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Some recent results on the Muskat problem
Angel Castro Diego Córdoba Francisco Gancedo

Abstract
We consider the dynamics of an interface given by two incompressible fluids

with different characteristics evolving by Darcy’s law. This scenario is known
as the Muskat problem, being in 2D mathematically analogous to the two-
phase Hele-Shaw cell. The purpose of this paper is to outline recent results on
local existence, weak solutions, maximum principles and global existence.

1. Introduction
This paper is concerned with the evolution of fluids in porous media which is an
important topic in fluid mechanics encountered in engineering, physics and math-
ematics. This phenomena has been described using the experimental Darcy’s law
that, in two dimensions, is given by the following momentum equation:

µ

κ
u = −∇p− (0, gρ).

Here (x, t) ∈ R2 × R+, u = (u1(x, t), u2(x, t)) is the incompressible velocity (i.e.
∇·u = 0), p = p(x, t) is the pressure, µ is the dynamic viscosity, κ is the permeability
of the isotropic medium, ρ = ρ(x, t) is the liquid density, and g is the acceleration
due to gravity.

The Muskat problem [17] models the evolution of an interface between two fluids
with different viscosities and densities in porous media by means of Darcy’s law.
More precisely, the interface separates the domain Ω1 and Ω2 defined by

(µ, ρ)(x1, x2, t) =
{

(µ1, ρ1), x ∈ Ω1(t)
(µ2, ρ2), x ∈ Ω2(t) = R2 − Ω1(t),

and µ1, µ2, ρ1, ρ2 (µ1 6= µ2 and ρ1 6= ρ2) are constants.
This problem has been considered extensively without surface tension, in which

case the pressures of the fluids are equal on the interface. Saffman and Taylor [21]
made the observation that the one phase version (one of the fluids has zero viscosity)
was also known as the Hele-Shaw cell equation, which, in turn, is the zero-specific
heat case of the classical one-phase Stefan problem (see [8] and reference there in).
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V–1

http://www.cnrs.fr


By adding surface tension to the difference of the pressures at the interface the
system regularizes and instabilities do not appear [14]. In [15] the author study
Muskat problem with different densities and viscosities in a periodic setting with
a top and a bottom. Local well-posedness is shown by reducing the problem to an
abstract evolution equation. In addition they obtain exponential stability of some
flat equilibrium. In [16] a similar study is performed for the case of three interfaces
(fluid-fluid-air).

Let the free boundary be parameterized by
∂Ωj(t) = {z(γ, t) = (z1(γ, t), z2(γ, t)) : γ ∈ R}

where
(z1(γ + 2kπ, t), z2(γ + 2kπ, t)) = (z1(γ, t) + 2kπ, z2(γ, t)),

with periodicity in the horizontal space variable or an open contour vanishing at
infinity

lim
γ→∞

(z(γ, t)− (γ, 0)) = 0

with the initial data z(γ, 0) = z0(γ). From Darcy’s law, we find that the vorticity
is concentrated on the free boundary z(γ, t), and is given by a Dirac distribution as
follows:

w(x, t) = $(γ, t)δ(x− z(γ, t)),
with $(γ, t) representing the vorticity strength i.e. ω is a measure defined by

< ω, η >=
∫
$(γ, t)η(z(γ, t))dγ,

with η(x) a test function.
Then z(γ, t) evolves with an incompressible velocity field coming from the Biot-

Savart law:
u(x, t) = ∇⊥∆−1ω(x, t).

It can be explicitly computed on the contour z(γ, t) and is given by the Birkhoff-Rott
integral of the amplitude $ along the interface curve:

BR(z,$)(γ, t) = 1
2πP.V.

∫ (z(γ, t)− z(η, t))⊥
|z(γ, t)− z(η, t)|2 $(η, t)dη.

We close the system with the following formula:

$(γ, t) = (I + AµT )−1
(
− 2gκ ρ

2 − ρ1

µ2 + µ1∂γz2
)
(γ, t),

where
T ($) = 2BR(z,$) · ∂γz, Aµ = µ

2 − µ1

µ2 + µ1 .

Baker, Meiron and Orszag [2] shown that the adjoint operator T ∗, acting on $, is
described in terms of the Cauchy integral of $ along the curve z(γ, t), and whose
real eigenvalues have absolute values strictly less than one. This yields that the
operator (I + AµT ) is invertible so that the system gives an appropriate contour
dynamics problem:

zt(γ, t) = BR(z,$)(γ, t) + c(γ, t)∂γz(γ, t). (1.1)
where the term c is in the tangential direction without modifying the geometric
evolution of the curve.

V–2



The first important question to be asked is whether local-existence is guaranteed.
However such a result turns out to be false for general initial data. Rayleigh [20] and
Saffman-Taylor [21] gave a condition that must be satisfied in order to have a solution
locally in time, namely that the normal component of the pressure gradient jump at
the interface has to have a distinguished sign. This is known as the Rayleigh-Taylor
condition:

σ(γ, t) = −(∇p2(z(γ, t), t)−∇p1(z(γ, t), t)) · ∂⊥γ z(γ, t).
Applying Darcy’s law and approaching the boundary, we obtain

σ(γ, t) = µ
2 − µ1

κ
BR(z,$)(γ, t) · ∂⊥γ z(γ, t) + g(ρ2 − ρ1)∂γz1(γ, t).

It is easy to check that
µ2 − µ1

κ
BR(z,$)(γ, t) · ∂⊥γ z(γ, t) = 1

4π∂γ
∫

T
$(η, t) logG(γ, η, t)dη,

with (the present computation is done in the periodic setting, similar analysis follows
for R)

G(γ, η, t) = sin2(z1(γ, t)− z1(η, t)2 ) cosh2(z2(γ, t)− z2(η, t)2 )

+ cos2(z1(γ, t)− z1(η, t)2 ) sinh2(z2(γ, t)− z2(η, t)2 ),

and therefore ∫
T

µ2 − µ1

κ
BR(z,$)(γ, t) · ∂⊥γ z(γ, t)dγ = 0.

This shows that the condition ρ2 6= ρ1 is crucial in order to have a sign in the normal
direction of the difference of the gradient. If we consider z1(γ, t)− γ periodic, then∫

T
∂γz1(γ, t)dγ = 2π.

In the case of a closed curve ∫
T
σ(γ, t)dγ = 0,

making impossible the task of prescribing a sign in the Rayleigh-Taylor condition.
Siegel, Caflish and Howison [22] proved ill-posedness in a 2-D case when this

condition is not satisfied (unstable case and same densities). On the other hand,
they showed global-in-time solutions when the initial data are nearly planar and the
Rayleigh-Taylor condition holds initially.

From Biot-Savart law, at first expansion, the expression at infinity is of the order
of 1
|x|
∫
$ for a closed curve o near planar at infinity. To obtain a velocity field in L2

it is necessary to have
∫
$ = 0. In the periodic case, z(γ+2πk, t) = z(γ, t)+(2πk, 0),

the following classical identity for complex numbers
1
π

(1
z

+
∑
k≥1

2z
z2 − (2πk)2

)
= 1

2π tan(z/2) ,

yields (ignoring the variable t)

v(x)=−1
4π

∫ π
−π
$(η)

(tanh(x2−z2(η)
2 )(1+tan2(x1−z1(η)

2 ))
tan2(x1−z1(η)

2 )+tanh2(x2−z2(η)
2 )

,
tan(x1−z1(η)

2 )(tanh2(x2−z2(η)
2 )−1)

tan2(x1−z1(η)
2 )+tanh2(x2−z2(η)

2 )

)
dη,

V–3



for x 6= z(γ, t). Then

lim
x2→±∞

v(x, t) = ∓ 1
4π

∫ π
−π
$(η)dη(1, 0),

and to have the same value at infinity it is necessary again mean zero.
An expression for the pressure is obtained by

∆p(x, t) = −div (µ(x, t)
κ
v(x, t))− g ∂x2ρ(x, t),

therefore the Laplacian of the pressure has its measure on the interface z(γ, t)

∆p(x, t) = Π(γ, t)δ(x− z(γ, t)),

where Π(γ, t) is given by

Π(γ, t) = (µ
2 − µ1

κ
v(z(γ, t), t) · ∂⊥γ z(γ, t) + g(ρ2 − ρ1)∂γz1(γ, t)).

It follows that:

p(x, t) = − 1
2π

∫
T

ln
(

cosh(x2 − z2(γ, t))− cos(x1 − z1(γ, t))
)
Π(γ, t)dγ,

for x 6= z(γ, t), implying the important identity

p2(z(γ, t), t) = p1(z(γ, t), t),

which is just a mathematical consequence of Darcy’s law, making unnecessary to
impose it as a physical assumption. Notice that since we are dealing with finite
energy solutions the pressure is force to diverge as the vertical variable tends to
infinity.

2. Local existence

There are several publications (see [1],[23] and [24] for example) where different
authors have treated these problems assuming that the Rayleigh-Taylor condition
is preserved during the evolution and that the operator (I +AµT )−1 is bounded by
a fixed constant. Under such hypothesis the proof can be considerably simplified.

Recently in [9] it is obtained local existence in the 2D case when the fluid has
different densities and viscosities. In the proof it is crucial to get control of the norm
of the inverse operators (I + AµT )−1. The arguments rely upon the boundedness
properties of the Hilbert transforms associated to C1,δ curves, for which it is needed
precise estimates obtained with arguments involving conformal mappings, the Hopf
maximum principle and Harnack inequalities. Then bounds are provided in the
Sobolev spaces Hk for $ obtaining

d

dt
(‖z‖2Hk+‖F(z)‖2L∞)(t) ≤ −K

∫
T

σ(γ)
|∂γz(γ)|2

∂kγz(γ)·Λ(∂kγz)(γ)dγ

+ expC(‖z‖2Hk+‖F(z)‖2L∞)(t),
(2.1)
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where K = −κ/(2π(µ1 +µ2)), σ(γ, t) is the Rayleigh-Taylor condition, the operator
Λ is the square root of the Laplacian and the function F(z) (which measures the
arc-chord condition ) is defined by

F(z)(γ, η, t) = |η|
|z(γ, t)− z(γ − η, t)| ∀ γ, η ∈ (−π, π), (2.2)

with
F(z)(γ, 0, t) = 1

|∂γz(γ, t)|
.

When σ(γ, t) is positive, there is a kind of heat equation in the above inequality
but with the operator Λ in place of the Laplacian. Then, the most singular terms
in the evolution equation depend on the Rayleigh-Taylor condition. In order to
integrate the system we study the evolution of

m(t) = min
γ∈T
σ(γ, t), (2.3)

which satisfies the following bound

|m′(t)| ≤ expC(‖F(z)‖2L∞+‖z‖2Hk)(t).

Using the pointwise estimate fΛ(f) ≥ 1
2Λ(f 2) in estimate (2.1), we obtain

d

dt
ERT (t) ≤ C expCERT (t),

where ERT is the energy of the system given by

ERT (t) = ‖z‖2Hk(t) + ‖F(z)‖2L∞(t) + (m(t))−1.

Here we point out that it is completely necessary to consider the evolution of the
Rayleigh-Taylor condition to obtain bona fide energy estimates.

3. Equal viscosities µ1 = µ2

In this section we shall examine the case where the viscosities are the same: the free
boundary is given by a fluid with different densities. Despite its deceiving simplicity
the operators capture the non-local and non-linear character of the system and the
analysis is far from trivial. Currently we are studying the long-time behavior of the
stable case for which we can show that there are initial data where the Rayleigh-
Taylor breakdown in finite time (see a forthcoming paper [6]).

In order to simplify the notation, one could take µ/κ = g = 1 in Darcy’s law and
then apply the rotational operator to obtain the vorticity given by ω = −∂x1ρ. The
Biot-Savart law yields the velocity field in terms of the density as follows:

u(x, t) = P.V.
∫

R2
H(x− y)ρ(y, t)dy − 1

2 (0, ρ(x, t)) ,

where the Calderon-Zygmund kernel H(·) is defined by

H(x) = 1
2π

(
−2ξ1ξ2
|ξ|4
,
ξ21 − ξ22
|ξ|4

)
.
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The above identity indicates the non-local structure of the equation and that the
velocity is at the same level as the scalar ρ:

‖u‖Lp(t) ≤ C‖ρ‖Lp(t)

for 1 < p <∞.
The density ρ = ρ(x, t) satisfies the transport equation:

(∂t + u · ∇)ρ = 0

with (x, t) ∈ R2 × R+ and u = (u1, u2) the fluid velocity. This transport equa-
tion reveals that the quantity ρ moves with the fluid flow and is conserved along
trajectories.

The incompressibility of the flow yields the system to be conservative in such a
way that the Lp norms of ρ are constants for all time:

‖ρ‖Lp(t) = ‖ρ‖Lp(0)

for 1 ≤ p ≤ ∞. In [13] a bound of the velocity of the fluid is obtained in terms of
C1,γ norms (0 < γ < 1) of the free boundary:

‖u‖L∞ ≤ C
(

1 + 1
γ

+ 1
γ

ln(1 + ‖∇f‖Cγ )

+ ln(1 + ‖f‖L∞ + ‖∇f‖L2

)
,

where 0 < γ < 1 and the constant C = C(ρ1, ρ2) depends on ρ1 and ρ2. The
estimate is based on the property that in the principal value, on the expression of u,
the mean of the kernels H are zero on hemispheres. This extra cancelation was used
by Bertozzi and Constantin [4] for the vortex patch problem of the 2D Euler equation
to prove no formation of singularities. For this system the convected vorticity takes
constant values in disjoint domains and is related with the incompressible velocity
by the Biot-Savart law.

By means of Darcy’s law, we can find the following formula for the difference
of the gradients of the pressure in the normal direction and the strength of the
vorticity:

σ(γ, t) = (ρ2 − ρ1)∂γz1(γ, t)

$(γ, t) = −(ρ2 − ρ1)∂γz2(γ, t). (3.1)
Then, by choosing an appropriate term c in (1.1), the dynamics of the interface
satisfies

zt(γ, t) = ρ
2 − ρ1

2π P.V.
∫ (z1(γ, t)− z1(η, t))
|z(γ, t)− z(η, t)|2 (∂γz(γ, t)− ∂γz(η, t))dη. (3.2)

A wise choice of parameterizing the curve is that for which we have ∂γz1(γ, t) = 1
(for more details see [10]). This yields the denser fluid below the less dense fluid
if ρ2 > ρ1 and therefore the Rayleigh-Taylor condition holds for all time. An addi-
tional advantage is that we avoid a kind of singularity in the fluid when the inter-
face collapses due to the fact that we can take z(γ, t) = (γ, f(γ, t)) which implies
F(z)(γ, η) ≤ 1 obtaining the arc-chord condition for all time. Then the character of
the interface as the graph of a function is preserved, and in [10] this fact has been
used to show local-existence in the stable case (ρ2 > ρ1), together with ill-posedness
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in the unstable situation (ρ2 < ρ1). From now on we will use the parameter x ∈ R
due to the curve is given by a graph which satisfies the following evolution equation:

ft(x, t) = ρ
2−ρ1

2π PV
∫

R

(∂xf(x, t)− ∂xf(x− γ, t))γ
γ2 + (f(x, t)− f(x− γ, t))2 dγ,

f(x, 0) = f0(x).
(3.3)

The above equation can be linearized around the flat solution to find the following
nonlocal partial differential equation

ft(x, t) = −ρ
2 − ρ1

2 Λf(x, t),

f(x, 0) = f0(x), x ∈ R,

where the operator Λ is the square root of the Laplacian. This linearization shows
the parabolic character of the problem in the stable case (ρ2 > ρ1), as well as the
ill-posedness in the unstable case (ρ2 < ρ1).

The nonlinear equation (3.3) is ill-posed in the unstable situation and locally
well-posed in Hk (k ≥ 3) for the stable case [10].

3.1. Maximum Principles

3.1.1. L2 of f

The contour equation (3.3) can be written as follows:

ft(x, t) = PV
∫

R
∂x arctan

(
f(x, t)− f(x− γ, t)

γ

)
dγ.

We multiply by f , integrate over dx, and use integration by parts (for details [7])
to observe

1
2
d

dt
‖f‖2L2(t) = −

∫
R

∫
R

ln
√

1 +
(
f(x, t)− f(γ, t)
x− γ

)2
dxdγ, (3.4)

and integrating in time we get

‖f‖2L2(t) + ρ
2−ρ1

2π

∫ t
0
ds

∫
R
dγ

∫
R
dx ln

(
1 +

(
f(x, s)−f(γ, s)
x− γ

)2
)

= ‖f0‖2L2 .

The above equality indicates that for large initial data, the system is not parabolic
at the level of f . The inequality∫

R

∫
R

ln
(

1 +
(
f(x, t)− f(γ, t)
x− γ

)2)
dxdγ ≤ 4π

√
2‖f‖L1(t)

shows that there is no gain of derivatives for the stable case. If the initial data are
positive, then ‖f‖L1(t) ≤ ‖f0‖L1 follows from [11] (see next section below), so that
the dissipation is bounded in terms of the initial data with zero derivatives.
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3.1.2. L∞ of f

For f0 ∈ Hk with k ≥ 3, we prove in [10] that there exists a time T > 0 such that
the unique solution f(x, t) to (3.3) belongs to C1([0, T ];Hk). In particular we have
f(x, t) ∈ C1([0, T ]× Ω), hence Rademacher theorem shows that the functions

M(t) = max
x
f(x, t),

and
m(t) = min

x
f(x, t),

are differentiable at almost every t. In the non-periodic case, we also notice that by
Riemann-Lebesgue lemma there always exists a point xt ∈ R where

|f(xt, t)| = max
x
|f(x, t)|,

since f(·, t) ∈ Hs with s > 1/2 implies that f(x, t) tends to 0 when |x| → ∞. First,
we suppose that this point xt satisfies that 0 < f(xt, t) =M(t) (a similar argument
can be used for m(t) = f(xt, t) < 0). Then by an appropriate integration by parts
follows that

M ′(t) = −ρ
2 − ρ1

2π PV
∫

R

M(t)− f(xt − γ, t)
γ2 + (M(t)− f(xt − γ, t))2dγ ≤ 0,

m′(t) = −ρ
2 − ρ1

2π PV
∫

R

m(t)− f(xt − γ, t)
α2 + (m(t)− f(xt − γ, t))2dγ ≥ 0,

for almost every t.
Furthermore the stable system gives a maximum principle ‖f‖L∞(t) ≤ ‖f‖L∞(0),

see [11]; decay rates are obtained for the periodic case as:
‖f‖L∞(t) ≤ ‖f0‖L∞e−Ct,

and also for the case on the real line (flat at infinity) as:

‖f‖L∞(t) ≤ ‖f0‖L
∞

1 + Ct .

Numerical solutions performed in [12] further indicate a regularizing effect. The
decay of the slope and the curvature is stronger than the rate of decay of the
maximum of the difference between f and its mean value. Thus, the irregular regions
in the graph are rapidly smoothed and the flat regions are smoothly bent.

3.1.3. L∞ of ∂xf

It is shown analytically in [11] that, if the initial data satisfy ‖∂xf0‖L∞ < 1, then
there is a maximum principle that shows that this derivative remains in absolute
value smaller than 1. The proof follows from the following equivalent system

ft(x, t) = ρ
2 − ρ1

2π PV
∫

R

∂xf(x, t)(x− α)− (f(x, t)− f(γ, t))
(x− α)2 + (f(x, t)− f(γ, t))2 dγ.

Taking one derivative in this formula, we have
∂xft(x) = N1(x) +N2(x), (3.5)

with
N1(x) = ρ

2 − ρ1

2π PV
∫

R

∂2
xf(x)(x−γ)

(x−α)2+(f(x)−f(γ))2dγ,
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N2(x) = −ρ
2 − ρ1

2π PV
∫

R

∂xf(x)−4γf(x)
(x− α)2 Q(x, γ)dγ,

where
Q(x, γ) = 2 1 + ∂xf(x)4γf(x)

(1 + (4γf(x))2)2 ,

and
4γf(x) = f(x)− f(γ)

x− γ
.

Next, we set
M(t) = ‖∂xf‖L∞(t),

thenM(t) = maxx ∂xf(x, t) = ∂xf(xt, t) where xt is the trajectory of the maximum.
Similar conclusions are obtained for m(t) = minx ∂xf(x, t). Using the Rademacher
theorem as in the previous section, we have thatM ′(t) = ∂xft(xt, t) and ∂2

xf(xt, t) =
0. Therefore by taking x = xt in (3.5) yields

M ′(t) = N2(xt),
since N1(xt) = 0. The inequality

|4γf(xt)| ≤M(t),
shows that for M(t) < 1 the integral N2(xt) ≤ 0, and therefore M ′(t) ≤ 0. If
M(0) < 1, using the theorem of local existence, we have that for short timeM(t) < 1
which implies M ′(t) ≤ 0 for almost every t. Consequently we obtain M(t) < 1. In
the case of m(t) we find m(t) > 1.

From the expression (3.5) we can also find some initial data such that the norm
||∂xf ||L∞ is an increasing function for small enough t. In order to prove it we intro-
duce in the formula for N2(x) the following function:

g(x) =



Mx x ∈ [0, α1)
−M α1+εα2

α2−α1
(x− α1) +Mα1 x ∈ [α1, α2)
−εMx x ∈ [α2, α3)

M εα3
α4−α3

(x− α3)− εMα3 x ∈ [α3, α4)
0 x ∈ [α4,∞)

, (3.6)

where g(x) = −g(−x) for x < 0, M > 0, 0 < ε < 1 and 0 < α1 < α2 < α3 < α4
satisfy

α1 + εα2

α2 − α1
< 1 (3.7)

and
εα3

α4 − α3
< 1. (3.8)

Thus g(x) is an odd Lipschitz function such that ||∂xg||L∞ = (∂xg)(0) =M .
Therefore we have that

N2(0) = −ρ
2 − ρ1

2π 4
∫ ∞

0

M − g(x)
x

x2
1 +M g(x)

x

(1 + (g(x)
x

)2)2
dx.

Computing the integral yields∫ ∞
0

M − g(x)
x

x2
1 +M g(x)

x

(1 + (g(x)
x

)2)2
dx (3.9)
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= (α2 − α1)(1 + ε)M
2α1α2(1 +M2ε2) −

(α3 − α2)M(1 + ε)(M2ε− 1)
2α2α3(1 +M2ε2)2

+(α4 − α3)M(2− (M2 − 1)ε)
2α3α4(1 +M2ε2) + M

α4

= 1 + ε
M

(
α2 − α1

2α1α2(M−2 + ε2) −
(α3 − α2)(ε−M−2)
2α2α3(M−2 + ε2)2

)

+M
α4

(
(α4 − α3)(2M−2 − ε(1 +M−2))

2α3(M−2 + ε2) + 1
)
.

Choosing α4 = µα3, for µ and M large enough we have that the second term on
right hand side of the previous expression is negative. Taking the limit M →∞ we
obtain that there exist M > 1, ε < 1, α1, α2, α3 and α4 satisfying the inequalities
(3.7) and (3.8) such that the integral (3.9) is negative. Approximating this function
for a smooth one we have the initial data that we are looking for.

3.2. Global existence for small initial data
Briefly in this section we state several family of global solutions of (3.3) for the
stable case with small initial data with respect to a fixed norm:

3.2.1. Analyticity for small initial data

Let x ∈ R and
‖f‖a =

∑
|f̂(k)|ea|k|.

For a > 0, if ‖f‖a < ∞, then the function f can be extended analytically on the
strip |=z| < a. Furthermore

‖∂xf‖a ≤ C
‖f‖b
b− a
,

for b > a. Then

Theorem 1. Let f0(x) be a function such that
∫
T f0(x) dx = 0, ‖∂xf0‖0 ≤ ε for ε

small enough and
‖∂2
xf0‖b(t) ≤ εeb(t)(1 + |b(t)|γ−1), (3.10)

with 0 < γ < 1, b(t) = a− (ρ2 − ρ1)t/2, ρ2 > ρ1 and a ≤ (ρ2 − ρ1)t/2. Then, there
exists a unique solution of (3.3) with f(x, 0) = f0(x) and ρ2 > ρ1 satisfying

‖∂xf‖a(t) ≤ C(ε) exp((2σa− (ρ2 − ρ1)t)/4),
and

‖∂2
xf‖a(t) ≤ C(ε)(1 + |σa− ρ

2 − ρ1

2 t|γ−1) exp((2σa− (ρ2 − ρ1)t)/4),

for a ≤ ρ2−ρ12σ t, σ = 1 + δ and 0 < δ < 1.

Note that the initial data are not necessarily smooth, ‖f‖Hs can be∞ for s > 3/2.
The condition (3.10) can be satisfied for example if ‖Λ1+γf0‖0 < ε and f̂0(0) =
f̂0(1) = f̂0(−1) = 0 since

‖∂2
xf0‖b(t) ≤ eb(t)‖Λ1+γf0‖0 max

k≥2
|k|1−γeb(t)(|k|−1).
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In order to prove the theorem, we use the Cauchy-Kowalewski method (see [18]
and [19]) in a similar way as Caflisch and Orellana [5] and Siegel, Caflisch and
Howison [22].

3.2.2. Classical solutions for initial data smaller than 1
5

In [7] it is shown global existence of unique C([0, T ];H3(R)) solutions if initially the
norm of f0 is controlled as ‖f0‖1 < c0 where in this case

‖f0‖1 =
∫

R
dξ |ξ||f̂0(ξ)|.

The key point here, in comparison to previous work [8, 22, 10, 15], is that the
constant c0 can be easily explicitly computed. We have checked numerically that c0
is not that small; it is greater than 1/5.

This norm allows us to use Fourier techniques for small initial data that give rise
to a global existence result for classical solutions.

Theorem 2. Suppose that initially f0 ∈ H3(R) and ‖f0‖1 < c0, where c0 is a
constant such that

2
∑
n≥1

(2n+ 1)2+δc2n0 ≤ 1

for 0 < δ < 1/2. Then there is a unique solution f of (3.3) that satisfies f ∈
C([0, T ];H3(R)) for any T > 0.

The limit case δ = 0
2
∑
n≥1

(2n+ 1)2c2n0 ≤ 1

is satisfied if

0 ≤ c0 ≤
1
3

√√√√√7 − 14× 52/3

3
√

9
√

39− 38
+ 2 3

√
5(9
√

39− 38) ≈ 0.2199617648835399.

In particular,
2
∑
n≥1

(2n+ 1)2.1c2n0 < 1,

if say c0 ≤ 1/5.

3.2.3. Weak solutions for initial data smaller than 1

In [7] it is also shown global in time existence of Lipschitz continuous solutions in
the stable case. We define a weak solution of (3.3) if it satisfies:∫ T

0
dt

∫
R
dx ηt(x, t)f(x, t) +

∫
R
dx η(x, 0)f0(x)

=
∫ T

0
dt

∫
R
dx ηx(x, t)

ρ2−ρ1

2π PV
∫

R
dγ arctan

(
f(x, t)− f(γ, t)
x− γ

)
.

(3.11)

This equality holds ∀η ∈ C∞c ([0, T )× R). Then
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Theorem 3. Suppose that ‖f0‖L∞ < ∞ and ‖∂xf0‖L∞ < 1.Then there exists a
global in time weak solution of (3.11) that satisfies

f(x, t) ∈ C([0, T ]× R) ∩ L∞([0, T ];W 1,∞(R)).
In particular f is Lipschitz continuous.

It is clear, however, because of the condition f ∈ L∞(R), the nonlinear term in
(3.11) has to be understood as a principal value for the integral of two functions,
one in H1 and the other in BMO.

There are several results of global existence for small initial data (small compared
to 1 or ε� 1) in several norms (more regular than Lipschitz) [8, 22, 15, 10] taking
advantage of the parabolic character of the equation for small initial data. Here we
show that we just need ‖∂xf0‖L∞ < 1, therefore∣∣∣∣f0(x)− f0(γ)x− γ

∣∣∣∣ < 1.

Notice that considering the first order term in the Taylor series of ln(1 + y2) for
|y| < 1, then the identity (3.4) gains half of a derivative which grants strong com-
pactness properties in comparison to the log conservation law.
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