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Abstract

Guided by numerical simulations, we present the proof of two results
concerning the behaviour of SQG sharp fronts and α-patches. We estab-
lish that ellipses are not rotational solutions and we prove that initially
convex interfaces may lose this property in finite time.

Keywords: Surface Quasigeostrophic, incompressible flow, contour dy-
namics, computer-assisted.

1 Introduction

Our goal in this article is to investigate some simple questions about the evolu-
tion of the surface quasi-geostrophic (SQG) front, some of which are well known
for the vortex patch problem. The surface quasi-geostrophic equation was intro-
duced in the mathematical community by Constantin, Majda and Tabak in [5].
This equation is derived considering small Rossby and Ekman numbers and con-
stant potential vorticity. It provides a mathematical description of the evolution
of the temperature from a general quasi-geostrophic system for atmospheric and
oceanic flows (see [20] for more details).

Leaving aside its interest from a geophysical point of view, the SQG equation
is a two dimensional model of the principal equations of inviscid fluid dynamics
in 3D, namely, the incompressible Euler equations. The SQG system is the
following set of equations: ∂tθ(x, t) + u(x, t) · ∇θ(x, t) = 0, (x, t) ∈ R2 × R+

u(x, t) = ∇⊥Ψ(x, t)
θ(x, t) = ΛΨ(x, t)

(1)

where Λ = (−∆)
1
2 and Ψ is the stream function.

The first equation simply represents the fact that the temperature, θ, is
advected by the velocity u. The second and third equations relate the tempera-
ture, θ, with the velocity, u, through a non local operator. Those two equations
can be rewritten as u = (−R2θ,R1θ) where Ri are the Riesz Transforms, given
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in R2 by

Ri(f)(x) =
1

2π

∫
R2

(xi − yi)f(y)

|x− y|3
dy.

Motivated by the articles [5] and [12], a lot of effort has been devoted to
understanding these equations. In particular, the problem of whether the SQG
system presents finite time singularities or not is open.

The existence of global weak solutions in L2 was proven by Resnick in [21]
using an extra cancellation due to the oddness of the Riesz transform. A par-
ticular kind of weak solution for an active scalar are the so called patches, i.e.,
solutions for which θ is a step function:

θ(x) =

{
θ1, if x ∈ Ω(t)
θ2, if x ∈ Ω(t)c,

(2)

where Ω(0) is given by the initial distribution of θ, and Ω(t) is the evolution
of Ω(0) under the velocity field u given by u(x, t) = ∇⊥Λ−1θ(x, t).

The evolution of such distribution is completely determined by the evolu-
tion of the boundary, allowing the problem to be treated as a non-local one
dimensional equation for the contour of Ω(t). In this setting, local existence of
smooth solutions was first obtained for analytic curves by Rodrigo in [22]. The
question of local existence of simply connected patches with Sobolev regularity
of its boundary was addressed by Gancedo in [9].

To get a better understanding of the behaviour of solutions of these inter-
face problems, several numerical experiments have been performed. In [6] the
problem of the evolution of two patches is studied. Their simulations suggest
an asymptotically self-similar singular scenario in which the distance between
both patches goes to zero in finite time while simultaneously the curvature of
the boundaries blows up. Recently, Gancedo and Strain [10] proved that in fact,
no splash singularity can be formed, i.e., two interfaces can not collapse in a
point, if the interfaces remain smooth.

Also in [6], a new family of patch problems interpolating between the vortex
patch and the SQG patch is introduced: the α-patch model. For the vortex
patch problem, the velocity field is obtained as v = ∇⊥∆−1θ, where θ is the
vorticity, while for SQG the velocity is given by v = ∇⊥∆−

1
2 θ. The velocity of

the α-patch is defined by v = ∇⊥∆−(1−
α
2 )θ, for α ∈ (0, 2). The local existence

proof for α ∈ (1, 2) can be found in [3].
The evolution equation for the interface of an α− patch, which we parametrize

as a 2π periodic curve z(x), can be written as

∂tz(x, t) = −
(θ2 − θ1)Γ(α2 )

π222−αΓ( 2−α
2 )

∫ 2π

0

∂xz(x, t)− ∂xz(x− y, t)
|z(x, t)− z(x− y, t)|α

dy (3)

if 0 < α < 2, and as

∂tz(x) =
(θ2 − θ1)

2π

∫ 2π

0

log(|z(x)− z(x− y)|)∂xz(x− y)dy (4)
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for the vortex patch, due to the fact that the evolution of the boundary of
the patch is unchanged if the velocity is modified by adding a tangential term
to the boundary, since that amounts just to a change of parametrization of the
interface. For more details see [9], [22]. We make use of this property in our
numerical simulation, adding a tangential term in order to keep the modulus of
the tangent vector constant in space.

In [23], based on numerical simulations, it is suggested that an elliptical patch
with a big aspect ratio between its axes may develop a self-similar singularity
with an explosive growth of the curvature. In [24], it was already pointed out
that small perturbations of thin strips may lead to a self similar cascade of
instabilities, leading to a possible arc chord blow up.

Beyond that, very little is known about the qualitative behaviour of patch
like solutions of the SQG equation.

The analogous problem for the vorticity formulation of 2D Euler (α = 0)
is better understood. The global existence and uniqueness of weak solutions
of the 2D Euler in vorticity formulation is due to Yudovich [27]. Regularity
preservation for C1,α patches was obtained by Chemin using techniques from
paradifferential calculus in [4]. Another proof of that result, which highlights
the extra cancellation on semi spheres of even kernels, can be found in [1] by
Bertozzi and Constantin.

In recent years, Denisov has studied the process of merging for the vortex
patch problem. This is the scenario showed by the numerics of [6] for the alpha-
patch. However, for the vortex patch problem, the collapse in a point can not
happen in finite time, the distance between the two patches can decay at most
as fast as a double exponential. Denisov proves, in [8], that this bound is sharp
if one is allowed to modify slightly the velocity by superimposing a smooth
background incompressible flow.

In addition, it is known that there exist several solutions which evolve by
rotating with constant angular velocity around its center of mass. The ellipses
are the most well known example of solutions exhibiting this behaviour, and in
fact, the only simply connected ones for which there are explicit formulae. The
existence of that kind of solutions can be proven by a bifurcation analysis from
the circular solution. For more details, see [13] and references therein.

Nowadays, the bigger computation capacity of computers has lead to their
use as a mathematical tool. However, floating-point operations can result in
numerical errors. To deal with this matter and be able to prove rigorous re-
sults, we use the so-called interval arithmetics, in which instead of working with
arbitrary real numbers, we perform computations over intervals which have rep-
resentable numbers as endpoints. On these objects, an arithmetic is defined in
such a way that we are guaranteed that for every x ∈ X, y ∈ Y

x ? y ∈ X ? Y,

for any operation ?. For example,

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]

We can also define the interval version of a function f(X) as an interval I that
satisfies that for every x ∈ X, f(x) ∈ I. Rigorous computation of integrals has
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been theoretically developed since the seminal work of Moore and many others
[2, 16, 18, 19, 25], and has had applications in physics and fluid mechanics
[15, 11]. In order to perform them we used the C-XSC library [14].

Guided by new numeric simulations of the evolution of elliptical patches, we
establish the following two results for the general α-patch:

• The ellipses are not rotating patches for the equation (3) with 0 < α < 2.

• For every 0 < α < 2, there exists a solution of the α-patch equation that
begins convex, and after a finite time it is no longer convex. Moreover,
there exists a solution of the vortex patch problem that has the same
property.

The proof of those two results relies on establishing a sign for certain inte-
grals. For the first theorem, we can do it by performing certain manipulations in
the integral. However, for the second theorem we recur to a computer assisted
proof.

The article is organized as follows: In the second section we discuss our nu-
merical experiments. Section 3 presents a simple proof of the fact that ellipses
are not rotating solutions of the α-patch problem for α > 0. This is followed by
a computer assisted proof of the loss of convexity in Section 4.

2 Numerical Simulations

In order to obtain insight on how the ellipses evolve under SQG dynamics we per-
formed simulations for elliptical SQG patches with varying aspect ratio. From
these simulations three main differences with the behaviour under vortex patch
evolution are easily appreciated:

• The ellipses are not rotating solutions.

• Initially convex patches may lose that property.

• Possible singularity formation.

For ellipses with an aspect ratio close to 1, the evolution is similar to the one
of the vortex patch problem, since all points at the boundary behave in similar
way. However, as the aspect ratio is increased, the fact that the ellipses do not
rotate and lose convexity becomes clearer.

Figures 1-3 represent four timestamps for the evolution of the ellipses with
principal semiaxes 1-3, 1-5 and 1-6. The patch with initial data z(x) = (cos(x), 3 sin(x))
displays a combination of a rotating motion with a smaller scale oscillation which
leads to loss of convexity.

When the bigger semiaxis is increased to 5, z(x) = (cos(x), 5 sin(x)), the
patch exhibits an almost periodic behaviour in which the arc chord, i.e., the
distance between different points at the boundary, decreases but eventually
increases again. In addition, the loss of convexity is evident. See Figure 2.

For the ellipses with a bigger difference between its principal semiaxes, the
simulations suggest that the arc chord goes to zero in finite time, developing a
singularity. This question has already been addressed in [23] and [24], where
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Figure 1: Semiaxes 1-3, t = 10, 20, 30, 40

Figure 2: Semiaxes 1-5, t = 10, 20, 30, 40

more precise numerical simulations are discussed which suggest a self similar
behaviour. We remark that our simulations are here used as a tool to gain
intuition, not as a final purpose themselves and are by no means of a comparable
accuracy to those in [23, 24].

The numerical simulations were performed using a contour dynamics algo-
rithm. The interface is discretized by a 512 point grid and the interface evolves
in time with a tangential component such that it maintains |∂xz| constant in
space. In addition, derivatives are computed by a Fourier method with an expo-
nential filter. Evolution in time is carried over by an adaptive step Runge-Kutta
45 pair.
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Figure 3: Semiaxes 1-6, t = 10, 20, 25, 28

Figure 4: Semiaxes 1-10, t = 10, 20, 30, 32

3 Rotating solutions

The purpose of this section is to show some differences between the rotating
solutions of the vortex patch and the α-patch problem.

It is well known that the circular patch is a steady solution of all those
problems, as can be easily seen by noticing that the operator (−∆)1−

α
2 is a

radial multiplier, and hence, it maps radial functions into radial functions. Since
the velocity field is the skew gradient of (−∆)1−

α
2 θ, where θ denotes the step

function of the patch, the velocity field is tangent to the level sets of θ, leaving
them invariant.

In addition to the circular patch, for the vortex patch problem, there is
a family of rotating solutions, the so called V-states. These are patches which
only rotate around their center of mass with constant angular velocity and which

6



have n-fold symmetry. The other remarkable property of V-states is that they
have n-axes of symmetry. Some numerical results about the shape of V-states
can be found in [7] and [26] and references therein. The existence of V-states
can be proven by a bifurcation analysis from the circle. However, there is no
explicit formula for the V-states with more than two axes of symmetry, which
correspond to ellipses. The fact that the ellipses are rotating solutions for the
vortex patch problem is a classical result [17]. However, we will show that
ellipses are not rotating α-patches, for α > 0.

Theorem 3.1 The ellipses are not rotating patches for the equation (3) with
0 < α < 2.

Proof: Assuming that the center of mass of the patch is the origin, the condi-
tion that the patch rotates with constant angular velocity is equivalent to the
existence of an Ω such that:

∂tz(x, t) = iΩz(x, t),

for all x ∈ [0, 2π], where z(x, t) is a complex parametrization of the boundary.
Since the evolution of the patch is completely determined by the normal com-

ponent of the velocity at the boundary, it is enough to check that the previous
identity is not satisfied in the normal direction.

Plugging z(x, t) = (R1 cos(x), R2 sin(x)) into the integral formula for the
velocity and taking the inner product of both sides of the previous equation
with ∂xz(x)⊥, we are led, after some lengthy manipulations, to check that

F (x) = CR1,R2,α

∫ 2π

0

sin(x−y2 ) cos(x−y2 )

(sin2(x−y2 ))
α
2 (1 +R cos(x+ y))

α
2

dy

where R =
R2

1−R
2
2

R2
1+R

2
2
, 0 < R < 1, and

G(x) = sin(2x)

are not proportional.

We will do so by showing that H(x) = F (x)
G(x) has different limits at x = 0 and

x = π
2 . F vanishes both at x = 0 and x = π

2 due to the fact that the integrand
is odd with respect to those points, and hence, H(x) is continuous at x = 0 and
x = π

2 with limits

H(0) =
F ′(0)

2
, H

(π
2

)
= −

F ′(π2 )

2
.

We will check that H(0)−H(π2 ) = 1
2 (F ′(0) + F ′(π2 )) > 0.

Taking derivatives with respect to x and evaluating at x = 0 and x = π
2 , we

obtain
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F ′(0) + F ′
(π
2

)
= Cα,R

∫ 2π

0
sin
(y
2

)1−α
cos
(y
2

)( R sin(−y)
(1−R cos(−y))

α
2
+1

−
R sin(y)

(1−R cos(y))
α
2
+1

)

+ Cα,R

∫ 2π

0
sin
(y
2

)1−α
cos
(y
2

)( R sin(π − y)

(1−R cos(π − y))
α
2
+1

−
R sin(π + y)

(1−R cos(π + y))
α
2
+1

)
dy

=Cα,R

∫ π

0
sin
(y
2

)2−α
cos
(y
2

)2( 1

(1−R cos(y))
α
2
+1

−
1

(1 +R cos(y))
α
2
+1

)
dy

=Cα,R

∫ π
2

0
sin
(y
2

)2−α
cos
(y
2

)2( 1

(1−R cos(y))
α
2
+1

−
1

(1 +R cos(y))
α
2
+1

)
dy

− Cα,R

∫ π
2

0
cos
(y
2

)2−α
sin
(y
2

)2( 1

(1−R cos(y))
α
2
+1

−
1

(1 +R cos(y))
α
2
+1

)
dy

=Cα,R

∫ π
2

0

(
sin
(y
2

)2−α
cos
(y
2

)2
− cos

(y
2

)2−α
sin
(y
2

)2)( 1

(1−R cos(y))
α
2
+1

−
1

(1 +R cos(y))
α
2
+1

)
dy

=Cα,R

∫ π
2

0
sin
(y
2

)2−α
cos
(y
2

)2−α (
cos
(y
2

)α
− sin

(y
2

)α)( 1

(1−R cos(y))
α
2
+1

−
1

(1 +R cos(y))
α
2
+1

)
dy,

where the constant Cα,R might change from line to line. Finally, the last inte-
gral is strictly positive since cos(x) > sin(x) > 0 for 0 ≤ x ≤ π

4 .

�

4 Loss of convexity

This section is devoted to prove the following theorem:

Theorem 4.1 For every 0 < α < 2, there exists a solution of the α-patch
equation (3) that begins convex, and after a finite time it is no longer convex.
Moreover, there exists a solution of the vortex patch problem that has the same
property.

We start with some technical lemmas:

Lemma 4.2 Let

kC(x) =4π2((π4 − 3x4) cos(C − x)− x(π2 − x2)2 sin(C − x)), C ∈ {0.15, 0.45}
d1(x) =− 4π2x

d2(x) =− 4π2(π4 − 3x4)

d3(x) =− 8π2x(3π6 − 10π4x2 + 3π2x4 + 6x6)

d4(x) =− 8π2(3π10 − 6π8x2 − 58π6x4 + 132π4x6 − 45π2x8 − 30x10)

d5(x) =− 16π2x(15π12 − 170π10x2 + 264π8x4 + 300π6x6 − 765π4x8 + 270π2x10 + 90x12)

d6(x) =− 16π2(15π16 − 270π14x2 − 1005π12x4 + 7102π10x6 − 9645π8x8 + 930π6x10

+ 8505π4x12 − 3150π2x14 − 630x16)
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Then, the following inequalities are true:

kC(x) > 0 for every x ∈ [−π, π]

d1(x) > 0 for every x ∈ [−π,−π + ε] and d1(x) < 0 for every x ∈ [π − ε, π]

d2(x) > 0 for every x ∈ [−π,−π + ε] ∪ [π − ε, π]

d3(x) > 0 for every x ∈ [−π,−π + ε] and d3(x) < 0 for every x ∈ [π − ε, π]

d4(x) > 0 for every x ∈ [−π,−π + ε] ∪ [π − ε, π]

d5(x) > 0 for every x ∈ [−π,−π + ε] and d5(x) < 0 for every x ∈ [π − ε, π]

d6(x) > 0 for every x ∈ [−π,−π + ε] ∪ [π − ε, π]

where ε = 0.0078125 = 1
128 .

Proof: The proof is computer-assisted and the codes can be found in the sup-
plementary material. To compute the positiveness or negativeness, the program
checks recursively halving the interval that is validating, until it either achieves
a sign condition or the interval is less than a minimum size (in our case 2·10−10).
The program passed all the checks without problems. �

From the previous lemma follow the next corollaries:

Corollary 4.3 Let

z1(x) = 2e
1− 1

1−( xπ )
2

− 1

z2(x) = sin(x− C),

be defined on [−π, π] and let C = 0.45 or C = 0.15. Then the curvature

K(x) = (−∂xxz1(x)∂xz2(x) + ∂xxz2(x)∂xz1(x))/(∂xz1(x)2 + ∂xz2(x)2)3/2

is only zero at x = π.

Proof: The proof follows from the fact that the denominator of K(x) is never

zero and the numerator is equal to kC(x)e
1− 1

1−( xπ )
2

. �

Corollary 4.4 Let z1(x), z2(x) be defined as in the previous corollary and let
ε = 1

128 . Then, for every x ∈ [−π,−π + ε], ∂kxz1(x) belongs to the convex hull
of ∂kxz1(−π) and ∂kxz1(−π + ε) and for every x ∈ [π − ε, π], ∂kxz1(x) belongs to
the convex hull of ∂kxz1(π − ε) and ∂kxz1(π) when k = 0, 1, 2, 3, 4, 5.

Proof: The proof is immediate after noticing that

∂kxz1(x) = dk(x)e
1− 1

1−( xπ )
2

/(x2 − π2)2k.

�

Proof of the Theorem: The proof of the theorem is computer-assisted and can be
found in the supplementary material. Let us explain the necessary reductions
of the problem to a computationally tractable one.
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The general strategy is the following: we will start with an initial condition
such that the curvature is zero at exactly one point x and positive otherwise.
Then, we will rigorously prove that the derivative of the curvature at that point
is different than zero. Since the α-patch equations are time reversible, we can go
a sufficiently small time forward and backward so that we are able to show that
there exists a solution that starts being convex and loses the convexity after a
finite time by choosing the initial jump of temperatures across the boundary to
be either +2π or −2π.

Remark 4.5 By the time reversibility of the equations, this also shows that
there are initial conditions that are non convex and in finite time they become
convex.

More precisely, we will show the following: if z1 and z2 are defined as in
Corollary 4.3, then:

• If C = 0.15, then Kt(x) < 0 if α ∈ [0, 0.08] and Kt(x) > 0 if α ∈
[0.09, 2.00).

• If C = 0.45, then Kt(x) < 0 if α ∈ [0, 0.09] and Kt(x) > 0 if α ∈
[0.10, 2.00).

We now detail the formulas needed for the computation of the time derivative
of the curvature.

∂t

(
〈zxx(x), z⊥x (x)〉

|zx|3

)
= −

(
〈∂tzx(x), z⊥xx(x)〉

|zx|3

)
+

(
〈∂tzxx(x), z⊥x (x)〉

|zx|3

)
+ 〈zxx(x), z⊥x (x)〉∂t

(
1

|zx|3

)
︸ ︷︷ ︸

0

,

where the last term is zero since the curvature is zero at the point at which we
are evaluating the expression. For the vortex patch equation, taking derivatives
from the contour equation (4) and integrating by parts yield

zt(x) =

∫
log(|z(x)− z(x− y)|)zx(x− y)dy

zxt(x) =

∫
log(|z(x)− z(x− y)|)zxx(x− y)dy

+

∫
〈z(x)− z(x− y), zx(x)− zx(x− y)〉

|z(x)− z(x− y)|2
zx(x− y)dy

= −
∫
〈z(x)− z(x− y), zx(x− y)〉

|z(x)− z(x− y)|2
(zx(x)− zx(x− y))dy

+

∫
〈z(x)− z(x− y), zx(x)− zx(x− y)〉

|z(x)− z(x− y)|2
zx(x− y)dy

zxxt(x) = −
∫
〈z(x)− z(x− y), zx(x− y)〉

|z(x)− z(x− y)|2
(zxx(x)− zxx(x− y))dy

+ 2

∫
〈z(x)− z(x− y), zx(x)− zx(x− y)〉

|z(x)− z(x− y)|2
zxx(x− y)dy

10



+

∫
|zx(x)− zx(x− y)|2

|z(x)− z(x− y)|2
zx(x− y)dy

+

∫
〈z(x)− z(x− y), zxx(x)− zxx(x− y)〉

|z(x)− z(x− y)|2
zx(x− y)dy

− 2

∫
(〈z(x)− z(x− y), zx(x)− zx(x− y)〉)2

|z(x)− z(x− y)|4
zx(x− y)dy,

whereas for the α-patch the derivatives are given by

zt(x) = cα

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|α
dy

zxt(x) = cα

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|α
dy

− cαα
∫

zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

zxxt(x) = cα

∫
zxxx(x)− zxxx(x− y)

|z(x)− z(x− y)|α
dy

− 2cαα

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

− cαα
∫

zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
|zx(x)− zx(x− y)|2dy

+ cαα(α+ 2)

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|4+α
(〈zx(x)− zx(x− y), z(x)− z(x− y)〉)2dy

− cαα
∫

zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zxx(x)− zxx(x− y), z(x)− z(x− y)〉dy.

Thus, in this case we need to validate the sign of a quantity which can be
represented as

cα

∫
F (α, x)dx = cαI(α).

The problem that we encounter is that for small values of α tending to zero,
cα tends to ∞ and I(α) tends to zero. To overcome this difficulty, we will
distinguish four regimes of α:

1. α = 0: the vortex patch equation.

2. α ≤ αcr: the small α region.

3. αcr ≤ α ≤ αbr: the big α region.

4. αbr ≤ α < 2: the very big α region.

In the first case, we are left to validate the sign of an integral which is
independent of α. We will show that this sign is negative for the functions
considered. In the second case, using the fact that for α strictly positive, 0 <
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cα <∞ and that I(0) = 0, it is enough to show that DI(α) = ∂αI(α) < 0. This
is the sign condition that we will validate in the second region. In the third and
fourth regions, we will validate I(α) < 0 or I(α) > 0 depending on the range
of α. We chose αcr = 0.04 and αbr = 1.95. We remark that both I(α) and
DI(α) have the same sign if multiplied by |zx|3. Therefore, in order to avoid
the division, we will compute the values of I(α)|zx|3 and DI(α)|zx|3.

The integral that we need to calculate in the small α region is

−
(
〈∂α∂tzx(x), z⊥xx(x)〉

cα|zx|3

)
+

(
〈∂α∂tzxx(x), z⊥x (x)〉

cα|zx|3

)
= DI(α)

where the derivatives with respect to α are given by

∂α

(
zxt(x)

cα

)
= −

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

−
∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|α
log(|z(x)− z(x− y)|)dy

+ α

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉 log(|z(x)− z(x− y)|)dy

∂α

(
zxxt(x)

cα

)
= −2

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

−
∫

zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
|zx(x)− zx(x− y)|2dy

+ (2α+ 2)

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|4+α
(〈zx(x)− zx(x− y), z(x)− z(x− y)〉)2dy

−
∫

zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zxx(x)− zxx(x− y), z(x)− z(x− y)〉dy.

−
∫
zxxx(x)− zxxx(x− y)

|z(x)− z(x− y)|α
log(|z(x)− z(x− y)|)dy

+ 2α

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉 log(|z(x)− z(x− y)|)dy

+ α

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
|zx(x)− zx(x− y)|2 log(|z(x)− z(x− y)|)dy

− α(α+ 2)

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|4+α
(〈zx(x)− zx(x− y), z(x)− z(x− y)〉)2 log(|z(x)− z(x− y)|)dy

+ α

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zxx(x)− zxx(x− y), z(x)− z(x− y)〉 log(|z(x)− z(x− y)|)dy.

There are some technical issues while calculating I(α) when α goes to 2 in
the very big region, namely that I(α) is not well defined for α = 2. To overcome
this difficulty, we will extend I(α) to a function Ĩ(α) such that I(α) = Ĩ(α) for
α < 2 and Ĩ(2) is well defined.

In order to carry out this extension, we just notice that
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∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|α
dy =

∫ (
zx(x)− zx(x− y)

|z(x)− z(x− y)|α
− zxx(x) sgn(y)∣∣2 tan

(
y
2

)∣∣α−1
)
dy.

Then,

Ĩ(α) = −
(
〈∂tz̃x(x), z⊥xx(x)〉

cα|zx|3

)
+

(
〈∂tz̃xx(x), z⊥x (x)〉

cα|zx|3

)
,

where

z̃xt = cα

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|α
dy − cα

zxxx(x)

|zx(x)|α

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
− cαα

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

+ cαα
zxx(x)

|zx(x)|2+α
〈zxx(x), zx(x)〉

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
z̃xxt = cα

∫
zxxx(x)− zxxx(x− y)

|z(x)− z(x− y)|α
dy − cα

zxxxx(x)

|zx(x)|α

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
− 2cαα

∫
zxx(x)− zxx(x− y)

|z(x)− z(x− y)|2+α
〈zx(x)− zx(x− y), z(x)− z(x− y)〉dy

+ 2cαα
zxxx(x)

|zx(x)|2+α
〈zxx(x), zx(x)〉

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
− cαα

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
|zx(x)− zx(x− y)|2dy

+ cαα
zxx(x)

|zx(x)|2+α
|zxx(x)|2

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
+ cαα(α+ 2)

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|4+α
(〈zx(x)− zx(x− y), z(x)− z(x− y)〉)2dy

− cαα(α+ 2)
zxx(x)

|zx(x)|4+α
(〈zxx(x), zx(x)〉)2

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy
− cαα

∫
zx(x)− zx(x− y)

|z(x)− z(x− y)|2+α
〈zxx(x)− zxx(x− y), z(x)− z(x− y)〉dy

+ cαα
zxx(x)

|zx(x)|2+α
〈zxxx(x), zx(x)〉

∫
sgn(y)∣∣2 tan
(
y
2

)∣∣α−1 dy.
We remark that Ĩ(2) is well defined. Again, since cα > 0 for α < 2, we will

only care about the sign of I(α)|zx|3.
The algorithm for the computation of the integral is as follows: we define

a structure called ParameterSet, which encapsulates all the necessary infor-
mation about the parameters and the information needed by the integration
procedures in order to perform the validation for those parameters. More pre-
cisely, a ParameterSet contains:
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• Two intervals, Left and Right, which set the limits for the bounded and
singularity regions (i.e. singularity = [Left,Right], bounded = [−π, π]\
singularity). In our proof, Left = − 1

128 , Right = 1
128 . See below for the

precise definition and the integration procedures in these regions.

• Two doubles, AbsTol and RelTol, which limit the precision up to which
the integrals are computed. In our proof, AbsTol = RelTol = 10−6.

• One interval, α, which is the interval in the parameter space we are cal-
culating.

• One interval, C, which corresponds to the different initial conditions.

We will use a queue (implemented using the Standard Template Library
(STL) Queue), in which we store all the ParameterSets to be computed. While
the queue is not empty, we take the top element, pop it and give an enclosure
of integral we are validating for this region. Three different things can happen:

• The enclosure is positive.

• The enclosure is negative.

• We can not say anything about its positivity.

In the first two cases, the result is output to its corresponding file (one for
the regions for which the aforementioned integral is positive, another for the
ones for which it is negative). In the third case, the ParameterSet is split into
other narrower ParameterSets which are pushed in the queue. This splitting is
only done if the diameter of α is bigger than a given threshold, which in our
case was set to 5 · 10−6.

We now describe how to perform the integral over the bounded region. The
bounded part is calculated using a Gauss-Legendre quadrature of order 2, given
by ∫ b

a

f(η)dη ∈ b− a
2

(
f

(
b− a

2

√
3

3
+
b+ a

2

)
+ f

(
−b− a

2

√
3

3
+
b+ a

2

))

+
1

4320
(b− a)5f4([a, b]).

Whenever the result does not satisfy some tolerance requirements in the
form of having absolute or relative (with respect to the volume of the integration
region) width smaller than the two constants AbsTol and RelTol the integration
domain is split by the midpoint and we call the integrator again with the new
two subdomains recursively. Otherwise we will save it and add it to the total.
We also limit the depth of the levels of splitting in order to prevent infinite loops
or stack overflows because of too stringent tolerances since the uncertainty of
the parameters might yield wide enclosures of the integral even with infinite
precision. In our case, the maximum number of subdivisions was 13, totalling
a maximum number of subintervals equal to 213.

Regarding the singularity region, we remark that if we try to evaluate the
(singular) integrand directly, we get expressions of the type 0

0 which can only
be enclosed in unbounded intervals. In order to avoid this phenomenon we will
bound the absolute value of the integrand and consider the contribution of the
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singularity region as a residual error. By virtue of the mean value theorem, we
will substitute any expressions of the form |(∂kxz(a) − ∂kxz(b))| by the interval
|(a−b)||∂k+1

x z([a, b])|, and these derivatives can be easily enclosed only by having
to evaluate at the endpoints because of the monotonicity proved in Corollary
4.4. After estimating the integrals in this way, we are left with the task of having
to bound quantities of the form

∫
C|x|0dx,

∫
C|x|1−αdx,

∫
C1|x|1−αdx+

∫
C2| log(C3x)||x|1−αdx, or

∫
C|x|2−αdx

depending if we are in the first, second, third or fourth regime of α respectively,
for some constants (intervals) C,C1, C2, C3. These integrals can be computed
explicitly in closed form. In practice, due to the exponential nature of z1, the
contribution of these integrals is extremely small compared to the true result.

We ran the computation in parallel (every core was allocated a different
initial region) over 16 cores by splitting the regions of α on an Intel i5 processor
with 4 GB of RAM. The total combined computation time was roughly 120
hours.

�

Acknowledgements

AC, DC, JGS and AMZ were partially supported by the grant MTM2011-
26696 (Spain), grant StG-203138CDSIF of the ERC and ICMAT Severo Ochoa
project SEV-2011-0087. AC was partially supported by the ERC grant 307179-
GFTIPFD. We are grateful to the Instituto de Ciencias Matemáticas for com-
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