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Abstract

In this paper we construct self-similar solutions for a N-dimensional transport equation
where the velocity is given by the Riezs transform. These solutions implies non-uniqueness
of weak solution. In addition we obtain self-similar solution for a one-dimensional con-
servative equation involving the Hilbert transform.

1 Introduction.

In this paper we shall construct self-similar solutions of the transport equation

θt +Rθ · ∇θ = 0 on RN × R+, (1.1)
θ(x, 0) = θ0(x), (1.2)

where θ : RN ×R+ → R, N ≥ 2, Rθ = (R1θ , ... , RNθ) and Riθ are the Riesz transform of θ
in the i-th direction, i.e.

Riθ(x) = Γ
(
N + 1

2

)
π−

N+1
2 P.V.

∫
RN

xi − yi
|x− y|N+1

θ(y)dy, 1 ≤ i ≤ N. (1.3)

The equation (1.1) was studied in [2] and the authors showed blow-up in finite time for all
positive initial data. For a simple proof of the formation of singularities with radial initial
data see [10] and for the viscous case see [13].

The technique used in this paper to construct self-similar solutions of the form

θ(x, t) = Nk(N)
((

1−
( |x|
t

)2)
+

) 1
2 ∈ C

1
2 (RN ), (1.4)

are based in a result of [11] where the author show that the function, θ(x, 1) is such that
Λθ(x, 1) = N in the unit ball (see section (2)). These are also self-similar solutions of the 1D
transport equation

θt +Hθθx = 0 on R× R+ (1.5)
θ(x, 0) = θ0(x), (1.6)

∗The authors were partially supported by the grant MTM2008-03754 of the MCINN (Spain) and the grant
StG-203138CDSIF of the ERC.
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where Hθ is the Hilbert transform of θ, i.e

Hθ(x) =
1
π
P.V.

∫
θ(y)
x− y

dy

(for more details on this equation see [7], [8], [1] and [14]).
In section (3) we will see that this result can be used to show existence of self-similar

solutions of the equation

θt + (θHθ)x = 0 in RN × R+, (1.7)
θ(x, 0) = θ0(x), (1.8)

which was studied from completely different contexts (vortex sheet, water wave, 1D model of
the quasi-geostrophic equation, dislocations dynamics in solids and complex Burgers equa-
tion) in [6], [4], [5], [1], [9], [12], [3] and reference there in. Nevertheless we will follow the
ideas of [4] to construct the self-similar solutions.

Next we shall comment briefly the notation: the spaces W k,p are the classical Sobolev
space (k derivatives in Lp). The operator Λα is defined by the operator (−∆)

α
2 i.e in the

Fourier space
Λ̂αθ(ξ) = |ξ|αθ̂(ξ)

and we recall the identity

R̂jθ(ξ) = −i ξj
|ξ|
θ̂(ξ).

2 Riezs Transport Equation.

2.1 Self-Similar Solutions.

From the scaling invariance of equation (1.1), θ(x, t) → θ(λx, λt), with λ > 0, we will
consider a self-similar function with the following form

θ(x, t) = Φ(x/t) = Φ(ξ), (2.1)

where ξ = x/t. The equalities

∂tθ(x, t) = ∂tΦ(x/t) = −ξ
t
∇Φ(ξ)

Rθ(x, t) = RΦ(ξ)

∇θ(x, t) = ∇
(
Φ(x/t))

)
=

1
t
∇Φ(ξ)

yields, from equation (1.1),
∇Φ(ξ) ·

(
RΦ(ξ)− ξ

)
= 0. (2.2)

Now we shall show the existence of a solution of equation (2.2) by means of the following
lemma.
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Lemma 2.1 The function

v(ξ) = Nk(N)
(
(1− |ξ|2)+

) 1
2 ∈ C

1
2 (RN ), (2.3)

where k(N) = Γ(N/2)
(
21/2Γ(3/2)Γ((2N + 1)/2)

)−1
and f+ is the positive part of the func-

tion f , satisfies the equalities:
Rv(ξ) = ξ if |ξ| < 1,

and
∇v(ξ) = 0 if |ξ| > 1.

Proof: from [11] we know that v(ξ) satisfies the following properties:

1. Λv(ξ) = N if |ξ| < 1.

2. Λv(ξ) ∈ L1(RN ).

3. Λv is radial.

Since

Rv = ∇
(
Λ−1v

)
≡ ∇Ψ, (2.4)

∇ ·Rv = Λv, (2.5)

we have that ∆Ψ = Λv and therefore Ψ is a radial function with ∆Ψ(ξ) = N if |ξ| < 1. This
implies the following expression for Ψ,

Ψ(ξ) =
|ξ|2

2
+ a0 if |ξ| < 1,

where a0 is constant. By using (2.4) we obtain

Rv(ξ) =
ξ

|ξ|
∂

∂|ξ|
Ψ(ξ) = ξ if |ξ| < 1. (2.6)

Thus, the function

θ(x, t) = Nk(N)
((

1−
( |x|
t

)2)
+

) 1
2 ∈ C

1
2 (RN ) (2.7)

is a self-similar solution of equation (1.1) (almost everywhere).

Remark 2.2 We can check that the functions θT (x, t) = −θ(x, (T − t)), with 0 < T < ∞
are solutions with an initial data θT (x, 0) = −θ(x, T ) which collapse in a point in finite time
T .
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Remark 2.3 The previous ideas can be easily adapted to prove that the function

θ(x, t) = k(1)
((

1−
( |x|
t

)2)
+

) 1
2 ∈ C

1
2 (R), (2.8)

is a self-similar solution of equation

θt +Hθθx = 0 on R× R+, (2.9)

which is a one dimensional version of equation (1.1).

2.2 Formal Weak Solutions and Non-Uniqueness.

In this section we shall check that the previous functions are solutions of the equation (1.1)
in the weak sense that we define below. In addition we will be able to show non-uniqueness.

Definition 2.4 The function θ(x, t) is a weak solutions of equation (1.1) if

θ ∈ C
(
(0, T ), Lq(RN)

)
∩ C

(
(0, T ),W 1,p(RN)

)
with 1 ≤ q <∞ and 1 ≤ p < 2,

∂tθ ∈W 1,p(RN ) ∀t > 0 with 1 ≤ p < 2,∫
RN

(
θ(x, t)t +Rθ(x, t) · ∇θ(x, t)

)
φ(x, t) dx = 0 ∀t ∈ (0, T )∀φ ∈ C∞c ((0, T )× RN ),

and
lim
t→0+

θ(x, t) = θ0(x) in Lq(RN )

Theorem 2.5 (Non-Uniqueness). The function

Φ(x, t) = Nk(N)
((

1−
( |x|
t

)2)
+

) 1
2

is a global weak solution of the equation (1.1) in the sense of the definition (2.4) with zero
initial data.

Proof: Given a function φ(x, t) ∈ C∞c ((0,∞)× RN ) and a fixed time t > 0 we have that∫
RN

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx

=
∫
|x|<t

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx

=
∫
ε<|x|<t

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx

+
∫
|x|<ε

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx,
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where 0 < ε < t. The second term on the right hand side of the last expression is equal to
zero. In addition we have the following identities,

∇Φ(x, t) =

 0 |x| > t

Nk(N)
x
t2

(1− |x|
2

t2
)1/2

|x| < t (2.10)

∂tΦ(x, t) =


0 |x| > t

Nk(N)
− |x|

2

t3

(1− |x|
2

t2
)1/2

|x| < t
(2.11)

Thus, if p < 2, we obtain,

||∇Φ(·, t)||Lp(RN) = Nk(N)

(∫
|x|<t

|x|p
t2p

(1− |x|
2

t2
)p/2

dx

) 1
p

(2.12)

= Nk(N)t
N
p
−p
(∫
|x|<t

|x|p

(1− |x|2)p/2
dx

) 1
p

= C(N)t
N
p
−p
(∫ 1

0

rN−1+p

(1− r2)p/2
dr

) 1
p

= C(N, p)t
N
p
−p
,

||∂tΦ(·, t)||L1(RN ) = Nk(N)

(∫
|x|<t

|x|2p
t3p

(1− |x|
2

t2
)p/2

dx

) 1
p

= Nk(N)t
N
p
−p
(∫
|x|<1

|x|2p

(1− |x|2)p/2
dx

) 1
p

= C(N)t
N
p
−p
(∫ 1

0

r2p+N−1

(1− r2)p/2
dr

) 1
p

= C(N, p)t
N
p
−p

Therefore,∫
RN

∂tΦ(x, t)φ(x, t)dx ≤ ||∂tΦ(·, t)||L1(RN)||φ(·, t)||L∞(RN ) = C(N, 1)tN−1||φ(·, t)||L∞(RN )

and∫
RN

RΦ(x, t) · ∇Φ(x, t)φ(x, t)dx ≤ ||RΦ(·, t)||Lq(RN )||∇Φ(·, t)||Lp(RN )||φ(·, t)||L∞(RN ) ≤

C(N, q, p)tN−p||φ(·, t)||L∞(RN ),

where 1 < p < 2, 1/p+ 1/q = 1 and t > 0. Then, we can conclude that

lim
ε→t

∫
ε<|x|<t

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx = 0 ∀t > 0,
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and ∫
RN

(
Φ(x, t)t +RΦ(x, t) · ∇Φ(x, t)

)
φ(x, t) dx = 0 ∀t > 0 ∀φ ∈ C∞c ((0,∞)× RN).

In addition is easy to check that

lim
t→0+

Φ(x, t) = 0 in Lp(RN) with 1 ≤ p <∞.

3 One Dimensional Conservative Equation

In this section we will construct self-similar solutions for the equation

θt + (θHθ)x = 0 in RN × R+, (3.1)
θ(x, 0) = θ0(x), (3.2)

where θ : R→ R and Hθ is the Hilbert transform of the function θ.
We will use the techniques developed in [4] to obtain formally a self-similar solution.
We sketch the mean features of the equation (3.1) in the following lemma.

Lemma 3.1 Let Z(w, t) be a complex function, Z : M → C, where M = {w = x+ iy : y >
0} such that

Zt + ZZw = 0 on M (3.3)
Z(w, 0) = Rθ0(x, y)− iPθ0(x, y). (3.4)

Pθ(x, y) is the convolution with the Poisson kernel and Rθ(x, y) is the convolution with the
harmonic conjugate Poisson kernel, i.e.

Pθ(x, y) =
1
π

∫
R

y

y2 + (x− s)2
θ(s)ds Rθ(x, y) =

1
π

∫
R

x− s
y2 + (x− s)2

θ(s)ds. (3.5)

Then, if Z(w, t) is analytic on M and vanishing at infinity

θ(x, t) = −= (Z(w, t)|y=0) (3.6)

is a solution of equation (3.1), with θ(x, 0) = θ0(x) on the points where θ and Hθ are differ-
entiable.

Proof: If Z(w, t) satisfies the statements of lemma (3.1) we can write it in the following way

Z(w, t) = Rθ(x, y; t))− iPθ(x, y; t) (3.7)

where θ(x, t) = −= (Z(w, t)|y=0). In addition we know that

Zt + ZZx = 0 on M,
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and from (3.7) follows Z(w, t)|y=0 = Hθ(x, t)− iθ(x, t). By taking the limit y → 0+ in equa-
tion (3.7) we have the desired result.

Next we shall use the previous lemma to prove the following theorem.

Theorem 3.2 The function

θ(x, t) =
1√
tπ

((
1− πx2

4t

)
+

) 1
2

∈ C
1
2 (R)

is a self-similar solution (at least in a weak sense) of equation (3.1) with the initial data
θ0 = δ0, where δ0 is the Dirac Delta.

Proof: By the lemma (3.1), we have to study the solutions of the equation,

Zt + ZZw = 0 on M (3.8)

Z(w, 0) =
1
π

x

x2 + y2
− i 1

π

y

x2 + y2
, (3.9)

A standard argument yields that the solution is constant along the following complex trajec-
tories

X1(x, y, t) =
1
π

x

x2 + y2
t+ x (3.10)

X2(x, y, t) = − 1
π

y

x2 + y2
t+ y. (3.11)

Thus
Z(X1(x, y, t), X2(x, y, t), t) = Z0(x, y),

and one can check that the solution, Z(w, t), satisfies the requirements of the lemma (3.1).
In addition

θ(X1, t) = −=
(
Z(X1, X2, t)|X2=0

)
= Pθ0(x, y, t)|X2=0 =

y

πt
|X2=0.

The function

y =
√
πt

((
1− πx2

t

)
+

) 1
2

satisfies equation (3.11) with X2 = 0 and by the equation (3.11) we have that

X1 =
{

2x |x| <
√
t/π

t
πx + x |x| >

√
t/π

Furthermore we can conclude that,

θ(x, t) =
1√
tπ

((
1− πx2

4t

)
+

) 1
2

.
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Remark 3.3 This solution was obtained in [3] and by using the techniques of section (2).
In fact they constructed self-similar solutions for the equation

ut + Λαuux = 0 on R× R+, (3.12)
u(x, 0) = H(x), (3.13)

where H(x) is the Heaviside function and 0 < α ≤ 2.
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