration of W . That is

bWrEn
X
�log Y � � x 2 WrÿnEn

X
�log Y � j dx 2 Wrÿnÿ1En�1

X
�log Y �

n o
:
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We write

E�log�X � � limÿ!
�~Xa ;Ya�

E�~X a
�log Ya� ;

where the limit is taken along all the smooth compacti®cations eXa of X with
Ya � eXa ÿ X a normal crossing divisor. Then E�log�X � is a di�erential graded
algebra and it has an induced real structure, a weight ®ltration and a Hodge
®ltration. Moreover the map

E�
X
�log Y �R; bW� �

ÿ! E�log�X �R; bW� �
is a ®ltered quasi-isomorphism and the map

E�
X
�log Y �; bW ; F

� �
ÿ! E�log�X �; bW ; F

� �
is a bi®ltered quasi-isomorphism.

(1.2) Let us write

H��X ; p� � s��2pi�p bW2pE�log�X �R � bW2p \ F pE�log�X �!
u bW2pE�log�X �� ;

where u�r; f � � f ÿ r and s denotes the simple of a morphism of complexes,
i.e. the coÃ ne shifted by one. The di�erential of this complex will be denoted
by dH .

The real absolute Hodge cohomology of X [Be] is

H n
H�X ;R� p�� � Hn�H�X ; p�� :

(1.3) A cubical or cocubical object (see [G-N-P-P]) is an object modeled on
the cube in the same way as a simplicial or cosimplicial object is modeled on
the simplex. Let �P1

C�� be the cocubical scheme which in degree n is �P1
C�n,

the n-fold product of the complex projective line. The faces and degen-
eracies

di
j : P1

C

ÿ �nÿ! P1
C

ÿ �n�1
; i � 1; . . . ; n� 1; j � 0; 1

si : P1
C

ÿ �nÿ! P1
C

ÿ �nÿ1
; i � 1; . . . ; n ;

are given by

di
0�x1; . . . ; xn� � �x1; . . . ; xiÿ1; �0 : 1�; xi; . . . ; xn�

di
1�x1; . . . ; xn� � �x1; . . . ; xiÿ1; �1 : 0�; xi; . . . ; xn�
si�x1; . . . ; xn� � �x1; . . . ; xiÿ1; xi�1; . . . ; xn� :
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(1.4) The complexes H��X � �P1��; p� form a cubical complex. We shall write

si � Id� siÿ ��
;

dj
i � Id� di

j

� ��
:

Let us denote by H�;�P �X ; p� the associated double complex. That is

Hr;n
P �X ; p� � Hr X � P1

ÿ �ÿn
; p

ÿ �
;

with di�erentials

d 0 � dH ;

d 00 �
X
�ÿ1�i�jdj

i :

(1.5) We want to obtain from H�;�P �X ; p�, a complex which computes the
absolute Hodge cohomology of X . On the one hand, since we are using a
cubical theory we need to factor out by the degenerate elements (see [Mas]).
On the other hand, we need to kill all cohomology classes coming from the
projective spaces.

Let us denote by p0 : X � �P1�nÿ!X the projection over the ®rst factor
and by pi : X � �P1�nÿ!P1, i � 1; . . . ; n, the projection over the i-th pro-
jective line.

Let �x : y� be homogeneous coordinates of R1. Let us write

g � log
x�x� y�y

x�x
:

Let x � @ �@g 2 �2pi�E2
P1;R

be a KaÈ hler form over P1. Let xi � p�i x 2
E�log�X � �P1�n�. For an element

x � �r; f ; g� 2 Hr X � �P1�n; pÿ �
;

we shall write

xi ^ x � �xi ^ r;xi ^ f ;xi ^ g�
2 Hr�2 X � P1

ÿ �n
; p � 1

ÿ �
:

De®nition 1.1. We shall denote by eH�;��X ; p� the double complex given by

eHr;n�X ; p� � Hr;n
P �X ; p�

Xÿn

i�1
si Hr;n�1

P �X ; p�
� �

� xi ^ si Hrÿ2;n�1
P �X ; p ÿ 1�

� �
:

,

We shall denote by eH��X ; p� the associated simple complex. The di�erential of
this complex will be denoted by d.
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In the de®nition of eHr;n�X ; p�, the ®rst summand of the quotient is meant to
kill the degenerate classes, whereas the second summand should kill the
classes coming from the projective spaces. The next result shows that we
have reached our objective.

Proposition 1.2. The natural morphism of complexes

i : H��X ; p� � eH�;0�X ; p�ÿ! eH��X ; p�
is a quasi-isomorphism.

Proof. Since eH��X ; p� is a simple complex associated to a double complex,
there is a second quadrant spectral sequence with E1 term

Er;n
1 � Hr eH�;n�X ; p�� �

:

When this spectral sequence converges, the limit is H ��eH��X ; p��. The fol-
lowing lemma shows that this spectral sequence converges and implies that i
is a quasi-isomorphism.

Lemma 1.3. For n < 0 the cohomology of the complex eH�;n�X ; p� is zero.
Proof. For each j let us write

eHr;n
j �X ; p� � Hr;n

P �X ; p�
Xj

i�1
si Hr;n�1

P �X ; p�
� �

� xi ^ si Hrÿ2;n�1
P �X ; p ÿ 1�

� �
:

,

Let us prove, by induction over j, that for j � 1

H � eH�;nj �X ; p�
� �

� 0 :

For j � 1, n � ÿ1, the complex eHr;n
1 �X ; p� is the cokernel of the mono-

morphism

H��X � �P1�ÿnÿ1; p��H��X � �P1�ÿnÿ1; p ÿ 1��ÿ2� ÿ! H��X � �P1�ÿn; p�
a � b 7ÿ! s1�a� � x1 ^ s1�b�

But by the Dold-Thom isomorphism for absolute Hodge cohomology, the
above morphism is a quasi-isomorphism. For j > 1, n < ÿ1, eH�;nj �X ; p� is
the cokernel of the monomorphism

eH�;nÿ1jÿ1 �X ; p� � eH�;nÿ1jÿ1 �X ; p ÿ 1��ÿ2� ÿ! eH�;njÿ1�X ; p�
a � b 7ÿ! sj�a� � xj ^ sj�b� :

By induction hypothesis, the source and the target of this morphism have
zero cohomology. Therefore the cokernel also has zero cohomology.
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2 Smooth at in®nity hermitian metrics

In this section we introduce smooth at in®nity hermitian metrics. For a
smooth complex variety X and a locally free sheaf F, a smooth at in®nity
hermitian metric is a metric that can be extended to a smooth metric over
some compacti®cation of F. The interest of smooth at in®nity hermitian
metrics is that they provide representatives of Chern classes in absolute
Hodge cohomology.

(2.1) Before de®ning smooth at in®nity hermitian metrics, we shall study
classes of compacti®cations of locally free sheaves.

De®nition 2.1. Let X be a smooth complex variety and letF be a locally free
sheaf over X . A compacti®cation of F is a smooth compacti®cation of X ,
i : X ÿ! eX , a locally free sheaf eF over eX and an isomorphism u : Fÿ! i� eF.

A compacti®cation of F will be denoted by �i; eX ; eF;u�. Usually we shall
identify X with i�X � and F with eFjX , and denote a compacti®cation by

� eF; eX �.
Proposition 2.2. Let X be a smooth complex variety and letF be a locally free
sheaf over X . Then there exists a compacti®cation of F.

Proof. Let X ÿ! eX1 be any compacti®cation of X . Then there is a coherent

sheaf eF1 on eX1 such that eF1jX �F. By [Ro] (see also [Ri] and [N 1]) there

is a proper modi®cation w : eX ÿ! eX1, which induces an isomorphism

wÿ1�X �ÿ!X , and such that eF � w�� eF1�=Tor�w�� eF1�� is a locally free

sheaf. Moreover eFjwÿ1�X � is isomorphic to eF1jX . Thus the induced map

i : X ÿ! eX is a compacti®cation of X , and eF is a compacti®cation of F.

De®nition 2.3. Let X be a smooth complex variety and letF be a locally free

sheaf over X . Let �i1; eX1; eF1;u1� and �i2; eX2; eF2;u2� be two compacti®cations
of F. We say that eF1 and eF2 are equivalent if there exists a third com-

pacti®cation �i3; eX3; eF3;u3� and morphisms w1 : eX3ÿ! eX1 and w2 : eX3ÿ! eX2

such that

1) w1 � i3 � i1 and w2 � i3 � i2.
2) There are isomorphisms a1 : eF3ÿ!w�1 eF1 and a2 : eF3ÿ!w�2 eF2 such

that i�3a1 � u3 � u1 and i�3a2 � u3 � u2.

In order to simplify the notation, a class of equivalent compacti®cations of
F will be denoted by a single symbol, for instance eF. Moreover, if there is
no danger of confusion, we shall denote by the same symbol the locally free
sheaf which appears in any representative of this class.

(2.2) Let us see that a compacti®cation class induces uniquely determined
compacti®cation classes in quotients and subsheaves.
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Theorem 2.4. Let X be a smooth complex variety and let

n : 0ÿ!Fÿ!f Gÿ!g Hÿ! 0

be an exact sequence of locally free sheaves over X . Then for any compacti-

®cation class eG of G, there are uniquely determined compacti®cation classeseF and eH of F andH respectively such that n extends to an exact sequence

en : 0ÿ! eFÿ!ef eGÿ!eg eHÿ! 0 ;

over a compacti®cation eX of X .

Proof. Let eX1 be a compacti®cation of X where eG is de®ned. Let r � rkH.

Let Grass reXi
� eG� be the Grassmanian of rank r quotients of eG [G-D]. Let us

denote by U the universal bundle on Grass reX1
� eG�. The exact sequence

n : 0ÿ!Fÿ!f Gÿ!g Hÿ! 0

induces a morphism

u : X ÿ!Grass reX1
� eG� :

By resolution of singularities, there is a proper modi®cation eX of eX1, which
is a compacti®cation of X and such that u extends to a morphism

eu : eX ÿ!Grass reX1
� eG� :

Then eH � eu��U� is a compacti®cation of H, eF � Ker� eGÿ! eH� is a
compacti®cation of F and n extends to an exact sequence

en : 0ÿ! eFÿ!ef eGÿ!eg eHÿ! 0 :

The unicity follows from the fact that, since X is dense in eX , the
morphism eu is unique.

De®nition 2.5. Let X be a smooth complex variety and let

n : 0ÿ!Fÿ!f Gÿ!g Hÿ! 0

be an exact sequence of locally free sheaves over X . Let eG be a class of
compacti®cations of G. Then the classes of compacti®cations eF and eH, ofF
and H respectively, obtained in theorem 2.4 are called the induced compac-
ti®cations.

(2.3) Let us introduce smooth at in®nity hermitian metrics.
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De®nition 2.6. Let X be a smooth complex variety, let F be a locally free
sheaf over X and let h be an hermitian metric onF.We say that h is smooth at
in®nity if there exist a compacti®cation eF ofF, and a smooth metric eh on eF
such that ehjX � h.

A smooth at in®nity hermitian metric determines univocally a compacti®-
cation class.

Proposition 2.7. Let X be a smooth complex variety and letF be a locally free
sheaf on X . Let eF and eF0 be two compacti®cations of F and let eh and eh0 be
smooth metrics on eF and eF0. If ehjX � eh0jX , then eF and eF0 are equivalent
compacti®cations.

Proof.We can assume that both compacti®cations are de®ned over the same
variety eX . Let KeX be the sheaf of rational functions over eX .

The identity on F induces morphisms

f : eF
KeX ÿ! eF0 
KeX ;

f 0 : eF0 
KeX ÿ! eF
KeX ;

which are inverses of each other. By symmetry it is enough to show that
f � eF� � eF0.

Let U be a Zariski open subset of eX . A section s 2 C�U ; eF0 
KeX �
belongs to C�U ; eF0� if and only if eh0�s�x�� <1 for all x 2 U . But if

s 2 C�U ; eF� then eh0� f �s��jX\U � eh�s�jX\U . Since U \ X is dense in U we

have eh0� f �s�x��� � eh�s�x�� <1 for all x 2 U .

Proposition 2.8. Let

n : 0ÿ!F0 ÿ!Fÿ!F00 ÿ! 0

be an exact sequence of locally free sheaves on X and let h be a smooth at
in®nity metric onF. Then the metrics h0 and h00 induced by h inF0 andF00 are
smooth at in®nity.

Proof. Let eF be a compacti®cation ofF provided with a metric eh, such thatehjX � h. By theorem 2.4. there are compacti®cations eF0 and eF00 such that n
can be extended to an exact sequence

en : 0ÿ! eF0 ÿ! eFÿ! eF00 ÿ! 0 :

Then the metric eh induces smooth metrics eh0 and eh00 on eF0 and eF00. But the
restrictions of eh0 and eh00 to X are h0 and h00. Therefore these metrics are
smooth at in®nity.
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Proposition 2.9. Let f : X ÿ! Y be a morphism between smooth complex
varieties. Let �F; h� be a locally free sheaf over Y with h a smooth at
in®nity metric. Then � f �h� is a smooth at in®nity metric on the locally free
sheaf f �F.

Proof. Let �eY ; eF� be a compacti®cation of �Y ;F�, such that there exists a
hermitian metric eh with ehjX � h. Let eX1 be any compacti®cation of X . We
shall denote by C the graph of f , and by C the adherence of C in eX1 � eY . LeteX be a resolution of singularities of C and let ef : eX ÿ! eY be the induced

morphism. Then �eX ; ef � eF� is a compacti®cation of �X ; f �F� and ef �eh is a

smooth metric such that ef �ehjX � f �h. Therefore f �h is smooth at in®nity.

(2.4) Let us see that smooth at in®nity hermitian metrics provide re-
presentatives of the Chern character classes in absolute Hodge cohomology.
Let X be a smooth complex variety,F a locally free sheaf and h a smooth at
in®nity hermitian metric. Let eF be the compacti®cation class of F de-
termined by h, eX a compacti®cation of X where eF is de®ned, and eh a
smooth metric on eF extending h. Let K (resp. eK) be the curvature form of
�F; h� (resp. � eF;eh�). Let us write

ech0�F; h� � Tr exp�ÿK� ;ech0� eF;eh� � Tr exp�ÿeK� :
These forms are closed. Moreover,

ech0� eF;eh� 2a�2pi�pE p; peX ;R :

Since ech0� eF;eh�jX � ech0�F; h�,

ech0�F; h� 2a
p�0

W0E
2p
log�X �R \ F pE2p

log�X �
� �

:

Since this form is closed,

ech0�F; h� 2a
p�0

bW2pE2p
log�X �R \ F pE2p

log�X �
� �

:

Thus the triple

ech0�F; h�H � � ech0�F; h�; ech0�F; h�; 0�

is a cycle of ap�0H
2p�X ; p�.

Proposition 2.10. The cycle ech0�F; h�H represents the Chern character of F
in absolute Hodge cohomology.
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Proof. If X is proper we have

H 2p
H�X ;R� p�� � H p;p�X ; �2pi�pR� :

Therefore the result follows from the classical description of the Chern
character in terms of curvature forms. In the non proper case it follows from
the functoriality of the Chern character.

3 Exact n-cubes of locally free sheaves

In this section we shall recall the notion of exact n-cube (see [Lo 2], [Wan]).
To each metrized exact n-cube, F, which satis®es certain conditions, we
shall associate a metrized locally free sheaf on X � �P1�n, called the n-th
transgression ofF. This transgression can be viewed as a homotopy be-
tween its vertexes. The Chern character form of the transgression will play
the role of higher Bott-Chern forms.

(3.1) First some notations. Let ÿ1; 0; 1h i be the category associated to the
ordered set fÿ1; 0; 1g. Let ÿ1; 0; 1h in be its n-th cartesian power. By con-
vention, the category ÿ1; 0; 1h i0 has one element and one morphism.

Let E be an exact category.

De®nition 3.1. A n-cube of E, F, is a functor from ÿ1; 0; 1h in to E.

De®nition 3.2. Given a n-cube F, and numbers i 2 f1; . . . ; ng, j 2 fÿ1; 0; 1g,
then the nÿ 1-cube, @j

iF de®ned by

@j
iF

ÿ �
a1;...;anÿ1

�Fa1;...;aiÿ1;j;ai;...;anÿ1

is called an face of F. Given a number i 2 f1; . . . ; ng and a nÿ 1-tuple
a � �a1; . . . ; anÿ1� 2 fÿ1; 0; 1gnÿ1, the sequence

@a
icF � @anÿ1

n . . . @ai
i�1@

aiÿ1
iÿ1 . . . @a1

1 F

is called an edge of F.
Explicitly, the edge @a

icF is

Fa1;...;aiÿ1;ÿ1;ai;...;anÿ1 ÿ!Fa1;...;aiÿ1;0;ai;...;anÿ1 ÿ!Fa1;...;aiÿ1;1;ai;...;anÿ1 :

De®nition 3.3. A n-cube is called an exact n-cube if all its edges are short exact
sequences.

We shall denote by CnE the exact category of exact n-cubes. Observe that,
for all non negative integers n, m, there is a natural isomorphism of categories
CnCmEÿ!Cn�mE. In particular, an exact n-cube can be viewed as an exact
sequence of exact nÿ 1-cubes or as an exact nÿ 1-cube of exact sequences.
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The maps

@j
i : Ob CnEÿ!Ob Cnÿ1E ;

are called face maps. The maps

sj
i : Ob CnEÿ!Ob Cn�1E; for i � 1; . . . ; n; and j � ÿ1; 1 ;

given by

sj
i �F�a1;...;an�1 �

0; if ai � j;
Fa1 ; . . . ; aiÿ1; ai�1; . . . ; an�1; if ai 6� j ;

�
are called degeneracy maps. An exact n-cube F 2 Im sj

i is called degenerate.

(3.2) We shall write CnE � Ob CnE and CE � qCnE.
Assume that the category E is small. To avoid set theoretical problems,

in the sequel we shall always assume tacitly that we replace any large ca-
tegory by an equivalent small full subcategory. Observe that the diagram CE
behaves like a cubical diagram. We have replaced the category 0; 1h i by the
category ÿ1; 0; 1h i. This motivates the following construction.

Let ZCnE be the free abelian group generated by CnE. And let the
di�erential d : ZCnEÿ!ZCnÿ1E be given by

d �
Xn

i�1

X1
j�ÿ1
�ÿ1�i�j@j

i :

Let Dn � ZCnE be the subgroup generated by the degenerate exact n-cubes.
Then dDn � Dnÿ1. Therefore the following de®nition makes sense.

De®nition 3.4. The homology complex associated to CE is

eZCE � ZCE=D :

(3.3) For the remainder of the section, let us ®x a smooth complex variety
X . Let E�X � be the exact category of locally free sheaves on X and let E�X �
be the exact category of pairs �F; h�, where F 2 ObE�X � and h is a
smooth at in®nity hermitian metric on F. The morphisms of this category
are

HomE�X � F; h� �; F0; h0� �� � � HomE�X � F;F0� � :

LetF be the forgetful functor E�X �ÿ!E�X �. By choosing metrics we may
construct a functor G : E�X �ÿ!E�X �. Then F � G is the identify functor on
the category E�X �. Moreover, the identity morphism on the vector bundles
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is a natural transformation between G � F and the identity functor in E�X �.
Thus F is an equivalence of categories.

For simplicity we shall write C�X � � CE�X �. An elementF 2 Cn�X � is
called a metrized exact n-cube of locally free sheaves.

(3.4) For technical reasons we need to work with metrized exact n-cubes
which have, in all the quotients, the induced metrics.

De®nition 3.5.We shall say that a metrized exact n-cube,F � f�Fa; ha�g has
induced quotient metrics (an emi-n-cube for short) if, for each n-tuple
a � �a1; . . . ; an�, and each i with ai � 1, the metric ha is induced by the metric
h�a1;...;aiÿ1;0;ai�1;...;an�.

Let us see that there are enough emi-n-cubes. Let a 2 fÿ1; 0; 1gn be a
n-tuple. We shall write a � 0 if ai � 0 for all i.

Proposition 3.6. Let F be an exact n-cube of locally free sheaves and, for all
a � 0, let ha be a hermitian metric onFa. Then there is a unique way to choose
metrics ha for all a 6� 0, such thatF � f�Fa; ha�g is an emi-n-cube.

Proof. The uniqueness is clear. For the existence, we have to see that, in each
Fa, with a 6� 0, all the possible induced metrics agree. This is guaranteed by
the following result.

Lemma 3.7. Let fEi;jgi;j � ÿ1; 0; 1 be an exact 2-cube of complex vector
spaces. Let h be a hermitian metric on E0;0 and let h1;0 and h0;1 be the hermitian
metrics in E1;0 and E0;1 induced by h. Then the metrics induced by h1;0 and h0;1
in E1;1 agree.

Proof. Let us identify Eÿ1;0 and E0;ÿ1 with their images in E0;0. Then the
metric h1;0 in E1;0 is induced by the isomorphism E?ÿ1;0 � E1;0. Therefore we
can identify E1;0 with E?ÿ1;0 and the morphism E0;0ÿ!E1;0 with the ortho-
gonal projection. But the image of E0;ÿ1 by this orthogonal projection is
�Eÿ1;0 � E0;ÿ1� \ E?ÿ1;0. Therefore the metric in E1;1 induced by h1;0 is in-
duced by the isomorphism �Eÿ1;0 � E0;ÿ1�? � E1;1. By symmetry, the same is
true for the metric induced by h0;1.

(3.5) Let ZCemi�X � be the subcomplex of ZC�X � generated by the emi-
n-cubes, and let Demi be the subcomplex of ZCemi�X � generated by the
degenerate emi-n-cubes. We shall write

eZCemi�X � � ZCemi�X �
�

Demi � eZC�X � :

To translate results about emi-n-cubes to all exact metrized n-cubes we
need to construct a morphism of complexes

eZC�X �ÿ! eZCemi�X � :
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If a 2 fÿ1; 0; 1gn with ai > ÿ1, we shall write aÿ i � �a1; . . . ; aiÿ1; . . . ; an�.
LetF � f�Fa; ha�g 2 Cn�X �. For i � 1; . . . ; n let k1iF be de®ned by

k1iFa � Fa; ha� �; if ai � ÿ1; 0;
Fa; h0a
ÿ �

; if ai � 1 ;

�
where h0a is the metric induced by haÿi. Thus k1iF has the same locally free
sheaves asF, but we have replaced the metrics of the locally free sheaves of
the face @1iF, by the metrics induced by @0iF.

Let k2iF be the exact n-cube determined by

@ÿ1i k2iF � @1iF;

@0i k
2
iF � @1i k1iF;

@1i k
2
iF � 0 :

This n-cube measures in some sense the di�erence betweenF and k1iF.
Let us write kiF � k1iF� k2iF, and let us denote by k the map

k : ZCn�X � ÿ! ZCn�X �
F 7ÿ! kn . . . k1F; if n �1,

F; if n � 0 .

�

Then one can check the following properties:
(1) k is a morphism of complexes.
(2) Im k � ZCemi�X �.
(3) k�D� � Demi.

Therefore this map induces a morphism of complexes

k : eZC�X �ÿ! eZCemi�X � :

In fact k is a homotopy equivalence. The inverse being the inclusioneZCemi�X �ÿ! eZC�X �.
(3.6) LetF be an emi-n-cube of locally free sheaves. We shall associate to it
a locally free sheaf trn�F� on X � �P1�n which, roughly speaking, is a
homotopy between the vertexes ofF.

Let ��x1 : y1�; . . . ; �xn : yn�� be homogeneous coordinates of �P1�n. LetIxi

(resp. Iyi) be the sheaf of ideals in X � �P1�n de®ned by the subvariety
xi � 0, (resp. yi � 0). Let p0 : X � �P1�nÿ!X and pi : X � �P1�nÿ!P1;
i � 1; . . . ; n, be the projections. Then the maps

Ixi ÿ!
xÿ1i p�i OP1�ÿ1� ;

Iyi ÿ!
yÿ1i p�i OP1�ÿ1�
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are isomorphisms. The sheaf OP1�ÿ1� has a metric induced by the standard
metric on C2. We put in Ixi and Iyi the metrics induced by the above
isomorphisms. By 2.9, these metrics are smooth at in®nity.

For each pair of integers i 2 f1; . . . ; ng and j 2 fÿ1; 0g, we write

Ii;j � Iyi ; if j � ÿ1,
Ixi ; if j � 0 .

�
For each a 2 ÿ1; 0; 1h in, with a � 0, and for each k 2 f1; . . . ; ng, with
ak � ÿ1, we write

Ja �
Yn

i�1
Iÿ1i;ai

�KX��P1�n ;

Ja;k �
Y
i6�k

Iÿ1i;ai
�KX��P1�n ;

where KX��P1�n is the sheaf of rational functions on X � �P1�n.
Given an n-tuple a � 0 and an integer k 2 f1; . . . ; ng,with ak � ÿ1, we

write a� k � a1; . . . ; ak � 1; . . . ; an� �. We have the inclusions

Ja;k � Ja;

Ja;k � Ja�k :

Let us denote by ua;k :Faÿ!Fa�k the morphismF�aÿ! a� k�. Let w be
the morphism

w : a
a�0

a
kjak�ÿ1

p�0Fa 
Ja;k ÿ! a
a�0

p�0Fa 
Ja�k ;

which sends s
 g 2 p�0Fa 
Ja;k to

w�s
 g� � s
 g� ua;k�s� 
 g

2 p�0Fa 
Ja � p�0Fa�k 
Ja�k :

The locally free sheaf aa�0p
�
0Fa 
Ja has a metric induced by the

metrics of Ixi , Iyi andFa. This metric is smooth at in®nity.

De®nition 3.8. The n-transgression ofF is the hermitian locally free sheaf

trn�F� � Coker�w� ;

with the metric induced by the metric of aa�0p
�
0Fa 
Ja. By Proposition 2.8,

this metric is smooth at in®nity.

The following result follows directly from the de®nition.
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Proposition 3.9. LetF be an emi-n-cube. Then there are isometries

trn F
ÿ ���

fxi�0g � trnÿ1 @0iF
ÿ �

;

trn F
ÿ ���

fyi�0g � trnÿ1 @ÿ1i F
ÿ ��? trnÿ1 @1iF

ÿ �
:

(3.7) Let us give an inductive construction of the transgressions. If n � 1, an
emi-1-cube,F is a short exact sequence

Fÿ1ÿ!f F0ÿ!F1 ;

where the metric ofF1 is induced by the metric ofF0. Then tr1�F� is the
cokernel of the map

Fÿ1ÿ! Fÿ1 
Iÿ1y1 �F0 
Ixÿ1
1

s 7ÿ! s 
 1 � f �s� 
 1 :

Observe that this is a minor modi®cation of the locally free sheaf used by
Bismut, Gillet and SouleÂ [B-G-S], [G-S 1] to construct Bott-Chern forms. In
the de®nition given here, we avoid the use of partitions of unity, obtaining a
natural construction. The price is to restrict ourselves to emi-n-cubes.

If F is an emi-n-cube, let tr1�F� be the emi-nÿ 1-cube over X � P1

de®ned by:

tr1 F
ÿ �

a� tr1 @
a
ncF

ÿ �
:

Then we write

trk F
ÿ � � tr1 trkÿ1 F

ÿ �ÿ �
:

The hermitian locally free sheaf trn�F� de®ned in this way coincides with the
earlier de®nition. Thus the transgressions are simply an iteration of the
construction of Bismut, Gillet and SouleÂ .

(3.8) For any homology complex A�, we shall denote by A� the cohomology
complex de®ned by Ak � Aÿk. Let us use the transgressions previously de-
®ned, to associate to every emi-n-cube a family of di�erential forms.

De®nition 3.10. Let

ch : ZC�emi�X �ÿ! a
p

eH��X ; p��2p�

be the map given by

chF
ÿ � � ech0 trn F

ÿ �ÿ �
H

;

where ech0���H is as in (2.4).
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Proposition 3.11. The map ch is a morphism of complexes and factorizes
through a unique morphism

ch : eZC�emi�X �ÿ! a
p

eH��X ; p��2p� :

Proof. To see that it is a morphism of complexes, observe that, since the
forms ech0���H are closed,

dch trn F
ÿ �ÿ � �Xn

i�1

X1
j�0
�ÿ1�i�jdj

i
ech0 trn F

ÿ �ÿ �
H

�
Xn

i�1
�ÿ1�i ech0�trn

�
F

��
H

����
fxi�0g

�
Xn

i�1
�ÿ1�i�1 ech0�trn

�
F

��
H

����
fyi�0g

�
Xn

i�1
�ÿ1�i ech0�trn

�
F

�����
fxi�0g

�
H

�
Xn

i�1
�ÿ1�i�1 ech0�trn

�
F

�����
fyi�0g

�
H

:

Therefore, by Proposition 3.9,

dch trn F
ÿ �ÿ � �Xn

i�1

X1
j�ÿ1
�ÿ1�i�j ech0 trnÿ1 @

j
iF

ÿ �ÿ �
H

� ch dF
ÿ �

:

To see the existence of the factorization, we have to show that, for a
degenerate emi-n-cube F, we have ch�F� � 0 in a eH��X ; p�. By
symmetry we may assume thatF � sj

nG, with j 2 fÿ1; 1g and G an emi-
nÿ 1-cube.

If j � 1, then trnÿ1�F� is the exact sequence

0ÿ! Id� sn� ��trnÿ1 G
ÿ �ÿ!Id Id� sn� ��trnÿ1 G

ÿ �ÿ! 0ÿ! 0 :

Therefore trn F
ÿ �

is the cokernel of the map

Id� sn� ��trnÿ1 G
ÿ �ÿ! Id� sn� ��trnÿ1 G

ÿ �
Iÿ1yn
� Id� sn� ��trnÿ1 G

ÿ �
Iÿ1xn

x 7ÿ! x
 1 � x
 1 :

But Iÿ1yn
and Iÿ1xn

are both isometric with p�nO�1�. Hence this cokernel is
isometric with Id� sn� ��trnÿ1 G

ÿ �
 p�nO�2�, where O�2� is provided with the
standard metric. Thus

ech0 trn F
ÿ �ÿ �

H
� Id� sn� �� ech0 trnÿ1 G

ÿ �ÿ �
H
�2xn ^ Id� sn� �� ech0 trnÿ1 G

ÿ �ÿ �
H
:

which is zero in aeH��X ; p�.
The case j � ÿ1 is analogous.
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De®nition 3.12. We shall denote also by ch the composition

eZC��X �ÿ!k eZC�emi�X �ÿ!ch a
p

eH��X ; p��2p� :

De®nition 3.13. LetF be a metrized exact n-cube. The form ch�k�F�� will be
called the Bott-Chern form ofF and will be denoted by echn�F�H.

4 Higher characteristic classes

The Chern character from K-theory to a suitable cohomology theory, such
as absolute Hodge cohomology, is additive for exact sequences. Never-
theless, given a cochain complex which computes absolute Hodge coho-
mology, we cannot make a consistent choice of representatives of the Chern
character that behaves additively. Following the ideas of Schechtman
([Sch]), the lack of additivity at the level of complexes, of the Chern char-
acter for Kn, gives us the Chern character for Kn�1.

In the previous section we have associated, to each metrized exact n-
cube, a family of di�erential forms. The di�erential form associated to an n-
cube measures the lack of additivity of the di�erential forms associated to its
faces. In this section we shall see that this construction allows us to de®ne
higher Chern character classes from K-theory to absolute Hodge coho-
mology.

(4.1) Let us begin by reviewing the Waldhausen K-theory of a small exact
category. We shall follow [Sch] (See also [Wal] or [Lo 1]).

For n 2 N, let Cat�n� denote the category associated with the ordered set
f1; . . . ; ng. Let Mn be the category of morphisms of Cat�n�. That is

Ob Mn � �i; j� 2 N�N j 0 � i � j � nf g ;

and Hom��i; j�; �k; l�� contains a unique element if i � k and j � l and is
empty otherwise. The categories Mn form a cosimplicial category M .

For any category C, let us denote by MnC the category of functors from
Mn to C.

De®nition 4.1. Let E be a small exact category and 0 a ®xed zero object of E.
Let SnE be the full subcategory of MnE, whose objects are the functors
Mnÿ!E, such that,

(1) for all i, Ei;i � 0;
(2) for all i � j � k,

Ei;jÿ!Ei;k ÿ!Ej;k

is a short exact sequence.
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Let us write SnE � Ob SnE. We shall denote by SE or S1E the simplicial
exact category qSnE, and by SE or S1E the simplicial set Ob SE.

In other words we have:

S0E � f0g;
S1E � Ob E;

S2E � fexact sequences of Eg;

SnE �

sequences of monomorphisms

E0;1ÿ!E0;2ÿ! � � � ÿ!E0;n

with a choice of quotients

Ei;j � E0;j=E0;i

8>>><>>>:
9>>>=>>>; :

In particular SE is a pointed simplicial set. In the sequel we shall sometimes
use the word space to denote simplicial sets.

For a space C, we shall denote by jCj its geometric realization.

Proposition 4.2. (Cf. [Lo 2].) There is a homotopy equivalence

SE � BQE ;

where Q denotes Quillen's Q-construction and B means classifying space.
Therefore, for all i � 0,

Ki�E� � pi�1 S�Ej j; 0� � :

(4.2) Let us recall the notion of spectrum from [Th]. For any pointed space
C, let us write RC for the suspension of C, and XC for the loop space of C.
We shall use the same notation for topological spaces.

De®nition 4.3. A prespectrum X is a sequence of pointed spaces Xn for all non-
negative integers n, together with structure maps RXnÿ!Xn�1. These maps
can also be described by their adjoint Xnÿ!XXn�1. A ®brant spectrum is a
prespectrum such that all Xn are ®brant spaces and the structure maps
Xnÿ!XXn�1 are weak equivalences.

The space SE is a piece of a prespectrum. To construct the other spaces
that form the prespectrum, we write inductively

SmE � SSmÿ1E;

SmE � SSmÿ1E :

Then Sm is an exact m-simplicial category and Sm is a m-simplicial set. For a
poly-simplicial set C let diag�C� denote its diagonal space. We shall denote by
Cj j � diag�C�j j its geometric realization.
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Proposition 4.4. (Schechtman [Sch 1.2].) There are natural maps

um : RSmEÿ! Sm�1E ;

inducing homotopy equivalences

SmEj j � X Sm�1E
�� �� :

As a consequence of this proposition, if we write S0E � XSE, then the
sequence of spaces diag�SmE� is a prespectrum. Moreover, if we replace the
above spaces by weakly equivalent ®brant spaces we shall obtain a ®brant
spectrum. For instance, let us denote by Sing the singular functor (see
[B-K]). Then, if we write

Km�E� � Sing�jSmEj� ;

the spaces Km form a ®brant spectrum. By Proposition 4.2, the homotopy of
this ®brant spectrum is the K-theory of E.

(4.3) For example, let X be a smooth complex variety, let m � 1 be an integer
and let us write Sm�X � � Sm�E�X ��. Then, for i � 0, the i-th K-groups of X is

Ki�X � � pi�m�jSm�X �j; 0� :
By Proposition 4.4 this de®nition does not depend on the choice of m.

(4.4) Let us associate, to each element of SnE, an exact nÿ 1-cube. We shall
do so inductively. For n � 1, we write

Cub�fEi;jg0�i�j�1� � E0;1 :

Assume that we have de®ned Cub E for all E 2 SmE, with m < n. Let
E 2 SnE. Then Cub E is the nÿ 1-cube with

@ÿ11 Cub E � s1nÿ2 . . . s11�E0;1�;
@01Cub E � Cub �@1E�;
@ÿ11 Cub E � Cub �@0E� :

For instance, if n � 2, then Cub �fEi;jg0�i�j�2� is the short exact sequence
E0;1ÿ!E0;2ÿ!E1;2 :

On the other hand, if n � 3, then Cub fEi;jg0�i�j�3
� �

is the exact square

E0;1 ÿ! E0;2 ÿ! E1;2?y ?y ?y
E0;1 ÿ! E0;3 ÿ! E1;3?y ?y ?y
0 ÿ! E2;3 ÿ! E2;3

All the faces of the nÿ 1-cube Cub E can be computed explicitly.
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Proposition 4.5. Let E 2 SnE. Then, for i � 1; . . . ; nÿ 1, the faces of the
nÿ 1-cube Cub E are

@ÿ1i Cub E � s1nÿ2 . . . s1i Cub @i�1 . . . @nE;

@0i Cub E � Cub @iE;

@1i Cub E � sÿ1iÿ1 . . . sÿ11 Cub @0 . . . @iÿ1E :

By proposition 4.5 and using induction we have,

Corollary 4.6. The nÿ 1-cube Cub E is exact.
Therefore we have a map Cub : SnEÿ!Cnÿ1E.

(4.5) Let ZSE be the homological complex associated with the simplicial set
SE. That is, ZSnE is the free abelian group generated by SnE, and the
di�erential d : ZSnEÿ!ZSnÿ1E is given by

d �
Xn

i�0
�ÿ1�i@i :

The map Cub can be extended by linearity to a map

Cub : ZSE�1� ÿ!ZCE :

Note that this map is not a morphism of complexes. However, the map Cub
induces a map also denoted by Cub : ZSE�1� ÿ! eZCE. And, since by
Proposition 4.5,

dCub E � Cub dE � degenerate elements ;

we have:

Corollary 4.8. The map Cub : ZSE�1� ÿ! eZCE is a morphism of complexes.

(4.6) We can obtain analogous maps for all the spaces SmE. In particular, we
have maps

Cub : Sn1 . . . SnmEÿ!Cn1ÿ1 . . . Cnmÿ1Eÿ!Cn1�����nmÿmE :

Let us denote by ZSmE the chain complex that, in degree n, is the free
abelian group generated by a

n1�����nm�n

Sn1 . . . SnmE :

The di�erential of this complex is the alternate sum of all the face maps.
Note that this complex is homotopically equivalent to Zdiag �SmE�. The
induced map
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Cub : ZSmE�m� ÿ! eZCE

is also a morphism of complexes.

(4.7) Let m � 1 be an integer. We shall denote by ZS�m�X � the cohomological
complex associated to the homological complex ZSm

� �X �.

De®nition 4.9. The Chern character map is the composition

ZS�m�X ��ÿm� ÿ!Cub eZC��X �ÿ!k eZC�emi�X �ÿ!
ch

a
p

eH��X ; p��2p� :

This map will also be denoted by ch. The Chern character classes are
obtained by composing with the Hurewick map:

Ki�X � � pi�m�Sm�X ��ÿ!Hi�m�ZSm�X ��ÿ! a
p

H 2pÿi
H �X ; p� :

Proposition 4.10. The above de®nition does not depend on the choice of m.

Proof. For a pointed simplicial set S, with base point p, we shall write

Z0S� � ZS�=Zp� :

The natural map RSm�X �ÿ! Sm�1�X � induces a morphism

Z0Sm
� �X ��m� ÿ!ZSm�1

� �X ��m� 1� :

By the proof of Proposition 4.4 in [Sch 1.2] this map is induced by the
natural bijection Sm�X �ÿ! S1Sm�X �. Therefore the diagram

Z0RSm
� �X ��m� 1� ÿ! Z0RSm�1

� �X ��m� 1�x?? ??yCub
Z0Sm

� �X ��m� ÿ!Cub eZ0C��X �
is commutative. By the commutativity of this diagram and proposition 4.4
the Chern character classes are independent of the choice of m

5 Beilinson's regulator

The aim of this section is to prove that the higher Chern character classes
de®ned in Sect. 4 agree with Beilinson's regulator map.

(5.1) Let us begin by extending the de®nition of the map ch to the case of
simplicial smooth complex varieties. To this end, we ®rst recall the con-
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struction of the absolute Hodge cohomology of X � X� a smooth simplicial
complex variety. For each p, the complexes eH��Xn; p� form a cosimplicial
complex as n varies. LetNeH��X�; p� be the associated double complex and
let us denote the simple complex by

eH��X ; p� � s�NeH��X�; p�� :
Then

H�H�X�;R� p�� � H��eH��X ; p�� :
For the de®nition of the K-theory of simplicial schemes we shall follow

[Sch]. We shall say that a smooth simplicial scheme X � X� has ®nite di-
mension if there is an integer m such that

X � Skm�X � ;

where Skm�X � is the m-th skeleton of X , that is, the simplicial scheme gen-
erated by X0; . . . ;Xm.

Let X � X� be a simplicial scheme of ®nite dimension. The family of
prespectrums fS�Xn�gn form a cosimplicial prespectrum S�X��. Let K�X�� be
a ®brant cosimplicial ®brant spectrum weakly equivalent to S�X��. Then the
K groups of X are de®ned as

Ki�X � � pi�1�Tot K�X��� :

Since X has ®nite dimension, there is a convergent spectral sequence

Ep;q
1 � Kÿq�Xp��)Kÿpÿq�X�� :

Observe that for a given simplicial scheme X�, of ®nite dimension, it is
not necessary to work with the whole spectrum. Let m be such that
X � SkmX . Let us choose a positive integer q, and let Kq�X�� be a ®brant
cosimplicial ®brant space, weakly equivalent to Sq�X��. If q > m or q > ÿi,
then

Ki�X�� � pi�q�Tot Kq�X��� :

For an arbitrary simplicial scheme we write

bK��X�� � lim ÿ
m

K��Skm�X��� :

Let X be a smooth simplicial complex variety of ®nite dimension. Since
the map ch de®ned in Sect. 4 gives us a morphism of complexes

ch : sNZS�q�X���q� ÿ!ap
eH��X ; p��2p� ;
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we can extend the de®nition of the Chern character to the simplicial case,
obtaining maps:

ch : Ki�X �ÿ! a
p

H 2pÿi
H �X ;R� p�� :

If X does not have ®nite dimension, taking limits, we have also char-
acteristic classes

ch : bKi�X �ÿ! a
p

H 2pÿi
H �X ;R� p�� :

Remark. 5.1. All the constructions needed to de®ne the map ch can be
extended to the case of a smooth simplicial scheme X . over C, such that each
Xn is a (not necessarily ®nite) disjoint union of smooth complex varieties.
For instance, by a compacti®cation of Xn we shall mean a disjoint union of
compacti®cations of each component of Xn.

(5.2) Beilinson [Be] has de®ned characteristic classes from K-theory to ab-
solute Hodge cohomology. These classes are a particular case of the char-
acteristic classes de®ned by Gillet [Gi] to any suitable cohomology theory. In
particular, Beilinson's regulator is the Chern character in this theory. Let us
denote by q the Beilinson's regulator map.

Then ch and q are natural transformations between contravariant
functors. Both agree with the classical Chern character on the K0 groups of
smooth complex varieties. The aim of this section is to prove the following
theorem.

Theorem 5.2. Let X be a smooth complex variety. Let r 2 Ki�X �. Then
ch�r� � q�r�.

Proof. Let U � fUag be an open covering of X . We shall denote by E�X ;U�
the full subcategory of E�X � composed by the locally free sheaves on X
whose restrictions to all Ua are free. We shall denote by E�X ;U� the category
of hermitian vector bundles on X whose restrictions to all Ua are free. Let us
write

Ki�X ;U� � pi�1�SE�X ;U�� � pi�1�SE�X ;U�� :
Then

Ki�X � � lim�!
U

Ki�X ;U� :

(5.2.1) Following Schechtman ([Sch]) we know that there is a simplicial
scheme BP , which is a classifying space for algebraic K-theory. More pre-
cisely, Schechtman proves the following result.
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Theorem 5.3. (Schechtman) There is a homotopy equivalence

SE�X ;U� � Hom�NU;BP � ;

where Hom is the function space and NU is the nerve of the covering.

(5.2.2) Let Y � Y� be a smooth simplicial scheme of ®nite dimension. Let
us denote by Hom�Y ;BP � the cosimplicial simplicial set Hom�Y ;BP �nm
� Hom�Yn;BPm�. Then

Hom�Y ;BP� � TotHom�Y ;BP � :

For any scheme X , let rX be the simplicial scheme with rXn � X and all the
faces and degeneracies equal to the identity. Then the simplicial set
Hom�X ;BP� is the function space Hom�rX ;BP �. Observe that rX is the
nerve of the trivial covering fXg. Thus, by Theorem 5.3 and the comparison
between Tot and Holim (cf. [B-K, XI, 4.4], [Th, 5.25] and [Le, 3.1.2]) we
obtain a natural map

TotHom�Y ;BP �ÿ!Holim SE�Yn; fYng� :

Taking homotopy groups we obtain natural maps

piHom�Y ;BP �ÿ!Kiÿ1�Y � :

In particular, if f : Y ÿ!BP is simplical morphism of simplicial
schemes, then f de®nes an element of p0Hom�Y ;BP�. Let us denote by ef

the image of this element in Kÿ1�Y �.
If Y does not have ®nite dimension, since any simplicial morphism

f : Y ÿ!BP induces simplicial morphisms fm : SkmY ÿ!BP , taking a limit,
we obtain an element ef 2 bKÿ1�Y �.
Remark 5.4. The identity of BP de®nes an element, denoted by
e
BP 2 bKÿ1�BP�. Moreover, for f as above, ef � f ��e

BP �.
(5.2.3) The element e

BP is, in some sense, a universal element in K-theory.
Since e

BP 2 bKÿ1, to exploit the universality of this element, we need to
relate elements in bKn with elements in bKÿ1. This can be done using
spheres.

Let r 2 Kn�X �. Then there is an open covering U of X , such that
r 2 Kn�X ;U� � pn�1�Hom�NU;BP ��. Therefore, there exists an integer
d � 0 such that r is represented by an element

cr 2 Hom�Subd Sn�1 � NU;BP � � Hom�Subd Sn�1;Hom�NU;BP�� ;

where Sn�1 is the (pointed) simplicial n� 1-dimensional sphere and Subd is
the d-th subdivision. Let us denote by

Pn�1 � Subd Sn�1.
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Lemma 5.5. Let Y � Y� be a smooth simplicial complex variety. Then there are
natural decompositions

bKÿ1�Xn�1�Y � � bKÿ1�Y � � bKn�Y �;
H2p�1
H

Xn�1�Y ;R� p�
� �

� H 2p�1
H �Y ;R� p�� � H 2pÿn

H �Y ;R� p�� :

Moreover, the maps ch and q are compatible with these decompositions.

Proof. We may assume that Y has ®nite dimension because the general case
is obtained taking the limit. Then

Kÿ1
Xn�1�Y
� �

� p0�Tota�Totb�K�
Xn�1

a
�Yb���� :

The spectral sequence associated with Tota has E2-term:

Ep;q
2 �

Kÿq�Y �; if p � 0; n� 1,
0; if p 6� 0; n� 1 .

�
Let us denote by � the simplicial point. Since the spectral sequence of � � Y
splits the spectral sequence of

Pn�1�Y , the above spectral sequence de-
generates at the E2-term, and the exact sequence obtained from this spectral
sequence splits in a natural way.

The same argument works for cohomology. Moreover, since ch and q
are natural transformations, they induce morphisms between the K-theo-
retical and the cohomological spectral sequences, proving the compatibility
statement.

Let us denote by pr : Kÿ1�
Pn�1�NU�ÿ!Kn�NU� the projection. The

precise meaning of the universality of eBP is given by the following
result.

Lemma 5.6. In the group Kn�NU�, the equality

pr�c�r�eBP �� � r

holds.

Proof. By Remark 5.4,

pr�c�r�eBP �� � pr�ecr
� :

On the other hand, by the de®nition of cr, the map

p0�Hom�
Xn�1�NU;BP ��ÿ!pr pn�1�Hom�NU;BP ��

sends the class of cr to the class of r. Therefore, since the diagram
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p0�Hom�
Pn�1�NU;BP �� ÿ! Kÿ1�

Pn�1�NU�
pr
?y pr

?y
pn�1�Hom�NU;BP �� ÿ! Kn�NU� :

is commutative we have that

prc�r�eBP �� � r :

(5.2.4) By Remark 5.1, the map ch is de®ned for the simplicial scheme BP .
Moreover, by the naturality of ch and q and their compatibility with the
map pr, we have

ch�r� � pr�c�r�ch�eBP ���;
q�r� � pr�c�r�q�eBP ��� :

Thus, to prove Theorem 5.2, we are led to compare ch�eBP � and q�eBP �. For
this comparison, we need to understand the cohomology of BP . This co-
homology has been computed by Schechtman [Sch]. The simplicial scheme
BP is the classifying space of a simplicial group P ., where P0 � � and
P1 � qnGL�n�. Thus it is a bisimplicial scheme B�P�. The edge homo-
morphism of the spectral sequence associated to the second index gives us a
morphism

dH : H2p�1
H �BP ;R� p��ÿ!

Y
n�0

H 2p
H�BGL�n�;R� p�� :

Let us denote by A � H�H�Spec C;R����.
For each i; n let us denote by

ci;n � ci�En� 2 H 2i
H�BGL�n�;R�i�� ;

the i-th Chern class of the tautological vector bundle over BGL�n�. Then we
have an isomorphism

H�H�BGL�n�;R���� � A�c1;n; . . . ; cn;n� :

Let sk;n 2 A�c1;n; . . . ; cn;n� be the k-th Newton polynomial in the ci;n. That is,
sk;n=n! is the degree k term of the Chern character of the tautological vector
bundle En. Let us write

sk � �sk;0; sk;1; . . .� 2
Y
n�0

H 2k
H�BGL�n�;R�k�� :

Proposition 5.7. (Schechtman [Sch]) There exist elements s1k 2 H 2k�1
H

�BP ;R�k�� such that dH �s1k� � sk and

H�H�BP ;R���� � A�s10; s11; . . .� :
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(5.2.5) Since

Hn
H�SpecC;R� p�� � R; if n � p � 0; or n � 1; p > 0,

0; otherwise ,

�
any element of H2k�1

H �BP ;R�k�� can be written as

as1k � decomposable elements ;

with a 2 R. Moreover, since by the proof of 5.7 [Sch] the decomposable
elements are mapped to 0 by dH , we have

Corollary 5.8. The group Ker dH �a
k

H 2k�1
H �BP ;R�k�� is generated by

decomposable elements.

(5.2.6) Schechtman computes the groups bK��BP � in a similar way. In par-
ticular, there is also an edge homomorphism

dK : bKÿ1�BP �ÿ!
Y

n

bK0�BGL�n�� :

Moreover, by the naturality of ch and q, they are compatible with the edge
homomorphisms. In particular

dH �q�eBP �� � q�dK�eBP ��; and dH �ch�eBP �� � ch�dK�eBP �� :

(5.2.7) Our next step will be to compare dH �q�eBP �� with dH �ch�eBP ��. To
this end we shall see that, since the maps ch and q agree for the K0 groups
of smooth complex varieties then they also agree for the groupbK0�BGL�n��.

Proposition 5.9. Let r 2 bK0�BGL�n��. Then

ch�r� � q�r� :

Proof. Let Gr�n; k� be the Grassman manifold of dimension n linear sub-
spaces of Ck and let E�n; k� be the rank n tautological vector bundle. Let
Uk � fUag be the standard trivialization of E�n; k�. Let us denote by
w : NUk ÿ!Gr�n; k� the natural map and by uk : NUk ÿ!BGL�n� the
classifying map. Since absolute Hodge cohomology can be computed as the
cohomology of a Zariski sheaf, the map

w� : H�H�Gr�n; k�;R����ÿ!H �H�NUk;R����

is an isomorphism. Moreover, for each i0 there is a number k0, such that, for
all k � k0 and all i � i0 the map
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u�k : Hi
H�BGL�n�;R����ÿ!Hi

H�NUk;R����

is an isomorphism. But for r 2 bK0�BGL�n�� we have

u�k�ch�r�� � ch�u�k�r�� � q�u�k�r�� � u�kq��r�� :

Since this is true for all k we have ch�r� � q�r�.
Combining 5.8 and 5.9 we get:

Corollary 5.10. The element ch�eBP � ÿ q�eBP � belongs to Ker dH . Therefore it
is a sum of decomposable elements.

(5.2.8) To exploit the fact that ch�eBP � ÿ q�eBP � is a sum of decomposable
elements, we shall give a description of how a class in H�H�BP ;R���� de-
termines a map between K-theory and absolute Hodge cohomology.

For any smooth simplicial scheme over C, X , and integers n, p, the
complex

H��X ; n; p� � s�0eH��X ; p��n�
is a negatively graded cohomological complex. Let H��X ; n; p� be
the associated homological complex. Let us denote by K�X ; n; p� the
simplicial group obtained by Dold-Puppe from H��X ; n; p�. Then, for
i � 0,

piK�X ; n; p� � H nÿi
H �X ;R� p�� :

Let us ®x a smooth complex variety X , and U an open covering of X . Let
us denote by u the tautological map

u : NU�Hom�NU;BP �ÿ!BP :

Given any class x 2 Hn
H�BP ;R�p��, we have a class

u��x� 2 Hn
H�NU�Hom�NU;BP �;R� p�� �
HomHo Hom�NU;BP �;K�NU; n; p�� :�

For any integer i, let us denote by pi�x� the induced map

pi�x� : Kiÿ1�X ;U� � piHom�NU;BP �ÿ! piK�NU; n; p� � Hnÿi
H �X ;R� p�� :

Taking the limit over all coverings we obtain morphisms

pi�x� : Kiÿ1�X �ÿ!Hnÿ1
H �X ;R� p�� :

This construction can be extended to the case when X is a simplicial smooth
complex manifold.
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Lemma 5.11. For x 2 H2k�1
H �BP ;R� p�� and r 2 Kiÿ1�X ;U� we have

pi�x��r� � pr c�r�x�
ÿ �

;

where cr is as in (5.2.3).

Proof. Since the map p��x� is natural, the same argument as for ch and q
shows that

pi�x��r� � pr c�r p0�x� eBP� �� �ÿ �
:

Let us denote by bKi�BP ;BP � the K-theory groups of BP with respect to
the trivial covering. Then the map

p0�x� : bKÿ1�BP ;BP � � p0Hom BP ;BP� �ÿ! p0K BP ; 2k � 1; k� �
� H2k�1�BP ;R�k�� ;

sends the class of f 2 p0Hom�BP ;BP � to f ��x�. Since eBP is represented by
the identity map, we get

p0�x� eBP� � � Id��x� � x ;

proving the lemma.

(5.2.9) The product structure in absolute Hodge cohomology is given by a
morphism of complexes

H��X ; n; p� 
H��X ;m; q�ÿ![ H��X ; n� m; p � q� ;

which induces a map of spaces

K��X ; n; p� �K��X ;m; q�ÿ![ K��X ; n� m; p � q� :

The spaces K�X ; n; p� are naturally pointed by the element 0. Moreover
0 [ x � x [ 0 � 0. Therefore the above map of spaces factors through:

K��X ; n; p� �K��X ;m; q�ÿ!K��X ; n; p� ^K��X ;m; q�
ÿ!K��X ; n� m; p � q� :

Lemma 5.12. Let x 2 H n
H�BP ;R� p�� and y 2 H m

H�BP ;R�q��. Then for any
i > 0 the map pi�x [ y� � 0.

Proof. Let us write E � Hom�NU;BP �. Then the map p�x [ y� can be fac-
tored as

pi�E� pi�diag����! pi�E ^ E�ÿ! pi�K�NU; n; p� ^K�NU;m; q��
ÿ! pi�K�NU; n� m; p � q�� :
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But since Si ^ Si � S2i and for i > 0, piS2i � 0, the map pi�diag� � 0.

(5.2.9) We are ready to prove Theorem 5.2. Let i > 0 and r 2 Kiÿ1�X ;U�. By
Lemma 5.11, we have that

ch�r� � pi ch eBP� �� ��r�;
q�r� � pi q eBP� ���r� � :

Therefore

ch�r� ÿ q�r� � pi ch eBP� � ÿ q eBP� �� ��r� :

By Corollary 5.10, ch�eBP � ÿ q�eBP � is a sum of decomposable elements.
Therefore by Lemma 5.12.

ch�r� � q�r�

concluding the proof of the theorem.

(5.3) The same argument shows that, for a smooth simplicial complex
variety X, an integer i � 0, and an element r 2 bKi�X � then ch�r� � q�r�. To
prove the same result for i < 0 one can use an analogous argument using
BmP ([Sch]), with m > ÿi.

6 Higher Bott-Chern forms

The higher Bott-Chern forms introduced in Sect. 3 are di�erential forms
de®ned on X � �P1��. Nevertheless, the original Bott-Chern forms [B-C] and
the higher Bott-Chern forms introduced by Wang in [Wan] are di�erential
forms de®ned on X . The aim of this section is to relate both notions of
higher Bott-Chern forms, in the case when X is a proper smooth complex
variety. The main tool for this comparison will be an explicit quasi-iso-
morphism

eH��X ; p�ÿ!H��X ; p� :

To this end we shall ®rst introduce some complexes which compute absolute
Hodge homology and cohomology.

(6.1) Let us begin by introducing the complex where the simplest Bott-Chern
forms are de®ned. This complex is a minor modi®cation of the complex used
by Wang in [Wan] (see also [Bu 2]). The use of this complex has been
suggested by Deligne in [De]. Let X be a proper smooth complex variety. We
shall write

E�R�X �� p� � �2pi�pE�R�X � :
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De®nition 6.1. The complex W��X ; p� is de®ned by

Wn�X ; p� �

Enÿ1
R �X �� p ÿ 1� \ a

p0�q0�nÿ1
p0<p; q0<p

Ep0;q0 �X �; for n � 2p ÿ 1,

En
R�X ��p� \ a

p0�q0�n
p0�p; q0�p

Ep0;q0 �X � \Ker d; for n � 2p,

0; for n > 2p .

8>>>>>><>>>>>>:
If x 2Wn�X ; p� the di�erential dW is given by

dWx �
ÿp�dx�; for n < 2p ÿ 1,
ÿ2@@x; for n � 2p ÿ 1,
0; for n � 2p ,

8<:
where

p : E��X �ÿ!E�R�X ��p ÿ 1� \ a
p0�q0�nÿ1
p0<p; q0<p

Ep0;q0 �X � ;

is the projection.

Proposition 6.2. If X is a proper smooth complex variety, then

H� W��X ; p�� � � H �H�X ;R� p�� :

Proof. Since X is proper,

H n
H�X ;R� p�� � H n

D�X ;R� p��; for n � 2p,
0; for n > 2p,

�
where Hn

D�X ;R� p��, denotes real Deligne cohomology of X . Therefore the
result follows from [Bu 2, Sect. 2].

As in [Bu 2], we have morphisms of complexes

w : H��X ; p�ÿ!W��X ; p�
and

u : W��X ; p�ÿ!H��X ; p�
given by

w�a; f ;x� �
p�x�; for n � 2p ÿ 1

andPnÿp
i�p ai;nÿi � @xpÿ1;nÿp�1 � �ÿ1�p@xpÿ1;nÿp�1; for n � 2p ,

8<:
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and

u�x� � @xpÿ1;nÿp ÿ @xnÿp;pÿ1; 2@xpÿ1;nÿp; x
ÿ �

; for n � 2p ÿ 1 and
�x; x; 0�; for n � 2p ,

�
where, if x 2 E�X , then x �P xp;q is the decomposition of x in terms of pure
type. The morphisms u and w are homotopy equivalences inverse to each
other.

(6.2) In order to make the process of comparison clearer, we need an
auxiliary complex to compute absolute Hodge cohomology, which is pro-
vided with a graded commutative and associative product. It can be ob-
tained by means of the Thom-Whitney simple introduced by Navarro Aznar
(see [N 2] for the general de®nition and properties of the Thom-Whitney
simple).

Let L�1 be the di�erential graded commutative R-algebra of algebraic
forms over A1

R. Explicitly L01 � R��� and L11 � R���d�. Let d0 : L�1ÿ!R
(resp. d1) be the evaluation at 0 morphism (resp. evaluation at 1).

De®nition 6.3. Let X be a smooth complex variety. The Thom-Whitney simple
of the absolute Hodge complex, denoted by H�TW�X ; p�, is the subcomplex of

�2pi�p bW2pE�log�X �R � bW2p \ F pE�log�X � � L�1

R
bW2pE�log�X �

� �� �
formed by the elements �r; f ;x� such that

x�0� � d0 
 Id� ��x� � r;

x�1� � d1 
 Id� ��x� � f :

Let E and I be the morphisms of complexes

H�TW�X ; p�
I

ÿ!
 ÿ
E

H��X ; p�

given by

E�r; f ;x� � �r; f ; �
 f � �1ÿ �� 
 r � d�
 x�;

I�r; f ;x� � r; f ;
Z1
0

x

0@ 1A ;

where the integration symbol means formal integration with respect to the
variable �. These morphisms are homotopy equivalences (see [N 2]).
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We shall denote by I 0 the composition

H�TW�X ; ��!
I

H��X ; ��!w W��X ; �� ;

and by E0 the composition

W��X ; ��!u H��X ; ��!E H�TW�X ; �� :

The morphisms I 0 and E0 are also homotopy equivalences inverse to each
other.

We can de®ne a product

Hn
TW�X ; p� 
 Hm

TW�X ; q�ÿ!
[

Hn�m
TW �X ; p � q� ;

by

�r; f ;x� [ r0; f 0;x0� � � r ^ r0; f ^ f 0;x ^ x0� � :

This product is associative, graded commutative and satis®es the Leibnitz
rule. Therefore

H�TW�X ; �� �a
p

H�TW�X ; p�

is a di�erential associative graded commutative algebra. Moreover, the R-
algebra structure induced in H �H�X ;R� p�� by this product coincides with the
R-algebra structure introduced by Beilinson [Be].

(6.3) Let us give the homology analogue of the last complex. This is done by
means of currents. For a proper smooth complex variety X , let D�:��X � be
the double chain complex of complex currents over X , let D��X � be the
associated single complex, and let DR

� �X � be the real subcomplex. We shall
write

FpD��X � � a
p0�p

Dp0;� :

Let s�2pD��X � be the subcomplex

s�2pDn�X � �
Dn�X �; if n > 2p,
Ker�d�; if n � 2p,
0; if n < 2p .

8<:
Since X is proper, the ®ltration s plays the role of the deÂ caleÂ e weight
®ltration.

Let L1� be the chain complex de®ned by L1k � Lÿk
1 (see 6.2). We shall

denote by d0 and d1 the evaluation at 0 and 1 as in (6.2).
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De®nition 6.4. Let HTW
� �X ; p� be the subcomplex of

2pi� �ÿps�2pDR
� �X � � s�2p \ FpD��X � � L1� 


R
s�2pD��X �

� �� �
formed by the elements �r; f ;x� such that

x�0� � d0 
 Id� ��x� � r;

x�1� � d1 
 Id� �x � f :

The homology of the complex HTW
� �X ; p� is the absolute Hodge homology

of X .

(6.4) The last complex we introduce is an analogue of eH��X ; p�, replacing
H��X ; p� by H�TW�X ; p�. We shall denote by H�;�P;TW�X ; p� the double complex
given by

Hr;n
P;TW�X ; p� � Hr

TW X � P1
ÿ �ÿn

; p
ÿ �

;

with di�erentials

d 0 � dH ;

d 00 �
X
�ÿ1�i�jdj

i :

Then the double complex eH�;�TW�X ; p� is given by

eHr;n
TW�X ; p� � Hr;n

P;TW�X ; p�
Xn

i�1
si Hr;n�1

P;TW�X ; p�
� �

� xi ^ si Hrÿ2;n�1
P;TW �X ; p ÿ 1�

� �,
:

Finaly let eH�TW�X ; p� be the associated simple complex. The di�erential of
this complex will be denoted by d.

Observe that the homotopy equivalences E and I induce homotopy
equivalences

eH�TW�X ; p�
I

ÿ!
 ÿ
E

eH��X ; p� :
(6.5) In order to pull down forms in X � �P1�n to X , we need some di�er-
ential forms on X � �P1�n which will play a role similar to the currents
``integration along the standard simplex''.

Let �x : y� be homogeneous coordinates of P1, and let t � x=y be the
absolute coordinate of P1. Let us write C� � P1

C ÿ f0;1g. Let
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k � 1

2
E0 log tt� �

� 1

2

dt
t
ÿ d�t

t
; 2

dt
t
; �e� 1� 
 dt

t
� �eÿ 1� 
 d�t

t
� de
 log tt

� �
2 H1

TW C�; 1� � :

Let us consider the open subset �C��n � X � �P1�n. Let us denote by
pi : �C��nÿ!C�; i � 1; . . . ; n the projections over the i-th factor. Let us
write ki � p�i k.

De®nition 6.5. Let Wn 2 Hn
TW��C��n; n� be the form de®ned by

Wn � k1 [ � � � [ kn :

(6.6) Since the forms Wn will play a central role, let us present a more explicit
description. Let us write Wn � �W 1

n ;W
2

n ;W
3

n �. Then

W 1
n �

1

2n

n̂

i�1

dti

ti
ÿ d�ti

ti

� �
W 2

n �
n̂

i�1

dti
ti

W 3
n �

1

2n

n̂

1�1
��� 1� 
 dti

ti
� ��ÿ 1� 
 d�ti

ti
� d�
 log titi

� �
:

Let Sn denote the symmetric group. Let us write, for i � 0; . . . ; n,

P i
n �

X
r2Sn

�ÿ1�r dtr�1�
tr�1�

^ � � � ^ dtr�i�
tr�i�
^ d�tr�i�1�

tr�i�1�
^ � � � ^ d�tr�n�

tr�n�
;

and, for i � 1; . . . ; n,

Si
n �

X
r2Sn

�ÿ1�r log tr�1�tr�1�
ÿ � dtr�2�

tr�2�
^ � � � ^ dtr�i�

tr�i�
^ d�tr�i�1�

tr�i�1�
^ � � � ^ d�tr�n�

tr�n�
:

Then we have

W 1
n �

1

2n

Xn

i�0
�ÿ1�nÿi 1

i!�nÿ i�! P i
n;

W 3
n �

1

2n

Xn

i�0

��� 1�i��ÿ 1�nÿi

i!�nÿ i�! 
 P i
n �

1

2n

Xn

i�1

��� 1�iÿ1��ÿ 1�nÿi

�iÿ 1�!�nÿ i�! d�
 Si
n :

(6.7) We are not as interested in the forms Wn, as in their associated
currents. Let x 2 Er

�P1�n . Let us denote by �x� 2 D2nÿr��P1�n� the current
de®ned by

298 J. I. Burgos, S. Wang



�x��u� � 1

�2pi�n
Z
�P1�n

u ^ x :

If a
 x 2 L�1 
 Er
�P1�n we write

�a
 x� � a
 �x�
2 L1� 
 D2nÿr P1

ÿ �nÿ �
:

In this way we obtain a map

Hr
TW P1

ÿ �n
; p

ÿ � ÿ! HTW
2nÿr P1

ÿ �n
; nÿ p

ÿ �
�r; f ;x� 7ÿ! ��r�; �f �; �x��

This de®nition can be extended to any locally integrable di�erential
form.

De®nition 6.6. We shall denote by �Wn� the element of HTW
n ��P1�n; 0� given

by

�Wn� � W 1
n

� �
; W 2

n

� �
; W 3

n

� �ÿ �
:

The following result exhibits the analogy between the currents ``in-
tegration along the standard simplex'' and the currents �Wn�.

Proposition 6.7. The currents �Wn� satisfy the relation

d�Wn� �
Xn

i�1

X
j�0;1
�ÿ1�i�j di

j

� �
�

Wnÿ1� � :

Proof. Formally this proposition is the Leibnitz rule. To prove it we can
work component by component. By a standard residue argument:

d W 2
n

� � � d
n̂

i�1

dti

ti

" #

�
Xn

i�1

X1
j�0
�ÿ1�i�j di

j

� �
�

W 2
nÿ1

� �
:

By the same argument and taking some care with permutations one sees

d P i
n

� � �Xn

k�1

X1
j�0
�ÿ1�k�j dk

j

� �
�

i P iÿ1
nÿ1

� �ÿ �nÿ i� P i
nÿ1

� �ÿ �
;

d Si
n

� � � P i
n

� �� P iÿ1
n

� ��Xn

k�1

X1
j�0
�ÿ1�k�j dk

j

� �
�
�iÿ 1� Siÿ1

nÿ1
� �ÿ �nÿ i� Si

nÿ1
� �ÿ �

:
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The proposition follows from the above formulas and the explicit descrip-
tion of W 1

n and W 3
n given in (6.6).

(6.8) Acting component by component, the currents �Wn� induce morphisms

�Wn� : Hr;ÿn
P;TW�X ; p� � Hr

TW X � P1
ÿ �n

; p
ÿ �ÿ!Hrÿn

TW�X ; p� :

Lemma 6.8. The morphisms �Wn� factorize through morphisms

�Wn� : eHr;n
TW�X ; p�ÿ!Hrÿn

TW�X ; p� :

Proof. Let us denote by ri the automorphism of �P1�n given by

ri x1 : y1� �; . . . ; xi : yi� �; . . . xn : yn� �� � � x1 : y1� �; . . . ; yi : xi� � . . . xn : yn� �� � :

Then �ri���Wn� � ÿ�Wn�, for i � 1; . . . ; n . On the other hand, if

g 2 si Hr;n�1
P;TW�X ; p�

� �
� xi ^ si Hrÿ2;n�1

P;TW �X ; p ÿ 1�
� �

then �ri��g � g. Therefore

�Wn�g � ÿ ri� �� Wn� �g � ÿ Wn� � ri� ��g � ÿ Wn� �g :

Hence �Wn�g � 0 proving the result.

De®nition 6.9. Let WTW be the morphism

WTW : eH�TW�X ; p�ÿ!H�TW�X ; p�

given, for g 2 eHr;n
TW�X ; p�, by

WTW�g� � Wn� �g; if n > 0,
g; if n � 0 .

�

Proposition 6.10. The morphism WTW is a morphism of complexes. Moreover
it is a quasi-isomorphism.

Proof. The fact that is a morphism of complexes is a consequence of Pro-
position 6.7. Let

i0 : H�TW�X ; p�ÿ! eH�TW�X ; p�
be the morphism induced by the equality H�TW�X ; p�ÿ! eH�;0TW�X ; p�. We have
that i � I � i0 � E, where i is the quasi-imorphism de®ned in Proposition 1.2.
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Therefore i0 � Id is a quasi-isomorphism. Since WTW � i0 � Id we have that
WTW is also a quasi-isomorphism.

De®nition. 6.11. Let us denote by W the morphism

W � I � WTW � E : eH��X ; p�ÿ!H��X ; p� :

Observe that W is also a quasi-isomorphism. Summarizing, we have the
following diagram of complexes and quasi-isomorphisms.

eH��X ; p� W�! H��X ; p� w�! W��X ; p�
E

??y I

x??eH�TW�X ; p� WTW�! H�TW�X ; p�

(6.9) The diagram above allows us to de®ne di�erent kinds of higher
Bott-Chern forms. For instance let us recover the original de®nition of
higher Bott-Chern forms due to Wang [Wan] and the classical Bott-Chern
forms.

De®nition 6.12. Let F be an exact metrized n-cube. We shall also call the
Bott-Chern form of F the form

echFÿ �
W� w � W echn F

ÿ �
H

� �
:

One may compute these forms directly using the following result.

Proposition 6.13. LetF be an emi-n-cube. Then

echn F
ÿ �

W�
1

�2pi�n
Z

P1� �n
ech0 trn F

ÿ �ÿ � ^ I 0 Wn� � :

Proof. This result is consequence of the following facts
(1) The morphism I 0 is functorial.
(2) For any smooth complex variety Z, if x 2 H2p

TW�Z; p� and g 2 H�TW
�Z�; ��, then I 0�x [ g� � I 0�x� ^ I 0�g� (see [Bu 2]).

(3) I 0 � E0 � Id. Therefore

I 0�E� ech0�trn�F��H�� � I 0�E0� ech0�trn�F���� � ech0�trn�F�� :

Up to a normalization factor, the formula given in Proposition 6.13 is
the original de®nition due to Wang [Wan]. To see this, let us compute
explicitly I 0�Wn� 2Wn��C��n; n�.
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Proposition 6.14.

I 0�Wn� � �ÿ1�
n

2n!

Xn

i�1
�ÿ1�iÿ1Si

n :

Proof. Since Wn 2 Hn
TW��C��n; n�, by (6.1) and (6.2), we have

I 0�Wn� � p
Z1
0

W 3
n

0@ 1A ;

where the integral symbol means integration with respect to the variable �,
and p is the projection

p : Enÿ1
�C��n ÿ!�2pi�nÿ1Enÿ1

�C��n;R :

This projection is given by p�z� � �z� �ÿ1�nÿ1z�=2. Therefore

I 0�Wn� � 1

2n�1
Xn

i�1

Z 1

0

��� 1�iÿ1��ÿ 1�nÿi

�iÿ 1�!�nÿ i�! d� Si
n � �ÿ1�nÿ1S

i
n

� �
:

But S
i
n � Snÿi�1

n . Then, joining the terms with Si
n, and taking into account

that

�ÿ1�nÿ1
Z 1

0

��� 1�nÿi��ÿ 1�iÿ1
�iÿ 1�!�nÿ i�! d� �

Z 0

ÿ1

��� 1�iÿ1��ÿ 1�nÿi

�iÿ 1�!�nÿ i�! d� ;

we have that

I 0�Wn� � 1

2n�1
Xn

i�1

Z 1

ÿ1

��� 1�iÿ1��ÿ 1�nÿi

�iÿ 1�!�nÿ i�! d�Si
n

 !
:

But Z 1

ÿ1

��� 1�iÿ1��ÿ 1�nÿi

�iÿ 1�!�nÿ i�! d� � �ÿ1�
n�iÿ12n

n!
;

proving the result.
The following result is a direct consequence of the de®nitions.

Proposition 6.15. Let X be a proper smooth complex variety. Let

n : 0ÿ!Fÿ!Gÿ!Hÿ! 0

be an exact sequence of locally free sheaves over X . Let us denote by ebc�n� the
Bott-Chern form of n as de®ned by Bismut, Gillet and SouleÂ [B-G-S], [G-S 1]).
Then
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ech1�n�W � ÿ1=2 ebcn mod�Im @ � Im @� :

(6.10) The use of the Thom-Whitney simple for absolute Hodge cohomol-
ogy, besides giving a way to construct the currents Wn, allows us to de®ne a
multiplicative theory of Bott-Chern forms.

De®nition 6.16. LetF be an exact metrized n-cube. We shall call the multi-
plicative Bott-Chern form ofF the form

echn�F�TW � WTW�E� echn�F�H�� :

In particular, ifF is a hermitian locally free sheaf, then

ech0�F�TW � E� ech0�F�H� :
On the other hand, ifF is an emi-n-cube, then

echn�F�TW �
1

�2pi�n
Z
�P1�n

ech0�trn�F��TW [ Wn :

De®nition 6.17. LetF be a metrized exact n-cube and letG be a metrized exact
m-cube. ThenF
G is the metrized exact n� m-cube given by

�F
G�i1;...;in�m
� �F�i1;...;in 
 �G�in�1;...;in�m

with the obvious morphisms and metrics.

Proposition 6.18. LetF (resp.G) be a metrized exact n-cube (resp. m-cube).
Then

echn�m�F
G�TW � echn�F�TW [ echm�G�TW :

Proof. We may assume thatF andG are emi-cubes.

Let p1 : X � �P1�n�mÿ!X � �P1�n be the projection over the ®rst n-
projective lines and let p2 : X � �P1�n�mÿ!X � �P1�m be the projection
over the last m-projective lines.

Lemma 6.19. LetF (resp.G) be an emi-n-cube (resp. emi-m-cube). Then

trn�m�F
G� � p�1trn�F� 
 p�2trm�G� :

Proof. By Sect. 3, (3.7), it is enough to show that, if m � 1, then
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tr1�F
G� �F
 tr1�G� ;

and if m � 0, then

tr1�F
G� � tr1�F� 
G :

Since tr1 is computed in each edge separately, it is enough to prove the case
n � 1, m � 0, but this case follows directly from the de®nition.

Using lemma 6.19, the multiplicativity and functoriality of the Chern
character forms and the de®nition of the forms Wn, we have:

echn�m�F
G�TW
� 1

�2pi�n�m

Z
�P1�n�m

ech0�p�1trn�F� 
 p�2trm�G��TW [ Wn�m

� 1

�2pi�n�m

Z
�P1�n�m

p�1 ech0�trn�F��TW [ p�2 ech0�trm�G��TW [ p�1Wn [ p�2Wm

� echn�F�TW [ echm�G�TW :
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