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Abstract

In this paper we extend the holomorphic analytic torsion classes of Bismut and
Köhler to arbitrary projective morphisms between smooth algebraic complex vari-
eties. To this end, we propose an axiomatic definition and give a classification of
the theories of generalized holomorphic analytic torsion classes for projective mor-
phisms. The extension of the holomorphic analytic torsion classes of Bismut and
Köhler is obtained as the theory of generalized analytic torsion classes associated to
−R/2, R being the R-genus. As application of the axiomatic characterization, we
give new simpler proofs of known properties of holomorpic analytic torsion classes,
we give a characterization of the R genus, and we construct a direct image of hermi-
tian structures for projective morphisms.

1 Introduction
The aim of this paper is to extend the classes of analytic torsion forms introduced by Bis-
mut and Köhler to arbitrary projective morphisms between complex algebraic varieties.
The main tool for this extension is an axiomatic characterization of all the possible theo-
ries of holomorphic analytic torsion classes. Before stating what we mean by a theory of
holomorphic analytic torsion classes, we briefly recall the origin of the analytic torsion.

The R-torsion is a topological invariant attached to certain euclidean flat vector bun-
dles on a finite CW-complex. This invariant was introduced by Reidemeister and gener-
alized by Franz in order to distinguish non-homeomorphic lens spaces that have the same
homology and homotopy groups. Let W be a connected CW-complex and let K be an or-
thogonal representation of π1(W ). Then K defines a flat vector bundle with an euclidean
inner product EK . Assume that the chain complex of W with values in EK is acyclic.
Then the R-torsion is the determinant of this complex with respect to a preferred basis.

Later, Ray and Singer introduced an analytic analogue of the R-torsion and they con-
jectured that, for compact riemannian manifolds, this analytic torsion agrees with the
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R-torsion. This conjecture was proved by Cheeger and Müller. If W is a riemannian man-
ifold and K is as before, then we have the de Rham complex of W with values in EK at
our disposal. The hypothesis on K implies that (Ω∗(W,EK), d) is also acyclic. Then the
analytic torsion is essentially the determinant of the de Rham complex. Here the difficulty
lies in that the vector spaces Ωp(W,EK) are infinite dimensional and therefore the “de-
terminant” has to be defined using a zeta function regularization involving the laplacian.
More details on the construction of R-torsion and analytic torsion can be found in [41].

Ray and Singer observed that, with the help of hermitian metrics, the acyclicity con-
dition can be removed. Moreover, their definition of analytic torsion can be extended to
any elliptic complex. In the paper [42], they introduced a holomorphic analogue of the
analytic torsion as the determinant of the Dolbeault complex. They also studied some of
its properties and computed some examples. In particular, they showed that this invari-
ant depends on the complex structure and they gave a hint that the holomorphic analytic
torsion should be interesting in number theory. This holomorphic analytic torsion and its
generalizations are the main object of study of the present paper. Since this is the only
kind of analytic torsion that we will consider, throughout the paper, by analytic torsion
we will mean holomorphic analytic torsion.

In the paper [40], Quillen, using the analytic torsion, associated to each holomorphic
hermitian vector bundle on a Riemann surface a hermitian metric on the determinant of
its cohomology. Furthermore, he showed that this metric varies smoothly with the holo-
morphic structure on the vector bundle. He also computed the curvature of the hermitian
line bundle on the space of all complex structures obtained in this way.

Subsequently Bismut and Freed [7], [8] generalized the construction of Quillen to
families of Dirac operators on the fibers of a smooth fibration. They obtained a smooth
metric and a unitary connection on the determinant bundle associated with the family
of Dirac operators. Furthermore, they computed the curvature of this connection, which
agrees with the degree 2 part of the differential form obtained by Bismut in his proof of the
Local Family Index theorem [2]. Later, in a series of papers [9], [10], [11], Bismut, Gillet
and Soulé considered the case of a holomorphic submersion endowed with a holomorphic
hermitian vector bundle. They defined a Quillen type metric on the determinant of the
cohomology of the holomorphic vector bundle. In the locally Kähler case, they showed
the compatibility with the constructions of Bismut-Freed. In addition they described the
variation of the Quillen metric under change of the metric on the vertical tangent bundle
and on the hermitian vector bundle. The results of [9], [10], [11] represent a rigidification
of [7], [8]. All in all, these works explain the relationship between analytic torsion and
the Atiyah-Singer index theorem and, in the algebraic case, with Grothendieck’s relative
version of the Riemann-Roch theorem.

In [20], Deligne, inspired by the Arakelov formalism, gave a formula for the Quillen
metric that is a very precise version of the degree one case of the Riemann-Roch theorem
for families of curves. This result is in the same spirit as the arithmetic Riemann-Roch
theorem of Faltings [23]. In the paper [29], Gillet and Soulé conjectured an arithmetic
Riemann-Roch formula that generalizes the results of Deligne and Faltings. Besides the
Quillen metric, this Riemann-Roch formula involves a mysterious new odd additive char-
acteristic class, the R-genus, that they computed with the help of Zagier.

In the work [14] Bismut and Lebeau studied the behavior of the analytic torsion with
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respect to complex immersions. Their compatibility formula also involved the R-genus.
Later Bost [15] and Roessler [43] explained, using geometric arguments, why the same
genus appears both in the arithmetic Riemann-Roch formula and the Bismut-Lebeau com-
patibility formula. However these geometric arguments do not characterize the R-genus.
Gillet and Soulé [30] proved the degree one part of the arithmetic Riemann-Roch theorem.
A crucial ingredient of the proof is the compatibility formula of Bismut-Lebeau.

In order to establish the arithmetic Riemann-Roch theorem in all degrees it was nec-
essary to generalize the analytic torsion and define higher analytic torsion classes. It was
clear from [30] that, once a suitable theory of higher analytic torsion classes satisfying
certain properties were developed, then the arithmetic Riemann-Roch theorem would fol-
low. A first definition of such forms was given by Gillet and Soulé in [29], but they did
not prove all the necessary properties. A second equivalent definition was given in [13]
by Bismut and Köhler, where some of the needed properties are proved. The compatibil-
ity of higher analytic torsion classes with complex immersions, i.e. the generalization of
Bismut-Lebeau compatibility formula, was proved in [3]. As a consequence, Gillet, Soulé
and Rössler [25] extended the arithmetic Riemann-Roch theorem to arbitrary degrees.

In the book [24], Faltings followed a similar strategy to define direct images of her-
mitian vector bundles and proved an arithmetic Riemann-Roch formula up to a unique
unknown odd genus.

The arithmetic Riemann-Roch theorems of Gillet-Soulé and Faltings deal only with
projective morphisms between arithmetic varieties such that, at the level of complex
points, define a submersion. By contrast, in his thesis [49] Zha follows a completely dif-
ferent strategy to establish an arithmetic Riemann-Roch theorem without analytic torsion.
His formula does not involve the R-genus. Moreover Zha’s theorem is valid for any pro-
jective morphism between arithmetic varieties.

In [44], Soulé advocates for an axiomatic characterization of the analytic torsion, sim-
ilar to the axiomatic characterization of Bott-Chern classes given by Bismut-Gillet-Soulé
in [9]. Note that the R-torsion has also been generalized to higher degrees giving rise to
different higher torsion classes. In [33], Igusa gives an axiomatic characterization of these
higher torsion classes.

We now explain more precisely what we mean by a theory of generalized analytic
torsion classes. The central point is the relationship between analytic torsion and the
Grothendieck-Riemann-Roch theorem. From now on, by a smooth complex variety we
will mean the complex manifold associated to a smooth quasi-projective variety over C.

Let π : X → Y be a smooth projective morphism of smooth complex varieties. Let ω
be a closed (1, 1) form onX that induces a Kähler metric on the fibers of π and, moreover,
a hermitian metric on the relative tangent bundle Tπ. We denote T π the relative tangent
bundle equipped with this metric.

Let F = (F, hF ) be a hermitian vector bundle on X such that for every i ≥ 0, Riπ∗F
is locally free. We consider on Riπ∗F the L2 metric obtained using Hodge theory on
the fibers of π and denote the corresponding hermitian vector bundle as Riπ∗F . To these
data, Bismut and Köhler associate an analytic torsion differential form τ that satisfies the
differential equation

∗ ∂∂̄τ =
∑

(−1)i ch(Riπ∗F )− π∗(ch(F ) Td(T π)), (1.1)
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where ∗ is a factor that takes into account that we are working with characteristic classes
with the algebro-geometric normalization, while Bismut and Köhler work with the topo-
logical normalization (see Section 8 for more details). Moreover, if we consider the class
of τ up to Im ∂ + Im ∂̄, then τ behaves nicely with respect to changes of metrics.

The Grothendieck-Riemann-Roch theorem in de Rham cohomology says that the dif-
ferential form on the right side of equation (1.1) is exact. Thus, the existence of the higher
analytic torsion classes provides us an analytic proof of this theorem.

Since the Grothendieck-Riemann-Roch theorem is valid with more generality, it is nat-
ural to extend the notion of higher analytic torsion classes to non-smooth morphisms. To
this end we will use the language of hermitian structures on the objects of the bounded
derived category of coherent sheaves developed in [17]. In particular we will make exten-
sive use of the category D

b
introduced in loc. cit.. Since, from now on, derived categories

will be the natural framework, all functors will tacitly be assumed to be derived functors.
Let f : X → Y be a projective morphism between smooth complex varieties. Let F be
a hermitian vector bundle on X . Now, the relative tangent complex Tf and the derived
direct image f∗F are objects of the bounded derived category of coherent sheaves on X
and Y respectively. Since X and Y are smooth, using resolutions by locally free sheaves,
we can choose hermitian structures on Tf and f∗F . Hence we have characteristic forms
ch(f∗F ) and Td(T f ). We denote by f the morphism f together with the choice of her-
mitian structure on Tf . Then the triple ξ = (f, F , f∗F ) will be called a relative hermitian
vector bundle. This is a particular case of the relative metrized complexes of Section 2.

Then, a generalized analytic torsion class for ξ is the class modulo Im ∂ + Im ∂̄ of a
current that satisfies the differential equation

∗ ∂∂̄τ = ch(f∗F )− f∗(ch(F ) Td(T f )). (1.2)

Note that such current τ always exists: the Grothendieck-Riemann-Roch theorem in de
Rham cohomology implies that the right hand side of equation (1.2) is an exact current.
Thus, if Y is proper, the ddc-lemma implies the existence of such a current. When Y is
non-proper, a compactification argument allows us to reduce to the proper case.

Of course, in each particular case, there are many choices for τ . We can add to τ any
closed current and obtain a new solution of equation (1.2). By a theory of generalized an-
alytic torsion classes we mean a coherent way of choosing a solution of equation (1.2) for
all relative hermitian vector bundles, satisfying certain natural minimal set of properties.

Each theory of generalized analytic torsion classes gives rise to a definition of direct
images in arithmetic K-theory and therefore to an arithmetic Riemann-Roch formula. In
fact, the arithmetic Riemann-Roch theorems of Gillet-Soulé and of Zha correspond to
different choices of a theory of generalized analytic torsion classes. We leave for a subse-
quent paper the discussion of the relation with the arithmetic Riemann-Roch formula.

Since each projective morphism is the composition of a closed immersion followed by
the projection of a projective bundle, it is natural to study first the analytic torsion classes
for closed immersions and projective bundles and then combine them in a global theory
of analytic torsion classes.

In [19] the authors studied the case of closed immersions (see Section 3). The general-
ized analytic torsion classes for closed immersions are called singular Bott-Chern classes
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and we will use both terms interchangeably. The definition of a theory of singular Bott-
Chern classes is obtained by imposing axioms analogous to those defining the classical
Bott-Chern classes [26]. Namely, a theory of singular Bott-Chern classes is an assignment
that, to each relative hermitian vector bundle ξ = (f, F , f∗F ), with f a closed immersion,
assigns the class of a current T (ξ) on Y , satisfying the following properties:

(i) the differential equation (1.2);

(ii) functoriality for morphisms that are transverse to f ;

(iii) a normalization condition.

A crucial observation is that, unlike the classical situation, these axioms do not uniquely
characterize the singular Bott-Chern classes. Consequently there are various nonequiva-
lent theories of singular Bott-Chern classes. They are classified by an arbitrary charac-
teristic class of F and Tf . If we further impose the condition that the theory is transitive
(that is, compatible with composition of closed immersions) and compatible with the pro-
jection formula then the ambiguity is reduced to an arbitrary additive genus on Tf . The
uniqueness can be obtained by adding to the conditions (i)–(iii) an additional homogene-
ity property. The theory obtained is transitive and compatible with the projection formula
and agrees (up to normalization) with the theory introduced in [12].

Similarly, one can define a theory of analytic torsion classes for projective spaces
(Section 5). This is an assignment that, to each relative hermitian vector bundle ξ =
(f, F , f∗F ), where f : PnY → Y is the projection of a trivial projective bundle, assigns
the class of a current T (ξ) satisfying the properties analogous to (i)-(iii) below, plus the
additivity and the compatibility with the projection formula. The theories of analytic tor-
sion classes for projective spaces are classified by their values in the cases Y = SpecC,
n ≥ 0, F = O(k), 0 ≤ k ≤ n for one particular choice of metrics (see Theorem 5.9).

We say that a theory of analytic torsion classes for closed immersions and one for
projective spaces are compatible if they satisfy a compatibility equation similar to Bismut-
Lebeau compatibility formula for the diagonal immersion ∆: PnC → PnC × PnC, n ≥ 0.
Given a theory of singular Bott-Chern classes that is transitive and compatible with the
projection formula, there exists a unique theory of analytic torsion classes for projective
spaces that is compatible with it (Theorem 6.4).

The central result of this paper (Theorem 7.7) is that, given a theory of singular Bott-
Chern classes and a compatible theory of analytic torsion classes for projective spaces,
they can be combined to produce a unique theory of generalized analytic torsion classes
(Definition 7.1). Moreover, every theory of analytic torsion classes arises in this way. Thus
we have a complete classification of the theories of generalized analytic torsion classes
by additive genera.

Once we have proved the classification theorem, we derive several applications. The
first consequence of Theorem 7.7 is that the classes of the analytic torsion forms of
Bismut-Köhler arise as the restriction to smooth projective morphisms of the theory of
generalized analytic torsion classes associated to minus one half of theR-genus (Theorem
8.8). In particular, we have succeeded to extend Bismut-Köhler analytic torsion classes to
arbitrary projective morphisms in the category of smooth quasi-projective complex vari-
eties. Moreover, we reprove, in the quasi-projective setting, and generalize to non-smooth
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projective morphisms, the theorems of Berthomieu-Bismut [1] and Ma [35], [36] on the
compatibility of analytic torsion with the composition of submersions (Corollary 8.11).
Note however, that the results of Bismut-Köhler, Berthomieu-Bismut and Ma are valid
for Kähler fibrations of complex manifolds without the hypothesis of quasi-projectivity,
while in this paper all varieties are quasi-projective.

The second application of the classification theorem is a characterization of the R-
genus. From the axiomatic point of view, the role played by the R-genus is mysterious. It
would seem more natural to consider the generalized analytic torsion classes associated
to the trivial genus 0. This is the choice made implicitly by Zha in his thesis [49]. In
fact, with our point of view, one of the main results of Zha’s thesis is the existence of a
theory of analytic torsion classes associated to the trivial genus. This theory leads to an
arithmetic Riemann-Roch formula identical to the classical one without any correction
term. Thus, one is tempted to consider the R-genus as an artifact of the analytic definition
of the analytic torsion. Nevertheless, by the work of several authors, the R-genus seems
to have a deeper meaning. A paradigmatic example is the computation by Bost and Kühn
[34] of the arithmetic self-intersection of the line bundle of modular forms on a modular
curve, provided with the Petersson metric. This formula gives an arithmetic meaning to
the first term of the R-genus. Thus it is important to characterize the R-genus from an
axiomatic point of view and to understand its role in the above computations.

From a theorem of Bismut [5] we know that the Bismut-Köhler analytic torsion classes
of the relative de Rham complex of a Kähler fibration (with the appropriate hermitian
structures) vanish. This result is important because one of the main difficulties to apply
the arithmetic Riemann-Roch theorem is precisely the estimation of the analytic torsion.
Moreover, this result explains why the terms of the R-genus appear in different arith-
metic computations. For instance, the equivariant version of this result (due to Maillot
and Roessler in degree 0 and to Bismut in general) allows Maillot and Roessler [37] to
prove some cases of a conjecture of Gross-Deligne.

The above vanishing property characterizes the analytic torsion classes of Bismut and
Köhler. In order to show this, we first construct the dual theory T∨ to a given theory T of
generalized analytic torsion classes (Theorem Definition 9.10). A theory is self-dual (T =
T∨) if and only if the even coefficients of the associated genus vanish (Corollary 9.14). In
particular, Bismut-Köhler’s theory is self-dual. Self-duality can also be characterized in
terms of the de Rham complex of smooth morphisms (Theorem 9.18). A theory T is self-
dual if its components of bidegree (2p − 1, p), p odd, in the Deligne complex, vanish on
the relative de Rham complexes of Kähler fibrations. Finally, in Theorem 9.24 we show
that, if it exists, a theory of analytic torsion classes that vanishes, on all degrees, on the
relative de Rham complexes of Kähler fibrations is unique, hence it agrees with Bismut-
Köhler’s one. In fact, to characterize this theory, it is enough to assume the vanishing of
the analytic torsion classes for the relative de Rham complexes of Kähler fibrations of
relative dimension one. To establish this characterization we appeal to the non-vanishing
of the tautological class κg−2 on the moduli stackMg of smooth curves of genus g ≥ 2.

The third application of generalized analytic torsion classes is the construction of
direct images of hermitian structures. We consider the category Sm∗/C introduced in
[17]. The objects of this category are smooth complex varieties, and the morphisms are
projective morphisms equipped with a hermitian structure on the relative tangent com-
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plex. Assume that we have chosen a theory of generalized analytic torsion classes. Let
f : X → Y be a morphism in Sm∗/C. One would like to define a direct image functor
f∗ : D

b
(X) → D

b
(Y ). It turns out that, using analytic torsion, we can not define the

direct image functor on the category D
b

and we have to introduce a new category D̂b.
Roughly speaking, the relation between D̂b and Db, is the same as the relation between
the arithmetic K-groups and the usual K-groups ([28]). Then we are able to define a
direct image functor f∗ : D̂b(X) → D̂b(Y ), that satisfies the composition rule, projec-
tion formula and base change. Moreover, if the theory of generalized analytic torsion is
self-dual (as the Bismut-Köhler theory) this functor satisfies a Grothendieck duality the-
orem. In a forthcoming paper, the direct image functor will be the base of an arithmetic
Grothendieck-Riemann-Roch theorem for projective morphisms.

The last application that we discuss is a new proof of a theorem of Bismut-Bost on
the singularity of the Quillen metric for degenerating families of curves, whose singular
fibers have at most ordinary double points [6]. In contrast with loc. cit., where the spec-
tral definition of the Ray-Singer analytic torsion is required, our arguments rely on the
existence of a generalized theory for arbitrary projective morphisms and some elemen-
tary computations of Bott-Chern classes. This theorem has already been generalized by
Bismut [4] and Yoshikawa [48] to families of varieties of arbitrary dimension. In fact, our
approach is very similar to the one in [4] and [48]. One of the main ingredients of their
proof is Bismut-Lebeau immersion formula, while our approach uses implicitly Bismut’s
generalization of the immersion formula in the comparison between Bismut-Köhler an-
alytic torsion and a theory of generalized analytic torsion classes. But what we want to
emphasize is that, once we have identified Bismut-Köhler as (part of) a theory of gener-
alized analytic torsion classes, many arguments can be simplified considerably because
the theory has been extended to non-smooth projective morphism. For simplicity, we treat
only the case of families of curves and the Quillen metric, but the methods can be applied
to higher dimensional families and analytic torsion forms of higher degree.

A few words about notations. The normalizations of characteristic classes and Bott-
Chern classes in this paper differ from the ones used by Bismut, Gillet-Soulé and other
authors. The first difference is that they work with real valued characteristic classes, while
we use characteristic classes in Deligne cohomology, that naturally include the algebro-
geometric twist. The second difference is a factor 1/2 in Bott-Chern classes, that explains
the factor 1/2 that appears in the characteristic class associated to the torsion classes of
Bismut-Köhler. This change of normalization appears already in [16] and its objective is
to avoid the factor 1/2 that appears in the definition of arithmetic degree in [27, §3.4.3]
and the factor 2 that appears in [27, Theorem 3.5.4] when relating Green currents with
Beilinson regulator. The origin of this factor is that the natural second order differential
equation that appears when defining Deligne-Beilinson cohomology is dD = −2∂∂̄, while
the operator used when dealing with real valued forms is d dc = 1

4πi
dD . Thus the char-

acteristic classes that appear in the present article only agree with the ones in the papers
of Bismut, Gillet and Soulé after renormalization. With respect to the work of these au-
thors we have also changed the sign of the differential equation that characterizes singular
Bott-Chern classes. In this way, the same differential equation appears when considering
both, singular Bott-Chern classes and analytic torsion classes. This change is necessary
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to combine them.
We point out that our construction of generalized analytic torsion classes is influenced

by the thesis of Zha [49], where the author uses implicitly a theory of analytic torsion
classes different from that of Bismut-Köhler.

Further applications of the generalized analytic torsion classes are left for future work.
We plan to prove generalizations of the arithmetic Grothendieck-Riemann-Roch theorem
of Gillet-Soulé [30] and Gillet-Rössler-Soulé [25] to arbitrary projective morhisms, along
the lines of [19].

It is possible to compute explicitly the characteristic numbers of the unique theory of
analytic torsion classes for projective spaces compatible with the homogeneous theory for
closed immersions. This computation makes the characterization of generalized analytic
torsion classes more precise. Nevertheless, since this computation is much more transpar-
ent when written in terms of properties of arithmetic Chow groups and the Riemann-Roch
theorem, we leave it to the paper devoted to the arithmetic Riemann-Roch theorem.

We also plan to study the possible axiomatic characterization of equivariant analytic
torsion classes. Note that the characterization of equivariant singular Bott-Chern forms
has already been obtained by Tang in [45].

2 Deligne complexes, transverse morphisms and relative
metrized complexes

In this section we fix the notations and conventions used through the article, we also recall
the definition of transverse morphisms and we review some basic properties. Finally we
introduce the notion of relative metrized complex, and explain some basic constructions.

In this paper, by a smooth complex variety we will mean the complex manifold as-
sociated to an equi-dimensional smooth quasi-projective variety over C. Hence, they are
always Kähler.

The natural context where one can define the Bott-Chern classes and the analytic tor-
sion classes is that of Deligne complexes. Recall that, to any Dolbeault complex A, ([16,
Def. 2.2], [18, Def. 5.7]) we can associate a bigraded complexD∗(A, ∗) called the Deligne
complex of A ([16, Def. 2.5], [18, Def. 5.10]). When A is a Dolbeault algebra ([16, Def.
3.1], [18, Def. 5.13]), then D∗(A, ∗) has a bigraded product, denoted •, that is graded
commutative with respect to the first degree, it is associative up to homotopy and satisfies
the Leibnitz rule. The pieces of this complex that we will use more frequently are:

D2p(A, p) = Ap,p ∩ (2πi)pA2p
R , D2p−1(A, p) = Ap−1,p−1 ∩ (2πi)p−1A2p−2

R .

An example of the differential of the Deligne complex, denoted by dD : Dn(A, p) →
Dn+1(A, p) is given, for η ∈ D2p−1(A, p), by dD η = −2∂∂̄η. While η ∈ D2p−1(A, p)
belongs to Im dD if and only if η = ∂u+ ∂̄v.

As an example of the product •, if ω ∈ D2p(A, p) and η ∈ Dm(A, q):

η • ω = ω • η = ω ∧ η.

The reader is referred to [18, Definition 5.14] for the general formulas.
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Let X be a smooth complex variety and E∗(X) the Dolbeault algebra of differen-
tial forms on X (with arbitrary singularities at infinity). This is the basic example of a
Dolbeault algebra. The Deligne algebra of differential forms on X is defined to be

D∗(X, ∗) := D∗(E∗(X), ∗).

This complex computes the analytic Deligne cohomology of X , that agrees with Deligne
cohomology of X when it is proper.

If X has dimension d, there is a natural trace map given by∫
: H2d

c (X,R(d))→ R, ω 7−→ 1

(2πi)d

∫
X

ω.

To take this trace map into account the Dolbeault complex of currents is constructed as
follows. Denote by E∗c (X)R the space of differential forms with compact support. Then
Dp,q(X) is the topological dual ofEp,q

c (X) andDn(X)R is the topological dual ofEn
c (X).

In this complex the differential is given by

dT (η) = (−1)nT (d η)

for T ∈ Dn(X)R. For X of dimension d we write

Dp,q(X) = Dd−p,d−q(X), Dn(X)R = (2πi)−dD2d−n(X).

With these definitions, D∗(X) is a Dolbeault complex and it is a Dolbeault module
over E∗(X). We will denote

D∗D(X, ∗) := D∗(D∗(X), ∗).

for the Deligne complex of currents on X . The trace map above defines an element

δX ∈ D0
D(X, 0).

More generally, if Y ⊂ X is a subvariety of pure codimension p, then the current integra-
tion along Y , denoted δY ∈ D2p

D (X, p) is given by

δY (ω) =
1

(2πi)d−p

∫
Y

ω.

Let T ∗X0 = T ∗X \ X be the cotangent bundle of X with the zero section removed
and S ⊂ T ∗X0 a closed conical subset. We will denote by (D∗D(X,S, ∗), dD) the Deligne
complex of currents on X whose wave front set is contained in S (see [19, §4]). For
instance, if N∗Y is the conormal bundle to Y , then δY ∈ D2p

D (X,N∗Y , p).
If ω is a locally integrable differential form, we associate to it a current

[ω](η) =
1

(2πi)dimX

∫
X

η ∧ ω.

This map induces an isomorphism D∗(X, ∗) → D∗D(X, ∅, ∗) that we use to identify
them. For instance, when in a formula sums of currents and differential forms appear, we
will tacitly assume that the differential forms are converted into currents by this map.
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Note also that, if f : X → Y is a proper morphism of smooth complex varieties of
relative dimension e, then there are direct image morphisms

f∗ : DnD(X, p) −→ Dn−2e
D (X, p− e).

If f is smooth, the direct image of differential forms is defined by, first converting them
into currents and then applying the above direct image of currents. If f is a smooth mor-
phism of relative dimension e we can convert them back into differential forms. This
procedure gives us 1/(2πi)e times the usual integration along the fiber.

We shall use the notations and definitions of [19]. In particular, we write

D̃n(X, p) = Dn(X, p)/ dDDn−1(X, p), D̃nD(X, p) = DnD(X, p)/ dDDn−1
D (X, p).

We now recall the definition of the set of normal direction of a map and the definition
of transverse morphisms.

Definition 2.1. Let f : X → Y be a morphism of smooth complex varieties. Let T ∗Y0 be
the cotangent bundle to Y with the zero section removed. The set of normal directions of
f is the conic subset of T ∗Y0 given by

Nf = {(y, v) ∈ T ∗Y0| d f tv = 0}.

Definition 2.2. Let f : X → Y and g : Z → Y be morphisms of smooth complex vari-
eties. We say that f and g are transverse if Nf ∩Ng = ∅.

It is easily seen that, if f is a closed immersion, this definition of transverse morphisms
agrees with that given in [31, IV-17.13]. If f and g are transverse, then the cartesian
product X ×

Y
Z is smooth. For lack of a good reference we prove the following result.

Proposition 2.3. Let f : X → Y and g : Z → Y be transverse morphisms of smooth
complex varieties. Then they are tor-independent.

Proof. Since the conditions of being transverse and being tor-independent are both local
on Y , X and Z we may assume that the map f factorizes as X i→ Y ×An p→ Y , where i
is a closed immersion and p is the projection. Let g′ : Z×An → Y ×An be the morphism
g × id. If f and g are transverse then i and g′ are transverse. While, if i and g′ are tor-
independent then f and g are tor-independent. Hence we may suppose that f is a closed
immersion.

Since every closed immersion between smooth schemes is regular, we may assume
that Y = SpecA, X = SpecA/I , where I is an ideal generated by a regular sequence
(s1, . . . , sk) and Z = SpecB. The transversality condition implies that (s1, . . . , sk) is a
regular sequence generating IB. Let K be the Koszul resolution of A/I attached to the
above sequence. Then K⊗AB is the Koszul resolution of B/IB, hence exact. Therefore,
ToriA(A/I,B) = 0 for all i ≥ 1. Thus f and g are tor-independent.

Let now Y ′′
h→ Y ′

g→ Y be morphisms of smooth complex varieties such that g and
g ◦ h are smooth. We form the cartesian diagram

X ′′ //

f ′′

��

X ′ //

f ′

��

X

f

��
Y ′′

h // Y ′
g // Y.

10



The smoothness of g implies that Nf ′ = g∗Nf . Then the smoothness of g ◦ h implies that
h and f ′ are transverse. Therefore, any current η ∈ D∗D(Y ′, Nf ′ , ∗) can be pulled back to
a current h∗η ∈ D∗D(Y ′′, Nf ′′ , ∗).

The following result will be used to characterize several Bott-Chern classes and ana-
lytic torsion classes.

Lemma 2.4. Let f : X → Y be a morphism of smooth complex varieties. Let ϕ̃ be an
assignment that, to each smooth morphism of complex varieties g : Y ′ → Y and each
acyclic complex A of hermitian vector bundles on X ′ := X ×

Y
Y ′ assigns a class

ϕ̃(A) ∈
⊕
n,p

D̃nD(Y ′, g∗Nf , p)

fulfilling the following properties:

(i) (Differential equation) the equality dD ϕ̃(A) = 0 holds;

(ii) (Functoriality) for each morphism h : Y ′′ → Y ′ of smooth complex varieties with
g ◦ h smooth, the relation h∗ϕ̃(A) = ϕ̃(h∗A) holds;

(iii) (Normalization) if A is orthogonally split, then ϕ̃(A) = 0.

Then ϕ̃ = 0.

Proof. The argument of the proof of [19, Thm. 2.3] applies mutatis mutandis to the
present situation. One only needs to observe that all the operations with differential forms
of that argument can be extended to the currents that appear in the present situation thanks
to the hypothesis about their wave front sets.

In the paper [17] we defined and studied hermitian structures on objects of the bounded
derived category of coherent sheaves on a smooth complex variety. The language and the
results of loc. cit. will be used extensively in this paper. We just mention here that a her-
mitian metric on an object F of Db(X) is an isomorphism E 99K F in Db(X), with E a
bounded complex of vector bundles, together with a choice of a hermitian metric on each
constituent vector bundle of E. Such an isomorphism always exists due to the fact that we
work in the algebraic category. A hermitian structure is an equivalence class of hermitian
metrics. To each smooth complex varietyX , we associated the category D

b
(X) ([17, § 3])

whose objects are objects of Db(X) provided with a hermitian structure. We introduced
the hermitian cone ([17, Def. 3.14]), denoted cone, of a morphism in D

b
(X). We also de-

fined Bott-Chern classes for isomorphisms ([17, Thm. 4.11]) and distinguished triangles
([17, Thm. 4.18]) in D

b
(X). We introduced a universal abelian group for additive Bott-

Chern classes. Namely, the set of hermitian structures on a zero object of Db(X) is an
abelian group that we denote KA(X) ([17, Def. 2.31]). Finally, we defined the category
Sm∗/C ([17, § 5]) whose objects are smooth complex varieties and whose morphisms are
projective morphisms together with a hermitian structure on the relative tangent complex.

We introduce now one of the central objects of the paper.
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Definition 2.5. Let f : X → Y be a projective morphism of smooth complex varieties
and f ∈ HomSm∗/C

(X, Y ) a morphism over f . Let F ∈ ObD
b
(X) and let f∗F ∈

ObD
b
(Y ) be an object over f∗F . The triple ξ = (f,F , f∗F) will be called a relative

metrized complex. When f is a closed immersion we will also call it an embedded metrized
complex. When F and f∗F are clear from the context we will denote the relative metrized
complex ξ by the morphism f .

Let ξ = (f,F , f∗F) be a relative metrized complex and let g : Y ′ → Y be a morphism
of smooth complex varieties that is transverse to f . Consider the cartesian diagram

X ′
g′ //

f ′

��

X

f

��
Y ′ g

// Y.

(2.6)

Then f ′ is still projective. Moreover, the transversality condition implies that the canonical
morphism g′∗Tf 99K Tf ′ is a hermitian structure on Tf ′ . We define

g∗f = (f ′, g′
∗
Tf ) ∈ HomSm∗/C

(X ′, Y ′). (2.7)

By tor-independence, there is a canonical isomorphism g∗f∗F 99K f ′∗g′
∗F . Therefore

g∗f∗F induces a hermitian structure on f ′∗g
′∗F .

Definition 2.8. The pull-back of ξ by g is the relative metrized complex

g∗ξ = (g∗f, g′
∗F , g∗f∗F).

Definition 2.9. Let ξ = (f : X → Y,F , f∗F) be a relative metrized complex. Let G be
an object of D

b
(Y ). The hermitian structures on f∗F and G induce a natural hermitian

structure on f∗(F ⊗ f ∗G) that we denote f∗F ⊗ G. The tensor product of ξ by G is then
defined to be the relative metrized complex

ξ ⊗ G = (f,F ⊗ f ∗G, f∗F ⊗ G).

Definition 2.10. Let ξi = (f,Fi, f∗Fi), i = 1, 2 be relative metrized coherent complexes
on X . Then the direct sum relative metrized complex is

ξ1 ⊕ ξ2 := (f,F1 ⊕F2, f∗F1 ⊕ f∗F2).

We now introduce a notation for Todd-twisted direct images of currents and differential
forms, that will simplify many formulas involving the Todd genus. Let f = (f, T f ) be
a morphism in Sm∗/C. To f we associate a Todd differential form Td(f) := Td(T f ) ∈⊕

pD2p(X, p) [17, (5.15)]. Let S be a closed conic subset of T ∗X0. Then we denote

f∗(S) = {(f(x), η) ∈ T ∗Y0 | (x, (d f)tη) ∈ S} ∪Nf . (2.11)

If g : Y → Z is another morphism of smooth complex varieties, it is easy to see that we
have (g ◦ f)∗(S) ⊆ g∗f∗(S).

12



Definition 2.12. Let f : X → Y be a morphism in Sm∗/C. For each closed conical subset
S ⊂ T ∗X0, we define the map

f [ : D∗D(X,S, ∗)→ D∗D(Y, f∗S, ∗), by f [(ω) = f∗(ω • Td(f)).

Note that this map is not homogeneous.

Proposition 2.13. Let f : X → Y and g : Y → Z be morphisms in Sm∗/C. Let S ⊂
T ∗X0, T ⊂ T ∗Y0 be closed conical subsets and let h = f ◦ g.

(i) There is an inclusion h∗S ⊂ g∗f∗S. Moreover h[ = g[ ◦ f [.

(ii) Let θ ∈ D∗D(X,S, ∗) and ω ∈ D∗D(Y, T, ∗). Assume T ∩Nf = ∅ and that T +f∗S is
disjoint with the zero section in T ∗Y0. Then f ∗T +S is disjoint with the zero section
and there is an equality of currents

f [(f
∗(ω) • θ) = ω • f [(θ)

in D∗D(Y,W, ∗), with W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T.

Proof. The inclusion h∗S ⊂ g∗f∗S follows easily from the definition. For the second
statement it is enough to notice the equality of currents

g[(f [(ω)) = (g ◦ f)∗(ω • f ∗Td(g) • Td(f))) = h∗(ω • Td(h)).

For the second item, it is easy to see that f ∗T + S does not cross the zero section, and
hence both sides of the equality are defined. It then suffices to establish the equality of
currents f∗(f ∗ω • θ) = f∗(ω) • θ. If θ and ω are smooth, then the equality follows from
the definitions. The general case follows by approximation of θ and ω by smooth currents
and the continuity of the operators f ∗ and f∗.

Proposition 2.14. Let f be a morphism in Sm∗/C of relative dimension e and S a closed
conical subset of T ∗X0. Let g : Y ′ → Y be a morphism of smooth complex varieties
transverse to f . Consider the cartesian diagram (2.6) and let f

′
= g∗f . Suppose that Ng′

is disjoint with S. Then:

(i) Ng and f∗S are disjoint and g∗f∗S ⊂ f ′∗g
′∗S;

(ii) the equality g∗ ◦ f [ = f
′
[ ◦ g′∗ holds.

Proof. The first claim follows from the definitions. In particular the diagram makes sense.
For the commutativity of the diagram, we observe that, since g′∗Td(f) = Td(f

′
), it

suffices to check the equality of currents g∗f∗(θ) = f ′∗g
′∗(θ) for θ ∈ DnD(X,S, p).

By the continuity of the operators g∗, g′∗, f∗ and f ′∗, it is enough to prove the relation
whenever θ is smooth. Moreover, using a partition of unity argument we are reduced to
the following local analytic statement.

Lemma 2.15. Let f : X → Y and g : Y ′ → Y be transverse morphisms of complex
manifolds. Let θ be a smooth differential form on X with compact support. Consider the
diagram (2.6). Then

g∗f∗(θ) = f ′∗g
′∗(θ). (2.16)
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Proof. The map f can be factored as X
ϕ−→ X × Y p2−→ Y , where ϕ(x) = (x, f(x)) is

a closed immersion and p2, the second projection, is smooth. Using again the continuity
of the operators g∗ (respectively g′∗) and f∗ (respectively f ′∗), we are reduced to prove
the equation (2.16) in the case when f is smooth and in the case when f is a closed
immersion. The case when f is smooth is clear. Assume now that f is a closed immersion.
By transversality, f ′ is also a closed immersion of complex manifolds. We may assume
that θ = f ∗θ̃ for some smooth form θ̃ on Y . Then equation (2.16) follows from the chain
of equalities

g∗f∗θ = g∗f∗f
∗θ̃ = g∗(θ̃ ∧ δX) = g∗(θ̃) ∧ δX′ = f ′∗f

′∗g∗θ̃ = f ′∗g
′∗f ∗θ̃ = f ′∗g

′∗θ.

This concludes the proof of the lemma and the proposition. �

3 Analytic torsion for closed immersions
In [19], singular Bott-Chern classes for closed immersions of smooth complex varieties
are studied. The singular Bott-Chern classes are the analogue, for closed immersions, of
the analytic torsion for smooth morphisms. For this reason, we will call them also analytic
torsion classes. The aim of this section is to recall the main results of [19] and to translate
them into the language of derived categories. We will use freely the notations of [17].

Definition 3.1. A theory of analytic torsion classes for closed immersions is a map that,
to each embedded metrized complex ξ = (f : X → Y,F , f∗F) assigns a class

T (ξ) ∈
⊕
p

D̃2p−1
D (Y,Nf , p)

satisfying the following conditions.

(i) (Differential equation) The equality dD T (ξ) = ch(f∗F)− f [[ch(F)] holds.

(ii) (Functoriality) For every morphism h : Y ′ → Y of smooth complex varieties that is
transverse to f we have the equality h∗T (ξ) = T (h∗ξ).

(iii) (Normalization) If X = ∅ and Y = SpecC, then T (f, 0, 0) = 0.

When the hermitian structure of f is given by an hermitian metric on N , unraveling
the definitions, the differential equation can be written as

−2∂∂̄T (ξ) = [ch(f∗F)]− f∗([ch(F)] ∧ Td−1(N)).

Recall that, by convention, the conversion from differential form to current and the direct
image of currents have implicit a power of (2πi).

Definition 3.2. Let T be a theory of analytic torsion classes for closed immersions.

(i) We say that T is compatible with the projection formula if, for every embedded
metrized complex ξ = (f,F , f∗F), and every object G ∈ D

b
(Y ), we have

T (ξ ⊗ G) = T (ξ) • ch(G). (3.3)
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(ii) We say that T is additive if, given ξi = (f,Fi, f∗Fi), i = 1, 2, two embedded
metrized complexes, we have

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2). (3.4)

(iii) We say that T is transitive if, given a embedded metrized complex ξ = (f,F , f∗F),
a closed immersion of smooth complex varieties g : Y → Z, a morphism g over g,
and an object (g ◦ f)∗F ∈ ObD

b
(Z) over (g ◦ f)∗F , we have

T (g ◦ f) = T (g) + g[(T (f)). (3.5)

Remark 3.6. (i) If T is well defined for objects of D
b
, then the normalization condi-

tion in Definition 3.1 and the normalization condition in [19, Def. 6.9] are equiva-
lent. The compatibility with the projection formula implies the normalization con-
dition and the additivity (see [19, Prop. 10.9])

(ii) To check that a theory is compatible with the projection formula, it is enough to
consider complexes consisting of a single hermitian vector bundle in degree 0.

Let X be a smooth complex variety and let N be a hermitian vector bundle of rank r.
We denote by P = P(N ⊕ 1) the projective bundle obtained by completing N . Let
πP : P → X be the projection and let s : X → P be the zero section. Since N can
be identified with the normal bundle to X on P , the hermitian metric of N induces a
hermitian structure on s. We will denote it by s. On P we have a tautological quotient
vector bundle with an induced metric Q. For each hermitian vector bundle F on X we
have the Koszul resolutionK(F,N) of s∗F . We denote byK(F ,N) the Koszul resolution
with the induced metrics. See [19, Def. 5.3] for details.

Definition 3.7. Let T be a theory of analytic torsion classes for closed immersions. We
say that T is homogeneous if, for every pair of hermitian vector bundles N and F with
rkN = r, there exists a homogeneous class of bidegree (2r−1, r) in the Deligne complex

ẽ(F ,N) ∈ D̃2r−1
D (P,Ns, r)

such that
T (s, F ,K(F ,N)) • Td(Q) = ẽ(F ,N) • ch(π∗PF ). (3.8)

Remark 3.9. Observe that Definition 3.7 is equivalent to [19, Def. 9.2]. The advantage
of the definition in this paper is that it treats on equal footing the case when rkF = 0.

Let D denote the base ring for Deligne cohomology (see [19] before Definition 1.5). A
consequence of [19, Thm. 1.8] is that there is a bijection between the set of additive genus
in Deligne cohomology and the set of power series in one variable D[[x]]. To each power
series ϕ ∈ D[[x]] it corresponds the unique additive genus such that ϕ(L) = ϕ(c1(L)) for
every line bundle L.

Definition 3.10. A real additive genus is an additive genus such that the corresponding
power series belongs to R[[x]].
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Let 11 ∈ D be the element represented by the constant function 1 of D1(SpecC, 1) =
R. Then Theorem 9.11, Theorem 9.19 and Corollary 9.43 of [19] imply:

Theorem 3.11. (i) There is a unique homogeneous theory of analytic torsion classes
for closed immersions, that we denote T h. This theory is compatible with the pro-
jection formula, additive and transitive.

(ii) Let T be any transitive theory of analytic torsion classes for closed immersions,
that is compatible with the projection formula. Then there is a unique real additive
genus ST such that, for any embedded metrized complex ξ := (f,F , f∗F), we have

T (ξ)− T h(ξ) = −f∗[ch(F) • Td(Tf ) • ST (Tf ) • 11]. (3.12)

(iii) Conversely, any real additive genus S defines, by means of equation (3.12), a unique
transitive theory of analytic torsion classes TS for closed immersions, that is com-
patible with the projection formula and additive.

Proof. Existence and uniqueness for both T h and TS is the content of [19] when restrict-
ing to triples ξ with Tf = NX/Y [−1], F a hermitian vector bundle placed in degree 0 and
f∗F given by a finite locally free resolution. For the general case, we thus need to prove
that the theories of analytic torsion classes for closed immersions in the sense of loc. cit.
uniquely extend to arbitrary ξ, fulfilling the desired properties.

Assume given a theory T in the sense of [19], compatible with the projection for-
mula and transitive. We will call T the initial theory. We consider a triple ξ with Tf =

NX/Y [−1] and F ∈ ObD
b
(X). Choose a representative F 99K F of the hermitian struc-

ture onF . We then define T (ξ) by induction on the length of the complex F . First suppose
that F = F d[−d] consists of a single vector bundle placed in degree d. Choose a finite
locally free resolution

· · · → E1 → E0 → f∗F
d → 0.

Endow the vector bundles Ei with smooth hermitian metrics. Observe that there is an in-
duced isomorphism E[−d]

∼
99K f∗F , in D

b
(Y ), whose Bott-Chern classes c̃h are defined

in [17, § 4]. We then put

T (ξ) = (−1)dT (NX/Y , F
d
, E) + c̃h(E[−d]

∼
99K f∗F). (3.13)

This definition does not depend on the choice of representative of the hermitian structure
on F , nor on the choice of E, due to [17, Thm. 4.11, Prop. 4.13], and [19, Cor. 6.14].
The differential equation is satisfied as a consequence of the differential equations for
T (NX/Y , F

d
, E) and c̃h(E[−d]

∼
99K f∗F). The compatibility with pull-back by mor-

phisms h : Y ′ → Y transverse to f is immediate as well. Finally, notice that by construc-
tion, if ξ

′
= (NX/Y ,F , f∗F

′
), then

T (ξ′) = T (ξ) + c̃h(f∗F
′
, f∗F). (3.14)

Now suppose that T (ξ) has been defined for F of length l, satisfying in addition (3.14).
If F has length l + 1, let F d be the first non-zero vector bundle of F . Consider the exact
sequence of complexes

(ε) 0→ σ>dF → F → F
d
[−d]→ 0,
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where σ>d is the bête filtration. Observe that as a distinguished triangle ([17, Definition
3.29]), (ε) is tightly distinguished, hence c̃h(ε) = 0. Choose hermitian metrics on f∗σ>dF
and f∗F d[−d]. We thus have a distinguished triangle in D

b
(Y )

(τ) f∗σ>dF → f∗F → f∗F d[−d]→ f∗σ>dF [1]→ . . . .

We define

T (ξ) = T (NX/Y , σ
>dF , f∗σ>dF ) + (−1)dT (NX/Y , F

d
, f∗F d)− c̃h(τ). (3.15)

This does not depend on the choice of hermitian structures on f∗σ
>dF and f∗F

d, by
the analogue to [17, Thm. 3.33 (vii)] for c̃h and because (3.14) holds by assumption
for T (NX/Y , σ

>dF , f∗σ>dF ) and T (NX/Y , F
d
, f∗F d). Similarly, (3.14) holds for T (ξ)

defined in (3.15). The differential equation and compatibility with pull-back are proven
as in the first case. This concludes the proof of the existence in case that Tf = NX/Y [−1].

To conclude with the existence, we may now consider a general ξ. Choose a hermitian
metric on the normal bundle NX/Y . Put ξ

′
= (NX/Y [−1],F , f∗F). We define

T (ξ) = T (ξ
′
) + f [[ch(F) • T̃dm(Tf 99K NX/Y [−1])], (3.16)

where T̃dm is the multiplicative Todd secondary class defined in [17, § 5]. It is straight-
forward from the definition that T (ξ) satisfies the differential equation and is compatible
with pull-back by morphisms transverse to f . We call T the extended theory.

We now proceed to prove that the extended theory T is transitive and compatible with
the projection formula. For the projection formula, it suffices by Remark 3.6 (ii) to prove
it for a hermitian vector bundle placed in degree 0. This readily follows from the inductive
construction of the extended theory T and the assumptions on the initial theory T . One
similarly establishes the transitivity and the additivity

We conclude by observing that, since Lemma 2.4 implies that the equations (3.13),
(3.14), (3.15) and (3.16) hold, the theory T (ξ) thus constructed for arbitrary ξ is com-
pletely determined by the values T (ξ

′
), with ξ

′
of the form (NX/Y , F , E) where F is a

hermitian vector bundle and E → f∗F is a finite locally free resolution.
Once we have seen that any theory of singular Bott-Chern classes as in [19] can be

uniquely extended, then statements (ii) and (iii) follow combining equation (7.3) and
Corollary 9.43 in [19]. Note that the minus sign in equation (3.12) comes from the fact
that S(Tf ) = −S(NX/Y ).

In [19, §6] several anomaly formulas are proved. We now indicate the translation of
these formulas to the current setting. Recall that we are using the notation of [17] with
respect to secondary characteristic classes.

Proposition 3.17. Let T be a theory of analytic torsion classes for closed immersions.
Let ξ = (f : X → Y,F , f∗F) be an embedded metrized complex.

(i) IfF ′ is another choice of hermitian structure onF and ξ1 = (f : X → Y,F ′, f∗F),
then

T (ξ1) = T (ξ) + f [[c̃h(F ′,F)].
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(ii) If f
′
is another hermitian structure on f and ξ2 = (f

′
: X → Y,F , f∗F), then

T (ξ2) = T (ξ) + f
′
[[ch(F) • T̃dm(f

′
, f)]. (3.18)

(iii) If f∗F
′

is another choice of hermitian structure on f∗F , and ξ3 = (f : X →
Y,F , f∗F

′
), then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).

Proof. We first prove the second assertion. Let E 99K Tf be a representative of the her-
mitian structure on Tf . By [17, Thm. 3.13 (ii)], we may assume the hermitian structure

on T
f
′ is represented by the composition E ⊕A pr1−→ E 99K Tf for some bounded acyclic

complex A of hermitian vector bundles on X . For every smooth morphism g : Y ′ → Y
of complex varieties, consider the cartesian diagram (2.6). We introduce the assignment
that, to every such g and each bounded acyclic complex of hermitian vector bundles A on
X ′, assigns the class

ϕ̃(A) =T (g′
∗
ξ)− T

(
(f ′, g′

∗
Tf + [A]), g′

∗F , g∗f∗F
)

+ f ′∗

[
ch(g′

∗F)T̃dm
(
(g′
∗
Tf + [A]), g′

∗
Tf
)

Td(g′
∗
Tf + [A])

]
.

Here [A] stands for the class of A in KA(X ′) ([17, Def. 2.31]) and + denotes the action
of KA(X ′) on D

b
(X ′) ([17, Thm. 3.13]). Since ϕ̃ satisfies the hypothesis of Lemma 2.4,

we have ϕ̃ = 0. This concludes the proof of (ii).
To prove (i), we observe that F ′ = F + [A] for some bounded acyclic complex A of

hermitian vector bundles on X . For each cartesian diagram as (2.6), we set f
′
= g∗f . Let

ϕ̃1 be the assignment that, to each such diagram and each bounded acyclic complex of
hermitian vector bundles A on X ′, assigns the class

ϕ̃1(A) = T (g′
∗
ξ)− T

(
f
′
, g′
∗F + [A], g∗f∗F

)
− f ′[[c̃h(A)].

The hypothesis of Lemma 2.4 are satisfied, hence ϕ̃1 = 0. This concludes the proof of (i).
Finally, to prove (iii), to each morphism g : Y ′ → Y , transverse to f , we associate the

cartesian diagram (2.6) and we consider the assignment ϕ̃2 that, to each bounded acyclic
complex of hermitian vector bundles B on Y ′, assigns the class

ϕ̃2(B) = T (g′
∗
ξ)− T

(
f
′
, g′
∗F , g∗f∗F + [B]

)
+ c̃h(B).

By Lemma 2.4 applied to idY , we have ϕ̃2 = 0. This concludes the proof of (iii).

The following result provides a compatibility relation for analytic torsion classes for
closed immersions with respect to distinguished triangles. The statement is valid for ad-
ditive theories, in particular the ones we are concerned with.

Proposition 3.19. Let T be an additive theory of analytic torsion classes for closed im-
mersions. Let f : X → Y be a closed immersion of smooth complex varieties. Consider
distinguished triangles in D

b
(X) and D

b
(Y ) respectively,

(τ) : F2 → F1 → F0 → F2[1], (f∗τ) : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],
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and the relative hermitian complexes ξi = (f,F i, f∗F i), i = 0, 1, 2. Then we have:∑
j

(−1)jT (ξj) = c̃h(f∗τ)− f [(c̃h(τ)).

Proof. We can assume that the distinguished triangles τ and f∗τ can be represented by
short exact sequences of complexes of hermitian vector bundles

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0,

ν : 0 −→ V 2 −→ V 1 −→ V 0 −→ 0.

Applying the explicit construction at the beginning of the proof of [19, Theorem 2.3] to
each row of the above exact sequences, we obtain exact sequences

ε̃i : 0 −→ Ẽi
2 −→ Ẽi

1 −→ Ẽi
0 −→ 0,

ν̃i : 0 −→ Ṽ i
2 −→ Ṽ i

1 −→ Ṽ i
0 −→ 0

over X × P1 and Y × P1 respectively. The restriction of ε̃i (respectively ν̃i) to X × {0}
(respectively Y × {0}) agrees with ε (respectively ν). Whereas the restriction to X ×
{∞} (respectively Y × {∞}) is orthogonally split. The sequences ε̃i and ν̃i form exact
sequences of complexes that we denote ε̃ and ν̃. It is easy to verify that the restriction
to X × {∞} (respectively Y × {∞}) are orthogonally split as sequences of complexes.
Moreover, there are isomorphisms Ṽj 99K f∗Ẽj , j = 0, 1, 2. We denote ξ̃j = (f ×
idP1 , Ẽj, Ṽj). Then, in the group

⊕
p D̃

2p−1
D (Y,Nf , p), we have

0 = dD
1

2πi

∫
P1

−1

2
log tt̄ •

∑
j

(−1)jT (ξ̃j)

= T (ξ1)− T (ξ0 ⊕ ξ2)− 1

2πi

∫
P1

−1

2
log tt̄ •

∑
j

(−1)j ch(Ṽj)

+
1

2πi

∫
P1

−1

2
log tt̄ •

∑
j

(−1)j(f × idP1)∗(ch(Ẽj) • Td(f × idP1))

= T (ξ1)− T (ξ0 ⊕ ξ2) + c̃h(f∗τ)− f∗(c̃h(τ) Td(f)).

Thus the result follows from the additivity.

We end this chapter with the relation between the singular Bott-Chern classes of
Bismut-Gillet-Soulé [12] and the theory of homogeneous analytic torsion classes. We
draw attention to the difference of normalizations. Let us momentarily denote by τ the
theory of singular Bott-Chern classes of Bismut-Gillet-Soulé. By the anomaly formu-
las, it may be extended to arbitrary embedded metrized complexes. Let ξ = (f : X →
Y,F , f∗F) be a relative metrized complex, with Y of dimension d. If τ (p−1,p−1) denotes
the component of degree (p− 1, p− 1) of the current τ , we define

TBGS(ξ)(2p−1,p) = − 1

2(2πi)d−(p−1)
τ (p−1,p−1) ∈ D̃2p−1

D (Y,Nf , p). (3.20)
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In the above equation, the factor (2πi)(p−1) comes from the difference in the normalization
of characteristic classes. In [12] the authors use real valued classes while we use twisted
coefficients. The factor (2πi)d comes from our convention about the Deligne complex of
currents. The factor 2 comes from the fact that the second order differential operator that
appears in the Deligne complex is−2∂∂̄ = 2(2πi)ddc, while the second order differential
operator that appears in the differential equation considered by Bismut, Gillet and Soulé
is ddc. The main reason behind this change is that we want the Bott-Chern classes to be
related to Beilinson’s regulator and not to twice Beilinson’s regulator (see [27] Theorem
3.5.4). Finally, the minus sign comes from the discrepancy of the differential equations
of the singular Bott-Chern forms of Bismut-Gillet-Soulé and the analytic torsion forms
of Bismut-Köhler. Note that we are forced to change this sign because we want to merge
singular Bott-Chern forms and analytic torsion forms on a single theory. We put

TBGS(ξ) =
∑
p≥1

TBGS(ξ)(2p−1,p) ∈
⊕
p

D̃2p−1
D (Y,Nf , p).

We have the following comparison theorem [19, Thm. 9.25].

Theorem 3.21. For every embedded metrized complex ξ we have

TBGS(ξ) = T h(ξ).

4 Regular coherent sheaves
In this section we recall some properties of regular sheaves. Let X be a scheme and let
PnX = PX(V ) be the projective space of lines of the trivial bundle V of rank n+ 1 on X .
Let π : PnX → X be the natural projection. By abuse of notation, if G is a sheaf on X , we
will denote also by G the inverse image π∗G.

Definition 4.1 ([38], Lecture 14). A quasi-coherent sheaf F on PnX is called regular if
Rqπ∗F(−q) = 0 for all q > 0.

Recall the following properties of regular sheaves (see [39]).

(i) If G is a quasi-coherent sheaf on X , then G ⊗X OPnX (k) is regular for k ≥ 0.

(ii) If the scheme X is noetherian and F is a coherent sheaf on PnX , then Serre’s van-
ishing theorem implies that for d large enough F(d) is regular.

(iii) Let 0 → F2 → F1 → F0 → 0 be an exact sequence of quasi-coherent sheaves on
PnX and d be an integer. Then

(a) if F2(d) and F0(d) are regular, then F1(d) is regular;

(b) if F2(d+ 1) and F1(d) are regular, then F0(d) is regular;

(c) if F0(d) and F1(d+ 1) are regular and the map R0π∗(F1(d))→ R0π∗(F0(d))
is surjective, then F2(d+ 1) is regular.
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(iv) If F is regular, then F(k) is regular for k > 0.

(v) If F is regular, then the canonical map R0π∗F ⊗X OPnX → F is surjective.

Theorem 4.2 ([39, §8.1]). Let F be a regular quasi-coherent sheaf on PnX . Then there
exists a canonical resolution

γcan(F) : 0→ Gn(−n)→ Gn−1(−n+ 1)→ · · · → G0 → F → 0

where Gi (i = 0, . . . , n) are quasi-coherent sheaves on X . Moreover, for every k ≥ 0, the
sequence

0→ Gk → Gk−1 ⊗ Sym1 V ∨ → · · · → G0 ⊗ Symk V ∨ → R0π∗(F(k))→ 0

is exact. Hence the sheaves Gk are determined by F up to unique isomorphism.

Corollary 4.3. Let X be a noetherian scheme and F a coherent sheaf on PnX . Then, for d
large enough, we have a resolution

γd(F) : 0→ Gn(−n− d)→ Gn−1(−n− d+ 1)→ · · · → G0(−d)→ F → 0

where Gi, i = 0, . . . , n are coherent sheaves on X .

Example 4.4. The sheaf O(1) is regular. Its canonical resolution is

0→ Λn+1V ∨(−n)→ ΛnV ∨(−n+ 1)→ · · · → Λ2V ∨(−1)→ V ∨ → O(1)→ 0.

Twisting this exact sequence by O(−1) we obtain the Koszul exact sequence

0→ Λn+1V ∨(−n− 1)→ ΛnV ∨(−n)→ · · · → Λ2V ∨(−2)→ V ∨(−1)→ O → 0,

that we denote K. We will denote by K(k) its twist by O(k).

Theorem 4.5 ([49]). (i) Let F be a regular coherent sheaf on PnX , and let γcan(F) be
the canonical resolution of F as in Theorem 4.2. Let

ε1 : 0→ Fn+k(−n− k)→ · · · → F1(−1)→ F0 → F → 0

be an exact sequence of coherent sheaves, where the Fi are sheaves on X . Then
there exist natural surjective morphisms of sheaves Fi → Gi on X , 0 ≤ i ≤ n
making commutative the diagram

Fn+1(−n− 1)

��

// Fn(−n)

����

// . . . // F0

����

// F // 0

0 // Gn(−n) // . . . // G0
// F // 0.

(4.6)
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(ii) Let F be a regular coherent sheaf on X , and γcan(F) the canonical resolution.
There exists a resolution of F(1) of the form

ε2 : 0→ Sn+k(−n− k)→ · · · → S1(−1)→ S0 → F(1)→ 0

such that S0 . . . ,Sn+k are coherent sheaves on X and the following diagram of
exact sequences with surjective vertical arrows is commutative:

Sn+1(−n− 1)

��

// Sn(−n)

����

// . . . // S0

����

// F(1) // 0

0 // Gn(−n+ 1) // . . . // G0(1) // F(1) // 0.

Proof. We introduce the sheaves Nj and Kj defined as the kernels at each term of the
sequences γcan and ε1, respectively. Hence, there are exact sequences

0→ Nj+1(j + 1)→ Gj+1 → Nj(j + 1)→ 0,

0→ Kj+1(j + 1)→ Fj+1 → Kj(j + 1)→ 0.

With these notations, observe that N−1 = K−1 = F . By induction, starting from the left
hand side of the long exact sequences, it is easily checked thatNj(j+1) andKj(j+1) are
regular sheaves, for j ≥ −1. Also, by Theorem 4.2, we find that Gj+1 = π∗(Nj(j + 1))
for j ≥ −1.

We next prove by induction that, for each k ≥ −1, there is a commutative diagram of
exact sequences

0

��

0

��

0

��
0 // Pk+1

//

��

Hk+1
//

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Fk+1
//

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 1) // Gk+1
//

��

Nk(k + 1) //

��

0

0 0,

(4.7)

whereHk+1, Pk and Pk+1 are defined as the kernels of the corresponding morphisms, and
that Pk(1) is regular. For k = −1, since N−1 = K−1 = F , we deduce that P−1(1) =
0, hence regular. Thus it only remains to be shown that there is a surjective morphism
F0 → G0 fitting in the diagram (4.6). As we remarked above, K0(1) is regular (so that
R1π∗K0 = 0). Since F0 is a sheaf on X this implies that the map F0 = π∗F0 −→ π∗F is
surjective. Since, moreover, G0 = π∗F , we obtain our surjective map.

Assume that the statement is true for a fixed k ≥ −1. In order to proceed with the
induction, we need to prove: (a) the map Kk+1(k + 2) → Nk+1(k + 2) is surjective, (b)
the sheaf Pk+1(1) is regular, and (c) there is an induced surjective map Fk+2 → Gk+2.
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We first prove (a). If we apply π∗ to the last two columns of diagram (4.7). Observing
that Fk+1, Gk+1 and Hj+1 are actually sheaves on X and recalling that Kk+1(k + 2) is
regular, we find a commutative diagram of exact sequences

0 //Hk+1
//

��

Fk+1
//

��

Gk+1
// 0

0 // π∗(Pk(1)) // π∗(Kk(k + 1))

��

// π∗(Nk(k + 1)) // 0

0

It follows that the map Hk+1 � π∗(Pk(1)) is a surjection. Since Pk(1) is regular, we
have that π∗(Pk(1)) ⊗ OPnX � Pk(1) is also a surjection. Thus the map Hk+1 → Pk(1)
is surjective. The diagram (4.7) implies that the map Kk+1(k + 1)→ Nk+1(k + 1) is also
surjective. Twisting by O(1), we obtain (a).

Now the regularity of Hk+1 and Pk(1), and the surjectivity of Hk+1 � π∗(Pk(1))
ensure the regularity of Pk+1(1). In its turn, this shows that the sequence

0→ π∗(Pk+1(1))→ π∗(Kk+1(k + 2))→ π∗(Nk+1(k + 2))→ 0 (4.8)

is exact. Finally, we observe that there is a surjective map

Fk+2
// // π∗(Kk+1(k + 2)), (4.9)

by the regularity of Kk+2(k + 3). From (4.8) and (4.9), we obtain a surjection

Fk+2
// // π∗(Nk+1(k + 2)) = Gk+2.

This completes the proof of the inductive step, hence of the existence of the diagram, from
which we deduce (i).

To prove the second item we construct the resolution S∗ inductively. We will denote
by Kk the kernel of any map Sk(−k) → Sk−1(−k + 1) already defined and by Nk the
successive kernels of the canonical resolution of F as in the proof of the first statement.

Assume that we have constructed the sequence ε2 up to Sk(−k) with the further con-
ditions that Kk(k + 1) is regular and that there is an exact sequence

0→ Pk(1)→ Kk(k + 1)→ Nk(k + 2)→ 0

with Pk(1) regular. We have to show that we can extend the resolution one step satisfying
the same conditions. Recall that we already know that Nk(k + 1) is regular. We consider
as well the surjection Gk+1(1) // // Nk(k + 2). We form the fiber product

Tk+1 := Ker(Kk(k + 1)⊕ Gk+1(1)→ Nk(k + 2)).

Observe that Tk+1 is regular, because both Nk(k + 1), Kk(k + 1) ⊕ Gk+1(1) are regular
and the morphism π∗(Kk(k) ⊕ Gk+1) → Gk+1 = π∗(Nk(k + 1)) is surjective. So are the
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arrows Tk+1 → Gk+1(1) and Tk+1 → Kk(k+1). Therefore, if we define Sk+1 = π∗(Tk+1),
we have a commutative diagram of exact sequences

0

��

0

��

0

��
0 // Pk+1

//

��

Hk+1
//

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Sk+1
//

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 2) // Gk+1(1) //

��

Nk(k + 2) //

��

0

0 0,

where Hk+1 and Pk+1 are defined as the kernels of the corresponding morphisms. Thus
we have been able to extend the resolution one step further. We still need to show that this
extension satisfies the extra properties. We observe that, by the definition of Sk+1 and the
left exactness of direct images, the map π∗(Sk+1)→ π∗(Gk+1(1)) is surjective. Therefore
Hk+1(1) is regular. Moreover, one can check that Sk+1 is the fiber product

Sk+1 = Ker
(
π∗(Gk+1(1))⊕ π∗(Kk(k + 1))→ π∗(Nk(k + 2))

)
.

This implies easily that π∗(Hk+1) = π∗(Pk(1)). We also observe that, by definition of
fiber product, Pk(1) = Ker(Tk+1 → Gk+1(1)). Since Sk+1 surjects onto Tk+1, we deduce
that the morphismHk+1 → Pk(1) is surjective. From this we conclude that the morphism
Kk+1(k + 2) → Nk+1(k + 3) is surjective and that the sheaf Pk+1(1) is regular. Since
Nk+1(k + 3) is regular, we deduce that Kk+1(k + 2) is regular. Therefore Sk+1 satisfies
all the required properties, concluding the proof of (ii).

We end this section recalling the notion of generating class of a triangulated category.

Definition 4.10. Let D be a triangulated category. A generating class is a subclass C of
D such that the smallest triangulated subcategory of D that contains C is equivalent to D
via the inclusion.

A well-known direct consequence of Theorem 4.2 is the following result.

Corollary 4.11. The class of objects of the form G(k), with G a coherent sheaf in X and
−n ≤ k ≤ 0, is a generating class of Db(PnX).

5 Analytic torsion for projective spaces
Let n be a non-negative integer, V the n + 1 dimensional vector space Cn+1 and Pn :=
Pn(V ) the projective space of lines in V . We write V for the vector space V together with
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the trivial metric. We will denote by V the trivial vector bundle of fiber V over any base.
In this section we will denote generically by π : PnX → X the projection of the trivial
projective bundle.

We may construct natural relative hermitian complexes that arise by considering the
sheaves O(k), their cohomology and the Fubini-Study metric. If we endow the trivial
sheaf with the trivial metric and O(1) with the Fubini-Study metric, then the tangent
bundle Tπ carries a quotient hermitian structure via the short exact sequence

0→ OPnC → O(1)n+1 → Tπ → 0. (5.1)

We will denote the resulting hermitian vector bundle by T
FS
π and call it the Fubini-Study

metric of Tπ. The arrow (π, T
FS
π ) in Sm∗/C will be written πFS. We endow the invertible

sheaves O(k) with the k-th tensor power of the Fubini-Study metric on O(1). We refer to
them by O(k).

We now describe natural hermitian structures on the complexes π∗O(k). First assume
k ≥ 0. The sheaf O(k) is π-acyclic, hence π∗O(k) = H0(PnC,O(k)) as a complex con-
centrated in degree 0. This space is naturally equipped with the L2 metric with respect
to the Fubini-Study metric on O(k) and the volume form c1(O(1))∧n/n!(2πi)n on PnC.
Namely, given global sections s, t of O(k),

〈s, t〉L2 =
1

n!(2πi)n

∫
PnC

〈s(x), t(x)〉x c1(O(1))∧n.

Recall that, with the algebro-geometric normalization c1(O(1)) = ∂∂̄ log ‖s‖2 for any
rational section s of O(1). If −n ≤ k < 0, then π∗O(k) = 0 and we put the trivial metric
on it. Finally, let k ≤ −n− 1. Then the cohomology of π∗O(k) is concentrated in degree
n and there is an isomorphism,

π∗O(k) ∼= H0(PnC,O(−k − n− 1))∨[−n].

Notice that this isomorphism is canonical due to Grothendieck duality and to the natural
identification ωPnC = O(−n − 1). Hence we may endow π∗O(k) with the dual of the L2

metric on H0(PnC,O(−k − n− 1)).

Notation 5.2. For every integer k, we introduce the relative metrized complex

ξn(k) = (πFS,O(k), π∗O(k)). (5.3)

If X is a smooth complex variety, we will also denote by ξn(k) its pull-back to PnX . Let
F be a metrized coherent sheaf on X . Then we define F(k) and π∗F(k) by the equality

ξn(k)⊗F = (πFS,F(k), π∗F(k)).

Definition 5.4. LetX be a complex smooth variety and π : PnX → X the projection. Let π
denote the map π with any choice of hermitian structure on the relative tangent complex.
An analytic torsion class for the relative hermitian complex ξ = (π,F , π∗F) is a class
η̃ ∈

⊕
p D̃2p−1(X, p) such that

dD η̃ = ch(π∗F)− π[[ch(F)]. (5.5)
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For instance, when X is proper, Grothendieck-Riemann-Roch theorem for Deligne
cohomology, implies that the two currents at the right hand side of equation (5.5) are
cohomologous. Note that, since the map π is smooth, the analytic torsion class is the class
of a smooth form (See [27, Theorem 1.2.2]).

Definition 5.6. Let n be a non-negative integer. A theory of analytic torsion classes for
projective spaces of dimension n is an assignment that, to each relative metrized complex
ξ = (π : PnX → X,F , π∗F) of relative dimension n, assigns a class of differential forms

T (ξ) ∈
⊕
p

D̃2p−1(X, p),

satisfying the following properties.

(i) (Differential equation) dD T (ξ) = ch(π∗F)− π[[ch(F)].

(ii) (Functoriality) Given a morphism f : Y −→ X , we have T (f ∗ξ) = f ∗T (ξ).

(iii) (Additivity and normalization) If ξ1 and ξ2 are relative metrized complexes on X ,
then T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2).

(iv) (Projection formula) For any hermitian vector bundle G on X , and any integer
k ∈ [−n, 0], we have T (ξn(k)⊗G) = T (ξn(k)) • ch(G).

A theory of analytic torsion classes for projective spaces is an assignment as before,
for all non-negative integers n.

Definition 5.7. Let T be a theory of analytic torsion classes for projective spaces of di-
mension n. Fix as base space the point SpecC. The characteristic numbers of T are

tn,k(T ) := T (ξn(k)) ∈ D̃1(SpecC, 1) = R, k ∈ Z. (5.8)

The numbers tn,k(T ), −n ≤ k ≤ 0 will be called the main characteristic numbers of T .

The central result of this section is the following classification theorem.

Theorem 5.9. Let n be a non-negative integer and let t = (tn,k)k=−n,...,0 be a family of
arbitrary real numbers. Then there exists a unique theory Tt of analytic torsion classes
for projective spaces of dimension n, such that tn,k(Tt) = tn,k.

Before proving Theorem 5.9, we show some consequences of the definition of the ana-
lytic torsion classes. First we state some anomaly formulas that determine the dependence
of the analytic torsion classes with respect to different choices of hermitian structures.

Proposition 5.10. Let T be a theory of analytic torsion classes for projective spaces of
dimension n. Let ξ = (π : PnX → X,F , π∗F) be a relative metrized complex.

(i) IfF ′ is another choice of hermitian structure onF and ξ1 = (π : PnX → X,F ′, π∗F),
then

T (ξ1) = T (ξ) + π[[c̃h(F ′,F)].
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(ii) If π′ is another hermitian structure on π and ξ2 = (π′ : PnX → X,F , π∗F), then

T (ξ2) = T (ξ) + π′[[ch(F) • T̃dm(π′, π)]. (5.11)

(iii) If π∗F
′

is another choice of hermitian structure on π∗F , and ξ3 = (π : PnX →
X,F , π∗F

′
), then

T (ξ3) = T (ξ)− c̃h(π∗F
′
, π∗F).

Proof. The proof is the same as the proof of Proposition 3.17.

Next we state the behavior of analytic torsion classes for projective spaces with respect
to distinguished triangles.

Proposition 5.12. Let T be a theory of analytic torsion classes for projective spaces
of dimension n. Let X be a smooth complex variety and π : PnX → X the projection.
Consider distinguished triangles in D

b
(PnX) and D

b
(X) respectively:

(τ) : F2 → F1 → F0 → F2[1] and (π∗τ) : π∗F2 → π∗F1 → π∗F0 → π∗F2[1],

and define relative metrized complexes ξi = (π,F i, π∗F i), i = 0, 1, 2. Then∑
j

(−1)jT (ξj) = c̃h(π∗τ)− π[(c̃h(τ)).

Proof. The proof is similar to that of 3.19.

In view of this proposition, we see that the additivity axiom is equivalent to the appar-
ently stronger statement of the next corollary.

Corollary 5.13. With the assumptions of Proposition 5.12, if τ and π∗τ are tightly distin-
guished, then T (ξ1) = T (ξ0) + T (ξ2).

Corollary 5.14. Let ξ = (π,F , π∗F) be a relative metrized complex and let ξ[i] =
(π,F [i], π∗F [i]) be the shifted relative metrized complex. Then T (ξ) = (−1)iT (ξ[i]).

Proof. It is enough to treat the case i = 1. We consider the tightly distinguished triangle

F 99K cone(idF) 99K F [1] 99K

and the analogous triangle for direct images. Since cone(idF) and cone(idπ∗F) are mea-
ger, we have, by the anomaly formulas and the additivity axiom,

T (π, cone(idF), cone(idπ∗F)) = T (π, 0, 0) = 0.

Hence, the result follows from Corollary 5.13.

Next we rewrite Proposition 5.12 in the language of complexes of metrized coherent
sheaves. Let

ε : 0→ Fm → · · · → F l → 0

be a bounded complex of metrized coherent sheaves on PnX and assume that hermitian
structures on the complexes π∗Fj , j = l, . . . ,m are chosen. Let [ε], [π∗ε] ∈ ObD

b
(PnX)

be the associated objects as in [17, Def. 3.37, Def. 3.39].
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Remark 5.15. In [17, Def. 3.37, Def. 3.39] there is a misprint. The class [ε] should be
defined inductively by the condition [ε] = cone(Fm[m−1], [σ<mε]). The same is true for
the definition of [π∗ε]. This definition implies that there are tightly distinguished triangles

(τ k) : [σ<kε]→ [σ<k+1ε]→ Fk[k]→, (π∗τk) : [π∗σ<kε]→ [π∗σ<k+1ε]→ π∗Fk[k]→ .

Corollary 5.16. With the above hypothesis,

T (π, [ε], [π∗ε]) =
m∑
j=l

(−1)jT (π,F j, π∗Fj).

Moreover, if ε is acyclic, then T (π, [ε], [π∗ε]) = c̃h(π∗ε)− π[[c̃h(ε)].

Proof. The first equation is proved by applying Corollary 5.13 to the tightly distinguished
triangles of Remark 5.15 for k = l, . . . ,m, and using Corollary 5.14 to convert the shift
into a sign. The second statement is proved in a similar way by breaking ε into short exact
sequences and using Proposition 5.12 and [17, Prop. 3.41].

Finally, we show that the projection formula holds in greater generality:

Proposition 5.17. Let T be a theory of analytic torsion classes for projective spaces
of dimension n. Let X be a smooth complex variety, let ξ = (π,F , π∗F) be a relative
metrized complex and let G be an object in D

b
(X). Then

T (ξ ⊗ G) = T (ξ) • ch(G). (5.18)

Proof. By the anomaly formulas, if equation (5.18) holds for a particular choice of her-
mitian structures on π, F and π∗F then it holds for any other choice. Moreover, if we are
in the situation of Proposition 5.12 and equation (5.18) holds for two of ξ0, ξ1, ξ2, then it
holds for the third. Using that the objects of the form H(k), where H is a coherent sheaf
on X and k = −n, . . . , 0, constitute a generating class of Db(PnX), we are reduced to
prove that

T (ξn(k)⊗ G) = T (ξn(k)) • ch(G).

for k = −n, . . . , 0. Now, if
G2 99K G1 99K G0 99K

is a distinguished triangle in D
b
(X) and equation (5.18) is satisfied for two of G2, G1,

G0, then it is satisfied also by the third. Therefore, since the complexes of vector bundles
concentrated in a single degree constitute a generating class of Db(X), the projection
formula axiom implies the proposition.

Proof of Theorem 5.9 . To begin with, we prove the uniqueness assertion. Assume a the-
ory of analytic torsion classes T , with main characteristic numbers tn,k, −n ≤ k ≤ 0,
exists. Then, the anomaly formulas (Proposition 5.10) imply that, if T (π,F , π∗F) is
known for a particular choice of hermitian structures on π, F and π∗F then the value of
T (π′,F ′, π∗F

′
) for any other choice of hermitian structures is fixed. By Proposition 5.12,

if we know the value of T (π,F , π∗F), for F in a generating class, then T is determined.
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By the projection formula (Proposition 5.17), the characteristic numbers determine the
values of T (ξ(k) ⊗ G), k = −n, . . . , 0. Finally, since by Corollary 4.11, the objects of
the form G(k), k = −n, . . . , 0 form a generating class, we deduce that the characteristic
numbers determine the theory T . Thus, if it exists, the theory Tt is unique.

In particular, from the above discussion we see that the main characteristic numbers
determine all the characteristic numbers. We now derive an explicit inductive formula for
them. Consider the metrized Koszul resolution

K : 0→ Λn+1V
∨
(−n− 1)→ · · · → Λ1V

∨
(−1)→ OPnC → 0, (5.19)

where O(k), for k 6= 0, has the Fubini-Study metric and OPnC has the trivial metric.
We will denote by K(k) the above exact sequence twisted by O(k), k ∈ Z, again with
the Fubini-Study metric. Recall the definition of the relative metrized complexes ξn(k)
(5.3). In particular, for every k, we have fixed natural hermitian structures on the objects
π∗O(k− j). According to [17, Def. 3.37, Def. 3.39] (see Remark 5.15), we may consider
the classes [K(k)] and [π∗K(k)] in D

b
(PnC) and D

b
(SpecC), respectively. By Corollary

5.16, for each k ∈ Z we find

n+1∑
j=0

(−1)jT (ξn(k − j)⊗ ΛjV
∨
) = c̃h(π∗K(k))− πFS

[ [c̃h(K(k))].

Because ΛjV
∨

is isometric to C(n+1
j ) with the trivial metric, the additivity axiom for the

theory T and the definition of the characteristic numbers tn,k−j provide

T (ξn(k − j)⊗ ΛjV
∨
) = tn,k−j

(
n+ 1

j

)
.

Therefore we derive

n+1∑
j=0

(−1)j
(
n+ 1

j

)
tn,k−j = c̃h(π∗K(k))− πFS

[ [c̃h(K(k))]. (5.20)

This equation gives us an inductive formula for all the characteristic numbers tn,k once
we have fixed n + 1 consecutive characteristic numbers and, in particular, once we have
fixed the main characteristic numbers.

To prove the existence, we follow the proof of the uniqueness to obtain a formula
for T (ξ). We start with the main characteristic numbers t = (tn,k)−n≤k≤0. We define the
characteristic numbers tn,k for k ∈ Z inductively using equation (5.20).

We will need the following results.

Lemma 5.21. Let η : 0 → F2 → F1 → F0 → 0 be a short exact sequence of metrized
coherent sheaves on X . Let k be an integer, and F(k) and π∗F(k) be as in Notation
5.2. Thus we have an exact sequence η(k) of metrized coherent sheaves on PnX and a
distinguished triangle π∗η(k). Then

c̃h(π∗η(k)) = πFS
[ (c̃h(η(k))). (5.22)
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Proof. By the Riemann-Roch theorem for the map PnC → SpecC we have

ch(π∗O(k)) = π∗(ch(O(k)) Td(πFS)). (5.23)

Hence, by the properties of Bott-Chern classes and the choice of metrics

c̃h(π∗η(k)) = c̃h(η) • ch(π∗O(k)) = c̃h(η) • π∗(ch(O(k)) Td(πFS))

= π∗

(
c̃h(η(k)) • Td(πFS)

)
= πFS

[ (c̃h(η(k))).

Lemma 5.24. Let

µ : 0→Mm(−m− d)→ · · · →Ml(−l − d)→ 0 (5.25)

be an exact sequence of metrized coherent sheaves on PnX , where, for each i = l, . . . ,m,
Mi is a metrized coherent sheaf on X , andMi(k) is as in Notation 5.2. On π∗Mi(k) we
consider the hermitian structures given also by Notation 5.2. Then

m∑
i=l

(−1)itn,−d−i ch(Mi) = c̃h(π∗µ)− πFS
[ (c̃h(µ)). (5.26)

Proof. We consider a commutative diagram of exact sequences

0

��

0

��

µ′ 0 //M′
m(−m− d) //

��

. . . //M′
l(−l − d) //

��

0

µ 0 //Mm(−m− d) //

��

. . . //Ml(−l − d) //

��

0

µ′′ 0 //M′′
m(−m− d) //

��

. . . //M′′
l (−l − d) //

��

0

0 0

ξm
. . . ξl.

Claim. If equation (5.26) holds for two of µ, µ′ and µ′′, then it holds for the third.
Proof of the claim. On the one hand we have

m∑
i=l

(−1)itn,−d−i

(
ch(M′

i)− ch(Mi) + ch(M′′
i )
)

=
m∑
i=l

(−1)itn,−d−i dD c̃h(ξi).

But, if t ∈ D1(SpecC, 1) = R is a real number, in the group
⊕

p D̃2p−1(X, p), we have

t dD c̃h(ξi) = − dD(t • c̃h(ξi)) = 0.
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On the other hand, by Lemma 5.21

c̃h(π∗µ′)− c̃h(π∗µ) + c̃h(π∗µ′′) = πFS
[ (c̃h(µ′))− πFS

[ (c̃h(µ)) + πFS
[ (c̃h(µ′′)).

The proof of the lemma is done by induction on the length r = m− l of the complex.
If r ≤ n then µ(d + l) has the same shape as the canonical resolution of the zero sheaf.
By the uniqueness of the canonical resolution, we haveMi = 0, for i = l, . . . ,m. Using
the above claim whenMi = 0 has a non-trivial hermitian structure, we obtain the lemma
for r ≤ n.

Assume now that r > n. LetK be the Koszul exact sequence (5.19). ThenK(1)⊗Ml

is the canonical resolution of the regular coherent sheafMl(1). By Theorem 4.5 (i) there
is a surjection of exact sequences µ→ K(−l−d)⊗Ml whose kernel is an exact sequence

µ′ : 0→M′
m(−m− d)→ · · · →M′

l+1(−d− l − 1)→ 0.

We consider on K the metrics of (5.19), for i = l+ 1, . . . ,m, we choose arbitrary metrics
onM′

i and denote by µ′ the corresponding exact sequence of metrized coherent sheaves.
By induction hypothesis, µ′ satisfies equation (5.26). Moreover, since the characteristic

numbers tn,k for k 6∈ [0, n] are defined using equation (5.20), the exact sequence K(−l−
d)⊗Ml also satisfies equation (5.26). Hence the lemma follows from the previous claim.

We now treat the case of complexes concentrated in a single degree. Let F be a co-
herent sheaf on PnX with a hermitian structure and let π∗F be a choice of a hermitian
structure on the direct image complex. Write ξ = (πFS,F , π∗F) for the corresponding
relative metrized complex.

Choose an integer d such that F(d) is regular. Then we have the resolution γd(F) of
Corollary 4.3. More generally, let µ be an exact sequence of the form

0→ Sm(−d−m)→ · · · → S1(−d− 1)→ S0(−d)→ F → 0,

where the Si, i = 0, . . . ,m are coherent sheaves on X . Assume that we have chosen
hermitian structures on the sheaves Si. Using Notation 5.2 and [17, Def. 3.37, Def. 3.39]
(see Remark 5.15) we have objects [µ] in KA(PnX) and [π∗µ] in KA(X). Then we write

Tt,µ(ξ) =
m∑
j=0

(−1)jtn,j−d ch(Sj)− c̃h(π∗µ) + πFS
[ (c̃h (µ)) (5.27)

Lemma 5.28. Given any choice of metrics on the sheaves Gi, (respectively G ′i) i =
0, . . . , n, that appear in the resolution γd(F) (respectively γd+1(F)), denote by γd and
γd+1 the corresponding exact sequences of metrized coherent sheaves. Then

Tt,γd+1
(ξ) = Tt,γd(ξ).

In particular, Tt,γd(ξ) does not depend on the choice of metrics on the sheaves Gi.
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Proof. By Theorem 4.5 (ii), there is an exact sequence

µ : 0→ Sn+k(−n− k − d− 1)→ · · · → S0(−d− 1)→ F → 0, (5.29)

and a surjection of exact sequences f : µ → γd extending the identity on F . Here S i,
i = 0, . . . , n+ k are coherent sheaves on X with hermitian structures.

By Theorem 4.5 (i) there is a surjection of exact sequences µ −→ γd+1 extending the
identity on F , whose kernel is an exact sequence

ε : 0→Mn+k(−n− k − d− 1)→ · · · →M0(−d− 1)→ 0, (5.30)

whereMi, i = 0, . . . , n + k are coherent sheaves on X , and we have chosen arbitrarily
an hermitian structure on them. Denote by ηi the rows of the exact sequence

0→ ε→ µ→ γd+1 → 0.

Observe that ηi = η′i(−i − d − 1) for some short exact sequence η′i on X . When j ≥ n

we denote G ′j = 0. Then, we have

n+k∑
j=0

(−1)jtn,j−d−1

(
ch(G ′j)− ch(Sj) + ch(Mj)

)
=

n+k∑
j=0

(−1)jtn,j−d−1 dD c̃h(η′i) = 0. (5.31)

By [17, Prop. 3.41], we have

c̃h(π∗γd+1)− c̃h(π∗µ) + c̃h(π∗ε) =
n+k∑
j=0

(−1)j c̃h(π∗ηj), (5.32)

c̃h(γd+1)− c̃h(µ) + c̃h(ε) =
n+k∑
j=0

(−1)j c̃h(ηj). (5.33)

Combining equations (5.31), (5.32) and (5.33) and lemmas 5.21 and 5.24 we obtain

Tt,µ(ξ) = Tt,γd+1
(ξ). (5.34)

We consider now cone(µ, γd). On it we put the obvious hermitian structure induced by
µ and γd, cone(µ, γd). On π∗ cone(µ, γd), we put the obvious family of hermitian metrics
induced by π∗µ and π∗γd, and denote it as π∗ cone(µ, γd). By [17, Cor. 3.42] we have

c̃h(cone(µ, γd)) = c̃h(γd)− c̃h(µ), (5.35)

c̃h(π∗ cone(µ, γd)) = c̃h(π∗γd)− c̃h(π∗µ). (5.36)

Observe that cone(µ, γd)
i

= S−i−1(i − d) ⊕ G−i(i − d). Combining Lemma 5.24 for
cone(µ, γd) with equations (5.35) and (5.36), we obtain

Tt,µ(ξ) = Tt,γd(ξ), (5.37)

Together with equation (5.34) this proves the lemma.
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Now we are in position to prove the existence of Tt. Let n and t be as in Theo-
rem 5.9. We define the numbers tn,k, for k < 0 and k > n by equation (5.20). Let
ξ = (πFS,F , π∗F) be a relative metrized complex. We construct Tt(ξ) by induction on
the length of the cohomology of F . If it has at most a single non zero coherent sheaf H
sitting at degree j, thenF and π∗F determine hermitian structures onH[−j] and π∗H[−j]
respectively. We choose an integer d such thatH(d) is regular and we write

Tt(ξ) = (−1)jTt,γd(H)(π
FS,H, π∗H). (5.38)

By Lemma 5.28, this does not depend on the choice of d nor on the choice of metrics
on γd(H).

Assume that we have defined the analytic torsion classes for all complexes whose
cohomology has length less than l and that the cohomology of F has length l. Let H be
the highest cohomology sheaf ofF , say of degree j. Choose auxiliary hermitian structures
onH[−j] and π∗H[−j]. There is a unique natural mapH[−j] 99K F . Then we define

Tt(ξ) = Tt(π
FS,H[−j], π∗H[−j])

+ Tt(π
FS, cone(H[−j],F), cone(π∗H[−j], π∗F)). (5.39)

It follows from [17, Thm. 2.27 (iv)] that the right hand side of this equality does not
depend on the choice of the auxiliary hermitian structures.

Finally, we consider the case when π has a hermitian structure different from the
Fubini-Study metric. Thus, let ξ = (π,F , π∗F) and write ξ

′
= (πFS,F , π∗F). Then

we put
Tt(ξ) = Tt(ξ

′
) + π[[ch(F ) • T̃dm(π, πFS)]. (5.40)

Definition 5.41. Let n and t be as in Theorem 5.9. Then Tt is the assignment that to each
relative metrized complex ξ associates Tt(ξ) given by equations (5.38), (5.39) and (5.40).

It remains to prove that Tt satisfies axioms (i) to (iv). Axiom (i) follows from the dif-
ferential equations satisfied by the Bott-Chern classes. Axiom (ii) follows from the func-
toriality of the canonical resolution, the Chern forms and the Bott-Chern classes. Axiom
(iii) follows from the additivity of the canonical resolution and of the Chern character. Fi-
nally Axiom (iv) follows from the multiplicativity of the Chern character. This concludes
the proof of Theorem 5.9.

We finish this section showing the compatibility of analytic torsion classes with the
composition of projective bundles. Let X be a smooth complex variety. Consider the
commutative diagram with cartesian square

Pn1
X ×

X
Pn2
X

p1

zzvvvvvvvvv p2

$$H
HHHHHHHH

p

��

Pn1
X

π1
%%KKKKKKKKKKK Pn2

X

π2
yysssssssssss

X
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On π1 and π2 we introduce arbitrary hermitian structures and on p1 and p2 the hermitian
structures induced by the cartesian diagram.

Proposition 5.42. LetF be an object of D
b
(Pn1

X ×
X
Pn2
X ). Put arbitrary hermitian structures

on (p1)∗F , (p2)∗F , and p∗F . Then

T (π1) + (π1)[(T (p1)) = T (π2) + (π2)[(T (p2)), (5.43)

where we are using the convention at the end of Definition 2.5.

Proof. By the anomaly formulas (Proposition 5.10), if equation (5.43) holds for a partic-
ular choice of hermitian structures on F , (p1)∗F , (p2)∗F , and p∗F , then it holds for any
other choice. Let

F2 99K F1 99K F0 99K

be a distinguished triangle and put hermitian structures on the direct images as before.
Then Proposition 5.12 implies that, if equation (5.43) holds for two of them, then it also
holds for the third. Since the objects of the form G(k, l) := p∗G ⊗ p∗1O(k)⊗ p∗2O(l) are a
generating class of Db(Pn1

X ×
X
Pn2
X ), the previous discussion shows that it is enough to prove

the case F = G(k, l), with the hermitian structure of F induced by a hermitian structure
of G and the Fubini-Study metric on O(k) and O(l), and the hermitian structures on the
direct images defined as in (5.3). In this case the result follows easily from the functoriality
and the projection formula.

6 Compatible analytic torsion classes
In this section we study the compatibility between analytic torsion classes for closed im-
mersions and analytic torsion classes for projective spaces. It turns out that, once the
compatibility between the diagonal embedding of Pn into Pn×Pn and the second projec-
tion of Pn × Pn onto Pn is established, then all the other possible compatibilities follow.
Essentially this observation can be traced back to [15].

Let n, V , V and Pn(V ) be as in the previous section. We consider the diagram

Pn

id $$I
II

II
II

II
I

∆ // Pn × Pn
p1 //

p2

��

Pn

π
��

Pn π1
// SpecC .

On Pn we have the tautological short exact sequence

0→ O(−1)→ V → Q→ 0 .

This induces on Pn × Pn the exact sequence

0→ p∗2O(−1)→ V → p∗2Q→ 0 .
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By composition with the injection p∗1O(−1) ↪→ V , we obtain a morphism p∗1O(−1) →
p∗2Q, hence a section of p∗2Q⊗ p∗1O(1). The zero locus of this section is the image of the
diagonal. Moreover, the associated Koszul complex is quasi-isomorphic to ∆∗OPn . That
is, the sequence

0→ Λn(p∗2Q
∨)⊗ p∗1OPn(−n)→ . . .

· · · → Λ1(p∗2Q
∨)⊗ p∗1OPn(−1)→ OPn×Pn → ∆∗OPn → 0 (6.1)

is exact.
On TPn and TPn×Pn we consider the Fubini-Study metrics. We denote by ∆ and p2

the morphisms of Sm∗/C determined by these metrics. As in [17, Ex. 5.7], we have that
p2 ◦ ∆ = idPn , where TidPn

= 0. The Fubini-Study metric on O(−1) and the metric
induced by the tautological exact sequence on Q induce a metric K(∆) on the Koszul
complex. This is a hermitian structure on ∆∗OPn . Finally on OPn we consider the trivial
metric. This is a hermitian structure on (p2)∗K(∆).

Fix a real additive genus S and denote by TS the theory of analytic torsion classes
for closed immersions that is compatible with the projection formula and transitive, as-
sociated to S (Theorem 3.11). Moreover, fix a family of real numbers t = {tnk | n ≥
0, −n ≤ k ≤ 0} and denote Tt the theory of generalized analytic torsion classes for
projective spaces associated to this family.

Compatible analytic torsion classes for closed immersions and for projective spaces
should combine to provide analytic torsion classes for arbitrary projective morphisms, and
these classes should be transitive. The transitivity condition for the composition idPn =
p2 ◦∆ should give us

0 = T (idPn ,OPn ,OPn) = Tt(p2, K(∆),OPn) + (p2)[(TS(∆,OPn , K(∆))).

In general we define

Definition 6.2. The theories of analytic torsion classes TS and Tt are called compatible if

Tt(p2, K(∆),OPn) + (p2)[(TS(∆,OPn , K(∆))) = 0. (6.3)

Theorem 6.4. Let S be a real additive genus. Then there exists a unique family of real
numbers t = {tn,k | n ≥ 0, −n ≤ k ≤ 0} such that the theories of analytic torsion
classes TS and Tt are compatible. The theory Tt will also be denoted TS .

Proof. The first step is to make explicit equation (6.3) in terms of the main characteristic
numbers t. To this end, first observe that, since the exact sequence

0→ Tp2 → TPn×Pn → p∗2TPn → 0 (6.5)

is split and the hermitian metric on TPn×Pn is the orthogonal direct sum metric, p2 =
π∗1(πFS). Next, we denote by K(∆)i the component of degree i of the Koszul complex,
and we define

(p2)∗K(∆)i =

{
OPn , for i = 0,

0, for i > 0.
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Finally using Corollary 5.16, functoriality and the compatibility with the projection for-
mula, we derive

Tt(p2, K(∆),OPn) =
n∑
i=0

(−1)iTt(p2, K(∆)i, (p2)∗K(∆)i) =

n∑
i=0

(−1)iTt(π
∗
1ξn(−i)⊗ ΛiQ

∨
) =

n∑
i=0

(−1)itn,−i ch(ΛiQ
∨
).

Thus, the second and last step is to solve the equation
n∑
i=0

(−1)itn,−i ch(ΛiQ
∨
) = −(p2)∗(TS(∆,OPn , K(∆)) • Td(p2)). (6.6)

Since the left hand side of equation (6.6) is closed, in order to be able to solve this equation
we have to show that the right hand side is also closed. We compute

dD(p2)∗(TS(∆,OPn , K(∆)) • Td(p2))

= (p2)∗

(
n∑
i=0

(−1)i ch(K(∆)i) Td(p2)−∆∗(ch(OPn) Td(∆)) Td(p2)

)

= (p2)∗

(
n∑
i=0

(−1)ip∗2(ch(ΛiQ
∨
))p∗1(ch(O(−i))) Td(p2)

)
− 1

=
n∑
i=0

(−1)i ch(ΛiQ
∨
)(p2)∗

(
p∗1(ch(O(−i))) Td(p2)

)
− 1

=
n∑
i=0

(−1)i ch(ΛiQ
∨
)π∗1π∗

(
ch(O(−i)) Td(π)

)
− 1

= 1− 1 = 0.

In the first equality we have used the differential equation of TS . In the second one we have
used the definition of the Koszul complex, the equation ch(OPn) = 1 and the fact that, by
the choice of hermitian structures on T∆ and Tp2 we have Td(∆) •∆∗(Td(p2)) = 1. The
third equality is the projection formula and the fourth is base change for cohomology. For
the last equality we have used equation (5.23).

Both sides of equation (6.6) are closed and defined up to boundaries, hence this is an
equation in cohomology classes. The tautological exact sequence induces exact sequences

0→ ΛkQ∨ → ΛkV ∨ → Λk−1Q∨ ⊗O(1)→ 0,

that give us equations

ch(ΛkQ∨) =

(
n+ 1

k

)
− ch(Λk−1Q∨) ch(O(1)).

Hence

ch(ΛkQ∨) =
k∑
i=0

(−1)i
(
n+ 1

k − i

)
ch(O(i)).
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Since the classes ch(O(i)), i = 0, . . . , n, form a basis of
⊕

pH
2p
D (Pn,R(p)), the same is

true for the classes ch(ΛiQ∨), i = 0, . . . , n. Therefore, if 11 ∈ H1
D(Pn,R(1)) is the class

represented by the constant function 1, the classes 11•ch(ΛiQ∨), i = 0, . . . , n form a basis
of
⊕n+1

p=1 H
2p−1
D (Pn,R(p)). This implies that equation (6.6) has a unique solution.

Remark 6.7. Given a theory T of analytic torsion classes for projective spaces, obtained
from an arbitrary choice of characteristic numbers, in general, it does not exist an additive
genus such that the associated theory of singular Bott-Chern classes is compatible with T .
It would be interesting to characterize the collections of characteristic numbers that arise
from Theorem 6.4.

By definition, compatible analytic torsion classes for closed immersions and projec-
tive spaces satisfy a compatibility condition for the trivial vector bundle and the diagonal
embedding. When adding the functoriality and the projection formula, we obtain compat-
ibility relations for arbitrary sections of the trivial projective bundle and arbitrary objects.

Let X be a smooth complex variety, let π : PnX → X be the projective space over X
and let s : X → PnX be a section. Choose any hermitian structure on Tπ. Since we have an
isomorphism Ts 99K s∗Tπ[−1], this hermitian structure induces a hermitian structure on s.
Denote by π and s the corresponding morphisms in Sm∗/C. With this choice of hermitian
structures, we have

π ◦ s = (π ◦ s, cone(s∗Tπ[−1], s∗Tπ[−1])) = (idX , 0),

because the cone of the identity is meager.

Proposition 6.8. Let S be a real additive genus. Let TS denote both, the theory of analytic
torsion classes for closed immersions determined by S, and the theory of analytic torsion
classes for projective spaces compatible with it. Let F be an object of D

b
(X). Put a

hermitian structure on s∗F . Then

TS(π, s∗F ,F) + π[(TS(s,F , s∗F)) = 0. (6.9)

Proof. By the anomaly formulas Proposition 3.17 and Proposition 5.10, if equation (6.9)
holds for a particular choice of hermitian structure on s∗F then it holds for any other
choice. Therefore we can assume that the hermitian structure on s∗F is given by K(s)⊗
π∗F , whereK(s) is the Koszul complex associated to the section s. By the projection for-
mulas, if (6.9) holds for the trivial bundleOX then it holds for arbitrary objects of D

b
(X).

We now prove that, if equation (6.9) holds for a particular choice of hermitian structure
π, then it holds for any other choice. Thus, assume that equation (6.9) is satisfied for π and
s. Let π′ be another choice of hermitian structure on π and s′ be the hermitian structure
induced on s. On one hand, we have

TS(π′, K(s),OX) = TS(π,K(s),OX)+π∗

(
ch(K(s) • T̃dm(π′, π) • Td(π′))

)
. (6.10)
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On the other hand, we have

TS(s′,F , s∗F) • Td(π′) (6.11)

=
(
TS(s,F , s∗F) + s∗(T̃dm(s′, s) Td(s′))

)
•
(

Td(π)− dD(T̃dm(π′, π) • Td(π′))
)

= TS(s,F , s∗F) • Td(π) + s∗(T̃dm(s′, s) Td(s′)) • Td(π′)

− TS(s,F , s∗F) • dD(T̃dm(π′, π) • Td(π′))

In the group
⊕

p D̃
2p−1
D (PnX , Ns, p) we have

TS(s,F , s∗F) • dD(T̃dm(π′, π) • Td(π′))

=
(
ch(K(s))− s∗(Td(s))

)
•
(

T̃dm(π′, π) • Td(π′)
)
. (6.12)

Observe that, by the definition of the hermitian structure of s and s′ we have

Td(s) • s∗T̃dm(π′, π) = −T̃dm(s′, s) • Td(s′). (6.13)

By combining equations (6.9), (6.10), (6.12) and (6.13) we obtain

TS(π′, s∗F ,F) = −π∗
(
TS(s′,F , s∗F) • Td(π′)

)
. (6.14)

We now prove (6.9) for a particular choice of hermitian structures. Let f : X → Pn
denote the composition of s with the projection PnX → Pn. Then we have a commutative
diagram with cartesian squares

Pn ×X id×f //

π

��

Pn × Pn

p2

��

X

s

ddHHHHHHHHH

id

zzuuu
uu

uu
uu

u f
// Pn

∆

::uuuuuuuuu

id

$$II
III

III
II

X
f

// Pn

Let ∆ and p2 be as in Definition 6.2. On π and s we put the hermitian structures induced
by ∆. Since the Koszul complex K(s) = (idPn ×f)∗K(∆), by Proposition 2.14 and
functoriality, equation (6.9) in this case follows from equation (6.3).

We now study another compatibility between analytic torsion classes for closed im-
mersions and projective spaces. Let ι : X → Y be a closed immersion of smooth complex
varieties. Consider the cartesian square

PnX
π1

��

ι1 // PnY
π

��
X ι

// Y

Choose hermitian structures on π and ι and put on π1 and ι1 the induced ones.
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Proposition 6.15. Let S be a real additive genus. Let TS denote both, the theory of an-
alytic torsion classes for closed immersions determined by S, and the theory of analytic
torsion classes for projective spaces compatible with it. Let F be an object of D

b
(PnX).

Put hermitian structures on (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F . Then

TS(π) + π[(TS(ι1)) = TS(ι) + ι[(TS(π1)). (6.16)

Proof. By the anomaly formulas, if equation (6.16) holds for a particular choice of her-
mitian structures on (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F , then it holds for any choice. Because
the sheaves G(k), with G a coherent sheaf on X , constitute a generating class of Db(PnX)
and by propositions 3.19 and 5.12, we reduce to the case when F is of the form G(k).
We choose arbitrary hermitian structures on G and ι∗G. Furthermore, we assume O(k),
(π1)∗O(k) and π∗O(k) endowed with the hermitian structures of Notation 5.2. From these
choices and the projection formula, the objects (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F automati-
cally inherit hermitian structures. Indeed, it is enough to observe the natural isomorphisms

(π1)∗F ∼= G ⊗ (π1)∗O(k) (6.17)
(ι1)∗(π

∗
1G ⊗ ι∗1O(k)) ∼= π∗(ι∗G)⊗O(k) (6.18)

(π ◦ ι1)∗F ∼= π∗(π
∗ι∗G ⊗ O(k)) ∼= ι∗G ⊗ π∗O(k). (6.19)

We now work out the left hand side of equation (6.16). Using the projection formula for
the theory TS for projective spaces, and equations (6.17)–(6.19), we find

TS(π) = tn,k • ch(ι∗G). (6.20)

Using the functoriality of TS for closed immersions and the projection formula we have

TS(ι1) =π∗TS(ι,G, ι∗G) • ch(O(k))

π[(TS(ι1)) =TS(ι,G, ι∗G) • π∗(ch(O(k)) • Td(π)). (6.21)

Now for the right hand side of (6.16). The projection formula for TS for closed immersions
implies

TS(ι) = TS(ι,G, ιG) • ch(π∗O(k)). (6.22)

Similarly, we obtain TS(π1) = tn,k • ch(G), and hence

ι[(TS(π1)) = tn,k • ι∗(ch(G) • Td(ι)). (6.23)

Using (6.20)–(6.23), the difference of the two sides of (6.16) becomes

tn,k • dD TS(ι,G, ι∗G)− TS(ι,G, ι∗G) • dD tn,k = − dD(tn,k • TS(ι,G, ι∗G)) = 0

in the group ⊕pD̃2p−1
D (Y,Nι, p).
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7 Generalized analytic torsion classes
In this section we will extend the definition of analytic torsion classes to arbitrary mor-
phisms of smooth complex varieties. Our construction is based on the construction of
analytic torsion classes by Zha in [49].

Definition 7.1. A theory of generalized analytic torsion classes is an assignment that, to
each morphism f : X → Y in Sm∗/C and relative metrized complex ξ = (f,F , f∗F),
assigns a class of currents

T (ξ) ∈
n+1⊕
p=1

D̃2p−1
D (Y,Nf , p)

satisfying the following properties:

(i) (Differential equation) For any current η ∈ T (ξ), we have

dD η = ch(f∗F)− f [[ch(F)]. (7.2)

(ii) (Functoriality) If g : Y ′ → Y is a morphism transverse to f , then g∗T (ξ) = T (g∗ξ).

(iii) (Additivity and normalization) If ξ1, ξ2 are relative metrized complexes on X , then

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2).

(iv) (Projection formula) If ξ is a relative metrized complex, and G ∈ ObD
b
(Y ), then

T (ξ ⊗ G) = T (ξ) • ch(G).

(v) (Transitivity) If f : X → Y , g : Y → Z are morphisms in Sm∗/C, and (f,F , f∗F)

and (g, f∗F , (g ◦ f)∗F) are relative metrized complexes, then

T (g ◦ f) = T (g) + g[(T (f)). (7.3)

Propositions 7.4 and 7.6 below contain several anomaly and compatibility formulas
satisfied by an arbitrary theory of generalized analytic torsion classes. They follow from
properties (i)–(iii) and are analogous to those in propositions 3.17 and 5.10, 3.19 and
5.12 respectively. The proofs are omitted, as they are similar to those of the analogous
statements referred to hereinbefore.

Proposition 7.4. Let T be a theory of generalized analytic torsion classes. Let ξ =
(f,F , f∗F) be a relative metrized complex.

(i) If F ′ is another choice of metric on F and ξ1 = (f,F ′, f∗F), then

T (ξ1) = T (ξ) + f [[c̃h(F ′,F)].

40



(ii) If f
′
is another choice of hermitian structure on f and ξ2 = (f

′
,F , f∗F), then

T (ξ2) = T (ξ) + f
′
[[ch(F) • T̃dm(f

′
, f)]. (7.5)

(iii) If f∗F
′
is a different choice of metric on f∗F , and ξ3 = (f,F , f∗F

′
), then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).

Proposition 7.6. Let T be a theory of generalized analytic torsion classes. Let f : X → Y

be a morphism in Sm∗/C. Consider the distinguished triangles in D
b
(X) and D

b
(Y )

respectively:

(τ) : F2 → F1 → F0 → F2[1], and (f∗τ) : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],

and the relative metrized complexes ξi = (f,F i, f∗F i), i = 0, 1, 2. Then we have:∑
j=0,1,2

(−1)jT (ξj) = c̃h(π∗τ)− f [(c̃h(τ)).

The main result of this section is the following classification theorem.

Theorem 7.7. Let S be a real additive genus. Then there exists a unique theory of gener-
alized analytic torsion classes that agrees with TS when restricted to the class of closed
immersions. Moreover, if T is a theory of generalized analytic torsion classes, then there
exists a real additive genus S such that T = TS .

We will denote the theory associated to the additive genus S, whose existence is guar-
anteed by the preceding theorem, by TS . In particular, there is a unique theory of gener-
alized analytic torsion classes that agrees with T h when restricted to the class of closed
immersions. This theory will be called homogeneous.

Proof. We first prove the uniqueness. Let T be a theory of analytic torsion classes that
agrees with TS for the class of closed immersions. Since the restriction of T to projective
spaces, by the transitivity axiom, is compatible with TS , by Theorem 6.4, it also agrees
with TS . Finally, the transitivity axiom implies that T is determined by its values for
closed immersions and projective spaces.

We now prove the existence. For the moment, let TS be the theory of analytic torsion
classes for closed immersions and projective spaces determined by S. Let f : X → Y be
a morphism in Sm∗/C, and let ξ = (f,F , f∗F) be a relative metrized complex. Since f is
assumed to be projective, there is a factorization f = π ◦ ι, where ι : X → PnY is a closed
immersion and π : PnY → Y is the projection. Choose auxiliary hermitian structures on ι,
π and ι∗F . Then we define

TS(ξ) = TS(π) + π[(TS(ι)) + f [

[
ch(F) • T̃dm(f, π ◦ ι)

]
(7.8)

To simplify the notations, in the sequel we will also refer to it simply by T (ξ). The
anomaly formulas easily imply that this definition does not depend on the choice of her-
mitian structures on ι, π and ι∗F . We next show that this definition is independent of the
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factorization of f . Let f = π1 ◦ ι1 = π2 ◦ ι2 be two different factorizations, being Pni ,
the target of ιi, i = 1, 2. Since equation (7.8) is independent of the choice of auxiliary
hermitian structures, by [17, Lem. 5.12], we may assume that f = π1 ◦ ι1 = π2 ◦ ι2.

We consider the commutative diagram with cartesian square

X
j1 //

idX
""E

EE
EE

EE
EE

EE
X ×

Y
Pn2
Y

k1 //

q1

��

Pn1
Y ×

Y
Pn2
Y

p1

��
X

ι1 //

f
''NNNNNNNNNNNNNN Pn1
Y

π1

��
Y

where j1(x) = (x, ι2(x)), p1 is the first projection and q1 and k1 are defined by the carte-
sian square. The hermitian structure of π2 induces a hermitian structure on p1 that, in
turn, induces a hermitian structure on q1. The hermitian structure of ι1 induces a hermi-
tian structure on k1 and the hermitian structure of ι2 induces one on j1. We will denote
the corresponding morphisms of Sm∗/C by p1, q1, k1 and j1. We consider also the anal-
ogous diagram obtained swapping 1 and 2. Finally, we write p = π1 ◦ p1 = π2 ◦ p2 and
j = k1 ◦ j1 = k2 ◦ j2. Then we have

T (π1) + (π1)[(T (ι1)) = T (π1) + (π1)[(T (ι1)) + f [
(
T (q1) + (q1)[(T (j1))

)
= T (π1) + (π1)[

(
T (ι1) + (ι1)[(T (q1))

)
+ p[(k1)[(T (j1))

= T (π1) + (π1)[
(
T (p1) + (p1)[(T (k1))

)
+ p[(k1)[(T (j1))

= T (p) + p[(T (j)).

Analogously, we obtain T (π2) + (π2)[(T (ι2)) = T (p) + p[(T (j)). Hence TS is well
defined for all relative metrized complexes.

It remains to prove that it satisfies the properties of a theory of analytic torsion classes.
The properties (i) to (iv) are clear. We thus focus on property (v). Let f : X → Y and
g : Y → Z be morphisms in Sm∗/C. We choose factorizations of g ◦ f and g:

X
� � i //

g◦f   A
AA

AA
AA

A PmZ
p

��
Z

Y
� � ` //

g ��@
@@

@@
@@

@ PnZ
r
��
Z,

where the hermitian structures on p and r come from fixed hermitan structures on the tan-
gent bundles TPmC and TPnC , and the hermitian structures i and ` are obtained by using [17,
Lem. 5.12]. We define ϕ : X → PmC to be the morphism obtained from i by composing
with the projection to PmC . Then we see that the morphism j := (ϕ, f) : X → PmY is a
closed immersion. Indeed, it is enough to realize that the composition

X
(ϕ,f) // PmY

(id,g) // PmZ
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agrees with the closed immersion i and that G := (id, g) is separated (since proper). We
can thus decompose f as

X
� � j //

f   A
AA

AA
AA

A PmY
q

��
Y.

Again, in this factorization the hermitian structure q comes from the previously fixed her-
mitian structure on TPmC and the hermitian structure j is obtained by using [17, Lem. 5.12].
Because g◦f = p◦ i and by the very construction of T for arbitrary projective morphisms
(7.8), we have

T (g ◦ f) = T (p) + p[(T (i)). (7.9)

We proceed to work on T (i). For this we write the commutative diagram

X
� � j //� o

i ��?
??

??
??

? PmY
� � k //

G
��

PmPnZ PnPmZ
π

��
PmZ

id // PmZ .

We recall that G = (id, g) and k = (id, `). Below, G, k and π will be endowed with the
obvious hermitian structures. With these choices, we observe that i = G◦j andG = π◦k.
Taking also into account the construction of T and the fact that T = TS is transitive for
compositions of closed immersions, we find

T (i) = T (π ◦ k ◦ j) = T (π) + π[(T (k)) +G[(T (j)) = T (G) +G[(T (j)). (7.10)

Therefore, from equations (7.9), (7.10) and the identity p[G[ = g[q[ we derive

T (g ◦ f) = T (p) + p[(T (G)) + g[q[(T (j)). (7.11)

We claim that
T (p) + p[(T (G)) = T (g) + g[(T (q)). (7.12)

Assuming this for a while, we combine (7.11) and (7.12) into

T (g ◦ f) = T (g) + g[(T (q) + q[(T (j))) = T (g) + g[(T (f)). (7.13)

Hence we are lead to prove (7.12). For this we construct the commutative diagram with
cartesian squares

PmY
� � ˜̀ //

q

��

PmZ ×Z PnZ
r̃ //

p̃

��

PmZ
p

��
Y

� � ` // PnZ
r // Z.

Observe that G = r̃ ◦ ˜̀. Recall now Proposition 5.42 and Proposition 6.15. We then have
the chain of equalities

T (p) + p[(T (G)) = T (p) + p[(T (r̃) + r̃[(T (˜̀))) = T (r) + r[(T (p̃) + p̃[(T (˜̀))

= T (r) + r[(T (`) + `[(T (q))) = T (g) + g[(T (q)).
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This proves the claim.
The last assertion of the statement of the theorem follows from the uniqueness.

Theorem 7.14. (i) Let T be a theory of generalized analytic torsion classes. Then
there is a unique real additive genus S such that, for any relative metrized com-
plex ξ := (f,F , f∗F), we have

T (ξ)− T h(ξ) = −f∗[ch(F) • Td(Tf ) • S(Tf ) • 11]. (7.15)

(ii) Conversely, any real additive genus S defines, by means of equation (7.15), a unique
theory of generalized analytic torsion classes TS .

Proof. We prove the first item, the second being immediate. Let S be the real additive
genus corresponding to T , provided by Theorem 7.7. Then (7.15) holds for embedded
metrized complexes. Because T and T h are both transitive, it suffices to show that (7.15)
holds whenever f : PnX → X is a trivial projective bundle. Observe T and T h satisfy the
same anomaly formulas. Then, since the sheaves G(k), k = −n, . . . , 0 form a generating
class for Db(PnX), and by the projection formula for T and T h, we easily reduce to the
case ξ = ξ(k). Let tn,k, thn,k be the characteristic numbers of T , T h respectively. We have
to establish the equality

tn,−i − thn,−i = −π∗(ch(O(−i)) Td(π)S(Tπ)), i = −n, . . . , 0. (7.16)

This is an equation of real numbers. By functoriality, this equation is equivalent to the
analogous equation in ⊕pH2p−1

D (PnC,R(p)), for the second projection p2 : PnC × PnC → PnC
instead of π. Because the classes ch(ΛiQ∨) constitute a basis for ⊕pH2p−1

D (PnC,R(p)),
(7.16) is equivalent to the equation in cohomology∑

i

(−1)i(tn,−i − thn,−i) ch(ΛiQ
∨
) =

− p2∗(
∑
i

(−1)i ch(p∗1O(−i)⊗ Λip∗2Q
∨
) Td(p2)S(Tp2) • 11). (7.17)

Recalling the exact sequence (6.1), minus the right hand side of (7.17) becomes

p2∗(ch(∆∗OPn) Td(p2)S(Tp2) • 11) =

p2∗(∆∗(ch(OPn) Td(∆)) Td(p2)S(Tp2) • 11) = S(TPn) • 11.

On the other hand, using the compatibility condition (Definition 6.2), the left hand side of
(7.17) can be equivalently written as

T (p2,∆∗OPn ,OPn)− T h(p2,∆∗OPn ,OPn) =

− p2[(T (∆,OPn ,∆∗OPn)− T h(∆,OPn ,∆∗OPn)). (7.18)

The genus S is additive, so in Deligne cohomology we have the relation

S(T∆) = S(TPn)−∆∗S(TPn×Pn) = S(TPn)−∆∗p∗1S(TPn)−∆∗p∗2S(TPn) = −S(TPn).

Hence, since the statement is known for closed immersions, the right hand side of (7.18)
becomes

p2∗(∆∗(ch(OPn) Td(T∆)S(T∆) • 11) Td(p2)) = −S(TPn) • 11.

This concludes the proof.
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8 Higher analytic torsion forms of Bismut and Köhler
We now explain the relationship between the theory of analytic torsion forms of Bismut-
Köhler [13] and the theory of generalized analytic torsion classes developed so far when
they can be compared. Note that the theory of Bismut-Köhler applies to Kähler submer-
sions between complex manifolds, whereas the theory developed here applies to projec-
tive morphisms between smooth quasi-projective complex manifolds.

Let π : X → Y be a smooth projective morphism (a projective submersion) of smooth
complex varieties. Let ω be a closed (1, 1)-form on X that induces a Kähler metric on
the fibers of π. Then (π, ω) is a particular case of what is called a Kähler fibration. The
form ω defines a hermitian structure on Tπ, and we will abusively write π = (π, ω) for
the corresponding morphism in Sm∗/C.

Let F be a hermitian vector bundle on X such that for every i ≥ 0, Riπ∗F is locally
free. We consider on Riπ∗F the L2 metric obtained using Hodge theory on the fibers of
π. Using [17, Def. 3.47] we obtain a hermitian structure on π∗F , denoted by π∗FL2 . Then
ξ = (π, F , π∗FL2) is a relative metrized complex. The relative metrized complexes that
arise in this way will be said to be Kähler.

In the paper [13], Bismut and Köhler associate to every Kähler relative metrized com-
plex ξ a differential form, that we temporarily denote by τ(ξ). Since in [13] the authors
use real valued characteristic classes (the topological normalization), while we use char-
acteristic classes in the Deligne complex (the algebro-geometric normalization), we have
to change the normalization of this form. To this end, if τ(ξ)(p−1,p−1) is the component of
degree (p− 1, p− 1) of τ(ξ), then we put

TBK(ξ)(2p−1,p) =
1

2
(2πi)p−1[τ(ξ)(p−1,p−1)] ∈ D̃2p−1

D (Y, ∅, p).

We recall that [·] converts differential forms into currents according with the conventions
in [19, §1], hence it includes a factor 1/(2πi)dimY (compare with equation (3.20)). We
define

TBK(ξ) =
∑
p≥1

TBK(ξ)(2p−1,p).

The first main result of [13] is that this class satisfies the differential equation

dDT
BK(ξ) = ch(π∗FL2)− π[[ch(F )].

Thus, TBK(ξ) is an example of analytic torsion class.
Let now ω′ be another closed (1, 1)-form on X that induces a Kähler metric on the

fibers of π. We denote π′ = (π, ω′). Let F
′
be the vector bundle F with another choice of

metric and define π∗F
′
L2 to be the object π∗F with the L2 metric induced by ω′ and F

′
.

We write ξ
′
for the Kähler relative metrized complex (π′, F

′
, π∗F

′
L2).

The second main result of [13] is the following anomaly formula.

Theorem 8.1 ([13] Theorem 3.10). The following formula holds:

TBK(ξ
′
)− TBK(ξ) = c̃h(π∗FL2 , π∗F

′
L2) + π′[

[
ch(F ) • T̃dm(π′, π)− c̃h(F , F

′
)
]
.
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In the book [3], Bismut studies the compatibility of higher analytic torsion forms with
complex immersions. Before stating his result we have to recall the definition of the R-
genus of Gillet and Soulé [29]. It is the additive genus attached to the power series

R(x) =
∑
m odd
m≥1

(
2ζ ′(−m) +

(
1 +

1

2
+ · · ·+ 1

m

)
ζ(−m)

)
xm

m!
. (8.2)

Let T−R/2 be the theory of analytic torsion classes for closed immersions associated
to −1

2
R.

Remark 8.3. The fact that we obtain the additive genus −R/2 instead of R is due to
two facts. The signs comes from the minus sign in equation (3.12), while the factor 1/2
comes from the difference of the normalization of Green forms used in this paper and the
one used in [27]. Note however that the arithmetic intersection numbers computed using
both normalizations agree, because the definition of arithmetic degree in [27, §3.4.3] has
a factor 1/2 while the definition of arithmetic degree in [18, (6.24)] does not.

Consider a commutative diagram of smooth complex varieties

X

f   A
AA

AA
AA
ι // Y

g

��
Z

where f and g are projective submersions and ι is a closed immersion. Let F be a hermi-
tian vector bundle on X such that the sheaves Rif∗F are locally free and let

0→ En → · · · → E0 → ι∗F → 0

be a resolution of ι∗F by hermitian vector bundles. We assume that for all i, j, Rig∗Ej is
locally free. We will denote by E the complex En → · · · → E0. Let ωX and ωY be closed
(1, 1) forms that define a structure of Kähler fibration on f and g respectively. As before
we write f = (f, ωX) and g = (g, ωY ). The exact sequence

0 −→ Tf −→ f ∗Tg −→ NX/Y −→ 0

induces a hermitian structure on NX/Y . We will denote ι the inclusion ι with this hermi-
tian structure. Finally we denote by f∗FE the hermitian structure on f∗F induced by the
hermitian structures g∗EjL2 , j = 0, . . . , n.

Then, adapted to our language, the main result of [3] can be stated as follows.

Theorem 8.4 ([3] Theorems 0.1 and 0.2). The following equation holds in the group⊕
p D̃

2p−1
D (Z, ∅, p):

TBK(f, F , f∗FL2
) =

n∑
j=0

(−1)jTBK(g, Ej, f∗EjL2
)

+ g[(T−R/2(ι, F , E)) + c̃h(f∗FE, f∗FL2).
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We can particularize the previous result to the case when F = 0. Then E and g∗E are
acyclic objects. The hermitian structures of Ej and g∗EjL2 induce hermitian structures on
them. We denote these hermitian structures as E and g∗EL2 .

Corollary 8.5. Let E be a bounded acyclic complex of hermitian vector bundles on Y
such that the direct images Rig∗Ej are locally free on Z. Then

n∑
j=0

(−1)jTBK(g, Ej, g∗EjL2) = c̃h(g∗EL2)− g[(c̃h(E))

in
⊕

p D̃
2p−1
D (Z, ∅, p).

We will also need a particular case of functoriality and projection formula for the
higher analytic torsion forms of Bismut-Köhler proved by Rössler [43].

The relative metrized complexes ξn(k) of Notation 5.2 are Kähler. Therefore we can
apply the construction of Bismut-Köhler to them. We denote

tBKn,k = TBK(ξn(k)). (8.6)

By Corollary 8.5, the numbers tBKn,k satisfy the relation (5.20). Hence they are determined
by the main characteristic numbers tBKn,k for −n ≤ k ≤ 0.

Lemma 8.7 ([43] Lemma 7.15). Let π : PnX → X be a trivial projective bundle. Let G be
a hermitian vector bundle on X . Then

TBK(ξn(k)⊗G) = tBKn,k • ch(G).

Proof. In [43] this result is stated only for k � 0. To prove the result for all k ∈ Z one
observes that, since the sheaves Riπ∗ (π∗G⊗O(k)) are locally free for all i the proof in
[43] applies. Alternatively, one can derive the case k ∈ Z from the case k � 0 using
Corollary 8.5 and the Koszul resolution (5.19).

We have all the ingredients we need to prove the main result of this section.

Theorem 8.8. Let T−R/2 be the theory of generalized analytic torsion classes associated
to the additive genus −1

2
R. Then, for every Kähler relative metrized complex ξ, we have

TBK(ξ) = T−R/2(ξ).

In particular T−R/2 extends the construction of Bismut-Köhler to arbitrary projective
morphisms of smooth complex varieties and arbitrary smooth metrics.

Proof. Let tBK = {tBKn,k | n ≥ 0,−n ≤ k ≤ 0} and let TtBK be the theory of ana-
lytic torsion classes for projective spaces associated to it. Let π : PnX → X be a relative
projective space and let ξ = (π,E, π∗EL2) be a Kähler relative metrized complex. By
choosing d � 0 we may assume that all the coherent sheaves of the resolution γd(F ) of
Corollary 4.3 are locally free. Using results 5.10, 5.16, 8.1, 8.5 and 8.7 we obtain that
TBK(ξ) = TtBK (ξ). By Theorem 8.4, the theories TtBK and T−R/2 are compatible in the
sense of Definition 6.2. Therefore, TBK = T−R/2 when restricted to projective spaces.

Finally, by factoring a smooth projective morphism as a closed immersion followed
by the projection of a relative projective space, Theorem 8.4 implies that TBK = T−R/2
for all smooth projective morphisms.
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Remark 8.9. (i) The construction of Bismut-Köhler applies to a wider class of vari-
eties and morphisms: complex analytic manifolds and proper Kähler submersions.
However for the comparison we have to restrict to smooth algebraic varieties and
smooth projective morphisms.

(ii) The results of Bismut and his coworkers are more precise. Here the class TBK(ξ) is
well defined up to the image of dD. In contrast, the higher analytic torsion form of
Bismut and Köhler is a well defined differential form, local on the base and whose
class modulo dD agrees with TBK(ξ).

From Theorem 8.8, one can derive the following result that, although it follows directly
from the definition of higher analytic torsion classes by Bismut and Köhler, it does not
appear explicitly in the literature.

Corollary 8.10. Let f : X → Y be a smooth projective morphism of smooth complex
varieties, and let ξ = (f, E, f∗EL2) be a Kähler relative metrized complex.

(i) Let g : Y ′ → Y be a morphism of smooth complex varieties. Then TBK(g∗ξ) =
g∗TBK(ξ).

(ii) Let G be a hermitian vector bundle on Y . Then TBK(ξ ⊗G) = TBK(ξ) • ch(G).

The last consequence we want to discuss generalizes to non-smooth projective mor-
phisms results already proved by Berthomieu-Bismut [1, Thm 3.1] and Ma [35, Thm.
0.1], [36, Thm. 0.1]. However we recall that, while we stay within the algebraic category
and work with projective morphisms, these authors deal with proper Kähler holomorphic
submersions of complex manifolds. Let g : X → Y and h : Y → Z be morphisms in the
category Sm∗/C, such that the composition f = h ◦ g is a smooth morphism. We choose
a structure of Kähler fibration on f , that we denote f

′
. Let E be a hermitian vector bun-

dle on X and assume that the higher direct images Rif∗E are locally free. Then we may
consider the analytic torsion TBK(f

′
) attached to the Kähler relative metrized complex

(f
′
, E, f∗EL2). Also, we choose an auxiliary hermitian structure on g∗E. We can consider

the torsion classes TR/2(g) and TR/2(h) of the relative metrized complexes (g, E, g∗E)

and (h, g∗E, f∗EL2).
We make the following additional assumption in some particular situations:

(*) The morphisms g and h are Kähler fibrations, the higher direct images Rig∗E and
Rjh∗R

ig∗E are locally free and the auxiliary hermitian structure on g∗E is the L2

hermitian structure.

When the hypothesis (*) is satisfied we denote by h∗g∗EL2 the L2 hermitian structure
attached to the Kähler structure on h and the L2 metric on g∗EL2 . Observe that this last
structure may differ from the L2 structure on f∗EL2 . In the derived category Db(Z) there
is a canonical isomorphism h∗g∗E

∼
99K f∗E. Applying [17, Thm. 4.11] for the Chern

character to this isomorphism we obtain a secondary class c̃h(h∗g∗EL2 , f∗EL2).
We can consider the torsion classes TBK(g) and TBK(h

′
) attached to (g, E, g∗EL2)

and (h, g∗EL2 , h∗g∗EL2). By Proposition 5.10, we have the relation

TBK(h
′
) = T−R/2(h)− c̃h(h∗g∗EL2 , f∗EL2).
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The properties of the generalized analytic torsion classes imply immediately:

Corollary 8.11. Under these assumptions, we have the equality

TBK(f
′
) = T−R/2(h) + h[(T−R/2(g)) + f

′
[(ch(E) • T̃dm(f

′
, f)).

If in addition the hypothesis (*) is satisfied, then we have

TBK(f
′
) = TBK(h

′
) + h[(T

BK(g)) + f
′
[(ch(E) • T̃dm(f

′
, f)) + c̃h(h∗g∗EL2 , f∗EL2).

Since T−R/2 extends the theory of analytic torsion classes TBK , we will denote T−R/2
by TBK for arbitrary relative metrized complexes.

9 Grothendieck duality and analytic torsion
We will study now the compatibility of the analytic torsion with Grothendieck duality.

Definition 9.1. LetF be an object of D
b
(X). Recall that a representative of the hermitian

structure of F is given by a bounded complex of hermitian vector bundles

E : . . . −→ E
m −→ . . . −→ E

l −→ . . .

and an isomorphism E
∼
99K F in Db(X). Then the rank of F is defined as rk(F) =∑

i(−1)i dim(Ei). This is just the Euler characteristic of the complex. The determinant
of F is the complex

det(F) =
⊗
i

(
ΛdimEiE

i
)(−1)i

[− rk(F)].

It consists of a single line bundle concentrated in degree rk(F). The rank and the deter-
minant do not depend on the choice of representative of the hermitian structure.

Definition 9.2. Let f : X → Y be a morphism in Sm∗/C of relative dimension e. The
metrized dualizing complex, is the complex given by ωf = (detTf )

∨. This complex is
concentrated in degree−e. The underlying object of Db(X) will be denoted by ωf . If we
are interested in the dualizing sheaf as a sheaf and not as an element of Db(X) we will
denote it by ωf or ωX/Y . Finally, if Y = SpecC, we will denote ωf (respectively ωf ) by
ωX (respectively ωX).

Definition 9.3. Let D∗(∗) be the Deligne complex associated to a Dolbeault complex.
The sign operator is

σ : D∗(∗) −→ D∗(∗), ω ∈ Dn(p) 7→ σ(ω) = (−1)pω.

The sign operator satisfies the following compatibilities.

Proposition 9.4. (i) Let (D∗(∗), dD) be a Deligne algebra. Then the sign operator is
a morphism of differential algebras. That is

dD ◦σ = σ ◦ dD, σ(ω • η) = σ(ω) • σ(η).
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(ii) Let F be an object of D
b
(X). Then the following equalities are satisfied

σ ch(F) = ch(F∨), (9.5)

σ ch(det(F)) = ch(det(F)∨) = ch(det(F))−1, (9.6)

σTd(F) = (−1)rk(F) Td(F) • ch(det(F)∨). (9.7)

Proof. The first statement is clear because if ω ∈ Dn(p) and η ∈ Dm(q) then dD ω ∈
Dn+1(p) and ω • η ∈ Dn+m(p+ q).

For the second statement, let E 99K F be the hermitian structure of F . Write

E
+

=
⊕
i even

E
i
, E

−
=
⊕
i odd

E
i
.

Since this statement is local on X , we can chose trivializations of E
+

and E
−

over an
open subset U . Let H+ and H− be the matrices of the hermitian metrics on E

+
and E

−
.

The curvature matrices of E
+

and E
−

, whose entries are elements of D2(U, 1), are

K± = K±(F) = −∂(H±)−1∂H±.

The characteristic forms can be computed from the curvature matrix:

ch(F) = tr(exp(K+))− tr(exp(K−)),

ch(det(F)) = (−1)rk(F) det(exp(K+)) • det(exp(K−))−1,

Td(F) = det

(
K+

1− exp(−K+)

)
• det

(
K−

1− exp(−K−)

)−1

.

The sign in the second equation comes from the fact that det(F) is concentrated in degree
rk(F). Therefore, since σ(K±) = −K± = K±(F∨), we have

σ ch(F) = σ tr(exp(K+))− σ tr(exp(K−))

= tr(exp(K+(F∨)))− tr(exp(K−(F∨))) = ch(F∨),
σ ch(det(F)) = det(exp(−K+)) • det(exp(−K−))−1 = ch(det(F))−1,

σTd(F) = det

(
−K+

1− exp(K+)

)
• det

(
−K−

1− exp(K−)

)−1

= det

(
K+

1− exp(−K+)

)
• det(exp(−K+))

• det

(
K−

1− exp(−K−)

)−1

• det(exp(−K−))−1

= Td(F) • ch(det(F))−1.

Corollary 9.8. Let [E] ∈ KA(X). Then c̃h(E
∨
) = σc̃h(E).
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Proof. Due to Proposition 9.4, the assignment sending [E] to σc̃h(E) satisfies the char-
acterizing properties of c̃h.

In the particular case of a projective morphism between smooth complex varieties or,
more generally, smooth varieties over a field, Grothendieck duality takes a very simple
form (see for instance [32, §3.4] and the references therein). If F is an object of Db(X)
and f : X → Y is a projective morphism of smooth complex varieties, then there is a
natural functorial isomorphism

f∗(F∨ ⊗ ωf ) ∼= (f∗F)∨. (9.9)

The compatibility between analytic torsion and Grothendieck duality is given by the
following result.

Theorem Definition 9.10. Let T be a theory of generalized analytic torsion classes. Then
the assignment that, to a relative metrized complex ξ = (f,F , f∗F), associates the class

T∨(ξ) = σT (f,F∨ ⊗ ωf , f∗F
∨
)

is a theory of generalized analytic torsion classes that we call the theory dual to T .

Proof. We have to show that, if T satisfies the conditions of Definition 7.1, then the same
is true for T∨. We start with the differential equation. Let e be the relative dimension of f .

dD T
∨(ξ) = dD σT (f,F∨ ⊗ ωf , f∗F

∨
)

= σ dD T (f,F∨ ⊗ ωf , f∗F
∨
)

= σ ch(f∗F
∨
)− σf∗

[
ch(F∨ ⊗ ωf ) • Td(f)

]
= ch(f∗F)− (−1)ef∗

[
σ ch(F∨) • σ(ch(det(Tf )

∨) • Td(Tf ))
]

= ch(f∗F)− f∗
[
ch(F) • Td(f)

]
The functoriality and the additivity are clear. We next check the projection formula. Let
G be an object of D

b
(Y ). Then

T∨(ξ ⊗ G) = σT (f,F∨ ⊗ f ∗G∨ ⊗ ωf , f∗F
∨ ⊗ G∨)

= σ
(
T (f,F∨ ⊗ ωf , f∗F

∨
) • ch(G∨)

)
= T∨(ξ) • ch(G).

Finally we check the transitivity. Let g : Y → Z be another morphism in Sm∗/C. By the
definition of g ◦ f we have ωg◦f = f ∗ωg ⊗ ωf . Therefore,

f∗ (F∨ ⊗ ωg◦f ) = f∗ (F∨ ⊗ f ∗ωg ⊗ ωf ))

= f∗ (F∨ ⊗ ωf ))⊗ ωg = (f∗F)∨ ⊗ ωg.
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On f∗ (F∨ ⊗ ωg◦f ) we put the hermitian structure of f∗F
∨ ⊗ ωg. Then we have

T∨(g ◦ f) = σT (g ◦ f,F∨ ⊗ ωg◦f , (g ◦ f)∗F
∨
)

= σT (g, f∗F
∨ ⊗ ωg, (g ◦ f)∗F

∨
)

+ σg[T (f,F∨ ⊗ ωf ⊗ f ∗ωg, f∗F
∨ ⊗ ωg)

= T∨(g, f∗F , (g ◦ f)∗F)

+ σg∗(T (f,F∨ ⊗ ωf , f∗F
∨
) • ch(ωg) • Td(g))

= T∨(g) + g[T
∨(f).

Therefore, T∨ satisfies also the transitivity property. Hence it is a generalized theory of
analytic torsion classes.

Definition 9.11. A theory of torsion classes T is called self-dual when T∨ = T .

We want to characterize the self-dual theories of generalized analytic torsion classes.

Theorem 9.12. The homogeneous theory T h is self-dual.

Proof. By the uniqueness of the homogeneous theory, it is enough to prove that, if T is
homogeneous then T∨ is homogeneous. Let X be a smooth complex variety and let N be
a hermitian vector bundle of rank r on X . Put P = P(N ⊕ 1) and let s : X → P be the
zero section and π : P → X the projection. LetQ be the tautological quotient bundle with
the induced metric and K(s) the Koszul resolution associated to the section s. Since the
normal bundleNX/P can be identified withN , on the map swe can consider the hermitian
structure given by the hermitian metric on N . Then detQ is a complex concentrated in
degree r. Moreover s∗ detQ = detN = ωs. The Koszul resolution satisfies the duality
property K(s)∨ = K(s)⊗ detQ. The theory T∨ is homogeneous if and only if the class

T∨(s,OX , K(s)) • Td(Q)

is homogeneous of bidegree (2r− 1, r) in the Deligne complex. Using that T is homoge-
neous

T∨(s,OX , K(s)) • Td(Q) = σT (s,ωs, K(s)∨) • Td(Q)

= σT (s, s∗ detQ,K(s)⊗ detQ) • Td(Q)

= σ(T (s,OX , K(s)) • ch(detQ)) • Td(Q)

= σT (s,OX , K(s)) • ch(detQ
∨
) • Td(Q)

= (−1)rσ(T (s,OX , K(s)) • Td(Q))

is homogeneous of bidegree (2r − 1, r) in the Deligne complex.

Proposition 9.13. Let S(x) =
∑∞

n=0 anx
n ∈ R[[x]] be a power series in one variable

with real coefficients. Denote by S the corresponding real additive genus and by TS the
associated theory of analytic torsion classes. Then the dual theory T∨S has corresponding
real additive genus Sσ(x) := −S(−x).
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Proof. Let ξ = (f,F , f∗F) be a relative metrized complex. Let e be the relative dimen-
sion of f . Since f∗ sends currents of bidegree (n, p) to currents of bidegree (n−2e, p−e),
then we have σf∗ = (−1)ef∗σ. The proposition readily follows from the definition of T∨S ,
the self-duality of T h and Proposition 9.4.

We can now characterize the self-dual theories of analytic torsion classes.

Corollary 9.14. The theory of analytic torsion classes TS attached to the real additive
genus S(x) =

∑
n≥0 anx

n is self-dual if and only if an = 0 for n even.

Proof. By the proposition, T∨S = TSσ , hence T is self-dual if, and only if, Sσ = S. The
corollary follows.

In particular we recover the following fact, which is well known if we restrict to Kähler
relative metrized complexes.

Corollary 9.15. The theory of analytic torsion classes of Bismut-Köhler TBK is self-dual.

Proof. We just remark that the even coefficients of the R-genus vanish (8.2).

We now elaborate on an intimate relation between self-duality phenomena and the an-
alytic torsion of de Rham complexes. Let f : X → Y be a smooth projective morphism
of smooth algebraic varieties, of relative dimension e. Let TX/Y denote the vertical tan-
gent bundle, endowed with a hermitian metric. Write f for the corresponding morphism
in Sm∗/C. On the locally free sheaves Ωp

X/Y = ΛpΩX/Y we put the induced hermitian
structures. The metrized de Rham complex is

0→ OX
0→ ΩX/Y

0→ Ω
2

X/Y
0→ . . .

0→ Ω
e

X/Y → 0

with 0 differentials. In fact, we are really considering the de Rham graded sheaf and
converting it into a complex in a trivial way. We refer to the corresponding object of
D

b
(X) by Ω

•
X/Y ([17, Def. 3.37], see Remark 5.15). The individual terms Ω

p

X/Y will be
considered as complexes concentrated in degree p. We then obviously have:

Lemma 9.16. The objects (Ω
•
X/Y )∨ ⊗ ωf and Ω

•
X/Y [2e] are tightly isomorphic.

For every p, q, the cohomology sheaf Rqf∗Ω
p
X/Y is locally free, because the Hodge

numbers hp,q of the fibers of f (which are projective, hence Kähler) are known to be
locally constant. Every stalk of this sheaf is endowed with the usual L2 metric of Hodge
theory. This family of L2 metrics on Rqf∗Ω

p
X/Y glue into a smooth metric. Because the

Hodge star operators ∗ act by isometries, it is easily shown that Serre duality becomes an
isometry for the L2 structures: the isomorphism

(Rqf∗Ω
p
X/Y )∨

∼−→ Re−qf∗((Ω
p
X/Y )∨ ⊗ ωf ) = Re−qf∗Ω

e−p
X/Y

preserves the L2 hermitian structures. For every p, let f∗Ω
p
X/Y denote the object of D

b
(Y )

with the metric induced by the L2 metrics on its cohomology pieces ([17, Def. 3.47]).
Here f∗ stands for the derived direct image. By [17, Prop. 3.48], Grothendieck duality

(f∗Ω
p
X/Y )∨

∼−→ f∗Ω
e−p
X/Y [2e]
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is a tight isomorphism. Finally, let [f∗Ω•X/Y ] be the object of D
b
(Y ) provided by [17,

Def. 3.39] (see Remark 5.15). The next lemma follows easily from the construction of
[17, Def. 3.39].

Lemma 9.17. Grothendieck duality defines a tight isomorphism in D
b
(Y )

[f∗Ω•X/Y ]∨ ∼= [f∗Ω•X/Y ][2e].

Theorem 9.18. Let T be a theory of analytic torsion classes. The following assertions
are equivalent:

(i) the theory T is self-dual;

(ii) for every f , T f , Ω
•
X/Y and [f∗Ω•X/Y ] as above and for every odd integer p ≥ 1,

the part of bidegree (2p − 1, p) (in the Deligne complex) of T (f,Ω
•
X/Y , [f∗Ω

•
X/Y ])

vanishes.

Proof. Assume first of all that T is self-dual. We apply the definition of T∨, the self-
duality assumption and lemmas 9.16 and 9.17. We find the equality

T (f,Ω
•
X/Y , [f∗Ω

•
X/Y ]) = σT (f,Ω

•
X/Y [2e], [f∗Ω•X/Y ][2e])

= (−1)2eσT (f,Ω
•
X/Y , [f∗Ω

•
X/Y ])

= σT (f,Ω
•
X/Y , [f∗Ω

•
X/Y ]).

The sign operator σ changes the sign of the components of bidegree (2p− 1, p) for odd p.
Hence T (f,Ω

•
X/Y , [f∗Ω

•
X/Y ])(2p−1,p) vanishes for p ≥ 1 odd.

For the converse implication, let S(x) =
∑

n≥0 anx
n be the real additive genus at-

tached to T via Theorem 7.14. By Corollary 9.14, we have to show that the coefficients
an with n even vanish. Let us look at a smooth morphism f : X → Y of relative dimen-
sion 1, with an arbitrary metric on Tf . Then, developing the power series of ch and Td
and taking into account that Ω1

X/Y = T∨f = ωX/Y , we compute

f∗[ch(Ω•X/Y ) Td(Tf )S(Tf ) • 11] =
∑
n≥0

(−1)n+1anf∗[c1(ωX/Y )n+1 • 11].

Therefore, for p ≥ 1 odd, we have

(−1)pap−1f∗[c1(ωX/Y )p • 11] =

(T (f,Ω•X/Y , [f∗Ω
•
X/Y ])− T h(f,Ω•X/Y , [f∗Ω•X/Y ]))(2p−1,p,p) = 0. (9.19)

Hence it is enough that for every odd integer p ≥ 1, we find a relative curve f : X → Y
such that f∗(c1(ωX/Y )p) 6= 0 in the cohomology group H2p(Y,C). Let d = p − 1 and
choose Y to be a smooth projective variety of dimension d. Let L be an ample line bundle
on Y and take X = P(L⊕OY ). Consider the tautological exact sequence

0 −→ O(−1) −→ f ∗(L⊕OY ) −→ Q −→ 0.
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We easily derive the relations

π∗c1(L) = c1(Q)− c1(O(1)) (9.20)
c1(O(−1))c1(Q) = 0. (9.21)

Moreover we have
c1(ωX/Y ) = −c1(Q)− c1(O(1)). (9.22)

From (9.20)–(9.22) and because d = p− 1 is even, we compute

c1(ωX/Y )d = c1(Q)d + c1(O(1))d = π∗c1(L)d.

Therefore we find
c1(ωX/Y )p = π∗c1(L)dc1(ωX/Y ). (9.23)

Finally, f is a fibration in curves of genus 0, hence f∗(c1(ωX/Y )) = −2. We infer that
(9.23) leads to

f∗(c1(ωX/Y )p) = −2c1(L)d.

This class does not vanish, since Y is projective of dimension d and L is ample.

We end with a characterization of the theory of analytic torsion classes of Bismut-
Köhler.

Theorem 9.24. The theory of analytic torsion classes of Bismut-Köhler TBK is the unique
theory of generalized analytic torsion classes such that, for every f : X → Y , a Kähler
fibration in Sm∗/C, we have the vanishing

TBK(f,Ω
•
X/Y , [f∗Ω

•
X/Y ]) = 0.

Proof. That the theory TBK vanishes for de Rham complexes of Kähler fibrations is a
theorem of Bismut [5]. For the uniqueness, let T be a theory of generalized analytic
torsion classes vanishing on de Rham complexes of Kähler fibrations. Denote by S(x) =∑

k≥0 akx
k its corresponding genus. If f is a relative curve with a structure of Kähler

fibration, then by Theorem 7.14

T h(f,Ω
•
X/Y , [f∗Ω

•
X/Y ]) =

∑
k≥0

(−1)kakf∗[c1(ωX/Y )k+1 • 11]. (9.25)

It is enough to find, for every k ≥ 0, a relative curve f such that f∗(c1(ωX/Y )k+1) does not
vanish. The elementary construction in the proof of Theorem 9.18 works whenever k is
even, but one easily sees it fails for k odd. Fortunately, there is an alternative argument. Let
g ≥ 2 and n ≥ 3 be integers. Consider the fine moduli scheme of smooth curves of genus
g with a Jacobi structure of level n [21, Def. 5.4], to be denoted Mn

g . It is well known
to be quasi-projective. Let π : Cng → Mn

g be the universal curve. An example of Kähler
fibration structure on π is provided by Teichmüller theory (see for instance [47, Sec. 5]).
By [22, Thm. 1], the tautological class κg−2 := π∗(c1(ωπ)g−1) ∈ H2(g−2)(Mn

g ,C) does
not vanish. Taking g = k + 2 and f = π, we conclude the proof of the theorem.

We note that in the previous theorem, the existence is provided by Bismut’s theorem.
It would be interesting to have a proof of the existence of a theory satisfying the condition
of Theorem 9.24 from the axiomatic point of view.
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10 Direct images of hermitian structures
As another application of a theory of generalized analytic torsion classes, we construct
direct images of metrized complexes. It turns out that the natural place to define direct
images is not the category D

b
(·) but a new category D̂b(·) that is the analogue to the

arithmetic K-theory of Gillet and Soulé [28].
Let X be a smooth complex variety. The fibers of the forgetful functor D

b
(X) →

Db(X) have a structure of KA(X)-torsor, for the action of KA(X) by translation of
the hermitian structures ([17, Thm. 3.13]). At the same time, the group KA(X) acts on
the group⊕pD̃2p−1

D (X, p) by translation, via the Bott-Chern character c̃h ([17, Prop. 4.6]).
Observe that all Bott-Chern classes live in these groups, as for the analytic torsion classes.
It is thus natural to build a product category over KA(X).

Definition 10.1. Let S ⊂ T ∗X0 be a closed conical subset. We define

D̂b(X,S) = D
b
(X)×KA(X)

⊕
p

D̃2p−1
D (X,S, p)

to be the category whose objects are equivalence classes [F , η] of pairs (F , η) belonging
to ObD

b
(X)×⊕pD̃2p−1

D (X,S, p), under the equivalence relation

(F , η) ∼ (F + [E], η − c̃h(E))

for [E] ∈ KA(X), and with morphisms

HomD̂b(X)([F , η], [G, ν]) = HomDb(X)(F ,G).

If S ⊂ T are closed conical subsets of T ∗X0, then D̂b(X,S) is naturally a full subcat-
egory of D̂b(X,T ).

In the sequel, we extend the main operations in Db(X) to the categories D̂b(X,S).
In particular, we use the theory of generalized analytic torsion classes to construct push-
forward morphisms attached to morphisms in Sm∗/C.

The category D̂b(X,S) has a natural additive structure. More generally, if S, T are
closed conical subsets of T ∗X0, then there is an obvious addition functor

D̂b(X,S)× D̂b(X,T )
⊕−→ D̂b(X,S ∪ T ).

The object [0, 0] is a neutral element for this operation. If S + T is disjoint with the zero
section in T ∗X , then there is a product defined by the functor

Ob D̂b(X,S)×Ob D̂b(X,T )
⊗−→ Ob D̂b(X, (S + T ) ∪ S ∪ T )

([F , η], [G, ν]) 7−→ [F ⊗ G, ch(F) • ν + η • ch(G) + dD η • ν]
(10.2)

and the obvious assignment for morphisms. This product is commutative up to natural
isomorphism. It induces on D̂b(X, ∅) a structure of commutative and associative ring
category. Also, [OX , 0] is a unity object for the product structure. More generally, the
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category D̂b(X,S) becomes a left and right D̂b(X, ∅) module. Under the same assump-
tions on S, T we may define an internal Hom. For this, let [F , η] ∈ Ob D̂b(X,S) and
[G, ν] ∈ Ob D̂b(X,T ). Then we put

Hom([F , η], [G, ν]) = [Hom(F ,G), (σ ch(F)) • ν + (ση) • ch(G) + (dD ση) • ν],

where we recall that σ is the sign operator (Definition 9.3). Using Corollary 9.8, it is easily
seen this is well defined. In particular, we put

[F , η]∨ := Hom([F , η], [OX , 0]) = [F∨, ση].

The shift [1] on D
b
(X) induces a well defined shift functor on D̂b(X,S), whose action

on objects is
[F , η][1] = [F [1],−η].

There is a Chern character

ch : Ob D̂b(X,S) −→
⊕
p

D̃2p
D (X,S, p), [F , η] 7−→ ch(F) + dD η,

which is well defined because dD c̃h(E) = ch(E) for [E] ∈ KA(X). The Chern character
is additive and compatible with the product structure:

ch([F , η]⊗ [G, ν]) = ch([F , η]) • ch([G, ν]).

Notice the relations

ch([F , η]∨) = σ ch([F , η]),

ch([F , η][1]) = − ch([F , η]).

We may also define Bott-Chern classes for isomorphisms and distinguished triangles.
Let ϕ̂ : [F , η] 99K [G, ν] be an isomorphism in D̂b(X,S), whose underlying morphism
in Db(X) we denote ϕ. While the class c̃h(ϕ : F 99K G) depends on the representatives
(F , η), (G, ν), the class c̃h(ϕ̂) := c̃h(ϕ : F 99K G) + ν − η is well defined.

Lemma 10.3. Let ϕ̂ : [F , η] 99K [G, ν] be an isomorphism in D̂b(X,S), with underlying
morphism ϕ in Db(X). Then, the following conditions are equivalent:

(i) there exists [E] ∈ KA(X) such that ϕ induces a tight isomorphism betweenF+[E]

and G, and ν = η − c̃h(E);

(ii) c̃h(ϕ̂) = 0.

Proof. This is actually a tautology. Because KA(X) acts freely and transitively on the
possible hermitian structures on F , there exists a unique [E] ∈ KA(X) such that F+[E]
is tightly isomorphic to G via the morphism ϕ. Then we have

c̃h(ϕ̂) = c̃h(E) + ν − η.

The lemma follows.
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Definition 10.4. Let ϕ̂ be an isomorphism in D̂b(X,S). We say that ϕ̂ is tight if the
equivalent conditions of Lemma 10.3 are satisfied.

In particular, if ϕ : F 99K G is a tight isomorphism in D
b
(X), then ϕ induces a tight

isomorphism [F , η] 99K [G, ν] if and only if η = ν.
The following lemma provides an example involving the notion of tight isomorphism.

Lemma 10.5. Let [F , η] ∈ D̂b(X,S) and [G, ν] ∈ D̂b(X,T ). Assume that S + T does
not cross the zero section. Then there is a functorial tight isomorphism

[F , η]∨ ⊗ [G, ν] ∼= Hom([F , η], [G, ν]).

Assume now given a distinguished triangle

τ̂ : [F , η] 99K [G, ν] 99K [H, µ] 99K [F , η][1].

Let τ denote the distinguished triangle F 99K G 99K H 99K in D
b
(X). Then we put

c̃h(τ̂) = c̃h(τ) + η − ν + µ.

By [17, Thm. 3.33 (vii)], this class does not depend on the representatives and is thus well
defined.

We study now the functoriality of D̂b(X,S) with respect to inverse and direct images.
Let f : X → Y be a morphism of smooth complex varieties. Let T ⊂ T ∗Y0 be a closed
conical subset disjoint with Nf . The action of the left inverse image functor on objects is

f ∗ : Ob D̂b(Y, T ) −→ Ob D̂b(X, f ∗T ), [F , η] 7−→ [f ∗F , f ∗η].

That this assignment is well defined amounts to the functoriality of c̃h.
Let f be a morphism in the category Sm∗/C. The definition of a direct image functor

attached to f depends upon the choice of a theory of generalized analytic torsion classes.
Let T be such a theory. Then we define a functor f ∗ whose action on objects is

f ∗ : Ob D̂b(X,S) −→ Ob D̂b(Y, f∗S)

[F , η] 7−→ [f∗F , f [(η)− T (f,F , f∗F)],
(10.6)

where f∗F is an arbitrary choice of hermitian structure on f∗F . By the anomaly formulas,
this definition does not depend on the representative (F , η) nor on the choice of hermitian
structure on f∗F .

Theorem 10.7. Let f : X → Y and g : Y → Z be morphisms in Sm∗/C. Let S ⊂ T ∗X0

and T ⊂ T ∗Y0 be closed conical subsets.

(i) Let [F , η] ∈ Ob D̂b(X,S). Then there is a functorial tight isomorphism

(g ◦ f)∗([F , η]) ∼= g∗f ∗([F , η]).
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(ii) (Projection formula) Assume that T ∩Nf = ∅ and that T + f∗S does not cross the
zero section of T ∗Y . Let [F , η] ∈ Ob D̂b(X,S) and [G, ν] ∈ Ob D̂b(Y, T ). Then
there is a functorial tight isomorphism

f ∗([F , η]⊗ f ∗[G, ν]) ∼= f ∗[F , η]⊗ [G, ν]

in D̂b(Y,W ), where W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T.

(iii) (Base change) Consider a cartesian diagram

X ′
h′ //

f ′

��

X

f

��
Y ′

h // Y.

Suppose that f and h are transverse and that Nh′ is disjoint with S. Equip f ′

with the hermitian structure induced by the natural isomorphism h∗Tf 99K Tf ′ .
Let [F , η] ∈ Ob D̂b(X,S). Then there is a functorial tight isomorphism

h∗f ∗[F , η] ∼= f
′
∗h
′∗[F , η]

in D̂b(Y ′, f ′∗h
′∗S).

Proof. The first and the second assertions follow from Proposition 2.13, the transitivity
and the projection formula for T . For the third item, one uses the functoriality of the
analytic torsion classes and Proposition 2.14.

We close this section with an extension of Grothendieck duality to D̂b. Let f : X → Y
be a morphism is Sm∗/C. To enlighten notations, we denote by ωf the object [ωf , 0] in
D̂b(X, ∅) (Definition 9.2). Suppose given a closed conical subset T ⊂ T ∗Y0 such that
T ∩Nf = ∅. Then we define the functor f

!
whose action on objects is

f
!
: Ob D̂b(Y, T ) −→ Ob D̂b(X, f ∗T ), [F , η] 7−→ f ∗[F , η]⊗ ωf .

Observe the equality
[G, ν]⊗ ωf = [G ⊗ ωf , ν • ch(ωf )]. (10.8)

Now fix a theory of generalized analytic torsion classes. To the morphism f we have
attached the direct image functor f ∗. We denote by f

∨
∗ the direct image functor associated

to f and the dual theory (Theorem Definition 9.10).

Theorem 10.9 (Grothendieck duality for D̂b). Let f : X → Y be a morphism in Sm∗/C.
Let S ⊂ T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets such that T∩Nf = ∅ and T+f∗S

is disjoint with the zero section. Let [F , η] ∈ Ob D̂b(X,S) and [G, σ] ∈ Ob D̂b(Y, T ).
Then there is a functorial tight isomorphism

Hom(f ∗[F , η], [G, ν]) ∼= f
∨
∗Hom([F , η], f

!
[G, ν])

in D̂b(Y,W ), where W = f∗(S + f ∗T ) ∪ f∗S ∪ f∗f ∗T.
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In particular, we have

(f ∗[F , η])∨ ∼= f
∨
∗ ([F , η]∨ ⊗ ωf ). (10.10)

Proof. By Lemma 10.5 and Proposition 10.7, we are reduced to establish the functorial
tight isomorphism (10.10). The proof follows readily from the definitions, Grothendieck
duality and the following two observations. First of all, if T is the theory of analytic
torsion classes, then by the very definition of T∨ we find

σT (f,F , f∗F) = T∨(f,F∨ ⊗ ωf , f∗(F∨ ⊗ ωf )),

where the metric on f∗(F∨ ⊗ ωf ) is chosen so that Grothendieck duality provides a tight
isomorphism

f∗F
∨ ∼= f∗(F∨ ⊗ ωf ).

Secondly, for direct images of currents, we compute

σf [(η) = σf∗(η • Td(Tf )) = (−1)ef∗(ση • σTd(Tf )) = f∗(ση • ch(ωf ) • Td(Tf )).

Here e is the relative dimension of f , and to derive the last equality we appeal to Proposi-
tion 9.4. To conclude, we recall equation (10.8).

Corollary 10.11. Let T be a self-dual theory of generalized analytic torsion classes.

(i) Then there is a functorial isomorphism (f ∗[F , η])∨ ∼= f ∗([F , η]∨ ⊗ ωf ).

(ii) If the hermitian structure of f comes from chosen metrics on TX , TY and ωX , ωY

are equipped with the induced metrics, then we have a commutative diagram

D̂b(X,S)

f∗
��

(·)∨⊗ωX // D̂b(X,S)

f∗
��

D̂b(Y, f∗S)
(·)∨⊗ωY// D̂b(Y, f∗S).

Proof. The first claim is immediate from Theorem 10.9. The second item follows from
the first one and the projection formula (Proposition 10.7).

11 Analytic torsion for degenerating families of curves
As a second example of application of the theory developed in this article, we describe
the singularities of the analytic torsion for degenerating families of curves. The results
we prove are particular instances of those obtained by Bismut-Bost [6], Bismut [4] and
Yoshikawa [48]. Although the methods of this section can be extended to recover the
results of Yoshikawa in [48], for simplicity, we will restrict ourselves to fibrations in
curves over a curve.

In fact, our proof is not very different from the one in [4] and [48]. For instance, one
of the main ingredients of the proof of the results in [4] and [48] is the Bismut-Lebeau
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immersion formula. Our approach implicitly uses Bismut’s generalization of the immer-
sion formula, encoded in the existence of analytic torsion theories for arbitrary projective
morphisms. We expect that the techniques of this section can be used to generalize the
above results to situations more general than the ones considered by Yoshikawa.

Let S be a smooth complex curve and f : X → S a projective morphism of smooth
complex varieties, whose fibers are reduced curves with at most ordinary double singular
points. We assume that f is generically smooth. Following Bismut-Bost [6, Sec. 2(b)],
we call such a family an f.s.o. (famille à singularités ordinaires). The singular locus of
f , to be denoted Σ, is a zero dimensional reduced closed subset of X . Its direct image
∆ = f∗(Σ) is the Weil divisor

∆ =
∑
p∈S

npp,

where np is the number of singular points of the fiber f−1(p). We will abusively identify
∆ with its support. With these notations, we put V = S \ ∆. Locally for the analytic
topology, the morphism f can be written in complex coordinates either as f(z0, z1) = z0

or f(z0, z1) = z0z1 [6, Sec. 3(a)]. In the second case, the point of coordinates (z0, z1) =
(0, 0) belongs to the singular locus Σ.

For a vector bundle F over X , let P(F ) be the projective space of lines in F . The
differential df : TX → f ∗TS induces a section OX → ΩX ⊗ f ∗TS . Because f is smooth
over X \ Σ, this section does not vanish on X \ Σ. Therefore there is an induced map

µ : X \ Σ −→ P(ΩX ⊗ f ∗TS) ∼= P(ΩX),

called the Gauss map. Notice that this map was already used in [4] and [48].
We next study the blow-up X̃ = BlΣ(X) of X at Σ and relate it to the Gauss map. Let

π : X̃ → X be the natural projection and f̃ : X̃ → S the natural morphism of X̃ over S.
Observe that f̃ is also an f.s.o. Let E be the exceptional divisor of π,

E =
⊔
p∈Σ

Ep, Ep ∼= P(TpX),

with the reduced scheme structure. For every p ∈ Σ, there is an identification TpX ∼= ΩX,p

provided by the hessian of f , which is a non-degenerate bilinear form on TpX . The local
description of the blow-up at a point implies:

Lemma 11.1. There is a commutative diagram

Ep = P(TpX) ∼ //
� _

��

P(ΩX,p)� _

��

X̃
µ̃ //

π

��

P(ΩX)

p

wwooooooooooooo

X X \ Σ.

µ

OO

? _oo

Denote by O(−1) the tautological divisor either on P(ΩX) or on Ep. Then there is a
natural isomorphism µ̃∗O(−1) |Ep∼= O(−1).
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Consider now the short exact sequence of vector bundles on P(ΩX)

0→ O(−1)→ p∗ΩX → Q→ 0,

where Q is the universal quotient bundle. Observe that Q is of rank 1. The dual exact
sequence is

0→ U → p∗TX → O(1)→ 0,

U being the universal vector subsheaf. We denote by η the induced exact sequence on X̃

η : 0→ µ̃∗U → π∗TX → µ̃∗O(1)→ 0, (11.2)

From (11.2) and the definition ωX/S = ωX ⊗ f ∗TS , we derive a natural isomorphism

µ̃∗U ⊗ π∗ωX/S ∼= µ̃∗O(−1)⊗ f̃ ∗TS. (11.3)

Lemma 11.4. We have
µ̃∗O(−1)⊗ f̃ ∗TS = O(E). (11.5)

Proof. First of all we observe that µ̃∗U ⊗ π∗ωX/S is trivial on the open W = X̃ \ E.
Indeed, by construction of the Gauss map we have

µ̃∗U |W= ker(df : TX → f ∗TS) |W= ω∨X/S | W.

Hence by equation (11.3) we can write

µ̃∗O(−1)⊗ f̃ ∗TS = O(
∑
p∈Σ

mpEp).

To compute the multiplicities mp we use that µ̃∗O(−1) |Ep= O(−1), (Ep · f̃ ∗TS) = 0
and (Ep · Ep) = −1:

−mp = deg(µ̃∗O(−1)⊗ f̃ ∗TS) |Ep= −1 + 0 = −1.

The lemma follows.

Later we will need the commutative diagram of exact sequences

η |W : 0 // µ̃∗U |W //

α
��

TX |W //

β

��

µ̃∗O(1) |W //

γ

��

0

ε : 0 // ω∨X/S |W // TX |W // f ∗TS |W // 0.

(11.6)

After the identification µ̃∗O(−1)⊗ f̃ ∗TS = O(E) provided by the lemma, the morphism
γ is the restriction to W of the natural inclusion µ̃∗O(1) → µ̃∗O(1) ⊗ O(E). This fact
will be used below.

We now proceed to introduce the hermitian vector bundles and the analytic torsion
classes we aim to study. We fix a theory of generalized analytic torsion classes T .
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Let f : X → S, f̃ : X̃ → S be f.s.o. as above. Recall that we write W = X \ Σ =

X̃ \ E and V = S \ ∆, so that f−1(V ) ⊂ W . We endow the tangent spaces TX and TS
with smooth hermitian metrics. We will denote by f the corresponding morphism in the
category Sm∗/C. On the open subset W , there is a quasi-isomorphism

ω∨X/S |W= ω∨X/S[1] |W→ Tf

induced by the identification ω∨X/S |W= ker(TX |W→ f ∗TS). On ω∨X/S |W , and in partic-

ular on ω∨f−1(V )/V , we will put the metric induced by TX |W . We will write f
′
: f−1(V )→

V for the corresponding morphism in Sm∗/C. Observe that the restriction of f to W , and
hence to f−1(V ), may be identified with the restriction of f̃ . Let F be an object in D

b
(X)

and fix a hermitian structure on f∗F . Then we consider the relative metrized complexes

ξ = (f,F , f∗F), ξ
′
= (f

′
,F |f−1(V ), f∗F |V ),

and the corresponding analytic torsion classes

T (ξ) ∈
⊕
p

D̃2p−1
D (S,Nf , p), T (ξ

′
) ∈

⊕
p

D̃2p−1
D (V, ∅, p).

By the functoriality of analytic torsion classes and the anomaly formulas, we have

T (ξ
′
) = T (ξ) |V −f [[ch(F |f−1(V ))T̃dm(ε |f−1(V ))]. (11.7)

Here ε is the exact sequence in (11.6), with the hermitian metrics we have just defined.
From now on we will omit the reference to f−1(V ) and V in the formulas.

We consider the hermitian structures on the sheaves U and O(1) on P(ΩX) induced
by p∗TX . We will write η for the exact sequence in (11.2) and α, β and γ for the vertical
isomorphisms in diagram (11.6), all provided with the corresponding metrics. Notice that
α and β are isometries. By the properties of the Bott-Chern class T̃dm, one can prove

T̃dm(ε) = T̃dm(η) + Td(η)T̃dm(γ). (11.8)

Hence, from (11.7)–(11.8) and identifying f with f̃ over V , we have

T (ξ
′
) = T (ξ)− f̃∗[π∗ ch(F)π∗Td(f)T̃dm(η)]

− f̃∗[π∗ ch(F)π∗Td(f) Td(η)T̃dm(γ)]. (11.9)

It will be convenient to have a precise description of T̃dm(γ) at our disposal.
For shorthand, we write L := µ̃∗O(1) and ‖ · ‖0 for its hermitian structure constructed

before. We denote by ‖ · ‖1 the metric on O(E) such that the isomorphism O(E)1 =

L
−1

0 ⊗ f̃ ∗TS (Lemma 11.4) is an isometry. Recall that γ gets identified with the restriction
to W of the natural inclusion L → L ⊗ O(E). We let ‖ · ‖∞ be the hermitian metric on
L |W such that γ is an isometry. Hence, if 1 denotes the canonical section of O(E) and `
is any section of L |W , then we have

‖`‖∞ = ‖`‖0‖1‖1.

63



To simplify the notations, we will skip the reference to W . We then have on W

T̃dm(γ) = T̃dm(L0
id→ L∞).

To compute a representative of this class, we fix a smooth function h : P1
C → R such that

h(0) = 0 and h(∞) = 1. Then we proceed by a deformation argument. Let q : W ×P1
C →

W be the projection to the first factor. On the line bundle q∗L we put the metric that, on
the fiber at the point (w, t) ∈ W × P1

C, is determined by the formula

‖`‖(w,t) = ‖`‖0,w‖1‖h(t)
1,w .

We will write ‖ · ‖t for this family of metrics parametrized by P1
C. Define

Td(L0 → L∞) =
1

2πi

∫
P1
C

−1

2
log(tt)(Td(q∗Lt)− Td(q∗L0)).

Then
Tdm(γ) = Td−1(L0)Td(L0 → L∞) (11.10)

represents the class T̃dm(γ). Let us develop Tdm(γ). If Ot denotes the trivial line bundle
on W × P1

C with the norm ‖1‖t = ‖1‖h(t)
1 , then we compute

Td(q∗Lt)− Td(q∗L0) =
1

2
c1(Ot) +

1

6
c1(Ot)q∗c1(L0) +

1

12
c1(Ot)2.

By the very definition of c1, we find

c1(Ot) = ∂ ∂ log ‖1‖2
t = ∂ ∂(h(t) log ‖1‖2

1)

= h(t)c1(O(E)1) + log ‖1‖2
1 ∂ ∂ h(t) + ∂ h(t) ∧ ∂ log ‖1‖2

1 + ∂ log ‖1‖2
1 ∧ ∂ h(t).

We easily obtain

1

2πi

∫
P1
C

−1

2
log(tt)

1

2
c1(Ot) = −1

2
log ‖1‖1, (11.11)

1

2πi

∫
P1
C

−1

2
log(tt)

1

6
q∗c1(L0)c1(Ot) = −1

6
log ‖1‖1c1(L0). (11.12)

With some more work, we have

1

2πi

∫
P1
C

−1

2
log(tt)

1

12
c1(Ot)2 =− a

6
log ‖1‖1c1(O(E)1)

+
b

3
∂(log ‖1‖1 ∂ log ‖1‖1),

(11.13)

where

a =
1

2πi

∫
P1
C

log(tt)
1

2
∂ ∂(h(t)2), b =

1

2πi

∫
P1
C

log(tt) ∂ h(t) ∧ ∂ h(t). (11.14)

64



We observe that
a =

1

2πi

∫
P1
C

log(tt)
1

2
∂ ∂(h(t)2) =

1

2
,

which is independent of h. All in all, equations (11.10)–(11.14) provide the following
expression for the representative Tdm(γ) of T̃dm(γ):

Tdm(γ) = Td−1(L0)
(
− 1

2
log ‖1‖1 −

1

6
log ‖1‖1c1(L0)

− 1

12
log ‖1‖1c1(O(E)1) +

b

3
∂(log ‖1‖1 ∂ log ‖1‖1)

)
.

(11.15)

Given a current η ∈ DnD(X, p), we will call (n, p) its Deligne bidegree, while we will
call the Dolbeault bidegree to the bidegree in the Dolbeault complex. When it is clear
from the context to which bidegree we are referring, we call it bidegree.

We now study the singularities of the component of Deligne bidegree (1, 1) of T (ξ
′
)

near the divisor ∆. For this we first recall the decomposition of equation (11.9). Observe
that D̃1

D(V, ∅, 1) gets identified with the space of smooth real functions on V . In the sequel,
for an element ϑ ∈ ⊕pD̃2p−1

D (∗, p), we write ϑ(2r−1,r) to refer to its component of bidegree
(2r − 1, r). By construction of the Deligne complex, an element of Deligne bidegree
(2r − 1, r) is just a current of Dolbeault bidegree (r − 1, r − 1).

The following assertion is well-known. See for instance [46, Lemma 2.1, Cor. 2.2].

Lemma 11.16. Let Ω ⊂ C be an open subset and ϑ a current of Dolbeault bidegree
(0, 0) on Ω. Let ∆ be the standard laplacian. If the current ∆ϑ is represented by a locally
bounded measurable function, then ϑ is represented by a continuous function.

Proposition 11.17. The current T (ξ)(1,1) ∈ D̃1
D(S,Nf , 1) is represented by a continuous

function on S.

Proof. The differential equation satisfied by T (ξ)(1,1) is

dD T (ξ)(1,1) = ch(f∗F)(2,1) − f∗[ch(F) Td(f)](2,1). (11.18)

In local coordinates, the operator dD = −2 ∂ ∂ is a rescaling of the laplacian ∆. By the
lemma, it is enough we prove that the current at the right hand side of (11.18) is rep-
resented by a locally bounded measurable differential form. Because ch(f∗F)(2,1) and
ch(F) Td(f) are smooth differential forms, we are reduced to study currents of the form
f∗[θ]

(2,1), where θ is a smooth differential form. By a partition of unity argument, we re-
duce to the case where f : C2 → C is the morphism f(z0, z1) = z0z1 and θ is a differential
form of Dolbeault bidegree (2,2) with compact support. Then we need to prove that the
fiber integral

G(w) =

∫
z0z1=w

θ

is a bounded form in a neighborhood of w = 0. Write θ = h(z0, z1)dz0 ∧ dz0 ∧ dz1 ∧ dz1.
We reduce to study integrals of the form

G(w) =

(∫
|w|<|z0|<1

h(z0, z0/w)
|w|2

|z0|4
dz0 ∧ z0

)
dw ∧ dw.

The property follows from an easy computation in polar coordinates.
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Proposition 11.19. Let θ be a differential form of Dolbeault bidegree (1,1) on X̃ . Then
the current f̃∗[θ] is represented by a bounded function on S.

Proof. The proof is the same as in [6, Prop. 5.2]. One only has to show that the argument
in loc. cit. carries over to the case of the non-reduced fibres that have appeared when
blowing up the nodes.

Corollary 11.20. The current f̃∗[π∗ ch(F)π∗Td(f)T̃dm(η)] is represented by a bounded
function on S.

Proof. It suffices to observe that the differential form π∗ ch(F)π∗Td(f)T̃dm(η) is actu-
ally smooth on the whole X̃ .

According to (11.9), it remains to study the current

f̃∗[π
∗ ch(F)π∗Td(f) Td(η)T̃dm(γ)] |V .

The main difference with the situation in Corollary 11.20 is that the class T̃dm(γ) is not
defined on the whole X̃ , but only on W = X̃ \E. In the following discussion we will use
the representative Tdm(γ) defined in (11.10) at the place of T̃dm(γ). In view of equations
(11.11)–(11.13), the first result we need is the following statement.

Proposition 11.21. Let θ be a smooth and ∂, ∂ closed differential form on X̃ , of Dolbeault
bidegree (1, 1). Let w be an analytic coordinate in a neighborhood of p ∈ ∆ with w(p) =

0. Write Dp = E ∩ f̃−1(p). Then, the current

f̃∗[log ‖1‖1θ]−

(
1

2πi

∫
Dp

θ

)
[log |w|]

is represented by a continuous function in a neighborhood of p. In particular, if θ is
cohomologous to a form π∗ϑ, where ϑ is a smooth and ∂, ∂ closed differential form on X ,
then f̃∗[log ‖1‖1θ] is represented by a continuous function on S.

Proof. Recall that the Poincaré-Lelong formula provides the equality of currents

dD[log ‖1‖−1
1 ] = [c1(O(E)1)]− δE.

Moreover, the operator dD commutes with proper push-forward. Therefore, taking into
account that θ is ∂ and ∂ closed, the equation

dD f̃∗[log ‖1‖1θ] =

(
1

2πi

∫
Dp

θ

)
δp − f̃∗[c1(O(E)1)θ]. (11.22)

holds in a neighborhood of p. On the other hand, the Poincaré-Lelong equation also gives
dD[log |w|] = δp. Using (11.22), we see that

dD

(
f̃∗[log ‖1‖1θ]−

(
1

2πi

∫
Dp

θ

)
[log |w|]

)
= −1

2
f̃∗[c1(O(E)1)θ].
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Finally, by Proposition 11.19, the current f̃∗[c1(O(E)1)θ] is represented by a continu-
ous function on S. Hence the first assertion follows from Lemma 11.16. For the second
assertion, we just observe that, in this case,∫

Dp

θ =

∫
Dp

π∗ϑ = 0.

The proof is complete.

Corollary 11.23. Let np be the multiplicity of ∆ at p and O(1) the current represented by
a locally bounded function. The following estimates hold in a neighborhood of p

f̃∗[log ‖1‖1c1(π∗TX)] = O(1),

f̃∗[log ‖1‖1c1(O(E)1)] = −np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(L0)] = np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(µ̃∗U)] = −np[log |w|] +O(1).

Proof. We use (11.3)–(11.5) and the intersection numbers (Dp ·Dp) = (Dp · E) = −np.

Corollary 11.24. With the notations above, the development

f̃∗[π
∗ ch(F)π∗Td(f) Td(η)T̃dm(γ)](3,2) = rk(F)

np
6

[log |w|] +O(1)

holds in a neighborhood of p.

Proof. We take into account the expression (11.15) for the representative Tdm(γ), the
developments of the smooth differential forms ch(F), Td(f), Td(η) and Td−1(L0), and
then apply Corollary 11.23. We find

f̃∗[π
∗ ch(F)π∗Td(f) Td(η)T̃dm(γ)](3,2) =

rk(F)
np
6

[log |w|] + rk(F)
b

3
f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] +O(1).

To conclude we observe that, on V , the term f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] vanishes. Indeed,
the morphism f̃∗ is smooth on V with one dimensional fibers. Hence this current is repre-
sented by the function

V 3 s 7→ 1

2πi

∫
f̃−1(s)

∂(log ‖1‖1 ∂ log ‖1‖1) =
1

2πi

∫
f̃−1(s)

d(log ‖1‖1 ∂ log ‖1‖1) = 0.

This ends the proof.

The results of this section are summarized in the following statement.

Theorem 11.25. Let p ∈ ∆ and let np be the number of singular points of f : X → S
lying above p. Let w be a local coordinate on S, centered at p. Then, in a neighborhood
of p, we have the estimate

T (ξ
′
)(1,1) = −rkF

6
np[log |w|] +O(1).
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Proof. It is enough to join (11.9), Proposition 11.17, Corollary 11.20 and 11.24.

Corollary 11.26. Assume that F = E is a vector bundle placed in degree 0, and that
R1f∗E = 0 on S. Endow f∗E with the L2 metric on V depending on E and the metric on
ωf−1(V )/V . Write ξ′′ = (f

′
, E, f∗EL2) for the corresponding relative metrized complex on

V . Let p and w be as in the theorem. Then we have

T (ξ
′′
)(1,1) = −rk(F)

6
np[log |w|] +O(log log |w|−1)

as w → 0.

Proof. Introduce an auxiliary smooth hermitian metric on the vector bundle f∗E on S, and
let ξ

′
= (f

′
, E, f∗E) be the corresponding relative metrized complex. Then the theorem

applies to ξ
′
. By the anomaly formulas, on V we have

T (ξ
′′
)(1,1) = T (ξ

′
)(1,1) + c̃h(f∗E, f∗EL2)(1,1).

By [6, Prop. 7.1], the L2 metric has logarithmic singularities near w = 0 and

c̃h(f∗E, f∗EL2) = O(log log |w|−1)

as w → 0. This proves the corollary.

Remark 11.27. The corollary is to be compared with [6, Thm. 9.3]. The difference of
sign is due to the fact that Bismut and Bost work with the inverse of the usual determinant
line bundle. The approach of loc. cit. is more analytic and requires the spectral description
of the Ray-Singer analytic torsion. This result is a particular case of [4, Theorem 0.1].
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