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Abstract

We prove the existence of mixing solutions of the incompressible porous media equation for
all Muskat type H5 initial data in the fully unstable regime. The proof combines convex integra-
tion, contour dynamics and a basic calculus for non smooth semiclassical type pseudodifferential
operators which is developed.
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1 Introduction and the main theorem

The dynamics of an incompressible fluid in an homogeneous and isotropic porous media is modeled
by the following system

∂tρ+ u · ∇ρ = 0 in Ω (1.1)

∇ · u = 0 in Ω (1.2)
ν

κ
u = −∇p− ρg in Ω, (1.3)

where ρ is the density, u is the incompressible velocity field, p is the pressure, ν is the viscosity, κ is
the permeability of the media and g is the gravity. The first equation represents the mass conservation
law, equation (1.2) the incompressibility of the fluid and equation (1.3) is Darcy’s law, which relates
the velocity of the fluid with the forces acting on it. In this paper we will consider Ω = R2. As usual,
we will refer to the system (1.1), (1.2) and (1.3) as the IPM system.

The Muskat problem deals with two incompressible and immiscible fluids in a porous media with
different constant densities ρ+ and ρ− and different constant viscosities. In this work we will focus
on the case in which both fluids have the same viscosity. Then one can obtain the following system
of equations from IPM

∇ · u = 0 in Ω±(t) (1.4)

∇⊥ · u = 0 in Ω±(t) (1.5)
ν

κ
(u+ − u−) · t = −g(ρ+ − ρ−)(0, 1) · t on Γ(t) (1.6)

(u+ − u−) · n = 0 in Γ(t) (1.7)

∂tX(x, t) = u(X(x, t), t) in Ω+(0) (1.8)

Ω+(t) = X(Ω+(0), t), (1.9)

where u± is the restriction of the velocity to the interface, Γ(t) = ∂Ω+(t) ∩ ∂Ω−(t), between both
fluids , n is the normal unit vector to Γ(t) pointing out of Ω+, t is a unit tangential vector to Γ(t),
Ω± is the domain occupied by the fluid with density ρ± and therefore Ω− = R2 \ Ω+. Without any
loss of generality we will take from now on g = ν = κ = 1.

The same system of equations governs an interface separating two fluids trapped between two
closely spaced parallel vertical plates (a ”Helle Shaw cell”). See [37].

We also assume that Ω+(0) is open and simple connected, that there exist a constant C such that
{x = (x1, x2) ∈ R2 : x2 < C} ⊂ Ω+(0) (the fluid with density ρ+ is below) and that the interface
Γ(0) is asymptotically flat at infinity with limx1→−∞ x2 = limx1→∞ x2 = 0 for x ∈ Γ(0). This type of
initial data will be called of Muskat type.

In this situation one can find an equation for the interface between the two fluids. Indeed, if we
take the parametrization

Γ(t) = {z(s, t) = (z1(s, t), z2(s, t)) ∈ R2},

the curve z(s, t) must satisfy from (1.4),..., (1.9) (see [6] and [17])

∂tz(s, t) =
ρ+ − ρ−

2π
P.V.

∫ ∞
−∞

z1(s, t)− z1(s′, t)

|z(s, t)− z(s′, t)|2
(∂sz(s, t)− ∂sz(s′, t))ds′, (1.10)

where P.V. denotes the principal value integral. At the same time the solutions of the Muskat equation
(1.10) provide weak solutions of the IPM system.

The behaviour of the equation (1.10) strongly depends on the order of the densities ρ+ and ρ−. The
problem is locally well posed in Sobolev spaces, H3 (see [17]), if the interface is a graph and ρ+ > ρ−,
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i.e., in the stable regime (see also [13] and [18] for improvements of the regularity). Otherwise, we
are in the unstable regime and the problem is ill-posed in H4. This is a consequence of the instant
analyticity proved in [6] in the stable case (see also [17] for ill-posedness in H3 for an small initial
data).

This contrast between the stable and unstable case is easy to believe since F(s, t) = ∂4
sz(s, t)

satisfies that

∂tF = −σ(s, t)ΛF + a(s, t)∂sF + R(s, t),

where Λ = (−∆)
1
2 , a(s, t) and R are lower order terms and the Rayleigh-Taylor function σ(s, t) reads

σ(s, t) = (ρ+ − ρ−)
∂sz1(s, t)

|∂sz(s, t)|2
.

A quick analogy with the heat equation indicates that for σ(s, t) positive everywhere the problem is
well-possed (we are in the stable case). If σ(s, t) is negative the equation resembles a backwards heat
equation in this region and therefore instabilities arise.

However, in the present paper, we show that there exists weak solutions to the IPM system starting
with an initial data of Muskat type in the fully unstable regime, i.e., ρ+ < ρ− and ∂sz1(s, 0) > 0
everywhere. The initial interface will have Sobolev regularity and in addition these solutions will have
the following structure: there will exist domains Ω±(t) where the density will be equal to ρ± and a
mixing domain Ωmix(t) such that for every space-time ball contained in the mixing area the density
will take both values ρ+ and ρ−. We will call these solutions mixing solutions (see the forthcoming
definition 2.2). In figures 1 and 2 we present the main features of this kind of solutions.

Figure 1: A Muskat type initial data in fully unstable regime.

Theorem 1.1 Let Γ(0) = {(x, f0(x)) ∈ R2} with f0 ∈ H5. Let us suppose that ρ+ < ρ−. Then there
exist infinitely many ”mixing solutions” starting with the inital data of Muskat type given by Γ(0) (in
the fully unstable regime) for the IPM system.
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Figure 2: A mixing solution a time t > 0 starting in the configuration of fig. 1.

Remark 1.2 The existence of such mixing solutions was predicted by Otto in [36]. In this pioneering
paper, Otto discretizes the problem and present a relaxation in the context of Wasserstein metric,
which yields the existence of a ”relaxed” solution in the case of a flat initial interface. It is a very
interesting question whether it is possible to extend this approach to cover Theorem 1.1. We would
like to emphasize that the initial interface has Sobolev regularity, thus the Muskat problem is ill-possed
in the Hadamard sense (see for example [17]). Therefore the creation of a mixing zone provides a
mechanism to solve the IPM system in a situation where solutions of Muskat are not known.

Remark 1.3 Notice that these ”mixing solutions” do not change the values that the density initially
takes and that in any space-time ball B ⊂ Ωmix(t)×(0, T ), ρ takes both values, i.e there is total mixing.
In fact, a more refined version of convex integration recently presented in the recent manuscript [5],
it is proved that there is mixing in space balls.

The method of the proof is based on the adaptation of the method of convex integration for the
incompressible Euler equation in the Tartar framework developed recently by De Lellis and Székelyhidi
(see [3], [11], [19], [21], [22], [23], [24], [25], [43] and [42] for the incompressible Euler and for another
equations [7], [8], [9], [2] and [40]).

Very briefly, the version of convex integration used initially by De Lellis and Székelyhidi under-
stands a nonlinear PDE, F (ρ, u) = 0 as a combination of a linear system L(ρ, u, q) = 0 and a pointwise
constraint (ρ, u, q) ∈ K where K is a convenient set of states and q is an artificial new variable. Then
L gives rises to a wave cone Λ and the geometry of the Λ hull of K, KΛ, rules whether the convex
integration method will yield solutions. An h-principle holds in this context: if for a given initial data
there exists an evolution which belongs to KΛ, called a subsolution, then one finds infinitely many
weak solutions.

For the case of the IPM system, in [16], the authors initiated this analysis and used a version of
the convex integration method which avoids the computation of Λ hulls based on T4 configurations,
key in other applications of convex integration, e.g. to the (lack of) regularity of elliptic systems
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[34, 30, 29]. Keeping the discussion imprecise, their criteria amounts to say that (0, 0) must be in
the convex hull of Λ ∩ K in a stable way. Shvydkoy extended this approach to a general family of
active scalars, where the velocity is an even singular integral operator, in [39]. Recently, in [28], Isett
and Vicol using more subtle versions of convex integration show the existence of weak solution for
IPM with Cα−regularity. All of these solutions, change the range of the modulus of the density. We
remark that the solutions in theorem 1.1 do not change the values of the density.

Székelyhidi refined the result of [16] in [41] computing explicitly the Λ-hull for the case of IPM.
Notice that this increases the number of subsolutions (and thus the solutions available). In fact,
Székelyhidi showed that for the case of a flat interface in the unstable regime there exists a subsolution
and thus proved theorem 1.1 in this case.

The main contribution of this work is a new way to construct such subsolutions, inspired by
previous studies in contour dynamics, which we believe of interest in related problems. Let us describe
it briefly. The mixing zone (that is where the subsolution is not a solution) will be a neighborhood of
size 2ε(x, t) of a suitable curve (x, f(x, t)) evolving in time according to a suitable evolution equation.
We call this curve the pseudointerface.

Namely, if x(x, λ) = (x, λ+ f(x, t)) we will declare the mixing zone Ωmix to be

Ωmix = {x ∈ R2 : x = x(x, λ) for (x, λ) ∈ (−∞,∞)× (−ε(x, t), ε(x, t))}.

Inside the mixing zone, the density of our subsolution will be simply ρ = λ
ε(x,t) .

Notice that the width of the mixing zone is variable, and it will grow linearly in time as ε(x, t) =
c(x, t)t, where c(x, t), 1 ≤ c(x, t) < 2, is essentially an arbitrary smooth function (technical assump-
tions will be made in theorem 4.1).

The case of constant c(x, t) = c is technically easier but we have preferred to deal with the variable
growth case as it is more useful for further application and it shows the flexibility of the method.

Let us observe, that at the boundary of the mixing zone, the subsolution must become a solution
(|ρ| = 1). Our choice of the subsolution imposes that f(x, t) must satisfy the following non linear and
non local equation,

∂tf(x, t) =Mu(x, t)

f(x, 0) =f0(x), (1.11)

where

Mu(x, t) = −1

2

∫ 1

−1

1

π

∫ ∞
−∞

1

2

∫ 1

−1

(x− y) (∂xf(x)− ∂yf(y) + λε(x)− λ′ε(y))

(x− y)2 + (ε(x)λ− ε(y)λ′ + f(x)− f(y))2
dλ′dydλ.

Here Mu can be understood as a suitable double average of the velocity in the Muskat case.
It turns out that it is possible but rather difficult to obtain uniform estimates on t for the operator

Mu in order to obtain existence for this system. The situation is reminiscent to that of the Muskat
problem but it is different as, on one hand, the kernel is not so singular but, on the other hand, we need
to obtain estimates which are independent of ε (notice that for ε = 0 the problem is ill-posed). The
first difficulty is to quasi-linearize the operator Mu. This quasi-linearization is inspired by that one
for the classical Muskat equation 1.10 (see for example [17]). However, even in the case of constant ε,
some new difficulties arise and to deal with them we need to use different tools e.g., pseudodifferential
theory. The presence of variable width ε(x, t) introduces additional technical complications. Since the
proof is long and delicate but the result is believable we postpone the proof to the appendix A.1 and
A.2 where we have introduced ad hoc notation which should make the proofs nice to follow.
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In turn, the needed a priori estimate boils down to understanding the evolution of the following
equation for F (x, t) = ∂5

xf(x, t)

∂tF (x, t) =

∫
K(x, y, t)∂xF (x− y, t)dy + a(x, t)∂xF (y, t) +G(x, t), (1.12)

for a suitable kernel K : R×R×R+ → R, where G(x, t) is a lower order term and a(x, t) are functions
with a lower number of derivatives. The important fact in equation (1.12) is that the kernel K is

order zero at time t = 0, and yields a (−∆)
1
2−term with the wrong sign. However K is of (−1)-order

for any t > 0 and yields a bounded term but with a blowing up norm ∼ 1
t .

At the beginning of section 4.2.2 we explain with a toy model, where the x−dependence of K
is frozen, that this behaviour forces a loss of at least one derivative with respect to the initial data.
Semiclassical analysis [45] studies how the behaviour of smooth symbols p(x, ~ξ) is like that of Fourier
multipliers up to factors of ~, ~ standing for the Planck constant. Our symbols p(x, t, tξ) can be
interpreted as semiclassical with the time playing the role of ~ but they are not smooth. Thus, in
order to deal with the full system, we produce a basic calculus of semiclassical type of pseudodifferential
operators with limited smoothness, e.g., composition of such symbols or a suitable G̊arding inequality.
The results are pretty general and perhaps of its own interest.

Once that we define such a pseudointerface and the corresponding mixing zone, we can find the
corresponding density ρ and velocity u and show that they belong to the suitable Λ hull for small
time, yielding then a subsolution. Given the subsolution, convex integration applies to create infinitely
many weak solutions, though an additional observation is needed to obtain the mixing property (see
section 3).

The method of the proof seems robust to prove existence of weak solutions in a number of free
boundary problems in an unstable regime. For further recents developments of this circle of ideas,
see e.g [1], [32], [33], [35]. As it was remarked by Otto and Székelyhidi ([36] and [41]) the underlying
subsolution seems to capture relevant observed properties of the solution as it is the growing rate of
the mixing zone, the fingering phenomena (see the numerics in [4]) or the volume proportion of the
mixing (This has been recently quantified in [5]).

It seems to us that the creation of a mixing zone in the lines of this work, might end up in to
a canonical way of turning ill-posed problems into solvable ones, at the price of loosing uniqueness
at least at the microscopic level (this line of thought has been already expressed in [36] and [41]).
We emphasize that subsolutions as such are also highly non unique (e.g. see the recent [26] for an
elegant proof of existence of subsolutions with piecewise constant densities). In the case of the flat
interface the relaxation solution obtained by Otto can be characterized as the unique entropy solution
[36] of a concrete scalar conservation law, the one who linearly interpolates between the heavier and
lighter fluid and as the subsolution who maximizes the speed of growth of the mixing zone ([41]).
Perhaps the most challenging open question after this work to obtain such nicely agreeing selection
criteria for subsolutions in the case of an arbitrary interface. At the end of the paper we add a remark
showing that surprisingly the mixing solutions are also present in the stable regime in the case of
straight interfaces except in the horizontal case. Let us remark that this have been extended to not
flat interfaces in [26]

The paper is organized as follows: In section 2 we introduce the rigorous definition of mixing
solutions and subsolution. In section 3 we explain how the convex integration theory allow us to obtain
a mixing solution from a subsolution. Section 4 is divided in two parts. In the first part, subsection
4.1, we construct a subsolution for the IPM system assuming the existence of the pseudointerface, ie.
solution for the equation (1.11). In the second part, section 4.2, we will show the existence of solutions
for the equation (1.11). As discussed before, the proof requires some pseudodifferential estimates for
non smooth symbols which might be of its own interest so we have gathered them in section 5. First
we present the results which are general and then those more related to our specific symbols, though

6



it would not be difficult to extrapolate general theorems from the later, as in the case of G̊arding
inequality.

In section 6 we show how to construct mixing solutions in the stable regime. Finally in the appendix
we prove the quasilinearization estimates as well as compute the symbols and their estimates.

1.1 Notation

We close the introduction by fixing some notation as it varies quite a lot in the literature. When no
confusion arises will use L2, Hk to denote L2(R), Hk(R) and S denotes the Schwarz class. Given a
symbol p(x, ξ) we define a pseudodifferential operator Op(p) by

Op(p)(f)(x) =

∫
e2πixξp(x, ξ)f̂(ξ)dξ,

for f ∈ S.
In the case that the symbol p = p(ξ), depends only on the frequency variable, i.e., p is a Fourier

multiplier, we denote the operator by P (the capital letter). We will use the following notation
to estimate commutators, correlation of differential operators and the skew symmetric part of an
operator.

[Op(p1),Op(p2)] = Op(p1) ◦Op(p2)−Op(p2) ◦Op(p1),

C(p1, p2) = Op(p1) ◦Op(p2)−Op(p1 · p2),

Op(p)skew = Op(p)−Op(p)T ,

where Op(p)T is the adjoint respect to the standard L2 product. For smoothness of the symbols we
use the norms

‖p‖α,β = sup
x,ξ,α′≤α,β′≤β

|∂α
′

x ∂
β′

ξ p(x, ξ)|,

where the derivatives are taken in the distributional sense. Finally we will say that p(x, ξ) ∈ Sα,β , if

‖p‖α,β <∞.

The symbols |||f ||| and 〈A〉 will denote some polynomial function evaluated in ||f ||H4 and ||A||H3

and we recall that
A = ∂xf

along the paper. In particular both |||f ||| and 〈A〉 will depend on c as well but we will not make
such dependence explicit as it is harmless for the apriori estimates (for a c(x, t) as in the statement
of theorem 4.1).

2 The concepts of mixing solution and subsolution

Following [41] we rigorously define the concept of ”mixing solution” in the statement of theorem 1.1.
We would like our solutions to mix in every ball of the domain and thus we incorporate this into the
definition. Firstly, since we are working in unbounded domains, we give a definition of weak solution
in which we prescribed the behaviour of the density at ∞. In the following Ri, with i = 1, 2 are the
Riesz transform and BS is the Biot-Savart convolution. Recall that for a smooth function f these
operators admit the kernel representations,

Rif(x) =
1

2π
P.V.

∫
R2

xi − yi
|x− y|3

f(y)dy, BSf(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
f(y)dy.

7



Definition 2.1 Let T > 0 and ρ0 ∈ L∞(R2). The density ρ(x, t) ∈ L∞(R2 × [0, T ]) and the velocity
u(x, t) ∈ L∞(R2 × [0, T ]) are a weak solution of the IPM system with initial data ρ0 and if and only
if the weak equation ∫ T

0

∫
R2

ρ (∂tϕ+ u · ∇ϕ) dxdt =

∫
R2

ϕ(x, 0)ρ0(x)dx

holds for all ϕ ∈ C∞c ([0, T )× R2), and

u(x) = BS(−∂x1
ρ). (2.1)

Notice that we have interpreted the incompressibility of the velocity field and Darcy’s law with
(2.1). In fact, for ρ ∈ C∞c (R2), the equations

∇ · u =0

∇⊥ · u =− ∂x1
ρ.

(2.2)

together with the condition that u vanishes at infinity (the boundary condition) are equivalent to

u(x) = BS(−∂x1
ρ) = (R2R1ρ,−R1R1ρ) .

Thus, they are consistent with definition 2.1. Definition 2.1 extends the concept of solution of the
system (2.2) plus vanishing boundary condition for densities which do not necessarily vanish at infinity.
Notice that incompressibility and Darcy’s law are automatically satisfied by our solution in the weak
sense. That is, ∫

R2

u · ∇ϕdx =0∫
R2

u · ∇⊥ϕdx =−
∫
R2

ρ∂x1ϕdx,

for all ϕ ∈ C∞c (R2).

Definition 2.2 The density ρ(x, t) and the velocity u(x, t) are a ”mixing solution” of the IPM system
if they are a weak solution and also there exist, for every t ∈ [0, T ], open simply connected domains
Ω±(t) and Ωmix(t) with Ω+ ∪ Ω− ∪ Ωmix = R2 such that, for almost every (x, t) ∈ R2 × [0, T ], the
following holds:

ρ(x, t) =

{
ρ± in Ω±(t)

(ρ− ρ+)(ρ− ρ−) = 0 in Ωmix(t)
.

For every r > 0, x ∈ R2, 0 < t < T B((x, t), r) ⊂ ∪0<t<TΩmix(t) it holds that∫
B

(ρ− ρ+)

∫
B

(ρ− ρ−) 6= 0.

For sake of simplicity and without any loss of generality we will fix the values of the density to be

ρ± = ∓1. (2.3)

The concept of subsolution is rooted in the Tartar framework understanding a non linear PDE as a
linear PDE plus a non linear constraint. In our context the linear constraint is given by

K = {(ρ,u,m) ∈ R× R2 × R2 : m = ρu, |ρ| = 1}.

8



As observed by Székelyhidi the set K contains unbounded velocities which is slightly unpleasant. Thus
for a given M > 1 we define

KM = {(ρ,u,m) ∈ R× R2 × R2 : m = ρu, |ρ| = 1, |u| ≤M}.

Subsolutions arise as a relaxation of the nonlinear constraint. In the framework of the IPM system
the relaxation is given by the mixing hull, the Λ lamination hull for the associated wave cone Λ (see
[16, 41] for a description of Λ). In [41], the author computed the laminations hulls of K and KM . We
take them as definitions.

Definition 2.3 We defined the mixing hulls for IPM by

KΛ =

{
(ρ,u,m) ∈ R× R2 × R2 :

∣∣∣∣m− ρu +
1

2

(
0, 1− ρ2

)∣∣∣∣ < (1

2

(
1− ρ2

))}
. (2.4)

For a given M > 1, the M -mixing hull KΛ
M are the elements in KΛ which additionally satisfy that

|2u + (0, ρ)|2 < M2 − (1− ρ2) (2.5)∣∣∣∣m− u− 1

2
(0, 1− ρ)

∣∣∣∣ < M

2
(1− ρ) (2.6)∣∣∣∣m + u +

1

2
(0, 1 + ρ)

∣∣∣∣ < M

2
(1 + ρ). (2.7)

Remark 2.4 Let us clarify the differences between our notation and the notation in [41]. We are
using same notation as in [41] in section 4, but with v there replaced by u here. The concept of M-
subsolution arises in section 2, proposition 2.5 in [41]. To translate this proposition to our language
one has to replace u there by 2u+ (0, ρ) and m there by m+ 1

2 (0, 1) (notice that in [41] m, in section
2, pass to m+ 1

2 (0, 1) in section 4).

Definition 2.5 Let M > 1 and T > 0. We will say that (ρ,u,m) ∈ L∞(R2 × [0, T ]) × L∞(R2 ×
[0, T ]) × L∞(R2 × [0, T ]), is a M-subsolution of the IPM system if there exist open simply connected
domains Ω±(t) and Ωmix(t) with Ω+ ∪ Ω− ∪ Ωmix = R2 and such that the following holds:

(No mixing) The density satisfies

ρ(x, t) = ∓1 in Ω±(t).

(linear constraint) In R2 × [0, T ] (ρ,u,m) satisfy the equations

∂tρ+∇ ·m =0

ρ(x, 0) =ρ0

u(x) =BS(−∂x1
ρ) ≡ 1

2π

∫
R2

(x− y)⊥

|x− y|2
(−∂y1ρ(y))dy, (2.8)

in a weak sense.

(Relaxation) (ρ,u,m) ∈ KΛ
M in Ωmix(t)× (0, T ) and (ρ,u,m) ∈ KΛ

M in R2 × (0, T ).

(Continuity) (ρ,u,m) is continuous in Ωmix(t)× (0, T ).

Remark 2.6 Along the text we will typically speak about subsolution (rather than M-subsolution) and
we only make explicit the constant M when it is needed.
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3 H-principle: Subsolutions yield weak solutions

In this section we follow [41] to find that to prove theorem 1.1 is enough to show the existence of a
M-subsolution, for some M > 1, (ρ,u,m). Since L∞(R2) ⊂ L2(dµ) with dµ = dx

(1+|x|)3 ,we will work

with L2(dµ̃), where dµ̃ = dµdt as the auxiliar space.
Associated to a M-subsolution (ρ,u,m) in [0, T ], we define a set X0.

X0 =
{

(ρ,u,m) ∈ L∞(R2 × [0, T ]× L∞(R2 × [0, T ])× L∞(R2 × [0, T ]) :

(ρ,u,m) = (ρ,u,m) a. e. in R2 \ Ωmix,

and (ρ,u,m) is a subsolution} .

This set is not empty since (ρ,u,m) ∈ X0.

Lemma 3.1 Let (ρ,u,m) be a M-subsolution. Then the space X0 is bounded in L2(dµ̃).

Proof: Let (ρ,u,m) ∈ X0. Then ||ρ||L∞ ≤ 1 and ||u||L∞ ≤ C(M), so that for a fixed time ||ρ||L2(dµ),
||u||L2(dµ) ≤ C(M). Similarly

||m||L2(dµ) ≤
∣∣∣∣∣∣∣∣m− ρu +

1

2

(
0, 1− ρ2

)∣∣∣∣∣∣∣∣
L2(dµ)

+

∣∣∣∣∣∣∣∣ρu− 1

2

(
0, 1− ρ2

)∣∣∣∣∣∣∣∣
L2(dµ)

.

Thus ||m||L2(dµ) is bounded thanks to (2.4) and to ||ρ||L2(dµ), ||u||L2(dµ) ≤ C(M). The claim follows
by integrating respect to time in [0, T ].

�

Since X0 is bounded in L2(dµ̃) and the weak topology of this space is metrizable, we can consider the
space X given by closure of X0 under this metric.

We will prove the following theorem,

Theorem 3.2 If X0 is not empty the set of mixing solutions of IPM with ρ0 as initial data is residual
in X. Here ρ0 is the subsolution at time t = 0.

The general framework of convex integration applies easily to our setting. For the sake of simplicity
we will follow the Appendix from [41] with an slight modification. We consider the unbounded domain
R3 (R2 in space and R in time), z : Ω→ R5 and a bounded set K ⊂ R5 such that

d∑
i=1

Ai∂iz = 0, (3.1)

z ∈ K. (3.2)

Assumptions:

H1 The wave cone. There exists a closed cone Λ ⊂ R5 such that for every z ∈ Λ and for every ball
B ∈ R3 there exists a sequence zj ∈ C∞c (B,R5) such that

i) dist(zj , [−z, z])→ 0 uniformly,

ii) zj → 0 weakly 0 in L2(dµ̃) weakly,

iii)
∫
|zj |2dµ̃ ≥ 1

2 |z|
2.
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H2 The Λ convex hull. There exist an open set U with U ∩ K = ∅ and a continuous convex
and increasing nonnegative function φ with φ(0) = 0 that for every z ∈ U z + tz ∈ U for
|t| ≤ φ(dist(z,K))

H3 Subsolutions. There exists a set X0 ⊂ L2(dµ̃) that is a bounded subset of L2(dµ̃) which is
perturbable in a fixed subdomain U ⊂ Ω such that any z ∈ X0 that satisfies z(y) ∈ U and if
wj ∈ C∞c (U ,R5) is the approximating sequence from [H1] and z + wj ∈ U then z + wj ∈ X0.

In the case of the IPM equation with the constraints |ρ| = 1, |u| ≤M both Λ, KM and KΛ
M has been

extensively studied in [16, 41]. We take U = Ωmix(t)×(0, T ). The property [H2] for KΛ
M was proved in

[41, Proposition 3.3]. For the property [H1] we use the sequence zj as constructed for example in [16,
Lemma 3.3]. Our Property [H1i)] is stated in the first property stated in that lemma. For property
[H1ii)] notice that we know from [16, Lemma 3.3] that zj → 0 weakly star topology of L∞. However,
zj is uniformly bounded in L∞ and compactly supported and thus uniformly bounded in L2(dµ̃).
Thus the weak star convergence implies also weak star convergence in L2(dµ̃). Our property [H1iii)]
requires some work as µ does not scale uniformly. However as proved for example in [16, Lemma
3.3], in addition to the properties listed in [41, H1] it holds that for a Λ segment z the approximating
sequence satisfies also that,

lim
j→∞

|(x, t) ∈ B : |zj(x, t)| 6= ±z| = 0,

and by absolute continuity it holds that

lim
j→∞

µ{(x, t) ∈ B : |zj(x, t)| 6= ±z} = 0.

Thus by choosing j large enough iii) also holds.
We skip the proof of the following lemma as it is identical to [41, Lemma 5.2]

Lemma 3.3 Let z ∈ X0 with
∫

Ωmix(t)×[0,T ]
F (z((x, t)))dµ̃ ≥ ε > 0. For all η > 0 there exists z̃ ∈ X0

with dX(z, z̃) ≤ η and ∫
Ωmix(t)×[0,T ]

|z − z̃|2dµ̃ ≥ δ.

Here δ = δ(ε).

Proof of theorem 3.2.
Firstly, as in the proof of [41, theorem 5.1] lemma 3.3 implies that the set of bounded solutions

to IPM is residual in X. The proof works in the same way since due to the fact that µ(R2) < ∞,
convolutions with a standard mollification kernel are continuous from L2(dµ̃, w) to L2(dµ̃) and thus the
Identity is a Baire one map, with a residual set of points of continuity. That is the set of (ρ,u,m) ∈ X
which belong to KM a.e. (x, t) ∈ R2× [0, T ] is residual in X. This is precisely the set of weak solutions
to IPM with the Muskat initial data.

It remains to show the mixing property:
Choose B((x, t), r) ⊂ ∪0<t<TΩmix(t). Declare

XB,±1 = {(ρ, u,m) ∈ X :

∫
B

(±1− ρ) = 0}.

Then XB,±1 ⊂ X is closed by the definition of weak convergence and since XB,±1∩X0 = ∅ (for states
in X0, |ρ| < 1) and XB,±1 ⊂ X0. Thus, XB,±1 has empty interior. Therefore X \XB,±1 is residual.
Since intersection of residual sets is residual, it follows that

{X \ ∪iXBi,±1 : Bi = B(xi, ti, ri) ⊂ ∪0<t<TΩ(t), xi ∈ Q2, ti ∈ Q, ri ∈ Q}
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with Q the rationals is residual. By density of rationals elements in X \ ∪iXBi,±1 satisfy the mixing
property and thus the set of mixing solutions is residual in X with respect to the weak topology.

�

Remark 3.4 We introduce the measure µ to deal with the unboundedness of the domain. However
we could have followed instead [22] and consider for capital N ↗ ∞ IN : X 7→ R defined by IN :∫
B(0,N)×[0,T ]

(|ρ|2 − 1)dxdt. By convexity of the L2 norm it follows that IN is lower semicontinuous

respect to the weak star topology of L∞(X). Thus it is a Baire one map with a residual set of points
of continuity. By our lemma 3.3 if z is a point of continuity of IN in X IN (z) = 0. Since elements
of X such that ρ(x, t) = 1 correspond to weak solutions to IPM and intersection of residual sets is
residual the theorem follows.

Remark 3.5 The proof presented above only yields weak solutions to the IPM system such that
|ρ(x, t)| = 1 for a.e. t ∈ [0, T ]. However (see the proof of [16, Lemma 3.3]) for every z = (ρ, u,m) ∈ Λ
with ρ 6= 0 there exists (ξ, ξt) ∈ R2

x × Rt, ξ 6= 0 such that

D2(h((ξ, ξt) · (x, t))) = h′′((ξ, ξt) · (x, t))
(
ρ− u2 u1

u1 ρ+ u2

)
∂t∇h((ξ, ξt) · (x, t)) +∇⊥h′((ξ, ξt) · (x, t)) = h′′((ξ, ξt) · (x, t))m.

This is the analogous of [22, Proposition 4] . Thus one imitates the proof in [22, Proposition 2] and
obtain weak solutions to the IPM systems such that

|ρ(x, t)| = 1

for every t. We skip the details since there is no essential difference. Also following [5] the mixing
property can be proven at every time slice.

Proof of theorem 1.1.
We start with a given initial data of Muskat type f0 ∈ H5, with 1 ≤ c(x, t) < 2 satisfying

hypothesis of theorem 4.1. By theorem 4.1 there exists a time T ∗(f0) > 0 and a function f ∈
C([0, T ∗(f0)], H4(R)), such that (ε(x, t) = c(x, t)t, f(x, t)) solve the equation (1.11). By theorem 4.4
there exists a M-subsolution in [0, T (f0,M, c)], with T (f0,M, c) ≤ T ∗(f0), and therefore we can define
the space X0 associated to this subsolution and apply theorem 3.2.

�

4 Constructing a subsolution for the IPM system

This section is divided in two parts and its purpose is to show the existence of a subsolution. In the
first part we will find a subsolution for the IPM system in the sense of definition 2.5 assuming that
there exist a solution for the equation (1.11). We next state such existence theorem with the precise
conditions on the speed of opening c.

Theorem 4.1 Let f0(x) ∈ H5(R) and c(x, t) ∈ C∞(R×R+) and such that either there exist constants
c∞ ∈ R and κ > 0 such that 1 + κ ≤ c(x, t) ≤ 2 and c(x, t)− c∞ ∈ C1

(
[0,∞);H6(R)

)
, with

sup
t∈R+

(
||c(·, t)− c∞||H6(R),+||∂tc(·, t)||H6(R)

)
≤ C

or c(x, t) = 1. Then there exists a time T > 0 and

f(x, t) ∈ C([0, T ], H4(R)) ∩ C1([0, T ], H3(R)),

solving the equation (1.11) with ε(x, t) = c(x, t)t.
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Remark 4.2 The condition c ≥ 1+κ could be replaced by c ≥ 1 plus technical conditions on the zeros
of c− 1 and the behaviour of c at ±∞. This would only affect the proof of lemma B.6 which would be
less neat. We have preferred to keep the statement of the theorem easy. In order to deal with low speed
of opening c < 1 different pseudodifferential machinery is needed to deal with equation (1.11), thus
we have not pursued the issue here. The H6-condition is needed in the proof of 4.8. Finally, in our
proof we have prescribed ρ = λ

ε as it is simplest continuous function and agrees with the entropy and
maximal mixing solution in the case of the flat interface. Other choices might be of interest though
the proof would be technically different as the velocity would change. We have not explored this later
aspect. The fact that the maximum growth of the mixing zone is linear on t seems to be intrinsically
related to the problem and it is coherent with Darcy’s law and the flat interface case. Our proof quickly
breaks if we want to have sublinear growth (see equation (4.15)).

Remark 4.3 Let us explain why we need to ask five derivatives on the initial data. Firstly, in order
to perform energy estimates we need to quasi-linearize the equation as in lemmas 4.8 and 4.9, where
l.o.t are defined in 4.7. The number of derivatives that we take it is enough to get the estimate in
4.7 for the l.o.t.. We do not claim that the regularity can not be improved to get solutions to 1.11
with an initial data f0 ∈ Hk and k < 5. The quasi-linearization of 1.11 in that case would be much
more complicated. Secondly, in order to deal with the higher order terms in lemma 4.9, we need
some regularity in the pseudodifferential operators that arise in section 4.2.2. The regularity of these
operators is linked to that of the solution f . It turns that, again, the number of derivatives we take
suffices for our purposes.

4.1 Constructing a subsolution. Part 1

This section is dedicated to the proof of the following theorem.

Theorem 4.4 Let us assume that f , with f(x, t) ∈ C1([0, T ] × R), solves the equation (1.11), with
c(x, t) as in theorem 4.1. Then there exists a M-subsolution of the IPM system for t ∈ [0, T ], T small
enough depending on f0(x), and for some M .

We start by defining the mixing zone. For x ∈ (−∞,∞) and −ε(x, t) < λ < ε(x, t) we define the
change of coordinates

x(x, λ) = (x, λ+ f(x, t)).

We define the set Ωmix ⊂ R2 as follows

Ωmix = {x ∈ R2 : x = x(x, λ) for (x, λ) ∈ (−∞,∞)× (−ε(x, t), ε(x, t))}. (4.1)

Recall that, in Ωmix, our subsolutions (ρ,m,u) should solve

∂tρ+∇ ·m =0 (4.2)

u =BS(−∂x1ρ). (4.3)

We prescribe m to be of the form

m = ρu− (0, α)
(
1− ρ2

)
,

where α will be chosen later. Then the transport equation (4.2) reads

∂tρ+ u · ∇ρ = ∇ ·
(
(0, α)

(
1− ρ2

))
. (4.4)
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On the other hand we need (ρ,u,m) ∈ int KΛ, in (2.4), which is equivalent to(
α− 1

2

)2

<

(
1

2

)2

, (4.5)

ρ2 < 1. (4.6)

In fact, we need (ρ,u,m) ∈ intKΛ
M , but we will take care of this later.

4.1.1 The equations in (x, λ)-coordinates and the choices of ρ and m

Next we write the equation (4.4) in (x, λ)− coordinates. Let g : Ωmix → R be a smooth function. We
will denote

g](x, λ) = g(x(x, λ)). (4.7)

Let us analyze the mixing error in these new coordinates. Set

E](x, λ) =
(
1− ρ]2

)
(0, α]), (4.8)

which we split as,

E] = f
]

+ e],

with

f
]

=
(
1− ρ]2

)(
0, α] − 1

2

)
, e] =

1

2
(0, 1)

(
1− ρ]2

)
.

We will define the density in the mixing zone to be

ρ](x, λ) =
λ

ε(x, t)
(4.9)

and it will simplify the calculation to call h] =
(
α] − 1

2

) (
1−

(
ρ]
)2)

. Then ρ] produces a density ρ(x)

satisfying the condition (4.6) in Ωmix. In addition ρ](±ε) = ±1 thus

ρ(x) =

{
∓1 in Ω±

ρ(x) in Ωmix
, (4.10)

where Ω+ is the open domain below Ωmix and Ω− is the open domain above Ωmix, is a continuous
function in R2.

After, these choices, the next lemma describes the necessary conditions to be a subsolution.

Lemma 4.5 Let ρ] = λ
ε and m] = ρ]u] − h](0, 1)− e] with e] = 1

2 (0, 1)(1− ρ]2). Then, ρ, u and m
satisfy the equation (4.2) if and only if

∂λh
] =

λ

ε2
+ ∂tρ

] +
1

ε

(
u] · (−∂xf − λ

∂xε

ε
, 1)− ∂tf

)
. (4.11)

In addition if
h] = γ](1− ρ]2)

the inclusion (4.5) reads

|γ]| < 1

2
.
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Proof: Since (∂x1
ρ)(x, λ + f(x, t)) = ρ]x(x, λ) − ∂xf(x, t)∂λρ

] and (∂x2
ρ)(x, λ + f(x, t)) = ∂λρ

](x, λ)
we have that

u(x, λ+ f(x, t)) · (∇ρ) (x, λ+ f(x, t)) = u](x, λ) ·
(
∂xρ

](x, λ)− ∂xf(x, t)∂λρ
], ∂λρ

](x, λ)
)
. (4.12)

Also

∂tρ
](x, λ) =(∂tρ)(x, λ+ f(x, t)) + (∂x2ρ)(x, λ+ f(x, t))∂tf

=(∂tρ)(x, λ+ f(x, t)) + ∂λρ
](x, λ)∂tf(x, t). (4.13)

In addition,

∇ · (f + e)(x, λ+ f(x, t)) = ∂λh
](x, λ) + ∂λe

](x, λ) = ∂λh
] − ρ]∂λρ]. (4.14)

Evaluating (4.4) at x = (x, λ+ f(x, t)), putting together (4.12), (4.13) and (4.14) and taking into
account (4.9) yields (4.11).

Finally, if we define

γ] =
1

1− ρ]2
h],

the condition (4.5) reads

γ]2 <

(
1

2

)2

.

�

From lemma 4.5 we have that in order to prove theorem 4.4, it is enough to show that γ]2 < 1
2

with γ] given by

γ]
(
1− ρ]2

)
=

∫ λ

−ε

λ′

ε2
− λ∂tε

ε2
+

1

ε

(
u](x, λ) · (−∂xf − λ

∂xε

ε
, 1)− ∂tf

)
dλ′ (4.15)

=− (1− εt)
2

(1− ρ]2) +

∫ ρ]

−1

(
u](x, ε(x)λ′) · (−∂xf(x)− ∂xελ′, 1)− ft

)
dλ′,

u given by the Biot-Savart law and ρ(x) by (4.10) and (4.9).

4.1.2 The velocity u and the equation for the pseudointerface

The velocity u is given by the expression

u(x) = − 1

2π

∫
R2

(x− y)⊥

|x− y|2
∂x1ρ(y)dy = − 1

2π

∫
Ωmix

(x− y)⊥

|x− y|2
∂x1ρ(y)dy.

Then a change of coordinates yields

u(x) = − 1

π

∫ ∞
−∞

1

2ε(y)

∫ ε(y)

−ε(y)

(x− x(y, λ′))⊥

|x− x(y, λ′)|2

(
∂yf(y) + λ′

∂yε(y)

ε(y)

)
dλ′dy

= − 1

π

∫ ∞
−∞

1

2

∫ 1

−1

(x− x(y, ε(y)λ′))⊥

|x− x(y, ε(y)λ′)|2
(∂yf(y) + λ′∂yε(y)) dλ′dy. (4.16)

Next we will modify this expression since it will help in the proof of the local existence for the
equation (1.11). This idea has been already introduced in [17]. First we notice that

1

2
∂y log

(
|x− x(y, ε(y)λ′)|2

)
=− (x1 − y)

|x− x(y, ε(y)λ′)|2
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− x2 − ε(y)λ′ − f(y))(∂yf(y) + λ′∂yε(y))

|x− x(y, ε(y)λ′)|2
.

Thus since the integral of the left hand side is null (in the sense of the principal value) we can also
write (4.16) in the most convenient form,

u(x) =
1

π
P.V.

∫ ∞
−∞

1

2

∫ 1

−1

x1 − y
|x− x(y, ε(y)λ′)|2

(1, ∂yf(y) + λ′∂yε(y))dλ′dy. (4.17)

As we prove in the following lemma this velocity u is in L∞(R2).

Lemma 4.6 Let u be like in expression (4.17) with f ∈ H4 and c as in theorem (4.1). Then u ∈
L∞(R2) and

||u(·, t)||L∞(R2) ≤ P (||f ||H4)

for some smooth function P .

Proof: The proof of this result is left to appendix A.3. �

We turn back to our equation (4.15). It says that the evolution is governed by the following
modified velocity.

u]c(x, λ) ≡ u](x, ε(x)λ) · (−∂xf(x, t)− ∂xε(x)λ, 1)

=
1

2π
P.V.

∫
R

∫ 1

−1

x− y
(x− y)2 + (ε(x)λ− ε(y)λ′ + f(x)− f(y))2

× (∂yf(y)− ∂xf(x) + ∂yε(y)λ′ − ∂xε(x)λ)dλ′dy,

where the principal value is taken at infinity. Now, notice that by at |λ| = 1, the left hand side of
(4.15) is 0. Therefore a continuous solution must satisfy that

∂tf =Mu(x, t) =
1

2

∫ 1

−1

u]c(x, λ)dλ, (4.18)

which is what motivates (1.11). Of course, the specific aspect of the kernel is prescribed by our ansatz
for ρ.

Then, (4.15) reads

γ]
(
1− ρ]2

)
= − (1− εt)

2
(1− ρ]2) +

∫ ρ]

−1

(
u]c(x, λ

′)− ft
)
dλ′, (4.19)

Proof of theorem 4.4. We have already constructed a candidate to be the subsolution. This
candidate is given by (ρ,u,m) with ρ] = λ

ε , u as in (4.16), m = ρu − γ(1 − ρ2)(0, 1) − e, e =
1
2 (0, 1)(1 − ρ2), γ](s, λ) = γ(x(s, λ)) and γ] as in (4.19). Next, we show that |γ]| < 1

2 , as stated in
lemma 4.5. Notice that (4.19) yields,

γ] = − (1− εt)
2

+
1

1− ρ]2

∫ ρ]

−1

(
u]c(x, λ

′)− ft
)
dλ′,

We first focus on the first term on the right hand side of this equation. Notice that |1 − ∂tε| ≤
|1−c(x, t)|+ |∂tc(x, t)|t. Therefore, our choice of 1 ≤ c(x, t) < 2 (see statement of theorem 4.1) implies
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that |1−∂tε| < 1 for small enough time. Then to finish the proof it is enough to prove that the second
term in (4.19) is as small as we want by making t small. This term is problematic because the factor

1
(1−ρ]2)

. However we will find a cancelation in order to control it by continuity.

Here it is where we will use the relation between ε and f . First we will deal with the part of Ωmix
which lies below the pseudointerface, i.e −ε < λ < 0. We need to make small the term

∣∣∣∣∣ 1

1− ρ]2

∫ ρ]

−1

(u]c(x, λ
′)− ∂tf)dλ′

∣∣∣∣∣
≤ C 1

1− ρ]
sup
x∈R

sup
−1<λ<0

∣∣u]c(x, λ)− ∂tf(x, t)
∣∣

≤ C sup
x∈R

sup
−1<λ<0

∣∣u]c(x, λ)− ∂tf(x, t)
∣∣ .

Here notice that ρ] < 0.
Then we see that, since

u]c(x, λ)− ∂tf(x, t) =
1

2

∫ 1

−1

(
u]c(x, λ)− u]c(x, λ′)

)
dλ′.

Lemma A.12, where it is proven that |u]c(x, λ) − u]c(x, λ′)| = O(t) uniformly in x, implies that this
term is as small as we want by taking t small.

To deal with the upper part of Ωmix we use that our choice of pseudointerface, (1.11), makes the
situation rather symmetric. Indeed, it follows from (1.11) that∫ ρ]

−1

(u]c(x, λ
′)− ∂tf)dλ′ =−

∫ 1

ρ]
(u]c(x, λ

′)− ∂tf)dλ′ +

∫ 1

−1

(u]c(x, λ
′)− ∂tf) dλ′︸ ︷︷ ︸

=0

=−
∫ 1

ρ]
(u]c(x, λ

′)− ∂tf(x, t))dλ′.

Thus, the term 1
1−ρ]2 |

∫ ε
λ

(
u]c − ∂tf

)
dλ′|, can be made arbitrarily small by taking t small as well.

Hence we have proven that there exists T > 0, depending on f0 and c(x, t), such that |γ](x, λ, t)| < 1
2

for (x, λ, t) ∈ R× (−ε(x, t), ε(x, t))× [0, T ] as desired.
Recall that lemma 4.6 implies that u ∈ L∞(R2 × [0, T ]).
In order to conclude the proof of theorem 4.4 we need to check that (ρ,u,m) is continuous in

(0, T ) × Ωmix(0, t) and that also satisfies (2.5), (2.6) and (2.7), for some M > 1. The continuity is a
consequence of that ρ(x, t) is a Lipschitz function in (0, T )× Ωmix(t). Furthermore, if

M > 8 (||u||L∞ + 1) ,

since |ρ| ≤ 1 is easy to check (2.5). In addition, in order to satisfy condition (2.6) we proceed as
follows:

|m− u− 1

2
(0, 1− ρ)| = |m− ρu− 1

2
(1− ρ2) +

1

2
(1− ρ2)− (1− ρ)u− 1

2
(0, 1− ρ)|

≤
(

(1 + ρ) + |u|+ 1

2

)
(1− ρ),

where we have used (2.4). Then we see that (2.6) is satisfied. To check (2.7) we follows similar steps
that for (2.6).
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4.2 Constructing a subsolution. Part 2.

The bulk of the proof is to show energy estimates for (1.12). Before starting with the computation we
will present a toy model to explain the strategy of the proof. Let us consider the following equation

∂tf =

(
1

1 + ct|ξ|

)̌
∗ Λf in R× R+ (4.20)

f(x, 0) =f0(x),

where 1 ≤ c < 2. In the Fourier side this equation reads

∂tf̂(ξ) =
|ξ|

1 + ct|ξ|
f̂(ξ),

which can be solved explicitly. Indeed, the solutions are given by

f̂(ξ) = (1 + ct|ξ|) 1
c f̂0(ξ). (4.21)

From (4.21) we see that the solution to (4.20) loses 1
c -derivatives with respect to the initial data.

Equation (1.11) has a similar behaviour to (4.20) but there is no chance to find explicit solutions.
Instead of that we will use energy estimates in the same way that the following energy estimate for

(4.20). We compute the time derivative of
∣∣∣∣∣∣ f̂(ξ)

1+t|ξ|

∣∣∣∣∣∣
L2

to obtain that

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣ f̂(ξ)

1 + t|ξ|

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤
∫
R
f̂(ξ)

(
− |ξ|

(1 + t|ξ|)2
+

∂tf̂(ξ)

1 + t|ξ|

)
dξ =

∫
R

∣∣∣∣∣ f̂

1 + t|ξ|

∣∣∣∣∣
2

|ξ|
(
−1

1 + t|ξ|
+

1

1 + ct|ξ|

)
dξ,

and since 1
1+t|ξ| ≥

1
1+ct|ξ| ≥ 0 for c ≥ 1 we can conclude that

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣ f̂(ξ)

1 + t|ξ|

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ 0,

and therefore
∣∣∣∣∣∣ f̂(ξ)

1+t|ξ|

∣∣∣∣∣∣
L2
≤ ||f0||L2 .

The same analysis for ∂2
xf yields the estimate

1

2
∂t

∣∣∣∣∣
∣∣∣∣∣ ∂̂2

xf(ξ)

1 + t|ξ|

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ 0. (4.22)

In addition, it is easy to see that ∂t||f ||2L2 ≤ 1
2 ||f ||

2
L2 + 1

2 ||∂xf ||
2
L2 . Furthermore, |∂̂xf(ξ)| is less or

equal than |f̂(ξ)| for |ξ| ≤ 1 and is less or equal than 2
1+t|ξ| |∂̂2

xf(ξ)| for |ξ| > 1 and t < 1 (this is just

because 1 ≤ 2|ξ|
1+t|ξ| in this range). Therefore, we have that ||∂xf ||2L2 ≤ ||f ||2L2 + 4

∣∣∣∣∣∣ ∂̂2f
1+t|ξ|

∣∣∣∣∣∣2
L2

and

1

2
∂t||f ||2L2 ≤ ||f ||2L2 + 2

∣∣∣∣∣
∣∣∣∣∣ ∂̂2f

1 + t|ξ|

∣∣∣∣∣
∣∣∣∣∣
2

L2

,

which allows us to get, together with (4.22) that

||f ||2L2 +

∣∣∣∣∣
∣∣∣∣∣ ∂̂2

xf

1 + t|ξ|

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤
(
||f0||2L2 + ||∂2

xf0||2L2

)
eCt,
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for any t ≤ 1. Thus, for t ≤ 1, we also control ||f ||H1 , by losing one derivative with respect to the
initial data, i.e.

||f(t)||H1 ≤ C||f0||H2 , for t < 1.

This strategy is flexible enough to be applied to the full system (1.11) with the price of paying
more derivatives with respect to the initial data than we actually need. In (1.11) we are dealing
with pseudodifferential operators but arguing semiclassically we will show that they behave as Fourier
multipliers up to factors of t. This is the content of the following sections.

4.2.1 First manipulations of the equation and of the mean velocity Mu

In order to obtain energy estimates for the equation (1.11) we need to take 5 derivatives with respect
to x in both sides of the equation. We describe ∂5

xMu as the sum of a main term and lower order
terms. Since we expect to lose one derivative respect to initial data (e.g by the toy model) we will
work with the Fourier multipliers,

D̂−1f(ξ) =
1

1 + 2πitξ
f̂(ξ), D̂f(ξ) = (1 + 2πitξ)f̂(ξ).

Notice that when t = 0, D−1 equals to the identity and therefore it is not smoothing.

Definition 4.7 We say that a function G(x, t) : R× [0, T ] is a lower order term, l.o.t., if and only if

||D−1G||L2 ≤ C
(
||f ||H4 + ||∂5

xD−1f ||L2

)
,

for some smooth function C : R→ R.

Lemma 4.8 Let f ∈ H6 and ε = c(x, t)t with c as in the statement of theorem 4.1 and 0 < t < 1.
Then

∂5
xMu = −

∫
R

∆∂6
xf(x, x− y)K(x, x− y)dy + l.o.t.,

where

K(x, x− y) =
1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (∆f(x, x− y) + ε(x)λ− ε(x− y)λ′)2
dλdλ′,

and l.o.t. defined as in 4.7.

Proof: The proof is left to appendix A.1. �

We still need to simplify the kernel K(x, y) (which depends on f in a nonlinear way). Actually we
can linearize it as the next lemma shows.

Lemma 4.9 Let f ∈ H6 and ε = c(x, t)t with c as in the statement of theorem 4.1 and 0 < t < 1.
Then

∂5
xMu =

∫
R
∂6
xf(x− y)K

c(x),∂xc(x)
∂xf(x) (y)dy + a(x, t)∂6

xf(x) + l.o.t,

where
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K
c(x),∂xc(x)
∂xf(x) (y) =

1

4π

∫ 1

−1

∫ 1

−1

∫
R

y

y2 + (∂xf(x)y + ∂xc(x)tyλ′ + c(x)t(λ− λ′))2
dλdλ′,

a(x, t) ≡ −P.V.
∫
R
K(x, y)dy,

and l.o.t. defined as in 4.7.

Proof: This lemma is proven in appendix A.2. �

We will deal with the equation mostly on the Fourier side. In order to show the relation with the toy
model in the following lemma we present the Fourier transform of

Kc,c′

A (y) =
1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (Ay + c′tyλ′ + ct(λ− λ′))2
dλdλ′. (4.23)

Notice that to compute the Fourier transform A, c, c′ are taking as constants. In the application they
are functions of x but not of y.

Lemma 4.10 Let Kc,c′

A as in (4.23) with A, c′ ∈ R and c > 0. Then its Fourier transform is given
by

K̂c,c′

A (ξ) =
−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

(
2− e2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1) − e2πσλ′ |ξ|(1−λ

′)(Aλ′ isign(ξ)−1)
)
dλ′.

(4.24)

where σλ′ = 1
1+A2

λ′
and Aλ′ = A+ c′tλ′.

In addition

K̂c,0
A (ξ) =

−isign(ξ)

2πct|ξ|

(
1 +

1

4πct|ξ|

(
e−4πσct|ξ| (cos(4πσAct|ξ|)−A sin(4πσAct|ξ|))− 1

))
,

where σ = 1
1+A2 .

Proof: This lemma will be proven in appendix B.1, lemma B.1. �

In spite of its behaviour, a careful Taylor expansion K̂c,0
A at zero (using σ = 1

1+A2 ) shows that it is

bounded. On the other hand for large semiclassical frequencies t|ξ| behaves like −isign(ξ)
2πct|ξ| . These two

observations suggested the toy model from the beginning of the section.
The next lemma describes more precisely the growth of K̂c,0

A . It is dramatic to frame ourselves in
the realm of positive symbols and to guess the correct energy estimate

Lemma 4.11 The following estimate holds for every (x, ξ, t) ∈ R× R× R+ and 1 ≤ c ≤ 2,∣∣∣2πisign(ξ)K̂c,0
A (ξ)

∣∣∣ ≤ 1
c

1 + t|ξ|
+

2|A|+ 5 + 8π

1 + (t|ξ|)2
.

Proof: The proof of this lemma can be found in appendix B.1, lemma B.3 �

20



4.2.2 A priori energy estimates for the quasi-linear equation

Lemma 4.9 says that if f is an smooth solution of (1.11) and we call F (x, t) = ∂5
xf(x, t) and A(x, t) =

∂xf(x, t) it holds that

∂tF (x, t) =

∫
R
K
c(x),∂xc(x)
A(x) (x− y)∂xF (y)dy + a(x)∂xF (x) +G(x), (4.25)

where G(x) is a l.o.t. Let us write the equation closer to the spirit of pseudodifferential operators.
We will define the operation

K
c(x),∂xc(x)
A(x) ⊗ f(x) =

∫
R
K
c(x),∂xc(x)
A(x) (x− y)f(y)dy,

in such a way that the equation (4.25) reads as

∂tF = K
c(x),∂xc(x)
A(x) ⊗ ∂xF (x) + a(x)∂xF (x) +G(x). (4.26)

Notice that the pseudoconvolution ⊗ can be alternatively expressed as,

K ⊗ f(x) = Op(p)f(x),

where K is the Schwarz kernel of the symbol p, i.e.,

p(x, ξ) =

∫
R
e−2πiyξK(x, y)dy.

Definition of Symbols The upper bound in lemma 4.11 motivates the definition of the following
pseudodifferential operator J−1. First we define the function ϕ : R+ → R+ in the following way

ϕ(τ) =
1

1 + τ
+

B

1 + τ2
, (4.27)

where B is a constant that just depends on ||f0||H5 , f0 being the initial data in (1.11). It suffices to
take

B = 200||f0||H5 + 200. (4.28)

Next we define the multiplier j−1(ξ) = e−
∫ t|ξ|
0 ϕ(τ)dτ which satisfies

∂tj
−1 = −|ξ|ϕ(t|ξ|)j−1. (4.29)

Hence, the corresponding operator J−1 of degree −1 is given by the expression

Ĵ−1f(ξ) = e−
∫ t|ξ|
0 ϕ(τ)dτ f̂(ξ).

Here we remark that since 1
C < j−1(t|ξ|)(1 + t|ξ|) ≤ C, J−1 is comparable to D−1 meaning that

1

C
||J−1f ||L2→L2 ≤ ||D−1f ||L2→L2 ≤ C||J−1f ||L2→L2 ,

where C just depend on B.
If we read the right hand side of (4.26) as an operator on F , the main part is described by the

symbol

pmain(x, ξ) ≡ 2πiξK̂c,c′

A .
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This is a bounded symbol in ξ and x, but its L∞ norm blows as t−1. This is problematic to get an
uniform in time apriori estimate. Next we explain the strategy to deal with this issue. Firstly, we
introduce a suitable decomposition of pmain. The symbols p, pb, pgood and p+ will be given by the
expressions

p =2πiξK̂c,0
A , pb =2πiξ (pmain − p) , pgood =

1

|ξ|
p− ϕ(t|ξ|), and p+ = −(1 + |ξ|)pgood. (4.30)

We point out that all of these symbols are even in ξ and therefore the corresponding pseudodiffer-
ential operator are real valued.

Secondly, we observe that Op(pb) is a bounded operator from L2 to L2. Then we observe that
the growth of p is controlled by |ξ|ϕ. Thus, the G̊arding inequality, Lemma 5.5, allows to control the

norm of Op(p+) from L2 to L2 in terms of the norms p
1
2
+. As expected, these norms blow up as t−

1
2 .

This is integrable near 0 and suffices to our purposes.
Hence we are led to study the problem

∂tf = Op(|ξ|ϕ(|tξ|))f. (4.31)

Integrating the equation (4.31), as in the toy problem, leads to ∂t‖J−1F (·, t)‖2 = 0. Thus in the
fully nonlinear case there is the hope of the existence of energy estimate for that quantity. Indeed,
this is the case, but a few manipulations show that then correlation between J and pmain needs to
be estimated as well. Happily even if pmain blows like t−1, this is compensated by the t provided by

our non smooth semiclassical estimates. Therefore the worst behaviour is given by p
1
2
+. The following

apriori estimate shows how these heuristics are made rigorous.

Theorem 4.12 Let f be a smooth solution to the equation (1.11) and c as in the statement of theorem
4.1. Set F = ∂5

xf . Let 0 < Tp < 1 small enough such that 2||∂xf(·, t)||L∞ + 5 + 8π ≤ B
2 , with B as in

(4.28). Then, if t ∈ [0, Tp], it holds that

∂t‖J−1F (·, t)‖L2 ≤ 1√
t
M
(
||f0||H5 ,

(
||f ||L2 + ‖J−1F‖L2

))
,

where M is an smooth function M : R+ × R+ → R+, positive and finite.

Proof:
Firstly, we recall that by lemma 4.9

∂tF = Op(pmain)F + a∂xF +G,

where G stands for l.o.t. in the sense of definition 4.7. Secondly, it is crucial for our estimates that if
t < Tp, lemma 4.11 and the definition of ϕ implies that p+ > 0, (p+ is even for all times).

Next we compute the time derivative, and express it in terms of the symbols,

1

2
∂t

∫
R
|J−1F (x)|2dx =

∫
R
J−1F∂tJ−1Fdx

=

∫
R
J−1F

∫
R
e2πixξ∂t

(
j−1(t|ξ|)F̂ (ξ)

)
dξdx =

∫
R
J−1F

∫
R
e2πixξj−1(t|ξ|)

(
−|ξ|ϕ(t|ξ|) + ∂̂tF

)
dξdx

=

∫
R
J−1F

∫
R
e2πixξj−1(t|ξ|)

(
−|ξ|ϕ(t|ξ|)F̂ (ξ) + F [Op(pmain)F ](ξ)

)
dξdx
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+

∫
R
J−1F

∫
R
e2πixξj−1(t|ξ|)â∂xF (ξ)dξdx

+

∫
R
J−1FJ−1Gdx.

We denote g = J−1F and we will split the term∫
R
e2πixξj−1(t|ξ|)

(
−|ξ|ϕ(t|ξ|)F̂ (ξ) + F [Op(pmain)F ](ξ)

)
dξdx

in the following way∫
R
e2πixξ

(
−|ξ|ϕ(t|ξ|)ĝ(ξ) + F [J−1 ◦Op(pmain) ◦ J g](ξ)

)
dξ

=

∫
R
e2πixξ (−|ξ|ϕ(t|ξ|) + pmain(x, ξ)) ĝ(ξ)dξ

+ J−1 ◦Op(pmain) ◦ J g −Op(pmain)g

= −Op(p+)g +Op(ϕ− 1

|ξ|
p)g +Op(pb)g + J−1[Op(pmain), J ]g,

where we have just added and subtracted Op(pmain)g in the first equality and in the second one we
have used the definition of pmain and p+.

Then,

∂t‖g‖2L2 ≤ −
∫
R
gOp(p+)gdx︸ ︷︷ ︸

I+(g)

+

∫
R
gOp(ϕ− 1

|ξ|
p)gdx︸ ︷︷ ︸

Igood(g)

+

∫
R
gOp(pb)gdx︸ ︷︷ ︸
Ib(g)

+

∫
R
gJ−1[Op(pmain), J ]gdx︸ ︷︷ ︸

Icom

+

∫
R
gJ−1(a∂xF )dx︸ ︷︷ ︸
Itransport(g)

+

∫
R
gJ−1Gdx︸ ︷︷ ︸
Il.o.t.(g)

.

We recall that the symbols |||f ||| and 〈A〉 will denote some polynomial function evaluated in ||f ||H4

and ||A||H3 respectively (A = ∂xf ). Thus since ‖J−1F‖L2 is comparable with ‖D−1F‖L2 it holds
that, for finite time,

|||f |||+ 〈A〉 ≤ C
(
‖f‖L2 + ‖J−1F‖L2

)
, (4.32)

where the right hand side of (4.32) C means a smooth function evaluated at ‖f‖L2 + ‖J−1F‖L2 .
We can estimate this collection of terms in the following way:

1. |I+(g)| ≤ 〈A〉√
t
‖g‖2L2 . In order to get this inequality we first use lemma 5.5. After that we use

that

‖p
1
2
+‖1,1

∣∣∣∣∣∣∣∣Op(p 1
2
+

)skew∣∣∣∣∣∣∣∣
L2→L2

+
∣∣∣∣∣∣C(p 1

2
+, p

1
2
+

)∣∣∣∣∣∣
L2→L2

≤ 〈A〉t− 1
2 .

(See section 1.1 for the notation). The estimate for ‖p
1
2
+‖1,1 ≤ 〈A〉t−

1
2 can be found in lemma

B.6. The bound for

∣∣∣∣∣∣∣∣Op
(
p

1
2
+

)skew∣∣∣∣∣∣∣∣
L2→L2

≤ 〈A〉 is a consequence of theorem 5.3 and lemma

B.6. The bound for
∣∣∣∣∣∣C(p 1

2
+, p

1
2
+

)∣∣∣∣∣∣ ≤ 〈A〉t− 1
2 follows from theorem 5.2 and lemma B.6.
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2. |Igood(g)| + |Ib(g)| ≤ 〈A〉||g||2L2 by the estimates ||Op(pb)||L2→L2 + ||Op(pgood)||L2→L2 ≤ 〈A〉.
These estimates are a consequence of theorem 5.1 and lemma B.5.

3. |ICom(g)| ≤ 〈A〉‖g‖2L2 follows from ||J−1[Op(pmain),J ]||L2→L2 ≤ 〈A〉. This estimate is a con-
sequence of theorem 5.13 and lemma B.5.

4. |Itransport(g)| ≤ |||f |||‖g‖2L2 by lemma 5.11 and the estimate for the norm of a, given in lemma
A.13.

5. |Il.o.t(g)| ≤ ‖J−1G‖L2‖g‖L2 ≤ C‖D−1G‖L2‖g‖L2 ≤ C(|||f |||)‖g‖L2 where C is the function
appearing in the definition of lower order terms, definition 4.7.

Finally notice that in the definition of ϕ, appears a constant B which depends on f0. Thus as long
as 0 < t < Tp, since p+ > 0, the claim follows where the function M is built from the function C and
a high power of ‖f‖L2 + ‖g‖L2 .

�

Proposition 4.13 Let f be and smooth solution of equation (1.11), with f0 ∈ H5 and c as in theorem
4.1. Then there is T = T (‖f0‖H5) such that

sup
0<t<T

||f ||H4 ≤ sup
0<t<T

(
||f ||L2 + 2||D−1F ||L2

)
≤ P (||f0||H5)

where P is some bounded function.

Proof: Let u(t) = (||f ||L2 + ||D−1∂5
xf ||L2)2. From theorem 4.12 and since ∂t||f ||L2 is easy to control

by a function of u(t), we have that, for t ∈ [0, Tp],

∂tu(t)

M(||f0||H5 , u(t))
≤ 1√

t
. (4.33)

Since M is positive, the function U : R+ → R defined by U(x) =
∫ x

0
1

M(||f0||H5 ,y)dy is increasing. Let

us integrate both sides of (4.33) respect to time. Since |U(u(0))| ≤ U(||f0||H5), it follows that

U(u(t)) ≤ U(||f0||H5) + 2
√
t.

Since U(x) is increasing, we see than for small time depending on f0 the initial data all smooth
solutions satisfy that

u(t) ≤ P (‖f0‖H5).

In particular since the time of positiveness Tp depends on |∂xf |, this yields a lower bound Tp which
depends on ||f0||H5 but not on f . Thus we can select T , in such a way that we achieve the conclusion
of proposition (4.13). �

4.2.3 The regularized system and local existence

In order to be able to apply a Picard’s theorem we will regularize the system by using two parameters,
δ and κ. With the parameter δ we regularize the transport term and with the parameter κ the nonlocal
operator. We will consider the following equation for fκ, δ(x, t),

∂tf
κ, δ(x) =− φδ ∗

∫ ∞
−∞

(
φδ ∗ ∂xfκ, δ(x)− φδ ∗ ∂yfκ, δ(y)

)
Kεκ(x, y)dy
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− 1

4π

∫
R

∫ 1

−1

∫ 1

−1

∂xεκ(x)λ− ∂xεκ(x− y)λ′

y2 + (∆f(x, x− y) + εκ(x)λ− εκ(x− y)λ′)
2 dλdλ

′dy︸ ︷︷ ︸
Gκ[fκ, δ]

+ κφδ ∗ ∂2
xφδ ∗ fκ,δ (4.34)

fκ, δ(x, 0) =f0(x),

(4.35)

where κ, δ > 0, φ is a positive and smooth function with mean equal to one and φδ = 1
δφ
(
x
δ

)
and

Kκ(x, y) is like K(x, y) in lemma 4.8 but replacing ε(x, t) = c(x, t)t by εκ(x, t) = c(x, t)(t + κ) (also
ε(y, t) = c(y, t)t pass to c(y, t)(t+ κ)).

The Picard’s theorem that we will apply is the following

Theorem 4.14 (Picard) Let B be a Banach space and O ⊂ B an open set. Let us consider the
equation

dX(t)

dt
=F[X, t] (4.36)

X(0) =X0, (4.37)

where

F[·, t] : O → B for |t| < η, for some η > 0

is continuous in a neighbourhood of X0 ⊂ O. Suppose further that, F is Lipschitz in O, i.e.,

||F[X1, t]− F[X2, t]||B ≤ C(O)||X1 −X2||B , for |t| ≤ η,

and F[X0, t] is a continuous function of t for t ≤ |η| with values on B, with ||F[X0, t]||B ≤ C. Then,
there exist T > 0 and a unique X(t) ∈ C1([−T, T ], O) solving (4.36), (4.37).

By applying theorem 4.14 the following result holds:

Theorem 4.15 Let f0 ∈ H4(R), c as in theorem 4.1 and δ, κ > 0. Then there exist Tκ,δ > 0
(depending on κ and δ) and

fκ, δ ∈ C((−Tκ,δ, Tκ,δ);H4(R))

such that fκ, δ(x, t)) solves the system (4.34). In addition, this solution can be extended if its H4-norm
is bounded.

Proof: In order to apply theorem 4.14 we choose B = H4,

OM = {f ∈ H4 : ||f ||H4 < M},

X0 = f0 (we take M > ||f0||Hk) and

F = −φδ ∗
∫ ∞
−∞

(
φδ ∗ ∂xfκ, δ(x)− φδ ∗ ∂yfκ, δ(y)

)
Kεκ(x, y)dy +Gκ[fκ,δ] + κφδ ∗ ∂2

xφδ ∗ fκ,δ(x).

Because the properties of the mollifiers φδ and that the kernel Kεκ is not singular in OM (εκ >
κ
2 ,

for Tκ,δ < κ
2 in this open set), the hypothesis of theorem 4.14 can be verified. In addition we notice

that F is also Lipschitz on t thus the solutions can be extended on time as long as its H4-norm is
bounded. This is rather standard and we will omit the details. �
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Proof of Thorem 4.1 Once, we dispose of the solutions fδ,κ we need to obtain estimates independent
of δ and κ, for positive time, in order to be able extend these solutions to an interval [0, T ), with T
independent of δ and κ. Then, we are entitled to take the limit. After taking four derivatives in F ,
we find that

∂4
xF =φδ ∗

(
a(x)φδ ∗ ∂5

xf(x)
)

+ φδ ∗
∫ ∞
−∞

Kεκ(x, y)φδ ∗ ∂5
xf(y)dy

+ κφδ ∗ ∂2
xφδ ∗ fκ,δ + l.o.t.,

where

a(x) = −P.V.
∫ ∞
−∞

Kεκ(x, y)dy,

and l.o.t means terms bounded in H4 independently of δ.
Therefore, the main terms in the derivative 1

2∂t||f ||H4 are∫ ∞
−∞

φδ ∗
(
a(x)φδ ∗ ∂5

xf(x)
)
∂4
xf(x)dx

and ∫ ∞
−∞

φδ ∗
∫ ∞
−∞

Kεk(x, y)φδ ∗ ∂5
xf(y) dy ∂4

xf(x)dx.

The first term can be bounded in the following way∣∣∣∣∫ ∞
−∞

φδ ∗
(
a(x)φδ ∗ ∂5

xf(x)
)
∂4
xf(x)dx

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

a(x)φδ ∗ ∂5
xf(x)φδ ∗ ∂4

xf(x)dx

∣∣∣∣
≤ C||∂xa||L∞ ||∂4

xf ||2L2 .

And in order to bound the second one we just notice that Kεκ is not singular because εκ = c(x, t)(t+κ)
and then we can integrate by parts in order to gain a derivative in x. Thus, the uniform estimate in δ
are easy to get (the term coming from the Laplacian operator is treated in the usual way). The main
difficulty to prove theorem 4.1 is then performing estimates uniform in κ for the equation

∂tf
κ(x) = − 1

4π

∫
R

∫ 1

−1

∫ 1

−1

∂xf
κ(x)− ∂xfκ(x− y) + ∂xεκ(x)λ− ∂xεκ(x− y)λ′

y2 + (∆f(x, x− y) + εκ(x)λ− εκ(x− y)λ′)
2 dλdλ′dy + κ∂2

xf
κ.

(4.38)

We notice that because of the effect of the term κ∂2
xf

κ the solution to (4.38) are actually smooth,
and then, we have enough regularity to apply our energy estimates to obtain estimates uniform in κ
as in the proof of Proposition 4.13. The only difference is that for the regularized system there is the
new term coming from the Laplacian. Again, this term is harmless as it is a differential and positive
operator. Then we have a control of the H4−norm of the solution uniform in κ. This information is
enough to pass to the limit and to find a classical solution for (1.11).

Finally we show the continuity on time of the H4-norm of the solution then C1−continuity in H3

follows directly from the equation. For t > 0 the proof follows standard techniques. The continuity
at t = 0 is more delicate. This fact follows from the following argument. We can write the difference
∂4
xf − ∂4

xf0 as

∂4
xf − ∂4

xf0 = D−1D
(
∂4
xf − ∂4

xf0

)
= D−1(∂4

xf − ∂4
xf0) + tD−1(Λ∂4

xf − Λ∂4
xf0).

26



The second term is controlled by the energy estimate.
In addition,

D−1∂4
xf0 = ∂4

xf0 − tD−1Λ∂4
xf0.

Thus, the only problematic term is

∂̂4
xf

1 + t|ξ|
− ∂̂4

xf0 =

∫ t

0

∂s
∂̂4
xf(s)

1 + s|ξ|
ds =

∫ t

0

(
− |ξ|∂̂

4
xf(s)

(1 + s|ξ|)2
+
∂t∂̂4

xf(s)

1 + s|ξ|

)
ds.

but ∂t∂
4
xf is of the order of ∂5

xf by the equation. Then taking the L2 norm, again the energy estimate
implies that

||∂4
xf − ∂4

xf0||L2 ≤ Ct,

for small t.

5 Semiclassical analysis with limited smoothness on the sym-
bols

In the following section we develop what we call our semiclassical estimates. As a matter of fact, our
symbols are a bit more general than those of the type p(x, tξ) but our results certainly apply to those.
We have divided the section into a first part where we state result for general symbols and a second
one where we deal with the ones appearing in the current paper.

5.1 General symbols

5.1.1 Results

We start by recalling the basic boundedness of pseudodifferential operators with optimal smoothness
as proved in [12, 15, 27]. We state it exactly as [27, Theorem 1.3] as we will elaborate on ideas from
this work.

Theorem 5.1 (I. L. Hwang) Let p ∈ S1,1 and f ∈ L2. Then

‖Op(p)f‖L2 ≤ C||p||1,1‖f‖L2 .

The semiclassical type estimates we need are related to the results for symbols with a limited
degree of smoothness studied in [31] and [44] via paradifferential calculus. However the estimates in
these two papers are not enough for our purposes.

Our first result is on the correlation of symbols (see section 1.1).

Theorem 5.2 Let p1, p2 ∈ S1,1 ∩ S2,0 and f ∈ L2.
Then,

‖C(p1, p2)f‖L2 ≤ |||C(p1, p2)||| ‖f‖L2 , (5.1)

where
|||C(p1, p2)||| ≤ C (‖p1‖1,1‖∂ξp2‖1,0 + (‖p2‖1,1 + ‖p2‖2,0) ‖∂ξp1‖1,0) .
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Theorem 5.3 Let p ∈ S1,1 be even in the ξ variable. Let 0 < ε < 1 such that

sup
ξ

(‖∂x∂ξp(·, ξ)‖H−ε + ‖∂x∂ξp(·, ξ)‖H1+ε) <∞.

Let f ∈ L2.
Then

‖Op(p)skewf‖L2 ≤ |||Op(p)skew||| ‖f‖L2 ,

where
|||Op(p)skew||| ≤ C sup

ξ
(‖∂x∂ξp(·, ξ)‖Ḣ−ε + ‖∂x∂ξp(·, ξ)‖H1+ε) .

Remark 5.4 Notice that since in both theorems, in the estimate of the norms there is multiplying
factors with ∂ξ in the case of semiclassical symbols p(x, tξ) our theorems yield a gain a factor of t.
The whole semiclassical calculus e.g [45] or [38] for more general symbols can be replicated for non
smooth symbols. A prime example is the coercivity of elliptic semiclassical symbols for t small, which
is a corollary of our results.

Positive symbols have additional properties. The next G̊arding inequality gives control of them at

the price of bounding the derivatives of p
1
2
+.

Lemma 5.5 (G̊arding inequality) Let p+ be an even in the ξ variable positive symbol such that

p
1
2
+ ∈ S1,1 ∩ S2,0 and

sup
ξ

(
||∂x∂ξp

1
2
+||H−ε + ||∂x∂ξp

1
2
+||H1+ε

)
<∞,

for some ε > 0, and f ∈ L2. Then

−
∫
R
fOp(p+)fdx ≤ C(|||C(p

1
2
+, p

1
2
+)|||+ ‖p

1
2
+‖1,1|||Op(p

1
2
+)skew|||)‖f‖2L2 .

5.1.2 Proofs

Our proof are inspired in the ideas of Hwang to prove theorem 5.1. As usual, in the proofs we obtain
the estimates applying the various operators to functions in the Schwarz class, where we can use
the explicitly representation of the operators as integrals against the symbols, and achieve L2 results
by density. Moreover this fact makes it enough to obtain the correct bounds considering smooth
and fast decaying approximations of the symbols. We will provide some of the details in the proof
of Theorem 5.3, where these arguments are slightly more involved, and skip them in the rest of the
theorems. Several integration by parts in combination with the basic properties of the exponential and
Plancherel identity are used recurrently. Hence we have isolated them in some preliminary lemmas.

The first lemma is an extension of [27, Lemma 3.1].

Lemma 5.6 Let f ∈ L2. We define, for (y, η) ∈ R2,

hf (y, η) =

∫
R
e2πiηz f(z)

1 + 2πi(y − z)
dz.

Then for k ∈ 0 ∪ N,
‖∂kyh‖L2(R2) ≤ C‖f‖L2 .

Let p(y, η) ∈ Sk,0 and set Γf (y, η) = p(y, η)hf (y, η). Then,

‖∂kyΓf‖L2(R2) ≤ ‖p‖k,0‖f‖L2 .
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Proof: [27, Lemma 3.1], which follows by Plancherel and a change of variable, says that if g, f ∈ L2

hf,g(y, η) =

∫
R
e2πiηzf(z)g(y − z)dz

satisfies that
‖h‖L2(R2) ≤ C‖g‖L2‖f‖L2 .

Notice next that for k ∈ 0 ∪ N the function g = ∂kx( 1
1+2πix ) ∈ L2. Hence we can differentiate hf (y, η)

under the integral sign and the claim follows from [27, Lemma 3.1].
The second estimation follows from the first, the assumptions and the product rule. �

Lemma 5.7 Let r, g ∈ L2 and F ∈ L2(R2) and define, for (x, ξ) ∈ R2,

G(x, ξ) =

∫
R

∫
R
e2πi(η−ξ)yF (y, η)r(η − ξ)g(x− y)dydη. (5.2)

Then,
‖G(x, ξ)‖L2(R2) ≤ ‖r‖L2‖g‖L2‖F (y, η)‖L2(R2).

Proof: We first take Fourier transform in x and do a change of variables to obtain

Ĝ(α, ξ) =

∫
R
e−2πixαG(x, ξ)dx =

∫
R

∫
R
e2πi(η−ξ−α)yF (y, η)r(η − ξ)ĝ(α)dydη.

Next, Cauchy-Schwarz inequality respect to η yields the pointwise estimate,

|Ĝ(α, ξ)|2 ≤ ‖r‖2L2 |ĝ(α)|2
∫
R

∣∣∣∣∫
R
e2πi(η−ξ−α)yF (y, η)dy

∣∣∣∣2 dη. (5.3)

We will need that Plancherel identity, with variables y, ξ, yields the equality∫
R

∣∣∣∣∫
R
e2πi(η−ξ−α)yF (y, η)dy

∣∣∣∣2 dξ =

∫
R
|F (y, η)|2dy. (5.4)

Thus, we first apply (5.3) and Plancherel again to bound the L2 norm of G,

‖G‖2L2(R2) ≤ ‖r‖
2
L2

∫
R
|ĝ(α)|2

∫
R

∣∣∣∣∫
R
e2πi(η−ξ−α)yF (y, η)dy

∣∣∣∣2 dξdα,
and we conclude by integrating first in ξ and then applying (5.4). With a final use of Plancherel the
lemma is proved. �

Lemma 5.8 Let g ∈ L2,Γ, ∂yΓ ∈ L2(R2) and define, for (x, ξ) ∈ R2,

G(x, ξ) =

∫
R2

e2πiy(η−ξ)Γ(η, y)g(x− y)dηdy. (5.5)

Then,
‖G‖L2(R2) ≤ ‖g‖H1‖(1− ∂y)Γ‖L2(R2).
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Proof:
Let r(x) = 1

1+2πix . We will use that

e2πi(η−ξ)y =
1

1 + 2πi(η − ξ)
(1 + ∂y)e2πi(η−ξ). (5.6)

We insert (5.6) into (5.5) and integrate by parts respect to y to obtain that,

G(x, ξ) =

∫
R2

e2πiy(η−ξ)r(η − ξ)(1− ∂y)
(
Γ(η, y)g(x− y))dηdy

=

∫
R2

e2πiy(η−ξ)(1− ∂y)(Γ(η, y))r(η − ξ)g(x− y)dηdy

+

∫
e2πiy(η−ξ)r(η − ξ)Γ(η, y)g2(x− y)dηdy,

where g2(x) = 1 + ∂xg. Thus both terms are as required in (5.2) and the claim follows from a direct
application of lemma (5.7)

�

Lemma 5.9 Let Q(x, ξ), ∂xQ(x, ξ) ∈ L2(R2). We define, for a.e.x ∈ R,

AQ(x) =

∫
R
e2πiξxQ(x, ξ)dξ.

Then,
‖AQ‖L2 ≤ ‖(1− ∂x)Q‖L2(R2).

Proof: Let v ∈ C∞0 (R) be a test function. Then we estimate ‖AQ‖L2 by duality. Thus for v ∈ L2,
Fourier inversion formula and the definition of AQ imply that∫

R
AQ(x)v(x)dx =

∫
R

∫
R
e2πiλxAQ(x)v̂(λ)dλdx

=

∫
R

∫
R

∫
R
e2πi(λ+ξ)xQ(x, ξ)v̂(λ)dλdxdξ.

Now we use (5.6) and integrate by parts in x to get∫
R
AQ(x)v(x)dx = −

∫
R

∫
R
e2πiξx(1− ∂x)Q(x, ξ)hv̂(−λ)(ξ,−x)dxdξ,

by direct application of the definition of hv̂ as defined in lemma 5.6. A direct application of
Cauchy-Schwarz inequality in R2 and lemma 5.6 finishes the proof. �

In our proof we will use lemma 5.9 for functions defined by integrals, e.g

Q(x, ξ) =

∫
R2

e2πiξ(x−y)+2πiηyQ̃(x, y, ξ, η)dydη,

or

Q(x, ξ) =

∫
R2

e2πiξ(x−y)Q̃(x, y, ξ, η)dydη.
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Proof of Theorem 5.2

Proof:
We start by giving an explicit expression of Op(p1) ◦Op(p2)f ,

Op(p1) ◦Op(p2)f =

∫
R3

e2πi(xξ−ξy+yη)p1(x, ξ)p2(y, η)f̂(η)dηdydξ.

We bring in p1p2 by adding and subtracting suitable terms,

p1(x, ξ)p2(y, η) =(p1(x, ξ)− p1(x, η))p2(y, η)+

p1(x, η)(p2(y, η)− p2(x, η)) + p1(x, η)p2(x, η).

Therefore, we can write

C(p1, p2)f(x) =

∫
R3

e2πi(xξ−ξy+yη)(p1(x, ξ)− p1(x, η))p2(y, η)f̂(η)dηdydξ

+

∫
R3

e2πi(xξ−ξy+yη)p1(x, η)(p2(y, η)− p2(x, η))f̂(η)dηdydξ.

Notice that the second term is zero (e.g use that as distributions,
∫
R e

2πi(x−y)ξdξ = δ(x− y)).
Thus,

C(p1, p2)f(x) =

∫
R3

e2πi(xξ−ξy+yη)(p1(x, ξ)− p1(x, η))p2(y, η)f̂(η)dηdydξ,

and we aim to bound it in L2. We express it directly as an operator on f itself:

C(p1, p2)f(x) =

∫
R4

e2πi(xξ−ξy+yη−ηz)(p1(x, ξ)− p1(x, η))p2(y, η)f(z)dzdηdydξ.

Now the basic formula (like (5.6)),

1

1 + 2πi(y − z)
(1 + ∂η)e2πi(y−z)η = e2πi(y−z)η,

and an integration by parts in the η variable, yields

C(p1, p2)f(x)

=

∫
R4

e2πi(xξ−ξy+yη−ηz)(1− ∂η) {(p1(x, ξ)− p1(x, η))p2(y, η)} f(z)

1 + 2πi(y − z)
dzdηdydξ

=

∫
R3

e2πi(xξ−ξy+yη)(1− ∂η) {(p1(x, ξ)− p1(x, η))p2(y, η)}hf (y, η)dηdydξ,

where in the last equality we have absorbed the integral respect to z in the definition of hf (Lemma 5.6).
Now we expand the η derivative to express C(p1, p2)f as a sum of three terms:

=

∫
R3

e2πi(xξ−ξy+yη) {(p1(x, ξ)− p1(x, η))p2(y, η)}hf (y, η)dηdydξ

−
∫
R3

e2πi(xξ−ξy+yη)p1(x, ξ)∂ηp2(y, η)hf (y, η)dηdydξ

+

∫
R3

e2πi(xξ−ξy+yη)∂η (p1(x, η)p2(y, η))hf (y, η)dηdydξ
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≡ C(p1, p2)f1 + C(p1, p2)f2 + C(p1, p2)f3.

Notice that in fact, if we use again that
∫
e2πiξ(x−y)dξ = δ(x− y), we obtain that

C(p1, p2)f3 =

∫
R
e2πiηx∂η (p1(x, η))p2(x, η))hf (x, η)dη.

We treat each of the above terms individually.

1. Estimation for C(p1, p2)f1:

In order to estimate C(p1, p2)f1 we integrate again by parts to obtain

C(p1, p2)f1 =

∫
R3

e2πi(xξ−ξy+yη)(1− ∂ξ) {(p1(x, ξ)− p1(x, η))p2(y, η)}

× hf (y, η)

(1 + 2πi(x− y))
dzdηdydξ

=

∫
R3

e2πi(xξ−ξy+yη)(p1(x, ξ)− p1(x, η))p2(y, η)
hf (η, y))

(1 + 2πi(x− y))
dzdηdydξ

−
∫
R3

e2πi(xξ−ξy+yη)∂ξp1(x, ξ)p2(y, η)
hf (η, y)

(1 + 2πi(x− y))
dzdηdydξ

≡ C(p1, p2)f11 + C(p1, p2)f12.

(a) Estimation for C(p1, p2)f11:

We start by we integrate by parts with respect to y to bring a factor 1
η−ξ and thus a

difference quotient for p1;

C(p1, p2)f11(x) =

∫
R3

−1

2πi(ξ − η)
∂ye

2πi(xξ−ξy+yη) (p1(x, ξ)− p1(x, η)) Γf (y, η)

1 + 2πi(x− y)
dydηdξ

=

∫
R3

e2πi(xξ−ξy+yη)Q(ξ, η, x)∂y

(
Γf (y, η)

1 + 2πi(x− y)

)
dηdydξ,

where

Γf (y, η) ≡ p2(η, y)hf (y, η), Q(ξ, η, x) ≡ (p1(x, ξ)− p1(x, η))

2πi(ξ − η)
.

The mean value theorem respect to ξ, tells us that

‖Q|‖L∞(R3) ≤ ‖∂ξp1‖L∞(R2) ≤ ‖∂ξp1‖1,0
||∂xQ||L∞(R3) ≤ ‖∂2

ξ xp1‖L∞(R2) ≤ ‖∂ξp1‖1,0.
(5.7)

Now a direct application of lemma 5.9 yields that

‖C(p1, p2)f11‖L2 ≤ ‖G(x, ξ)‖L2(R2)

where,

G(ξ;x) =

∫
R2

e2πi(η−ξ)y(1− ∂x)

(
Q(ξ, η, x)∂y

(
Γf (y, η)

1 + 2πi(x− y)

))
dηdy.

Here we can not directly apply lemma 5.7 as Q depends on η but we follow a similar
strategy. We integrate by parts in y to obtain that
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G(ξ;x) =

∫
R2

e2πi(η−ξ)y 1

1 + 2πi(ξ − η)
(1− ∂x)

(
Q(ξ, η, x)(1− ∂y)∂y

(
Γf (y, η)

1 + 2πi(x− y)

))
dηdy.

Let us write G(ξ;x) in the following way

G(ξ;x) =

∫
R

1

1 + 2πi(η − ξ)
Q](ξ, η, x)dη,

with

Q](ξ, η, x) =

∫
R
e2πi(η−ξ)y(1− ∂x)

(
Q(ξ, η, x)(1− ∂y)∂y

(
Γf (y, η)

1 + 2πi(x− y)

))
dy,

By Cauchy-Schwarz

|G(ξ;x)|2 ≤ C
∫
R
|Q](ξ, η, x)|2dη,

and therefore,

||G||2L2(R2) ≤ C
∫
R3

|Q](ξ, η, x)|2dηdξdx.

Our next task is to deal with Q](ξ, η, x). We first expand the derivatives in x. Notice that

(1− ∂x)

(
Q(ξ, η, x)(1− ∂y)∂y

(
Γf (η, y)

1 + 2πi(x− y)

))
= Q(ξ, η, x)(1− ∂y)∂y

(
Γf (y, η)(1− ∂x)

(
1

1 + 2πi(x− y)

))
− ∂xQ(ξ, η, x)(1− ∂y)∂y

(
Γf (y, η)

1 + 2πi(x− y)

)
.

Then∫
R3

|Q](ξ, η, x)|2dηdξdx

=

∫
R3

∣∣∣∣∫
R
e2πi(η−ξ)y(1− ∂x)

(
Q(ξ, η, x)(1− ∂y)∂y

(
Γf (η, y)

1 + 2πi(x− y)

))
dy

∣∣∣∣2 dξdηdx
≤ ||Q||L∞(R3)∫
R3

∣∣∣∣∫
R
e2πi(η−ξ)y(1− ∂y)∂y

(
Γf (y, η)(1− ∂x)

(
1

1 + 2πi(x− y)

))
dy

∣∣∣∣2 dηdξdx
+ ||∂xQ||L∞(R3)

∫
R3

∣∣∣∣∫
R
e2πi(η−ξ)y(1− ∂y)∂y

(
Γf (y, η)

1 + 2πi(x− y)

)
dy

∣∣∣∣2 dηdξdx
≡ ||Q||L∞(R3)I1 + ||∂xQ||L∞(R3)I2.

Now we expand the derivatives in y. We obtain that both I1, I2 are a sum of terms of the
type

Ii =

∫
R3

∣∣∣∣∫
R
e2πi(η−ξ)y∂jyΓf (y, η)gi(x− y)dy

∣∣∣∣2 dηdξdx,
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with gi ∈ L2 and j = 0, 1, 2. We proceed as in the proof of lemma 5.7. We first do
Plancherel in the x variable and then Fubini to integrate first respect to ξ and conclude by
Plancherel again with real variable y and Fourier variable ξ.

Ii =

∫
R3

|ĝi)(α)|2
∣∣∣∣∫

R
e2πi(η−ξ)y∂jyΓf (y, η)dy

∣∣∣∣2 dξdαdη
= ‖gi‖L2

∫
|
∫
e2πiξy∂jyΓf (y, η)dy|2dξdη

= ‖gi‖L2

∫
|∂jyΓf (y, η)|2dydη ≤ C‖p2‖22,0‖f‖2L2 ,

where the last inequality follows from a direct use of of lemma 5.6 and the uniform bound
for ‖gi‖L2 . Combined with (5.7) yields the desired bound,

‖G‖L2(R2) ≤ C‖p2‖2,0‖∂ξp1‖1,0‖f‖L2 . (5.8)

(b) Estimation for C(p1, p2)f12:

The estimate goes in a similar way to the previous one. However we already have a
derivative of the symbol, so the first integration by part is not necessary. By applying
lemma 5.9 it holds that,

‖C(p1, p2)f12‖L2 ≤ ‖G(x, ξ)‖L2(R2).

where

G(x, ξ) =

∫
R3

e2πiy(η−ξ))p2(y, η)hf (η, y)(1− ∂x)
∂ξp1(x, ξ)

1 + 2πi(x− y)
dηdy.

Thus, we have to control terms of the form

Gi(ξ, x) = qi(x, ξ)

∫
R2

e2πi(η−ξ)yΓf (y, η)gi(x− y)dηdy,

where either qi(x, ξ) = ∂ξp1, or qi = ∂x(∂ξp1), and thus ‖qi‖L∞(R2) ≤ ‖∂ξp1‖1,0, ‖gi‖L2 is
uniformly bounded and Γf = p2hf .

Hence a direct application of lemma 5.8 yields that

‖Gi(x, ξ)‖L2(R2) ≤ ‖∂ξp1‖1,0‖(1− ∂y)Γf (η, y)‖L2(R2).

Now Γf is exactly as in the lemma 5.6.Thus

‖C(p1, p2)f12‖L2 ≤ C‖∂ξp1‖1,0‖p2‖2,0‖f‖L2 . (5.9)

This finishes the estimate for C(p1, p2)f12 and hence that of C(p1, p2)f1.

2. Estimation of C(p1, p2)f2:

In order to bound C(p1, p2)f2 in L2 we start by integrating by parts in ξ,

C(p1, p2)f2 =

∫
R3

e2πi(xξ−ξy+yη)p1(x, ξ)∂ηp2(y, η)hf (y, η)dydηdξ
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=

∫
R3

e2πi(xξ−ξy+yη)(1− ∂ξ)p1(x, ξ)∂ηp2(y, η)
hf (y, η)

1 + 2πi(x− y)
dydηdξ.

By lemma 5.9 we are led to estimate in L2(R2) the function

G(x, ξ) =

∫
R2

e2πiy(η−ξ))∂ηp2(y, η)hf (y, η)(1− ∂x)
(1− ∂ξ)p1(x, ξ)

1 + 2πi(x− y)

)
dydη.

Expanding the derivatives in x and ξ we discover that G is a a sum of terms of the type

Gi(x, ξ) = qi(x, ξ)

∫
R2

e2πiy(η−ξ))Γf (η, y)gi(x− y)dydη.

Here gi ∈ L2 uniformly, Γf = ∂ηp2hf and qi = ∂α,βx,ξ p1 with α, β = 0, 1. Thus we have the
uniform bound ‖qi‖L∞ ≤ ‖p1‖1,1 as well. Hence, a direct application of lemma 5.8 yields the
bound

‖Gi(x, ξ)‖L2(R2 ≤ ‖p1‖1,1‖(1− ∂y)Γf‖L2(R2).

Therefore lemma 5.6 (with k = 0, 1) applied to ∂ηp2 yields

‖C(p1, p2)f2‖L2 ≤ C||p1‖1,1‖∂ξp2‖1,0‖f‖L2 . (5.10)

3. Estimation for C(p1, p2)f3:

We denote M(x, η) = ∂η(p1(x, η)p2(x, η)) and M̃(x, η) = (1 − ∂x)M(x, η). Notice that, by
expanding the various derivatives, it holds that

‖M̃‖L∞(R2) ≤ ‖∂ξp1‖1,0‖p2‖1,1 + ‖∂ξp2‖1,0‖p1‖1,1. (5.11)

Then

C(p1, p2)f3(x) =

∫
R
e2πiηxM(x, η)hf (x, η)dη.

Lemmas 5.9 and 5.6 gives

‖C(p1, p2)f3‖L2 ≤ ‖M̃hf‖L2(R2) ≤ ‖M̃‖L∞‖f‖L2

≤ C(‖∂ξp1‖1,0‖p2‖1,1 + ‖∂ξp2‖1,0‖p1‖1,1)‖f‖L2 .
(5.12)

Finally, by combining the bounds (5.8),(5.9),(5.10), (5.12) we have achieved the conclusion of
Theorem 5.2 with norm,

|||C(p1, p2)||| =C(2‖∂ξp1‖1,0‖p2‖2,0 + ‖p1‖1,1‖∂ξp2‖1,0
+ ‖∂ξp1‖1,0‖p2‖1,1 + ‖∂ξp2‖1,0‖p1‖1,1).

(5.13)

Thus, |||C(p1, p2)||| ≤ C (‖p1‖1,1‖∂ξp2‖1,0 + (‖p2‖1,1 + ‖p2‖2,0) ‖∂ξp1‖1,0) as claimed.

�
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Proof of theorem 5.3

Proof: Since p(x, ξ) = p(x,−ξ) for f, g ∈ S, the Schwarz class, it holds that∫
R

Op(p)skewf(x)g(x)dx =

∫
R2

e2πi(x−y)ξ (p(x, ξ)− p(y, ξ)) f(y)dydξdx.

We consider the following smooth and fastly decaying approximation of the symbol,

pδ,κ(x, ξ) = e−δξ
2

e−κx
2

ϕκ ∗ p(x, ξ) ∈ Hk

for every k ∈ 0 ∪N. Here ϕk is an standard approximation of the identity in the x variable. Since f,g
are in the Schwarz class, by Dominated Convergence Theorem we have that,

lim
κ↘0,δ↘0

∫
R

Op(pδ,κ)skewf(x)g(x)dx =

∫
R

Op(p)skewf(x)g(x)dx. (5.14)

Therefore, we can integrate by parts in ξ to obtain,

Op(pδ,κ)skewf(x) =

∫
R2

e2πi(x−y)ξ ∂ξ(p
δ,κ(x, ξ)− pδ,κ(y, ξ))

2πi(x− y)
f(y)dydξ =

∫
R2

e2πi(x−y)ξQ(x, y, ξ)f(y)dydξ,

where

Q(x, y, ξ) =
∂ξ(p

δ,κ(x, ξ)− pδ,κ(y, ξ))

2πi(x− y)
.

Thus, by Lemma 5.9,

‖Op(pδ,κ)skewf‖L2 ≤ ‖G‖L2(R2), (5.15)

where

G(x, ξ) =

∫
R
e−2πiyξ(1− ∂x)Q(x, y, ξ)f(y)dy.

Now for 2πiqδ,κ(x, ξ) = ∂ξp
δ,κ(x, ξ), the basic properties of the Fourier transform yield that,

Q(x, y, ξ) =
qδ,κ(x, ξ)− qδ,κ(y, ξ)

(x− y)
=

∫
∂̂xqδ,κ(η, ξ)

ei2πηx − ei2πηy

2πiη(x− y)
dη.

Thus, if we declare ψ(η, x− y) = (1− ∂x) e
i2πη(x−y)−1
2πiη(x−y) , it holds that

G(x, ξ) =

∫
R2

e2πi(−yξ+ηy)ψ(η, x− y)∂̂xqδ,κ(η, ξ)f(y)dydη.

Next, we compute the Fourier transform of G(x, ξ) respect to x, denoted by Ĝ(α, ξ), and change
variables in x− y. We obtain the formula,

Ĝ(α, ξ) =

∫
R2

eiy(η−ξ−α)ψ̂(η, α)∂̂xqδ,κ(η, ξ)f(y)dydη

=

∫
R

b(η)

b(η)
ψ̂(η, α)∂̂xqδ,κ(η, ξ)f̂(−η + ξ + α)dη,

where b(η) is an auxiliary function, which will be specified later, introduced to bargain differen-
tiability into integrability, Now Cauchy Schwarz yields the pointwise estimate,
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|Ĝ(α, ξ)| ≤
(∫

R
|b(η)∂̂xqδ,κ(η, ξ)|2dη

) 1
2
(∫

R

1

b(η)
|ψ̂(η, α)|2|f̂(η − ξ − α)|2dη

) 1
2

.

Thus, for C(p) = supξ
∫
R |b(η)∂̂xqδ,κ(η, ξ)|2dη, it holds that

‖G‖2L2(R2) ≤ C(p)

∫
R3

1

|b(η)|2
|ψ̂(η, α)|2|f̂(η − ξ − α)|2dηdξdα

= C(p)‖f‖2L2

∫
R2

1

|b(η)|2
|ψ̂(η, α)|2dηdα = C(p)‖f‖2L2

∫
R2

1

|b(η)|2
|ψ(x, η)|2dηdx.

Now, since
∫
R

∣∣∣ eix−1
x

∣∣∣2 +
∣∣∣∂x ( eix−1

x

)∣∣∣2 dx ≤ C, it holds that∫
R
|ψ(x, η)|2dx ≤ C

(
|η|+ |η|−1

)
.

Therefore, by Fubini, ∫
R2

1

|b(η)|2
|ψ2(x, η)|2dηdx ≤ C

∫
R

|η|+ |η|−1

|b(η)|2
dη.

This last expression, is integrable for every 0 < ε < 1 if we take b(η) = η−εχ[0,1](|η|) + (1 −
χ[0,1].(|η|))η1+ε.

Hence inserting the bound of ‖G‖L2 in (5.15) we obtain that

‖Op(pδ,κ)skewf‖L2 ≤ C‖f‖L2 ,

with C = C(pδ,κ) = supξ
∫
R |b(η) ̂∂xqδ,κ(η, ξ)|2dη. Given our choice of b(η), it holds that,

C(p) ≤ sup
ξ

(
‖∂xqδ,κ‖H1+ε + ‖∂xqδ,κ‖Ḣ−ε

)
= sup

ξ

(
‖∂2
xξp

δ,κ‖H1+ε + ‖∂2
xξp

δ,κ‖Ḣ−ε
)
.

However, setting pκ = e−κx
2

ϕk ∗ p, it holds that

sup
ξ
‖∂xqδ,κ‖Ḣ−ε = sup

ξ

(
2δ|ξ|e−δξ

2

‖∂xpκ‖Ḣ−ε
)

+ sup
ξ

(
e−δξ

2

‖∂x∂ξpκ‖Ḣ−ε
)
.

Notice that pκ ∈ L2 implies that ∂xp
κ ∈ Ḣ−ε. Hence we can take first the limit δ ↘ 0 to get rid

of the term ‖∂xpκ‖. Then, continuity of the Sobolev norms respect to mollifiers allows us to let κ go
to 0, to obtain the bound supξ ‖∂x∂ξp‖Ḣ−ε

Arguing exactly in the same way with the Ḣ1+ε− term, in combination with (5.14) yields the
desired,

‖Op(p)skew‖L2→L2 ≤ sup
ξ

(‖∂x∂ξp‖Ḣ−ε + ‖∂x∂ξp‖H1+ε) .

The proof is finished. �
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Proof of lemma 5.5

Proof:

−
∫
R
fOp(p+)fdx = −

∫
R
fOp(p

1
2
+p

1
2
+)fdx

= −
∫
R
fOp(p

1
2
+) ◦Op(p

1
2
+)fdx−

∫
R
fC(p

1
2
+, p

1
2
+)fdx.

Cauchy-Schwarz and Theorem 5.2 imply that

|
∫
R
fC(p

1
2
+, p

1
2
+)fdx| ≤ |||C(p

1
2
+, p

1
2
+)|||‖f‖2L2 . (5.16)

For the first, notice that ∫
Op(p

1
2
+)fOp(p

1
2
+)fdx =

∫
|Op(p

1
2
+)f |2dx > 0.

Thus,

−
∫
fOp(p

1
2
+) ◦Op(p

1
2
+)fdx = −

∫
Op(p

1
2
+)T fOp(p

1
2
+)fdx

≤ −
∫

Op(p
1
2
+)T fOp(p

1
2
+)fdx+

∫
(Op(p

1
2
+)fOp(p

1
2
+)fdx

=

∫
[Op(p

1
2
+)T f −Op(p

1
2
+)f ]Op(p

1
2
+)fdx

≤ ‖Op(p
1
2
+)(f)‖L2‖Op(p

1
2
+)skewf‖L2 .

The claim follows from theorem 5.3 and theorem 5.1.
�

5.2 Lemmas for the apriori estimate

5.2.1 Transport term

Recall that D is the operator associated with the symbol d(ξ) = 1 + 2πit|ξ| and J is associated with

j(ξ) = e
∫ t|ξ|
0 ϕ(τ)dτ f̂(ξ) where ϕ was defined in (4.27).

In order to deal with the transport term we need the following lemma which states that J and D
have a similar behaviour.

Lemma 5.10 There exists φ such that

j(t|ξ|) = 1 + t|ξ|φ(t|ξ|)

satisfying

||φ(t|ξ|)||L∞ ≤ C, |||ξ|∂ξ (φ(t|ξ|)) ||L∞ ≤ C,

where C does not depend on t.

Proof: Notice that by the fundamental theorem of Calculus

j(t|ξ|) = 1 + t|ξ|
∫ 1

0

ϕ(st|ξ|)e
∫ st|ξ|
0 ϕ(τ)dτds.
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Thus,

φ(t|ξ|) =

∫ 1

0

ϕ(st|ξ|)e
∫ st|ξ|
0 ϕ(τ)dτds.

With these representations the claimed properties follow readily.
�

Lemma 5.11 Let ∂xa ∈ H1+ε(R) for ε > 0 and J−1(f) ∈ L2. Then,

|
∫
J−1fJ−1(afx)dx| ≤ C||∂xa||H1+ε‖J−1(f)‖2L2 . (5.17)

Proof:
In order to bring in a suitable commutator we first notice that∫

R
J−1(f)a∂xJ−1(f)dx =

1

2

∫
R

∫
a∂x|J−1(f)|2dx (5.18)

and thus, integrating by parts

|
∫
R
J−1fa∂xJ−1fdx| ≤ ‖ax‖L∞‖J−1(f)‖2L2 (5.19)

and since ‖ax‖L∞ ≤ ‖ax‖H1+ε , we conclude that
∫
J−1fa∂xJ−1fdx is a harmless term. Thus we can

subtract it to the transport term and we are led to bound the commutator,

[J−1, a][fx].

Let g = J−1f so that f = J g. Let ψ = φ(t|ξ|)|ξ|. Then

afx = aJ gx = agx + tΨ(agx) + t[a,Ψ](gx) = J (agx) + t[a,Ψ](gx),

[J−1, a]fx = agx − J−1(afx) = tJ−1[a,Ψ](gx).

We iterate this trick once more. Let us denote G = tJ−1gx, which has L2-norm bounded by
||g||L2 . Then

[J−1, a]fx = [a,Ψ]tgx = [a,Ψ]G+ tΨ([a,Ψ])(G) + t[[a,Ψ],Ψ](G) = J ([a,Ψ]G) + t[[a,Ψ],Ψ](G)

and therefore

tJ−1[a,Ψ](gx) = [a,Ψ]G+ tJ−1[[a,Ψ],Ψ](G).

Now notice that
[[a,Ψ],Ψ] = a(Ψ)2 − 2Ψ(aΨ) + (Ψ)2a

and then

[̂a,Ψ]G(ξ) =

∫
â(η)Ĝ(ξ − η) (|ξ|φ(t|ξ|)− |ξ − η|φ(t|ξ − η|)) dη

̂[[a,Ψ],Ψ]G(ξ) =

∫
â(η)Ĝ(ξ − η) (|ξ|φ(t|ξ|)− |ξ − η|φ(t|ξ − η|))2

dη.
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Thus by the mean value theorem and lemma 5.10

||ξ|φ(t|ξ|)− |ξ − η|φ(t|ξ − η|)| ≤ C|η|,

Thus

‖[a,Ψ]G‖L2 + ‖[[a,Ψ],Ψ]G‖L2 ≤
∫
R
|
∫
R
|Ĝ(ξ − η)|(|∂̂xa(η)|+ |∂̂xxa(η)|)(1 + |η|)ε(1 + |η|)−εdη|2dξ

and we conclude by Hölder inequality in the η variable (Recall that‖G‖L2 ≤ ‖g‖L2).
�

5.2.2 Commutator between Op(p) and J

Similar computations to the above allow us to interchange J and Op(p). In order to simplify the proof
we will first relate D with Op(p). Then we use our commutator estimation theorem 5.2 to transfer
the result to J to finish the estimate.

Lemma 5.12 Let t∂xp ∈ S1,1 and g ∈ L2. Then,

‖D−1Op(p)Dg −Op(p)g‖L2 ≤ ‖t∂xp‖1,1‖g‖L2 .

Proof: By the definition of D,

Op(p)(Dg) = Op(p)(g) + tOp(p)(∂xg)

= D(Op(p)(g)) + t[∂x,Op(p)](g) = D(Op(p)(g)) + tOp(∂xp)(g).

Hence
D−1Op(p)Dg −Op(p)g = D−1(Op(t∂xp)(g)).

Thus, taking L2 norms and using theorem 5.1 for the symbol t∂xp, and that d−1 is bounded in
L∞ the claim is straightforward.

�

Theorem 5.13 Suppose that t∂xp, tp ∈ S1,1 and ∂ξp ∈ S1,0. Let g ∈ L2, then

‖J−1Op(p)J (g)−Op(p)g‖L2 ≤ C(p)‖g‖L2 ,

where C(p) = C(‖t∂xp‖1,1 + ‖tp‖1,1 + ‖∂ξp‖1,0).

Proof: Define g̃ = D−1J g and observe that ‖g̃‖L2 ≤ ‖g‖L2 . We write Op(p)g = Op(p)J−1Dg̃,Op(p)J g =
OpDg̃ and sum and subtract J−1DOp(p)g̃. Then

J−1Op(p)J g −Op(p)(g) = J−1D
(
D−1Op(p)Dg̃ −Op(p)g̃

)
+ [Op(p),J−1D]g̃.

In order to deal with the first term readily notice that J−1D has a bounded Fourier multiplier
and lemma 5.12 implies that

‖D−1Op(p)Dg̃ −Op(p)g̃‖L2 ≤ ‖t∂xp‖1,1‖g‖L2 . (5.20)

For the second, notice that since J−1D has a symbol m = j−1d independent of x then Op(p) ◦
J−1D = Op (p ·m). Thus
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[J−1D,Op(p)] = C(m, p).

Therefore we can estimate ||C(m, p)||L2→L2 by theorem 5.2,

|||C(m, p)||| ≤ C (‖m‖0,1‖∂ξp‖1,0 + (‖p‖1,1 + ‖p‖2,0) ‖∂ξm‖0,0) .

Lemma 5.10 implies that m ∈ L∞ and ‖∂ξm‖L∞ ≤ Ct. Therefore, we achieve the conclusion of
the lemma by the assumptions on p.

�

6 Mixing solutions in the stable regime

As discussed in the introduction our work was motivated by [41] where it is shown that in the case
of horizontal interface there exists subsolutions in the unstable regime but it seems imposible to find
them in the stable regime and perhaps they do not exist. Surprisingly, if the flat interface is not
horizontal then one can construct mixing solutions with a straight initial interface in both the fully
stable and the fully unstable regime. The proof runs along similar steps than the one in [41]. Even if
we will need the machinery expose in section 3 to carry out this construction this section only expect
to be a remark.

Let’s consider the change of variables x(s, λ) = st + nλ, with t = (µ1,µ2)√
µ2
1+µ2

2

, µ1 ≥ 0 and µ2 ∈ R.

We declare ε = ct, with c > 0 and Ωmix = {x ∈ R2 : x = x(s, λ), s ∈ R, −ε(t) < λ < ε(t)}. We

define ρ, u and m through ρ] = −sign(σ)λε , u] = − µ2√
µ2
1+µ2

2

ρ]t and m] = ρ]u] − γ]
(

1−
(
ρ]
)2)

n −
1
2

(
1−

(
ρ]
)2)

(0, 1), with γ] ∈ R. Here σ > 0 yields an initial data in the stable regime and σ < 0 an

initial data in the unstable regime. Then

∇f(x(s, λ)) =t∂sf
] + n∂λf

]

∇ · f(x(s, λ)) =t · ∂sf] + n · ∂λf].

Using this formulas is easy to check that ∇ · u = 0, ∇⊥ · u = −∂x1
ρ and u · ∇ρ = 0. In addition, the

equation ∂tρ+∇ ·m = 0 transforms to γ] = 1
2

(
µ1√
µ2
1+µ2

2

+ sign(σ)c

)
If σ < 0 then we obtain from (4.5) the constrain 0 < c < 1 + µ1√

µ2
1+µ2

2

. If σ > 0 we obtain

0 < c < 1 − µ1√
µ2
1+µ2

2

, what give rise to a mixing solution in the stable regime but if the interface is

flat and horizontal.
At this point, it is convenient to notice that the case non horizontal and flat interface is only stable

in the sense of the Muskat curve-evolution equation. In the hydrodynamical context this configuration
is unstable even if the lighter fluid is above, because it leads to an instantaneous velocity shear layer
(i.e. discontinuity in the velocity). The only hydrodynamically stable configuration seems to be the
flat horizontal interface with the lighter fluid above.
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A Appendix

In this appendix we will prove lemma 4.8, lemma 4.9 and the required estimates for the velocity u and
for the coefficient of the transport term a. Throughout the whole section, there are integrals which
are interpreted in the principal value sense, both at 0 and ∞. Since, this is standard and harmless in
our context, we will not make it explicit.

A.1 Lower order terms. Proof of lemma 4.8

We can write

Mu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R
kθ(x, y)∂xθdydλ

′dλ.

The main part of the proof of the lemma will be showing that∣∣∣∣∣∣∣∣D−1

(
∂5
xMu+

1

4π

∫ 1

−1

∫ 1

−1

∫
R
kθ(·, y)∂6

xθdydλ
′dλ

)∣∣∣∣∣∣∣∣
L2

≤ C
(
||f ||H4 , ||D−1∂5

xf ||L2

)
. (A.1)

In order to accomplish this, we will need to compute the derivatives of the function

kθ(x, y) =
y

y2 + θ2
,

where

θ = ∆f(x, x− y) + ε(x)λ− ε(x− y)λ′ = ∆f + ∆ελ′ + ε(x)(λ− λ′).

In addition we introduce

h = f(x) + λε(x) and h′ = f(x) + λ′ε(x), γ = ε(x)(λ− λ′).

Thus,

θ = ∆h′ + ε(x)(λ− λ′) = ∆h′ + γ,

where we remark that γ depends on x and on t although we will not make this dependence explicit.
We recall that c(x, t) is as in the statement of theorem 4.1. Since ε(x, t) = c(x, t)t, with 0 < c < c(x, t)
and ||c(x, t)||C5 ≤ C,

‖γ‖C5 ≤ Ct|λ− λ′|. (A.2)

A big part of our proof will be based on comparing θ with its linearized version

θlin = ∂xh
′(x)y + γ.
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Remark A.1 Notice that in order to obtain selfadjoint pseudodifferential operators we could deal as
well with

θWlin = ∂xh
′(
x+ y

2
)y + γ,

Here the W in the exponent stands for the Weyl quantization. We do not pursue this issue here.

To make the notation even more compact we will write ∆f = ∆f(x, x − y) and ∂kxf(x) = ∂kxf .
Then we have

∂xkθ(x, y) = −2
yθ∂xθ

(y2 + θ2)2
≡ −2k11

θ (x, y),

∂2
xkθ(x, y) = −2

y((∂xθ)
2 + (θ)∂2

xθ)

(y2 + (θ)2)2
+ 8

y((θ)∂xθ)
2

(y2 + (θ)2)3
≡ c21k

21
θ (x, y) + c22k

22
θ (x, y),

∂3
xkθ(x, y) = −2y

3∂xθ∂
2
xθ + (θ)∂3

xθ

(y2 + (θ)2)2
+ 24y

(θ)∂xθ((∂xθ)
2 + (θ)∂2

xθ)

(y2 + (θ)2)3
− 48y

(θ)3(∂xθ)
3

(y2 + (θ)2)4

≡ c31k
31
θ (x, y) + c32k

32
θ (x, y) + c33k

33
θ (x, y), (A.3)

∂4
xkθ(x, y) = 384y

(θ)4(∂xθ)
4

(y2 + (θ)2)5
− 288y

(θ)2(∂xθ)
2((∂xθ)

2 + (θ)∂2
xθ)

(y2 + (θ)2)4

+ y
24(∂xθ)

4 + 144(θ)(∂xθ)
2∂2
xθ + 24(θ)2(∂2

xθ)
2

(y2 + (θ)2)3
+ y

32(θ)2∂xθ∂
3
xθ

(y2 + (θ)2)3
− y 6(∂2

xθ)
2 + 8∂xθ∂

3
xθ − 2(θ)∂4

xθ)

(y2 + (θ)2)2

≡ c41k
41
θ (x, y) + c42k

42
θ (x, y) + c43k

43
θ (x, y) + c44k

44
θ (x, y),

∂5
xkθ(x, y) = −3840y

(θ)5(∂xθ)
5

(y2 + (θ)2)6
+ 3840y

(θ)3(∂xθ)
5 + (θ)4(∂xθ)

3∂2
xθ

(y2 + (θ)2)5

+ y
240(∂xθ)

3∂2
xθ + 360(θ)∂xθ(∂

2
xθ)

2 + 240(θ)(∂xθ)
2∂3
xθ

(y2 + (θ)2)4
+ y

80(θ)2∂2
xθ∂

3
xθ + 40(θ)2∂xθ∂

4
xθ

(y2 + (θ)2)3

− y 10∂xθ∂
4
xθ + 2(θ)∂5

xθ

(y2 + (θ)2)2
≡ c51k

51
θ (x, y) + c52k

52
θ (x, y) + c53k

53
θ (x, y) + c54k

54
θ (x, y) + c55k

55
θ (x, y),

where we notice that the numbers cij i, j = 1, 2, 3, 4, 5 are harmless coefficients. Then, by applying
Minkowski inequality, we need to bound

5∑
j=1

∣∣∣∣∣∣∣∣D−1

∫
R
∂jxkθ(·, y)∂5−j

x ∂xθdy

∣∣∣∣∣∣∣∣
L2

=

5∑
j=1

j∑
i=1

∣∣∣∣∣∣∣∣D−1

∫
R
kjiθ (·, y)∂5−j

x ∂xθdy

∣∣∣∣∣∣∣∣
L2

independently of t, λ and λ′. The highest order terms in this sum are given by

D−1

∫
R
k11
θ (x, y)∂5

xθdy and D−1

∫
R
k55
θ (x, y)∂xθdy. (A.4)

43



Since there are 5 derivatives of the function θ in both terms we have to use the operator D−1. Since
D−1 is bounded in L2 it holds that

5∑
j=2

min(j, 4)∑
i=1

∣∣∣∣∣∣∣∣D−1

∫
R
kjiθ (·, y)∂5−j

x ∂xθdy

∣∣∣∣∣∣∣∣
L2

(A.5)

≤
5∑
j=2

min(j, 4)∑
i=1

∣∣∣∣∣∣∣∣∫
R
kjiθ (·, y)∂5−j

x ∂xθdy

∣∣∣∣∣∣∣∣
L2

,

which make the computation easy. We first deal with the sum (A.5) and finally with (A.4), which are
somewhat more delicate.

We will use the following convection. We will write:

1. - meaning ”is bounded in absolute value by ”.

2. f(x) ∼ g(x) if ||f − g||L2 ≤ 〈A〉.

3. We will denote by kji(x) the integral ∫
R
kjiθ (x, y)∂6−j

x θdy.

4. Ck+α will be a constant depending on ||f ||Ck+α , with k an integer and 0 ≤ α < 1
2 . Ck+α(x) will

be a function whose L∞−norm is bounded by a constant depending on ||f ||Ck+α .

5. Given an integral
∫
R f(x, y)dy we will estimate separately,

∫
|y|>1

f(x, y)dy its in−part and∫
|y|<1

f(x, y)dy its out−part. Several terms kji(x), with i and j integers, will arise in the

computations above. In these terms there always will be an integration of the form

kij(x) =

∫
R
...dy.

We will call kjiin(x) and kjij out(x) to its in−part and to its out−part respectively.

6. For any f , we will write ∆t|λ−λ′|f ≡ ∆f(x, x− |t(λ− λ′)|y).

7. We always assume that ε < 1.

8. In every integral we take a principal value.

A.1.1 Preliminary lemmas

The proof is rather long and will be armed by the lemmas below. They could be ordered as follows.

i) Estimates of pointwise of the kernel. Lemmas A.2, A.3 and A.4 estimate operators with non
singular terms.

ii) Comparison between the kernels depending θ and those depending on θlin. Lemmas A.5 and
A.6.

iii) Lemmas on kernels depending on θ, θlin.
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The proof of iii) either use i) to show that the kernels are not singular or rely on properties of the
Hilbert transform.

The first two lemmas are pointwise properties of the functions involved. The proofs follows from
the mean value theorem.

Lemma A.2 There exists a constant 1 < CA < ∞ depending only on the L∞-norm of the ∂xh
′(x)

such that

1

(y ± σh(x)Ah(x)c(x))2 + c(x)2σ(x)2
≤ CA(y) ≡

{
CA |y| ≤ CA
CA
y2 |y| > CA

∀x ∈ R

Here Ah(x) = ∂xh
′(x) and σh(x) = 1

1+Ah(x)2 .

Proof: Along this proof CA denotes a constant bigger that 1 and depending only in ||Ah||L∞ . Firstly
we notice that

1

(y ± σh(x)Ah(x)c(x))2 + c2σ2
≤ 1

(y ± σh(x)Ah(x)c(x))2 + (infx∈R c(x)σh(x))
2 ,

where

inf
x∈R

σh(x) =
1

1 + ||Ah||2L∞
≡ σinf .

Fixed x, the function 1
(y±σ(x)A(x)c(x))2+(σinf )2 is a translation of the function 1

y2+(σinf )2
. This is

bounded by 1
(σinf )2 and decay like CA

y2 . But −CA ≤ σh(x)Ah(x)c(x) ≤ CA. Then the conclusion of

the lemma follows easily. �

The following lemma will allow us to show that numerators of various kernels are in fact bounded for
|y| sufficiently small.

Lemma A.3 There exists a constant cA which depends on ||f ||C1 + ||ε||C1 and on c such that for
|y| < cA the following inequality holds:

|c(x, t)| −
∣∣∣∣∆t|λ−λ′|h

t|λ− λ′|y
y

∣∣∣∣ ≥ c

2

|c(x, t)| − |∂xh′(x)y| ≥ c

2
.

Proof: By the mean value theorem,∣∣∣∣∆f(x, x− t|λ− λ′|y) + ∆ε(x, x− t|λ|y)

t|λ− λ′|y

∣∣∣∣ ≤ ||f ||C1 + ||ε||C1

thus the claim follows. �

For the reiterative use we state that L1 kernels gives us good bounds.

Lemma A.4 Consider a kernel Jλ(x, y) satisfying |Jλ(x, y)| ≤ j(y) ∈ L1(R), for all x ∈ R and
λ ∈ [−1, 1]. Then, the the integral

Iλ(x) =

∫
R
Jλ(x, y)f(x− λy)dy

is bounded in L2 as ||Iλ||L2 ≤ C(||j||L1)||f ||L2 .
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Proof: Again the proof is straightforward by using Minkowski inequality. �

The next two lemmas allow us to compare θ with θlin = ∂xh
′y+γ in various expressions. We start

with a pointwise bound.

Lemma A.5 The following bound holds for every y ∈ R.

1

(y2 + θ2)
a −

1

(y2 + θ2
lin)

a

- C2

2(a−1)∑
l=−1

|y|2a−l|γ|l+1

(y2 + θ)2)
a

(y2 + θ2
lin)

a

for a ≥ 2.

Proof: We just write that

1(
y2 + (θ)

2
)a − 1

(y2 + θ2
lin)

a

=

(
y2 + θ2

lin

)a − (y2 + (θ)
2
)a

(
y2 + (θ)

2
)a

(y2 + θ2
lin)

a

and, since, ca − ba = (c− b)
∑a
l=1 c

a−lbl−1 for c, b ∈ R, we have that(
y2 + θ2

lin

)a − (y2 + (θ)
2
)a

=
(
θ2
lin − (θ)

2
) a∑
l=1

(
y2 + θ2

lin

)a−l (
y2 + θ2

)l−1
.

Next we introduce the expansions(
θ2
lin − (θ)

2
)

= (∂xh
′y −∆h′) (∂xh

′y + ∆h′ + 2γ)

- C2|y|2 (|y|+ |γ|) ,

Here, we have used that since h ∈ H4 , we have uniform L∞ bound of ∂xh
′, ∂2

xh
′ and thus its

uniform Lipschitz continuity. Next, since

(
y2 + θ2

lin

)a−l
=

a−l∑
i=0

c(i, a− l)y2(a−l−i)(θlin)2i

=

a−l,2i∑
i=0,n=0

c(i, a− l)c(n, 2i)y2(a−l)−n(∂xh
′)2i−nγn

- C1

a−l,2i∑
i=0,n=0

|y|2(a−l)−n|γ|n

and (
y2 + (θ)

2
)l−1
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- C1

l−1,2i∑
j=0,m=0

|y|2(l−1)−m|γ|m,

it follows that,(
y2 + θ2

lin

)a − (y2 + (θ)
2
)a

- C2|y|2(|y|+ |γ|)
a−l,2i∑
i=0,n=0

l−1,2i∑
j=0,m=0

|y|2(a−1)−(n+m)|γ|n+m

- C2|y|2(|y|+ |γ|)|y|2(a−1)

2(a−1)∑
l=0

|y|−l|γ|l = C2|y|2a(|y|+ |γ|)
2(a−1)∑
l=0

|y|−l|γ|l

= C2y
2a

2(a−1)∑
l=0

|y|−l+1|γ|l +

2(a−1)∑
l=0

|y|−l|γ|l+l


- C2|y|2a
2(a−1)∑
l=−1

|y|−l|γ|l+1.

From this last inequality is easy to achieve the conclusion of the lemma. �

Next we show that we can also compare operators depending on θ by those depending on its lineariza-
tion θlin.

Lemma A.6 Let a = 2, 3, 4 or 5 and define

k[g](x) =

∫
|y|<1

(
2a−1∑
i=0

|γ|i|y|2a−1−i

)

×
(

1

(y2 + θ2)
a −

1

(y2 + θ2
lin)

a

)
g(x− y)dy.

Then,
‖k[g]‖L2 ≤ 〈A〉||g||L2 , ‖k[g]‖L∞ ≤ 〈A〉||g||L∞ , ‖k[1]‖L∞ ≤ 〈A〉,

where g ∈ L2 in the first estimate and g ∈ L∞ in the second one.

Proof: By lemma A.5 we have that

k(x) -C2

∫
|y|<1

2a−1∑
i=0

|γ|i|y|2a−1−i

×
2(a−1)∑
l=−1

|y|2a−l|γ|l+1(
y2 + (θ)

2
)a

(y2 + θ2
lin)

a
|g(x− y)|dy

= C2

2(a−1), 2a−1∑
l=−1, i=0

∫
|y|<1

|y|4a−1−(i+l)|γ|i+l+1(
y2 + (θ)

2
)a

(y2 + θ2
lin)

a
|g(x− y)|dy.
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By the upper bound on γ we need to estimate

kl, i(x) =

∫
|y|<1

|y|4a−1−(i+l)|t|λ− λ′||i+l+1(
y2 + (θ)

2
)a

(y2 + θ2
lin)

a
|g(x− y)|dy.

After the change of variable y′ = y
t|λ−λ′| we have that

kl, i(x) = t|λ− λ′|
∫
|y|< 1

t|λ−λ′|

|y|4a−1−l−i|g(x− t|λ− λ′|y)|(
y2 +

(
∆t|λ−λ′|h

′

t|λ−λ′|y y + c(x)sign(t(λ− λ′))
)2
)a (

y2 + (∂xfy + c(x)sign(t(λ− λ′)))2
)a dy

=

∫
|y|<cA

... dy +

∫
cA<|y|< 1

t|λ−λ′|

... dy.

The integrand in kl, i(x) is bounded in |y| < cA by lemma A.3 for every −1 ≤ l ≤ 2(a − 1) and
0 ≤ i ≤ 2a− 1. In |y| > cA, the integrand is bounded by C|y|−1−i−l for every −1 ≤ l ≤ 2(a− 1) and
0 ≤ i ≤ 2a− 1. Then Minkowski inequality yields

||kl, i||L2 ≤ C1||g||L2

(
1 + |γ|

∫
cA≤|y|≤ 1

t|λ−λ′|

|y|−1−i−ldy

)
≤ C1||g||L2

for every −1 ≤ l ≤ 2(a− 1) and 0 ≤ i ≤ 2a− 1. The L∞ bound simply follows by extracting ‖g‖∞ as
a constant. �

The next lemma gives L2 and L∞ bounds for the various operators. It turns out that after a
change of variable, lemma A.3 shows that in fact the kernels are not singular near cero, whereas away
from cero direct L∞ bounds are available for the kernel. This yields direct proofs for L∞ bounds and
a further use of Minkowski inequality yields L2 bound. We state separately the action of the operator
on 1 for later use.

Lemma A.7 Let g ∈ L2.

a) Let a ≥ 2 and k[g](x) be given by

k[g](x) =

2a∑
i=0

∫
|y|<1

|y|2a−i|γ|i

(y2 + θ2)
a |g(x− y)|dy.

Then
‖k[g]‖L2 ≤ 〈A〉||g||L2 , ‖k[1]‖L∞ ≤ 〈A〉.

b) Let a = 2, ..., 10 and k[g] be given by

k[g](x) =

2a−1∑
i=1

∫
|y|<1

|y|2a−1−i|γ|i

(y2 + θ2)
a g(x− y)dy.

Then
‖k[g]‖L2 ≤ 〈A〉||g||L2 , ‖k[1]‖L∞ ≤ 〈A〉.
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Proof: We prove first the L2 bound for a). We notice that, by the upper bound on γ,it is enough to
estimate

ki(x) =

∫
|y|<1

|y|2a−i|t|λ− λ′||i

(y2 + θ)
a |g(x− y)|dy.

After the change of variables y′ = y
t|λ−λ′| we have that

ki(x) =

∫
|y|< 1

t|λ−λ′|

t|λ− λ′| |y|2a−i(
y2 +

(
∆t|λ−λ′h

′

t|λ−λ′|y y + c(x, t)sign(λ− λ′)
)2
)a |g(x− t|λ− λ′|y)|dy

=

∫
|y|<cA

... dy +

∫
cA<|y|< 1

t|λ−λ′|

... dy.

For every i = 0, ..., 2a, in the region |y| < cA we can apply lemma A.3, obtaining that the kernel is
uniformly bounded. In the region cA < |y| < 1

t|λ−λ′| we can estimate

t|λ− λ′| |y|2a−i(
y2 +

(
∆t|λ−λ′|h

t|λ−λ′|y y + c(x, t)sign(λ− λ′)
)2
)a ≤ CAt|λ− λ′||y|−i ≤ CAt|λ− λ′|,

for every i = 0, ..., 2a. Then we can apply Minkowski inequality to prove the lemma. Indeed,

CAt|λ− λ′|

∣∣∣∣∣
∣∣∣∣∣
∫
cA<|y|< 1

t|λ−λ′|

|g(x− t|λ− λ′|y)|dy

∣∣∣∣∣
∣∣∣∣∣
L2

≤ CAt|λ− λ′|
∫
cA<|y|< 1

t|λ−λ′|

| ||g(· − t|λ− λ′|y)||L2 dy

≤ CAt|λ− λ′|||g||L2

∫
cA<|y|< 1

t|λ−λ′|

dy ≤ CA||g||L2 .

The L∞ bound follows in the same way. The case b) is dealt with by the same change of variables.
�

In the next lemmas the kernel scales as y−1 and thus the estimates are more delicate. For the
outer integral we show that the kernel can be decomposed as the sum of c(x) 1

y and a function which

decays as |y|−2. Thus, the Hilbert transform controls the first and the second is not singular.

Lemma A.8 Let g ∈ L2, a ≥ 2 and

k(x) =

∫
|y|>1

y2a−1

(y2 + θ2
lin)

a g(x− y)dy.

Then,
‖k[g]‖L2 ≤ 〈A〉||g||L2 , ‖k[1]‖L∞ ≤ 〈A〉.

Proof: Direct computation shows hat

y2a−1

(y2 + θ2
lin)

a −
1

(1 + (∂xh′)2)a
1

y
= j(x, y),

where j(x, y) = (1+(∂xh
′)2)ay2a−(y2+(∂xh

′y+γ)2)a

(y2+θ2lin)
a
(1+(∂xh′)2)2y

. Since |j(x, y)| ≤ C|y|−2 the claim for L2 follows from

the L2 boundedness of the truncated Hilbert transform and lemma A.4. In order to estimate k[1]
notice that

∫
|y|>1

1
ydy = 0.

�
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The proof of the next lemma is more subtle as it uses an explicit computation of the Hilbert
transform of our kernel.

Lemma A.9 Let g ∈ L2 and a = 2, 3, 4 or 5. Then, the integral

I[g](x) =

∫
R

y2a−1

(y2 + θ2
lin)

a g(x− y)dy,

satisfies

‖I[g]‖L2 ≤ 〈A〉||g||L2 , ‖I[1]‖L∞ ≤ 〈A〉.
Proof: In analogy with other estimates, we denote σh = (1+∂xh

′(x)2)−1 and Ah = ∂xh
′(x). Therefore

y2 + (∂xh
′y + γ)2 = σ−1

h ((y +Ahσhγ)2 + σ2
hγ

2). (A.6)

and

I(x) =C1(x)

∫
R

y2a−1

((y +Ahσhγ)2 + σ2
hγ

2)a
g(x− y)dy

= C1(x)

∫
R

(y +Ahσhγ)2a−1

((y +Ahσhγ)2 + σ2
hγ

2)a
g(x− y)dy

+ C1(x)

∫
R

y2a−1 − (y +Ahσhγ)2a−1

((y +Ahσhγ)2 + σ2
hγ

2)a
g(x− y)dy

≡ I1(x) + I2(x). (A.7)

Now we use the identity (for fixed σh and γ)

H

[
x2a−1

(x2 + σ2
hγ

2)2a−1

]
(x) = − σh|γ|

(x2 + σ2
hγ

2)a

a−1∑
l=0

αal (σh|γ|)2(a−1−l)
x2l

where the αal’s are harmless coefficients. Then

I1(x) =

∫
R

σh|γ|
((y +Ahσhγ)2 + σ2

hγ
2)a

a−1∑
l=0

αal (σh|γ|)2(a−1−l)
(y +Ahσhγ)2lHg(x− y)dy,

and after the usual change of variables

I1(x) - C1

a−1∑
i=0

∫
R

(y + cAhσhtsign((λ− λ′))2i

((y + cσhAhsign(λ− λ′))2 + c2σ2
h)a

H g(x− t|λ− λ′|y)dy

- C1

a−1∑
i=0

∫
R

(1 + |y|2i)CA(y)aHg(x− t|λ− λ′|y)dy,

where we have applied lemma A.2. Then I1(x) is bounded in L2 thanks to lemma A.4. To bound
I2(x) we notice that we can write this term in the following way:

I2(x) =

∫
R

y2a−1 − (y + cσhAhsign(λ− λ′))2a−1

((y − cσhAhsign(λ− λ′))2 + c2σ2
h)a

g(x− t|λ− λ′|y)dy.

Since the numerator is a polynomial in y of order 2(a − 1) we can apply again lemmas A.2 and A.4
to obtain a suitable estimate in L2.

In order to estimate I[1] simply replace g(x− y) by 1 and notice that the analogous term to I1(x)
in (A.7) is equal to zero in this case.

�
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A.1.2 Estimation of the terms in the sum (A.5).

We need to estimate the terms kjiθ ∂
5−j
x θ which can be further decomposed into a sum of products of

various derivatives of θ divided by (y2 + θ2)a for a = 2, 3, 4. It will be important that since we assume
that h and hence θ belongs to H4 we can assume that ∂2

xθ is uniformly Lipschitz. Thus if in the
product of derivatives ∂j1x θ∂

j2
x θ · · · ∂jnx ∂xθ there is only one ji ≥ 3 we can interpreted as an operator

acting on ∂jix θ and we could put our hands on the kernel, linearizing it using the Lipschitz continuity.
We illustrate this in the first section with j = 2 and leave the rest to the reader. Unfortunately, there
are some terms with j = 3 with e.g (∂3

xθ)
2 appears. Those have to be dealt with independently. We

do it by means of another pseudodifferential operator.
1.1. Terms in (A.5) with j = 2, i = 1, 2.
1.1.1. Let us estimate k21(x). We split it into two terms k21(x) = k21

1 (x) + k21
2 (x), with

k21
1 (x) = −

∫
R
k21
θ (x, y)∂4

xh
′(x− y)dy and k21

2 (x) = ∂4
xh

∫
R
k21
θ (x, y)dy.

To bound k21
1 we proceed as follows,

k21
1 (x) = −

∫
R
y

(∂xθ)
2 + θ∂2

xθ

(y2 + θ2)2
∂4
xh
′(x− y)dy.

Since y
(∂xθ)

2+θ∂2
xθ

(y2+θ2)2 - C2|y|−3, k21
1 out is bounded by lemma A.4. In order to bound the inner part

we further split it into two terms, one with only terms depending on h′ and the other where γ and its
derivatives appear. Namely, k21

1 in = k21
11 in + k21

11 in, with

k21
11 in =

∫
|y|<1

y
(∂xγ)2 + 2∆∂xh

′∂xγ

(y2 + θ2)2
∂4
xh
′(x− y)dy

+

∫
|y|<1

y
γ(∆∂2

xh
′ + ∂2

xγ) + ∆h′∂2
xγ

(y2 + θ2)2
∂4
xh
′(x− y)dy (A.8)

and

k21
12 in =

∫
|y|<1

y
(∂x∆h′)2 + ∆h′∂2

x∆h′

(y2 + θ2)2
∂4
xh
′(x− y)dy. (A.9)

To estimate k21
11 in we use the regularity of h′ and mean value theorem to bound its integrand by

C3
t2|λ− λ′|2|y|+ |y|2t|λ− λ′|

(y2 + θ2)2
|∂4h(x− y)|

and after that we apply lemma A.7.
To bound k21

12(x) we write

k21
12(x) =−

∫
R

(
y
(
(∂x∆h′)2 + ∆∂2

x∆h′
)

(y2 + θ2)
2 −

y3
(
(∂2
xh
′)2 + ∂xh

′∂3
xh
)

(y2 + θ2
lin)

2

)
∂4
xh
′(x− y)dy

−
(
(∂2
xh
′)2 + ∂xh

′∂3
xh
′) ∫

R

y3

(y2 + θ2
lin)

2 ∂
4
xh
′(x− y)dy

≡ k21
121(x) + k21

122(x). (A.10)
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To bound k21
121 out(x) we notice that

(∂x∆h′)2+∆∂2
x∆h′

(y2+θ2)2
- C2|y|−3 and we can directly apply A.8 with

a = 2 to the second term other part. To bound k21
121 in(x) we split it into two new terms,

k21
121 in(x) = −

∫
|y|<1

(
y((∂x∆h′)2 + ∆h′∂2

x∆h′)− y3((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

(y2 + θ2)
2

)
∂4
xh
′(x− y)dy

− ((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

∫
R
y3

(
1

(y2 + θ2)
2 −

1

(y2 + θ2
lin)

2

)
∂4
xh
′(x− y)dy

∼ −
∫
|y|<1

(
y((∂x∆h′)2 + ∆h′∂2

x∆h′)− y3((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

(y2 + θ2)
2

)
∂4
xh
′(x− y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma A.7 , with a = 2 we check
that

k21
121 in(x) -

∫
|y|<1

C3|y|4 + C3+α|y|3+α

(y2 + θ2)
2 |∂4

xh
′(x− y)|dy

∼
∫
|y|<1

C3+α|y|3+α

(y2 + θ2)
2 |∂

4
xh
′(x− y)|dy -

∫
|y|<1

|y|−1+α|∂4
xh
′(x− y)|dy.

Thus, we can apply lemma A.4 to finish the estimate of k21
121 in(x).

To bound k21
122(x) we apply lemma A.9 with a = 2. This finishes the bound for k21

1 (x).

To bound k21
2 (x) in L2 is enough to bound k

21

2 (x) ≡
∫
R k

21
λ (x, y)dy in L∞. The outer part is

estimated as we did for k21
1 . For the inner part we split k

21

2 in(x) ≡ k
21

21 in(x) + k
21

22 in, with k
21

21 in as

k22
21 in(x) in (A.8) and k

21

22 in(x) as k21
12 in(x) in (A.9) but replacing ∂4

xh
′(x−y) by 1. k

21

21 in(x) is bounded

by applying lemma A.7. To bound k
21

22(x) we split this term into k
21

221(x) + k
21

221 (analogous to k21
121(x)

and k21
122(x) in (A.10)). k

21

221 out(x) is bounded by using lemmas A.4 and A.8. For k
21

221 in(x) we do the
analogous splitting than for k21

121 in and we apply the same argument together with lemma A.7. To

bound k
21

222(x) we use lemma A.9. This finishes the estimate of k21(x) in L∞ and completes the proof
of the estimate of k21(x) in L2.

To bound k21
12(x) we write

k21
12(x) =−

∫
R

(
y
(
(∂x∆h′)2 + ∆∂2

x∆h′
)

(y2 + θ2)
2 −

y3
(
(∂2
xh
′)2 + ∂xh

′∂3
xh
)

(y2 + θ2
lin)

2

)
∂4
xh
′(x− y)dy

−
(
(∂2
xh
′)2 + ∂xh

′∂3
xh
′) ∫

R

y3

(y2 + θ2
lin)

2 ∂
4
xh
′(x− y)dy

≡ k21
121(x) + k21

122(x). (A.11)

To bound k21
121 out(x) we notice that

(∂x∆h′)2+∆∂2
x∆h′

(y2+θ2)2
- C2|y|−3 and we can directly apply A.8 with

a = 2 to the second term. To bound k21
121 in(x) we split it into two new terms,

k21
121 in(x) = −

∫
|y|<1

(
y((∂x∆h′)2 + ∆h′∂2

x∆h′)− y3((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

(y2 + θ2)
2

)
∂4
xh
′(x− y)dy

− ((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

∫
R
y3

(
1

(y2 + θ2)
2 −

1

(y2 + θ2
lin)

2

)
∂4
xh
′(x− y)dy
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∼ −
∫
|y|<1

(
y((∂x∆h′)2 + ∆h′∂2

x∆h′)− y3((∂2
xh
′)2 + ∂xh

′∂3
xh
′)

(y2 + θ2)
2

)
∂4
xh
′(x− y)dy,

where we have applied lemma A.6, with a = 2. Therefore, applying lemma A.7 , with a = 2 we check
that

k21
121 in(x) -

∫
|y|<1

C3|y|4 + C3+α|y|3+α

(y2 + θ2)
2 |∂4

xh
′(x− y)|dy

∼
∫
|y|<1

C3+α|y|3+α

(y2 + θ2)
2 |∂

4
xh
′(x− y)|dy -

∫
|y|<1

|y|−1+α|∂4
xh
′(x− y)|dy.

Thus, we can apply lemma A.4 to finish the estimate of k21
121 in(x).

To bound k21
122(x) we apply lemma A.9 with a = 2. This finishes the bound for k21

1 (x).

To bound k21
2 (x) in L2, it is enough to bound k

21

2 (x) ≡
∫
R k

21
λ (x, y)dy in L∞. The outer part

is estimated as we did for k21
1 . For the inner part we split k

21

2 in(x) ≡ k
21

21 in(x) + k
21

22 in, with k
21

21 in

as k22
21 in(x) in (A.8) and k

21

22 in(x) as k21
12 in(x) in (A.9) but replacing ∂4

xh
′(x − y) by 1. k

21

21 in(x) is

bounded by applying lemma A.7. To bound k
21

22(x) we split this term into k
21

221(x) + k
21

221 (analogous

to k21
121(x) and k21

122(x) in (A.11)). k
21

221 out(x) is bounded by using lemmas A.4 and A.8. For k
21

221 in(x)
we do an analogous splitting to that for k21

121 in and we apply the same argument together with lemma

A.7. To bound k
21

222(x) we use lemma A.9. This finishes the estimate of k21(x) in L∞ and completes
the proof of the estimate of k21(x) in L2.

1.1.2. Let us estimate k22(x). We split into two terms

k22(x) = k22
1 (x) + k22

2 (x), (A.12)

with

k22
1 (x) = −

∫
R
k22
θ (x, y)∂4

xh
′(x− y)dy, and k22

2 = ∂4
xh

∫
R
k22
θ (x, y)dy.

We split k22
1 (x) in four terms, k22

1 (x) = k22
11(x) + k22

12(x) + k22
13 + k22

14, with

k22
11(x) = −

∫
R
y

(∆∂xh
′)2(γ2 + 2γ∆h′)

(y2 + θ2)3
∂4
xh
′(x− y)dy (A.13)

k22
12(x) = −

∫
R
y

(∆∂xh
′)2(∆h′)2

(y2 + θ2)3
∂4
xh
′(x− y)dy. (A.14)

k22
13(x) = −

∫
R
y

(2∂xγ∆∂xh
′ + ∂xγ

2)(∆h′)2

(y2 + θ2)3
∂4
xh
′(x− y)dy (A.15)

k22
14(x) = −

∫
R
y

((∂xγ)2 + 2∂xγ∆∂xh
′)(γ2 + 2γ∆h′)

(y2 + θ2)3
∂4
xh
′(x− y)dy. (A.16)

The function k22
11(x) can be bounded in L2 as follows. The integrand of k22

11(x) - C1|y|−5|∂4
xh
′(x−y)|.

Then k22
11 out(x) is estimated by lemma A.4. Also the integrand of k22

11(x) - C2
y3(γ2+2|γ|y)
(y3+(θ)2)3 |∂

4
xh
′(x−y)|

and we can apply lemma A.7 with a = 3 to bound k22
11 in(x). Similarly, we can deal with k22

13 and k22
14

as we can obtain the correct estimates in powers of |y| and |γ| to apply Lemma A.7.
To bound k22

12(x) we write

k22
12(x) = −

∫
R

(
y(∆∂xh

′)2(∆h′)2

(y2 + θ2)
3 − (∂2

xh
′)2(∂xh

′)2y5

(y2 + θ2
lin)

3

)
∂4
xh
′(x− y)dy
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− (∂xh
′)2(∂2

xh
′)2

∫
R

y5

(y2 + θ2
lin)

3 ∂
4
xh
′(x− y)

≡ k22
121(x) + k22

122(x). (A.17)

To bound k22
121, out(x) we notice that y(∆∂xh

′)2(∆h′)2

(y2+(θ)2)3
- C1|y|−5 and we can apply A.8 to the other

part with a = 3. To bound k22
121,in(x) we split in two terms,

k22
121, in =

∫
|y|<1

(
y(∆h′)2(∆∂xh

′)2 − y5(∂xh)2(∂2
xh)2

(y2 + (θ)2)
3

)
∂4
xh
′(x− y)dy

+ (∂xh
′)2(∂2

xh
′)2

∫
|y|<1

y5

(
1

(y2 + θ2)
3 −

1

(y2 + θ2
lin)

3

)
∂4
xh
′(x− y)dy,

in such a way that we can apply lemma A.7 with a = 3, since |y(∆h′)2∆(∂xh
′)2− y5(∂xh

′)2(∂2
xh
′)2| -

C3y
6, and lemma A.6 with a = 3.
To bound k22

122(x) we apply lemma A.9 with a = 3. This finishes the bound for k22
1 (x).The term

k22
2 (x)is estimated in a similar way to k21

2 . We have completed the proof of the estimate of k22(x) in
L2.

1.2. Terms in (A.5) with j = 3 and i = 1.
Let us bound k31(x). Unfortunately the proof of the estimation of k31(x) does not follow the same

steps than the rest of the functions kij(x). Indeed we need to do something different and use the
boundedness of pseudodifferential operators used in the body of the text.

We split into two terms k31(x) = k31u(x) + k31d
2 (x) with

k31u(x) =

∫
R
y
∂xθ∂

2
xθ

(y2 + θ2)
2 ∂

3
x∆h′dy

k31d(x) =

∫
R
y

(θ)∂3
xθ

(y2 + θ2)
2 ∂

3
x∆h′dy.

The proof for k31u(x) will be similar to the above.
For k31d(x) we need new estimates since as h ∈ H4 we can not bound ∂3

xθ by |y| uniformly.
Let us bound k31d(x) first. We split this function in four parts,

k31d
1 (x) =

∫
R
y

γ∂3
xh
′

(y2 + θ2)
2 ∂

3
x∆h′dy, and (A.18)

k31d
2 =

∫
R
y

∆h′∂3
x∆h′

(y2 + θ2)
2 ∂

3
x∆h′dy and (A.19)

k31d
3 =

∫
R
y

∆h′∂3
xγ

(y2 + θ2)
2 ∂

3
x∆h′dy (A.20)

k31d
4 (x) =

∫
R
y

γ∂3
xγ

(y2 + θ2)
2 ∂

3
x∆h′dy. and (A.21)

The last two terms are easily bounded by Lemma A.7 for the in part and by Lemma A.4 for the
outer part.

To bound k31d
2 (x) we use that ∆(∂3

xh)2 = 2∂3
xh∆∂3

xh−∆
(
(∂3
xh)2

)
, and then, we need to show that

the integral

N(x) =

∫
R

y∆h′

(y2 + θ2)
2 ∆gdy (A.22)
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is in L2 with either g = ∂3
xh
′ or (∂3

xh
′)2. Notice that, in both cases, we can allow in our estimates

that ||g||H1 appears. We will split N(x) in two terms N1(x) and N2(x) with

N1(x) =

∫
R
y

(
∆h′

(y2 + θ2)
2 −

∂xh
′y

(y2 + θ2
lin)

2

)
∆gdy, (A.23)

N2(x) = ∂xh
′
∫
R

y2

(y2 + θ2
lin)

2 ∆gdy. (A.24)

That is N1 compares with the linearized version and N2 treats with the linearized kernel. We can
not deal directly with N1 with our previous lemmas by replacing ∆h′ by y as the denominator is too
singular. However we can add an subtract a term∫ 1

2∂
2
xh
′y2

(y2 + θ2
lin)

2 ∆gdy.

Then several terms appear but since h ∈ H4 we have that

∆h′ − ∂xh′y − ∂2
xh
′(x)y2 ≤ |y|3. (A.25)

After splitting in various terms, all of them can be deal with using our lemmas A.6, A.7, A.9 and
a small modification.

In order to deal with N2(x) we need to introduce another new idea. We first use (A.6) and treat
the two terms in ∆g separately. proceed as follows

N2(x) =∂xh
′γσ2

h

(
g(x)

∫
R

y2

((y + σhAhγ)2 + σ2γ2)2
dy

−
∫
R

y2

((y + σhAhγ)2 + σ2
hγ

2)2
g(x− y)dy

)
Now we can compute that ∫

R

y2

((y + σhAhγ)2 + σ2
hγ

2)2
dy =

π

2σ2
h|γ|

For the convolution term, the following Fourier transform computation

F

[
y2

((y + σAλ)2 + σ2λ2)
2

]
(ξ)

=
π

2σ2|λ|
e2πiAσξλe−2πσ|λ||ξ| (1 + 2πσ2(A2 − 1) + 4πiAσ2ξλ

) (A.26)

yields that ∫
R

y2

((y + σhAhγ)2 + σ2
hγ

2)2
g(x− y)dy

=
π

2σ2
h|γ|

∫
R
e2πiξxĝ(ξ)e2πiξAhσhγe−2πσh|γ||ξ|

× (1 + 2πσ2
h|γ||ξ|(A2 − 1) + 4πiAσ2

hξγ)dξ,

so that
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N2(x) = ∂xh
′π

2
Op(p)(Λg)

where the symbol is given by,

p(x, ξ) =
1

|ξ||γ|

(
1− e2πiAhσhξγe−2πσh|ξ||γ|

)
− σ2

hπ
2e2πiAhσhξγe−2πσh|ξ||γ|((A2

h − 1) + 2isign(ξ)sign(γ))

Therefore by applying lemma 5.1 we obtain that the L2−norm ofN2(x) is bounded by 〈A〉(||Λg||L2+
||∂xg||L2).

This concludes the proof of the estimate of the L2−norm of k31d
2 (x).

To deal with k31d
1 , we use again that (∆∂3

xh
′)2 = 2∂3

xh
′∆∂3

xh
′ − ∆

(
(∂3
xh
′)2
)
. Thus, it suffices to

bound the integral

M(x) =

∫
R

yγ

(y2 + (θ)2)2
∆g(x− y)dy (A.27)

in terms of the H1-norm of g. The proof is analogous since at the only delicate point it holds that∫
R

yγ

(y2 + θ2
lin)

2 dy = − Aπ

2σ2|γ|
,

1.3.The rest of the terms in (A.5).
The estimation of the rest of the terms in (A.5) follow the same steps than the estimation for

either k21(x) or k22(x).

A.1.3 Estimation of the terms in (A.4).

We will show how to estimate is k11(x) in (A.4), since k55(x) is analogous. Here we recall that we are
concerned with ||D−1k11||L2 . In order to bound this norm we will proceed as follows

k11(x) =

∫
R
k11
θ (x, y)∂5

xθdy =

∫
R
k11
θ (x, y)DΘdy,

where Θ ≡= D−1∂5
xθ (we clarify that the operator D = (1 + t∂x) acts on x rather than y). Then we

would like to estimate ||D−1k11||L2 ≤ 〈A〉||Θ||L2 . In order to do it we notice that

∂x

∫
R
k11
θ (x, y)Θdy =

∫
R
∂xk

11
θ (x, y)Θdy +

∫
R
k11
θ (x, y)∂xΘdy,

so that

D−1k11(x) =

∫
R
k11
θ (x, y)Θdy − tD−1

∫
R
∂xk

11
θ (x, y)Θdy

≡ S1(x) + tD−1S2(x).

Happily, the proof of the estimation for S1 and S2 follow the same steps that the estimation of k22(x)
in (A.12). Thus we have proven (A.1). That is

∂5
xMu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R
kθ(·, y)∂6

xθdydλ
′dλ+ l.o.t.
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In order to finish the proof of lemma 4.8 notice that

kθ∂
6
xθ = kθ∂

6
x∆f(x, x− y) + kθ

(
∂6
xε(x)λ− ∂6

xε(x− y)λ′
)

and, by assumptions on c(x, t), ∂6
xc(·, t) ∈ L2 uniformly in t. We then have that

∂5
xMu = − 1

4π

∫ 1

−1

∫ 1

−1

∫
R
kθ(·, y)∂6

x∆f(x, x− y)dydλ′dλ+ l.o.t.

Lemma 4.8 is proved.

A.2 Proof of lemma 4.9

In this section we will prove lemma 4.9. We will use the same convection as in the previous section.
Since the transport term in lemma 4.9 arises in an obvious way, t he main issue is to linearize θ to

θlin in the integral ∫ 1

−1

∫ 1

−1

∫
R

y

y2 + θ2
∂6
xf(x− y)dydλλ′.

This is the content of the following L2 estimate.

Lemma A.10 Let f ∈ H6, c as in theorem 4.1 and

F (x) = D−1 1

4

∫ 1

−1

∫ 1

−1

∫
R

(
y

y2 + θ2
− y

y2 + θ2
lin

)
∂6
xf(x− y)dydλλ′.

Then,
‖F‖L2 ≤ 〈A〉||D−1∂5

xf ||L2 .

After applying Minkowski inequality, to obtain the estimate, it is enough to show that

D−1

∫
R

(
y

y2 + θ2
− y

y2 + θ2
lin

)
∂6
xf(x− y)dy

is in L2 with L2−norm bounded by 〈A〉
(
||D−1∂5

xf ||L2 + 1
)

uniformly in t (for small t), λ and λ′.
Let us call g(x) = D−1∂5

xf(x). Then we proceed as when investigating the commutators [D−1,Op(p)]
but this time working directly with the kernel

k(x, y) =

(
y

y2 + θ2
− y

y2 + θ2
lin

)
.

Then we have to estimate the function

P (x) = D−1

∫
R
k(x, y)D∂xg(x− y)dy.

By direct application of the definition ofD, it holds that
∫
k(x, y)D∂xg(x−y)dy = D

∫
k(x, y)∂xg(x−

y)dy − t
∫
∂xk(x, y)∂xg(x− y)dy we have

P (x) =

∫
R
k(x, y)∂xg(x− y)dy − tD−1

∫
R
∂xk(x, y)∂xg(x− y)dy

≡M(x) + tD−1L(x),

We need to estimate both M(x) and L(x) in L2.
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To bound M(x) we first integrate by parts, recalling that ∂xg(x− y) = −∂yg(x− y),

M(x) =

∫
R
∂y

(
y

y2 + θ2
− y

y2 + θ2
lin

)
g(x− y)dy

=

∫
R

(
1

y2 + θ2
− 1

y2 + θ2
lin

)
g(x− y)dy

+ 2

∫
R
y

(
y + θlin∂xh

′

(y2 + θ2
lin)

2 −
y + θ∂xh

′(x− y)

(y2 + θ2)
2

)
g(x− y)dy

≡M1(x) + 2M2(x). (A.28)

As a matter of fact both M1,M2 can be estimated by means our previous lemmas. The outer
integrals can be estimated by brute force as the kernels decay fast enough. The inner ones, by using
the first and second Taylor polynomial of h′, can be split into terms with the appropriate powers of
y in order to apply Lemmas A.6, A.9 as before.

It remains to bound L(x). This function is given by

L(x) = −2

∫
R
y

(
θ∂xθ

(y2 + θ2)
2 −

θlin(∂2
xh
′y + ∂xγ)

(y2 + θ2
lin)

2

)
∂xg(x− y)dy

= −2

∫
R
y

(
(∆h′∆∂xh+ γ∆∂xh

′)

(y2 + θ2)
2 − ∂2

xh
′∂xhy

2 + γ∂2
xh
′y

(y2 + θ2
lin)

2

)
∂xg(x− y)dy

− 2

∫
R
y

(
∂xγ∆h′

(y2 + θ2)
2 −

∂xγ∂xh
′y

(y2 + θ2
lin)

2

)
∂xg(x− y)dy

− 2

∫
R
y

(
γ∂xγ

(y2 + θ2)
2 −

γ∂xγ

(y2 + θ2
lin)

2

)
∂xg(x− y)dy

≡ S(x) + S̃(x) + S(x).

Firstly, we will carefully bound S(x) since the numerators of the terms S̃ and S have the same
behaviour.

We repeat the trick of observing that ∂xg(x− y) = −∂yg(x− y) to integrate by parts and obtain
that

S(x)

= −2

∫
R

(
(∆h′ + γ)∂x∆h′

(y2 + θ2)
2 − θlin∂

2
xh
′y

(y2 + θ2
lin)

2

)
g(x− y)dy

− 2

∫
R
y

(
∂xh(x− y)∂x∆h′ + (∆h′ + γ)∂2

xh
′(x− y)

(y2 + θ2)
2

−∂xh
′∂2
xh
′y + (θlin)∂2

xh
′

(y2 + θ2
lin)

2

)
g(x− y)dy

+ 8

∫
R
y

(
θ∂x∆h′(y2 + θ2)(y + (∆h′ + γ))∂2

xh
′(x− y)

(y2 + θ2)
2

−θlin∂
2
xh
′y(y2 + θ2

lin)(y + θlin)∂2
xh
′

(y2 + θ2
lin)

2

)
g(x− y)dy
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≡ −2S1(x)− 2S2(x) + 8S3(x).

To bound S1(x) we split it in the following way

S1(x) =

∫
R

θ∂x∆h′ − θlin∂2
xh
′y

(y2 + θ2)
2 g(x− y)dy

+

∫
R

(θlin)∂2
xh
′y

(
1

(y2 + θ2)
2 −

1

(y2 + θ2
lin)

2

)
g(x− y)dy

≡ S11(x) + S12(x). (A.29)

To bound S11(x) we split into two terms

S11(x)

=

∫
R

∆h′∂x∆h′ − ∂xh′∂2
xh
′y2

(y2 + θ2)
2 g(x− y)dy +

∫
R

γ(∂x∆h′ − ∂2
xh
′y)

(y2 + θ2)
2 g(x− y)dy

∼
∫
R

∆h′∂x∆h′ − ∂xh′∂2
xh
′y2

(y2 + θ2)
2 g(x− y)dy.

The last line follows from the bound (∂x∆h′ − ∂2
xh
′y) - C2(|y|+ 1) and lemma A.7.

The next term is more complicated as in principle the numerator scales as y2 which is not enough to
apply our lemmas. As before we Taylor ∆h up to second order and differentiate to obtain ∆h′∂x∆h′ =
paxh

′∂2
xh
′y2 +G(∂jxh

′)|y|3 + C|y|α. Being explicit,

G = ∂xh
′∂3
xh
′ + (∂2

xh
′)2 + ∂2

xh
′∂3
xh
′)

which is uniformly bounded in x since h′ ∈ H4. Since terms of the type∫
R

G(h′)

(y2 + θ2
lin)2

g(x− y)

are estimated like our terms kji(x) we can subtract them freely. Hence

|S11in(x)| ≤
∫
|y|3+α

(y2 + θ2)
dy +G(h′)(x)

∫
y3

(
1

(y2 + θ2
lin)2

− 1

(y2 + θ2)2

)
.

S12(x) is easy by now. It can be estimated as M2(x) in (A.28). This finishes the estimation of
S1(x).

To bound S2(x) we split it into two terms

S2(x)

=

∫
R
y

(
∂xh

′(x− y)∂x∆h′ + θ∂2
xh
′(x− y)− ∂xh′∂2

xh
′y − (∂xh

′y + γ)∂2
xh
′

(y2 + θ2)
2

)
g(x− y)dy

+

∫
R
y
(
∂xh

′∂2
xh
′y + (∂xh

′y + γ)∂2
xh
′)( 1

(y2 + θ2)
2 −

1

(y2 + θ2
lin)

)
g(x− y)dy

≡S21(x) + S22(x). (A.30)

The term S22 has the correct behaviour in powers of y and γ to deal with them S21(x) we add
freely a term
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1

2
∂3
xh
′(x)

∫
y3

(y2 + θ2
lin)

dy

and proceed exactly as with S11.
Finally, it remains to bound S3(x). Since the computation are longer but no new idea is needed

we skip the details.
Then we have achieved the conclusion of lemma 4.9.

A.3 Estimates for the velocity

Lemma A.11 Let u be like in expression (4.17) with f and ε = ct in theorem 4.1. Then u ∈ L∞(R2)
and

||u(·, t)||L∞(R2) ≤ P (||f ||H4)

for some smooth function P .

Proof:
In this proof C stands for a constant that may depend on ||f ||H4 and on the regularity of c(x, t).

The velocity in (4.17) reads

u(x) =
1

π
P.V.

∫
R

1

2

∫ 1

−1

x1 − y
|(x1 − y, x2 − f(y)− ε(y)λ′)|2

(1, ∂xf(y) + ∂xε(y)λ′)dλ′dy.

And evaluating in at (x, f(x) + λ), (x, λ) ∈ R2, we have that

u(x, λ+ f(x)) =
1

π
P.V.

∫
R

1

2

∫ 1

−1

x− y
|(x− y,∆f(x, y) + (λ− ε(y)λ′))|2

(1, ∂x, f(y) + ∂xε(y)λ′)dλ′dx′

with ∆f(x, y) = f(x)− f(y). Next we check that the integral

I(x) =P.V.

∫
R

x− y
(x− y)2 + (∆f(x, y) + λ− ε(y)λ′)2

dy

= P.V.

∫
R

y

(y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
dy (A.31)

belongs to L∞(dx) uniformly in λ ∈ R and λ′ ∈ [−1, 1]. In order to do it we split (A.31) into two
parts

I1(x) = P.V.

∫
R

y

y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
− y

y2 + ((∂xf(x) + ∂xε(x)λ′)y + λ− ε(x)λ′)2
dy

I2(x) = P.V.

∫
R

y

y2 + ((∂xf(x) + ∂xε(x)λ′)y + λ− ε(x)λ′)2
dy.

We will denote

A′λ = ∂xf(x) + ∂xε(x)λ′, σλ′ =
1

1 +A2
λ′
, γ = λ+ ε(x)λ′.

Thus

I2(x) = σλ′P.V.

∫
R

y

(y + σλ′A′λγ)2 + γ2σ2
λ′
dy
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= σλ′P.V.

∫
R

y + σλ′Aλ′γ

(y + σλ′Aλ′γ)2 + γ2σ2
λ′
dy − σλ′

∫
R

σλ′Aλ′γ

(y + σλ′Aλ′γ)2 + γ2σ2
λ′
dy.

The first integral on the right hand side of the previous equation is equal to zero. The second one is
a bounded integral for every value of γ ∈ R and λ′ ∈ [−1, 1].

In order to bound I1(x) we split it into two terms

I11(x) =

∫
|y|<1

y

y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
− y

y2 + (Aλ′y + γ)2
dy

I12(x) = P.V.

∫
|y|>1

y

y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
− y

y2 + (Aλ′y + γ)2
dy.

To bound I12(x) we consider I121(x) and I122(x) with

I121(x) = P.V.

∫
|y|>1

y

y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
dy

= P.V.

∫
|y|>1

(
y

y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2
− y

y2 + λ2

)
dy

and

I122(x) = P.V.

∫
|y|>1

y

y2 + (Aλ′y + γ)2
dy

= P.V.

∫
|y|>1

(
y

y2 + (Aλ′y + γ)2
− y

(1 +A2
λ′)y

2 + γ2

)
dy.

Then

|I121(x)| ≤ C
∫
|y|>1

(1 + |λ|)
|y|(y2 + λ2)

dy ≤ C,

and

|I122(x)| ≤ C
∫
|y|>1

|γ|
(y2 + γ2)

dy ≤ C.

To bound I11(x) we notice that

(Aλ′y + γ)2 − (∆f(x, x− y) + λ− ε(x− y)λ′)2

= (Aλ′y + γ −∆f(x, x− y)− λ+ ε(x− y)λ′)(Aλ′y + ∆f(x, x− y) + γ + λ− ε(x− y)λ′).

In addition,

Aλ′y + γ −∆f(x, x− y)− λ+ ε(x− y)λ′ = ∂xf(x)y −∆f(x, x− y) + (−ε(x) + ε(x− y) + ∂xε(x)y)λ′

Then ∣∣(Aλ′y + γ)2 − (∆f(x, x− y) + λ− ε(x− y)λ′)2
∣∣ ≤ Cy2,

and

|Aλ′y + ∆f(x, x− y) + γ + λ− ε(x− y)λ′| ≤ C(|y|+ |2λ− (ε(x) + ε(x− y))λ′)

≤ C(|y|+ 2|(λ− ε(x)λ′|+ |ε(x)− ε(x− y)||λ′| ≤ C(|y|+ |γ|).
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|I11| ≤ C
∫
|y|<1

|y|3(|y|+ |γ|)
(y2 + (Aλ′y + γ)2)(y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2)

dy. (A.32)

Since we can bound

|y|4

(y2 + (Aλ′y + γ)2)(y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2)
≤ C,

the first integral in (A.32) is easy to bound. In addition for |γ| > 4(||f ||L∞ + ||ε||L∞) we have that

(∆f + λ− ε(x− y)λ′)2 = (∆f + (ε(x)− ε(x− y))λ′ + γ)2 ≥ γ2

4
,

so that, in this range

|y|3|γ|
(y2 + (Aλ′y + γ)2)(y2 + (∆f(x, x− y) + λ− ε(x− y)λ′)2)

≤ |y||γ|
y2 + 1

4γ
2
,

and we can estimate the second integral. In the range |γ| ≤ 4||Aλ′ ||L∞ we can apply lemma A.7. This
concludes the proof of the bound of I(x).

The bound

J(x) = P.V.

∫
R

y

(y2 + (∆f(x, x− y) + λ+ ε(x− y)λ′)2
(∂xf(x− y) + ∂xε(x− y)λ′)dy.

follows similar steps.
Then we have achieved the conclusion of lemma A.11. �

Lemma A.12 Let f and ε = ct be as in theorem 4.1. Then the velocity u]c(x, λ) satisfies

|u]c(x, λ)− u]c(x, λ′)| ≤ Ct,

where C depends on ||f ||H4 but it does not depend on either x, λ or λ′.

Proof:
Recall that

u]c(x, λ) =

∫ 1

−1

kθ(x, y)∂xθdydλ
′.

Then it is enough to prove that the function

h(x, λ) =

∫
R

y

y2 + θ2
∂xθdy

satisfies ||∂λh||L∞(dx) ≤ |||f |||t for every λ. In addition, by Sobolev’s embedding we reduce the problem
to prove that ||∂λh||H1(dx) ≤ |||f |||t. We notice that

∂λh(x, λ) = ε(x)

∫
R

2yθ

(y2 + θ2)
2 ∂xθ.

The L2 − norm of this function can be bounded in the same way we bounded k31d
2 (x) in (A.18) and

N(x) in (A.22). By taking a derivative with respect to x we have

∂x∂λh(x, λ) = εx

∫
R

2yθ

(y2 + θ2)
2 ∂xθ + ε

( ∫
R

2yθ

(y2 + θ2)
2 ∂

2
xθ +

∫
R

2y

(y2 + θ2)
2 (∂xθ)

2 − 2

∫
R

2yθ2

(y2 + θ2)
3 ∂xθ

)
.

The first two terms can be bounded exactly as we bound N(x) in (A.22). The third can be bounded
in the same way that k31d

2 (x) in (A.18) and N(x) in (A.22). The last term can be bounded by using
a similar strategy, though a different pseudodifferential operator arises.

�
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A.4 Estimates on the coefficient a(x, t).

The function a(x, t) is given by the expression

a(x, t) = P.V.

∫
R
K(x, y)dy

where the principal value is taken at 0 and at the infinity. We need to prove the next lemma

Lemma A.13 Let f and ε = ct be as in theorem 4.1. The following estimate holds:

||∂xa||H2 ≤ |||f |||.

Proof: We will use the same convection than in appendix A.1. Recall that we can express

a(x, t) =

∫ 1

−1

∫ 1

−1

y

y2 + θ2
dydλdλ′

and thus, if we set ∫
kjiθ (x, y)dy = k̄ij ,

we need to show that for j = 1, 2, 3, 4 and every i.

k̄ij ∈ L2

The estimation in fact are often easier than in subsection A.1.2. All the outer integrals are automatic
since the terms ∂j−i∆θ do not appear in the numerators. The inner integrals can also be dealt with.

We sketch the case with j = 3 which is the most singular and leave the rest to the energetic
reader. From the fourth terms corresponding to (A.18) we can directly bound the inner integrals of
k̄31

1 , k̄31
3 , k̄31

4 by means of lemma A.4 whereas k̄31
2 is equal to N in (A.22), with g = ∂xθ

3 directly. The
other two terms are easily bounded. Namely we have the bounds,

|k̄32
in(x)| =

∫
|y|≤1

yθ∂xθ(∂xθ)
2 + θ∂2

xθ

(y2 + θ2)3
dy ≤ y5 + yγ4

(y2 + θ2)3

|k̄33
in(x)| =

∫
yθ3 + ∂xθ

3

(y2 + θ2)4
dy ≤ C

∫
|y|7 + yγ6

(y2 + θ2)4
dy.

For a = 3, 4, the terms with y|γ|2a−2 in the numerator are directly bounded by lemma A.7, whereas
the term with |y|2a−1 is bounded in the usual two steps. Firstly, we use Lemma A.6 to replace θ by
θlin and then obtain the estimate with lemma A.9. The rest of the derivatives are bounded in the
same way.

�

B Symbols and Estimates

B.1 Fourier transform of Kc,c′

A (x)

Lemma B.1 Let Kc′,c
A the function given by the expression

Kc,c′

A (x) =
1

4π

∫ 1

−1

∫ 1

−1

y

y2 + (Ay + c′tλ′y + ct(λ− λ′))2
dλdλ′.
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Then

K̂c,c′

A (ξ) =
−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

(
2− e2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1) − e2πσλ′ct|ξ|(1−λ

′)(Aλ′ isign(ξ)−1)
)
,

and

K̂c,0
A (ξ) =

−isign(ξ)

2πct|ξ|

(
1 +

1

4πct|ξ|

(
e−4πσct|ξ| (cos(4πσAct|ξ|)−A sin(4πσAct|ξ|))− 1

))
. (B.1)

where

Aλ′ = A+ c′tλ′, σλ′ =
1

1 +A2
λ′
.

Proof: We first notice that, if we call

γ = ct|λ− λ′|,

we can write

y2 + (Ay + c′λ′ty + ct(λ− λ′))2 = (1 + (A+ c′λ′t)2)y2 + c2t2(λ− λ′)2 + 2(A+ c′λ′t′)yct(λ− λ′)

=
1

σλ′

(
y2 + 2σλ′Aλ′γsign(λ− λ′)y + σλ′γ

2
)

=
1

σλ′

(
(y + σλ′Aλ′γsign(λ− λ′))2 + σλ′γ

2 − σ2
λ′A

2
λ′γ

2
)

=
1

σλ′

(
(y + σλ′Aλ′γsign(λ− λ′))2 + σ2

λ′γ
2
)
.

And then

Kc,c′

A (x) =
1

4π

∫ 1

−1

∫ 1

−1

σλ′y

(y + µ)2 + ν2
dλdλ′

with µ = σλ′Aλ′γsign(λ− λ′) and ν = σλ′γ.
With these notations Fourier transforms are easier as they resemble the relation between Poisson

and Abel kernels. We can compute that

F
[

y

(y + µ)2 + ν2

]
(ξ) = F

[
y + µ

(y + µ)2 + ν2

]
(ξ)− µF

[
1

(y + µ)2 + ν2

]
(ξ)

= e2πiξµ

(
F
[

y

y2 + ν2

]
(ξ)− µF

[
1

y2 + ν2

]
(ξ)

)
= e2πiξµe−2πν|ξ|π

(
−isign(ξ)− µ

ν

)
.

Therefore

K̂c,c′

A (ξ) =
1

4

∫ 1

−1

∫ 1

−1

σλ′e
2πiσλ′Aλ′ct(λ−λ

′)ξe−2πσλ′ct|λ−λ
′||ξ| (−isign(ξ)−Aλ′sign(λ− λ′)) dλdλ′.

(B.2)

For visualization set ctσ′λ2πi|ξ| = a in the next estimates∫ 1

−1

eaAλ′ isign(ξ)(λ−λ′)e−a|λ−λ
′| (−isign(ξ)−Aλ′sign(λ− λ′)) dλ

=

∫ λ′

−1

ea(1+iAλ′ sign(ξ))(λ−λ′) (−isign(ξ) +Aλ′) dλ
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+

∫ 1

λ′
ea(−1+iAλ′ sign(ξ))(λ−λ′) (−isign(ξ)−Aλ′) dλ,

=
−isign(ξ) +Aλ′

a(1 + iAλ′sign(ξ))

(
1− ea(−1−λ′)(Aλ′ isign(ξ)+1)

)
+
−isign(ξ)−Aλ′
a(iAλ′sign(ξ)− 1)

(
ea(1−λ′)(Aλ′ isign(ξ)−1) − 1

)
= −isign(ξ)

1

a

(
2− ea(−1−λ′)(Aλ′ isign(ξ)+1) − ea(1−λ′)(Aλ′ isign(ξ)−1)

)
.

Thus

K̂c,c′

A (ξ) =
−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

(
2− e2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1) − e2πσλ′ |ξ|(1−λ

′)(Aλ′ isign(ξ)−1)
)
dλ′.

This proves the first identity of lemma B.1.
By taking c′ = 0 we have that

K̂c,0
A (ξ) =

−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

(
2− e2πσct|ξ|(−1−λ′)(Aisign(ξ)+1) − e2πσ|ξ|(1−λ′)(Aisign(ξ)−1)

)
dλ′, (B.3)

where σ = 1
1+A2 . Integrating in λ′ yields

I =

∫ 1

−1

e−2πσct(1+λ′)|ξ|(1+iAsign(ξ))dλ′ =
1

2πσct|ξ|(1 + iAsign(ξ))

(
1− e−4πσct(1+iAsign(ξ))|ξ|

)
and

II =

∫ 1

−1

e2πσct(−1+λ′)|ξ|(1−iAsign(ξ))dλ′ =
1

2πσct|ξ|(1− iAsign(ξ))

(
1− e−4πσct(1−iAsign(ξ))|ξ|

)
.

However

I + II =
2

2πσct|ξ|
Re (I) .

Now if we notice that

Re

(
1

1 + iAsign(ξ)

)
= σ, Re

(
e−4πσctiAξ

1 + iAsign(ξ)

)
= σ (cos (4πσAct|ξ|)−A sin (4πσctA|ξ|)) ,

equality (B.1) follows.
�

B.2 Estimations of the various symbols

In this section we will use the notation tξ = τ . In the following estimates:

1. A is function in H3.

2. The function c is as in the statement of theorem 4.1.

3. We can consider that the time t << 1.
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To alleviate the notation we introduce the following auxiliar function

h(x, τ) =
1

cτ

{
1 +

1

4πcτ

(
e−4πcτσ (cos(4πcτσA)−A sin(4πcτσA))− 1

)}
=

1

cτ
(1 + h2(τ))

(B.4)

with

h2(x, τ) =
1

4πcτ

(
−1 + e−4πσcτ (cos(4πσAcτ)−A sin(4πσAcτ))

)
and σ = 1

1+A2 .
We emphasis that h and h2 depend on x just through A and c.
Notice that (B.1) implies that

2πisign(ξ)K̂c,0
A (ξ) = h(x, τ).

We will omit that h depends on A as well. We study the regularity of the function h in detail.

Lemma B.2 The following identities holds:

h2(x, τ) = −
∫ 1

0

e−4πσcττ1 cos(4πσAcττ1)dτ1, (B.5)

h(x, τ) = 4πσ

∫ 1

0

∫ 1

0

e−4πσcττ1τ2τ1 (cos(4πσAcττ1τ2) +A sin(4πσAcττ1τ2)) dτ2dτ1. (B.6)

The following estimate not only gives us how the symbol p grows but it also implies lemma 4.11,
the key in showing that p+ is positive for small times.

Lemma B.3 Let ϕ, h defined as above. The following estimates hold:

|h(x, τ)| ≤
1
c

1 + τ
+

2|A|+ 5 + 8π

1 + (τ)2
,

|∂Ah(x, τ)|+ |∂ch(x, τ)| ≤ 〈A〉
1 + τ

,

(B.7)

and

(ϕ(τ)− h(x, τ)) ≥
1− 1

c

1 + τ
+
B − (2|A|+ 5 + 8π)

1 + τ2
. (B.8)

Proof: We start with τ = t|ξ| ≥ 1. Since c ≥ 1 we have that

1

cτ

(
1 +

1

4πcτ

(
e−4πσcτ (cos(4πσAcτ)−A sin(4πσAcτ))− 1

))
≤ 1

cτ
+
|A|+ 2

τ2
.

But since for τ ≥ 1, 1
τ2 ≤ 2

1+τ2 and 1
τ = 1

1+τ + 1
τ −

1
1+τ = 1

1+τ + 1
τ+τ2 ≤ 1

1+τ + 1
1+τ2 . Then

1

cτ

(
1 +

1

4πcτ

(
e−4πσcτ (cos(4πσAcτ)−A sin(4πσAcτ))− 1

))
≤

1
c

1 + τ
+

2|A|+ 5

1 + τ2
.

For τ ≤ 1 we use the expression (B.2) to get uniform bounds on h and its derivatives.
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The derivatives of h for τ ≥ 1 are controlled by

|∂ch| ≤ C
(

1

c2τ
+

1

c3τ2
(1 + |A|) +

1

c2τ2
τ(1 + |A|) + τ(|A|+ |A|2) ≤ 〈A〉

τ

)
,

|∂Ah| ≤ C
(

1

c2τ2
τ(|A|+ |A|2)

)
.

If we combine (B.7) with the definition of ϕ, (B.8) follows as well. �

Lemma B.4 Let k = 1, 2, 3

|∂τh(x, τ)|+ |∂τ,Ah|+ |∂τ,ch| ≤ 〈A〉
1

1 + τ2
,

∂kxh(x, τ) ≤ 〈A〉
(
|∂xc|
1 + τ

+
|∂kxc|+ |∂kxA|

1 + τ2

)
,

∂kx∂τh(x, τ) ≤ 〈A〉
(
|∂xc|

1 + τ2
+
|∂kxc|+ |∂kxA|

1 + |τ |3

)
,

where the constant C depends on |∂ixc|+ |∂ixA| for i < k.

Proof:
For τ < 1 we use lemma B.2 and the result follows. For τ > 1, from the expression

h =
1

cτ
− 1

4πc2τ2
+

1

4πc2τ2
e−4πστ (cos(4πcσAτ)−A sin(4πcσAτ)) , (B.9)

we see that |∂τh| ≤ 〈A〉(1 + τ2)−1. In order to bound the derivatives on σ and A of ∂τh we see that
the two first terms in (B.9) do not cause any difficulty. The third one in (B.9) brings down a factor τ
but since c > 1 and σ ≥ 1

1+||A||L∞ we still have exponential decay. In order to bound the derivatives

with respect to x of h and ∂τh a similar argument applies.
�

We recall that

p =2πiξK̂c,0
A , pb =2πiξ (pmain − p) , pgood =

1

|ξ|
p− ϕ(t|ξ|), and p+ = −(1 + |ξ|)pgood.

Lemma B.5 Given t > 0, the symbols pb, t∂xpmain, pgood ∈ S1,1 with the following estimates.

i) ‖pb‖1,1 + ‖pgood‖1,1 ≤ 〈A〉

ii) ‖tpmain‖1,1 + ‖t∂xpmain‖1,1 + ‖∂ξpmain‖1,0 ≤ 〈A〉

Proof:
We start with the L∞ estimates (no x derivatives). The estimation of pb itself is the most subtle

so we address it first.
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1. Estimation of the L∞ norm of pb.

The fundamental theorem of calculus tell us that,

p− pmain

=
−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

∫ 1

0

d

ds
e−2πσsλct|ξ|(1+λ)(1+iAsλsign(ξ))dsdλ

+
−isign(ξ)

4 · 2πct|ξ|

∫ 1

−1

∫ 1

0

d

ds
e−2πσsλct|ξ|(1−λ)(1−iAsλsign(ξ))dsdλ

≡ T1 + T2.

Now we use the chain rule and that ∂sAsλ = c′tλ and ∂sσsλ = −2σ2
sλAsλc

′tλ to obtain that

2πiξT1

=
1

4ct

∫ 1

−1

∫ 1

0

2σ2
sλAsλc

′tλ2πct|ξ|(1 + λ)(1 + iAsλsign(ξ))e−2πσsλct|ξ|(1+λ)(1+iAsλsignξ)dsdλ

+
1

4ct

∫ 1

−1

∫ 1

0

c′tλisign(ξ)(−2πσsλct|ξ|(1 + λ))e−2πσsλct|ξ|(1+λ)(1+iAsλ)sign(ξ)dsdλ (B.10)

≡ T11 + T12. (B.11)

Now observe that the dangerous t in the denominator cancels out in both T11, T12. Thus, we are
entitled to take modulus and obtain the elementary bound:

|2πiξT1| ≤ C
∫ 1

−1

∫ 1

0

2πσsλct|ξ|(1 + λ)e−2πσsλct|ξ|(1+λ)dsdλ ≤ 〈A〉.

The estimation involving T2 is exactly analogous and thus ‖pb‖L∞ ≤ 〈A〉.

2. Estimation of the L∞-norm of ∂ξ(2πiξ(K̂
c,0
A (ξ)− K̂c,c′

A (ξ))). We recall that

2πiξ(K̂c,0
A (ξ)− K̂c,c′

A (ξ))

=
1

4ct

∫ 1

−1

(
e2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1) + e2πσλ′ |ξ|(1−λ

′)(Aλ′ isign(ξ)−1)
)
dλ′

+
1

4ct

∫ 1

−1

(
e2πσct|ξ|(−1−λ′)(Aisign(ξ)+1) + e2πσ(1−λ′)(Aisign(ξ)−1)

)
dλ′

≡ U1 + U2.

In this case we can bound U1 and U2 separately and it is enough to estimate U1. In addition,

we can split U1 = U11 + U12 with U11 = 1
4ct

∫ 1

−1
e2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1)dλ′ and it easy to

see that the estimation of U11 and U12 follows similar steps. We have that

∂ξU11 =
1

4ct

∫ 1

−1

(−2πσλ′ct(1 + λ′)(sign(ξ) + iAλ′)e
2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1)dλ′

=
1

4

∫ 1

−1

(−2πσλ′(1 + λ′)(sign(ξ) + iAλ′)e
2πσλ′ct|ξ|(−1−λ′)(Aλ′ isign(ξ)+1)dλ′, (B.12)

and then |∂ξU11| ≤ 〈A〉.

3. The L∞ estimate for pgood follows directly from lemma B.3 and the definition of ϕ.
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4. To estimate pmain we notice that pmain = pb + p. We have already proved that pb is bounded
and recall that p = ξh(x, τ). Thus |p(x, ξ)| = 1

t τh(x, τ) and thus the estimate (B.7) implies
that ‖tpmain‖L∞ ≤ 〈A〉. Similarly, when estimating ∂ξpmain, by our uniform estimate on pb
we are reduce to estimate ∂ξp. Now notice that by the definition of p and the chain rule,
‖∂ξp‖L∞ = t

t‖∂τ (τh)‖ ≤ 〈A〉 where the last bound follows from the lemma B.4

5. Finally, we deal with the derivatives respect to x. Firstly, observe that tp(x, τ) = τh(x, τ) and
thus the estimates of the derivatives in x follow directly from those of h, which are explicitly
bounded in lemma B.4. Hence we obtain that

‖tp‖1,1 + ‖t∂xp‖1,1 + ‖∂ξpb‖1,0 ≤ 〈A〉. (B.13)

Next we look at the x derivatives of pb, ∂ξpb. We have done all the work as in the expressions,
of T11, T12, U1, U2 the only difficulty occurs when after the use of chain rule we differentiate A
and c. Thus we obtain that

‖pb‖1,1 + ‖∂xpb‖1,1 ≤ 〈A〉. (B.14)

Since, p
ξ = h(x, τ) and ϕ is explicit lemma B.3, lemma B.4 imply readily the bounds for

‖pgood‖1,1 ≤ 〈A〉 and thus the claim i) follows. Claim ii), which deals with pmain, is an straight-
forward consequence of (B.13) and (B.14).

�

The following lemma is cumbersome as considering p
1
2
+ instead of p+ is less innocent than it seems.

In fact here is the only place where the existence of the constant c∞ is required.

Lemma B.6 Let 2|A|+ 5 + 8π < B
2 . The symbols p

1
2
+ and q = ∂ξp

1
2
+ satisfy that for 0 < ε < 1 it holds

that,

‖t 1
2 p

1
2
+‖1,1 ≤ 〈A〉, ||∂ξp

1
2
+||L∞(R2) ≤ 〈A〉, ‖∂x∂ξp

1
2
+‖L∞(R2) ≤ 〈A〉, sup

ξ∈R
(‖∂xq‖H2 + ‖∂xq‖Ḣ−ε) ≤ 〈A〉,

||t 1
2 ∂2
xp

1
2
+||L∞(R2) ≤ 〈A〉.

Proof:
We give the proof in the case c ≥ 1 + κ, and will explain at the end of the proof the modifications

for the case c = 1. We explain first the L∞ bounds then ∂xq ∈ Ḣ−ε and finally how to control the x
derivatives of both symbols.

1. Since,
tp+(x, ξ) = (t+ τ) (ϕ(τ)− h(x, τ)) (B.15)

it follows from (B.8) that

|p
1
2
+| ≤

〈A〉√
t
. (B.16)

Now we deal with q = ∂ξp
1
2
+(x, ξ). By product rule for derivatives,

q(x, ξ) =
1

2

sign(ξ)

(1 + |ξ|) 1
2

(ϕ(τ)− h(x, τ))
1
2

+ (1 + |ξ|) 1
2
tsign(ξ)

2
(ϕ(τ)− h(x, τ))

− 1
2 × ∂τ (ϕ(τ)− h2(τ)) . (B.17)
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The first term is innocent since (ϕ− h) is bounded. For the second we notice, that

t(1 + |ξ|) 1
2 ≤ t 1

2 (1 + |τ |) 1
2 , (ϕ− h)−

1
2 ≤ C(1 + τ)

1
2 , (B.18)

where the second inequality comes from lemma B.3. In addition, lemma B.4 implies that |∂τ (ϕ−
h)| ≤ 〈A〉

1+τ2 . Thus, the desired
|q(x, ξ)| ≤ 〈A〉.

follows.

2. That ∂xq ∈ Ḣ−ε follows from the existence of a constant q∞ such that q − q∞ ∈ L2. Since
the only x dependence of q is through A, c mwe will declare q∞(t, ξ) = q(0, c∞, t, ξ). Now by
plugging into (B.17) the bounds from lemmas B.3 amd B.4, it follows that |∇A,c|q ≤ 〈A〉. Then,
the mean value theorem applied to q as a function of A, c, yields that for every x ∈ R,

|q(x)− q∞| ≤ 〈A〉(|A(x)− 0|+ |c(x)− c∞|)

and since A is H3 and
∫
|c− c∞|2dx < C by assumption, the result follows. The proof to bound

||p
1
2
+||Ḣ−ε follows similar steps.

3. Now we compute ∂kxp
1
2
+(x, ξ) and ∂kxq. By chain and product rule ∂kxp

1
2
+(x, ξ) it is a sum of terms

of the type (1 + |ξ|) 1
2 (ϕ− h)

1
2−iΠ∑

αi=k∂
αi
x (ϕ− h) for i = 1, . . . , k. By (B.18) and lemma B.4

the most singular term is

(1 + |ξ|) 1
2 (ϕ− h)

1
2−k|∂xh|k ≤ t−

1
2 〈A〉|cx|+ |Ax|

(1 + τ)k

(1 + τ)k
≤ t− 1

2 〈A〉 (|cx|+ |Ax|) .

We move to q. We need to show that ∂xq ∈ L∞ for p
1
2
+ ∈ S1,1 and that ∂kxq ∈ L2 for k = 1, 2, 3.

By lemma B.2 we only need to give the details of the case τ > 1. Notice that when we differen-

tiate in (B.17) the derivatives of the first term still remain innocent as ∂kx (ϕ(τ)− h(x, τ))
1
2 has

been shown to be bounded by sup1≤i≤k |∂ixc|+ |∂ixA|. For the second term, again product rule
combined with lemma B.3 and B.4 implies that the most singular term is

t(1 + |ξ|) 1
2 (ϕ− h(x, τ)−

1
2−k|∂xh|k∂τ (ϕ(τ)− h(x, τ)) ≤ 〈A〉 (|∂xc|+ |∂xA|)

(1 + τ)k+1

(1 + τ)k(1 + τ2)
.

Notice that the terms ∂αix (ϕ− h) and ∂αix ∂τ (ϕ− h) will be less singular respect to τ and will be
controlled by 〈A〉(|∂αix c|+ |∂αix A|).

Finally, we mention that in the case c = 1, ∂xc = 0, thus their derivatives are bounded by powers
of 1

1+τ2 and lemma B.3 implies that (ϕ − h)−1 ≤ C
B (1 + τ2). The terms appearing in our various

derivatives compensate exactly in the same way.
�
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