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Abstract

In this paper we study a one dimensional model equation with a
non-local flux given by the Hilbert transform that is related with the
complex inviscid Burgers equation . This equation arises in different
contexts to characterize non-local and non-linear behaviors. We show
global existence, local existence, blow up in finite time and ill-posedness
depending on the sign of the initial data for classical solutions.

1 Introduction.

We consider the following non-local equation:

∂tf + (fHf)x = 0 on R× R+ (1.1)
f(x, 0) = f0, (1.2)

where Hf is the Hilbert transform of the function f , which is defined by the
expression

Hf(x) =
1
π
P.V

∫
f(y)
x− y

dy.

One particular feature of equation (1.1) is the relation with the Burgers
equation. Applying the Hilbert transform over equation (1.1) yields (for
more details see [1]),

∂t(Hf) +HfHfx − ffx = 0 (1.3)
Hf(x, 0) = Hf0(x). (1.4)

Multiplying (1.1) by −i, adding (1.3) and defining the complex valued func-
tion z(x, t) = Hf(x, t)− if(x, t) we get the equation

∂tz + zzx = 0

z(x, 0) = z0(x) ≡ Hf0 − if0,

∗The authors was partially supported by the grant MTM2005-05980 of the MEC
(Spain)
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which is known as the inviscid Burgers equation.
In [2] the authors displayed equation (1.1) as a one dimensional model

of the 2D Vortex Sheet problem using the ideas of [5]. It is known that
a Vortex Sheet is a layer of vorticity distributed as a delta function that
evolves according to the incompressible Euler equations. If we parameterize
the curve, by y(α, t), where the vorticiy is concentrated, we obtain (see [?]),

∂ty(α, t) = PV

∫
c
γ(α′)K2[y(α, t)− y(α′, t)]|yα(α′, 0)|dα′

y(α, 0) = y0(α),

where γ(α) is the initial vortex sheet strength and K2 is the kernel

K2(x) =
1

2π
(−x2, x1)
|x|2

.

In a different context, the equation (1.3) can be obtained, in a first ap-
proximation, from the dynamics of the interface between two fluids, one
with no viscosity satisfying Euler equations and the other satisfying Stock’s
equations (for more details see the appendix).

Another motivation comes from the analogy that equation (1.1) has with
the 2D quasi-geostrophic equation, which was studied in [1].

In [6] the authors studied the equation

ft + δ(fHf)x + (1− δ)fxHf = 0 (1.5)
f(x, 0) = f0(x), (1.6)

and they show formation of singularities for 0 < δ < 1/3 and δ = 1. Other
proof of the existence of singularities for equation (1.1) can be found in [2]
(notice that in this paper the authors take a different sign for the Hilbert
transform).

The equation (1.5) is also studied in [1] where the authors showed blow
up for 0 < δ ≤ 1. By an hodograph transformation an explicit solution for
δ = 1 is obtained over the torus, with mean zero analytic initial data. In
addition they analyzed the equation

ft + (fHf)x = −νHfx (1.7)
f(x, 0) = f0(x), (1.8)

and they showed that the solutions to this equation may also develop sin-
gularities with mean zero analytic initial data and with the condition ν <
||f0||L∞ . We will study this equation in section 4.

The structure of the paper is the following. In section 2 we show, for
equation (1.1), global existence for all initial data strictly positive in the
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class C0, δ(R)∪  L2(R). In section 3 we study the case where the initial data
have different sign and we prove ill-possedness in Sobolev spaces, Hs(R),
with s > 3/2. Finally, in section 4 we show local existence and blow up in
finite time for equation (1.1) when the initial data f0 is positive and there
exists a point x0 ∈ R such that f0(x0) = 0. In order to obtain the last
result we study the equation (1.7) and we show global existence when the
sum of the viscosity and the minimum of the initial data is larger than zero.
Ill-posedness occurs when this sum is smaller than zero.

Now we will give some comments about the notation.
We will set Hs(R), with s ∈ R to the usual Sobolev space,

Hs(R) = {f : f̂ is a function and∫
R
|f̂(ξ)|2(1 + ξ2)sdξ <∞}.

We denote by Λ the operator (−∆)
1
2 . This operator can be defined, using

the Fourier transform by

(Λf )̂(ξ) = |ξ|f̂(ξ), (1.9)

and we will use the representation

Λf(x) =
1
π
P.V

∫
f(x)− f(y)

(x− y)2
dy = Hfx(x). (1.10)

We recall the following pointwise inequality (see [3]) for f ∈ H2(R).

fΛf ≥ 1
2

Λ(f2), (1.11)

that will be used in the proofs below.

2 Global existence for strictly positive initial data.

In this section we study the equation (1.1) with initial data f0(x) > 0, which
imply that the solution will remain strictly positive, f(x, t) > 0. The main
result is the following:

Theorem 2.1. Let f0 ∈ L2(R) ∩ C0,δ(R), with 0 < δ < 1 and f0 > 0
vanishing at infinity. Then there exits a global solution of equation (1.1) in
C1((0,∞]; Analytic) with f(x, 0) = f0(x). Moreover, if f0 ∈ L2(R)∩C1,δ(R)
the solution is unique.

Proof: We denote the upper half-plane by

M ≡ {(x, y) ∈ R2 : y > 0}
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and the upper half-plane including the real axis by

M ≡ {(x, y) ∈ R2 : y ≥ 0}.

Let
Py(x) ≡ 1

π

y

y2 + x2
and Ry(x) =

1
π

x

y2 + x2
,

be the Poisson kernel and the conjugate Poisson kernel respectively. Then
we denote the convolutions of a function, f(x), with these kernels by

Pf(x, y) = (Py ∗ f)(x, y) and Rf(x, y) = (Ry ∗ f)(x, y),

We recall that with this notation the complex function g(x, y) = Pf(x, y) +
iRf(x, y) is analytic on M and

lim
y→0+

g(x, y) = f(x) + iHf(x). (2.1)

Other properties of the Poisson kernel, that we will refer below, are the
following:

• If f ∈ L2, then

Rf(x, y) = PHf(x, y) on M

• If f ∈ L∞ and vanishing at infinity, then

lim
y→+∞

Pf(x, y) = 0 ∀x ∈ R,

and
lim

x→±∞
Pf(x, y) = 0 ∀y ≥ 0.

• If f ∈ L∞, then Pf(x, y) is a bounded function on M .

Consider the equation

∂tz(x, t) + z(x, t)zx(x, t) = 0 (2.2)
z(x, 0) = z0(x) ≡ Hf0(x)− if0(x), (2.3)

where z(x, t) = g(x, t) − if(x, t) is a complex valued function and g and
−f its the real and imaginary parts respectively. Equation (2.2) written in
components can be read

∂tf + (gf)x = 0 f(x, 0) = f0(x) (2.4)
∂tg + ggx − ffx = 0 g(x, 0) = Hf0(x). (2.5)

4



We set the inviscid complex Burgers equation on the upper half plane

∂tZ(w, t) + Z(w, t)Zw(w, t) = 0 on M (w = x+ iy) (2.6)
Z(w, 0) = Z0(w) ≡ Rf0(x, y)− iPf0(x, y), (2.7)

where Z0(w) is an analytic function over M , limy→0+ Z0(w) = Hf0 − iPf0

and f0 > 0.
We introduce the complex trajectories

X(w, t) = Z0(w)t+ w, (2.8)

which in components reads

X1(x, y, t) = Rf0(x, y)t+ x (2.9)
X2(x, y, t) = −Pf0(x, y)t+ y. (2.10)

Thus, if Z0(w) is analytic in w0 and dX
dw (w0, t) 6= 0 we can define the function

Z(α, t) = Z0(X−1(α, t)),

with the property to be analytic on an open neighborhood of X(w0, t) and
Z(α, 0) = Z0(α). Consequently

Z(X(w0, t), t) = Z0(w0).

Therefore,

dZ(X(w0, t), t)
dt

= 0 = ∂tZ(X, t) + Z0(w0)ZX(X, t)

= ∂tZ(X, t) + Z(X, t)ZX(X, t).

Follows immediately that Z(α, t) is a solution of the complex inviscid Burg-
ers equation on a neighborhood of X(w0, t).

Now we shall show that there exists a suitable analytic inverse function
for the problem. First we prove the following lemma:

Lemma 2.2. For all (X1, X2) ∈ M there exist a unique pair (x, y) ∈ M
such that (2.9) and (2.10) holds for all t > 0. In addition, if X(w) ∈ M
then (1 + t∂xR(x, y)) 6= 0.

By fixing X2 ≥ 0 and t > 0 , for all x ∈ R, there exist a point y > 0 such
that the equation (2.10) holds. This is true since Pf0(x, y) > 0 is bounded
and we have that y > X2. Now we will prove that this value y is unique by
a contradiction argument:

Let us suppose that there exist y1 > y2 such that

y1 −X2 = Pf0(x, y1)t
y2 −X2 = Pf0(x, y2)t.
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Dividing both expressions we have

Pf0(x, y1)
y1 −X2

=
Pf0(x, y2)
y2 −X2

,

which is a contradiction since the product

y

y −X2
· 1
y2 + (x− s)2

is a decreasing function with respect to y (for y > X2) and f0 > 0. We
will denote by yX2(x) to be the solution of the equation (2.10) with fixed
X2 ≥ 0, t > 0 and x ∈ R (the time dependence will be omitted), hence

yX2(x)−X2 = tPf0(x, yX2(x)) (2.11)

Differentiating implicitly the expression (2.11) with respect to x (fixed X2)
we obtain

dyX2(x)
dx

=
∂xPf0(x, yX2(x))

1− t∂yPf0(x, yX2(x))
. (2.12)

Since f0 ∈ C0,δ ∩ L2 follows that Hf0 ∈ L∞ and therefore Rf0(x, y) is a
bounded function over M . Furthermore

lim
x→±∞

Rf0(x, yX2(x)) + x = ±∞ ∀X2 ≥ 0.

In addition, by differentiating with respect to x the expression

X1(x, yX2(x)) = Rf0(x, yX2(x))t+ x,

and using Cauchy-Riemann equations

∂xPf0(x, y) = ∂yRf0(x, y)
∂yPf0(x, y) = −∂xRf0(x, y),

we obtain from (2.12)

dX(x, yX2(x))
dx

=
(1 + t∂xRf0(x, yX2(x)))2 + (∂xPf0(x, yX2(x)))2

1 + t∂xRf0(x, yX2(x))
.

In the next step we shall prove that if X2 ≥ 0 then 0 < dX(x,yX2
(x))

dx < ∞,
which is equivalent to show that

1 + t∂xRf0(x, y) 6= 0 ∀(X1, X2) ∈M. (2.13)

Suppose that for t > 0 we have 1 + t∂xRf0(x, y) = 0. Then

∂xRf0(x, y) < 0 and t =
−1

∂xRf0(x, y)
.
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The time employed by the trajectory X(x + iy, t) to reach the real axis,
X2 = 0, is

tr =
y

Pf0(x, y)
,

On the other hand we have

−∂xRf0(x, y) = (∂xRy ∗ f0)(x) =
1
π

∫
R

−y2 + (x− s)2

(y2 + (x− s)2)2
f0(s)ds

<
1
π

∫
R

y2 + (x− s)2

(y2 + (x− s)2)2
f0(s)ds =

1
π

∫
R

1
(y2 + (x− s)2)

f0(s)ds =
Pf0(x, y)

y
.

We now observe that on the hypothetical points (x, y) ∈M where ∂xRf0(x, y) <
0 satisfies

−1
∂xRf0(x, y)

>
y

Pf0(x, y)
. (2.14)

Hence, we have shown that tr < t and consequently 1 + t∂xRf0(x, y) 6=
0 ∀(X1, X2) ∈M . The lemma (2.2) is proved.

By the Complex Variable Inverse Function Theorem and by lemma (2.2),
there exist an analytic inverse function, X−1(w, t) and an open set Ot ⊂ C,
time dependence, such that

X−1(·, t) : Ot →M,

with M ⊂ Ot ∀t > 0.
In fact, Z(w, t) = Z0(X−1(w, t)) is an analytic function that satisfies

the complex inviscid Burgers equation over M and Z(w, 0) = Z0(w). Fur-
thermore Z(w, t) vanishes at infinity ∀t and the restriction z(x, t) = Z(x, t)
satisfies (2.2).

Note that the real part of Z(w, t), <Z(w, t), is a harmonic function,
vanishing at infinity and with an analytic restriction to the real axis, <z(x, t).
But P<z(x, y, t) is a harmonic function with restriction to the real axis equal
to <z(x, t) and vanishes at infinity. Then <Z(w, t) = P<z and by unicity
of harmonic conjugate we can write

z(x, t) = H<z(x, t)− i<z(x, t).

The proof of the existence follows from substituting the previous expression
in equations (2.4) and (2.5).

In order to prove uniqueness we will suppose that f1 and f2 are two pos-
itive solutions of the equation(1.1) such that f1(x, 0) = f2(x, 0) = f0(x) ∈
C1, δ ∩ L2. Then the difference, d = f1 − f2 satisfies the equation,

∂td+Hf1
xd+ f2Λd+Hf1dx + f2

xHd = 0. (2.15)

Multiplying by d and integrating over R we obtain,

d||d||2L2

dt
≤ C(||Hf1

x ||L∞ + ||Hf2
x ||L∞ + ||f2

x ||L∞)||d||2L2 ,
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where we have integrated by parts and we have used inequality (1.11). By
applying Grönwall’s inequality uniqueness follows.

3 Ill-posedness for an initial data with different
sign.

In this section we analyze the existence of solutions of the equation (1.1) for
an initial data, which has positive and negative values.

We denote f− to be the negative part of a function f . Let Nf be the set
of points where a function f is strictly negative, i.e.

Nf ≡ {x ∈ R : f(x) < 0},

and |Nf | will denote its Lebesgue’s measure. The theorem that we shall
prove is the following:

Theorem 3.1. Let f0 ∈ Hs, with s > 3
2 and |Nf0 | 6= 0. Then, if f0(x) is not

C∞ in a point x0 ∈ Nf0, there is no solution of equation (1.1), satisfying
f(x, 0) = f0(x), in the class f ∈ C((0, T ), Hs(R)) ∩ C1((0, T ), Hs−1(R)),
with s > 3

2 and T > 0. In addition, f0 ∈ C∞ is not sufficiency to obtain
existence.

Proof: We will proceed by a contradiction argument.
Let us suppose that there exist a solution of equation (1.1) in the class

C((0, T ), Hs(R)) ∩ C1((0, T ), Hs−1(R)) with f(x, 0) = f0(x).
Taking the Hilbert transform on equation (1.1) yields

∂tHf +HfHfx − ffx = 0.

Now we define the complex valued function z(x, t) = Hf(x, t) − if(x, t),
that satisfies

∂tz + zzx = 0.

We set the complex function Z(x, y, t) by the expression (we omit the time
dependence):

Z(x, y, t) = Rf(x, y)− iPf(x, y) = P (Hf − if)(x, y),

so that, Z(x, y, t) = Z(w, t) (w = x+ iy) is an analytic function on M . Now
we shall prove that this function satisfies the complex Burgers equation on
M . In order to do that, we take the time derivative of Z

∂tZ = ∂tPz = P (∂tz) = −P (zzx).

Now we have to check that Pz∂xPz = P (zzx). We note that the restriction
of the function P (zzx) and PzPzx is the same, namely zzx. In addition

8



both functions have the same behavior at infinity. Taking modules:

|Pzzx| ≤ P (|z||zx|) ≤ (|Hfx|2L∞ + |fx|2L∞)
1
2P (|z|)

|PzPzx| ≤ (|Hfx|2L∞ + |fx|2L∞)
1
2P (|z|),

yields that both functions vanish at infinity.
Since Hf and f ∈ L∞ we have Pzx = ∂xPz and

PzPzx =
1
2

((Pz)2)x.

Since the function P (zzx) is harmonic on M , we have to prove that (Pz)2

is also harmonic on M . Applying the Laplacian operator we obtain

1
2

∆((Pz)2) = Pz∆(Pz) + (∂xPz)2 + (∂yPz)2

= (∂xRf)2−(∂xPf)2+(∂yRf)2−(∂yPf)2−2i(∂xPf∂xRf+∂yPf∂yRf) = 0,

where we have used the Cauchy-Riemann equations. Therefore the analytic
function on M , Z(w, t), satisfies the inviscid complex Burgers equation,

∂tZ(w, t) + Z(w, t)Zw(w, t) = 0 over M
Z(w, 0) = Z0(w)

Let us define the complex trajectories

dX(w, t)
dt

= Z(X(w, t), t)

X(w, 0) = w = x+ iy,

where we choose w so that y > 0 and Pf0(x, y) < 0. For sufficiently small t,
by Picard’s Theorem, these trajectories exist and X(w, t) ∈M . Therefore,

dZ(X(w, t), t)
dt

= ∂tZ(X, t) + ZX(X, t)Z(X, t) = 0,

and we obtain that X(w, t) = Z0(w)t+ w.
Now we take a sequence wε = x+ iyε for each x ∈ Nf0 such that yε > 0,

Pf0(x, yε) < 0 and limε→0 y
ε = 0. Since X(x, t) = Z0(x)t+ x ∈M , ∀t > 0,

then

Z(Z0(x)t+ x, t) = lim
ε→0

Z(X(wε, t)) = lim
ε→0

Z0(wε) = Hf0(x)− if0(x).

Taking one derivative respect to x in both sides of the previous equality
we obtain

dZ(X(x, t), t)
dX

=
dZ0(x)
dx

1 + tdZ0(x)
dx

.
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Taking two derivatives we have the equation

d2Z(X(x, t), t)
(dX)2

=
d2Z0(x)
dx2

(1 + tdZ0(x)
dx )3

.

And for n-th derivatives,

dnZ(X(x, t), t)
(dX)n

=
dnZ0(x)
dxn

(1 + tdZ0(x)
dx )n+1

+ lower terms in derivatives

=
dnHf0(x)

dxn − id
nf0(x)
dxn

(1 + tdZ0(x)
dx )n+1

+ lower terms in derivatives

Indeed, if on x0 ∈ Nf0 the n-th derivative of f0 or Hf0 is not continuous we
get a contradiction. In addition, if x0 ∈ Nf0 and f

(n)
0 (x0) = 0 ∀n but f0 is

not constant we have that

dZ(X(x, t), t)
dX

=
dZ(X(x, t), t)

dX1
=
d<Z(X1, X2, t)

dX1
+ i

d=Z(X1, X2, t)
dX1

=
dHf0(x)

dx − idf0(x)
dx

(1 + tdHf0dx )− idf0dx
.

Therefore
d=Z(X1(x0), X2(x0), t)

dX1
= 0.

Continuing this process we obtain that all derivatives satisfy

dn=Z(X1(x0), X2(x0))
(dX1)n

= 0.

But =Z(x, y, t) is analytic on (x, y) = (X1(x0), X2(x0)) , then =Z(x, y, t)
is constant over the line y = X2(x0) and this is a contradiction. Similar
result can be obtained if x0 ∈ Nf0 and dnHf(x0)

dxn = 0 ∀n but the initial data
f0 is not a constant.

4 Local existence and singularities for positive ini-
tial data.

The aim of this section is to prove local existence for equation (1.1) with
positive initial data. Furthermore, we shall prove blow up in finite time if
there exist x0 ∈ R such that the initial data satisfies f0(x0) = 0.

The argument of the proof requires the introduction of a viscous term.
The equation that we shall study is the following

ft + (Hff)x = −νHfx (4.1)
f(x, 0) = f0(x), (4.2)
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where ν > 0.
We will divide this study in two subsections. First we analyze the case

f0 + ν > 0 and we will show global existence. In the second part we study
the case f0 + ν ≥ 0 and we will show local existence and blow up in finite
time.

4.1 Global existence for f0 + ν > 0.

Here we shall prove the following result:

Theorem 4.1. Let be f0 ∈ L2(R)∩C0,δ(R), with 0 < δ < 1 and f0 + ν > 0
vanishing at the infinity. Then there exits a global solution of equation (4.1)
in C1((0,∞]; Analytic) with f(x, 0) = f0(x). Moreover, if f0 ∈ L2(R) ∩
C1,δ(R) the solution is unique.

Proof: This proof is essentially based on the proof of the (2.1)which we
sketch below. The complex transport equation that we have to consider is
the following:

∂tZ(w, t) + (Z(w, t)− iν)Zw(w, t) = 0

Z(w, 0) = Z0(w) = Rf0(x, y)− iPf0(x, y).

In order to obtain global existence of this equation over M the only modi-
fication respect (2.1) is the inequality (2.14). In this case we find that

−∂xRf0(x, y) =
1
π

∫
−y + (x− s)2

(y2 + (x− s)2)2
f0(s)ds

=
1
π

∫
−y2 + (x− s)2

(y2 + (x− s)2)2
(f0(s) + ν)ds <

P (f0 + ν)(x, y)
y

,

where we have used ∫
−y2 + s2

(y2 + s2)2
ds = 0.

Remark 4.2. Ill-possedness occurs in equation (4.1) if the addition of the
minimum of the initial data f0 plus the viscosity is larger than zero. In fact,
we have the following theorem:

Theorem 4.3. Let f0 ∈ Hs, with s > 3
2 and |Nf0+ν | 6= 0. Then, if f0(x)

or Hf0(x) is not C∞ in a point x0 ∈ Nf0+ν , there is no solution of equa-
tion (1.1), satisfying f(x, 0) = f0(x), in the class f ∈ C((0, T ), Hs(R)) ∩
C1((0, T ), Hs−1(R)), with s > 3

2 and T > 0. In addition, f0 analytic in all
point where f0 + ν < 0 is not sufficiency to obtain existence.

Proof: The proof follows the steps of the theorem (4.3).
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4.2 Local existence in the limit case.

In this subsection we analyze the equation (4.1) with initial data f0 ≥ −ν.
We will use energy estimates and the techniques used in the article [1] for
the control of the L∞-norm of the solutions. The theorem that we shall
prove is the following:

Theorem 4.4. Let f0 ∈ H2 and

m0 ≡ minxf0(x) ≤ 0,

such that m0 + ν = 0. Then there exits a time T > 0 such that the equa-
tion (4.1) has a unique solution in C([0, T ];H2(R))∩C1([0, T ];H1(R)) with
f(x, 0) = f0(x).

Remark 4.5. In the case ν = 0 this theorem asserts local existence of solu-
tions of equation (1.1) in the class C([0, T ];H2(R))∩C1([0, T ];H1(R)) when
the initial data f0(x) ≥ 0.

Proof: By theorem (4.1) we consider global solutions of the equation

ft + (Hff)x = −εHfx (4.3)
f(x, 0) = f0(x) ∈ H2 and ε+m0 > 0, (4.4)

First we will compute two estimates of the L∞-norm of fx and Hfx which
are uniform with respect to ε > −m0

Lemma 4.6. Let f0 ∈ H2, with m0 ≡ minx∈R f0(x) ≤ 0 and m0 + ε > 0.
Let f be the solution of equation (4.3) given by the theorem (4.1). Then, if
we define

m(t) = min
x∈R

f(x, t),

we have that
m(t) + ε > 0 ∀t ≥ 0.

Proof: From theorem (4.1) we know that f ∈ C1([0,∞)× R), in partic-
ular the function m(t) is differentiable almost every t. There always exist a
point xm ∈ R (which depends on t) such that m(t) = f(xm(t), t). Using the
same argument as [4] we obtain

m′(t) = ft(xm(t), t) at almost every t.

Therefore

m′(t) = −Hf(xm(t), t)fx(xm(t), t)−Hfx(xm, t)(f(xm(t), t) + ε)

= −Hfx(xm(t), t)(m(t) + ε).
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an by integrating

(m(t) + ε) = (m0 + ε) exp(−
∫ t

0
Hfx(xm(τ), τ)dτ).

Since
Hfx(x) =

1
π
P.V.

∫
f(x)− f(y)

(x− y)2
dy,

we have that −Hfx(xm(t), t) ≥ 0. Therefore

m(t) + ε ≥ m0 + ε > 0.

Lemma 4.7. Let f0 ∈ H2, with m0 ≡ minx∈R f0(x) ≤ 0 and m0 + ε > 0.
Let f be the solution of equation (4.3) given by theorem (4.1). Then, if we
define

m(t) = min
x∈R

fx(x, t) = fx(xm(t), t)

M(t) = max
x∈R

fx(x, t) = fx(xM (t), t)

j(t) = min
x∈R

Hfx(x, t) = Hfx(xj(t), t)

J(t) = max
x∈R

Hfx(x, t) = fx(xJ(t), t)

we have that

m(t) ≥ m(0)
(1 + j(0)t)2

M(t) ≤ M(0)
(1 + j(0)t)2

j(t) ≥ j(0)
1 + j(0)t

J(t) ≤ J(0)− 3
j(0)

M2(0)
(1 + j(0)t)3

.

Therefore
sup
t∈[0,T ]

(||fx(t)||L∞ + ||Hfx(t)||L∞) <∞

if T < Te ≡ −
1
j(0)

∀ε > −m0.

Proof: We know that fx ∈ C1([0,∞) × R) and Hfx ∈ C1([0,∞) × R).
Therefore

m′(t) = ∂tfx(xm(t), t) M ′(t) = ∂tfx(xM (t), t)
j′(t) = ∂tHfx(xj(t), t) J ′(t) = ∂tHfx(xJ(t), t).

13



and

j′(t) = −j2(t) + (fx)2(xj(t), t) + (f(xj(t), t) + ε)fxx(xj(t), t).

Using the following representation

fxx(x) =
1
π
P.V

∫
Hfx(y)−Hfx(x)

(x− y)2
dy,

we have that fxx(xj(t), t) ≥ 0. Since j(t) is negative yiels

j(t) ≥ j(0)
1 + tj(0)

.

Now we shall study the evolution of m(t).

m′(t) = −m(t)Hfx(xm(t), t)− (f(xm(t), t) + ε)Hfxx(xm(t), t).

Since
Hfxx(x) =

1
π

∫
fx(x)− fx(y)

(x− y)2
dy,

we have that Hfxx(xm(t), t) ≤ 0. We know that m(t) < 0 then

m′(t) ≥ −2m(t)Hfx(xm(t), t) ≥ −2m(t)j(t),

and the following inequality holds

m(t) ≥ m(0)
(1 + j(0)t)2

.

Operating in a similar way we obtain that

M(t) ≤ M(0)
(1 + j(0)t)2

.

Finally we have that

J ′(t) = −J2(t) + (fx)2(xJ(t), t) + (f(xJ(t), t) + ε)fxx(xJ(t), t) ≤M2(t).

Therefore

J(t) ≤ J(0)− 3
j(0)

M2(0)
(1 + j(0)t)3

Next, we shall check that the L2-norm of f is bounded. Multiplying
equation (1.1) by f and integrating over R we have

1
2
d||f(t)||2L2

dt
+

∫
R

(fHf)xf + ε

∫
R
Hfxfdx

14



=
1
2
d||f(t)||2L2

dt
−

∫
R
fHffxdx+ ε

∫
R
Hfxfdx

=
1
2
d||f(t)||2L2

dt
− 1

2

∫
R
Hf(f2)xdx+ ε

∫
R
Hfxfdx

=
1
2
d||f(t)||2L2

dt
+

1
2

∫
R
Hfxf

2dx+ ε

∫
R
Hfxfdx = 0.

By the expression (1.10) we can estimate the last two terms of the equality∫
R
Hfx(x)f2(x)dx =

1
π

∫
R
f2(x)P.V

∫
f(x)− f(y)

(x− y)2
dydx

=
1

2π

∫
R
P.V.

∫
f2(x)(f(x)− f(y)) + f2(y)(f(y)− f(x))

(x− y)2
dydx

=
1

2π

∫
R
P.V.

∫
(f(x) + f(y))(f(x)− f(y))2

(x− y)2
dydx,

and
ε

∫
R
Hfxfdx =

ε

π

∫
R
f(x)P.V

∫
f(x)− f(y)

(x− y)2
dydx

=
ε

2π

∫
R
P.V

∫
f(x)(f(x)− f(y)) + f(y)(f(y)− f(x))

(x− y)2
dydx

=
ε

π

∫
R
P.V

∫
(f(x)− f(y))2

(x− y)2
dydx

Therefore
1
2

∫
R
Hfxf

2dx+ ε

∫
R
Hfxfdx

=
1

4π

∫
R
P.V

∫
(f(x) + f(y) + 2ε)(f(x)− f(y))2

(x− y)2
dydx ≥ 0,

and we can conclude
||f(t)||L2 ≤ ||f0||L2

In addition we have one a priori estimate of L2-norm of fxx. Taking two
derivatives to the equation (1.1), multiplying by fxx and integrating by fxx
we obtain

1
2
||fxx(t)||L2 = −

∫
R

(fHf)xxxfxxdx− ε
∫

R
Hfxxxfxxdx = 0. (4.5)

All the terms of the right side of (4.5), except

−
∫

R
(f + ε)Hfxxxfxxdx, (4.6)
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can be controlled in a simple way by

C(||fx(t)||L∞ + ||Hfx(t)||L∞)||fxx||2L2 .

To bound (4.6) we will use the inequality (1.11) as follows

−
∫

R
(f + ε)Hfxxxfxxdx = −

∫
R

(f + ε)Λfxxfxxdx

≤ −1
2

∫
R

(f + ε)Λ((fxx)2)dx ≤ 1
2
||Hfx||L∞ ||fxx||2L2 .

Therefore

d||fxx||2L2

dt
≤ C(||fx(t)||L∞ + ||Hfx(t)||L∞)||fxx||2L2 .

Finally, integrating in time, we get the estimate

||fxx(t)||L2 ≤ ||f0xx||L2 exp(C sup
t∈[0,T ]

(||fx(t)||L∞ + ||Hfx(t)||L∞)T )

Indeed we have that the H2-norm of f is bounded over [0, T ] with T < Te
and this estimate is uniform in ε. The rest of the proof is straightforward .
We take the approximating problems

f εt + (Hf εf ε)x = −εHf εx
f ε(x, 0) = f0(x) ∈ H2 and ε+m0 > 0,

and using the established uniform estimates and the Compacity Rellich The-
orem we obtain the existence of a solution in the class C([0, T ];H2(R)) ∩
C1([0, T ];H1(R)) of the equation

ft + (Hff)x = m0Hfx

f(x, 0) = f0(x) ∈ H2

by taking the limit ε→ −m+
0 .

Theorem 4.8. Let f0 ∈ H2 and f0(x) ≥ −ν such that there exist a point
x0 where f(x0) = −ν. Then the solution f(x, t) of the equation (4.1) given
by theorem (4.4), develops a singularity in finite time.

Remark 4.9. Theorem (4.8) assert blow up in finite time for equation (1.1)
when the initial data is positive and there exist a point x0 ∈ R such that
f0(x0) = 0.
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Proof: We proceed by a contradiction argument. Let us suppose, that
given an initial data f0 ∈ H2, the solution of equation (1.1), by theorem
(4.4), exist for all t > 0. We set the trajectory X(x0, t) by

dX(x0, t)
dt

= Hf(X(x0, t), t)

X(x0, 0) = x0.

This trajectory exist for sufficiently short time by Picard’s Theorem. If we
evaluate the solution over that trajectory we obtain

df(X(x0, t), t)
dt

= ∂tf(X, t) +
dX

dt
fx(X, t)

= −(f(X(x0, t), t) + ν)Hfx(X(x0, t), t).

Therefore,

f(X(x0, t), t) + ν = (f(X(x0, 0), 0) + ν) exp(−
∫ t

0
Hfx(X(x0, τ), τ)dτ) = 0.

Evaluating the Hilbert transform of f over that trajectory we obtain,

dHf(X(x0, t), t)
dt

= ∂tHf(X, t) +HfHfx(X, t)

= (f(X(x0, t), t) + ν)fx(X(x0, t), t) = 0.

So that
Hf(X(x0, t), t) = Hf0(x0),

and
X(x0, t) = Hf0(x0)t+ x0.

If we evaluate the first derivative of the solution over that trajectory we get

dfx(X(x0, t), t)
dt

= ∂tfx(X, t) +Hf(X, t)fxx(X, t)

= −2fx(X(x0, t), t)Hfx(X(x0, t), t)

Since f0x(x0) = 0, by the characteristics of f0, yields

fx(X(x0, t), t) = fx(X(x0, 0), 0) exp(−
∫ t

0
Hfx(X(x0, τ), τ)dτ) = 0.

Finally we evaluate Hfx over the trajectory and we obtain

dHfx(X(x0, t), t)
dt

= ∂tHfx(X, t) +Hf(X, t)Hfxx(X, t)

= −(Hfx(X(x0, t), t))2,
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Which implies

Hfx(X(x0, t), t) =
Hf0x(x0)

1 + tHf0x(x0)
.

Moreover, we can write

Hf0x(x0) =
1
π
P.V

∫
f0(x0)− f0(y)

(x0 − y)2
dy =

1
π
P.V

∫
m0 − f0(y)
(x0 − y)2

dy < 0,

if f0 6= 0.
Then Hfx(x, t) blow up at time t = −(Hfx(x0))−1 at the point x =

Hf(x0)t+ x0.

5 Appendix.

Here we give, in a first approximation, the formulation of the dynamics of the
interface between two fluids, one with no viscosity satisfying Euler equations
and the other satisfying Stock’s equations. We assume that the interface can
be parameterize as y(x, t) = (x1, h(x1, t)). We locate the viscous fluid above
of the curve y(x1, t) satisfying

ν∆v +∇pv = 0
∇ · v = 0

where v is the velocity of the viscous fluid, pv the pressure and ν > 0 the
viscosity. The ideal fluid, which is underneath of y(x, t), satisfies

ut + (u · ∇)u = −∇pu
∇ · u = 0,

where u is the velocity of the ideal fluid and pu the pressure. As a contour
condition over the interface we will impose the conservation of the normal
component of the stress tensor, i.e

−pu~n = −pv~n+ νT~n, (5.1)

where all functions are evaluated over the interface, ~n is the normal vector
to the interface and T = ∇v + (∇v)t. We take a initial condition where the
vorticity is concentrated over the initial curve y0(x), i.e.

w0(x) = γ0(x1)δ(x− y0(x1)),

where y0(x) = y(x, 0) separates both fluids. We will suppose that the so-
lution of the problem continues being a delta distribution over the curve
y(x1, t),

w(x, t) = γ(x1, t)δ(x− y(x1, t)).
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Therefore, using the Biot-Savart law, we obtain that the velocity of the total
fluid V is

V (x) =
∫
C
γ(x1)K2(x− y(x1, t)|y(x1, t)|dx1.

Under our hypothesis both viscous and ideal fluid are potentials, then

v = ∇Ψ
u = ∇Φ,

and the incompressible conditions provide

∆Ψ = 0 and ∆Φ = 0.

Therefore we have that,

pv = 0 (5.2)

∂tΦ +
1
2
|∇Φ|2 + pu = 0. (5.3)

Evaluating (5.3) over the interface and using (5.1) we get

∂tΦ +
1
2
|∇Φ|2 = ν ~nT~n. (5.4)

Finally we obtain the system of equations

d

dt
(x1(t), h(x1(t), t)) = V (x1(t), h(x1(t), t), t) (5.5)

x(0) = x0 h(x0, 0) = h0(x0) (5.6)

∂tΦ +
1
2
|∇Φ|2 = ν ~nT~n on the interface (5.7)

γ(x1, 0) = γ0(x1) (5.8)

where

V (x) =
∫
C
γ(x1)K2(x− y(x1, t)|y(x1, t)|dx1

∇Φ = V underneath the interface
T = ∇V + (∇V )t above the interface

Conversely a solution of this system provides a solution of the equation

∆v = 0 v ≡ V above the interface
∂tu+ (u · ∇)u = −∇p, u ≡ V underneath the interface

∇ · V = 0 except in the interface
∇× V = γ(x1, t)δ(x− y(x1, t))
p = −ν~nT~n on the interface.
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We study this problem, in a first approximation, despising the terms in
|hx1(x1, t)|, we obtain for the velocity u = (u1, u2) in the interface of the
ideal fluid

u1 ∼ −1
2
γ

u2 ∼ 1
2
Hγ.

In addition, since (5.5) we have

∂th(x1, t) = u2(x1, t)− u1(x1, t)hx1(x1, t) ∼ u2(x1, t).

We denote the function ζ(x1, t) by the expression

ζ(x1, t) = Φ(x1, h(x1, t), t),

therefore

ζx1(x1, t) = u1(x1, t) + u2(x1, t)hx1(x1, t) ∼ u1(x1, t).

Furthermore
Φt = ζt − u2ht ∼ ζt − (u2)2.

Introducing these relations in (5.4) and differentiating with respect to x1 we
obtain

∂tu
1 − 1

2
((Hu1)2 − (u1)2)x = ν∂x(~nT~n).

Approximating the velocity in the interface given by the viscous fluid and
defining u1 = Hf we get finally

Hft +HfHfx − ffx = νHfxx,

which is equation (1.3) in the limit ν → 0.
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los. Advances in Mathematics 194 (2005) 203-223.

[2] Analytic structure of two 1D-transport equations with nonlocal fluxes.
Gregory R. Baker, Xiao Li, Anne C. Morlet. Physica D 91 (1996) 349-
375.

[3] A pointwise estimate for fractionary derivatives with applications to
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