
ar
X

iv
:1

91
1.

08
97

4v
1 

 [
m

at
h.

A
P]

  2
0 

N
ov

 2
01

9

Singularity formation for the fractional Euler-Alignment system

in 1D

Victor Arnaiz∗ and Ángel Castro†
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Abstract

We study the formation of singularities for the Euler-Alignment system with influence function
ψ = kα

|x|α
in 1D. As in [19] the problem is reduced to the analysis of a nonlocal 1D equation. We

show the existence of singularities in finite time for any α in the range 0 < α < 2 in both the real
line and the periodic case.

1 Introduction

The Euler-Alignment system for the density u and the velocity v in 1D is given by

∂tρ+ (vu)x =0

∂tv + vvx =

∫

R

ψ(|x− y|)(v(x) − v(y))u(y)dy. (1.1)

This system is the macroscopic version (see [15]) of the Cucker-Smale model [10],

dxi(t)

dt
=vi(t)

dvi(t)

dt
=

1

N

N
∑

j=1

ψ(|xi(t)− xj(t)|)(vi(t)− vj(t)), (1.2)

which models the behavior of a collection of agents. In (1.2), (xi, vi) are the position and velocity
of each agent, N is the total number of agents and ψ is the influence function which measures the
strength of the velocity alignment between two agents. In this paper we will focus on the case in
which

ψ(|x|) = kα
|x|1+α

, kα = −2αΓ
(

1+α
2

)

π
1
2Γ
(

−α
2

) , (1.3)

for 0 < α < 2.
The Euler-Alignment system (1.1)-(1.3) was studied in the periodic case independently by T. Do,

A. Kiselev, L. Ryzhik and C. Tan in [11] and by R. Shvydkoy and E. Tadmor in [17] and [18]. In these
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papers the authors show global existence of solutions for positive initial density u0 > 0 and 0 < α < 2.
In addition, in [19], C. Tan showed the existence of initial data (u0, v0), with u0 ≥ 0, such that density
solution of (1.1)-(1.3), u(x, t) has not uniformly bounded C1-norm for all time.

This paper is concerned with the existence of singularities in finite time for (1.1)-(1.3). We will use
the same observation than in [19] which comes from [11]: by defining G = vx − Λαu then (1.1)-(1.3)
can be written in the following form

∂tu+ (vu)x =0,

∂tG+ (vG)x =0,

v =G+ Λαu.

Thus, if initially G(x, 0) = 0, G(x, t) must be zero for all time and the system is reduced to the
equation

∂tu+
(

uΛα−1Hu
)

x
=0 (1.4)

u(x, 0) =u0(x), (1.5)

where 0 < α < 2. Here, for 0 < α < 1,

Λα−1u(x) = cα

∫

R

u(y)

|x− y|α dy, cα ≡ Γ
(

α
2

)

√
π21−αΓ

(

1−α
2

) , (1.6)

and

Hu(x) =
1

π

∫ ∞

−∞

u(y)

x− y
dy.

Therefore if one can show the existence of a singularity for (1.4) in finite time one actually shows
a singularity for (1.1)-(1.3).

In the real line case, P. Biler, G. Karch and R. Monneau found the existence of self-similar solutions
of (1.4) which are C

α
2 (R). Indeed, they gave an explicit formula for the profile of these self-similar

solutions, φ(x) = K(α)(1− x2)
α
2

+ , where K(α) is a suitable constant. Their motivation was the study
of the dynamics of the dislocation in a solid.

We will consider the equation (1.4) in both the real line R and the circle T (2π−periodic functions)
and the goal is to prove the formation of singularities in finite time from a smooth initial data. In
order to do it we will impose some of the following conditions on the initial data:

H1 In the real line setting : u0 is compactly supported and u0(x) ≥ 0.

H2 u0(0) = u0x(0) = 0.

H3 u0(x) = u0(−x).

H4 In the periodic case: u0x(x) ≥ 0 for x ∈ [0, π].

The main results of this paper are the following:

Theorem 1.1 Let u0 ∈ Cα+

(R), 1 < α < 2, satisfying H1, H2 and H3 and let

u(x, t) ∈ C([0, T );C1+β+

(R)) ∩ C1([0, T );C0+(R))

a solution of (1.4), (1.5). Then there exist a time T <∞, such that

lim
t→T−

||u(·, t)||
Cα+ = ∞.
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Theorem 1.2 Let u0 ∈ C1 (T), 0 < α < 1, satisfying H2, H3 and H4, and let

u(x, t) ∈ C([0, T );C1+β+

(R)) ∩ C1([0, T );C0+(R))

a solution of (1.4), (1.5).
Let

∫

R

x−1−αu0(x)dx

be large enough with respect to ||u0||L∞ and 1
α
.

Then there exists a time T <∞ such that

lim
t→T−

||u(·, t)||C1 = ∞.

The proof of theorem 1.1 will be given in section 3 and the prooof of theorem 1.2 in section 4.
We emphasis that theorem 1.1 works in the range 1 < α < 2 and theorem 1.2 in the range

0 < α < 1. Let us explain why we work in different settings for different ranges of α. Theorem 1.1
could be proven in the range 0 < α < 1 but removing the condition H1. Indeed we would have to
impose the condition u0x ≥ 0 for x ≥ 0, which means that u0 does not vanish at infinity. Even one
can guest that equation (1.4) make sense in spaces including these kind of initial data, the need of the
lack of decay at infinity (infinite mass) is something that one would like to avoid. Because of that we
also prove the existence of singularities in the range 0 < α < 1 in the periodic case where the mass
∫

T
u0dx is finite. The existence of singularities should be true in the range 1 < α < 2 in the periodic

case without any condition on the monotonicity of the initial data nor on the size of the initial data.
The proof would be given by a combination of the proofs of theorems 1.1 and 1.2. We do not include
it here for the sake of simplicity.

2 The case α = 1

The case α = 1 have already been studied in different context. In [8] D. Chae, A. Córdoba, D.
Córdoba and M. A. Fontelos introduced equation 1.4 as 1D model of the Surface Quasi-Geostrophic
equation. They proved the existence of singularities for some initial data with non zero negative part.
In [7] D. Córdoba and the second author showed global existence and gain of analyticity for u0 > 0,

ill-posedness in H
3
2

+

for u0 with non zero negative part and local existence and singularity formation
for u0 ≥ 0 with some zero.

A higher dimensional version of (1.4) with α = 1 was introduced by L. Caffarelli and J. L. Vázquez
in [4] as a model of the dynamics of a gas in a porous media with a non local pressure. They studied
the existence of weak solutions for initial data in L1. See also [5] for a proof of a regularizing effect.
In [3], L. Caffarelli, F. Soria and J.L. Vázquez studied the case 0 < α < 2.

In [6] J. A. Carrillo, L. Ferreira and J. Precioso explore the gradient flow structure of (1.4) with
α = 1 (see also [13]). For some further results concerning existence and singularity formation for
related equations one can check [16], by D. Li and J.L. Rodrigo, [14], by R. Granero-Belinchón, and
[1], by H. Bae, R. Granero-Belinchón and O. Lazar, and references therein.

We shall present a blow up proof for equation (1.4) with α = 1. This result was already proven
in [7] (actually in [7] is proven a more general result) but we will include it here for the clarity of the
exposition.

We take the initial data u0 satisfying hypothesis H2 and H3. Thus the solution u(x, t) also satisfies
H2 and H3.

By using the identity

H(uHu) =
1

2
(Hu)2 − 1

2
u2
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we get

∂tΛu+ (Λu)
2
+HuHuxx − uuxx − (ux)

2
= 0.

By evaluating at x = 0 yields

∂tΛu(0, t) = − (Λu(0, t))
2

(Λu0(0) < 0) ,

thus Λu(0, t) become infinity in finite time.
We shall emphasis that we have used hypothesis H2 and H3 to yields the inequality

−
∫ ∞

0

u(x)Hu(x)

x3
dx =

1

π

(
∫ ∞

0

u(x)

x2
dx

)2

To show theorems 1.1 and 1.2 we will prove a generalization of the previous inequality for α 6= 1. We
remark that this inequality is also valid in the periodic case.

3 The case 1 < α < 2

In this section we will prove theorem 1.1.
We will take β = α− 1 and then we consider

∂tu+
(

uΛβHu
)

x
= 0

for 0 < β < 1.
We take u0 ∈ C1+β+

(R) and we assume that there exists a solution u(x, t) ∈ C([0,∞);C1+β+

(R))∩
C1([0,∞);C0+(R)). It can be checked that, then, u(x, t) satisfies H1, H2 and H3 for all t ∈ [0,∞).

Multiplying equation (1.4) by x−(2+β) and integrating from 0 to ∞ we have that

d

dt

∫ ∞

0

u(x)

x2+β
dx = −

∫ ∞

0

(

u(x)ΛβHu(x)
)

x

x2+β
dx = −(2 + β)

∫ ∞

0

u(x)ΛβH(u)

x3+β
dx. (3.1)

Inspired by [9], where A. Córdoba, D. Córdoba and M.A. Fontelos showed the inequality

−
∫ ∞

0

Hu(x)ux(x)

x1+δ
dx ≥ Kδ

(
∫

R

u(x)

x2+δ
dx

)2

, (3.2)

for an even C1-function compactly supported and 0 < δ < 1, we will deal with the last integral in
(3.1) by using the Mellin Transform. Actually, in the following we will deal with a kind of endpoint
of (3.2). Let us remind the definition and Parseval’s identity of this transformation:

M [u](λ) =

∫ ∞

0

xiλ−1u(x)dx,

∫ ∞

0

u(x)v(x)
dx

x
=

1

2π

∫ ∞

−∞

M [u](λ)M [v](λ)dλ.

Thus

−(2 + β)

∫ ∞

0

u(x)ΛβH(u)

x3+β
dx = − (2 + β)

2π

∫ ∞

−∞

M [x−1+εΛβHu](λ)M [x−1−β−εu](λ)dλ

for any 0 < ε < β+ − β.
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We will use that ΛβHu = Λβ−1ΛHu = −Λβ−1ux. Thus

M [x−1+εΛβHu](λ) = −
∫ ∞

0

xiλ+ε−2Λβ−1ux(x)dx

= −cβ
∫ ∞

0

xiλ+ε−2

∫ ∞

0

uy(y)

(

1

|x− y|β − 1

|x+ y|β
)

dydx

= −cβ
∫ ∞

0

uy(y)

∫ ∞

0

xiλ+ε−2

(

1

|x− y|β − 1

|x+ y|β
)

dxdy

= −
∫ ∞

0

yiλ+ε−β−1uy(y)cβ

∫ ∞

0

xiλ+ε−2

(

1

|x− 1|β − 1

|x+ 1|β
)

dxdy

= m(λ, ε, β)(iλ+ ε− 1− β)M [xε−β−1u](λ),

where

m(λ, ε, β) = cβ

∫ ∞

0

xiλ+ε−2

(

1

|x− 1|β − 1

|x+ 1|β
)

dx. (3.3)

Therefore

−(2 + β)

∫ ∞

0

u(x)ΛβH(u)

x3+β
dx =

2 + β

2π

∫ ∞

−∞

B(λ, ε, β)M [xε−1−βu](λ)M [x−ε−1−βu](λ)dλ,

where

B(λ, ε, β) = m(λ, ε, β)(iλ− ε+ 1 + β).

Lemma 3.1 Let u ∈ C1+β+

c (R) such that u(0) = ux(0) = 0 and

U(λ, ε, β) =M [xε−1−βu](λ)M [x−ε−1−βu](λ),

with 0 < β < 1 and 0 < ε < β+ − β is a bounded function.
Then

lim
ε→0+

∫ ∞

−∞

B(λ, ε, β)U(λ, ε, β) = 2π(1 + β)βcβU(0, 0, β) +

∫ ∞

−∞

B0(λ, β)U(λ, 0, β)dλ.

where B0(λ, β) ≥ 0.

Corollary 3.2 Let u(x) be an odd function satisfying the assumptions of lemma 3.1. Then the fol-
lowing estimate holds

−
∫ ∞

0

u(x)ΛβH(u)

x3+β
dx ≥ (1 + β)βcβ

(
∫ ∞

0

u(x)

x2+β
dx

)2

Proof:
We will split the integral

I(ε) =

∫ ∞

−∞

B(λ, ε, β)U(λ, ε, β)dλ (3.4)
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in two parts

I1(ε) =

∫ ∞

−∞

B(λ, ε, β)U(λ, 0, β)dλ, (3.5)

and

I2(ε) =

∫ ∞

−∞

B(λ, ε, β) (U(λ, ε, β)− U(λ, 0, β)) dλ, (3.6)

thus I(ε) = I1(ε) + I2(ε). Here we recall that U(λ, 0, β) = |M [x−1−βu]|2(λ) is real and even function
on λ.

We first pass to the limit ε→ 0+ in I1(ε). We split B(λ, ε, β) into two parts

B(λ, ε, β) = (iλ− ε+ 1 + β)

∫ ∞

0

... dx

= (iλ− ε+ 1 + β)

(

∫ 1
2

0

... dx+

∫ ∞

1
2

... dx

)

≡ B1(λ, ε, β) +B2(λ, ε, β).

With B1 we proceed as follows. We first write

B1(λ, ε, β) =
iλ− ε+ 1 + β

−iλ+ ε− 1

∫ 1
2

0

∂xx
−iλ+ε−1P (x, β)dx,

where P (x, β) = cβ

(

1
(1−x)β

− 1
(1+x)β

)

is a smooth function on x ∈ [0, 12 ]. Then, taking into account

that P (0, β) = 0, an integration by parts yields

B1(λ, ε, β) = − iλ− ε+ 1 + β

−iλ+ ε− 1

∫ 1
2

0

x−iλ+ε−1P (x, β)xdx+
iλ− ε+ 1 + β

−iλ+ ε− 1
2iλ−ε+1P

(

1

2
, β

)

.

Integrating again by parts we have that

B1(λ, ε, β) =
iλ− ε+ 1 + β

(−iλ+ ε− 1)(−iλ+ ε)

∫ 1
2

0

x−iλ+εP (x, β)xxdx− iλ− ε+ 1 + β

(−iλ+ ε− 1)(−iλ+ ε)
2iλ−εPx

(

1

2
, β

)

+
−iλ− ε+ 1 + β

−iλ+ ε− 1
2iλ−ε+1P

(

1

2
, β

)

≡ B11(λ, ε, β) +B12(λ, ε, β),

with

B11(λ, ε, β) =
iλ− ε+ 1 + β

(−iλ+ ε− 1)(−iλ+ ε)

(

∫ 1
2

0

x−iλ+εP (x, β)xxdx− 2iλ−εPx

(

1

2
, β

)

)

,

B12(λ, ε, β) =
iλ− ε+ 1 + β

−iλ+ ε− 1
2iλ−ε+1P

(

1

2
, β

)

.

Next we consider the term in I1(ε) involving B11. Since B11 is an odd function on λ (and U(λ, 0, β)
even) we have that

∫ ∞

−∞

B11(λ, ε, β)U(λ, 0, β)dλ =

∫ ∞

−∞

Re (B11(λ, ε, β))U(λ, 0, β)dλ.

6



We notice that

iλ− ε+ 1 + β

(−iλ+ ε− 1)(−iλ+ ε)
= − 1

−iλ+ ε
+ β

1

(−iλ+ ε− 1)(−iλ+ ε)

= − ε+ iλ

λ2 + ε2
+ β

−λ2 + iλ(2ε− 1) + ε(ε− 1)

(λ2 + (ε− 1)2)(λ2 + ε2)
,

= − ε

λ2 + ε2
+ β

−λ2 + ε2 − ε

(λ2 + (ε− 1)2)(λ2 + ε2)
+ i

(

− λ

λ2 + ε2
+

λ(2ε− 1)β

(λ2 + (ε− 1)2)(λ2 + ε2)

)

=−
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2
+ i

(

−1 +
(2ε− 1)β

λ2 + (ε− 1)2

)

λ

λ2 + ε2
+ β

−λ2 + ε2

(λ2 + (ε− 1)2)(λ2 + ε2)
.

Using this last expression we have that

Re (B11(λ, ε, β))

= −
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2

(

∫ 1
2

0

cos (λ log(x)) x−εPxx(x, β)dx − cos(λ log(2))2−εPx

(

1

2
, β

)

)

+

(

−1 +
(2ε− 1)β

λ2 + (ε− 1)2

)

λ

λ2 + ε2

(

∫ 1
2

0

sin (λ log(x)) x−εPxx(x, β)dx + sin(λ log(2))2−εPx

(

1

2
, β

)

)

+ β
−λ2 + ε2

(λ2 + (ε− 1)2)(λ2 + ε2)

(

∫ 1
2

0

cos (λ log(x)) x−εPxx(x, β)dx − cos(λ log(2))2−εPx

(

1

2
, β

)

)

We will split ReB11 into two terms, denoting

BR
111(λ, ε, β)

= −
(

1 +
β

λ2 + (1 − ε)2

)

ε

λ2 + ε2

(

∫ 1
2

0

cos (λ log(x)) x−εPxx(x, β)dx − cos(λ log(2))2−εPx

(

1

2
, β

)

)

≡ −
(

1 +
β

λ2 + (1 − ε)2

)

ε

λ2 + ε2
b111(λ, ε, β),

BR
112(λ, ε, β)

= +

(

−1 +
(2ε− 1)β

λ2 + (ε− 1)2

)

λ

λ2 + ε2

(

∫ 1
2

0

sin (λ log(x)) x−εPxx(x, β)dx + sin(λ log(2))2−εPx

(

1

2
, β

)

)

+ β
−λ2 + ε2

(λ2 + (ε− 1)2)(λ2 + ε2)

(

∫ 1
2

0

cos (λ log(x)) x−εPxx(x, β)dx − cos(λ log(2))2−εPx

(

1

2
, β

)

)

Next we will pass to the limit in the term inside of I1(ε) involving B
R
111(λ, ε, β)

lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2
bR111(λ, ε, β)U(λ, 0, β)dλ,

= lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2
bR111(λ, ε, β)dλ × U(0, 0, β)

+ lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2
bR111(λ, ε, β)(U(λ, 0, β) − U(0, 0, β))dλ

= lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

ε2λ2 + (1− ε)2

)

1

λ2 + 1
bR111(ελ, ε, β)dλ × U(0, 0, β)
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+ lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

ε2λ2 + (1− ε)2

)

1

λ2 + 1
b111(ελ, ε, β)(U(ελ, 0, β)− U(0, 0, β))dλ.

By dominated convergence theorem (DCT) we get that

= −(1 + β)πbR111(0, 0, β)U(0, 0, β).

In addition

bR111(0, 0, β) =

∫ 1
2

0

Pxx(x, β)dx − Px

(

1

2
, β

)

= −Px(0, β) = −2βcβ.

Therefore

lim
ε→0+

∫ ∞

−∞

−
(

1 +
β

λ2 + (1− ε)2

)

ε

λ2 + ε2
b111(λ, ε, β)U(λ, 0, β)dλ = 2π(1 + β)cββU(0, 0, β)

The rest of terms in Re
(

B −BR
111

)

(λ, ε, β) are bounded by a constant uniformly in ε and λ except

by the term B12(λ, ε, β) which is bounded by C(1+ |λ|)β+

uniformly in ε. In order to check these two
facts are we notice that B2(λ, ε, β) can be bounded by a constant in a trivial way and that the only
factor in B112(λ, ε, β) which can give some trouble is

λ

λ2 + ε2

(

∫ 1
2

0

sin (λ log(x)) x−εPxx(x, β)dx + sin(λ log(2))2−εPx

(

1

2
, β

)

)

. (3.7)

However,

(3.7) =
λ
ε

1 +
(

λ
ε

)2

(

−
∫ 1

2

0

sin
(

ελ
ε
log(x)

)

ε
x−εPxx(x, β)dx − sin(ελ

ε
log(2))

ε
2−εPx

(

1

2
, β

)

)

.

an then

|(3.7)| ≤
(

λ
ε

)2

1 +
(

λ
ε

)2

(

∫ 1
2

0

| log(x)|x−εPxx(x, β)dx + log(2)Px

(

1

2
, β

)

)

≤ C.

For B2(λ, ε, β) we have that

B2(λ, ε, β) =(iλ− ε+ 1 + β)

∫ ∞

1
2

x−iλ+ε−2P (x, β)dx

(iλ− ε+ 1 + β)

∫ 3
2

1
2

x−iλ+ε−2P (x, β)dx + (iλ− ε+ 1 + β)

∫ ∞

3
2

x−iλ+ε−2P (x, β)

≡ B21(λ, ε, β) +B22(λ, ε, β).

In B22(λ, ε, β) we can integrate by parts to get

B22(λ, ε, β) =
iλ− ε+ β + 1

−iλ+ ε− 1

∫ ∞

3
2

x−iλ+ε−1Px(x, β)dx − iλ− ε+ β + 1

−iλ+ ε− 1

(

3

2

)−iλ+ε−1

P

(

3

2
, β

)

.

from where we see that |B22(λ, ε, β)| ≤ C uniformly in ε.
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For B21(λ, ε, β) we have that

B21(λ, ε, β) =(iλ− ε+ 1 + β)

∫ 3
2

1
2

x−iλ+ε−2|x− 1|−βdx

− (iλ− ε+ 1 + β)

∫ 3
2

1
2

x−iλ+ε−2(1 + x)−βdx

≡ B211(λ, ε, β) +B212(λ, ε, β).

B212(λ, ε, β) can be bounded in the same way than B22(λ, ε, β) above.
With B211(λ, ε, β) we proceed as follows. For |λ| < 1 it is clear that |B211(λ, ε, β)| < C uniformly

in ε. For |λ| > 1

B211(λ, ε, β) =
(iλ− ε+ 1+ β)

−iλ

∫ 3
2

1
2

∂x
(

x−iλ − 1
)

xε−2|x− 1|−βdx

=
(iλ− ε+ 1+ β)

−iλ

∫ 3
2

1
2

(

x−iλ − 1
)

xε−2 β

(x− 1)|x− 1|β dx

+
(iλ− ε+ 1 + β)

−iλ

∫ 3
2

1
2

(

x−iλ − 1
)

(2− ε)xε−3|x− 1|−βdx

+ boundary terms at x =
1

2
and x =

3

2
.

The boundary at x = 1
2 and x = 3

2 and the second term in the last equality of the last expression are
bounded by a constant uniformly in ε. Finally

∣

∣

∣

∣

∣

∫ 3
2

1
2

(

x−iλ − 1
)

xε−2 β

(x− 1)|x− 1|β dx
∣

∣

∣

∣

∣

≤ |λ|β+

∫ 3
2

1
2

∣

∣x−iλ − 1
∣

∣

|λ|β+ |x− 1|β+
xε−2 β

|x− 1|1+β−β+
dx

where
∣

∣x−iλ − 1
∣

∣

|λ|β+ |x− 1|β+
≤ C

uniformly in λ and x ∈ [ 12 ,
3
2 ] for β

+ ≤ 1. In addition

U(λ, 0, β) =

∣

∣

∣

∣

∫ ∞

0

xiλ−β−2u(x)dx

∣

∣

∣

∣

2

=
1

λ2 + (1 + β)2

∣

∣

∣

∣

∫ ∞

0

xiλ−1−βux(x)dx

∣

∣

∣

∣

2

≤ k
(

β, β+||u||C1 , supportu
) 1

λ2 + (1 + β)2

Therefore, DCT applies to get

lim
ε→0+

∫ ∞

−∞

Re (B −B111) (λ, ε, β)U(λ, 0, β)dλ =

∫ ∞

−∞

lim
ε→0+

Re (B −B111) (λ, ε, β)U(λ, 0, β)dλ

=

∫ ∞

−∞

B0(λ, β)U(λ, 0, β)dλ,

where the real function B0(λ, β) is given by

B0(λ, β) = −
(

1 +
β

1 + λ2

)

(

∫ 1
2

0

sin(λ log(x))

λ
Pxx(x, β)dx +

sin(λ log(2))

λ
Px

(

1

2
, β

)

)

9



− β
1

(λ2 + 1)

(

∫ 1
2

0

cos (λ log(x))Pxx(x, β)dx − cos(λ log(2))Px

(

1

2
, β

)

)

+Re

(

iλ+ 1 + β

−iλ− 1
2iλ+1

)

P

(

1

2
, β

)

+Re

(

(iλ+ 1 + β)

∫ ∞

1
2

xiλ−2P (x, β)dx

)

.

Next we prove that limε→0+ I2(ε) = 0. Since Re(U(λ, ε, β)) is an even function on λ, proceeding
as before we find that

lim
ε→0+

∫ ∞

−∞

B(λ, ε, β)Re
(

U(λ, ε, β)− U(λ, 0, β)
)

dλ = 0,

then we just have to check

lim
ε→0+

∫ ∞

−∞

iB(λ, ε, β)Im (U(λ, ε, β)) dλ = 0.

Since Im(U(λ, ε, β)) is an odd function in λ and Re(B(λ, ε, β)) is even we just need to prove that

lim
ε→0+

∫ ∞

−∞

Im(B(λ, ε, β))Im(U(λ, ε, β))dλ = 0.

We will use that
∫ ∞

0

x−iλ+ε−2−βu(x)dx =
1

iλ− ε+ 1 + β

∫ ∞

0

x−iλ+ε−1−βux(x)dx.

thus

U(λ, ε, β) =
1

iλ− ε+ 1 + β

∫ ∞

0

x−iλ+ε−1−βux(x)dx
1

−iλ+ ε+ 1 + β

∫ ∞

0

x+iλ−ε−1−βux(x)dx

=
(−iλ− ε+ 1 + β)(iλ+ ε+ 1 + β)

(λ2 + (1 + β − ε)2)(λ2 + (1 + β + ε)2)

∫ ∞

0

∫ ∞

0

(

x

y

)iλ−ε

(xy)−1−βux(x)ux(y)dxdy

=
λ2 + (1 + β)2 − ε2 − 2iελ

(λ2 + (1 + β − ε)2)(λ2 + (1 + β + ε)2)

×
∫ ∞

0

∫ ∞

0

(

cos

(

λ log

(

x

y

))

+ i sin

(

λ log

(

x

y

)))(

x

y

)ε

(xy)−1−βux(x)ux(y)dxdy.

Therefore

Im(U(λ, ε, β)) (3.8)

=
λ2 + (1 + β)2 − ε2

(λ2 + (1 + β − ε)2)(λ2 + (1 + β + ε)2)

∫ ∞

0

∫ ∞

0

(

sin

(

λ log

(

x

y

)))(

x

y

)ε

(xy)−1−βux(x)ux(y)dxdy

− 2ελ

(λ2 + (1 + β − ε)2)(λ2 + (1 + β + ε)2)

∫ ∞

0

∫ ∞

0

(

cos

(

λ log

(

x

y

)))(

x

y

)ε

(xy)−1−βux(x)ux(y)dxdy.

By making the same splitting B = B1 + B2, B1 = B11 + B12, B11 = B111 + B112, we see that, by
applying DCT,

lim
ε→0+

∫ ∞

−∞

Im(B(λ, ε, β) −B11(λ, ε, β))Im(U(λ, ε, λ))dλ

10



=

∫ ∞

−∞

lim
ε→0+

Im(B(λ, ε, β)−B111(λ, ε, β))Im(U(λ, ε, λ))dλ = 0,

since limε→0+ Im(U(λ, ε, β)) = 0. And now the Im(B11(λ, ε, β) contains harmless terms but those
ones which contain either the factor

ε

λ2 + ε2
sin(λ log(x) or the factor

λ

λ2 + ε2
cos(λ log(x).

It easy to see that the term which contains the factor ε
λ2+ε2

sin(λ log(x) gives 0 in the limit ε → 0+

because the sin(λ log(x)) in it. However to deal with the factor λ
ε2+λ2 we need either the factor

sin(λ log(x/y)) in the first term of (3.8) or the factor λ in the second term of (3.8). In any case we
can show that DCT can be applied in order to get limε→0+ I2(ε) = 0.

Finally we will prove that B0(λ, ε) ≥ 0. We notice that, for fixed λ > 0,

B0(λ, β) = lim
ε→0+

Re

(

cβ(iλ− ε+ 1 + β)

∫ ∞

0

x−iλ+ε−2

(

1

|x− 1|β − 1

|1 + x|β
)

dx

)

.

Thus to show that Re(B0)(λ, β) ≥ 0 is enough to show that Re(B)(λ, ε, β) > 0 ∀ε > 0 and ∀λ 6= 0.
In order to do it we first write m(λ, ε, β) in the following way

m(λ, ε, β) =cβ

∫ ∞

0

xiλ−2+ε
(

|x− 1|−β − |x+ 1|−β
)

dx

= cβ

∫ 1

0

x−iλ−2+ε
(

|x− 1|−β − |x+ 1|−β
)

dx+ cβ

∫ ∞

1

x−iλ−2+ε
(

|x− 1|−β − |x+ 1|−β
)

dx

= cβ

∫ 1

0

(

x−iλ−2+ε + xiλ+β−ε
) (

|x− 1|−β − |x+ 1|−β
)

dx

= cβ

∫ 1

0

cos(λ log(x))
(

x−2+ε + xβ−ε
) (

|x− 1|−β − |x+ 1|−β
)

dx

− cβ

∫ 1

0

sin(λ log(x))
(

x−2+ε − xβ−ε
) (

|x− 1|−β − |x+ 1|−β
)

dx

where we did the change of variables x′ = 1/x. And then

Re ((iλ+ 1 + β − ε)m(λ, ε, β)) = cβ

∫ 1

0

cos(λ log(x))(1 + β − ε)
(

x−2+ε + xβ−ε
) (

|x− 1|−β − |x+ 1|−β
)

dx

+ cβ

∫ 1

0

λ sin(λ log(x))
(

x−2+ε − xβ−ε
) (

|x− 1|−β − |x+ 1|−β
)

dx.

Integrating by parts in the second integral in the previous expression we have that

Re ((iλ+ 1 + β − ε)m(λ, ε, β)) = cβ

∫ 1

0

cos(λ log(x))F (x, ε, β)dx

with

F (x, ε, β) =(1 + β − ε)
(

x−2+ε + xβ−ε
) (

|x− 1|−β − |x+ 1|−β
)

+ ∂x
((

x−1+ε − x1+β−ε
) (

|x− 1|−β − |x+ 1|−β
))

11



Integrating again we have that

Re ((iλ+ 1 + β − ε)m(λ, ε, β)) =− cβ
λ

∫ 1

0

sin(λ log(x))∂x(xF (x, ε, β))dx.

Let us call G(x, ε, β) = ∂x (xF (x, ε, β)). In order to be able to pass to the limit in ε we split

∫ 1

0

sin(λ log(x))G(x, ε, β)dx =

∫ δ

0

sin(λ log(x))G(x, ε, β)dx +

∫ 1

δ

sin(λ log(x))G(x, ε, β)dx.

It is straightforward to pass to the limit in the second term of the previous equation. In the second
term we will integrate by part. Since G(x, ε, b) ∼ c1x

−1+ε + c2x
1+ε for x ∼ 0 we have that

Im

∫ δ

0

xiλG(x, ε, β)dx = Im

(

1

iλ+ ε

∫ δ

0

∂x
(

xiλ+ε
)

x1−εG(x, ε, β)dx

)

= Im

(

δiλ

iλ+ ε

)

δG(δ, β, ε)− Im

(

∫ δ

0

xiλxε∂x
(

x1−εG(x, ε, β)
)

dx

)

and we pass to limit, ε→ 0. After that we can pass to the limit δ → 0, and since the pointwise limit
G0(x, β) = limε→0G(x, ε, β) (for x > 0) satisfies G(x, β) = O(x) for x ∼ 0 we have that

B0(λ, β) = −cβ
λ

∫ 1

0

sin ((λ log(x)))G0(x, β)dx.

In addition and integration by parts yields,

B0(λ, β) =
cβ
λ2

∫ 1

0

(1− cos(λ log(x)))∂x(xG0(x, β))dx

Then, in order to prove that B0(λ, β) ≥ we have to show that G0(x, β) + x∂xG0(x, β) ≥ 0. Since
G(0, β) = 0 it is enough to prove that ∂xG0(x, β) ≥ 0. Direct computations yields

∂xG0(x, β) =
β

x3
(f(x, β) − f(−x, β)) ,

where
f(x, β) = (1− x)−3−β

(

2 + (3 + β)x(−2 + (2 + β)x) − (1 + β)(2 + β)x|x|2+β
)

.

In order to check that ∂xG0(x, β) ≥ 0 we can write

f(x, β)− f(−x, β) =
∫ 1

−1

d

ds
f(sx, β)ds

and check that

∂sf(sx, β) = (1 + β)(2 + β)(3 + β)s2x3(1− sx)−4−β
(

1− |s|βxβ
)

≥ 0

for x > 0, −1 < s < 1.
�

By applying corollary 3.1 we have that

d

dt

∫ ∞

0

u(x)

x2+β
dx ≥ (2 + β)(1 + β)cββ

(
∫ ∞

0

u(x)

x2+β
dx

)2

.

Therefore
∫∞

0
u(x)
x2+β dx must blows up in finite time. However

∫∞

0
u(x)
x2+β dx ≤ kβ, β+ ||u||

C1+β+ .
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4 The case 0 < α < 1 in the periodic setting

We take u0 ∈ C1(R) and we assume that there exist a solution u(x, t) ∈ C([0,∞);C1(R))∩C1([0,∞);C(R)).
It can be checked that, then, u(x, t) satisfies H1, H2 and H3 for all t ∈ [0,∞). Also, and very impor-
tant in this case, we will take u0 satisfying H4. As it was proven in [19] the solution also inherits this
property, i.e.,

∂xu(x, t) ≥ 0, for x ∈ [0, π] and t ≥ 0.

In order to prove the existence of singularities we will use a similar strategy to one that in section
3. Let us first recall the following facts of the operator Λα−1 in the periodic setting.

For a 2π−periodic function u(x) such that
∫

T
u(x)dx = 0, the operator Λα−1 with 0 < α < 1 is

defined through of the Fourier transform

Λ̂α−1u(n) = |n|α−1û(n) 0 < n ∈ N. (4.1)

The operator Λα−1 defined as (4.1) admits the representation

Λα−1u(x) = cα

∫

R

u(y)

|x− y|α dy

with cα as in (1.6) and, for an even function u, Λα−1Hu can be written as

cα

∫ ∞

0

u(y)

(

sign(x− y)

|x− y|α +
1

|x− y|α
)

dy, cα =
Γ(α) sin

(

πα
2

)

π
.

We will look at the time evolution of
∫∞

0
u(x)
x1+α dx which is given by

∂t

∫ ∞

0

u(x)

x1+α
dx =− (1 + α)

∫ ∞

0

u(x)Λα−1Hu(x)

x2+α

− (1 + α)

∫ ∞

0

x−α−εu(x)x−1Λα−1+εHu(x)
dx

x
.

Instead of u(x) and Λα−1Hu do not decay, the functions x−α+εu(x) and x−1+εΛα−1u(x) have enough
decay at infinity (for ε small enough) to apply the Parseval Identity of the Mellin transform to get

∂t

∫ ∞

0

u(x)

x1+α
dx = −1 + α

2π

∫

R

M [x−α−εu(x)](λ)M [x−1+εΛα−1Hu(x)](λ)dλ,

where

M [x−α−εu(x)](λ) =

∫ ∞

0

xiλ−α−1−εu(x)dx

M [x−1+εΛα−1Hu(x)](λ) =

∫ ∞

0

xiλ−2+εΛα−1Hu(x)dx

Since Hu(x) is an odd function of x, we can write

M [x−1+εΛα−1Hu(x)](λ) = cα

∫ ∞

0

u(y)

∫ ∞

0

xiλ−2+ε

(

sign(x− y)

|x− y|α +
1

|x+ y|α
)

dxdy

= cα

∫ ∞

0

yiλ−α+ε−1u(y)

∫ ∞

0

xiλ−2+ε

(

sign(x− 1)

|x− 1|α +
1

|x+ 1|α
)

dxdy

= mp(λ, ε, α)M [x−α+εu(x)](λ).
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Therefore we finally obtain that

− (1 + α)

∫ ∞

0

u(x)Λα−1Hu(x)

x2+α
dx

= −1 + α

2π

∫ ∞

−∞

mp(λ, ε, α)M [xε−αu](λ)M [x−ε−αu](λ)dλ (4.2)

We will denote

A(λ, ε, α) ≡ −mp(λ, ε, α)

and

U(λ, ε, α) =M [xε−αu](λ)M [x−ε−αu](λ).

In order to prove the a lemma analogous to lemma 4.3 in section 3 we will need some preliminary
results

Lemma 4.1 Let |λ| > 2, 0 < α < 1. Then

1. |Im (A(λ, ε, α)) | ≤ C|λ|−1+α.

2. |Re (A(λ, ε, α)) | ≤ C|λ|−2+α.

In both cases the constant C does not depend either α and ε.

Proof: Let 0 < δ < 1
2 . At the end of the proof we will take δ = λ−1. Let us call p(x, α) =

sign(x−1)
|x−1|α + 1

|x−1|α . To prove 1 we split

I = Im

(

A(λ, ε, α)

−cα

)

=

∫ ∞

0

sin(λ log(x))x−2+εp(x, α)dx(??) (4.3)

=

∫ 1−δ

0

...dx+

∫ 1+δ

1−δ

...dx +

∫ ∞

1+δ

...dx ≡ I1 + I2 + I3.

Integrating by parts we have that

I1 = − 1

λ

∫ 1−δ

0

∂x (cos(λ log(x))) x
−1+εp(x, α)dx = − 1

λ
cos(λ log(1− δ))(1 − δ)−1+εp((1− δ), α)

+
−1 + ε

λ

∫ 1−δ

0

cos(λ log(x))x−2+εp(x, α)dx +
1

λ

∫ 1−δ

0

cos(λ log(x))x−1+ε∂xp(x, α)dx

≡ I11 + I12 + I13.

I12 =
(−1 + ε)

λ
sin(λ log(1− δ))(1 − δ)−1+εp((1− δ), α) − (−1 + ε)2

λ2

∫ 1−δ

0

sin(λ log(x))x−2+εp(x, α)dx

− (−1 + ε)

λ2

∫ 1−δ

0

sin(λ log(x))x−1+ε∂xp(x, α)dx = I121 −
(−1 + ε)2

λ2
I1 + I122.

Thus
(

1 +
(−1 + ε)2

λ2

)

I1 = I11 + I13 + I121 + I122.
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We now manipulate I13 and I122.

I13 =
1

λ

∫ 1−δ

0

cos(λ log(x))x−1+ε∂xp(x, α)dx =
1

λ2
sin(λ log(1− δ))(1 − δ)ε∂xp((1 − δ), α)

− ε

λ2

∫ 1−δ

0

sin(λ log(x))x−1+ε∂xp(x, α)dx − 1

λ2

∫ 1−δ

0

sin(λ log(x))xε∂2xp(x, α)dx

= I131 + I132 + I133.

We integrate by parts in I132 in such a way that

I132 = − ε

λ2

∫ 1−δ

0

sin(λ log(x))x−1+ε∂xp(x, α)dx =
ε

λ3
cos(λ log(1− δ))(1 − δ)ε∂xp((1− δ), α)dx

+
ε2

λ3

∫ 1−δ

0

cos(λ log(x))x−1+ε∂xp(x, α)dx +
ε

λ3

∫ 1−δ

0

cos(λ log(x))xε∂2xp(x, α)dx

= I1321 +
ε2

λ2
I13 + I1322

Then
(

1− ε2

λ2

)

I13 = I131 + I1321 + I1322 + I133.

For I122 we have that

I122 = − (−1 + ε)

λ2

∫ 1−δ

0

sin(λ log(x))x−1+ε∂xp(x, α)dx =
(−1 + ε)

λ3
cos(λ log(1− δ))(1 − δ)ε∂xp(1− δ, α)

− (−1 + ε)ε

λ3

∫ 1−δ

0

cos(λ log(x))x−1+ε∂xp(x, α)dx − (−1 + ε)ε

λ3

∫ 1−δ

0

cos(λ log(x))xε∂2xp(x, α)dx

= I1221 + I1222 + I1223.

In I1222 we integrate by parts to obtain that

I1222 = − (−1 + ε)ε

λ3

∫ 1−δ

0

cos(λ log(x))x−1+ε∂xp(x, α)dx = − (−1 + ε)ε

λ4
sin(λ log(1− δ))(1 − δ)ε∂xp((1− δ), α)

+
(−1 + ε)ε2

λ4

∫ 1−δ

0

sin(λ log(x))x−1+ε∂xp(x, α)dx +
(−1 + ε)ε

λ4

∫ 1−δ

0

sin(λ log(x))xε∂2xp(x, α)dx

=I12221 −
ε2

λ2
I122 + I12222.

Then
(

1 +
ε2

λ2

)

I122 = I1221 + I12221 + I12222 + I1223.

And now we can check that |I1221| ≤ C|λ|−3δ−1−α, |I12221| ≤ C|λ|−4δ−1−α, |I12222| ≤ C|λ|−4δ−1−α

and |I1223| ≤ C|λ|−3δ−1−α. Therefore |I122| ≤ C|λ|−2+α if we take δ = |λ|−1.
In addition |I131| ≤ |λ|−2δ−1−α, |I1321| ≤ C|λ|−3δ−1−δ, |I1322| ≤ C|λ|−3δ−1−δ. Therefore |I13| ≤

C|λ|−1+α if we take δ = |λ|−1.
Finally |I11|, |I121| ≤ C|λ|−1δ−α. Thus |I1| ≤ C|λ|−1−α with a constant C that does not depend

either ε or α.
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The term I3 is easier to bound than I1. But, if we want the constant C independent of α, we still
have integrate by parts twice to get

I3 =

∫ ∞

1+δ

sin(λ log(x)x−2+εp(x, α) =
1

λ
cos(λ log(1 + δ))(1 + δ)−1+εp((1 + δ), α)

+
(−1 + ε)

λ

∫ ∞

1+δ

cos(λ log(x))x−2+εp(x, α)dx +
1

λ

∫ ∞

1+δ

cos(λ log(x))x−1+ε∂xp(x, α)dx

= I31 + I32 + I33.

And

I32 =
(−1 + ε)

λ

∫ ∞

1+δ

cos(λ log(x))x−2+εp(x, α)dx = −−1 + ε

λ2
sin(λ log(1 + δ))(1 + δ)−2+εp((1 + δ), α)

− (−1 + ε)2

λ2

∫ ∞

1+δ

sin(λ log(x))x−2+εp(x, α)dx − (−1 + ε)

λ2

∫ ∞

1+δ

sin(λ log(x))x−1+ε∂xp(x, α)dx

= I321 −
(−1 + ε)2

λ2
I33 + I322.

Thus
(

1 +
(−1 + ε)2

λ2

)

I3 = I31 + I321 + I322 + I33.

And we have that |I31| ≤ C|λ|−1δ−α, |I321| ≤ |λ|−2δ−α, |I322| ≤ |λ|−2δ−α and |I33| ≤ |λ|−1δ−α. Thus,
by taking δ = |λ|−1 we have that |I3| ≤ C|λ|−1+α with a constant C that does not depend either on
α or ε.

The term I2 can be bounded by Cλδ2−α +Cδ independently of α and ε. This bound comes from
the estimates

∫ 1+δ

1−δ

sin (λ log(x)) x−2+ε 1

|x+ 1|αdx ≤ Cδ

and from

∫ 1+δ

1−δ

sin (λ log(x)) x−2+ε sign(x− 1)

|x− 1|α dx

=

∫ δ

0

(

sin (λ log(1 + x)) (1 + x)−2+ε − sin (λ log(1− x)) (1− x)−2+ε
)

x−αdx

≤ Cλδ2−α.

Thus, by taking δ = |λ|−1 we have that |I2| ≤ C|λ|−1+α with a constant C that does not depend
either on α or ε.

We have already proven 1.
In order to prove 2 we notice that we have an extra integration by parts on x for the real part.

Indeed,

J =

∫ ∞

0

cos (λ log(x)) x−2+εp(x, α)dx

=
(1− ε)

λ

∫ ∞

0

sin (λ log(x)) x−2+εp(x, α)dx − 1

λ

∫ ∞

0

sin (λ log(x)) x−1+ε∂xp(x, α)dx
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= J1 + J2

We have that the integral in J1 coincides with I in (4.3). Then we have already proved that
|J1| ≤ C|λ|−2+α. We just have to deal with J2. We have that

J2 = − 1

λ

∫ ∞

0

sin (λ log(x)) x−1+ε∂xp(x, α)dx =
α

λ

(

∫ 1−δ

0

... dx+

∫ 1+δ

1−δ

... dx+

∫ ∞

1+δ

... dx

)

= J21 + J22 + J23.

In J21 we can integrate by parts twice to get

J21 =− (−1 + ε)

λ2

∫ 1−δ

0

cos (λ log(x)) x−1+ε∂xp(x, α)dx − 1

λ2

∫ 1−δ

0

cos (λ log(x)) xε∂2xp(x, α)dx

+
1

λ2
cos(λ log(1− δ))(1 − δ)ε∂xp((1− δ), α)

=− (−1 + ε)2

λ2
J21 −

(−1 + ε)

λ3

∫ 1−δ

0

sin(λ log(x))xε∂2xp(x, α)dx

− (−1 + ε)

λ3
sin(λ log(1− δ))(1 − δ)ε∂xp((1− δ), α)− 1

λ2

∫ 1−δ

0

cos (λ log(x)) xε∂2xp(x, α)dx

+
1

λ2
cos(λ log(1− δ))(1 − δ)ε∂xp((1− δ), α) = −−1 + ε

λ2
J21 + J2122 + J2121 + J213 + J211.

Thus
(

1 +
−1 + ε

λ2

)

J21 = J211 + J2121 + J2122 + J213

which implies

J21 =

(

1 +
1− ε

λ2 + (−1 + ε)

)

(J211 + J2121 + J2122 + J213) (4.4)

We have that |J211| ≤ C|λ|−2δ−1−α, |J213| ≤ C|λ|−2δ−1−α, |J2121| ≤ C|λ|−3δ−1−δ and |J2122| ≤
C|λ|−3δ−1− δ. Therefore by taking δ = |λ|−1| we see from (4.4) that J21 = J211 + J213 + R with
|R| ≤ C|λ|−2+α.

Now we need to add J21 and J23 to find a cancellation between them. First of that, we integrate
by parts on J23

J23 =
1

λ2

∫ ∞

1+δ

cos(λ log(x))x−1+ε∂xp(x, α)dx − 1

λ2

∫ ∞

1+δ

cos(λ log(x))xε∂2xp(x, α)dx

− 1

λ2
cos(λ log(1 + δ))∂xp((1− δ), α) = J232 + J233 + J231.

We have that |J232| ≤ C|λ|−2δ−α.
To bound J211 + J213 we can use that | cos(λ log(1 + δ))− cos(λ log(1− δ))| ≤ Cλ2δ3 thus |J211 +

J213| ≤ Cδ2−α. For J213 + J233 we can use the same fact. We just need to focus on the integrals

−
∫ 1−δ

0

cos(λ log(x))xε
1

|x− 1|2+α
dx +

∫ 2

1+δ

cos(λ log(x))xε
1

|x− 1|2+α
dx

= −
∫ −δ

−1

cos(λ log(1 + x))(1 + x)ε
1

|x|2+α
dx+

∫ 1

δ

cos(λ log(1 + x))(1 + x)ε
1

|x|2+α
dx

17



=

∫ 1

δ

(cos(λ log(1 + x))(1 + x)ε − cos(λ log(1− x))) (1 − x)ε
1

|x|2+δ
dx

Thus |J213 + J233| ≤ Cδ2−α.
It is remained to bound J22 where

J22 = − 1

λ

∫ 1+δ

1−δ

sin (λ log(x)) x−1+ε∂xp(x, α)dx

We notice that it is enough to the study the decay of the integral

H =
α

λ

∫ 1+δ

1−δ

sin (λ log(x)) x−1+ε 1

|x− 1|1+α
dx

=
α

λ

∫ δ

−δ

sin (λ log(1 + x)) (1 + x)−1+ε 1

|x|1+α
dx

=
α

λ

∫ δ

−δ

(sin (λ log(1 + x))− sin(λx)) (1 + x)−1+ε 1

|x|1+α
dx

+
α

λ

∫ δ

−δ

sin (λx)
(

(1 + x)−1+ε − 1
) 1

|x|1+α
dx.

Since
| sin (λ log(1 + x))− sin(λx)| ≤ C|λ|x2

we can conclude that

|H | ≤ Cδ2−α + C|λ|−1δ1−α.

�

Lemma 4.2 Let u ∈ C1(T) an even function such that, u(x) ≥ 0, ux(x) ≥ 0 for x ∈ [0, π] and
u(0) = 0. Then

∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

≤ α√
λ2 + α2

∫ ∞

0

x−1−αu(x)dx +
C + Cǫλ

1−α+ǫ

√
λ2 + α2

||u||L∞(T).

Proof: First we will integrate by parts to get

∫ ∞

0

x−iλ−1−αu(x)dx =
1

−iλ+ α

∫ ∞

0

xiλ−αux(x)dx.

We will use that ux(x) is a 2π−periodic function to write

∫ ∞

0

x−iλ−αux(x)dx =

∞
∑

n=0

∫ 2π(n+1)

2πn

x−iλ−αux(x)dx =

∞
∑

n=0

∫ 2π

0

(x+ 2πn)
−iλ−α

ux(x)dx.

and because u(x) is even

∫ 2π

0

x−iλ−αux(x)dx =

∫ π

0

(x+ 2πn)−iλ−αux(x)dx +

∫ 2π

π

(x+ 2πn)−iλ−αux(x)dx

18



=

∫ π

0

(x+ 2πn)−iλ−αux(x)dx +

∫ 2π

−π

(x + 2π(n+ 1))−iλ−αux(x)dx

=

∫ π

0

(

(x+ 2πn)−iλ−α − (−x+ 2π(n+ 1))−iλ−α
)

ux(x)dx.

Thus
∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

=
1√

λ2 + α2

∣

∣

∣

∣

∫ π

0

Z(iλ+ α, x)ux(x)dx

∣

∣

∣

∣

,

where

Z(iλ+ α, x) =
∞
∑

n=0

(x+ 2πn)−iλ−α − (−x+ 2π(n+ 1))−iλ−α

= x−iλ−α +

∞
∑

n=1

(x+ 2πn)−iλ−α − (−x+ 2πn)−iλ−α

= x−iλ−α + (2π)−iλ−α

∞
∑

n=1

(

n+
x

2π

)−iλ−α

−
(

n− x

2π

)−iλ−α

Let us write Z∗(iλ+ α) =
∑∞

n=1

(

n+ x
2π

)−iλ−α −
(

n− x
2π

)−iλ−α
. We can split Z∗ = Z∗

1 + Z∗
2 with

Z∗
1 =

∞
∑

n=1

(

(

n+
x

2π

)−α

−
(

n− x

2π

)−α
)

(

n+
x

2π

)−iλ

Z∗
2 =

∞
∑

n=1

(

(

n+
x

2π

)−iλ

−
(

n− x

2π

)−iλ
)

(

n− x

2π

)−α

Since 0 ≤ x
2π ≤ 1

2 we have that |Z∗
1 | ≤ C where C does not depend on neither α nor x. For Z∗

2 we
have that

Z∗
2 =

∞
∑

n=1

(

n− x

2π

)−α (

cos
(

λ log
(

n+
x

2π

))

− cos
(

λ log
(

n− x

2π

)))

+ i

∞
∑

n=1

(

n− x

2π

)−α (

sin
(

λ log
(

n+
x

2π

))

− sin
(

λ log
(

n− x

2π

)))

We will bound the real part of Z∗
2 . The estimation of the imaginary part follows same steps. Using

elementary trigonometric formulas we can write

ReZ∗
2 = 2

∞
∑

n=1

(

n− x

2π

)−α

cos

(

λ

2
log
((

n+
x

2π

)(

n− n

2π

))

)

sin

(

λ

2
log

(

n+ x
2π

n− x
2π

))

.

We notice that
n+ x

2π

n− x
2π

= 1 +
x
πn

1− x
2πn

and that for all 0 < β < 1 , | sin(x) ≤ |x|β , thus
∣

∣

∣

∣

sin

(

λ

2
log

(

n+ x
2π

n− x
2π

))∣

∣

∣

∣

≤
∣

∣

∣

∣

λ

2
log

(

n+ x
2π

n− x
2π

)∣

∣

∣

∣

β

≤
∣

∣

∣

∣

∣

λx
2πn

1− x
2πn

∣

∣

∣

∣

∣

β

≤ C

∣

∣

∣

∣

λ

n

∣

∣

∣

∣

β

.
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Taking β = 1− α+ ǫ we have that

|ReZ∗
2 | ≤ C|λ|1−α+ǫ

∞
∑

n=1

∣

∣

∣
n− x

2π

∣

∣

∣

−α

n−1+α−ε ≤ Cǫ|λ|1−α+ǫ.

Proceeding in a similar way with ImZ∗
2 we have that |Z∗(iλ+ α)| ≤ C + Cǫ|λ|1−α+ǫ.

This fact allows us to prove that

∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

≤ 1√
λ2 + α2

∫ π

0

x−α |ux(x)| dx+
C + Cǫ|λ|1−α+ǫ

√
λ2 + α2

∫ π

0

|ux(x)| dx

But since ux(x) ≥ 0 for x ∈ [0, π], we can remove the absolute value inside the integral to get

∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

≤ 1√
λ2 + α2

∫ π

0

x−αux(x)dx +
C + Cǫ|λ|1−α+ǫ

√
λ2 + α2

||u||L∞ .

To finish the proof we notice that

Z(α, x) = x−α +
∞
∑

n=1

(

(x+ 2πn)−α − (−x+ 2πn)−α
)

is a positive function that satisfies
x−α ≤ Z(α, x) + C.

Therefore
∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

≤ 1√
λ2 + α2

∫ π

0

Z(α, x)ux(x)dx +
C + Cǫ|λ|1−α+ǫ

√
λ2 + α2

||u||L∞

=
1√

λ2 + α2

∫ ∞

0

x−αux(x)dx +
C + Cǫ|λ|1−α+ǫ

√
λ2 + α2

||u||L∞ .

Then we can achieve the conclusion of the lemma just integrating by parts.
�

Now we can prove the main lemma of this section

Lemma 4.3 Let u ∈ C1(T) satisfying, H2, H3 and H4. Then

lim
ε→0+

∫ ∞

−∞

A(λ, ε, α)U(λ, ε, α)dλ = 2παcαU(0, 0, α) +

∫ ∞

−∞

A0(λ, α)U(λ, 0, α)dλ.

where

P1.

A0(λ, α) = −cα lim
ε→0+

Re

∫ ∞

0

x−iλ−2+ε

(

sign(x − 1)

|x− 1|α +
1

|x+ 1|α
)

dx for |λ| > 0.

P2. A0(λ, α) ≤ 0 is a bounded function.

Proof: The proof of this lemma is similar to that one for lemma 4.3 in section 3. The main difference is
that in 4.3 we could use that the integral

∫∞

0
xiλ−2−βu(x) decays as |λ|−1 and then U(λ, ε, β) decays

as |λ|−2. Since this is not the case now we have to use the decays in lemmas 4.1 and 4.2 to get that

|A(λ, ε, α)U(λ, ε, α)| ≤ Cǫ|λ|−1−α+ǫ (4.5)
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with Cǫ independent of α and ε, ǫ arbitrarily small and |λ| > 2. Thus

∫ ∞

−∞

A(λ, ε, α)U(λ, ε, α)dλ = Re

(
∫ ∞

−∞

A(λ, ε, α)U(λ, ε, α)dλ

)

=

∫ ∞

−∞

Re (A(λ, ε, α)) Re (U(λ, ε, α)) dλ−
∫ ∞

−∞

Im (A(λ, ε, α)) Im (U(λ, ε, α)) dλ.

Now we can split the integrals in
∫

|λ|>2
...+

∫

|λ|<2
dλ. Because of (4.5) we have that

lim
ε→0+

∫

|λ|>2

Re (A(λ, ε, α)) Re (U(λ, ε, α)) dλ =

∫

|λ|>2

A0(λ, α)U(λ, 0, α)dλ,

and

lim
ε→0+

∫

|λ|>2

Im (A(λ, ε, α)) Im (U(λ, ε, α)) dλ = 0.

For the integral on the region |λ| < 2 we can perform similar computations to that one in lemma 4.3
to achieve the conclusion of the lemma. In order to make shorter the proof we will skip some details
and we will use aε(λ) ∼ bε(λ) if

lim
ε→0+

∫

|λ|<2

(aε(λ)− bε(λ))f(λ)dλ =

∫

|λ|<2

c(λ)f(λ)

for any smooth function f and with c(λ) a bounded function.
We focus on the integral

∫ ∞

0

xiλ−2+εp(x, α)dx ∼
∫ 1

2

0

xiλ−2+εp(x, α)dx,

with p(x, α) = sign(x − 1)|x− 1|−α + |x+ 1|α.
And integration by parts yields

∫ 1
2

0

xiλ−2+εp(x, α)dx =
1

iλ− 1 + ε
2−iλ+1−εp(2−1, α)− 1

iλ− 1 + ε

∫ 1
2

0

xiλ−1+ε∂xp(x, α)dx

∼ − 1

iλ− 1

∫ 1
2

0

xiλ−1+ε∂xp(x, α)dx = − 1

iλ+ ε
2iλ+ε∂xp(2

−1, α) +
1

iλ− 1

1

iλ+ ε

∫ 1
2

0

xiλ+ε∂2xp(x, α)dx

∼ − 1

iλ− 1

1

iλ+ ε
2iλ+ε∂xp(2

−1, α) +
1

iλ− 1

1

iλ+ ε

∫ 1
2

0

xiλ+ε∂2xp(x, α)dx

∼ − 1

iλ− 1

1

iλ+ ε
2iλ∂xp(2

−1, α) +
1

iλ− 1

1

iλ+ ε

∫ 1
2

0

xiλ∂2xp(x, α)dx

Then

Re

(
∫ ∞

0

xiλ−2+εp(x, α)dx

)

∼ ε

ε2 + λ2
1

1 + λ2

(

cos(λ log(2))∂xp(2
−1, α)−

∫ 1
2

0

cos(λ log(x))∂2x∂
2
xp(x, α)dx

)

.

From this last expression we can conclude that

lim
ε→0+

∫

|λ|<2

A(λ, ε, α)U(λ, ε, α)dλ = −πcα∂xp(0, α)U(0, 0, α) +

∫

|λ|<2

A0(λ, α)U(λ, 0, α)dλ,
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where A0(α, λ) is a bounded function and ∂xp(0, α) = −2α.
In addition we have that

Im

(
∫ ∞

0

xiλ−2+εp(x, α)dx

)

∼ λ

ε2 + λ2
g(λ)

where g(λ) is a bounded function. To pass to the limit in
∫

|λ|<2

Im(A(λ, ε, α))Im(U(λ, ε, α)dλ

we take advantage of the fact that Im(U(λ, ε, α)dλ ≤ C|λ|. We finally have that

lim
ε→0+

∫

|λ|<2

Im(A(λ, ε, α))Im(U(λ, ε, α)dλ = 0.

Finally we prove that negativity of A0(λ, α). This proof follows similar steps that the proof of the
positivity of B0(λ, β) in lemma 4.3. We have that, for λ > 0,

I =

∫ ∞

0

cos(λ log(x))p(x, α)dx =

∫ 1

0

cos(λ log(x))F (x, ε, α)dx,

where
F (x, ε, α) = x−2+ε

(

−(1− x)−α + (1 + x)−α
)

+ xα−ε
(

(1− x)−α + (1 + x)−α
)

.

We integrate by parts to have that

I = − 1

λ

∫ 1

0

sin(λ log(x))∂x (xF (x, ε, α)) dx.

For λ > 0 we pass to the limit as we did for B0(λ, β) in lemma 4.3. This yields

lim
ε→0

I = − 1

λ

∫ 1

0

sin(λ log(x))G(x, α)dx,

where G(x, α) = ∂x(xF (x, 0, α)) is positive and its derivative ∂xG(x, α) is also positive. Then an
integration by part shows that limε→0 I ≥ 0. Since A0(λ, α) = −cα limε→0+ I we have achieved the
last conclusion of the lemma. �

Remark 4.4 The main difference between the ranges 0 < α < 1 and 1 < α < 2 is that in lemma 3.1
the function B0(λ, α) is positive and in lemma 4.3 the function A0(λ, α) is negative.

Applying lemma 4.3 to (4.2) yields

− (1 + α)

∫ ∞

0

u(x)Λα−1Hu(x)

x2+α
dx

=
1 + α

2π

(

C(α)U(0, 0, α) +

∫ ∞

−∞

A0(λ, α)U(λ, 0, α)dλ

)

, (4.6)

where

U(λ, 0, α) =

∣

∣

∣

∣

∫ ∞

0

xiλ−1−αu(x)dx

∣

∣

∣

∣

2

.

Unlike the function B0(λ, α) which is positive, the function A0(λ, α) is negative an then we have
to work further to be able to conclude the blow up of solutions.

We will need the following lemma
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Lemma 4.5 Let 0 < α < 1 and |λ| > 2. Then

|A0(λ, α)| ≤
C

|λ|2−α

where C is a universal constant which not depend on α.

Proof: This lemma is a consequence of lemma 4.1 �

From (4.6) we find that

d

dt

∫ ∞

0

u(x, t)

x1+α
dx =

(1 + α)

2π
2παcα

(
∫ ∞

0

u(x, t)

x1+α
dx

)2

+
(1 + α)

2π

∫ ∞

−∞

A0(λ, α)

∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

2

dλ.

Applying lemma 4.2 yields,

∫ ∞

−∞

A0(λ, α)

∣

∣

∣

∣

∫ ∞

0

x−iλ−1−αu(x)dx

∣

∣

∣

∣

2

dλ ≥ −
(
∫ ∞

−∞

|A0(λ, α)|
α2

λ2 + α2
dλ

)(
∫ ∞

0

u(x)

x1+α
dx

)2

− ||u||L∞

(
∫

R

|A0(λ, α)|
α(C + Cǫ|λ|1−α+ǫ)

λ2 + α2
dλ

)
∫ ∞

0

u(x)

x1+α
dx

− ||u||2L∞

(

∫ ∞

−∞

|A0(λ, α)|
(

C + Cǫ|λ|1−α+ε
)2

λ2 + α2
dλ

)

.

By applying the maximum principle for solutions of (1.4) we conclude that

d

dt

∫ ∞

0

u(x, t)

x1+α
dx = C1(α)

(
∫ ∞

0

u(x)

x1+α
dx

)2

+ ||u0||L∞Cǫ
2(α) + ||u0||2L∞Cǫ

3(α).

where

C1(α) =
1 + α

2π

(

2πcα +

∫ ∞

−∞

A0(α, λ)
α2

λ2 + α2
dλ

)

Cǫ
2(α) =

∫ ∞

−∞

|A0(λ, α)|
α(C + Cǫ|λ|1−α+ǫ)

λ2 + α2

Cǫ
3(α) =

∫ ∞

−∞

|A0(λ, α)|
(C + Cǫ|λ|1−α+ǫ)2

λ2 + α2

where we took into account that A0(α, λ) ≤ 0.
We firstly analyze Cǫ

2(α) and C
ǫ
3(α). We can split

Cǫ
2(α) =

∫

|λ|<2

...dλ+

∫

|λ|>2

...dλ.

And we can bound, for ǫ < 1,

∫

|λ|<1

|A0(λ, α)|
α(C + Cǫ|λ|1−α+ǫ)

λ2 + α2
≤ Cǫ

∫

|λ|<2

α

α2 + λ2
dλ ≤ Cǫ.
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In addition, by lemma 4.5, for ǫ < 1,

∫

|λ|>2

|A0(λ, α)|
α(C + Cǫ|λ|1−α+ǫ)

λ2 + α2
≤ C

∫

|λ|>2

|λ|−2+αC + Cǫ|λ|1−α+ǫ

λ2 + α2
dλ ≤ Cǫ.

Therefore Cǫ
2(α) can be choosen less or equal than a constant Cǫ

2 uniformly in α and ǫ < 1.
For Cǫ

3(α) and ε < 1 we have that

∫

|λ|<2

|A0(α, λ)|
(

C + Cǫ|λ|1−α+ǫ
)2

λ2 + α2
dλ ≤ Cǫ

α

and, by lemma 4.5 and ǫ < 1
2 .

∫

|λ|>2

|A0(α, λ)|
(

C + Cǫ|λ|1−α+ǫ
)2

λ2 + α2
dλ ≤ Cε

∫

|λ|>2

|λ|−2−α+2εdλ ≤ Cε

Therefore, taking ǫ = 1
4 we have that

Cǫ
2(α) < C2, Cǫ

3(α) <
C3

α
,

where C2 and C3 are universal constants.
In addition for C1(α) we have that, by applying lemma 3.1,

2παcα +

∫ ∞

−∞

A0(α, λ)
α2

λ2 + α2
dλ = lim

ε→0+

∫ ∞

−∞

A(λ, α, ε)
α2

λ2 + α2
dλ.

And we can compute by Fubini

∫ ∞

−∞

A(λ, α, ε)
α2

α2 + λ2
= −cα

∫ ∞

0

x−2

(

sign(x − 1)

|x− 1|α +
1

|x− 1|α
)
∫ ∞

−∞

xiλ
α2

α2 + λ2
dλdx

= −αcαπ
∫ ∞

0

e−α| log(x)|x−2+ε

(

sign(x− 1)

|x− 1|α +
1

|x− 1|α
)

dx

= −αcαπ
(
∫ 1

0

xα−2+ε

(

− 1

(1− x)α
+

1

(x+ 1)α

)

dx+

∫ ∞

1

x−α−2+ε

(

1

(x− 1)α
+

1

(x+ 1)α

)

dx

)

.

Thus

2παcα +

∫ ∞

−∞

A0(α, λ)
α2

λ2 + α2
dλ

= −αcαπ
(
∫ 1

0

xα−2

(

− 1

(1− x)α
+

1

(x+ 1)α

)

dx+

∫ ∞

1

x−α−2

(

1

(x− 1)α
+

1

(x + 1)α

)

dx

)

.

This last expression is positive for 0 < α < 1. In order to check it we change variables to get

2παcα +

∫ ∞

−∞

A0(α, λ)
α2

λ2 + α2
dλ

= −αcαπ
(
∫ 1

0

xα−2

(

− 1

(1− x)α
+

1

(x + 1)α

)

dx+

∫ 1

0

x2α
(

1

(1− x)α
+

1

(x + 1)α

)

dx

)
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The first integral in the last expression is equal to 21−α

−1+α
and since α > 0 we have that the second one

satifies

∫ 1

0

x2α
(

1

(1− x)α
+

1

(x + 1)α

)

dx <

∫ 1

0

(

1

(1− x)α
+

1

(x+ 1)α

)

dx =
21−α

1− α
.

Thus, we obtain C1(α) > 0 for 0 < α < 1. It turns that

d

dt

∫ ∞

0

u(x, t)

x1+α
dx ≥C1(α)

(
∫ ∞

0

u(x, t)

x1+α
dx

)2

− C2||u0||L∞

∫ ∞

0

u(x, t)

x1+α
dx− C3||u0||2L∞

α
,

Since
∫∞

0 x−1−αu0(x)dx can be chose arbitrarily large with respect to ||u0||L∞ , 1
C1(α)

, 1
α
, C2 and C3

fixed 0 < α < 1 we can conclude that there exits u0 such that
∫∞

0 x−1−αu(x, t)dx blows up in finite

time. This is a contradiction since
∫∞

0 x−1−αu(x, t)dx ≤ C||u||C1 .

Remark 4.6 The size of the constants C2 and C3 affect to the size of
∫∞

0 x−1−αu0(x)dx to be chosen
in order to have blow up. The size of these constants can be reduced by a improvement of lemma 4.2.
Although this reduction is not in the scope of this paper let us comment something about this fact. The
function

Z(iλ+ α) = (2π)−iλ−α
(

ζ
(

iλ+ α, 1 +
x

2π

)

− ζ
(

iλ+ α, 1 − x

2π

))

,

where ζ(iλ + α, x) (x > 0) is the Hurwitz Zeta function (HZF). The HFZ is related with Riemann
Zeta function (RZF) and one can use similar ideas used for the RZF in order to bound the HZF. We
will give here some indications about how to get decay for the HZF. All of these indications are due to
Fernando Chamizo. The bound |ζ(iλ + α, x)| = O

(

|λ|1−α
)

can be reached by using Euler-Maclaurin
summation formula (the constant in O(|λ|1−α) degenerates to a log(|λ|) for α = 1).

By using the Poisson summation Formula one can get the estimate (3)-[12] which can be used to

yields the bound |ζ(iλ+α, x)| ≤ O(|λ| 1−α
2 ) for 1

2 ≤ α ≤ 1 (the constant in O(|λ|1−α) degenerates to a
log(|λ|) for α = 1) .

By using Van der Corput type techniques one can get |ζ(λ, x)| ≤ O(log(|λ||λ| 1−α
3 ), for 1

2 ≤ α ≤ 1.
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